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Abstract

This paper revisits the hybrid estimation method, GAGFL, which is a combination of the grouped

fixed effects approach and the adaptive group fused Lasso, described by Okui & Wang (2018).

This estimation method takes into account the heterogeneity of individuals as well as hetero-

geneity of coefficient estimates in panel data. It aims to model individual heterogeneity by

estimating an underlying grouped pattern in the data, such that all the individuals within a

group share the same slope coefficient estimates. Allowing for multiple structural breaks in the

regression coefficients models the heterogeneity of the slope coefficients. However, the break

date estimates as well as the number of breaks can differ among the groups. By means of a

Monte Carlo simulation, it is shown that this method performs well in finite samples. Many

studies have been conducted relating to panel data sets, however, the incorporation of hetero-

geneity in both the observations and the coefficient estimates have not been done before. These

characteristics are, nonetheless, desirable as in practice it is possible that not all individuals

are affected in the same way by some event. An empirical application concerning population

growth relating to the rate of natural increase and international migrant stock illustrates this

property.

Keywords Structural breaks · Panel Data · Heterogeneity · Grouped Pattern · Population Growth
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1 Introduction

When entering the 21st century, the world has reached a world population milestone of 6 billion

people. Fast-forwarding to this very moment, the population has grown to 7.6 billion people

already (Worldometers). Since the Industrial Revolution in the 18th century, the world has ex-

perienced a rapid exponential growth in terms of population (see Figure A.1). However, only

in the past century, there has been an extraordinarily growth, with an increase from 1.65 billion

people in 1900 to over 6 billion people in the year 2000. During this century, a period of high

rate in population growth of over 2% per year was experienced, which is characterized as ’rapid

growth’ (McNicoll,1984). Collecting these observations of the population over time from different

countries is an example of a panel data set. These panel data sets, which captures observations

of multiple events obtained over a period of time from a specific set of individual observations,

captures ample information. Therefore, the use of this type of data has been widely used. It is

relevant in many specializations such as in the field of economics or finance, where stock prices

are measured over time. But also in the medical, quality control and seismologic area the use

of panel data is present. Forecasts can be made based on these past observations using regres-

sion analysis. For example, in seismology, it is useful to predict observations as it can detect

earthquakes in an early stage to limit its consequences. However, we ought to be careful when

applying such regression methods in order to obtain relevant statistics or characteristics about the

data. Often, the heterogeneous nature of these data are not taken into account, which can lead to

erroneous models. Hence, we capture this heterogeneity by considering two different aspects of

it. Firstly, we consider that one aspect of heterogeneity might be due to the phenomena of struc-

tural changes. When analyzing the relationship between certain (economic) variables, structural

changes could occur which is caused by certain events. For example, a decrease in employment

could be a consequence of an event as the European Debt Crisis in 2008. The change in the re-

lationship between these variables can be modeled by structural breaks in the parameters of the

panel data model. Multiple studies concerning detection of structural changes in data has been

conducted in the past. Davis et. al. (1995) investigated changes in parameter values by looking

at the level shift of the autoregressive model or change in auto-covariance structure. Aue (2009)

develops an asymptotic test which assesses the structural stability of (cross-)volatilities for mul-

tivariate nonlinear time series. Other change-point tests such as historical and sequential, single

and multiple break point tests have been discussed by Andreou (2009) illustrated with financial

time series. However, existing literature about break detection techniques only consider common

structural breaks all the observations, while, in practice, it might be that not all individuals expe-

rience the same breaks at the same time. Therefore, we consider another aspect of heterogeneity,

which is heterogeneity amongst the different observations.

When performing a regression analysis on panel data, it is assumed that all individuals share

the same slope coefficients. However, in practice, this might not be the case as not all individuals

or countries are affected in the same way by the same event. For example, the European Debt
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Crisis in 2008 has affected countries within Europe far more severe than countries in Asia. Thus,

the structural breaks for these individuals or countries can differ in time and size. Therefore,

it is crucial to jointly regard heterogeneity and structural breaks, otherwise, it can lead to false

breakpoints and inconsistent estimations of the coefficients. However, on the other hand, it is not

efficient to consider each individual separately, because by doing so, the model does not make use

of cross-sectional information and, therefore, does not capture any common pattern among these

individuals. Hence, using a grouped pattern to model individual heterogeneity is more effective

as the coefficients of the model are estimated more efficiently. Furthermore, a grouped pattern

gives more understanding about the correspondence between individuals.

Therefore, we consider the estimation method from Okui & Wang (2018), which introduces

an estimation procedure that detects heterogeneous structural breaks. This procedure is called

Grouped Adaptive Group Fused Lasso (GAGFL) and is a combination of the Grouped Fixed Ef-

fects (GFE) method described by Bonhomme & Manresa (2015a) and the Adaptive Group Fused

Lasso (AGFL) by Qian & Su (2016a). Okui & Wang (2018) consider a linear panel data model

with time-varying and heterogeneous coefficients, where individual heterogeneity is measured

through a grouped pattern. The GFE method is used to determine the group memberships within

the data, following a K-Means algorithm approach. At the same time, AGFL is used to estimate

the coefficients and the structural breaks within each group by minimizing a least squares objec-

tive function. This procedure makes sure that the number of breaks can be determined together

with consistently estimating the break points, the latent group memberships and the regression

coefficients. Our aim is to revisit this method, in particular its Monte Carlo simulation results, to

examine whether similar results can be obtained again.

