
Regression Analysis for Interval-Valued Data

Mousa Negash

431898

July 8, 2018

Abstract

In dit paper worden verschillende regressiemethoden uitgevoerd op symbolische data om vervol-

gens te oordelen welke methode het meest betrouwbaar is. De data is herschikt in de vorm van

intervallen en middelpunten. Hierop werden Deming Regressie en middelpuntsregressie toegepast.

De regressiemethode waarbij gebruik wordt gemaakt van empirische, symbolische statistieken

(Covariantie-Regressie) geven de laagste standaarderrors in vergelijking met de eerder benoemde

regressiemethoden. Om de standaarderrors te verkrijgen zijn er steekproeftrekkingen gegenereerd

uit de data. Uit de resultaten valt af te leiden dat Deming Regressie minder presteert dan de

andere regressiemethoden die overigens erg veel overeenkomsten vertonen in hun resultaten.

Keywords: symbolic data, linear regression, bootstrap sampling, standard error, (co-)variance,

parameter estimation.
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1 Introductie

Er zijn al veel analyses verricht op klassieke data: Data waarbij observaties slechts een enkele punt

betreffen. Echter, zijn er ook analyses verricht op symbolische data. Hierbij kunnen de observaties

slaan op meerdere waarden, modaal zijn of bevinden de observaties zich in een bepaald interval.

Methoden die van toepassing zijn op klassieke data zijn mogelijk niet geschikt voor symbolische

data. Hiervoor zijn nieuwe methoden aangesteld die waardevolle statistische analyses creëren. Een

methode om deze data te analyseren is aangesteld door Billiard et. al, 2000. De dataset in dit

paper omschrijft de hartslag en bloeddruk van meerdere patiënten. De hartslag en bloeddruk zijn

gemeten over een bepaalde periode en verschilt logischerwijs over de tijd. Al deze metingen worden

opgenomen in een interval. Bij deze methode worden covariantie- en correlatieformules herleid on-

der de aanname dat mogelijke waarden in de dataset uniform verdeeld zijn over de intervallen. Op

basis van deze methode wordt een linear regressiemodel ontwikkeld. Deze aanname is van groot

belang en zal ook worden aangehouden in dit paper. Het bestaan van de data uit een verzamel-

ing intervallen geeft de mogelijkheid om simpelweg te werken met de middelpunten. Door deze

punten kan eenvoudig een lineaire regressie worden uitgevoerd. Verder kan met behulp van de

intervallen en hun middelpunten een ander techniek, de zogeheten Deming Regressie, ons analyse

uitbreiden. Hier wordt in tegenstelling tot reguliere regressie ook rekening gehouden met de fout

die waargenomen wordt op front van de regressor. De ratio tussen de waargenomen fout in de

afhankelijke variabele en de regressor speelt dan een rol voor de coëfficiënten die geschat worden.

Kortom, er worden drie verschillende regressies toegepast: Deming Regressie, MiddelpuntsRe-

gressie en Covariantie-Regressie (Billard et. al, 2000). Verdere informatie met betrekking tot de

regressies wordt verstrekt in de sectie Methodologie. Om te testen welke regressiemethode beter

presteert wordt er gekeken naar de standaardfouten die vrijkomen bij het schatten van de param-

eters. Hiervoor zullen willekeurige steekproeftrekkingen gegenereerd worden om de drie regressies

meerdere malen uit te voeren. Bij het vrijkomen van de verschillende parameters is het mogelijk

om de standaardfouten te berekenen en achteraf wordt er geconcludeerd op basis van deze stan-

daardfouten welke regressiemethode het beste betrouwbaarheidsinterval geeft.

Onderzoeksvraag:

Welke methode werkt het best om betrouwbare standaardfouten te verkrijgen bij een regressie voor

symbolische data?
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2 Literatuur

Op de analyse van symbolische data verricht door Billiard en Diday wordt op voortborduurd. Hun

werk omvat het toepassen van de Covariantie-Regressie op symbolische data. In Billiard en Diday

wordt de symbolische data beschreven door een afhankelijke variabele Y die de hartslag omschrijft

en twee afhankelijke variabelen X1 en X2 die respectievelijk de systolische en diastolische druk

omschrijven. Er wordt gewerkt met een dataset waarvan al deze variabelen per observatie verdeeld

zijn over een interval. Voor deze gegevens worden allereerst de symbolische statistieken berekend

alvorens de parameters worden geschat bij de Covariantie-Regressie. Voor de formules voor de

symbolische statistieken en de parameterschattingen wordt verwezen naar Sectie 4.3. De repli-

catie van de resultaten in Billiard en Diday zijn terug te vinden in de Appendix.

