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Abstract
This paper revisits the Modern Portfolio Theory (Markowitz, 1952) by investigating correlations

between countries and for various bonds, stocks and real estate indices over time from an U.S.

perspective. Analyzing the changes over time can provide information for investors on the

question whether they should construct portfolios dynamically by taking possible changes into

account. The goal of this thesis is to come to a generalized statement about (1) the degree of

stability of correlations over time, (2) the pattern of correlations over time, (3) the movement

of the efficient frontier over time and (4) the diversification benefits over time. First, stability

of correlations is tested with the Jennrich-Test (Jennrich, 1970). Subsequently, the pattern of

the correlations is examined with three methods: rolling-window, EWMA and the DCC(1,1)-

GARCH(1,1) model. In addition, the impact over time of these correlations on the efficient

frontier is analyzed in two ways. In one way, sub-period efficient frontiers are created in order

to investigate the effect of possible unstable correlations in a dynamic setting. In the other way,

several variants of the mean-variance spanning tests, as laid out by Kan & Zhou (2008), are

computed in order to gain information about the significance of the movements of efficient

frontiers and possible diversification gains over time.

Results show that correlations of stocks and real estate seem to be stable over time, but have

the tendency to increase during a crisis. However, the strong increase seems to stabilize over

time. These findings confirm the fact that correlations tend to be higher during bear markets

than in bull markets, implying stabilization on the long-term. In contrast, correlations of bonds

are not stable over time and could be the result of country-differences in the dynamics of

risk characteristics of bonds and monetary policy. Correlations of bonds did not substantially

increase during the crisis. Correlations of bonds have in fact fallen for a short period of time

during the recession, although they do show small upward shocks. This implies possible short-

term demand shifting from high (sovereign debt) risk to low risk government bonds.

With regard to the effects of correlations on the risk-return trade-off, it has been found that

this trade-off resembles the pattern of the correlation coefficients. Only stocks and real estate

have an increase in risk over time and a substantial upward shock in risk during a recession. In

contrast, bonds appear to be relatively resistant to a possible increase in risk, especially during

a recession. Adding a short-selling restriction does not change the main findings, but it did

show that a short-selling restriction limits (potential) diversification gains.

Finally, on the basis of various spanning tests, it can be indicated that spanning tests need to

be corrected for normality, as the spanning tests under normality can lead to distorted results

and conclusions due to the nature of financial data in this study and in general. Results of the

asymptotic spanning tests show that (1) an investor benefits from diversification (over time),

(2) these benefits have the tendency to decline during recessions and that (3) a relatively large

portfolio could make diversification gains quite resistant during recessions.

Keywords: Correlations; Recession; Diversification; Portfolio; Efficient-frontier; Mean-Variance

Spanning Tests; Jennrich-Test; Rolling; EWMA; DCC-GARCH; GMM-Wald; SDF;
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Chapter 1

Background
Globalization and technological progress have ensured that investing is no longer as difficult

as it was by (1) making markets more accessible, (2) integrating markets and (3) lowering

transaction costs. The increasing accessibility to investing has led roughly to more retail in-

vestors and thus to larger heterogeneity among investors. Even though the marginal investor

differs across time and markets, the marginal investor constantly tries to maximize the portfolio

return while minimizing its risk. Lowering portfolio risk is a challenge that could be achieved

by numerous ways. One way is by investing in less risky assets. However, the aforementioned

method will lead to lower returns, since it is scientifically accepted that risk and return are

positively correlated with each other (Markowitz, 1952). It appears that an investor chooses to

only hold his risky asset if the return is high enough to offset it (Hillier, Ross, Westerfield, Jaffe,

& Jordan, 2013). Therefore, investors will always consider and weigh the trade-off between

risk and returns of each security and can ask themselves one (or both) of the following two

questions (Markowitz, 1952): "How much extra x% risk do I accept for an extra y% return?" or

"how much y% return am I prepared to submit for x% lower risk?".

Any investor can make the trade-off easier by considering diversification as a serious option.

Bergstrom (1975), for example, reveals that diversification can reduce portfolio risk by, up

to, 40 percent without giving in any returns. Empirical evidence also suggests that there is

continuous existence of gains from especially international diversification and that the country’s

perspective does not seem to matter (Madura & Soenen, 1992). Thus, one can benefit by

diversifying the portfolio with international assets (B. H. Solnik, 1995). The benefit comes

from the fact that international markets are not fully integrated with each other. This has a

positive effect on the diversification possibilities because assets from different countries are

not perfectly correlated with each other.

Even though markets are not yet fully integrated, the trend of globalization, which is still contin-

uing, has most likely ensured that correlations between international markets have increased.

The increased correlations over time may limit the future diversification possibilities (Elton &

Gruber, 1977; Ford, 2001; Hight, 2010). This negative impact on diversification can be severe

in times of high volatility (e.g. recession), where markets tend to behave as one (Junior &

Franca, 2012). It seems that no investor can overcome possible severe diversification limits

in times of high volatility. Therefore, there is a stain on high correlations for risk reduction,

especially when short-selling is not costless.

Research that has been done so far seems to confirm the hypothesis that correlation coefficients

increase/fluctuate over time and that markets are more integrated than ever before (Koch &

Koch, 1991; Erb, Harvey, & Viskanta, 1994; B. Solnik, Boucrelle, & Le Fur, 1996). One author

that not only analyzes the stability and pattern of correlation coefficients over time but also its
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impact on efficient portfolios by means of the efficient frontier, is Eichholtz (1996a). His analysis

considers multiple asset classes: bonds, stocks and real estate indices. Eichholtz (1996a) does

not only use the Jennrich-test (Jennrich, 1970) to test the stability of unconditional correlation

matrices over time, but he also uses the Modern Portfolio Theory (Markowitz, 1952) to compare

efficient frontiers across asset classes. Results of Eichholtz (1996a) show two important results.

First, international real estate returns have significant lower correlation between each other

in comparison with stock and bond returns. Secondly, international diversification should

relatively lead to lower risk for a real estate portfolio than for a bond or stock portfolio.

The study by Eichholtz (1996a) is a fairly static analysis in which no account is taken of

possible changes of the efficient frontier and diversification benefits over time. It is all the

more interesting to extend the line from Eichholtz (1996a) to a more dynamic setting, as

rational investors should take these possible changes into account in the construction of an

efficient portfolio. Therefore, this paper aims to investigate the current state of affairs regarding

correlation coefficients, efficient frontiers and diversification benefits of bonds, stocks and real

estate indices with more recent data, between a wide range of countries and in a more detailed

manner. This paper adds value by also taking into account the potential changes of the efficient

frontier and diversification benefits over time. The ultimate goal is to come to a generalized

statement about (1) the degree of stability of correlation coefficients over time, (2) the pattern

of correlation coefficients over time, (3) the movement of the efficient frontier over time and

(4) the diversification benefits over time. More specifically, the research question of this paper

can be stated as follows:

"Analyzing bonds, stocks and real estate indices, what effect does the pattern and degree of

stability of correlation coefficients between countries over time have on the efficient frontier and

diversification benefits over time?"

The focal point of this study is the research within the asset classes, between different countries

and over time. In order to show the changes over time more specifically, the focus will not

only be placed on the full-sample but also on three sub-periods (pre-crisis, crisis and post-

crisis).

Mainly, this paper’s methodology consists of four parts. Firstly, the stability of the correlation co-

efficients for different sub-periods will be investigated by means of the Jennrich-test. Next, the

pattern of correlation coefficients will be analyzed on the basis of three methods: Rolling Cor-

relations, an EWMA-model and a DCC-GARCH model. After the correlation analysis has been

completed, this paper will examine the possible effects of changing correlation coefficients on

the risk-and-return trade-off and diversification benefits over time. On the one hand, efficient

frontiers will be made over different sub-periods in order to map the return-risk trade-off over

time. This will be done in both the case of unlimited short-selling and restricted short-selling.

On the other hand, various mean-variance spanning tests, as described in, among others, Kan

& Zhou (2008), will be carried out for different sub-periods in order to show the diversification

benefits over time. As each spanning test has its own assumptions, advantages and disadvan-
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tages, the application of different mean-variance spanning tests should lead to amplification

in the robustness of the conclusion regarding diversification benefits over time.

Results in this paper show that correlation coefficients of the risky assets (stocks and real estate),

are increasing, but stable, over time. These correlations have the tendency to specifically

increase (more strongly) during a crisis and stabilize afterwards. Analogous to these results

are the main findings of Von Furstenberg, Jeon, Mankiw, & Shiller (1989); King & Wadhwani

(1990); Longin & Solnik (1995, 2001); Ang & Bekaert (2002); Goetzmann, Li, & Rouwenhorst

(2005); Hyde, Bredin, & Nguyen (2007). Bonds, on the other hand, show a deviating pattern.

Although the correlations of bonds are unstable, they seem to be resistant to recessions. This is

likely to be due to the fact that the collective uncertainty surrounding bonds during recessions

is lower in comparison to stocks and real estate, because bonds are considered safe assets.

Furthermore, constructing efficient frontiers for different (sub-)periods generates results in

line with the pattern and stability of correlation coefficients. The results of the efficient frontier

analysis imply that the risk-and-return trade-off worsen during the crisis for both stocks and real

estate, but stabilize after the crisis. Bonds, on the other hand, appear to be relatively resistant to

changes in the risk-and-return trade-off during the crisis, verifying that bonds are considered as

safe assets and are therefore not heavily impacted by negative investor sentiment or collective

uncertainty during recessions. Making comparisons between frontiers with and without a

short-selling restriction does not change these findings. However, the findings of the efficient

frontier analysis support the general consensus that the risk-and-return trade-off worsen when

short-selling constraints are added. Not entirely illogical if one accounts for the fact that short-

selling has the advantage to make use of high positive correlations between assets. Finally, this

paper generates various spanning tests because the significance of the movement of the efficient

frontiers need to be tested in order to make conclusions regarding the diversification benefits

over time. Surprisingly, based on unlimited short-selling, diversification benefits do not tend

to decline over time, regardless of the portfolio size, but do get tight during recessions when

the size of the portfolio is small. Most papers develop or use models based on a static analysis

of efficient portfolios per certain point in time. However, insight in the background of possible

changes over time or during time is mostly not given. In comparison with most of the literature,

this thesis wants to provide insight into the changes of efficient portfolios and its background

over time. This allows investors, academics and other stakeholders to take into account the fact

that efficient portfolios, from an optimal perspective, should be made dynamically. In addition,

changes in the type of model or assumptions should also be considered in order to increase

robustness of investment and portfolio choices.

Following this introductory section, the literature review will discuss existing literature in

chapter 2. Subsequently in chapters 3-5, the methodologies, which function as the backbone

of this paper, will be elaborated upon in detail. Chapter 6 will describe the data that will be

used, whereas chapters 7-9 will focus on the results based on the acquired data. Finally, this

paper will end with chapter 10, which, respectively, includes the conclusion and final remarks

of this research paper.
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Chapter 2

Literature Review
To date, previous studies have been published that have investigated correlation coefficients, in

particular its stability and pattern. That is why this chapter will focus on a number of findings

from previous studies. This chapter will consist of three sections. The first section focuses not

only on the definition of correlation coefficients but also on the findings of literature over time.

Subsequently, a section is devoted to the concept of the efficient frontier in which it is shown to

what extent correlation coefficients influence the risk-and-return trade-off. Finally, this chapter

will conclude with a brief section on diversification benefits over time.

2.1 Correlation Coefficients

The correlation coefficient is a simple way to gain insight into the strength of the linear re-

lationship between two variables (Sedgwick, 2012). Hall (2015) mentions that one of the

most popular methods for measuring this is through the Pearson Correlation Coefficient (short:

PCC)1.

Because the PCC helps quantifying the degree of the association between two variables (in this

paper: assets), the PCC is bounded to range between -1 and +1. A negative value implies a

negative linear relationship between the two variables, whereas a positive value implies the

opposite. If the PCC is equal to |1|, then these two variables are perfectly (positive or negative)

correlated with each other. The formula for the PCC can be visualized as follows, where, for

example, A stands for asset A and B for asset B and where x̄ represents the mean of either asset

(variable) A or B:

ρA,B =

∑n
i=1(Ai − x̄A)(Bi − x̄B)

q

∑n
i=1(Ai − x̄A)2

q

∑n
i=1(Bi − x̄B)2

(2.1)

The correlation matrix between asset A and asset B could then be defined as follows:

�

ρA,A ρA,B

ρB,A ρB,B

�

(2.2)

1The method of calculation is subordinate to the interpretation. Whatever calculation is used, the interpretation
of the correlation coefficients remains the same.
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Logically, the correlations ρA,A and ρB,B are equal to 1 and ρA,B yields the same correlation

as ρB,A. Knowing this, the correlation matrix can be generalized for multiple variables (as-

sets):













1 ρA,B · · · ρA,n

ρB,A 1 · · · ρB,n
...

...
. . .

...

ρn,A · · · · · · 1













(2.3)

Early studies on correlation coefficients of (risky) assets reveal that correlation coefficients

seem to (1) be unstable and (2) increase over time, especially during high volatility periods.

Von Furstenberg, Jeon, Mankiw, & Shiller (1989), for example, analyzed daily stock data and

find that the pattern of correlations is more variable over time and that the co-movement

between these stocks are more pronounced since the October 1987-crash. Longin & Solnik

(1995) extend this analysis with the use of monthly excess returns data by not only modeling

the multivariate asset return process but by also considering a longer time period.

More specifically, King & Wadhwani (1990) find that contagion effects are more strongly in

times of high volatility and conclude that the increasing correlation coefficients on equity mar-

kets after the October 1987-crash are evidence of this. There are studies that imply that there

is a relationship between correlation coefficients and the state of the economic market, as

correlation coefficients seem to increase (decrease) in bear (bull) markets (Longin & Solnik,

2001; Ang & Bekaert, 2002; Hyde, Bredin, & Nguyen, 2007). Increases in correlation coeffi-

cients are however also often devoted to the increase in market integration (Goetzmann, Li, &

Rouwenhorst, 2005; Hyde, Bredin, & Nguyen, 2007).

If correlation coefficients increase in bear markets and periods of high volatility, whereas corre-

lation coefficients decrease in periods of bull markets, then this would imply possible instability

of correlation coefficients over time. With these findings, it is useful to start with a number

of hypotheses that can contribute to the answer of the research question. Since many papers

assume that correlation matrices are unstable, this would be a reasonable hypothesis to inves-

tigate first2:

H01: Cross-country correlation-matrices are significantly unstable over time

2Of course, in terms of statistics, the null hypothesis would be that one would test that there is no effect (cross-
country correlation-matrices are stable over time).
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After assessing the stability, it is important to look at the pattern. As indicated earlier, and ac-

cording to a large number of papers, correlation coefficients often increase over time due to glob-

alization and market integration, especially in times of high volatility (e.g., recessions)3:

H02: Cross-country correlation coefficients increase substantially over time

2.2 The Efficient Frontier

The previous section revealed that correlations may be unstable and increasing over time. The

impact that correlations have on the risk-and-return trade-off (or diversification) may well be

underestimated. Not only does empirical evidence suggest that correlations are unstable over

time (Kaplanis, 1988), it also stresses the importance of stable correlations in order to achieve

diversification gains (Jorion, 1985; Eun & Resnick, 1988). In addition, Markowitz (1952)

highlights the fact that substantial risk reduction can be achieved by adding a pool of assets

that are low correlated with each other. Markowitz (1952) is certainly not the only one who

documents a negative relationship between correlation coefficients and risk reduction4 (Roy,

1952). Besides increasing the pool of assets, an investor can specifically exploit this negative

relationship by diversifying internationally. According to Grauer & Hakansson (1987), interna-

tional diversification should result in a higher return-risk ratio than domestic diversification.

A possible reason for this is that correlations between foreign assets and domestic assets are

lower than between domestic assets (Pfau et al., 2007). The statement of Pfau et al. (2007)

could well be the consequence of variation of monetary, fiscal and industrial policies between

countries which in turn implies differences between country returns dynamics (Lagoarde-Segot

& Lucey, 2007). Following up, Grubel (1968) presents results that are based on the time-period

1959-1966 and show that international diversification outperform domestic portfolios in terms

of obtaining welfare gains and lower variance5. Just like the paper of Grubel (1968), the paper

of Levy & Sarnat (1970) is also based on the work of Markowitz (1952) and includes data

with a fairly similar time-period. These authors also underline that internationally diversified

portfolios are an improvement over domestic portfolios.

Derived from Markowitz (1952), one can construct efficient frontiers in order to compare

(efficient) portfolios. The efficient frontier concerns the display of a curve representing various

portfolios that maximize the expected return given a corresponding risk or minimize risk given

a corresponding return, where risk is measured by the standard deviation or covariance. As

the model is heavily influenced by the historical estimates of the (1) mean return of, (2)

standard deviation (or: variance) of and (3) correlation between assets’ returns (Levy & Post,

2005), one can easily visualize the effects of changing correlation coefficients on the risk-

and-return relationship. Like any other model, the efficient frontier model is subject to a
3Of course, in terms of statistics, the null hypothesis would be that one would test that there is no effect (cross-

country correlation coefficients remain unchanged over time).
4The implicit assumption is positive portfolio weights.
5The variance is one way to measure risk. Another common measure is the standard deviation.
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number of assumptions (Markowitz, 1952; Jensen, 1968; Bodie, Kane, & Marcus, 2013),

where assumption 8 does not always have to apply in practice and as a result can usually be

left in theory without it seriously harming the efficient frontier6:

1. The investor’s planning horizon is one period (for example two months, one year or fifty

years).