Additionally, the proposed method by Okui & Wang (2018) is tested on an empirical applica-

tion concerning the determinants of population growth across 118 different countries. The obser-

vations of each country are taken over a time series with 5-year frequency from 1965 up and until

2015. We measure the grouped pattern over different numbers of groups G, where G ranges from

1 to 5 groups. We found that the optimal number of groups is in fact G = 1 based on the Bayesian

Information Criterion. However, the first breaks are detected for G = 3. Therefore, we report the

GAGFL estimator results for the different groups G = 1, . . . , 3. We found that our hypothesis of

grouping countries based on their economical status have been (partly) rejected as some groups

contain a combination of developed and developing countries. However, sensible arguments for

this unexpected combination are provided.

The outline of the rest of the paper is as follows. Section 2 provides additional information which

stresses the exponential growth in population during the last decades and describes the literature

related to the GAGFL method. The method itself is explained in detail in Section 3. Then, by

means of a Monte Carlo simulation, the finite sample performance of the GAGFL estimator is

measured and reported in Section 4. In Section 5, GAGFL is applied to an empirical application
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concerning population growth. And lastly, we end with some concluding remarks and discussion

points in Section 6.

2 Literature Review

As mentioned before, break detection methods are widely used and hence relevant in different

types of specializations, such as applications concerning quality control and dynamical systems,

which are often associated within fields of engineering. Taylor (2000) developed the change-point

analysis method which is capable of detecting various changes in data and thereby provides the

confidence level of which this change has occurred and also the confidence interval of when it

occurred. Another application of break detection method is used in the field of seismology. Here,

seismic signals are detected by considering significant changes in the characteristics of a time se-

ries such as power spectrum and variance (Kitagawa et. al., 2007). Additionally, it is also desirable

to detect changes in patterns in the medical field. Brain wave patterns, or Electroencephalograms

(EEG’s), are examined to see what effects, for example, epileptic seizures have on the electrical

activity of a local area of the brain and how this spreads through the rest of the brain. Ombao

et. al. (2001) regards periods of patterns which fall out of the normal brain wave pattern as non-

stationary. These periods of non-stationarity can be found by dividing the time series data into

segments which are stationary, also called piecewise stationary process.

Research regarding individual heterogeneity has been done, mainly by considering hetero-

geneity in the slope coefficients. Several tests have been developed to check for differences in the

slope coefficient estimators over cross-sectional observations. Juhl & Jugovvsky (2014) propose a

test for slope heterogeneity in fixed effects models by extending the test described by Pesaran &

Yamagata (2008), which is based on the conditional Gaussian likelihood function. Baltagi (2008)

has examined ways to extend the Chow test (Chow, 1960) to test for slope coefficient heterogene-

ity against "poolability" of the data. Su et. al. (2016) studied the identification and estimation of

the latent grouped pattern in panel data by using penalized techniques. The classifier-Lasso (C-

Lasso) is used in order to simultaneously classify the observations and estimate the coefficients.

Bonhomme & Manresa (2015) introduce a "grouped fixed-effects" estimator which estimates the

parameters of the model by minimizing a least squares criterion while taking into account the

underlying grouped pattern of the data.

When considering the methods of previous research mentioned above regarding break de-

tection, these do not take into account the heterogeneity of panel data. It is assumed that all

cross-sectional observations experience the same number of breaks at the same points in time. A

similar reversed problem holds for clustering approaches to account for individual heterogeneity.

When clustering the cross-sectional observations, each observation within a group share the same

coefficients, however, these coefficients do not contain structural breaks. It is important to take

into account the heterogeneity of the observations when estimating the slope coefficients, other-
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wise, neglecting the latent grouped pattern can lead to inconsistent estimation of the coefficients

(Hsiao, 2014). Hence, the GAGFL method provides added value to existing literature by consider-

ing individual heterogeneity together with structural breaks, such that heterogeneous structural

breaks can occur to observations within each group and can differ in time and size throughout

different groups.

We aim to apply this proposed method to a societal empirical application which concerns the

growth of the population all over the world. As time passes, the number of people on Earth

increases at an alarming pace. In more than half a century, from 1960 until 2017, the world pop-

ulation grew from 3 billion to 7.6 billion, according to the United Nations, which is more than

twice as large. McNicoll (1984) states that countries that experience ’rapid growth’ are the coun-

tries which have an annual increase of around 2 percent or more in terms of their population.

This increment of 2 percent per year results in a doubling of size in 35 years. Hence, rapid-growth

countries double their population size in merely a generation. Furthermore, analyses of fertility

and mortality patterns in the past suggest that this growth pattern will remain similar in the fu-

ture (Bloom & Freeman, 1986). Humanity’s impact on the natural environment on Earth is one of

the greatest consequences of this change in world population. According to Ehrlich & Holdren

(1971), a negative disproportionate impact on the Earth’s environment will be one of the effects of

population growth. This is a result of each human being partly accountable for the shrinkage of

ecological systems due to its need of agriculture. Additionally, each person will make use of ei-

ther renewable or nonrenewable energy sources as a result of technological advances which leads

to exhaustion of the Earth. Kremer (1993) argues that larger populations will experience a faster

technological change and population growth. Hence, the effects of technological advancement,

which results in more usage of (non)renewable energy sources, and population growth are mu-

tually reinforcing. Furthermore, there exists a severe food problem according to Pimentel et. al.

(1997), since there is an astonishing amount of 1 to 2 billion people being malnourished. As the

world population increases, this issue will only become more severe.