Dit paper legt de nadruk op de standaardfouten, waarvan de waarden van groot belang zijn voor

een econometrist. Naast het beïnvloeden van de statistische betekenis hebben de standaardfouten

ook zeker invloed op de uitspraken die hierbij gedaan kunnen worden. De focus zal voornamelijk

liggen op deze contributies. Er wordt geacht dat de lezer algemene kennis heeft van (simpele)

lineaire regressiemethoden en (bootstrap) sampling.

3 Data

De dataset die gebruikt wordt is afkomstig van de website van NCAA en omvat het aantal doel-

pogingen en het aantal doelpunten in de seizoenen 2010-2017. Aangezien voetbal een topsport is en

het aantal doelpunten sterk afhangt van het aantal doelpogingen is het interessant om deze data te

gebruiken. Deze statistieken betreffen het voetbalteam Florida International University Panthers

(FIU) afkomstig uit divisie I. In onderstaand tabel zijn naast het seizoen en de datum, het aantal

doelpogingen (SoG) en de doelpunten weergeven. De data is verdeeld in acht seizoenen. Er wordt

dus voor acht seizoenen 2010-2017 acht waarnemingen gecreëerd. In tabel 1 is dus te zien dat elke

waarneming corresponderend met één seizoen wordt aangegeven met observatie u.
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Season Date SoG Goals Season Date SoG Goals Season Date SoG Goals Season Date SoG Goals

2010

(u = 1)

9-3 4 1

2011

(u = 2)

8-26 7 2

2012

(u = 3)

8-24 3 2

2013

(u = 4)

8-30 2 1

9-5 3 0 8-28 12 1 8-31 11 2 9-1 7 5

9-10 4 2 9-2 4 1 9-2 6 1 9-5 2 1

9-12 6 2 9-4 5 0 9-7 4 3 9-7 10 4

9-17 4 2 9-9 11 3 9-9 4 2 9-14 8 1

9-19 4 1 9-11 9 1 9-14 4 1 9-20 7 0

9-24 5 1 9-16 7 2 9-16 7 1 9-22 8 2

10-2 2 0 9-18 12 2 9-22 3 2 9-27 6 2

10-5 3 0 9-23 12 1 9-29 3 1 9-29 9 2

10-9 7 2 10-2 3 1 10-3 2 0 10-6 15 4

10-12 6 2 10-8 5 0 10-6 3 1 10-12 4 1

10-16 1 0 10-11 6 0 10-12 5 2 10-16 5 0

10-22 8 3 10-16 2 1 10-17 9 2 10-19 7 0

10-24 4 0 10-19 5 1 10-21 2 1 10-26 5 4

10-27 4 0 10-22 7 3 10-23 9 0 10-30 5 0

10-30 8 1 10-29 2 0 10-27 4 1 11-3 4 0

11-5 5 1 11-4 4 3 10-30 12 5 11-8 4 0

11-3 8 1

2014

(u = 5)

8-29 4 1

2015

(u = 6)

8-28 4 0

2016

(u = 7)

8-26 3 0

2017

(u = 8)

8-25 4 1

8-31 1 0 8-30 3 2 8-28 7 3 8-27 6 3

9-5 9 1 9-3 8 2 9-2 2 1 9-1 7 2

9-10 2 0 9-6 12 3 9-4 3 0 9-3 8 3

9-16 2 1 9-10 9 3 9-9 8 3 9-14 4 2

9-19 13 2 9-12 2 2 9-17 7 2 9-23 2 2

9-24 2 2 9-21 9 7 9-20 5 0 9-26 10 5

9-27 9 2 9-26 10 5 9-24 6 1 9-30 7 4

10-4 1 0 9-29 6 2 9-30 5 1 7-10 7 4

10-8 12 4 10-3 4 0 10-4 5 1 10-10 13 4

10-11 7 3 10-10 5 3 10-10 3 0 10-14 11 5

10-15 6 2 10-17 7 2 10-15 3 2 10-17 6 2

10-25 11 1 10-20 6 2 10-21 5 1 10-21 14 4

10-29 3 2 10-27 6 0 10-25 8 2 10-25 10 3

11-2 3 0 10-31 8 0 10-29 7 4 10-29 7 2

11-7 6 2 11-7 1 0 11-5 8 2 11-10 4 1

11-11 8 4 11-9 11 2 11-16 3 2

11-13 4 1 11-11 7 2 11-19 6 1

11-15 7 1 11-13 5 0

11-19 7 2

Table 1: FIU Statistieken

De data bestaande uit doelpogingen en doelpunten zijn beiden gebeurtenissen die voorkomen op