2. Investors maximize the expected utility across all possible portfolios.

3. The expected usefulness of an investment is only a function of the expected return E(R),

and the risk σ(R) of that investment.

4. Investors prefer a higher return compared to a lower return and are also risk averse.

5. There is no tax, no inflation and there are no transaction and other costs.

6. Investors can have all information at no cost.

7. All investment objects are infinitely divisible.

8. Investors can do free of charge and unlimited short-selling.

Figure 2.1 below shows an example of an efficient frontier based on two risky assets. The

(expected) portfolio return is marked on the y-axis and the measurement of risk, standard

deviation, is represented at the x-axis. A frontier normally has two curves. The upper-curve

(portion of the hyperbola with a positive slope) is essentially the ’efficient’ frontier, as this

frontier consists of portfolios that yield a higher expected return for the same amount of risk

in comparison with the ’sub-optimal’ portfolios on the lower-curve (portion of the hyperbola

with a negative slope).

Figure 2.1: Example of an Efficient-Frontier based on Two Risky Assets

6In practice, assumption 5 is also fairly weak. Important to note is that violations of assumptions 5 (e.g.
transaction costs) and 8 (short-selling limitations) can both lead to movement of the efficient frontier.
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The efficient frontier shifts when the risk-and-return trade-off changes. For example, diversifi-

cation, especially international diversification, can lead changes in the trade-off (Markowitz,

1952). A general consensus is that the risk can be severely reduced by increasing the amount

of assets (Levy & Post, 2005). One interpretation is that more assets should lead to a more

and well diversified portfolio due to the fact that the total portfolio risk is then spread over

more assets (Markowitz, 1952; B. H. Solnik, 1995). Another interpretation is that more assets

bring more and different correlation coefficients in the calculation and therefore lead to more

diversification possibilities. In turn, the efficient frontier should bulge or/and shift to left as

there are possibly more lower correlation coefficients7 (Levy & Post, 2005). Figure 2.2 reflects

this notion:

Figure 2.2: Different Efficient Frontiers (n assets)

Even though the general consensus is that portfolio risk usually declines when, for example,

more and more stocks (or other assets) are added to the portfolio, it is worth mentioning that it

happens on a decreasing rate (Brigham & Houston, 2012). Figure 2.2 also serves as an example

for the fact that increasing portfolio size has diminishing returns for risk reduction. B. H. Solnik

(1995) provides evidence that risk reduction of having a portfolio with a size that is beyond

some optimal portfolio size will only lead to marginal reduction in risk. Therefore, when

the portfolio size passes the optimal size, the benefits of diversification will not significantly

outweigh its costs. As one can observe from Figure 2.2, increasing the portfolio size from 2 to

6 (risky) assets results in a higher risk reduction than increasing the portfolio size from 6 to 9

(risky) assets. This example also shows that at some point the shape of the frontier does not

change significantly. As can be seen, the frontier dramatically changes form when the amount

of assets increase from 2 to 4 or from 2 to 6 in comparison to a increase in assets from 6 to

9.

7More assets does not necessarily imply that all assets have a low correlation with each other. An example
of this is a portfolio that consists of only chip manufacturers (for example: AMD, Intel, Qualcomm, Nvidia, Texas
Instruments and Samsung).
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Another possible way in which the risk-and-return trade-off can change, is the restriction of

short-selling8. In particular, a short-selling puts restriction on the weight allocation to each

asset. The restriction ensures that each asset can only get a weight greater than or equal to

zero. Levy & Post (2005) reason that the short-selling restriction leads to deterioration of the

efficient frontier, because the highest possible (expected) return (given the risk) decreases

in comparison to the fact that the lowest possible variance, or standard deviation, increases

(given the expected return). Figure 2.3 shows the efficient frontier with and without the short-

selling constraint. When there are no restrictions on the weights (short-selling is allowed), the

marginal investor has more investment opportunities (Levy & Post, 2005) and, therefore, the

efficient frontier without restrictions should clearly dominate.

Figure 2.3: Efficient-Frontier - Short-Sales Allowed/Restricted

In line with the previous mentioned empirical findings, Levy & Post (2005) also demonstrate

that higher correlations between assets will lead to smaller gains from diversifications, ceteris

paribus. This means that as the gains from diversifications diminish, the risk reduction will

also be smaller (Levy & Post, 2005), implying a higher (portfolio) standard deviation and

covariance for the same expected return. In addition, an unstable correlation matrix over time

suggests that the corresponding covariance matrix is equally unstable over time. As the Modern

Portfolio Theory (Markowitz, 1952) teaches us that both matrices are important inputs that

are related to each other and influence the efficient frontier through the portfolio weights, it

makes it all the more interesting to investigate the following hypothesis with the help of the

efficient frontier9:

H03: Over time, the risk (standard deviation) increases for the same level of return, meaning that

the efficient frontier shifts to the right

8In practice, transaction costs occur (frequently). Since transaction costs lead to a reduction in net returns, this
will also have to lead to deterioration of the efficient frontier. However, transaction costs are not taken into account
in this paper and, therefore, this is not discussed in more detail.

9Of course, in terms of statistics, the null hypothesis would be that one would test that there is no effect (Over
time, the risk, standard deviation, remains unchanged for the same level of return, meaning that the efficient
frontier does not shift).
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2.3 Diversification benefits

The majority of literature agrees that correlations rise over time as a result of globalization.

At first glance, low correlations between markets seem to be the only necessary assumption

to benefit from diversification. However, stable correlations between markets are as equally

important (Jorion, 1985; Eun & Resnick, 1988). The latter assumption is also implied by

Hyde, Bredin, & Nguyen (2007). The authors examine Asia-Pacific, EU and US equity markets

with the help of the asymmetric generalized dynamic conditional correlation GARCH model

(AG-DCC-GARCH) and provide evidence that the fluctuation of correlation and covariance

between these markets suggest a significant time variation in the opportunities of international

portfolio diversification. To test the diversification benefits over time, mean-variance spanning

tests have been used by Driessen & Laeven (2007) and Kan & Zhou (2008). These methods

essentially test if any movement of the efficient frontier (over time) is significant. The goal

with a mean-variance spanning test is to test the null hypothesis that the improvement of the

global minimum variance or/and tangency portfolio is not statistically significant. Technically

stated, it tests the null hypothesis that a frontier with K (benchmark) assets ’spans’ (is identical

to) a frontier with K+N assets, where N are additional (test) assets. Throughout time and

literature, mean-variance spanning tests are mainly used with the purpose for either testing

diversification between assets (adding different N assets to a set of K benchmark assets) or

testing the diversification over time (adding N assets to a set of K benchmark assets for multiple

subperiods). The findings in both papers (Driessen & Laeven, 2007; Kan & Zhou, 2008) indicate

a decrease in the diversification benefits over time.

Testing hypothesis H03 can help to identify the developments of the risk-and-return trade-off

over time and thus to say something about the diversification benefits over time. Nevertheless,

increasing risk over time does not always mean that the diversification benefits or diversification

options will decrease significantly over time. The reason is that visualizing any movement of the

efficient-frontier does not necessarily imply that the movement is significant. Therefore, it is

necessary to test the actual significance of the movement in order to obtain insight regarding the

significance of gains in diversification over time. That is why it is important to also consider the

spanning tests, as described in Kan & Zhou (2008), and draw up a fourth hypothesis10:

H04: Over time, international diversification gains have significantly decreased

10Of course, in terms of statistics, the null hypothesis would be that one would test that there is no effect (over
time, international diversification gains have not significantly changed).
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Part II

Methodology and Data
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Chapter 3

Correlation Analysis
This chapter emphasizes the stability and pattern of correlation coefficients over time by apply-

ing different methodologies. In order to first explore the stability of the correlation coefficients

and to answer hypothesis H01, the Jennrich-test (Jennrich, 1970) will be used for different

sub-periods (pre-crisis, crisis and post-crisis). Subsequently, the correlation analysis will be com-

pleted with three methods (Rolling-method, the EWMA-model and the DCC-GARCH model) for

checking the pattern of the correlation coefficients throughout time. The use of three different

methods gives the advantage that one can place sight on the pattern of correlation coefficients

over time on the basis of three different perspectives. Analyzing the pattern of correlation

coefficients will help to formulate an argument against or in favor of hypothesis H02.

3.1 Testing for Stability

3.1.1 Jennrich Correlation Matrix Equality Test

An answer to the question of whether correlation coefficients have remained stable over time

can be given when it is clear whether unconditional correlation matrices, based on the Pearson

Correlation Coefficient, differ significantly between different sub-periods. In the distant past,

various tests have been designed that put sight on this. However, a test can not simply be

chosen on arbitrariness. It is important that the right test is chosen that takes into account the

type of data that is underlying the research.

Since this paper will be based on financial data, it is not illogical to consider that financial data

are skewed and heavy-tailed in most of the cases (Upadhyay, Singh, Dey, & Loganathan, 2015).

One test that is suitable to tackle this, is the Jennrich-test (Jennrich, 1970). This asymptotic

test relies on the χ2-distribution and thus does not rely on the assumption of normality of

observations (Omelka & Pauly, 2012). A feature of this test that suits well with this research

is that the length of the time series is not ignored and that therefore the reliability of the test

increases when the correlations are calculated with a large(r) length of data series (Schindler,

2009)11. This test involves another advantage because it gives the opportunity to compare the

results with other papers, since the majority of the literature uses this test (Kaplanis, 1988;

Longin & Solnik, 1995; Eichholtz, 1996a)12.

11Stephen (2005) demonstrates this by also considering different lengths when testing the stability of correlation
coefficients, based on UK Real Estate data.

12Some papers, like the one of Kaplanis (1988), also use the Box M (Box, 1949) test in order to also assess the
stability of covariance matrices for the purpose of making comparisons.
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Mathematically, the Jennrich-test can be defined as follows, in line with Jennrich (1970);

Eichholtz (1996a); Schindler (2009):

χ2 =
1
2

t r(Z2)− diag ′(Z)S−1diag(Z) (3.1)

Z = c1/2 · R−1 · (R1 − R2)

c = n1 · n2/(n1 + n2)

n1 = obs. of 1st correlation matrix

n2 = obs. of 2nd correlation matrix

R = (n1 · R1 + n2 · R2)/(n1 + n2)

R1 = 1st correlation matrix with n1 obs.

R2 = 2nd correlation matrix with n2 obs.

S = (δi j + ri j r
i j)

δi j = Kronecker delta (δi j = 1 for i = j)

ri j = elements of R

r i j = elements of R−1

t r = trace of matrix

diag = diagonal of matrix

If D is equal to the dimension of the correlation matrices, then the degrees of freedom of

the Jennrich-test is equal to D(D+1)
2 . Finally, the statistical hypotheses which is being test

is13:

H0 : R1 = R2

Ha : R1 6= R2

Preference is given to investigate unconditional correlation matrices of the following three

specific sub-periods from the full sample: pre-crisis, crisis and post-crisis14.

3.2 Development of Correlations Over Time

3.2.1 Rolling Analysis of Correlation Coefficients

One way to assess how correlation coefficients between indices have developed, is the calcu-

lation of correlation coefficients on a rolling basis. Despite its simplicity, a rolling analysis is

very powerful because it allows correlation coefficients to be time-varying.

As mentioned in Buyuksahin, Haigh, & Robe (2008), if x1 and x2 are assumed to be deviations

from the means of the particular two random variables, with a mean equal to zero, then the

rolling correlation can be calculated by means of this formula:

ρ̂12,t+1 =

∑t
s=t−k x1,s x2,s

Ç

(
∑t

s=t−k x2
1,s)(

∑t
s=t−k x2

2,s)
(3.2)

13Note that the statistical hypothesis is the opposite of hypothesis H01.
14See chapter 6 (Data) for the specific time-frame of each sub-period.
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Where ρ̂12,t+1 stands for the correlation coefficient at time t+1 between variable 1 and 2 and

where k stands for the length of estimation. Ideally, the length of the window-size (estimation-

window) should be as large as possible. The larger the estimation-window, the greater the

number of observations that are included in the estimation. An advantage of this is that this

improves the accuracy of the estimation and leads to less noisy estimates. However, it is not

realistic to choose indiscriminately for a random large estimation-window. A choice must be

made for a length in which this reflects reality as well as possible. In this paper, k = 12 as the

rolling analysis will be done on the basis of 12 months. The reason that 12 months have been

chosen, is that most of the investors re-balance annually (per 12 months).

3.2.2 Exponentially Weighted Moving Average (EWMA)

A major disadvantage of the rolling analysis, discussed in subsection 3.2.1, is that the weights

are evenly distributed over the observations that are included in the estimation-window. As

(un)expected changes in international markets, for example monetary or regulatory policies,

are not rare, there could be a delayed impact on correlation coefficients15. The EWMA-method

tackles this disadvantage because its calculation is a moving average where the weights attached

to past observations decay exponentially (Hendricks, 1997). Therefore, this method is also

used in this paper. As the data in this paper is monthly, the decay factor, λ, is set fixed on

0.9716, in line with RiskMetrics (Brooks, 2014).

Important to understand is that the EWMA-method does essentially the same as the standard

method of rolling correlations. However, the difference between the two methods lies in the

fact that the EWMA-method makes use of a certain decay-factor instead of a specified window-

size of k length. The mathematical definition of the EWMA-method below shows both the

resemblance and difference between the standard rolling approach and EWMA in a clear way

(Buyuksahin, Haigh, & Robe, 2008):

ρ̂12,t+1 =

∑t
s=1λ

t−s x1,s x2,s
Ç

(
∑t

s=1λ
t−s x2

1,s)(
∑t

s=1λ
t−s x2

2,s))
(3.3)

Where ρ̂12,t+1 stands for the correlation coefficient at time t+1 between variable 1 and 2 and

where x1 and x2 are assumed to be deviations from the means of the particular two random

variables, with a mean equal to zero and λ equals the smoothing parameter that ensures that

past observations decay exponentially (Hendricks, 1997).

15Normally one can also choose to make the window size as small as possible to ensure that only the most
’recent’ observations are included in the estimation window. However, a too small estimation-window can lead to
inaccurate and noisy correlation coefficients.

16λ= 0.94 is also common and has been used by, for example, Engle (2002). However, his analysis is based on
daily returns.
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The difference between the rolling method and EWMA procedure can also be demonstrated

by looking at the weights of each method on each observation. As indicated earlier, the rolling

method is based on an estimation-window of k = 12. This means that, each time, the last 12

observations are used in the estimation. At first, the 1st to the 12th observations are used,

followed by the 2nd to the 13th and then the 3rd to the 14th and so on. Each time the weights

are evenly distributed (1/k), in this case 1/12. Thus, each of the 12 observations has a weight

of 0.0833 (8.33%).

In contrast, as mentioned, the EWMA-procedure does not rely on any estimation window-size

and therefore all ’past’ observations are taken into account. However, the EWMA procedure

is biased towards more recent observations. The weights for the EWMA procedure can be

determined on the basis of (1−λ)∗(λ)bi , where bi is equal to (ni - 1) and ni is equal to the i-th

observation. For example, the weight for the 1st and most recent observation can be calculated

as (1− 0.97) ∗ (0.97)0 = 0.0300. The same calculation can be used to calculate the weight for

the 2nd, 24th and 60th observation: (1−0.97)∗(0.97)1 = 0.0291, (1−0.97)∗(0.97)23 = 0.0149

and (1−0.97)∗ (0.97)59 = 0.005 . A tabular representation of the weight allocation difference

between the rolling and EWMA method for the 12 most recent observations can be observed

in Table 3.1:

Table 3.1: Weights of Rolling- and EWMA Method for The Most Recent 12 Observations

Observation Rolling Correlations EWMA

1 0,0833 0,0300
2 0,0833 0,0291
3 0,0833 0,0282
4 0,0833 0,0274
5 0,0833 0,0266
6 0,0833 0,0258
7 0,0833 0,0250
8 0,0833 0,0242
9 0,0833 0,0235
10 0,0833 0,0228
11 0,0833 0,0221
12 0,0833 0,0215

The table presents the weights of the 12 most recent observations for both the rolling correlation
method and the EWMA-procedure in order to make the differences transparent. The 1st observation
is the most recent observation relative to the 12th.
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3.2.3 DCC-GARCH

The final method to investigate the pattern of correlation coefficients over time, is the Dynamic

Conditional Correlation GARCH (DCC-GARCH) model of Engle (2002), which is (1) based

on the GARCH-model (Bollerslev, 1986) and (2) a generalization of the Constant Conditional

Correlation GARCH model (CCC-GARCH) of Bollerslev (1990). Preference is given to the

DCC-GARCH instead of the CCC-GARCH because the former allows the correlation matrix to

be time-dependent (Orskaug, 2009).

One may wonder to what extent the DCC-GARCH model differs from the previous two methods

(Rolling and EWMA). According to Buyuksahin, Haigh, & Robe (2008) the DCC-GARCH is

better able to account for changes in volatility. The author affirms that both the Rolling and

the EWMA method are sensitive to volatility shocks and that these two methods, as discussed

in subsection 3.2.1 and 3.2.2, make the interpretation of the estimated correlation coefficients

difficult during periods of high volatility.