Since there seems to be an ever-increasing growth in world population, and considering its

negative impact on the Earth’s environment, it might be interesting to investigate whether there

are structural breaks in this growth. These breaks in time could give insight in which events

may have caused the growth to temporarily stabilize. This information could help analyzing the

possible solutions to the exponential growth of the past century. Furthermore, by clustering the

countries, it can be easily seen which group of countries experience similar population growth

such that these countries can be categorized and targeted with a suitable policy. We expect that

countries will be clustered together based on their economical status, since there is an association

between the rate of population growth and the level of economic development of a country (Coale

& Hoover, 1958).
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3 Methodology

We use a linear panel data model with time-varying and heterogeneous coefficients, where the

variance in time is captured in the coefficients in the form of structural breaks and heterogeneity

is modeled via a grouped pattern. The panel data is described by a scalar dependent variable yit

and the regressors xit, which is a vector of size k x 1, also represented as {{yit, xit}T
i=1}N

i=1, where

i = 1, . . . , N and t = 1, . . . , T denote he observational unit and time, respectively. The linear panel

data model can then be described as follows:

yit = x
′
itβgi ,t + εit, i = 1, . . . , N, t = 1, . . . , N (1)

where E(εit) = 0. The coefficient βi,t is individual- and time-specific, however, as mentioned

before, we put a restriction on its heterogeneity by assuming that it is group-specific for the sake

of estimation and interpretation of the model. The group memberships are then defined as gi ∈ G

where gi denotes to which group individual i belongs and G = {1, . . . , G} denotes the set of

groups. However, gi is unknown and hence, has to be estimated. Furthermore, for each group gi,

the coefficients {βg,t, . . . , βg,T} portray the structural breaks. The structural changes are group-

specific and we denote the number of breaks for each group as mg and the set of break dates as

τmg ,g = {Tg,1, . . . , Tg,mg}. The coefficient βg,t will remain constant throughout the period between

two break dates. This can be denoted as:

βg,t = αg,j, if Tg,j−1 ≤ t < Tg,j (2)

where αg,j with j = 1, . . . , mg is the coefficient-value until break date j and Tg,0 = 1 and Tg,mg+1 =

T + 1.

As mentioned before, the coefficients βg,t, ∀g ∈ G and ∀t ∈ {1, . . . , T} and group membership

variable gi, ∀i ∈ {1, . . . , N} have yet to be estimated. We use the estimation method GAGFL,

which is a combination of GFE by Bonhomme & Manresa (2015a) and AGFL by Qian & Su (2016a),

where GFE is a clustering method and AGFL is a break detection method. In order to do so, we

introduce the following notation: β = (β
′
1,1, . . . , β

′
1,T , β

′
2,1, . . . , β

′
G,T) and γ = {g1, . . . , gN}. De-

noting B ⊂ Rk as the parameter space for each βg,t, then the parameter space for β is BGT . As

γ ∈ GN , the parameter space for γ is thus GN . Hence, we need to estimate (β, γ). We do this by

solving the following penalized objective function:

(β̂, γ̂) = argmin
(β,γ)∈BGTxGN

1
NT

N

∑
i=1

T

∑
t=1

(yit − x
′
itβgi ,t)

2 + λ ∑
g∈G

T

∑
t=2

ẇg,t||βg,t − βg,t−1|| (3)

where the second term is called the adaptive Lasso penalty. This Lasso penalty makes use of a tun-

ing parameter λ. Following Qian & Su (2016a), this tuning parameter is selected by minimizing

the following information criterion:

IC(λ) =
1

NT

m+1

∑
j=1

Tj

∑
t=Tj−1+1

N

∑
i=1

(yit − x
′
itα̂gi ,j)

2 + ρNTk(mλ + 1) (4)
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where α̂gi ,j, mλ and ρNT are the post-Lasso coefficient estimates of g and j, the number of breaks

and a factor determining the level of penalty on number of breaks, respectively. In line with Qian

& Su (2016a), we choose c = 0.05 for ρNT = c ln(NT)/
√

NT. Furthermore, the weights ẇg,t used

in Equation 3 are defined as ẇg,t = ||β̇g,t− β̇g,t−1||−κ , with κ being an individual-specific constant

and β̇ a prior estimation for β. The preliminary estimates β̇ and γ̇ are determined by minimizing

the function:

(β̇, γ̇) = argmin
(β,γ)∈BGTxGN

N

∑
i=1

T

∑
t=1

(yit − x
′
itβgi ,t)

2 (5)

Note that in case βg,t − βg,t−1 = 0, then β̇g,t − β̇g,t−1 → 0 and ẇg,t → ∞ which translates to a

large penalty term. When β̂g,t − β̂g,t−1 6= 0, then this period represents an estimation of a break

date. Then, the number of structural breaks for group g can be determined by simply counting

the periods of break dates, which can be described by the cardinality of the set of estimated break

dates T̂g = {t ∈ {2, . . . , T} | β̂g,t − β̂g,t−1 6= 0}.

In order to minimize the penalized objective function as in Equation 3 we make use of an it-

erative procedure where we estimate γ by minimizing the sum of squared errors of each unit.

Hence, we estimate gi, which is the group membership of individual i, by checking which group

membership assignment results in the smallest sum of squared residuals for individual i. There-

after, if the clustering structure is obtained, we estimate the β coefficients by applying the break

detection method AGFL to the each group. The algorithm is described below:

Algorithm 1. Set γ(0) as the initial GFE estimate of grouping γ̇, and s = 0.