een bepaald moment in de wedstrijd. Deze statistieken vallen onder count data en volgen dus

een Poisson-verdeling. Er wordt ter controle een Poisson Count-Regressie uitgevoerd om te kijken

of het aantal doelpogingen daadwerkelijk significant effect heeft op het aantal doelpunten in een

wedstrijd. Dit is een sterke aanname doordat er een schot op doel vereist is om een doelpunt te

maken.
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Figure 1: CountRegressie Doelstatistieken FIU

In Figuur 1 is te zien dat het aantal doelpogingen significant effect heeft op het aantal doelpunten.

De P-waarde van deze variabele ligt relatief laag (0.0000). Deze regressie is uitgevoerd in EViews

en maakt gebruik van Maximum Likelihood schatting.

4 Methodologie

De data (aantal doelpogingen en doelpunten) in Tabel 1 worden onderverdeeld in 8 observaties.

Elke waarneming correspondeert met een volledige voetbalseizoen. Per seizoen wordt een interval

opgesteld voor de afhankelijke variabelen (aantal doelpunten) en de verklarende variabelen (aantal

doelpogingen). Vanzelfsprekend bestaat het interval uit het minimum en maximum aantal doelpun-

ten in dat specifieke seizoen. In deze sectie worden de volgende drie regressies besproken: Deming

Regressie, Middelpunt-Regressie en Covariantie-Regressie. Het creëren van de samples en uitvoeren

van de regressies wordt gedaan met behulp van de programma MATLAB en EViews. Ten slotte

worden er in sectie 4.4 steekproeftrekkingen uit de originele data genomen om de standaardfouten

te berekenen die vrijkomen bij elke regressie.

4.1 MiddelpuntsRegressie

Bij middelpuntsregressie wordt van elk waarneming (weergeven als blok) het middelpunt genomen.

Het middelpunt van elke blok vormen onze datapunten en door deze punten kan een lijn worden

gefit. De middelpunten worden later ook in gebruik genomen door Deming regressie. In figuur 2

zijn de intervallen visueel weergeven als rechthoeken. De data die hiervoor gebruikt is, is afkomstig

uit Billiard en Diday en is ook te vinden in de Appendix. Elk hoekpunt van de rechthoek slaat op

de getallen in de dataset van de Appendix. Voor elke rechthoek is een middelpunt geïllustreerd en

over al deze middelpunten wordt een lijn gefit.
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Figure 2: Voorbeeld MiddelpuntsRegressie Billiard en Diday

4.2 Deming Regressie

Deming regressie is uit op het fitten van een lijn voor een tweedimensionale dataset. De regressie

wordt uitgevoerd onder de veronderstelling dat er fouten zijn in waarnemingen voor beide assen. In

(1) en (2) wordt er rekening gehouden met de meetfouten respectievelijk voor de x-as (horizontale

as) en de y-as (verticale as). De meetfouten εi en δi voor observatie i in (1) en (2) zijn onafhankelijk

van elkaar. De middelpunten vormen onze waarnemingen en het interval markeert de meetfouten.

xi = Xi + εi (1)

yi = Yi + δi (2)

Ter illustratie volgt een afbeelding van de gegevens daterend uit 2017 in Tabel 2. Hierin vormen

xi en yi de coördinaten van het middelpunt.

Figure 3: Voorbeeld Deming FIU 2017

5



Deze regressie neemt aan dat de verhouding in de gemeten fouten constant blijft. Wiskundig is

dat als volgt geformuleerd:

λi =
V (δi)

V (εi)
(3)

Een vector ~λ ter grootte vanm observaties kan worden opgesteld bestaande uit: ~λ = [λ1, λ2, .., λm].

In (3) staat V (.) voor de variantie van de meetfouten. De volgende twee methodes leiden een con-

stante factor af uit de vector ~λ.

Gemiddelde ~λ:

Hierin wordt simpelweg de gemiddelde genomen van de vector ~λ om een constante te verkrijgen:

λ =

∑m
i=1

~λi
m

Gewogen gemiddelde ~λ:

Bij de gewogen gemiddelde worden er wegingen toegekend aan elk element corresponderend met

zijn observatie in de vector ~λ. De weging wi hangt af van de oppervlakte van het blok.