To which Equation 3.2 and 3.3 have great similarities with each other, the formula of the DCC-

GARCH model has that to a very limited extent. This is mainly due to the dynamic structure and

calculation of the model concerned, as the estimation is based on two stages. In the first stage,

the conditional volatility is calculated with the help of a GARCH model. The corresponding

standardized residuals from this stage are then used, for the second stage, to estimate the

dynamic correlation matrix (Buyuksahin, Haigh, & Robe, 2008)

Mathematically, the correlation estimator of the DCC-GARCH can be denoted in a straightfor-

ward way. However, the DCC-GARCH deserves some explanation about its specification, where

the mathematical structure and definition is based on Engle (2002) and Buyuksahin, Haigh,

& Robe (2008). If there is a normally-distributed nx1 vector with mean zero, return series

rt of n assets and a corresponding covariance matrix Ht , then the following baseline can be

made:

rt ∼ N(0, Ht) (3.4)

Ht = DtRt Dt (3.5)

Ht = Conditional covariance matrix

Dt = diagonal matrix of time-varying standard deviations

Rt = time-varying correlation matrix
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Dt can also be interpreted as Dt = diag
q

Et−1(r2
i,t) = diag

Æ

hi,t , where hi,t can be seen as a

generalized GARCH(p,q) model (Peters, 2008):

hi,t =ω+
q
∑

i=1

αiε
2
t−i +

p
∑

i=1

γiht−i (3.6)

ω = weighted long run variance
∑q

i=1αiε
2
t−i = moving-average term

αi = weight i

ε2
t−i = squared-innovations
∑p

i=1 γiht−i = Sum of p lagged variances multiplied by weight γi , i = 1, ..., p

Therefore, assuming that εi,t ∼ N(0, Rt), the standardized disturbance can be denoted as

εi,t = ri,t/
Æ

hi,t = D−1
t ri,t . Based on this, conditional correlations can be expressed as:

ρi j,t =
Et−1[ri,t r j,t]
Ç

Et−1[r2
i,t r

2
j,t]

(3.7)

Equation 3.7 can also be re-expressed in terms of the standardized residuals from the GARCH-

model:

ρi j,t = Et−1εi,tε j,t (3.8)

Further specification is possible with the following dynamics of the DCC-GARCH model (Engle,

2002):

Rt =Q∗−1
t Q tQ

∗−1
t (3.9)

Q t = (1−α− β)Q̄+α(εi,t−1ε j,t−1) + βQ t−1 (3.10)

Q t = qi j,t = covariance between ri,t and r j,t

Q̄ t = E[εtε
′

t] = unconditional correlation matrix of standardized residuals

Q∗t = diagonal matrix composed of the square roots of the diagonal elements of Q t

Rt = time-varying conditional correlation matrix of returns

Interestingly to note is the fact that if α + β < 1 holds in Equation 3.10, then there will be

mean-reversion.
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With the knowledge about the structure of the DCC-GARCH model, the dynamic conditional

correlation between the two assets (i and j) at a certain time point (t) can subsequently be

calculated with the use of the following formula:

ρi j,t =
qi j,t

p

qii,tq j j,t
(3.11)

Generalization of Equation 3.10 can be expressed in terms of DCC(m, n) as follows (Peters,

2008):

Q t = (1−
m
∑

i=1

αi −
n
∑

j=1

β j)Q̄+
m
∑

i=1

αiεi,t−iε
′

i,t−i) +
n
∑

j=1

β jQ t− j (3.12)

The following loglikelihood function is with the purpose of estimation and maximization:

L = −
1
2

T
∑

t=1

(nlog(2π) + 2log(|Dt |) + log(|Rt |) + ε′R−1
T ε) (3.13)

In this paper, the DCC(1,1)17 is considered because it is not only simple and highly effective

but also because it is frequently used in literature. The DCC-GARCH model will be based on

the student’s t-distribution, instead of the standard normal distribution. This choice has been

made due to the fact that the majority of the literature agrees that the t-distribution performs

better than the normal distribution. Dube (2016), for example, has come to the conclusion

that (1) the normal-DCC model is not capable of taking into account fat-tails in financial time

series data, where the t-DCC model has no issues with these fat-tails and (2) that t-DCC model

outperforms the normal-DCC model18. As example, Figure 3.1 shows a visual comparison

between the normal distribution and the student’s t-distributions based on 1, 2, 5 and 10

degrees of freedom.

Figure 3.1: Normal Distribution vs. Student’s t-distribution

17Specifically: the DCC-GARCH (1,1,1,1), also known as DCC(1,1)-GARCH(1,1).
18Important mentioning is that the same author remarks that the t-DCC model has difficulties passing the

Kolmogorov-Smirnov goodness-of-fit test.
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Chapter 4

Dynamic Efficient Frontiers
After analyzing correlation coefficients, light needs to be shed on the effects of correlation

coefficients on the trade-off between risk and (expected) return in order to form an answer

regarding whether hypothesis H03 will be rejected or not. A common way to show these effects

over time is to use graphs showing efficient frontiers. As hypothesis H03 is based on what

happens over time, efficient frontiers will be created for the full-sample period and three sub-

periods (pre-crisis, crisis and post-crisis)19. As transaction costs influence the risk-and-return

tradeoff and the efficient frontier, transaction costs are assumed to be constant and equal to

zero in this paper.

Although the theoretical approach and the underlying general assumptions of the model have

been discussed in section 2.2, the efficient frontier still requires explanation regarding the

mathematical approach and the way the efficient frontiers will be constructed and utilized in

this paper. Firstly, it is important to know that to find the efficient frontier, one needs to find

portfolios that minimizes the portfolio’s variance:

σ2
p =ω

′Vω (4.1)

where, ω = (ω1, ....,ωn) represents the weights allocated to each asset and V represents the

covariance matrix of n assets;

V =













σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n
...

...
. . .

...

σn1 σn2 · · · σnn













(4.2)

σi, j stands for the covariance between asset i and j, whereas σ2
i stands for the covariance of

only asset i (or: variance of asset i). Even though it is logical, it is still worth noting that σi, j is

identical to σ j,i as both represent the covariance of assets i and j.

19chapter 6 defines these sub-periods.
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As mentioned, Equation 4.1 can be optimized by finding portfolios that minimize risk given

a particular expected (desired) portfolio return. Therefore, for a range of possible expected

portfolio returns, the Langrangian will subject to the following constraint:

r̄p =ω
′ r̄ (4.3)

Where, the expected return of the portfolio (r̄p) equals the expected return of the assets (r̄ =

r1, ...., rn) multiplied by the portfolio weights (ω).

As this paper will only focus on the assets (data) that are going to be investigated, no specific

risk-free asset will be included. Therefore, an additional constraint must be added that ensures

that the total allocated weight is equal to 1. This means that no lending or borrowing is allowed

due to the fact that the risk-free asset is non-existent. The constraint can be stated as follows,

where ‘e’ is a vector consisting solely of ones:

ω′e = 1 (4.4)

Finally, with the help of the following Langrangian, the variance is minimized by adjusting the

weights, subject to the constraints that the expected portfolio return equals R̄p and weights

(ω) sum to 1:

min
ω

1
2
ω′Vω+λ

�

R̄p −ω′ r̄
�

+ γ
�

1−ω′e
�

(4.5)

Optimization should yield to the following formula for constructing the optimal weights (ω∗):

ω∗ =
e′V−1eR̄p − r̄ ′V−1e

r̄ ′V−1 r̄ e′V−1e−
�

r̄ ′V−1e
�2 V−1 r̄ +

r̄ ′V−1 r̄ − r̄ ′V−1eR̄p

r̄ ′V−1 r̄ e′V−1e
�

r̄ ′V−1e
�2 V−1e (4.6)

The formula for the optimal weights (ω∗) show that the optimal portfolio gets influenced by

three factors: the average returns of the assets (r̄), the co-movement between the assets (V)

and the answer on how much risk the particular investor is willing to bear (R̄p). Equation 4.6

and point (3) illustrates exactly the hypothesis that the marginal investor chooses to only hold

his (risky) asset if the return is high enough to offset it (Hillier et al., 2013). According to

Levy & Post (2005), additional constraints can be considered in real life applications such as

short-sales restrictions. Therefore, it is useful to also investigate hypothesis H03 for the case

in which short-selling is not allowed. This helps to make comparisons with the non-restricted

frontiers. Equation 4.7, below, shows the constraint that needs to be applied to the weights in

order to restrict short-selling:

ωi ≥ 0 (4.7)
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Chapter 5

Tests of Mean-Variance Spanning
In the previous chapter, the focus lies in the risk-and-return trade-off over time. However,

as mentioned earlier in this paper, diversification can influence this trade-off. Therefore it is

interesting to find out whether diversification benefits have decreased over time (hypothesis

H04). And thus, this chapter will shed light on this particular question with the help of the

Mean-Variance Spanning Tests. The main idea behind the Mean-Variance Spanning Test is

quite conventional. It basically tests the null-hypothesis that a set of K assets has the same

Minimum-Variance Frontier (short: MVF) as the set of K + N assets (Kan & Zhou, 2008). If

and only if both MVFs are equal to each other, then one can say that a set of K assets spans a

larger set of K +N assets (Kan & Zhou, 2008). However, if the null-hypothesis is rejected, then

K + N assets will statistically improve the MVF and thus add value in terms of diversification.

Because hypothesis H04 is based on what happens over time, the tests will be computed for

multiple sub-periods of the sample. The same sub-periods will be used as for the methodologies

in subsection 3.1.1 and chapter 4.

The original, regression-based, Mean-Variance Spanning Test (Huberman & Kandel, 1987) dates

from many years ago . Nowadays, there are several variants of the Mean-Variance Spanning

Test. It may well be that the use of a certain variant can lead to a different conclusion than

when another variant is used. Therefore it is important to apply at least a couple variants of the

spanning test in order to check for robustness under, for example, non-normality. All notations,

variants and brief explanations in this paper will be based on the paper of Kan & Zhou (2008).

Therefore, in the case of theoretical or practical ambiguities that require more explanation, it

is advisable to take a look at Kan & Zhou (2008).

5.1 Regression Approach

Huberman & Kandel (1987) are the first ones to introduce the Mean-Variance Spanning Test,

based on the regression framework. Because this variant is based on the regression framework,

it is necessary that the assumptions of linear regression hold. At first, let R1t be a K-vector of

returns on the K benchmark assets and R2t an N-vector of the returns on the N test assets. Based

on this, the raw returns on K + N assets, Rt , can be mathematically written as [R
′

1t , R
′

2t]
′ The

corresponding expected returns on K +N assets can be written as follows, where the subscript

1 refers to the K benchmark assets and subscript 2 to the N test assets:

µ= E[Rt] =

�

µ1

µ2

�

(5.1)
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If the covariance matrix is nonsingular, then it can be defined as:

V = Var[Rt] =

�

V11 V12

V21 V22

�

(5.2)

As the name implies, the regression approach is based on the fact that a regression is the

underlying of the statistical test in this approach:

R2t = α+ βR1t + εt (5.3)

E[εt] = 0N , where 0N is an N-vector of zeros

E[εtR
′

1t] = 0N×K , where ON×K is an N by K matrix of zeros

α = µ2 − βµ1

β = V21V−1
11

δ = 1N − β1K , where 1N and 1K are respectively a N- and K-vector that consist of ones

The necessary hypotheses that are going to be tested, is stated as follows:

H0: (1) α= 0N , (2) δ = 0N

Essentially, this tests whether the intercept(s) and slope(s) are equal to zero. Because when

this null hypothesis holds, the portfolio of K benchmark assets has the same mean, but a lower

variance than the portfolio of test assets, which means the K benchmark assets dominate the N

test assets20. Another way stated, this approach has the null hypothesis that (1) the portfolio

weights of N additional test assets in the tangency portfolio (Qw1) and (2) the global minimum-

variance portfolio (Qw2) are equal to zero. The mathematical definitions of (Qw1) and (Qw2)

can lead to a more elegant way of understanding why α and δ need to be zero21:

Qw1 =
Σ−1α

1′N+K V−1µ′
(5.4)

Qw2 =
Σ−1δ

1′N+K V−11N+K
(5.5)

With, Σ = V22 − V21V−1
11 V12 and 1N+K equal a N+K matrix that includes only ones and Q =

[ON×K , IN ], where IN is an N by N identity matrix. Also, w1 =
V−1µ

1′N+K V−1µ
and w2 =

V−11N+K
1′N+K V−11N+K

.

Important to mention is that this study will focus on using the regression-approach in a multi-

variate setting, as discussed in Kan & Zhou (2008).

20As Kan & Zhou (2008) state, this is true because it is assumed that R1t and εt are are uncorrelated and Var[ε]
has positive definiteness.

21The fractions can only be zero if the numerators are zero. Since Σ−1 consists of covariances, it is nevertheless
logical that only α and δ can ensure that the numerators (and therefore the fractions) are equal to zero.
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Kan & Zhou (2008) mention three widely used asymptotic tests that can be combined with the

regression-approach of the mean-variance spanning test: Likelihood Ratio test (LR-test), Wald-

test (W) and the Lagrange Multiplier test (LM)22. However, there is one major disadvantage

associated with the use of an asymptotic test. The disadvantage is that the use of an asymptotic

test could lead to less reliable results in finite samples (Gibbons, Ross, & Shanken, 1989; Kan &

Zhou, 2008). Therefore, based on Huberman & Kandel (1987); Jobson & Korkie (1989); Kan &

Zhou (2008), a corrected F-test will be applied in order to improve the reliability of the results.

The corrected F-test, that will be used in this paper, consists of two possible test-statistics. The

first test statistic is valid for N = 1, whereas the second test statistic is only valid for N ≥ 2. In

Equation 5.6 and 5.7, U = |Σ̂|
|Σ̃| and 1

U =
|Σ̃|
|Σ̂| where Σ̃ is the constrained and Σ̂ unconstrained

maximum likelihood estimator of Σ= V22 − V21V−1
11 V12.

�

1
U
− 1

��

T − K − 1
2

�

∼ F2N ,T−K−1 (5.6)

�

1

U
1
2

− 1

�

�

T − K − N
N

�

∼ F2N ,2(T−K−N) (5.7)

5.2 Step-Down Procedure

In contrast to the regression-approach, a sequential test with two hypotheses, defined as the

step-down procedure, provides results that yield more useful information. Essentially, the step-

down procedure tests exactly the same as the joint F-test in the regression-approach. There is,

however, one major difference. That is that the step-down procedure considers two separate

(F-)tests instead of 1 joint test. The first test (F1) tests that α = 0N and the second test (F2)

tests whether δ = 0N , conditional on the fact that α= 0N . As Kan & Zhou (2008) mention, this

test has two major advantages due to the fact that it is sequential. The first one is that this test

should give (more) information about the reasoning behind the rejection of the null hypothesis.

If the sequential test does not pass due to the F1, then the reason is that the two tangency

portfolios are statistically different from each other. However, if the rejection is the result of

F2, then the two global minimum-variance portfolios do significantly differ from each other.

There is also a possibility that the rejection is due both the F1 and F2. Logically, this implies

that both the two tangency and the two global minimum-variance portfolios differ significantly

from each other. The second advantage is that, based on the relative economic significance,

one can give both seperate tests different significance levels23.

22In a multivariate test setting, the popular assumption is to assume that α and β are constant over time while
regressing R2t = α+ βR1t + εt , where t = 1, 2, ..., T , and where T is the length of time series.

23In this paper however, preference is given to simplicity by using the same significance levels (1%, 5% and 10%)
for both seperate tests.
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As the step-down procedure will be considered in this paper, it won’t do any harm to mathe-

matically define the two F-test statistics24:

F1 =
�

T − K − N
N

��

Σ̄

Σ̂
− 1

�

(5.8)

F2 =
�

T − K − N + 1
N

�

�

Σ̃

Σ̄
− 1

�

(5.9)

Where, first, Σ̂ is the unconstrained maximum likelihood estimator of Σ= V22− V21V−1
11 V12. In

addition, Σ̄ is the constrained maximum likelihood estimator of Σ by imposing the condition

that α= 0N . Finally, Σ̃ is the constrained maximum likelihood estimator of Σ by imposing the

conditions that α= 0N and δ = 0N (Kan & Zhou, 2008).

5.3 Spanning Tests Under Non-Normality

Due to the nature of financial data, it will not come as a surprise if the error-term (εt) of

Equation 5.3 exhibits non-normality. There are two types of non-normalities that can occur

frequently: (1) conditional homoskedasticity and (2) conditional heteroskedasticity. If εt is

conditionally homoskedastic, then εt is still independently and identically distributed, condi-

tional on R1t . When εt exhibits the behavior of being conditional heteroskedasticity however,

then the variance of εt can be time-varying as a function of R1t (Kan & Zhou, 2008).

In the former case, the asymptotic tests can still be valid due to its very good approximation.

Even though, it was mentioned that the F-test has the favor over asymptotic tests due to more

reliable results, this paper will also consider an asymptotic test. The two main reasons are

that (1) asymptotic tests do not rely on the normality assumption, where the F-test does and

(2) asymptotic tests can handle conditional homoskedasticity. Thus, this paper will use the

Wald-test as asymptotic test as stated in Equation 5.1025. In Equation 5.10, it is assumed that

λ1 estimates the maximum distance between the two ex-post frontiers, whereas λ2 measures

the minimum distance. Important to note is that these estimations are done in terms of the

squared sample Sharpe Ratios (Kan & Zhou, 2008).