Step 1: For given γ(s), compute:

β(s) = argmin
β∈BGT

1
NT

N

∑
i=1

T

∑
t=1

(yit − x
′
itβg(s)i ,t

)2 + λ ∑
g∈G

T

∑
t=2

ẇg,t||βg,t − βg,t−1|| (6)

Step 2: Compute for all i ∈ {1, . . . , N}

g(s+1)
i = argmin

g∈G

T

∑
t=1

(yit − x
′
itβ

(s)
g,t )

2

Step 3: Set s = s + 1. Go to Step 1 until numerical convergence.

The above algorithm can be described as first applying the AGFL method by Qian & Su (2016a)

to each estimated group. Subsequently, the group membership is updated by minimizing the ob-

jective function, which is the sum of squared residuals. These steps are repeated until numerical

convergence is reached. Choosing (β̇, γ̇) as initial values, the algorithm will converge quickly as

these initial values are shown to be consistent by Okui & Wang (2018). However, since there is no

solid initialization for GFE as described in Equation 5, because there is no certainty that clustering

method GFE will result in a global minimum, a large number of random initial values are drawn

in order to estimate γ̇.
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4 Monte Carlo Simulation

This section tests the GAGFL method by means of a simulation. The data-generating process,

evaluation criteria and the results of the analysis are described in the next subsections.

4.1 Data Generation Process and Procedures

We generate data for the simulation using the following data-generating process (DGP) with re-

gression model:

yit = xitβgi ,t + εit

where the regressors are xit
i.i.d.∼ N(0, 1) and εit

i.i.d.∼ N(0, σ2
ε ), with σε = (0.5, 0.75). As mentioned

before, we consider {{yit, xiit}T
t=1}N

i=1, hence there are N cross-sectional observations with each

a time series of length T. The cross-sectional observations are divided into three groups, Nj with

j = 1, 2, 3, where Nj denotes the number of units per group j. Consistently, the units in the three

groups N1, N2 and N3 must add up to the total number of units N. Furthermore, the total number

of observations are divided among the three groups in a ratio of N1 : N2 : N3 = 0.3 : 0.3 : 0.4.

Groups N1 and N2 incorporate two structural breaks in the slope coefficients, both at two differ-

ent points in time. Namely, group N1 has breaks at time points bT/2c and b5T/6c and group N2

at the points bT/3c and b5T/6c, where b·c is the rounded down value. On the other hand, group

N3 contains no breaks and, thus, exhibits a constant slope coefficient throughout the whole time

series length T. The slope coefficients are defined as follows:

β1,t =


1 if 1 ≤ t < bT/2c

2 if bT/2c ≤ t < b5T/6c

3 if b5T/6c ≤ t ≤ T

, β2,t =


3 if 1 ≤ t < bT/3c

4 if bT/3c ≤ t < b5T/6c

5 if b5T/6c ≤ t ≤ T

and

β3,t = 1.5 for all 1 ≤ t ≤ T

For our simulation, the number of cross-sectional observations can take two different values

N = (50, 100) and the length of the time series can take three different values T = (10, 20, 40).

Furthermore, recall that the standard deviation of the errors in the DGP can also take two dis-

tinct values σε = (0.5, 0.75). Hence, with these variables, 12 different combinations and thus, 12

different datasets can be made.

4.2 Evaluation Criteria

In order to analyze the correctness of the method, several evaluation criteria must be met. We

measured the performance of GAGFL based on its ability to correctly cluster the observations and
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accurately estimate the break dates and slope coefficients. Due to time constraints, a total of 100

replications are run instead of 1000 replications as described in Okui & Wang (2018). Nonetheless,

similar results have been achieved, as shown in Section 4.3.

4.2.1 Clustering Criteria

The accuracy of clustering the observations is measured by computing the average of the misclas-

sification frequency (MF) across 100 replications. MF is defined as the number of misclassified

observations divided by the total number of observations:

MF =
1
N

N

∑
i=1

I(ĝi 6= g0
i )

where I(·) represents an indicator function and ĝi and g0
i are the estimated and true group mem-

bership of unit i, respectively.

4.2.2 Break Date Criteria

The break estimations are assessed by two different criteria. Firstly, we measure whether GAGFL

can accurately estimate the number of breaks in each group. This can be done by computing the

average frequency of estimating the number of breaks correctly in each group. Furthermore, we

also keep track of the average estimated number of breaks per group. Secondly, the correctness

of the break date estimates are evaluated based on their Hausdorff error, as done by Qian & Su

(2016). The Hausdorff error is based on the Hausdorff distance (HD), which is defined as follows:

HD(T̂0
g,m̂, T0

g,m0) ≡ max{D(T̂0
g,m̂, T0

g,m0),D(T0
g,m0 , T̂g,m̂)}

Here, D(A, B) ≡ supb∈Binfa∈A|a − b| for any set A and B and T̂0
g,m̂ and T0

g,m0 are the estimated

break dates and true break dates for each group, respectively. Then, the Hausdorff error is re-

ported as the average of HD(T̂0
g,m̂, T0

g,m0)/T across the 100 replications.

4.2.3 Slope Coefficients Criteria

Lastly, the accuracy of the slope coefficient estimates are assessed by their root mean squared

error (RMSE) and the coverage probability of the two-sided nominal 95% confidence interval.