λ =
1

W

m∑
i=1

wi ~λi

Waar W gelijk is aan
∑m
i=1 wi en de weging wi berekend is op de volgende manier:

wi =
A

Ai

Bij het berekenen van wi wordt gebruik gemaakt van de oppervlakte van het interval Ai en de

totale oppervlakte van alle intervallen opgeteld: A =
∑m
u=1Ai. Op deze wijze wordt de weging van

elk observatie i in de vector ~λ in verhouding geplaatst. Een observatie waarvan haar interval een

relatief klein oppervlakte bezit krijgt een grotere weging toegekend. Dit is te danken aan het feit

dat de variantie dan lager ligt ten opzichte van andere observaties die over een interval bezitten

waarvan de oppervlakte relatief groter is.

De geschatte coëfficiënten β0 en β1 hangen af van λ op de volgende wijze. Merk op dat er vanaf

nu verder wordt gewerkt met de constante λ.

β̂1 =
σ2
y − λσ2

x +
√

(σ2
y − λσ2

x)2 + 4λσ2
xy

2σxy
(4)

In vergelijking (4) staat σ2
x en σ2

y voor de variantie van x en y. De covariantie tussen x en y wordt

genoteerd met σxy. De schatting van β0 komt tot stand in vergelijking (5):

β̂0 = Ȳ − β̂1X̄ (5)
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Uiteindelijk is het gewenst een lijn te vinden die het best fit:

y = β̂0 + β̂1x (6)

4.3 Covariantie-Regressie

Bij de Covariantie-Regressie methode worden de onder- en bovengrens van de intervallen voor

elk waarneming genoteerd als [au, bu] waarbij u een observatie voorstelt in de verzameling E. De

verzameling E bevat symbolieke objecten en verder is u = 1, ...,m met m het aantal waarnemingen.

De intervallen voor de variabelen X en Y zijn als volgt:

Xu = {au, bu} en Yu = {au, bu}

Met behulp van de volgende symbolische empirische functies kunnen de parameters in de regressie

geschat worden.

Empirische symbolische covariantie tussen twee variabelen Y1 en Y2:

Cov(Y1, Y2) =
1

4m

∑
u∈E

(b1u + a1u)(b2u + a2u)− 1

4m2
[
∑
u∈E

(b1u + a1u)][
∑
u∈E

(b2u + a2u)] (7)

Empirische symbolische gemiddelde van Y:

Ȳ =
1

2m

∑
u∈E

(bu + au) (8)

Empirische symbolische variantie van Y:

S2
Y =

1

4m

∑
u∈E

(bu + au)2 − 1

4m2
[
∑
u∈E

(bu + au)]2 (9)

Empirische correlatiefunctie tussen twee variabelen X en Y :

r(X,Y ) =
SXY√
S2
XS

2
Y

(10)

Nu alle symbolische data verkregen is, kunnen de parameters worden geschat. Eerst de parameter

β1:

β̂1 =
Cov(X,Y )

S2
X

= r(X,Y )(SY /SX) (11)

Ten slotte kan parameter β0 geschat worden.

β̂0 = Ȳ − β̂1X̄ (12)
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4.4 Standaardfouten met Sampling

In dit paper wordt de nadruk in het onderzoek gelegd op de standaardfouten. Deze fouten geven

meer informatie over de betrouwbaarheid van het uitvoeren van een bepaalde regressie. Hierbij

wordt de originele data gebruikt om willekeurige steekproeftrekkingen te genereren om elke re-

gressie meerdere malen uit te voeren. In totaal worden 10000 steekproeftrekkingen gegenereerd

en vervolgens wordt er voor elke verkregen trekking elk van de drie regressie toegepast. Voor

elke willekeurige steekproeftrekking worden er andere parameterschattingen verkregen. Op basis

van deze schattingen kunnen de standaardfouten bepaald worden. Het bepalen van deze fouten

volgt later in deze sectie. Om steekproeftrekkingen te verkrijgen wordt simpelweg de data opnieuw

geconstrueerd waardoor er telkens intervallen worden gegenereerd. Het aantal intervallen dat wordt

gegenereerd is gelijk aan het aantal observaties. Het reconstrueren van de intervallen gebeurt als

volgt:

Algorithm 1 Bootstrap sampling
1: Input: Interval die onder- en bovengrens bevat. Daarnaast ook een natuurlijk getal om de

seed vast te stellen.

2: Initialize: Een random number generator (RNG) die gebruik maakt van de seed.