W = T (λ1 +λ2)
A∼ χ2

2N (5.10)

24Kan & Zhou (2008) present and introduce the constants in order to clarify the geometrical interpretation.
25Kan & Zhou (2008)) normally recommend, in the sake of completeness, to use all three tests. Their reason is

that not all of three asymptotic tests (LR-, LM- and W-test) are equal to each other. Conflicting results can be a
logical consequence. Nevertheless, just like Kan & Zhou (2008), only the Wald test is chosen in this paper. There
is one reason for this, which is the same as the reasoning of Kan & Zhou (2008). That is that the GMM Wald test
does not require a specification of the initial weighting matrix and the number of iterations.
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However, in the case of conditional heteroskedasticity it is a reasonable idea to possibly use

an alternative. This alternative is the GMM Wald Test (Hansen, 1982), which corrects for

conditional heteroskedasticity and is valid for all distributions, as it does not depend on the

normality assumption. The exact test statistic (Wa) can be derived with following the approach

of Kan & Zhou (2008) and Ferson, Foerster, & Keim (1993). First, a couple of descriptions and

definitions must be stated:

If, x t = [1, R
′

1t]
′ and εt = R2t − B′x t , then the moment conditions for the GMM estimation of

B are, assuming 0(K+1)N is a (K+1)N vector of zeros:

E[gt] = E[x t ⊗ εt = 0(K+1)N ] (5.11)

The sample moments can be stated as follows, assuming that Rt is stationary with finite fourth

moments:

ḡT (B) =
1
T

T
∑

t=1

x t ⊗ (R2t − B′x t) (5.12)

Minimization of ḡT (B)′S−1
T ḡT (B) yields to the GMM estimate of B, where ST is the consistent

estimate of S0 = E[gt g
′

t], where gt is assumed to be serial uncorrelated. Kan & Zhou (2008)

state the test statistic as follows:

Wa = T vec(Θ̂′)′
�

(AT ⊗ IN )ST (A
′

T ⊗ IN )
�−1

vec(Θ̂′) A∼ χ2
2N (5.13)

vec = vectorization

IN = N by N identity matrix

AT =

�

1+ â1 −û1V̂−1
11

b̂1 −1′K V̂−1
11

�

µ̂1 =
1
T

∑T
t=1 R1t

â1 = µ̂
′

1V̂−1
11 µ̂1

b̂1 = µ̂
′

1V̂−1
11 1K

V̂11 =
1
T

∑T
t=1(R1t − µ̂1)(R1t − µ̂1)′

Θ̂ = [α̂, δ̂]′

At first glance this would be a good alternative to support a robustness check. Nevertheless,

there is another alternative in the case of a multivariate elliptical distribution. The meaning

behind this distribution is that the conditional variance of εt is not constant but a function

of R1t , unless the returns are multivariate distributed (Kan & Zhou, 2008). This form of the

GMM-Wald test statistic (W e
a ) can be build up as follows:

Ĥ = Θ̂Σ̂−1Θ̂′ =

�

α̂′Σ̂−1α̂ α̂′Σ̂−1δ̂

α̂′Σ̂−1δ̂ δ̂′Σ̂−1δ̂

�

(5.14)

Ĝa =

�

1+ (1+ k̂)â1) (1+ k̂)b̂1)

(1+ k̂)b̂1) (1+ k̂)ĉ1)

�

(5.15)
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b̂1 and â1 in Equation 5.15 are the same as in Equation 5.13. ĉ1 = 1′K V̂−1
11 1K and k̂ is the

consistent estimate of the kurtosis parameter k:

k =
E[((Rt −µ)′V−1(Rt −µ))2]
(N + K)(N + K + 2)

− 1 (5.16)

The test statistic is as follows, where tr = trace (Kan & Zhou, 2008):

W e
a = T t r(Ĥ Ĝ−1

a )
A∼ χ2

2N (5.17)

Precisely because this test statistic takes a specific situation into consideration, this test statistic

is only valid when there is a multivariate elliptical distribution. And as mentioned before, Wa

version is fairly valid for every distribution. In order to improve the reliability and check for

robustness, both the Wa and W e
a will be used in this paper.

5.4 Tests Based on The Stochastic Discount Factor (SDF)

An innovative view of the mean-variance spanning test is presented by De Santis (1993) and

Bekaert & Urias (1996). The innovation that they apply, is that they focus on the stochastic

discount factor (SDF) and combine this with the GMM26. Both SDF-approaches test if N ad-

ditional test assets could describe the variance of the SDF (Kan & Zhou, 2008). Even though

both approaches have similarities, they are significantly different from each other. Both SDF-

approaches will be used in this paper27. Note that the SDF gives the opportunity to go outside

the mean-variance framework, as the SDF is equivalent to the inter-temporal marginal rate of

substitution and can therefore be linked to, for example, (the marginal utility of) consumption.

The reason for this is that the SDF can be derived from the utility function.

5.4.1 DeSantis (1993)

De Santis (1993) has devised a way to test the spanning hypothesis with the use of the stochastic

discount factor (mt). As formulated in Kan & Zhou (2008), the goal of De Santis (1993) is

to analyze whether N additional (test) assets contribute to explaining the variance of mt . He

defines the stochastic discount factor as follows, where c equals the mean on the returns of

K +N assets and where 1N+K , under the law of one price, is equal to E[(1N+K +Rt)mt]:

mt = c + (1N+K + Rt)
′γ(c) + εt (5.18)

26This approach assumes that the weights of the frontier portfolios are constant over time (Kan & Zhou, 2008).
27For specific details regarding both the SDF-approaches, including the differences and similarities between each

other, it is advisable to check (Kan & Zhou, 2008).

Page 27 of 70



γ(c) = U−1[(1− c)1N+K − cµ] (5.19)

U = E[(1N+K + Rt)(1N+K + Rt)
′] (5.20)

The hypotheses that are being tested, can be denoted as follows, where 0N is an N-vector of

zeros:

H0: (1) Qγ(c1) = 0N ,

(2) Qγ(c2) = 0N

Where, Q = [ON+K , IN ] and γ(c1) and γ(c2) are two different linear combinations of the weights

of two frontier portfolios of K + N assets (Kan & Zhou, 2008). Note that Qγ(c1) and Qγ(c2)

have the same meaning as Qω1 = 0N and Qω2 = 0N .

According to Kan & Zhou (2008), the GMM Wald test statistic can be build up as follows. First

assume that the sample moment conditions are equal to:

m̄T (γ(c1),γ(c2)) =







1
T

∑T
t=1(1+ Rt)(c1 + (1+ Rt)′γ(c1))− 1N+K

1
T

∑T
t=1(1+ Rt)(c2 + (1+ Rt)′γ(c2))− 1N+K






(5.21)

Based on this and assuming that Û = 1
T

∑T
t=1(1+ Rt)(1+ Rt)′, the unconstrained estimates of

γ(c1) and γ(c2) are:

γ̂(c1) = Û−1[1N+K − c1(1N+K + µ̂)] (5.22)

γ̂(c2) = Û−1[1N+K − c2(1N+K + µ̂)] (5.23)

If ĝ = (γ̂(c1)′, γ̂(c2)′)′ and if Ŝm is equal to the consistent estimate of the asymptotic variance

of m̄T , then the GMM Wald test statistic for this approach is as follows:

J3 = T
�

ĝQ
′

2

��

I2 ⊗QÛ−1
�

Sm

�

I2 ⊗ Û−1Q′
��−1

Q2 ĝ

� A∼ χ2
2N (5.24)

Where c1 = 0 and c2 = 1, in line with Kan & Zhou (2008). The authors state that this choice

will not harm the generality, as J3 is not numerically dependent of the choice of c1 and c2
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5.4.2 Bekaert and Urias (1996)

The approach of Bekaert & Urias (1996) does not differ much from the methodology of De Santis

(1993). Theoretically, Bekaert & Urias (1996) also check whether N additional (test) assets

contribute to explaining the variance of mt . However, there is a significant difference between

both methods. Bekaert & Urias (1996) mathematically and theoretically define the stochastic

discount factor in a different way:

mt = c + (Rt −µ)′β(c) + εt (5.25)

Where β(c) is:

β(c) = V−1[(1− c)1N+K − cµ] (5.26)

The corresponding hypotheses are as follows, where 0N is an N-vector of zeros:

H0: (1) Qβ(c1) = 0N ,

(2) Qβ(c2) = 0N

Where, Q = [ON+K , IN ] and β(c1) and β(c2) are two different linear combinations of the

weights of two frontier portfolios of K + N assets (Kan & Zhou, 2008). In Bekaert & Urias

(1996), the hypotheses are based on β(c1) and β(c2) instead of γ(c1) and γ(c2). For the

specific differences between γ and β , see Kan & Zhou (2008). In contrast to De Santis (1993),

the expected return (µ) is part of the formula of the stochastic discount factor (mt).

The GMM Wald test statistic(s) for the approach of Bekaert & Urias (1996) are based on the

following propositions and assumptions. Let’s first assume that the sample moment conditions

are:

h̄T (β(c1),β(c2)) =







1
T

∑T
t=1 Rt(c1 + (Rt − µ̂)′β(c1))− (1− c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt − µ̂)′β(c2))− (1− c2)1N+K






(5.27)

Kan & Zhou (2008) mention, based on Bekaert & Urias (1996), that the standard way is to

parameterize µ and use the following sample moment conditions instead:

h̄∗T (β(c1),β(c2)) =

















1
T

∑T
t=1 Rt(c1 + (Rt −µ)′β(c1))− (1− c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt −µ)′β(c2))− (1− c2)1N+K

1
T

∑T
t=1(Rt −µ)

















(5.28)
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Next, the unconstrained estimates of β(c1) and β(c2) are defined as:

β̂(c1) = V̂−1[(1− c1)1N+K − c1µ̂] (5.29)

β̂(c2) = V̂−1[(1− c2)1N+K − c2µ̂] (5.30)

Subsequently, assume that S = Avar(h̄∗T ) with Avar = Asymptotic Variance. In addition, also

assume that S11 relates to the first two blocks of sample moments of the pricing equation and

S11 relates to the sample moments for estimating the expected return (Kan & Zhou, 2008).

With these assumptions, the following definition can be written:

S =

�

S11 S12

S21 S22

�

(5.31)

Assuming that b̂ reflects the GMM estimator of (β(c1)′,β(c2)′)′, then the corresponding asymp-

totic variance (Avar) of b̂ can be summarized as:

Avar(b̂) = C−1(S11 − F ′S21 − S12F + F ′S22F)C−1 (5.32)

Note that Equation 5.32 assumes that C = I2⊗V and F = [β(c1)µ′,β(c2)µ′]. Finally, the GMM

Wald test statistics J1 and J2 can be stated as:

J1 = T
�

b̂′Q
′

2

�

Q2Ĉ−1
�

Ŝ11 − F̂
′
Ŝ21 − Ŝ12 F̂ + F̂

′
Ŝ22 F̂

�

Ĉ−1Q
′

2

�−1
Q2 b̂

�

A∼ χ2
2N (5.33)

J2 = T
�

b̂′Q
′

2

�

Q2Ĉ−1Ŝ11Ĉ−1Q
′

2

�−1
Q2 b̂

�

A∼ χ2
2N (5.34)

Where Q2 = I2 ⊗Q with Q = [ON+K , IN ] and where Ĉ , F̂ , Ŝ are the consistent estimators of C,

F and S. According to Kan & Zhou (2008), J1 includes the Errors-In-Variables adjustment and

J2 does not. Both versions of the SDF approach of Bekaert & Urias (1996) are considered in

this paper for the purpose of checking robustness. Important to mention is that J1 and J2 are

also numerically independent of the choice of c1 and c2. Therefore, also for this approach, the

choice is to use c1 = 0 and c2 = 1 without the risk of having loss of generality (Kan & Zhou,

2008).
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Chapter 6

Data
With Thomson Reuters DataStream, monthly (unhedged) price data of three types of asset

classes for various countries have been acquired: stock market indices, government bond

indices and real estate indices28. The choice for monthly data is not random. On the one

hand, monthly data is preferred to annual data because of the simple fact that monthly data

gives more data points and thus leads to a more accurate and less noisy estimate of, among

other things, correlation coefficients29. On the other hand, monthly data is preferred above,

for example, daily data. The reason for the latter is that previous studies have shown that

monthly data, relatively speaking, is approximately more normal distributed and has a lower

leptokurtosis30 than daily data (Fama, 1976; Blattberg & Gonedes, 2010). The preference

for monthly frequency data implicitly sets the investment horizon, and thus monthly returns

imply that the marginal investor optimizes for an investment for 1 month. The market indices

from the following countries are chosen to investigate: Australia, Belgium, Canada, France,

Germany, Japan, Netherlands, Sweden and United States. The time-period of the data spans from

09/2002 to 12/2017. For all these indices, the monthly prices are obtained and denominated

in U.S. dollars31, consistent with De Roon, Nijman, & Werker (2001), as this eliminates the

risk of portfolio returns being influenced by changing exchange rates (Eun & Resnick, 1988;

Sukumaran, Gupta, & Jithendranathan, 2015). Although the methodologies in this paper are

based on return data, the acquired data consists of price data. Therefore, prices have to be

converted to returns. Transformation from prices to returns will logically result in excluding

the first month of observation. Therefore, the final sample spans from 10/2002 to 12/2017.

Transformation will be done on the basis of the simple returns method:

Ri,t =
Pi,t − Pi,t−1

Pi,t−1
(6.1)

where,

Ri,t = Return of index i at time t

Pi,t = Price of index i at time t

Pi,t−1 = Price of index i at time t − 1

To a large extent the results depend on the underlying data. After all, a methodology must

be applied to the data. It is therefore not unimportant to explore the data on the basis of a

28Appendix A.1 shows the exact corresponding Datastream symbols for each of the retrieved variables.
29In relation to the spanning tests, Kan & Zhou (2008) state that asymptotic tests could be grossly misleading.
30Distributions are defined as leptokurtotic when the value of the kurtosis is greater than 3 (or: excess kurtosis

is greater than 0), implying that the particular distribution has fatter tails than a normal distribution.
31With this, this research implicitly focuses on investors who focus on pure U.S. Dollars returns. However, there

are also investors who value local currency returns. One paper that highlights both sides is that of Driessen &
Laeven (2007)
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number of descriptive statistics32 before obtaining the results. First of all, the sample standard

deviation (sx), variance (s2
x) and mean ( x̄) of the returns are obtained. The standard deviation

and variance are both derivatives of the average and provide an insight into the background of

the dataset. The standard deviation relates to the spread of the data around the mean, where

the value can be either negative or positive. The variance, on the other hand, can only take a

positive value because it is calculated as the square of the standard deviation. The variance is

also known as the average of the squared deviations from the mean33

Table 6.1 shows the results for each of the indices of each asset class. One can conclude that

the returns of bonds appear to be less risky than both stock and real estate returns, since

the standard deviation and variance are lower for bond indices. By observing the standard

deviations and variances of all three asset classes, one can also sense that the degree of risk

of both stocks and real estate are more in line with each other than with bonds. The notion

that risk and return seem to have a positive relationship with each other is confirmed by the

fact that the two riskier assets (stocks and real estate) have higher average returns than bonds

(Ball & Bowers, 1986).

Table 6.1: Mean, Standard Deviation and Variance of Dataset Variables

Bonds Stocks Real Estate

Country x̄ sx s2
x x̄ sx s2

x x̄ sx s2
x

Australia 0,004 0,037 0,001 0,008 0,065 0,004 0,004 0,066 0,004
Belgium 0,004 0,033 0,001 0,006 0,064 0,004 0,004 0,048 0,002
Canada 0,003 0,027 0,001 0,008 0,059 0,004 0,006 0,059 0,003
France 0,004 0,032 0,001 0,006 0,063 0,004 0,011 0,069 0,005
Germany 0,004 0,031 0,001 0,010 0,070 0,005 0,008 0,094 0,009
Japan 0,002 0,031 0,001 0,006 0,049 0,002 0,009 0,068 0,005
Netherlands 0,004 0,031 0,001 0,005 0,065 0,004 0,004 0,068 0,005
Sweden 0,003 0,033 0,001 0,009 0,066 0,004 0,015 0,083 0,007
United States 0,001 0,022 0,000 0,007 0,045 0,002 0,007 0,075 0,006

This table reports the mean, standard deviation and variance of each index, based on the full-sample
period 10/2002 to 12/2017, where the values are expressed in decimals and not percentages.

After assessing the background of the data, it is equally important to judge if the return dis-

tributions of the variables are normal. Describing distributions can be done on the basis of

two parameters: Skewness and Kurtosis. The former measures the degree of symmetry. If the

skewness is equal to 0, then the distribution is assumed to be symmetrical (characteristic of

normality), whereas a skewness higher (lower) than 0 implies a positively (negatively) skewed

distribution. Kurtosis on the other hand, measures the degree of fat tails. The distribution

is assumed to exhibit no fat tails (characteristic of normality) when the kurtosis equals 3,

where a value higher (lower) than 3 refers to thicker (thinner) tails. To test the normality of

a distribution, for each variable, based on these two parameters, the Jarque-Bera chi-square

32Appendix A.2 provides the formulas of the (descriptive) statistics in Table 6.1 and Table 6.2.
33Because there is no unambiguous criterion for measuring risk, the two most common measures (variance and

standard deviation) are used.
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goodness-of-fit test will be used. The results of the three distribution describing statistics are

shown in Table 6.2. Most of the statistics are consistent with the notion that, in general, finan-

cial instruments are (negatively) skewed34, fat-tailed and fail to pass the Jarque-Bera test on all

common levels of significance (1%, 5% and 10%). In contrast to the majority of the statistics,

the bond indices Sweden and United States and the real estate indices Germany and Sweden

have a positive skewness. In addition, it is striking that the the bond indices Japan and Sweden

take a form of normal distribution, since the Jarque-Bera’s null hypothesis of normality can

not be rejected for these two bond indices.