The RMSE is computed as:

RMSE(β̂it) =

√√√√ 1
NT

N

∑
i=1

T

∑
t=1

(β̂it − βit)2

where β̂it is the estimated slope coefficient and βit the true slope coefficient. Additionally, in order

to compute the coverage probability, we need σ̂β,it, which is the estimated standard deviation of

β̂it. Then, the coverage probability is defined as follows:

Coverage(β̂it) =
1

NT

N

∑
i=1

T

∑
t=1

I(β̂it − 1.96σ̂β,it ≤ βit ≤ β̂it + 1.96σ̂β,it)
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4.3 Results Monte Carlo Simulation

We replicate the results displayed in the first parts of Table 2 through 6 in the Technical Appendix

from Okui & Wang (2018), which concerns the examination of data generated by DGP 1. Due

to time constraints, only 100 replications instead of 1000 replications are used. However, similar

results as in Okui & Wang (2018) are achieved by this limited amount of replications. We evaluate

the GAGFL method by testing its ability to correctly determine the number of breaks, break date

estimates and coefficient estimates in each group and its ability to accurately assign each data

point to its original cluster.

4.3.1 Clustering Accuracy

Table 1 describes the average misclassification frequency for each combination of N = (50,100), T

= (10, 20, 40) and σε = (0.5, 0.75) across the replications. We notice that for σε = 0.5, the misclus-

tering rate is very close to zero, only for T = 10, it has a small deviation from zero on the fifth

decimal place. Furthermore, the rate for N = 100 is smaller than for N = 50, which means more

observations lead to more correct clustering. However, the increase in T has the biggest impact on

the rate as for both σε = 0.5 and σε = 0.75 holds that the misclassification frequency exponentially

decreases as T increases. Therefore, having a longer times series length per individual is more fa-

vorable than having more individuals in the data, because the misclustering rate decreases faster

when T increases than when N increases. Hence, the GAGFL method can reliably retrieve the

original group memberships of the observations, especially when T is large.

N = 50 N = 100

T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

sigma = 0.5 0.00004 0.0000 0.0000 0.00006 0.0000 0.0000

sigma = 0.75 0.0504 0.0102 0.0004 0.0288 0.0016 0.0000

Table 1: Average Misclustering Rate

4.3.2 Break Date Accuracy

Table 2 until Table 4 concerns the assessment of the break dates. Specifically, Table 2 displays

the frequency of correct estimation of number of breaks corresponding to each group. Table 3

shows the average estimated number of breaks for each group. And from Table 4 can be deduced

whether the break date estimates are correct by looking at the Hausdorff error.

As can be seen in Table 2, the number of breaks are 100% correctly estimated when using σε = 0.5

in the DGP for all combinations of N and T. However, there is a considerable change when

σε = 0.75 is used. In the worst case, an average frequency of only 60% of correct estimation
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of number of breaks is measured for N = 50 and T = 10. Nonetheless, the rate steadily improves

when N and T increase. Hence, we confirm the findings of Okui & Wang (2018) that the GAGFL

method (almost) perfectly detects the correct number of breaks in case of moderate size errors

(σε = 0.5).

N = 50 N = 100

Group (True break num.) T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

σε = 0.5 G1 (m0
1,0 = 2) 1.000 1.000 1.000 1.000 1.000 1.000

G2 (m0
2,0 = 2) 1.000 1.000 1.000 1.000 1.000 1.000

G3 (m0
3,0 = 0) 1.000 1.000 1.000 1.000 1.000 1.000

σε = 0.75 G1 (m0
1,0 = 2) 0.580 0.720 0.890 0.820 0.930 0.990

G2 (m0
2,0 = 2) 0.640 0.730 0.900 0.840 0.960 0.990

G3 (m0
3,0 = 0) 0.580 0.890 1.000 0.940 0.950 1.000

Table 2: Average Frequency of Correct Estimation of the Number of Breaks

Table 3 shows the average estimated number of breaks for each group. The true number of breaks

for each group (m0
g,0) is 2, 2 and 0, respectively. As already noted from Table 2: the number

of breaks are 100% correctly estimated for σε = 0.5, which implies that the average number of

breaks are also correctly estimated. This is indeed the case, as all combinations of N and T for

σε = 0.5 have the correct number of groups: 2, 2, 0. In case of σε = 0.75, the average number of

groups are all slightly over-estimated, but are approaching the true number of groups as N and T

increase.

N = 50 N = 100

Group (True break num.) T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

σε = 0.5 G1 (m0
1,0 = 2) 2.000 2.000 2.000 2.000 2.000 2.000

G2 (m0
2,0 = 2) 2.000 2.000 2.000 2.000 2.000 2.000

G3 (m0
3,0 = 0) 0.000 0.000 0.000 0.000 0.000 0.000

σε = 0.75 G1 (m0
1,0 = 2) 2.550 2.370 2.120 2.170 2.070 2.010

G2 (m0
2,0 = 2) 2.510 2.400 2.110 2.190 2.040 2.010

G3 (m0
3,0 = 0) 0.72 0.140 0.000 0.080 0.050 0.000

Table 3: Average Estimated Number of Breaks

After examining whether the number of breaks are correctly estimated, we check whether the

break date estimates are also correct. The results can be found in Table 4, which displays the

Hausdorff errors of the break date estimates per group. Naturally, the smaller the errors, the

more favorable. For σε = 0.5, the reported errors are all zero. Combined with the facts that the

number of breaks and frequency of correct number of breaks are also optimal, we can imply that

11



for σε = 0.5 the break date estimates are correct and are identical to the true break dates in our

DGP. Even when σε = 0.75, the errors are still close to zero and become smaller when N and

T increase. Hence, we can again confirm the findings of Okui & Wang (2018) that the GAGFL

method can identify break points accurately.