3: Nu worden twee willekeurige waarden gegenereerd op basis van de RNG en zullen deze waarden

de nieuwe grenzen voorstellen van ons interval. Merk op dat deze waarden niet gelijk aan elkaar

kunnen zijn en de grenzen van het originele interval niet overschrijden. Noem deze getallen

randomOne en randomTwo en initialiseer deze waarden op nul.

4: while (randomOne == randomTwo) //Conditie waardoor nieuwe waarden blijven

gegenereerd worden

5: randomOne = rand×(upperBound - lowerBound) + lowerBound;

6: randomTwo = rand×(upperBound - lowerBound) + lowerBound;

7: Noot dat door de RNG de gegenereerde waarde rand in regel 5 en 6 van elkaar verschillen.

8: De variabelen randomOne en randomTwo worden vervolgens afgerond.

9: end

10: au = min(randomOne,randomTwo);

11: bu = max(randomOne,randomTwo);

12: Output: Interval = [au, bu]

Deze constructie van de data vindt 10000 keer plaats en met elke steekproeftrekking worden alle drie

de regressies uitgevoerd. In regel 1 is een seed vereist om verschillende reeksen van willekeurige

getallen te creëeren. Het getal voor de seed is op 100 gëïnitialiseerd en na elke geconstrueerde

sample wordt dit getal met één verhoogd. Als gevolg ontstaan er verschillende intervallen per

constructie van de data. Merk op dat in regel 8 de twee willekeurige variabelen afgerond worden.

Reden voor het uitvoeren van deze handeling is dat de (count) data alleen gehele getallen beschrijft.

Voor elke sample zijn β̂0 en β̂1 geschat en opgeslagen. Deze coëfficiënten worden opgeslagen in
~β0 en ~β1 beiden ter grootte van 10000. Van beide vectoren kan de variantie berekend worden en
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vervolgens ook de standaardfout SE:

SE (β) =

√
V (~β)

Waarin V(.) staat voor de variantie en β (~β) kan verwijzen naar β0 of β1 ( ~β0 of ~β1).

5 Resultaten

Zoals beschreven in de methodologie is voor elk seizoen het minimale en maximale aantal doelpun-

ten en -pogingen bijgehouden in een interval. Een representatie van deze cijfers is te vinden in

Tabel 2.

Seizoen
Aantal Doelpogingen Aantal Doelpunten

Minimum Maximum Mininmum Maximum

2010 1 8 0 3

2011 2 12 0 3

2012 2 12 0 5

2013 2 15 0 5

2014 1 13 0 4

2015 1 12 0 7

2016 2 11 0 4

2017 2 14 1 5

Table 2: FIU Intervallen DoelStatistieken

In tabel 2 is er weinig variantie te bekennen in het minimum aantal doelpogingen en -punten. Dit

is te danken aan de eigenschappen van de data: Er wordt niet gescoord in alle wedstrijden in één

seizoen (met uitzondering van het seizoen 2017). In figuur 4 hieronder valt ook op te merken dat

het overgrote deel van de intervallen nul als minimaal aantal doelpogingen heeft. De middelpunten

tonen echter een lichte positieve correlatie.
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Figure 4: FIU Doelstatistieken

5.1 MiddelpuntsRegressie

Er wordt met behulp van Tabel 2 middelpunten bepaald van elk interval. De middelpunten van

elk interval corresponderend met elk voetbalseizoen zijn te vinden in Tabel 3. Op basis van deze

gegevens wordt een middelpuntsregressie uitgevoerd.

Seizoen 2010 2011 2012 2013 2014 2015 2016 2017

Middelpunt (5, 1.5) (8, 1.5) (8, 2.5) (9.5, 2.5) (7.5, 2) (7, 3.5) (7.5, 2) (9, 3.5)

Table 3: Middelpunten DoelStatistieken

In EViews is de regressie uitgevoerd met deze middelpunten als dataset. De resultaten zijn hieron-

der te vinden in figuur 5:

Figure 5: MiddelpuntsRegressie Doelstatistieken FIU

In figuur 5 wordt de coëfficiënt β̄0 weergeven door 0.4855 (C) en β̄1 door 0.2458 (SOG). De p-

waarden (0.7816) en (0.2962) voor respectievelijk β0 en β1. Met behulp van deze waarden kan

een uitspraak worden gedaan over de significantie van deze variabelen bij een vastgestelde signifi-
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cantieniveau.

y = 0.5285 + 0.2595x (13)

De regressievergelijking in (13) is ook geïllustreerd in onderstaand figuur. Merk op dat x en y

in deze sectie staan voor het gemiddeld aantal doelpogingen en het gemiddeld aantal doelpunten.