Table 6.2: Skewness, Kurtosis and Jarque-Bera Test p-value of Dataset Variables

Bonds Stocks Real Estate

Country skewness kur tosis JBp−value skewness kur tosis JBp−value skewness kur tosis JBp−value

Australia -0,386 4,671 0,000*** -0,563 5,171 0,000*** -1,244 8,725 0,000***
Belgium -0,239 4,588 0,000*** -0,657 5,361 0,000*** -0,673 5,903 0,000***
Canada -0,378 4,463 0,000*** -0,490 6,354 0,000*** -1,186 9,616 0,000***
France -0,077 4,437 0,000*** -0,383 4,042 0,002*** -0,474 4,361 0,000***
Germany -0,010 4,589 0,000*** -0,294 4,333 0,000*** 1,355 16,741 0,000***
Japan -0,040 3,241 0,782 -0,562 4,551 0,000*** -0,095 4,365 0,001***
Netherlands -0,192 4,520 0,000*** -0,631 4,997 0,000*** -0,456 4,090 0,000***
Sweden 0,137 3,463 0,332 -0,051 4,616 0,000*** 0,603 7,770 0,000***
United States 0,542 6,063 0,000*** -0,758 5,786 0,000*** -0,127 13,511 0,000***

This table reports the skewness, kurtosis and p-value of the JB (Jarque-Bera) chi-square test of each
index, based on the full-sample period 10/2002 to 12/2017, where the values are expressed in
decimals and not percentages. Ideally, a variable exhibits the form of a normal distribution if the
values of skewness and kurtosis are respectively, approximately, close to 0 and 3. The Jarque-Bera
test of goodness-of-fit tests the null hypothesis that the skewness and kurtosis matches a normal
distribution. Significance levels: *** p<0.01, ** p<0.05, * p<0.10.

Finally, it is useful to make some notes regarding the relationship between the data and method-

ology section. Firstly, in this paper, the diversification benefits will be analyzed from an U.S.

perspective. Therefore, the U.S. bonds, stocks and real estate indices will serve as benchmark

portfolios for bonds, stocks and real estate. Another note is based on the specification of the

sub-periods (sub-samples), as the methodologies are based on three sub-periods. The choice

was made to look at the sub-periods: pre-crisis, crisis and post-crisis. This will provide more

insight into the comparison of whether there are differences or similarities in the periods before,

during and after the crisis. Thus, this research offers the prospect of saying more than just

what happens over time. Specifically, the next three sub-periods will be investigated, each

containing exactly 5 years35:

• October 2002 – October 2007 (Pre-crisis)

• November 2007 – November 2012 (Crisis)

• December 2012– December 2017 (Post-crisis)
34The general consensus is that the marginal investor prefers positive skewness.
35Although it was part of reality, it was decided to avoid the internet bubble (1997-2000) and subsequent after-

effects (2001). It could have severely biased the results, while the likelihood of a similar event is extremely small.
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Part III

Results
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Chapter 7

Correlation Analysis
7.1 Testing for Stability

Testing the stability of correlations over time seems rather descriptive in nature. Nevertheless,

this chapter starts with this because corresponding results can create expectations about the

upcoming sections. If correlations over time are, for example, unstable, one would expect that

over time: (1) fluctuating patterns will occur, (2) risk may fluctuate and (3) diversification

benefits will fluctuate. Table 7.1 on below shows the results of the Jennrich-test.

Table 7.1: Jennrich-Test of Equality of Correlation-Matrices

Subsamples Jennrich χ2 p-Value

Bonds
10/2002 - 10/2007 vs. 11/2007 - 11/2012 99,92 0,00***
11/2007 - 11/2012 vs. 12/2012 - 12/2017 76,03 0,00***
10/2002 - 10/2007 vs. 12/2012 - 12/2017 167,30 0,00***

Stocks
10/2002 - 10/2007 vs. 11/2007 - 11/2012 29,79 0,76
11/2007 - 11/2012 vs. 12/2012 - 12/2017 14,21 1,00
10/2002 - 10/2007 vs. 12/2012 - 12/2017 23,71 0,94

Real Estate
10/2002 - 10/2007 vs. 11/2007 - 11/2012 18,13 0,99
11/2007 - 11/2012 vs. 12/2012 - 12/2017 31,65 0,68
10/2002 - 10/2007 vs. 12/2012 - 12/2017 17,40 1,00

This table reports the Jennrich χ2 statistics with its corresponding p-values. Comparisons of matrices is done
within each asset class and between time periods. The considered time periods are: pre-crisis (10/2002 -
10/2007), crisis (11/2007 - 11/2012) and post crisis (12/2012 - 12/2017).
Significance levels: *** p<0.01, ** p<0.05, * p<0.10.

Table 7.1 shows that correlation-matrix of bonds are unstable over time, because all three the

p-values are significant on all levels and thus can not reject H01, for each sub-period comparison,

that the correlation-matrices are unstable over time. Instability may be the result of country-

differences in the dynamics of risk characteristics of bonds, that in turn may also be driven by

country-differences in monetary policy. According to Fabozzi (2007), these risk characteristics

include, among others, interest rate risk, credit/sovereign risk, liquidity risk, exchange rate risk

and inflation risk and influence the price of bonds. As the monetary policy and degree of

exposure to sovereign debt risks are subject to change over time and differ between countries,

it is not entirely illogical that the correlation-matrix of bonds is unstable over time.

Both stocks and real estate on the other hand, can reject H01 and therefore show opposite

results, as all p-values of both asset classes are insignificant for all levels. This is in conflict
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with the consensus of literature that correlations of these two asset classes over time should

be unstable. Nevertheless, the results are not uncommon, as Kaplanis (1988) also wants to

add the note that correlation-matrices are quite stable compared to covariance matrices. In

addition, Tang (1998) finds that the correlation-matrix of stock returns is more stable inter-

temporally than the corresponding covariance-matrix, considering four different investment

horizons. Based on real estate returns, Eichholtz (1996b) also concludes that correlations

appear to be more stable than the variances. He states that correlation is, in fact, a reflection

of market integration. According to Eichholtz (1996b), markets are gradually integrating

over time due to the increasing capital flows. This should explain why correlations do not

immediately change and do not show a high degree of instability. Adams, Füss, & Glück (2017)

provide a very noteworthy and recent article regarding the dynamics of correlations. Their study

is based on the DCC model (Engle, 2002) and focuses on the structure of correlation dynamics

among financial assets. The authors acknowledge the main findings of previous literature,

that correlations can vary over time. However, they provide evidence that the results from

the dynamic conditional correlation estimates show no significant variation when controlling

for correlation breaks. According to them, the correlations are time-varying in response to

(correlation) breaks and that these breaks are a consequence of financial and economic shocks.

In the same paper, it is stated that these breaks can lead to distorted correlation estimates. This

should in turn result in a higher portfolio variance. However, they advise that the marginal

investor should optimize its portfolio (weights) frequently (e.g. with rolling window) in order

to overcome this problem.

To conclude and summarize this section, the p-values stated in Table 7.1 implicate that hypoth-

esis H01 can only be rejected for the stock and real estate indices.

7.2 Development of Correlations Over Time

The previous section can only provide an answer if correlations are significantly (un)stable

over time. In contrast, this section aims to expose the pattern of correlation coefficients (1)

over time and (2) per sub-period (pre-crisis, crisis and post-crisis). Appendix B, C and D show,

respectively, the charts for the Rolling-method, EWMA and DCC-GARCH method of measuring

correlations per asset class and index. Figure 7.1 presents the main results. Figure 7.1a, 7.1b

and 7.1c represent, respectively, the average correlations of bond, stock and real estate indices

per method (Rolling, EWMA and DCC-GARCH(1,1,1,1).

Firstly, note that the rolling-method shows strongly fluctuating correlations for all three indices.

At first glance these seem to be natural shocks, but this is largely because the rolling window-

size is shifting each point in time. As the window-size ’rolls’, each point in time includes

a new observation. These new observations immediately get the same weight as all other

observations. Therefore, the rolling-method proves to be inaccurate due to the possibility of

having volatile estimates of correlations. The intuition is that past shocks still have a significant
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influence on the correlation coefficients until the window-size has shifted to such an extent

that the particular observations fall outside the estimation-window (Isogai, 2016). The EWMA

seems to minimize this problem because the EWMA is biased to more recent observations. The

improvement entailed by the EWMA is not illogical if account is taken of the fact that the EWMA

theoretically takes the form of a restricted I-GARCH model. However, even the EWMA seems

to have a problem to fully take into account the short-term volatility shocks. The DCC(1,1)-

GARCH(1,1) allows for mean-reversion and seems to be the most accurate in demonstrating

significant (short-term) shocks. This is confirmed by Akgiray (1989). Based on daily data,

the relevant author compares the degree of forecast accuracy between the benchmark (simple

historical average), EWMA, ARCH and GARCH with the actual data. Akgiray (1989) concludes

that the GARCH(1,1) seems to provide the best fit and forecast accuracy.

Next, excluding the rolling-method due to its chance of providing inaccurate estimates, one can

observe interesting results. Number one is that stock and real estate are more exposed to the

volatility-shock during the recession. The strong exposure leads to a strong short-term increase

in correlations. These findings correspond with, among others, Erb et al. (1994); Longin &

Solnik (1995) and could be the consequence of an endogenous increase in the uncertainty about

the global economy (Model, Ribeiro, & Veronesi, 2002). However, the short-term substantial

rise in correlations stabilize at the end of the crisis. Furthermore, Figure 7.1 indicates that stock

and real estate indices exhibit a long-term trend of stability, consistent with section 7.1.

In contrast, bond correlations reflect the notion that bonds are considered as safe assets and are

therefore not heavily impacted by negative investor sentiment or collective uncertainty during

recessions, as Hartmann, Straetmans, & de Vries (2001) document that the probability that

equity markets crash simultaneously is two times larger when compared to probability for bond

markets. It also seems that bond indices are less stable over time due to small upward shocks

over time. The pattern of correlation instability between bonds is in line with section 7.1. In

contrast to risky assets, correlations of bond indices do not exhibit a (substantial) increase

during the recession but rather a short-term decreasing trend with small upward shocks. The

downward trend in correlations seems contradictory, but that is not the case. During recessions,

some countries are more exposed to sovereign debt risks than other countries. This in turn

leads to short-term shifting in demand to government bonds with relatively less exposure to

sovereign debt risk. Specifically, the process is as follows: investors reallocate their investments

to bonds with relatively lower sovereign debt risk with the result that the aggregate demand

for these bonds increases, which in turn increase (decrease) prices (yields). The opposite is

the case for countries with a relatively higher sovereign debt risk. And therefore, prices and

returns across government bonds are less correlated during recessions.

Even though volatility shocks may have its impact on stocks and real estate, and in a lesser

degree on bonds, Figure 7.1 shows that the correlations among all three assets do not increase

substantially over time. Thus, hypothesis H02 can be rejected for the bond, stock and real estate

indices.
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Figure 7.1: Average Correlation Coefficients of Rolling-method, EWMA and DCC-GARCH Over Time

(a) Bonds

(b) Stocks

(c) Real Estate
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Chapter 8

Dynamic Efficient-Frontiers
Efficient frontiers are based on without and with the short-selling restriction and can be found in,

respectively, Figure 8.1 and 8.2. Both figures include efficient frontiers for the full-sample and

sub-periods. The figures identify that, over time, the efficient frontiers of stocks and real estate

have shifted to right. This can be observed by comparing the pre-crisis and post-crisis frontiers.

The movement of the frontiers of these two asset classes are consistent with the findings in

section 7.2 and the notion that increased correlation coefficients impact the risk-and-return

trade-off negatively over time, especially when there are short-selling restrictions. Where these

effects are clearly visible for stocks and real estate, this is to a lesser extent for bonds. The small

movements of the bonds frontier are probably more reflected by changes in macroeconomic

policy and confidence in the economy of the bond’s country, in line with the findings regarding

bond’s instability (section 7.1) and small shocks over time (section 7.2).

Both figures also show a interesting pattern of the efficient frontier at the time of a recession, for

at least stocks and real estate. The crisis-period brings two effects for these two assets: the first

effect is that the efficient frontiers of these two asset classes shift right, implying a worsening in

the risk-and-return trade-off due to a strong increase in the correlation coefficients when there

is a period of high volatility (Longin & Solnik, 1995). The second effect is that the movement

of these efficient frontiers are rather short-term than long-term, as the post-crisis frontier

shifts strongly to the left. The post-crisis frontier shifts even far more left than the pre-crisis

frontier when there are short-selling restrictions, referring to a strong stabilization of correlation

coefficients and probably a slightly excessive investor’s confidence for the foreseeable future.

The stabilization of the efficient frontiers of stocks and real estate is in line with that correlation

coefficients are higher in bear markets than in bull markets, implying stabilization (Longin &

Solnik, 2001; Ang & Bekaert, 2002; Hyde et al., 2007). Bonds, on the other hand, do not show

the identical pattern. As can be seen, the crisis affects its efficient frontier to a lesser degree.

This pattern is in line with section 7.2, which presents evidence of a decreasing trend during

crisis and small upward shocks over time of correlations between bonds. The consequences

for diversification when short selling is unlimited or restricted, is observable by comparing

figure Figure 8.1 and 8.2. The comparison shows that the risk, measured in standard deviation,

is higher when a short-selling restriction is applied. Therefore, this finding is no different

from what has been accepted within the science of asset-pricing. As it is clear in Levy & Post

(2005) and Lee & Lee (2010), short-selling restrictions restrict diversification possibilities and

therefore making it more difficult to achieve lower risk.

Summarizing, Hypothesis H03 can only be rejected for bonds. It is therefore important to

be cautious about the fact that, over time, higher correlations over time and/or short-selling

restrictions lead to higher risk for the same level of return. At least for stocks and real estate

indices.
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Figure 8.1: Efficient-Frontiers Without Short-Selling Restrictions

(a) Bonds

(b) Stocks

(c) Real Estate
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Figure 8.2: Efficient-Frontiers With Short-Selling Restrictions

(a) Bonds

(b) Stocks

(c) Real Estate
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Chapter 9

Tests of Mean-Variance Spanning
The previous section elaborated on the risk-and-return trade-off over time. However, visual

observations do not imply any significance of efficient frontier movements. Therefore, it is

necessary to test the significance of these movements. Testing the significance with the help of

various mean-variance spanning tests can yield opportunities to make conclusions regarding

the diversification benefits over time. In order to stay in line with the methodology of the

previous sections, all considered spanning tests were performed on both the full sample and

the three sub-periods (pre-crisis, crisis and post-crisis).

Before the results will be brought to light, it is important to repeat the difference between

rejection and non-rejection. As stated earlier, the spanning tests have the null-hypothesis that

a set of K benchmark assets ’spans’ a larger set of K + N assets. If it does, then it is assumed

that the Minimum-Variance Frontier of K benchmark assets is statistically equal to that of K+N

assets. If the null-hypothesis is rejected however, then adding N (test) assets to one or more

K (benchmark) assets will statistically improve the Minimum-Variance Frontier and thus add

value in terms of diversification.

This chapter is divided into three sections. In section 9.1, the results of the mean-variance

spanning tests under the normality assumption will be reported. Subsequently, in section 9.2,

the asymptotic versions of the mean-variance spanning tests will be treated. Finally, section 9.3

will discuss the results stated in section 9.1 and 9.2 and answer hypothesis H04.

9.1 Spanning Tests Under Normality

Table 9.1, 9.2 and 9.3 are related to the spanning tests under normality and represent, respec-

tively, bonds, stocks and real estate. Important to note is that the first four columns of the tables

present the corrected traditional F-test, whereas the last five columns show the step-down pro-

cedure. If there are any test assets that can not reject the traditional F-test, then the step-down

procedure can help to obtain insight in the reason. If the F-test can not reject due to the F1,

then the reason is that the tangency portfolio of the test assets is not significantly different

from the benchmark asset’s tangency portfolio. No rejection due to F2 implies that the global

minimum-variance portfolio of the test assets is not significantly different from the benchmark

asset’s global minimum-variance portfolio. It is possible that non-rejection comes from the fact

that both F1 and F2 cannot be rejected. This implies then that both the tangency and global

minimum-variance portfolio of the test assets can be improved. Important to mention is the

possibility that the joint- F-test can be rejected while the traditional F-test can not. This can

happen because, in general, joint-tests exhibit higher significance than individual tests.
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According to Table 9.1 (bonds), there are a couple of test assets that can not be rejected on any

common significance level for the traditional F-test. For the pre-crisis period, the non-rejected

test assets are Japan and Sweden. Japan can not be rejected due to the F1, whereas Sweden

can not be rejected due to F2. The post-crisis period also has some non-rejections. Australia

and, again, Japan. Both test assets can not be rejected because of both F1 and F2.