N = 50 N = 100

Group (True break num.) T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

σε = 0.5 G1 (m0
1,0 = 2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

G2 (m0
2,0 = 2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

G3 (m0
3,0 = 0) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

σε = 0.75 G1 (m0
1,0 = 2) 0.0550 0.0355 0.0140 0.0220 0.0105 0.0013

G2 (m0
2,0 = 2) 0.0550 0.0345 0.0113 0.0220 0.0040 0.0001

G3 (m0
3,0 = 0) 0.1460 0.0305 0.0000 0.0230 0.0100 0.0000

Table 4: Hausdorff Error of Break Date Estimates

4.3.3 Slope Coefficient Accuracy

Lastly, Table 5 and 6 examine the accuracy of the coefficient estimates by their root mean squared

errors (RMSE) and the coverage probability, where the desired results are a small RMSE and a

coverage probability of around 95% as this probability encloses the two-sided nominal 95% con-

fidence interval.

Table 5 displays the RMSE’s corresponding to each combination of N, T and σε. For σε = 0.5,

the RMSE decreases with an average of approximately 30% as T doubles. For σε = 0.75, the RMSE

decreases slighty faster with an average of 42%. However, in both cases, the RMSE for T = 10

were already quite small.

N = 50 N = 100

T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

σε = 0.5 0.0370 0.0248 0.0174 0.0262 0.0166 0.0134

σε = 0.75 0.1647 0.0869 0.0481 0.0781 0.0463 0.0296

Table 5: Root Mean Squared Error of Coefficient Estimates

Table 6 displays the coverage probability of the coefficient estimates. We notice for both σε = 0.5

and σε = 0.75 and for N = 50 that, as T increases, the coverage probability approaches the value

around 95%. We can confirm that, as the sample size increases, the RMSE becomes smaller and

the coverage probabilities are improved, which is in line with the findings of Okui & Wang (2018).

A small RMSE and adequate coverage probability implies that the coefficients from the GAGFL

method are properly estimated.
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N = 50 N = 100

T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

σε = 0.5 0.9281 0.9464 0.9466 0.9596 0.9568 0.9618

σε = 0.75 0.9379 0.9606 0.9602 0.9689 0.9516 0.9522

Table 6: Coverage Probability of Coefficient Estimates

5 Empirical Application

We propose to use the GAGFL method by Okui & Wang (2018) on a new empirical application

which studies the relationship between the rate of population growth and rate of natural increase

in population and international migrant stock.

5.1 Data

A balanced panel data set is used, extracted from the World Bank, concerning crude birth and

death rates, international migrant stock, total amount of population per country and population

growth rate of 118 countries spread across the world. These data contain 11 time periods with

5-year frequency from 1965 up and until 2015. The birth rate indicates the amount of live births

throughout the year, per 1,000 people, estimated at midyear. Similarly, the death rate indicates

the number of deaths throughout the year, per 1,000 population, also estimated at midyear. By

subtracting the crude death rate from the crude birth rate, the rate of natural increase (RNI) can

be calculated. RNI indicates the rate of change in population in absence of migration. Since the

birth rate dominates the death rate for most countries, this results in a positive RNI with an av-

erage of 19.5 (see Figure A.2, which depicts the average RNI over the years 1960-2015 with a 95%

confidence interval). The international migrant stock equals the amount of people which is born

in another country than which they currently live in, including refugees. The total population

is defined as the total count of people in the country, neglecting their citizenship or legal status.

By dividing the international migrant stock by the total population per country, we obtained the

percentage of international migrant stock (MS) relative to the population, which has an average

of 0.08% (see Figure A.3). The annual population growth rate of year t equals the exponential

growth rate of the population from year t-1 until year t, estimated at midyear. This is expressed

as a percentage with an average rate of 1.96% per year (see Figure A.4).

5.2 Method/Regression

Our aim is to regress the rate of natural increase (RNI) and rate of international migrant stock (MS)

on the rate of population growth (PG). Therefore, we consider a fixed effects model by including
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an additive country-specific, time-invariant fixed effect µi as described in the model below:

PGit = µi + θ1,gi ,tRNIit + θ2,gi ,t MSit + εit

However, GAGFL tend to give more accurate results when the data is stationary. Hence, we

eliminate the trend by using first-differenced data, following Okui & Wang (2018).

∆PGit = θ
′
1,gi ,t∆RNIit + θ

′
2,gi ,t∆MSit + ∆εit

Moreover, to ensure similar variation for grouping, the variables are standardized by subtracting

the mean from the observation and divided by its standard deviation: zit =
xit−µi

σi
. The coefficients

are estimated by applying GAGFL on the transformed data, which looks as follows:

∆PGit = θ
′′
1,gi ,t∆RNIit + θ

′′
2,gi ,t∆MSit + ∆εit (7)

We implement GAGFL on the data as described in Equation 7. Hereby, we choose the tuning

parameter λ by searching in the interval of λmin = 2 and λmax = 50 with a grid size of 200. We

examine the groups and slope coefficients for G = 1, . . . , 5 and use 10,000 starting values for ini-

tializing the group memberships of each observation. In order to determine the optimal number

of groups, we follow Bonhomme & Manresa (2015a) by considering the Bayesian Information

Criterion (BIC). This information criterion is defined as follows:

BIC(G) =
1

NT

m+1

∑
j=1

Tj

∑
t=Tj−1+1

N

∑
i=1

(yit − x
′
itα̂gi ,j)

2 + σ̂2 np(G) + N
NT

lnNT (8)

The optimal number of groups corresponds to the lowest corresponding BIC-value.