Het is echter geen probleem om gemiddeld in dit geval buiten beschouwing te laten. Immers is het

gemiddelde genomen van beide variabelen. Aan beide kanten van de vergelijking is dus gedeeld

door hetzelfde getal.

Figure 6: MiddelpuntsRegressie Doelstatistieken FIU

5.2 Deming Regressie

Aan de hand van de intervallen in tabel 2 en de middelpunten in tabel 3 wordt Deming regressie

toegepast. Zoals beschreven in de methodologie is de constante λ op twee verschillende manieren

berekend. Voor de originele data wordt de regressie dus tweemaal uitgevoerd. In onderstaande

tabel zijn de berekeningen van λ weergeven. De uitkomsten van λ zijn berekend volgens de vergeli-

jkingen beschreven in de sectie Methodologie:

Methode
Observatie

u = 1 u = 2 u = 3 u = 4 u = 5 u = 6 u = 7 u = 8

Gemiddelde λ

(0.1870)
λu 0.1837 0.0900 0.2500 0.1479 0.1111 0.4050 0.1975 0.1111

Gewogen gemiddelde λ

(0.1731)

wu/W 0.2396 0.1677 0.1006 0.0774 0.1048 0.0653 0.1397 0.1048

wuλu/W 0.0440 0.0151 0.0252 0.0114 0.0116 0.0265 0.0276 0.0116

Table 4: Berekening constante λ met twee verschillende methoden
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Gemiddelde λ

De coëfficiënten β̂0 en β̂1 zijn geschat volgens de vergelijkingen (11) en (12):

y = −3.5472 + 0.8523x (14)

Gewogen gemiddelde λ

Ditmaal wordt de regressie uitgevoerd met λ berekend volgens de gewogen gemiddelde:

y = −3.7567 + 0.8828x (15)

In figuur 7 zijn beide regressielijnen met alle originele intervallen uit tabel 2 geïllustreerd. Het valt

op dat de Deming regressie uitgevoerd met een λ (waarvan de gewogen gemiddelde genomen is)

steiler verloopt.

Figure 7: Deming Regressie Doelstatistieken FIU

5.3 Covariantie-Regressie

In deze sectie wordt aan de hand van covariantie-regressie een analyse uitgevoerd op de doel-

statistieken van het voetbalteam FIU. Aan de hand van vergelijkingen (7) - (12) zijn de empirische

symbolische statistieken berekend. Voor de eenvoudigheid omtrent de calculaties refereert X ook

in deze sectie naar het aantal doelpogingen en Y naar het aantal doelpunten. De statistieken zijn

hieronder te vinden in tabel 5.
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X̄ = 6.8750 Ȳ = 2.3125

S2
X = 1.2344 S2

Y = 0.4336

Cov(X,Y ) = 0.3204 r(X,Y ) = 0.4378

β̂0 = 0.5285 β̂1 = 0.2595

Table 5: Analyse op basis van Covariantie-Regressie

Er volgt nog een korte toelichting voor tabel 5. In de eerste rij zijn de symbolische gemiddelden

(X̄ en Ȳ ) berekend van het aantal doelpogingen en -punten. Een rij daaronder idem voor de

symbolische variantie (S2
X en S2

Y ). In de derde rij worden respectievelijk de covariantie en correlatie

tussen de twee variabelen berekend. Ten slotte, staan in de laatste rij de geschatte beta’s genoteerd

die de volgende vergelijking geeft:

y = 0.5285 + 0.2595x (16)

Merk op dat deze regressievergelijking overeenkomt met de vergelijking die uitkomt bij de mid-

delpuntsregressie in (13).

5.4 Standaardfouten met Sampling

Voor alle drie de methoden is slechts gebruik gemaakt van één sample. Om een betere inschatting

te krijgen hoe betrouwbaar de beta’s zijn geschat, zijn er meer samples vereist. De betrouwbaarheid

wordt beoordeeld op basis van de verkregen standaardfouten (Sectie 4.4).

Voor de Deming Regressie is een lichte aanpassing vereist in algoritme 1. Aangezien de intervallen

bestaan uit natuurlijke getallen en elke steekproeftrekking slechts 8 observaties bevatten, is het

mogelijk dat de covariantie tussen X en Y in enkele gevallen zeer klein wordt (of nul). Bij Deming

Regressie vormt dit een probleem doordat parameter β1 geschat wordt op basis van deze covariantie.