Referring to Table 9.2 (stocks), there are also some test assets that can not be rejected on the

basis of the traditional F-test. For the full-sample period, these are Australia (due to F1) and

Canada (due both F1 and F2). The crisis period shows one non-rejection and that is Canada,

which is the result of not rejecting both F1 and F2. Finally, Belgium, France, Germany and

Netherlands are not rejected for the post-crisis period. Where Belgium can not be rejected

because of F1, the fault of not rejecting for France, Germany and Netherlands lies at both F1

and F2. For Table 9.3 (real estate), only Germany is rejected for the full-sample and crisis

period due to failing to reject both F1 and F2.

Finally, on the basis of the F-tests, it can be noted that, over time, a large part of the test assets

remains significant. This applies to all three asset classes (bonds, stocks and real estate). This

means that diversification benefits have not decreased over time. It is striking that this also

holds for the crisis period. This points to the fact that diversification benefits are not strongly

negatively affected by upward-shocks in correlations during the crisis. This is contradictory

with the findings of chapter 8, which showed that the risk-and-return trade-off worsens during

a period of high volatility for at least stocks and real estate.

However, there are two possible causes for this. A reason for this could be that the spanning

tests are based on unlimited short selling and that, therefore, high correlations do not have to

pose a problem. Short-selling actually offers an advantage when assets are highly correlated

with each other. Another reason may be that the spanning tests have to be corrected for non-

normality. Not entirely illogical if account is taken of the fact that in chapter 6 it has emerged

that this dataset is subject to non-normality. In the next section, emphasis will be placed on

spanning tests that take non-normality into account in order to check for robustness of these

results.

Page 43 of 70



Table 9.1: Mean-Variance Spanning Tests Under Normality - Bond Indices

Step-Down Test

Country (test assets) α δ F-test p-value F1 p-value F2 p-value Joint p-value

Full-Sample (10/2002 - 12/2017)
Australia 0,003 0,414 6,724 0,002*** 1,282 0,259 12,147 0,001*** 0,000***
Belgium 0,003 0,452 10,334 0,000*** 2,275 0,133 18,266 0,000*** 0,000***
Canada 0,003 0,689 31,224 0,000*** 2,120 0,147 59,959 0,000*** 0,000***
France 0,003 0,414 9,609 0,000*** 2,522 0,114 16,556 0,000*** 0,000***
Germany 0,003 0,393 9,685 0,000*** 2,487 0,117 16,745 0,000*** 0,000***
Japan 0,001 0,212 2,924 0,056* 0,243 0,623 5,629 0,019** 0,012**
Netherlands 0,003 0,394 9,404 0,000*** 2,491 0,116 16,183 0,000*** 0,000***
Sweden 0,003 0,516 12,372 0,000*** 1,208 0,273 23,509 0,000*** 0,000***
All countries 4,689 0,000*** 0,460 0,883 9,779 0,000*** 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 0,008 0,106 2,697 0,076* 4,967 0,030** 0,400 0,530 0,016**
Belgium 0,008 0,075 2,969 0,059* 5,651 0,021** 0,266 0,608 0,013**
Canada 0,009 0,343 7,283 0,001*** 9,002 0,004*** 4,909 0,031** 0,000***
France 0,008 0,070 3,005 0,057* 5,762 0,200 0,230 0,633 0,012**
Germany 0,007 0,068 2,823 0,067* 5,408 0,024** 0,223 0,639 0,015**
Japan 0,001 0,306 2,200 0,120 0,092 0,763 4,374 0,041** 0,031**
Netherlands 0,008 0,069 3,101 0,052* 5,953 0,018** 0,230 0,633 0,011**
Sweden 0,008 0,071 2,295 0,110 4,410 0,040** 0,171 0,681 0,027**
All countries 1,773 0,043** 1,935 0,074* 1,645 0,134 0,010**
Crisis (11/2007 - 11/2012)

Australia 0,006 0,723 5,800 0,005*** 1,144 0,289 10,431 0,002*** 0,001***
Belgium 0,001 0,641 5,718 0,005*** 0,037 0,848 11,585 0,001*** 0,001***
Canada 0,004 0,996 22,969 0,000*** 1,128 0,293 44,715 0,000*** 0,000***
France 0,001 0,561 5,189 0,008*** 0,025 0,875 10,524 0,002*** 0,002***
Germany 0,001 0,499 4,534 0,015** 0,077 0,783 9,131 0,004*** 0,003***
Japan 0,005 0,274 2,639 0,080* 2,054 0,157 3,168 0,080* 0,013**
Netherlands 0,001 0,509 4,559 0,014** 0,043 0,837 9,223 0,004*** 0,003***
Sweden 0,003 0,784 9,714 0,000*** 0,288 0,593 19,370 0,000*** 0,000***
All Countries 3,440 0,000*** 0,494 0,855 7,775 0,000*** 0,000***

Post-crisis (12/2012 - 12/2017)
Australia -0,004 0,139 0,831 0,441 1,205 0,277 0,456 0,502 0,139
Belgium 0,003 0,469 3,922 0,025** 0,837 0,364 7,025 0,001*** 0,004***
Canada -0,003 0,437 5,537 0,006*** 1,738 0,193 9,223 0,004*** 0,001***
France 0,003 0,483 3,976 0,024** 0,809 0,372 7,166 0,010** 0,004***
Germany 0,002 0,552 6,102 0,004*** 0,367 0,547 11,963 0,001*** 0,001***
Japan -0,003 0,000 0,379 0,686 0,758 0,388 0,001 0,980 0,380
Netherlands 0,002 0,523 5,092 0,009*** 0,425 0,517 9,854 0,003*** 0,001***
Sweden -0,001 0,474 3,904 0,026** 0,250 0,619 7,654 0,008*** 0,005***
All Countries 2,745 0,001*** 1,246 0,292 4,621 0,000*** 0,000***

The table presents the mean-variance spanning tests, that hold under normality, on eight bond
indices, using the U.S. bond index as benchmark asset. The first test is an F-test of H0 : α= 0N and
δ = 0N . The second test is a step down test where F1 is an F-test of α = 0N , and F2 is an F-test of
δ = 0N conditional on α= 0N . The two tests are performed on each bond index as well as jointly on
all bond indices. The reported p-values are exact under the normality assumption on the residuals.
The results are presented for the three sub-periods (pre-crisis, crisis and post-crisis). Significance
levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9.2: Mean-Variance Spanning Tests Under Normality - Stock Indices

Step-Down Test

Country (test assets) α δ F-test p-value F1 p-value F2 p-value Joint p-value

Full-Sample (10/2002 - 12/2017)
Australia 0,000 -0,137 2,155 0,119 0,003 0,958 4,330 0,039** 0,037**
Belgium -0,002 -0,158 3,270 0,040** 0,335 0,564 6,227 0,013** 0,008***
Canada 0,001 -0,061 0,631 0,533 0,090 0,764 1,178 0,279 0,213
France -0,003 -0,205 6,953 0,001** 1,018 0,314 12,886 0,000*** 0,000***
Germany 0,001 -0,344 16,776 0,000*** 0,232 0,630 33,461 0,000*** 0,000***
Japan 0,002 0,343 13,765 0,000*** 0,365 0,547 27,260 0,000*** 0,000***
Netherlands -0,003 -0,258 11,059 0,000*** 1,708 0,193 20,331 0,000*** 0,000***
Sweden 0,000 -0,243 8,379 0,000*** 0,028 0,868 16,821 0,000*** 0,000***
All countries 5,883 0,000*** 1,007 0,432 11,871 0,000*** 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 0,013 0,067 4,886 0,011** 9,528 0,003*** 0,214 0,646 0,002***
Belgium 0,008 -0,188 2,704 0,075* 2,488 0,120 2,850 0,097* 0,012**
Canada 0,012 -0,031 5,159 0,009*** 8,889 0,004*** 1,263 0,266 0,001***
France 0,005 -0,326 6,147 0,004*** 1,644 0,205 10,537 0,002*** 0,000***
Germany 0,004 -0,859 21,660 0,000*** 0,959 0,331 42,390 0,000*** 0,000***
Japan 0,006 0,525 3,781 0,029** 1,271 0,264 6,263 0,015** 0,004***
Netherlands 0,000 -0,513 7,632 0,001*** 0,014 0,906 15,505 0,000*** 0,000***
Sweden 0,008 -0,539 10,329 0,000*** 3,015 0,088* 17,069 0,000*** 0,000***
All countries 4,636 0,000*** 1,847 0,089* 8,517 0,000*** 0,000***
Crisis (11/2007 - 11/2012)

Australia 0,000 -0,265 4,427 0,016** 0,004 0,950 8,999 0,004*** 0,004***
Belgium -0,008 -0,232 5,080 0,009*** 2,367 0,129 7,620 0,008*** 0,001***
Canada 0,000 -0,133 1,181 0,314 0,005 0,946 2,398 0,127 0,120
France -0,007 -0,247 6,111 0,004*** 1,919 0,171 10,148 0,002*** 0,000***
Germany 0,001 -0,321 8,508 0,001*** 0,011 0,915 17,289 0,000*** 0,000***
Japan -0,003 0,277 5,698 0,005*** 0,299 0,587 11,228 0,001*** 0,001***
Netherlands -0,006 -0,276 7,243 0,002*** 1,627 0,207 12,725 0,001*** 0,000***
Sweden 0,000 -0,288 6,369 0,003*** 0,004 0,953 12,950 0,001*** 0,001***
All Countries 3,119 0,000*** 0,691 0,698 6,490 0,000*** 0,000***

Post-crisis (12/2012 - 12/2017)
Australia -0,007 0,229 2,937 0,061* 1,943 0,169 3,871 0,054* 0,009***
Belgium 0,000 0,237 2,030 0,140 0,012 0,912 4,115 0,047** 0,043**
Canada -0,007 0,215 5,409 0,007*** 3,638 0,061* 6,877 0,011** 0,001***
France -0,003 0,111 0,894 0,414 0,493 0,485 1,307 0,257 0,125
Germany -0,002 -0,017 0,09 0,914 0,179 0,674 0,000 0,988 0,665
Japan 0,005 0,522 7,101 0,002*** 1,408 0,240 12,707 0,001*** 0,000***
Netherlands -0,003 0,053 0,597 0,553 0,625 0,432 0,573 0,452 0,195
Sweden -0,005 0,183 3,197 0,048** 1,830 0,181 4,501 0,038** 0,007***
All Countries 2,358 0,004*** 1,028 0,428 3,998 0,001*** 0,000***

The table presents the mean-variance spanning tests, that hold under normality, on eight stock
indices, using the U.S. stock index as benchmark asset. The first test is an F-test of H0 : α= 0N and
δ = 0N . The second test is a step down test where F1 is an F-test of α = 0N , and F2 is an F-test of
δ = 0N conditional on α= 0N . The two tests are performed on each stock index as well as jointly on
all stock indices. The reported p-values are exact under the normality assumption on the residuals.
The results are presented for the three sub-periods (pre-crisis, crisis and post-crisis). Significance
levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9.3: Mean-Variance Spanning Tests Under Normality - Real Estate indices

Step-Down Test

Country (test assets) α δ F-test p-value F1 p-value F2 p-value Joint p-value

Full-Sample (10/2002 - 12/2017)
Australia 0,000 0,429 37,475 0,000*** 0,012 0,913 75,347 0,000*** 0,000***
Belgium 0,001 0,631 137,219 0,000*** 0,230 0,632 275,373 0,000*** 0,000***
Canada 0,002 0,392 56,334 0,000*** 0,547 0,461 112,402 0,000*** 0,000***
France 0,007 0,371 28,866 0,000*** 3,194 0,076* 53,889 0,000*** 0,000***
Germany 0,002 0,072 0,740 0,479 0,196 0,659 1,290 0,258 0,170
Japan 0,006 0,590 48,885 0,000*** 1,699 0,194 95,703 0,000*** 0,000***
Netherlands 0,000 0,425 34,405 0,000*** 0,002 0,966 69,187 0,000*** 0,000***
Sweden 0,010 0,219 9,228 0,000*** 5,476 0,020** 12,667 0,000*** 0,000***
All countries 21,773 0,000*** 2,266 0,025** 57,454 0,000*** 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 0,014 0,637 26,097 0,000*** 11,652 0,001*** 34,430 0,000*** 0,000***
Belgium 0,009 0,745 32,485 0,000*** 4,355 0,041** 57,404 0,000*** 0,000***
Canada 0,012 0,402 14,992 0,000*** 11,000 0,002*** 16,272 0,000*** 0,000***
France 0,021 0,308 8,509 0,001*** 13,908 0,000*** 2,559 0,115 0,000***
Germany 0,012 0,440 4,428 0,016** 2,582 0,113 6,113 0,016** 0,002***
Japan 0,019 0,611 5,947 0,004*** 4,597 0,036** 6,884 0,011** 0,000***
Netherlands 0,014 0,494 10,653 0,000*** 6,759 0,012** 13,272 0,001*** 0,000***
Sweden 0,020 0,117 4,259 0,019** 8,492 0,005*** 0,024 0,878 0,004***
All countries 6,409 0,000*** 3,388 0,003*** 10,553 0,000*** 0,000***
Crisis (11/2007 - 11/2012)

Australia -0,010 0,423 14,158 0,000*** 1,141 0,290 27,110 0,000*** 0,000***
Belgium -0,007 0,636 71,684 0,000*** 1,164 0,285 141,818 0,000*** 0,000***
Canada 0,000 0,377 25,701 0,000*** 0,002 0,969 52,271 0,000*** 0,000***
France -0,002 0,386 16,422 0,000*** 0,057 0,812 33,310 0,000*** 0,000***
Germany -0,009 -0,030 0,406 0,668 0,724 0,398 0,088 0,768 0,306
Japan -0,004 0,576 35,267 0,000*** 0,205 0,653 71,273 0,000*** 0,000***
Netherlands -0,009 0,432 17,700 0,000*** 1,192 0,279 34,099 0,000*** 0,000***
Sweden 0,003 0,207 3,224 0,047** 0,109 0,743 6,435 0,014** 0,010**
All Countries 11,771 0,000*** 1,282 0,273 37,099 0,000*** 0,000***

Post-crisis (12/2012 - 12/2017)
Australia -0,002 0,270 4,274 0,018** 0,228 0,635 8,429 0,005*** 0,003***
Belgium 0,002 0,484 11,520 0,000*** 0,270 0,605 23,049 0,000*** 0,000***
Canada -0,005 0,513 14,766 0,000*** 1,388 0,244 27,962 0,000*** 0,000***
France 0,000 0,357 3,796 0,028** 0,003 0,955 7,716 0,007*** 0,007***
Germany 0,009 0,438 6,657 0,002*** 2,551 0,116 10,492 0,002*** 0,000***
Japan 0,003 0,703 10,869 0,000*** 0,184 0,670 21,852 0,000*** 0,000***
Netherlands -0,004 0,326 3,365 0,041** 0,417 0,521 6,375 0,014** 0,007***
Sweden 0,007 0,449 5,839 0,005*** 1,647 0,204 9,924 0,003*** 0,001***
All Countries 3,842 0,000*** 2,012 0,063* 6,183 0,000*** 0,000***

The table presents the mean-variance spanning tests, that hold under normality, on eight real estate
indices, using the U.S. real estate index as benchmark asset. The first test is an F-test of H0 : α= 0N
and δ = 0N . The second test is a step down test where F1 is an F-test of α= 0N , and F2 is an F-test
of δ = 0N conditional on α= 0N . The two tests are performed on each real estate index as well as
jointly on all real estate indices. The reported p-values are exact under the normality assumption on
the residuals. The results are presented for the three sub-periods (pre-crisis, crisis and post-crisis).
Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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9.2 Asymptotic Spanning Tests

Since the normality assumption is not a realistic assumption with financial data, it makes sense

to look at asymptotic versions of the mean-variance spanning test in order to test the results

and interpretations for robustness. Table 9.4, 9.5 and 9.6 reflect the spanning tests based on

non-normality for, respectively, the bonds, stocks and real estate indices. The first six columns

relate to the Wald tests. W is the standard asymptotic Wald test, W e
a is the Wald test based on

the specific situation where there would be a multivariate elliptical distribution and the Wa

test is the improved GMM version of the W-test that is valid for each distribution36. The last six

columns present the two SDF based GMM Wald Tests. J1 and J2 reflect the version of Bekaert

& Urias (1996), where J1 incorporates the Errors-In-Variables adjustment and J2 does not37.

J3 is the version of De Santis (1993)38.

Table 9.4 (bonds) presents a hand full of non-rejections. For the full-sample, only Japan is not

rejected. Besides the standard W-test (only rejection on 1% level), all other five asymptotic

spanning tests can not reject Japan on all common significance levels. For the pre-crisis period,

Japan can yet again not be rejected. This time, besides W e
a , all other asymptotic tests can

not reject the spanning hypothesis for Japan on all common significance levels. Looking at

the crisis period, 6 of the 9 test assets can not be rejected by all asymptotic tests: Australia

(W e
a ), Belgium (W e

a ), France (W e
a ), Germany (W e

a , J1, J2, J3), Japan (W e
a , Wa J1, J2, J3) and

Netherlands (W e
a ). According to the results of the post-crisis period, Australia (W , W e

a , Wa,

J1, J2, J3), Germany (W e
a ), Japan (W , W e

a , Wa, J1, J2, J3) and Netherlands (W e
a ) can not be

rejected.