5.3 Results

When implementing the BIC, the lowest value corresponds to G=1 (see Table A.1). This means

that, according to this criterion, the countries should not be split up into different number of

groups. However, as can be seen from Table 7, there are zero breaks detected when assigning

G=1. Therefore, for the sake of illustrating the GAGFL method, we also report and describe the

results for G=2 and G=3, which correspond to the second- and third-lowest BIC-value.

Firstly, we examine the results of the regression as in Equation 7, assuming that the number of

groups G is equal to 1, which is displayed in Table 7. The number in-between brackets indicate the

standard error of the corresponding coefficient, n represents how many observations are within a

particular group and regimes 1, . . . , 11 correspond to the time periods from 1965 up and until 2015

with 5-year frequency. For Group 1.1, there are zero breaks estimated and the slope coefficient for

the rate of natural increase (RNI) is larger than the slope coefficient for the international migrant

stock (MS). This implies that, in general, a country’s population mainly grows because of its rate

of natural increase rather than due to immigration.
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Regime 1 2 3 4 5 6 7 8 9 10 11

Group 1.1 RNI 0.5657 (0.0441)

n = 118 MS 0.0859 (0.0342)

Table 7: Coefficient and Regime Estimates of G = 1

Secondly, we now assume that the true number of groups G is equal to 2. The results are shown

in Table 8. The total of 118 countries are now split into a larger group, consisting of 83 countries,

and a smaller group, incorporating 35 countries, denoted as Group 2.1 and 2.2, respectively. The

smaller group is characterized by a slightly higher slope coefficient for international migrant stock

(MS). Hence, this implies that for these countries, their population grew mainly because of immi-

gration. Further analysis showed that almost half of the countries in this group is characterized as

a ’high income’-country according to The World Bank Data (see Figure 9, which displays the divi-

sion of countries per group based on income status in percentages). As can be seen in Figure A.5,

this group contains relatively small and rich countries or regions such as Qatar, Hong Kong and

Luxembourg. This finding affirms that, according to functionalist social theory, people tend to

move from lower income-regions to higher income-regions as most migrants are portrayed as

income-maximizing individuals (de Haas, 2011). For Group 2.1, the population mainly grew be-

cause of a high birth rate and low death rate, which results in a positive rate of natural increase

(RNI). Contrary to Group 2.2, less than 20% of this group is labeled as ’high-income’-countries.

There is, in general, an inverse correlation between the number of offspring and wealth. Accord-

ing to Balbo et. al. (2012), advanced societies are characterized by low-fertility levels, which is

close to 1 child per woman. Hence, this could explain why the RNI is much higher for this group

of countries. As this bigger group contains mostly Asian, South-American and North-African

countries, such as Peru, Thailand, Indonesia, Morocco and India, which were economically de-

veloping countries in the period of 1965 - 2015. During this span of time, most of these countries

were still industrializing and the income level and education of the population was not optimal

yet. Furthermore, since developing countries offer little favorable living conditions, it is not en-

couraging for foreign people to migrate towards these places, which explains the relatively low

slope coefficient for MS. Thus, these two groups are separated based on their economical status

which is expressed through RNI and MS. However, no structural breaks in the parameters have

been detected yet for either of these groups.
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Regime 1 2 3 4 5 6 7 8 9 10 11

Group 2.1 RNI 0.7655 (0.0314)

n = 83 MS 0.0174 (0.0385)

Group 2.2 RNI 0.1126 (0.0744)

n = 35 MS 0.2117 (0.0611)

Table 8: Coefficient and Regime Estimates of G = 2

Income Status

% High Income Upper Middle Income Lower Middle Income Low Income

Groups

2.1 18.07 32.53 32.53 16.87

2.2 48.57 20.00 14.29 17.14

3.1 17.39 34.78 36.23 11.59

3.2 40.00 28.00 16.00 16.00

3.3 41.67 12.50 12.50 33.33

Table 9: Percentages of Countries Divided per Income Class

Proceeding with G = 3, we found that all the 69 countries from Group 3.1 are extracted from Group

2.1. The slope coefficient estimates from Group 3.1 are mostly similar to those of Group 2.1, where

the coefficient estimate of RNI remains much larger than that of MS. However, the slope coeffi-

cient for MS becomes slightly smaller, such that it is now negative. The group membership of the

countries can be seen in Figure A.6. Similarly to Group 2.1, less than 20% is considered as a high

income-country for Group 3.1 as well, as can be seen from Table 9. The majority of Group 3.2, 23

out of 25 countries, originated from Group 2.2. Here, the two coefficient estimates for both vari-

ables RNI and MS are relatively similar, albeit that the slope coefficient estimate for MS is slightly

higher than that of RNI. Furthermore, the high-income segment is the largest in this group by

making up 40% of the group, followed by the upper middle income segment, which takes up 28%.