De term σxy in (4) in de noemer leidt bij relatief kleine waarden of nul tot relatief grote waarden

voor β1 of zelfs oneindig (indien σxy = 0). Er wordt gepleit voor een lichte correctie voor de

gegenereerde steekproeftrekkingen. Bij het genereren van steekproeftrekkingen voor de Deming

Regressie dienen alleen de samples gebruikt te worden waarvan de covariantie tussen het aantal

doelpunten en -pogingen een bepaalde grenswaarde overschrijdt. Deze grenswaarde is vastgesteld

op een constante c maal de covariantie tussen X en Y op basis van de originele data. In het geval

dat een steekproeftrekking niet aan deze voorwaarde voldoet telt deze trekking ook niet mee en

wordt er ook geen Deming Regressie op toegepast. Als gevolg worden er 10000 steekproeftrekkingen

gegenereerd waarvan σxy relatief hoog genoeg is om parameter β1 te schatten. De constante c die

de ondergrens van de covariantie σxy bepaalt is gelijkgesteld aan 10. De covariantie tussen de

oorspronkelijke X en Y bedraagt 0.3661.
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Regressiemethode V (β0) SE(β0) V (β1) SE(β1)

MiddelpuntsRegressie 1.9564 1.3987 0.0494 0.2222

Deming Regressieλ̄ 9.2861 3.0473 0.2108 0.4591

Deming Regressieλ̄∗ 8.7974 2.9660 0.2005 0.4478

Covariantie-Regressie 1.9564 1.3987 0.0494 0.2222

Table 6: Varianties en Standaardfouten van de parameters bij verschillende regressies

Bij het éénmaal uitvoeren van de middelpuntsregressie en de covariantie-regressie bleken de re-

gressievergelijkingen (13) en (16) precies overeen te komen. Na het genereren van de steekproeftrekkin-

gen blijken deze methoden alweer dezelfde resultaten te leveren volgens tabel 6. Deming Regressie

levert in vergelijking met de andere regressiemethoden hogere standaardfouten op. De variant

waarbij gebruik gemaakt is van de gewogen gemiddelde van λ (aangegeven met λ̄∗ in tabel 6)

levert lagere standaardfouten op in vergelijking met de reguliere gemiddelde (λ̄).

6 Conclusie

In dit paper zijn er verschillende manieren gebruikt om symbolische data te analyseren. De data

zelf is op meerdere manieren bewerkt om alvorens een regressie erop toe te passen. Voor Dem-

ing Regressie en middelpuntsregressie zijn er intervallen en middelpunten gecreëerd en voor de

berekening van de standaardfouten zijn er steekproeftrekkingen gegenereerd. Een overzicht van de

resultaten is hieronder weergeven in tabel 7:

MiddelpuntsRegressie
Deming Regressie

Covariantie-Regressie
Normale Gemiddelde λ Gewogen Gemiddelde λ

Enkelvoudige Regressie y = 0.5285 + 0.2595x y = −3.5472 + 0.8523x y = −3.7567 + 0.8828x y = 0.5285 + 0.2595x

Standaardfouten β
SE(β0) = 1.3987

SE(β1) = 0.2222

SE(β0) = 3.0473

SE(β1) = 0.4591

SE(β0) = 2.9660

SE(β1) = 0.4478

SE(β0) = 1.3987

SE(β1) = 0.2222

Table 7: Overzicht Resultaten Regressiemethoden inclusief Standaardfouten

Door de restrictie op de covariantie van willekeurige steekproeftrekkingen bij het toepassen van

Deming Regressie kunnen de standaardfouten verkregen uit de verschillende methoden niet vergeleken

worden. De geselecteerde steekproeftrekkingen die voldoen aan de gestelde eis worden dus ook

gebruikt door middelpuntsregressie en covariantie-regressie om een conclusie te kunnen trekken.

Wederom zijn de standaardfouten van de parameters weer hetzelfde en vallen ook lager uit dan de

standaardfouten verkregen uit Deming Regressie in tabel 7: SE(β0) = 2.3562 en SE(β1) = 0.3648.

De regressiemethoden middelpuntsregressie en covariantie-regressie zijn op basis van hun lagere

standaardfouten de beste regressiemethoden die werken met symbolische data. De standaard-

fouten die vrijkomen bij de parameterschattingen van Deming Regressie worden lager naarmate de

ondergrens voor de covariantie σxy wordt verhoogd. Dit kan worden gedaan door de constante c
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te verhogen. Verhoging van deze constante gaat gepaard met langere rekentijd aangezien meerdere

steekproeftrekkingen niet meer zullen voldoen aan de strengere covariantie-eis.