Regarding Table 9.5 (stocks), all (sub)-periods have non-rejections. First, the full-sample can

not be rejected for Australia (W , W e
a , Wa, J1, J2, J3), Belgium (W e

a , J1, J2, J3) and Canada (W ,

W e
a , Wa, J1, J2, J3). For the pre-crisis period, only Belgium (J1) can not be rejected. The crisis

period shows that 4 of the 9 test assets can not be rejected: Australia (J1, J2), Canada (W , W e
a ,

Wa, J1, J2, J3), Japan (W e
a ) and Sweden (W e

a , J1, J2). Finally, there is the post-crisis period

which has non-rejections for the following countries: Belgium (W , W e
a ), France (W , W e

a , Wa,

J1, J2, J3), Germany (W , W e
a , Wa, J1, J2, J3), Netherlands (W , W e

a , Wa, J1, J2, J3) and Sweden

(J1).

Lastly, Table 9.6 (real estate), reports that there are a couple non-rejections across all (sub)-

periods. For the full-sample, Australia (W e
a ) and Germany (W , W e

a , Wa, J1, J2, J3) are not

rejected completely on the basis of all asymptotic tests. For the pre-crisis period, Germany

(W e
a ) can not be rejected. For the crisis period, the test assets that are not rejected by all

36Kan & Zhou (2008) report that the Wa is inflated in small samples and that therefore Wa should be higher than
W e

a .
37Kan & Zhou (2008) do not report the J1 because it is numerically very close to J2. Even though the results

show that both tests are numerically very close to each other, both are still reported.
38According to Kan & Zhou (2008) and their simulation results, J3 should reject the spanning hypothesis more

often than J2 because the test-statistic of J3 should be much larger.

Page 47 of 70



asymptotic tests are Australia (W e
a ), Canada (W e

a ), Germany (W , W e
a , Wa, J1, J2, J3) and

Sweden (W e
a , J2). Last but not least, the post-crisis period has just one non-rejection and that

is Japan (J1, J2).

Table 9.4: Asymptotic Mean-Variance Spanning Tests - Bond Indices

Regression Based SDF Based

Country (test assets) W p-value W e
a p-value Wa p-value J1 p-value J2 p-value J3 p-value

Full-Sample (10/2002 - 12/2017)
Australia 13,596 0,001*** 6,986 0,030** 8,104 0,017** 6,485 0,039** 6,725 0,035** 7,145 0,028**
Belgium 20,897 0,000*** 9,201 0,010** 14,580 0,001*** 9,776 0,008*** 10,162 0,006*** 11,995 0,002***
Canada 63,138 0,000*** 30,854 0,000*** 41,100 0,000*** 23,150 0,000*** 24,121 0,000*** 33,546 0,000***
France 19,430 0,000*** 8,585 0,014** 14,757 0,001*** 10,180 0,006*** 10,576 0,005*** 12,291 0,002***
Germany 19,583 0,000*** 8,988 0,011** 14,068 0,001*** 10,037 0,007*** 10,411 0,005*** 12,144 0,002***
Japan 5,913 0,052* 3,466 0,177 4,027 0,134 3,985 0,136 4,014 0,134 3,468 0,177
Netherlands 19,015 0,000*** 8,381 0,015** 14,070 0,001*** 9,686 0,008*** 10,042 0,007*** 11,427 0,003***
Sweden 25,017 0,000*** 19,474 0,000*** 13,752 0,001*** 12,469 0,002*** 12,945 0,002*** 14,237 0,001***
All countries 86,398 0,000*** 64,551 0,000*** 91,046 0,000*** 53,331 0,000*** 54,547 0,000*** 78,156 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 5,576 0,062* 5,396 0,067* 5,294 0,071* 5,066 0,079* 5,963 0,051* 5,284 0,071*
Belgium 6,139 0,046** 6,057 0,048** 6,449 0,040** 7,697 0,021** 9,117 0,010** 7,766 0,021**
Canada 15,059 0,001*** 13,108 0,001*** 13,960 0,001*** 11,267 0,004*** 14,624 0,001*** 19,244 0,000***
France 6,214 0,045** 6,144 0,046** 6,568 0,037** 7,692 0,021** 9,112 0,011** 7,732 0,021**
Germany 5,838 0,054* 5,774 0,056* 6,136 0,047** 7,193 0,027** 8,450 0,015** 7,216 0,027**
Japan 4,549 0,103 17,456 0,000*** 2,762 0,251 3,171 0,205 3,154 0,207 3,383 0,184
Netherlands 6,413 0,041** 6,348 0,042** 6,749 0,034** 7,918 0,019** 9,419 0,009*** 7,962 0,019**
Sweden 4,746 0,093* 4,706 0,095* 4,731 0,094* 5,739 0,057* 6,699 0,035** 5,776 0,056*
All countries 33,434 0,006*** 31,884 0,010** 44,230 0,000*** 35,288 0,004*** 47,012 0,000*** 61,496 0,000***
Crisis (11/2007 - 11/2012)

Australia 11,994 0,002*** 4,238 0,120 11,004 0,004*** 5,208 0,074* 5,360 0,069* 5,830 0,054*
Belgium 11,824 0,003*** 3,889 0,143 11,255 0,004*** 5,268 0,072* 5,283 0,071* 5,969 0,051*
Canada 47,494 0,000*** 13,758 0,001*** 66,290 0,000*** 12,526 0,002*** 12,653 0,002*** 19,923 0,000***
France 10,730 0,005*** 3,305 0,192 10,361 0,006*** 4,806 0,090* 4,814 0,090* 5,413 0,067*
Germany 9,375 0,009*** 2,946 0,229 7,803 0,020** 4,135 0,127 4,158 0,125 4,453 0,108
Japan 5,456 0,065* 3,706 0,157 3,773 0,152 3,235 0,198 3,563 0,168 3,370 0,185
Netherlands 9,428 0,009*** 2,898 0,235 9,283 0,010** 4,767 0,092* 4,782 0,092* 4,923 0,085*
Sweden 20,087 0,000*** 9,010 0,011** 16,329 0,000*** 7,873 0,020** 8,051 0,018** 9,323 0,009***
All Countries 76,986 0,000*** 46,970 0,000*** 199,368 0,000*** 26,833 0,043** 28,470 0,028** 86,394 0,000***

Post-crisis (12/2012 - 12/2017)
Australia 1,719 0,423 1,524 0,467 1,563 0,458 1,538 0,464 1,567 0,457 1,490 0,475
Belgium 8,110 0,017** 109,912 0,000*** 6,407 0,041** 6,257 0,044** 6,772 0,034** 10,490 0,005***
Canada 11,450 0,003*** 32,091 0,000*** 6,433 0,040** 6,959 0,031** 6,821 0,033** 8,647 0,013**
France 8,221 0,016** 60,724 0,000*** 6,296 0,043** 5,997 0,050* 6,458 0,040** 10,108 0,006***
Germany 12,617 0,002*** -96,336 1,000 8,191 0,017** 8,193 0,017** 8,614 0,013** 16,151 0,000***
Japan 0,784 0,676 0,784 0,676 0,786 0,675 0,711 0,701 0,728 0,695 0,711 0,701
Netherlands 10,530 0,005*** -177,256 1,000 7,766 0,021** 7,899 0,019** 8,345 0,015** 13,680 0,001***
Sweden 8,073 0,018** 8,761 0,013** 6,422 0,040** 5,975 0,050* 5,770 0,056* 7,606 0,022**
All Countries 54,420 0,000*** 52,335 0,000*** 63,054 0,000*** 46,549 0,000*** 52,683 0,000*** 100,192 0,000***

The table presents the asymptotic versions of the mean-variance spanning tests on eight bond indices,
using the U.S. bond index as benchmark asset. The first two tests, W e

a and Wa are regression based
GMM Wald tests. Wa is valid under general distribution whereas W e

a is only valid when returns
follow a multivariate elliptical distribution. The other three tests, J1, J2 and J3, are SDF based GMM
Wald tests. J1 and J2 are the versions used by Bekaert and Urias (1996), where J1 includes the
Errors-In-Variables adjustment and J2 does not. J3 is the version used by DeSantis (1993). The tests
are performed on each bond index as well as jointly on all bond indices. All tests have an asymptotic
χ2

2N distribution, where N is the number of test assets, and the reported p-values are asymptotic
ones. The results are presented for the entire sample period as well as for the sub-periods (pre-crisis,
crisis and post-crisis). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9.5: Asymptotic Mean-Variance Spanning Tests - Stock Indices

Regression Based SDF Based

Country (test assets) W p-value W e
a p-value Wa p-value J1 p-value J2 p-value J3 p-value

Full-Sample (10/2002 - 12/2017)
Australia 4,357 0,113 1,344 0,511 3,032 0,220 2,667 0,264 2,667 0,264 2,570 0,277
Belgium 6,612 0,037** 1,828 0,401 4,616 0,099* 4,200 0,122 4,148 0,126 3,870 0,144
Canada 1,276 0,528 0,468 0,792 0,992 0,609 1,098 0,577 1,103 0,576 1,061 0,588
France 14,059 0,001*** 5,692 0,058* 11,968 0,003*** 10,770 0,005*** 10,887 0,004*** 13,462 0,001***
Germany 33,923 0,000*** 16,686 0,000*** 23,460 0,000*** 22,713 0,000*** 22,606 0,000*** 39,685 0,000***
Japan 27,834 0,000*** 16,566 0,000*** 15,108 0,001*** 15,616 0,000*** 15,833 0,000*** 24,737 0,000***
Netherlands 22,363 0,000*** 8,109 0,017** 13,691 0,001*** 12,693 0,002*** 12,556 0,002*** 16,340 0,000***
Sweden 16,944 0,000*** 7,085 0,029** 9,280 0,010** 7,472 0,024** 7,461 0,024** 9,845 0,007***
All countries 107,785 0,000*** 61,740 0,000*** 72,571 0,000*** 43,253 0,000*** 44,008 0,000*** 108,219 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 10,104 0,006*** 9,997 0,007*** 10,294 0,006*** 7,058 0,029** 9,175 0,010** 7,149 0,028**
Belgium 5,591 0,061* 5,011 0,082* 5,367 0,068* 4,596 0,100 5,044 0,080* 4,989 0,083*
Canada 10,668 0,005*** 10,651 0,005*** 11,500 0,003*** 7,523 0,023** 9,261 0,010** 7,510 0,023**
France 12,710 0,002*** 10,707 0,005*** 8,566 0,014** 5,230 0,073* 5,596 0,061* 7,326 0,026**
Germany 44,789 0,000*** 25,203 0,000*** 21,985 0,000*** 15,652 0,000*** 16,625 0,000*** 43,937 0,000***
Japan 7,818 0,020** 7,481 0,024** 7,002 0,030** 6,034 0,049** 6,437 0,040** 8,963 0,011**
Netherlands 15,781 0,000*** 9,167 0,010** 13,661 0,001*** 7,819 0,020** 7,852 0,020** 10,824 0,004***
Sweden 21,358 0,000*** 16,588 0,000*** 14,956 0,001*** 9,678 0,008*** 11,183 0,004*** 16,441 0,000***
All countries 95,933 0,000*** 68,465 0,000*** 81,466 0,000*** 38,814 0,001*** 46,999 0,000*** 137,034 0,000***
Crisis (11/2007 - 11/2012)

Australia 9,154 0,010** 8,967 0,011** 7,665 0,022** 4,494 0,106 4,505 0,105 6,316 0,043**
Belgium 10,505 0,005*** 11,164 0,004*** 11,037 0,004*** 7,924 0,019** 8,056 0,018** 9,376 0,009***
Canada 2,443 0,295 1,575 0,455 2,318 0,314 2,881 0,237 2,883 0,237 2,713 0,258
France 12,637 0,002*** 113,302 0,000*** 11,626 0,003*** 8,611 0,013** 9,225 0,010** 17,167 0,000***
Germany 17,593 0,000*** 20,820 0,000*** 14,868 0,001*** 11,981 0,003*** 11,896 0,003*** 32,869 0,000***
Japan 11,782 0,003*** -8,354 1,000 8,677 0,013** 11,946 0,003*** 11,649 0,003*** 20,892 0,000***
Netherlands 14,976 0,001*** 31,322 0,000*** 11,071 0,004*** 8,728 0,013** 8,848 0,012** 16,717 0,000***
Sweden 13,170 0,001*** -640,553 1,000 8,003 0,018** 4,385 0,112 4,373 0,112 8,588 0,014**
All Countries 66,612 0,000*** 61,946 0,000*** 78,585 0,000*** 32,230 0,009*** 34,062 0,005*** 147,401 0,000***

Post-crisis (12/2012 - 12/2017)
Australia 6,074 0,048** 5,688 0,058* 6,333 0,042** 8,676 0,013** 9,106 0,011** 8,937 0,011**
Belgium 4,197 0,123 2,881 0,237 4,992 0,082* 5,503 0,064* 5,525 0,063* 6,801 0,033**
Canada 11,185 0,004*** 10,137 0,006*** 12,967 0,002*** 7,274 0,026** 7,845 0,020** 7,321 0,026**
France 1,850 0,397 1,501 0,472 2,238 0,327 2,391 0,303 2,462 0,292 2,593 0,273
Germany 0,185 0,912 0,176 0,916 0,200 0,905 0,203 0,904 0,204 0,903 0,202 0,904
Japan 14,682 0,001*** 8,785 0,012** 12,726 0,002*** 9,278 0,010** 10,357 0,006*** 24,947 0,000***
Netherlands 1,235 0,539 1,155 0,561 1,274 0,529 1,465 0,481 1,503 0,472 1,490 0,475
Sweden 6,610 0,037** 5,229 0,073* 5,348 0,069* 4,548 0,103 4,968 0,083* 5,071 0,079*
All Countries 46,489 0,000*** 43,689 0,000*** 43,381 0,000*** 43,631 0,000*** 49,449 0,000*** 69,585 0,000***

The table presents the asymptotic versions of the mean-variance spanning tests on eight stock indices,
using the U.S. stock index as benchmark asset. The first two tests, W e

a and Wa are regression based
GMM Wald tests. Wa is valid under general distribution whereas W e

a is only valid when returns
follow a multivariate elliptical distribution. The other three tests, J1, J2 and J3, are SDF based GMM
Wald tests. J1 and J2 are the versions used by Bekaert and Urias (1996), where J1 includes the
Errors-In-Variables adjustment and J2 does not. J3 is the version used by DeSantis (1993). The tests
are performed on each stock index as well as jointly on all stock indices. All tests have an asymptotic
χ2

2N distribution, where N is the number of test assets, and the reported p-values are asymptotic
ones. The results are presented for the entire sample period as well as for the sub-periods (pre-crisis,
crisis and post-crisis). Significance levels: *** p<0.01, ** p<0.05, * p<0.10.
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Table 9.6: Asymptotic Mean-Variance Spanning Tests - Real Estate Indices

Regression Based SDF Based

Country (test assets) W p-value W e
a p-value Wa p-value J1 p-value J2 p-value J3 p-value

Full-Sample (10/2002 - 12/2017)
Australia 75,779 0,000*** -16,392 1,000 7,769 0,021** 13,505 0,001*** 13,530 0,001*** 31,400 0,000***
Belgium 277,470 0,000*** 47,380 0,000*** 114,897 0,000** 42,775 0,000*** 42,935 0,000*** 105,157 0,000***
Canada 113,914 0,000*** 53,037 0,000*** 19,249 0,000*** 16,492 0,000*** 16,707 0,000*** 44,068 0,000***
France 58,371 0,000*** 11,940 0,003*** 32,578 0,000*** 25,039 0,000*** 26,423 0,000*** 18,484 0,000***
Germany 1,496 0,473 0,211 0,900 0,614 0,736 0,563 0,755 0,557 0,757 0,613 0,736
Japan 98,849 0,000*** 17,776 0,000*** 87,903 0,000*** 30,047 0,000*** 30,853 0,000*** 25,982 0,000***
Netherlands 69,570 0,000*** 14,634 0,001*** 41,158 0,000*** 31,048 0,000*** 31,071 0,000*** 19,030 0,000***
Sweden 18,659 0,000*** 5,853 0,054* 16,118 0,000*** 12,290 0,002*** 11,839 0,003*** 11,288 0,004***
All countries 500,224 0,000*** 162,242 0,000*** 692,480 0,000*** 88,982 0,000*** 91,317 0,000*** 684,503 0,000***

Pre-crisis (10/2002 - 10/2007)
Australia 53,963 0,000*** 34,212 0,000*** 49,067 0,000*** 28,588 0,000*** 35,048 0,000*** 45,560 0,000***
Belgium 67,172 0,000*** 52,213 0,000*** 64,320 0,000*** 30,421 0,000*** 33,633 0,000*** 53,004 0,000***
Canada 31,001 0,000*** 13,775 0,001*** 17,843 0,000*** 13,476 0,001*** 18,427 0,000*** 47,137 0,000***
France 17,594 0,000*** 14,943 0,001*** 18,137 0,000*** 11,702 0,003*** 15,727 0,000*** 15,072 0,001***
Germany 9,156 0,010** 3,655 0,161 7,311 0,026** 4,656 0,097* 4,770 0,092* 5,313 0,070*
Japan 12,297 0,002*** 7,858 0,020** 12,670 0,002*** 10,544 0,005*** 12,274 0,002*** 17,653 0,000***
Netherlands 22,028 0,000*** 16,067 0,000*** 22,192 0,000*** 18,031 0,000*** 21,791 0,000*** 26,078 0,000***
Sweden 8,807 0,012** 8,485 0,014** 8,220 0,016** 6,828 0,033** 8,461 0,015** 7,194 0,027**
All countries 132,807 0,000*** 101,707 0,000*** 156,715 0,000*** 55,217 0,000*** 79,533 0,000*** 161,448 0,000***
Crisis (11/2007 - 11/2012)