The new group, Group 3.3, contains precisely half of its total of 24 countries from Group 2.1 and

the other half from Group 2.2. Furthermore, the high-income segment takes up approximately

40% of the group, equivalently to Group 3.2. However, there are more low income-countries in-

corporated in this group (33.3%) in comparison to the number of low income-countries in Group

3.2 (only 16%). Group 3.3 is the first group where structural breaks are detected. The breaks are es-

timated between regimes 4 and 5 and regimes 8 and 9, which corresponds to the periods between

1980-1985 and 2000-2005, respectively. For the variable RNI, these structural breaks divides the

time line into periods of declining population growth before 1980, then a sharp increase between

1985 and 2000 and from 2005 onwards, the rate of natural increase slightly decreases again. For

the international migrant stock variable, the slope coefficients steadily decrease from 1965 up and

until 2015, where the slope coefficient is negative from 2005 onwards. The latter indicates that,
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concerning the countries in Group 3.3, the inhabitants slowly emigrate to other foreign places.

Group 3.3 contains relatively many low and high income-countries. Low income-countries, such

as Uganda, Ethiopia and Congo, experience fluctuations in population growth which might be

high due to lethal diseases, as these countries are known to have limited health care services and

because of (civil) wars. For example, the Congo crisis, which lasted from 1960 until 1965, was

a period of political conflicts and have caused many deaths in the country. However, this group

also contains wealthier countries, such as, Belgium, Ireland and Luxembourg. The initial negative

coefficient estimate for RNI and high estimate of MS might be due to post-war consequences of,

for example, WWII and the spike in RNI and decline in MS, thereafter, can be devoted to a period

of flourishing economies as during this time, people deem it to be safe and are satisfied with their

living conditions such that they can settle down.

Regime 1 2 3 4 5 6 7 8 9 10 11

Group 3.1 RNI 0.8050 (0.0268)

n = 69 MS -0.0327 (0.0406)

Group 3.2 RNI 0.1851 (0.0899)

n = 25 MS 0.2540 (0.0678)

Group 3.3 RNI -0.0355 (0.1390) 0.5265 (0.1255) 0.4410 (0.1587)

n = 24 MS 0.2789 (0.1566) 0.2378 (0.0901) -0.1341 (0.1253)

Table 10: Coefficient and Regime Estimates of G = 3

6 Conclusion & Discussion

When analyzing panel data, it is important to take into account the heterogeneity in its observa-

tions along with heterogeneity in the slope coefficients. Events over time might cause structural

breaks in the parameters which should be captured in the model. Failing to do so will cause incor-

rect coefficient estimates and, thus, an erroneous model. Furthermore, forming grouped patterns

to express heterogeneity among individuals is crucial as well, since not all individuals might be

affected in the same way by a certain event. By combining the GFE estimator for grouping in-

dividuals and AGFL for break detection, the GAGFL method can simultaneously capture this

underlying grouped pattern as well as estimating slope coefficient and break date estimates.

We analyzed the GAGFL method of Okui & Wang (2018) by means of a Monte Carlo simula-

tion to assess its performance in finite samples. GAGFL is proven to give more accurate results as

the length of the time series T increases, rather than when the number of observation N increases.

It is worth to mention that not the exact same simulation has been performed, as in this paper

only 100 replications, instead of 1000, are used due to time constraints. Nonetheless, similar re-

sults have been found as in Okui & Wang (2018) when evaluating it by the criteria of clustering,

break date and slope coefficient accuracy.
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Applying GAGFL on an empirical application, which considers the relationship between the

rate of population growth and its determinants, we found our hypothesis of grouping economi-

cally similar countries into the same group being (partly) rejected. However, sensible arguments

concerning war outbreaks and demographic factors are provided to why this is the case. A point

of discussion for this empirical application is the choice of tuning parameter λ. When experi-

menting with different intervals of λ, we found that when choosing a small lower bound for λ,

for example λ = 0.001, this corresponds to having breaks at every point in time. When increas-

ing the lower bound, this results in less number of breaks. Further research could be conducted

concerning choosing the interval for this tuning parameter in order to justify the correctness in

number of breaks. In addition, since the clustering approach is based on the k-means algorithm,

which involves random initializations, it is highly subjective to its initial values. In this empirical

application, 10,000 initial values are used in order to determine the group memberships, however,

with every run, different group memberships, break dates, number of breaks and slope coefficient

are measured when using G > 3. Hence, this could indicate that there might be many local min-

ima. It might be interesting to explore this random initialization strategy and to replace it with

more deterministic techniques, such as hierarchical clustering, in order to achieve replicable re-

sults for empirical applications.
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A Appendix

Figure A.1: Total World Population From the Year 1000 until 2017

Source: United Nations Population Division, The World Data Bank
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Figure A.2: Rate of Natural Increase (RNI) From 1960 until 2015

Note: The blue line indicates the average rate of natural increase over the period 1960-2015 with 5-year frequency. The

red lines indicate the upper and lower bounds of the 95% confidence interval.
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Figure A.3: Average Percentage of International Migrant Stock Relative to the Whole Population

From 1960 until 2015

Note: The blue line indicates the average percentage of migrant stock over the period 1960-2015 with 5-year frequency.

The red lines indicate the upper and lower bounds of the 95% confidence interval.

24



Figure A.4: Average Rate of Population Growth From 1960 until 2015

Note: The blue line indicates the average rate of population growth over the period 1960-2015 with 5-year frequency. The

red lines indicate the upper and lower bounds of the 95% confidence interval.

G

1 2 3 4 5

BIC-value 1.1558 1.1788 1.2060 1.2470 1.2640

Table A.1: Corresponding BIC-values for every G=1,. . . ,5
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Figure A.5: Division of Countries When Divided into 2 Groups

Figure A.6: Division of Countries When Divided into 3 Groups
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