Hoewel de data (doelpunten en doelpogingen) in de vorm van count data een interessant rol heeft

gespeeld bij het uitvoeren van de regressies, heeft het toch zijn nadelen. Met name de lage covari-

antie σxy voor de Deming Regressie vormde een groot probleem en in dit paper werden dan ook

maatregelen getroffen die niet noodzakelijk waren wanneer de gegevens meer spreiding hadden.

Ook het relatief lage aantal observaties maakte het interpreteren van de parameters lastig. De

lezer dient zelf te concluderen of een variabele wel significant is op basis van de P-waarde.

Echter zijn de gelijke resultaten van de middelpuntsregressie en de covariantie-regressie zeer in-

drukwekkend. In dit paper ontbreekt het bewijs dat deze twee methoden (volledig) identiek zijn.

Dit is zeker interessant om te onderzoeken. Verder zijn er wellicht meer manieren om Deming Re-

gressie te verbeteren om lagere standaardfouten te verkrijgen. Hierbij kan λ op een ander manier

worden vastgesteld of kunnen de meetfouten een ander weging toegekend krijgen. Voor de een-

voudigheid is er in dit gehele paper gewerkt met slechts één afhankelijke variabele. In praktijk is

het natuurlijk gewenst om uitspraken te doen over modellen met meerdere afhankelijke variabelen

hetgeen ongetwijfeld de besproken regressiemethoden complexer maken.
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8 Appendix

In deze sectie wordt aan de hand van covariantie-regressie een analyse uitgevoerd op de data afkom-

stig uit Billiard en Diday. Aan de hand van vergelijkingen (7) - (12) zijn de empirische symbolische

statistieken berekend. De gegevens zijn hieronder beschreven in tabel 8 waarin u de observatie

voorstelt. Verder is voor elke ander kolom een interval te vinden voor de variabelen Y,X1 en X2.

Vanzelfsprekend dient het getal voor de komma voor te stellen als ondergrens en het getal achter

de komma als bovengrens.

u

Y

Pulse

Rate

X1

Systolic

Pressure

X2

Diastolic

Pressure

1 44, 68 90, 100 50, 70

2 60, 72 90, 130 70, 90

3 56, 90 140, 180 90, 100

4 70, 112 110, 142 80, 108

5 54, 72 90, 100 50, 70

6 70, 100 130, 160 80, 110

7 63, 75 60, 100 140, 150

8 72, 100 130, 160 76, 90

9 76, 98 110, 190 70, 110

10 86, 96 138, 180 90, 110

11 86, 100 110, 150 78, 100

Table 8: Data replicatie

Merk op dat in tabel 8 observatie u = 7 vetgedrukt is. In Billiard en Diday wordt de regel

nageleefd dat de diastolische bloeddruk lager dient te zijn dan de systolische bloeddruk. Dit is

voor de zevende observatie niet het geval. In de berekeningen van de symbolische statistieken

hieronder in tabel 9 is deze observatie dan ook buiten beschouwing gelaten. In de onderstaande

tabel is X beschreven door de systolische bloeddruk en Y door de hartslag. Er vallen verschillen

op tussen de symbolische statistieken berekend in de replicatie en in Billiard en Diday zelf. Deze

verschillen zijn te danken aan het feit dat in Billiard en Diday gewerkt is met getallen die niet

afgerond zijn. Deze gegevens zijn niet beschikbaa voor ons.
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X̄ = 131.5 Ȳ = 79.1

S2
X = 543.5 S2

Y = 162.29

Cov(X,Y ) = 209.85 r(X,Y ) = 0.7066

β̂0 = 28.3221 β̂1 = 0.3861

X̄ = 131.5 Ȳ = 79.1

S2
X = 495.41 S2

Y = 162.29

Cov(X,Y ) = 194.170 r(X,Y ) = 0.685

β̂0 = 27.639 β̂1 = 0.392

Table 9: Analyse op basis van Covariantie-Regressie. Links de resultaten van op basis van de data

in tabel 8 en rechts de resultaten op basis van de niet afgeronde gegevens in Billiard en Diday.

In de eerste twee rijen zijn de symbolische gemiddelden (X̄ en Ȳ ) en varianties (S2
X en S2

Y ) berek-

end. In de derde rij worden respectievelijk de covariantie en correlatie tussen de twee variabelen

berekend. Ten slotte, staan in de laatste rij de geschatte beta’s genoteerd die de volgende vergeli-

jking geeft:

y = 28.3221 + 0.3861x

De regressievergelijking die tot stand komt uit het paper van Billiard en Diday:

y = 27.639 + 0.392x
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