Australia 29,275 0,000*** -6,416 1,000 5,267 0,072* 10,746 0,005*** 10,797 0,005*** 26,194 0,000***
Belgium 148,228 0,000*** 43,990 0,000*** 86,187 0,000*** 21,669 0,000*** 21,567 0,000*** 114,996 0,000***
Canada 53,145 0,000*** -18,410 1,000 11,570 0,003*** 7,736 0,021** 7,731 0,021** 34,197 0,000***
France 33,957 0,000*** 12,037 0,002*** 24,249 0,000*** 14,558 0,001*** 14,489 0,001*** 15,587 0,000***
Germany 0,840 0,657 0,742 0,690 0,943 0,624 1,017 0,602 1,063 0,588 1,078 0,583
Japan 72,924 0,000*** 25,662 0,000*** 66,521 0,000*** 20,163 0,000*** 19,992 0,000*** 39,097 0,000***
Netherlands 36,600 0,000*** 16,014 0,000*** 32,011 0,000*** 17,854 0,000*** 17,687 0,000*** 17,240 0,000***
Sweden 6,666 0,036** 1,602 0,449 6,496 0,039** 4,769 0,092* 4,601 0,100 4,921 0,085*
All Countries 355,954 0,000*** 176,966 0,000*** 1005,203 0,000*** 48,693 0,000*** 50,152 0,000*** 2070,664 0,000***

Post-crisis (12/2012 - 12/2017)
Australia 8,839 0,012** 12,869 0,002*** 11,215 0,004*** 10,143 0,006*** 9,917 0,007*** 10,705 0,005***
Belgium 23,820 0,000*** 25,537 0,000*** 28,898 0,000*** 14,387 0,001*** 14,215 0,001*** 21,188 0,000***
Canada 30,532 0,000*** 37,367 0,000*** 38,527 0,000*** 17,557 0,000*** 17,680 0,000*** 25,060 0,000***
France 7,848 0,020** 8,165 0,017** 7,091 0,029** 6,159 0,046** 6,153 0,046** 6,885 0,032**
Germany 13,765 0,001*** 14,535 0,001*** 14,190 0,001*** 8,970 0,011** 8,869 0,012** 10,240 0,006***
Japan 22,475 0,000*** 5,338 0,069* 22,199 0,000*** 4,076 0,130 4,096 0,129 8,387 0,015**
Netherlands 6,958 0,031** 29,918 0,000*** 5,335 0,069* 5,953 0,051* 6,100 0,047** 6,736 0,034**
Sweden 12,074 0,002*** 10,960 0,004*** 13,876 0,001*** 8,917 0,012** 9,078 0,011** 10,459 0,005***
All Countries 76,756 0,000*** 65,384 0,000*** 115,116 0,000*** 48,742 0,000*** 70,066 0,000*** 79,291 0,000***

The table presents the asymptotic versions of the mean-variance spanning tests on eight real estate
indices, using the U.S. real estate index as benchmark asset. The first two tests, W e

a and Wa are
regression based GMM Wald tests. Wa is valid under general distribution whereas W e

a is only valid
when returns follow a multivariate elliptical distribution. The other three tests, J1, J2 and J3, are
SDF based GMM Wald tests. J1 and J2 are the versions used by Bekaert and Urias (1996), where
J1 includes the Errors-In-Variables adjustment and J2 does not. J3 is the version used by DeSantis
(1993). The tests are performed on each real estate index as well as jointly on all real estate indices.
All tests have an asymptotic χ2

2N distribution, where N is the number of test assets, and the reported
p-values are asymptotic ones. The results are presented for the entire sample period as well as for
the sub-periods (pre-crisis, crisis and post-crisis). Significance levels: *** p<0.01, ** p<0.05, *
p<0.10.
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9.3 Meaning Of The Results From The Spanning Tests

Section 9.2 shows that the results of section 9.1 are not resistant to non-normality and that the

traditional and joint F-test have the tendency to over-reject. This especially applies for the crisis

period. Interestingly, data of Kan & Zhou (2008) also shows that their results weakened when

the asymptotic tests were used to correct for non-normality (e.g. conditional heteroskedasticity

and fat-tails). This study confirms that correction for non-normality is extremely important as

the tests under normality can yield distorted conclusions, especially when most authors agree

that financial data is skewed and fat-tailed.

From the results of the asymptotic spanning tests, it can be observed that during the crisis

and over time there are fluctuations in the significance of test assets. In some sub-periods,

test assets are not significant to which they were in different sub-periods. These fluctuations

imply instability in the diversification benefits. Fluctuations of test assets in whether or not

they are significant are clearly visible in bonds. These fluctuations are stronger within bonds

than within stocks and real estate, reflecting the findings of section 7.1 and 7.2. These sections

showed that correlations between bonds are more unstable than the correlations between risky

assets. Results, therefore, confirm the findings of earlier papers, which stress the importance

of stable correlations in order to achieve diversification gains (Jorion, 1985; Eun & Resnick,

1988). Results also show that there are, overall, less insignificant test assets for real estate.

This verifies that, relatively, real estate is a better diversifying asset (Eichholtz, 1996a).

Nevertheless, diversification benefits, for bonds, stocks and real estate, possibly fluctuate over

time and tend to only decline in periods of high volatility (recession), in line with findings in

chapter 8. But this only applies for individual test assets. When all eight countries are included

in the portfolio of test assets (all countries), diversification gains do not fluctuate and does

not have the tendency to decrease in recessions (and also not over time). This is in line with

general consensus that diversification is mostly substantial when a bunch of assets is added to

the portfolio, as more assets should lead to a more and well diversified portfolio due to the

fact that the total portfolio risk is then spread over more assets (Markowitz, 1952; B. H. Solnik,

1995; Levy & Post, 2005). This also gives the advantage that a large diversified portfolio is

more resistant to periods of high volatility. Important to note is that these spanning tests did

not include any short-selling restriction. Therefore, it is quite reasonable to predict that the

results will further worsen when there are short-selling restrictions, as short-selling restrictions

help the marginal investor to make use of high positive correlations.

This chapter can be summarized in three points: (1) an investor benefits from diversification

over time, (2) these benefits have the tendency to decline during recessions and (3) diversi-

fication benefits do not tend to fall consistently over time, especially not when the portfolio

is sufficiently large. These three points jointly result that hypothesis H04 can be rejected for

bonds, stocks and real estate.
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Part IV

Conclusion and Limitations
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Chapter 10

Conclusion and Final Remarks
10.1 Conclusion

As stated in chapter 1, the main goal of this paper was to investigate the (1) degree of stability

of correlation coefficients over time, (2) pattern of correlation coefficients over time, (3) move-

ment of the efficient frontier over time and (4) diversification benefits over time. Analyzing

the changes over time can provide information for investors on the question whether they

should construct efficient portfolios dynamically by taking possible changes into account (e.g.

changing correlation coefficients over time or during a crisis). The purpose of investigating

the aforementioned four points was to ultimately form an answer to the following research

question:

"Analyzing bonds, stocks and real estate indices, what effect does the pattern and degree of

stability of correlation coefficients between countries over time have on the efficient frontier and

diversification benefits over time?"

This study therefore has some interesting findings to conclude this paper with. First of all,

correlation coefficients of stocks and real estate seem to be quite stable over time. The pattern

of the correlations of these two asset classes have the tendency to increase over time, especially

during a crisis. However, it must be indicated that that the very strong increase seems to

stabilize after the end of the period of high volatility, implying stability on the long-term. These

findings implicate the confirmation of the fact that correlation coefficients tend to be higher

during bear markets than in bull markets, implying stabilization on the long-term (Longin &

Solnik, 2001; Ang & Bekaert, 2002; Hyde et al., 2007).

In contrast, correlations of bonds do not appear to be (1) stable over time and (2) strongly

influenced by the crisis. Unstable correlations between government bonds could be due to

differences between countries in changes of macroeconomic factors, such as monetary policy.

Regarding point (2), correlations of bonds have in fact fallen slightly during the recession,

although they do show small upward shocks during the recession and over time. The downward

trend in correlations of bonds could well be the result of short-term shifting in demand from

government bonds with relatively high exposure to sovereign debt risk to government bonds

with relatively less exposure to sovereign debt risk. During recessions, investors reallocate

their investments to bonds with relatively lower sovereign debt risk with the result that the

aggregate demand for these bonds increases, which in turn increase (decrease) prices (yields).

The opposite should then be the case for countries with a relatively higher sovereign debt

risk. And therefore, prices and returns across government bonds are less correlated during

recessions.
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Analysis of efficient frontiers showed the heavy influence of correlation coefficients on the

risk-and-return trade-off, as the movements of the efficient frontier resemble the pattern of

correlation coefficients. The results of the efficient frontier analysis implied that the risk-and-

return trade-off worsen during the crisis for both stocks and real estate, but stabilize after the

crisis. Bonds, on the other hand, appear to be relatively resistant to changes in the risk-and-

return trade-off during the crisis, verifying that bonds are considered as safe assets and are

therefore not heavily impacted by negative investor sentiment or collective uncertainty during

recessions. Adding a short-selling restriction does not change the main findings of the efficient

frontier analysis, but it did show that a short-selling restriction indeed limits diversification

gains (Levy & Post, 2005; Lee & Lee, 2010).

Finally, this research included various spanning test in order to gain information about the

significance of the movements of efficient frontiers and therefore the significance of possible

diversification gains. Results of these spanning tests first put in sight that one must use spanning

tests that correct for normality in order to make robust conclusions, as the spanning tests under

normality can lead to distorted results and conclusions. Second, the findings of the spanning

test indicate that the marginal investor benefits from diversification and can therefore expand

its investment opportunities over time by diversifying internationally. Also, the diversification

benefits do not decrease consistently over time. However, these diversification gains seem to

worsen in times of crisis if the portfolio of (test) assets is not sufficiently large. Finally, one

must note that short-selling restrictions were not included in these spanning tests and that

therefore the results, regarding diversification benefits, can worsen dramatically when short-

sales constraints are added. Anyone who thinks of investing or examining investment choices

must take into account that changes over time can affect models. Only examining changes of,

for example, efficient frontiers is not enough. It is advisable to also examine the underlying

variables such as correlation coefficients to put sight on the effect in a broader perspective.

Finally, it should certainly not be forgotten to take into account that each model has its own

assumptions. That is why it is always wise to use different models and assumptions to keep

the robustness of the results and conclusions intact.

10.2 Limitations and Final Remarks

Every research has its limitations. Unfortunately, this paper can not escape having limitations.

One of the biggest shortcomings of this research is that the spanning tests did not take into

account possible short sales constraints, whereas Chapter 8 (Efficient-Frontiers) highlights the

differences between an accessible and unaccessible short-selling market. De Roon, Nijman, &

Werker (2001) and Glabadanidis (2017) offer, respectively, alternative spanning and portfolio

efficiency tests that also take into account short sales constraints. There is a deeper underlying

reason for not adding this. First of all, based on De Roon, Nijman, & Werker (2001), Driessen

& Laeven (2007), show that the addition of short-sales constraints can lead to adverse effects.
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The same authors mention that the power of spanning tests could be lower when short-sales

constraints are added, as the number of short-selling restrictions influence the small sample

properties of the spanning tests. The authors therefore choose to minimize these adverse effects

by applying the short-sales constraint to just one asset. Glabadanidis (2017) also acknowledges

possible adverse effects of adding the short-sales restriction on the N test assets and therefore

proposes to only apply short-sales constraints to only the K benchmark (base) assets. The

addition of a short-selling restriction on one or a small number of assets makes the differences

between constrained and unconstrained frontier negligible. This is because there is a risk

that the test statistics of the spanning tests and corresponding Sharpe Ratio’s will not differ

significantly39.

Therefore, adding short-selling constraints would not be suitable for this research as this paper

only considers one benchmark asset per asset class. This provides an opportunity for follow-up

research, because this research is quite isolated by only analyzing within asset classes (and

between countries). Future research can therefore expand this paper’s analysis by also con-

sidering an investigation between assets (and again, between countries). Thus, with different

asset classes, multiple benchmark assets can be considered which in turn leads to possibilities

of introducing short-sales restricted spanning/efficiency tests with less risk of adverse effects.

Another point that can be taken for follow-up research is that the Black-Litterman Model (Black

& Litterman, 1992) can be used to construct efficient frontiers, as this is a refinement of the

Modern Portfolio Theory (Markowitz, 1952) and offers new perspective by also giving weight

to views and expectations on assets’ returns instead of only to historical data. Moreover, one

can add value to show the diversification benefits in terms of local returns as a large part of

the investors value ’total’ returns and currency risk. Thus, new insights in the results of the

efficient frontier analysis and spanning tests can be obtained by incorporating currency risk

and local currency returns. With regard to the efficient frontier, efficient frontiers can also be

computed with correlation and covariance matrices estimated from the EWMA or DCC-GARCH

model. In addition, the DCC-GARCH model can be refined by changing the underlying dis-

tribution because this paper only considered the standard student’s t-distribution. However,

the Johnson’s SU distribution, Skewed generalized t-distribution, Laplace distribution or the

Inverse-Gaussian distribution may also be possible.

All of the above listed points of improvement should certainly be considered for those who

want to continue, expand or refine this research, as this topic offers many opportunities for

follow-up research.

39This research did in fact replicate the GMV and GRS portfolio efficiency tests, thanks to the provided source
code by Glabadanidis (2017) on the dataset used in this paper. However, adding short-selling restrictions on just
one benchmark did not lead to other values and in fact lead to adverse effects. The adverse effect is that extending
the short-selling restrictions to all or test assets made the unconstrained portfolio perform equal or even worse
than the constrained portfolio, in terms of the GRS/GMV-test and Sharpe Ratio’s.
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Appendix A

Description of Data
A.1 Datastream Symbols

Table A.1: Retrieved Symbols From DataStream

Government Bond Index Code Stock Index Code Real Estate Index Code

Country
Australia BMAU10Y CI ASXAORD PI SBBPAUL PI
Belgium BMBG10Y CI BGBEL20 PI SBBPBEL PI
Canada BMCN10Y CI TTOSP60 PI SBBPCAL PI
France BMFR10Y CI FRCAC40 PI SBBPFRL PI

Germany BMBD10Y CI DAXINDX PI SBBPDEL PI
Japan BMJP10Y CI JAPDOWA PI SBBPJPL PI

Netherlands BMNL10Y CI AMSTEOE PI SBBPNLL PI
Sweden BMSD10Y CI SWEDOMX PI SBBPSEL PI

United States BMUS10Y CI S&PCOMP PI SP4GRES PI

The table presents the symbols and corresponding index code for each country index per asset class,
where CI and PI, respectively, reflect the Clean Price Index and Price Index.

A.2 Formulas of Each Descriptive Statistic

In this appendix, the exact formulas of each descriptive statistic are stated, where x i equals

observation i and n equals the total amount of observations:

Mean:

x̄ =

∑n
i=1 x i

n
(A.1)

Standard Deviation:

sx =

√

√

√

∑n
i=1(x i − x̄)2

n− 1
(A.2)
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Variance:

s2
x =

∑n
i=1(x i − x̄)2

n− 1
(A.3)

Skewness:

skewness =

∑n
i=1(x i − x̄)3

(1/n)
�∑n

i=1(x i − x̄)2
�3/2

(A.4)

Kurtosis:

kur tosis =

∑n
i=1(x i − x̄)4

(1/n)
�∑n

i=1(x i − x̄)2
�2 (A.5)

Jarque-Bera Chi-Square Goodness-of-Fit Test with degrees of freedom equal to 2:

JB =
n
6

�

s2
kewness +

1
4
(kur tosis − 3)2

�

(A.6)
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Appendix B

Rolling Correlations - Charts
Figure B.1: Rolling Correlation Charts of Bond Indices

Note: The charts of figure B.1. starts with the rolling correlations of the country AUS (top-left) and end with USA
(bottom-right)
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Figure B.2: Rolling Correlation Charts of Stock Indices

Figure B.3: Rolling Correlation Charts of Real Estate Indices

Note: The charts of both figures B.2. and B.3. start with the rolling correlations of the country AUS (top-left) and
end with USA (bottom-right).
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Appendix C

EWMA Correlations - Charts
Figure C.1: EWMA Correlation Charts of Bond Indices

Note: The charts on figure C.1. starts with the EWMA correlations of the country AUS (top-left) and end with USA
(bottom-right)
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Figure C.2: EWMA Correlation Charts of Stock Indices

Figure C.3: EWMA Correlation Charts of Real Estate Indices

Note: The charts on both figures C.2. and C.3. start with the EWMA correlations of the country AUS (top-left) and
end with USA (bottom-right).
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Appendix D

DCC-GARCH Correlations - Charts
Figure D.1: DCC-GARCH Charts of Bond Indices

Note: The charts on figure D.1. represent the correlations of a specific bond index with other bond indices according
to the DCC(1,1)-GARCH(1,1).
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Figure D.2: DCC-GARCH Charts of Stock Indices

Note: The charts on figure D.2. represent the correlations of a specific stock index with other stock indices according
to the DCC(1,1)-GARCH(1,1).
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Figure D.3: DCC-GARCH Charts of Real Estate Indices

Note: The charts on figure D.3. represent the correlations of a specific real estate index with other real estate
indices according to the DCC(1,1)-GARCH(1,1).
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