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Abstract

The use of the latent class model (LCM) is a popular way of modelling discrete choices. It is
a good alternative to the traditional multinomial logit model (MNL), but the larger number
of parameters comes with a risk of overfitting the data. A good model selection procedure
is critical when the LCM is applied in an empirical setting. In this paper, three existing
model selection methods are researched and placed in the context of the LCM. The methods
are then applied in an empirical setting. Panel data on the purchases of saltine crackers
in the Rome (Georgia) market is used to illustrate the methods. This research finds that
(i) existing selection methods other than the most commonly used Bayesian Information
Criterion (BIC) can provide valuable information during the model selection process and
(ii) none of the three methods considered in this paper provide enough information on their
own to adequately select a single model.
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1 Introduction

Modelling consumer decisions has been of great inter-
est to both companies and researchers for many years.
Understanding consumer behaviour can, for example,
help to forecast sales and improve marketing strate-
gies. Many consumer decisions, such as brand choice,
can be modelled using discrete choice models. The
multinomial logit model (MNL) is a classic example
of such a model. However, this model is too restric-
tive in many application. Hence, researchers have
proposed several models that are less restrictive. One
popular alternative is the latent class model (LCM) by
Greene and Hensher (2003).

This paper compares the LCM to the traditional MNL,
where the focus lies on the total number of estimated
parameters. As the LCM is an extension of the MNL,
it will always give a better in-sample fit. However,
this better fit comes at a cost. Because the number of
parameters in the LCM is much larger, the estimated
model is at risk for overfitting. When overfitting oc-
curs, a model corresponds too much to a particular
data set and may fail to fit additional data or create
accurate predictions. This research is based around
the trade-off that comes with additional parameters
in the LCM. Hence, the following research question is
formulated:

Which existing model selection methods can be applied to
the latent class model by Greene and Hensher (2003) and
how do those methods compare?

To answer this question, we first describe the MNL
and the LCM in detail. Thereafter, we look at several
existing model selection procedures and place those
in the context of the LCM. Those procedures are then
applied in an empirical setting. Panel data on the
purchases of saltine crackers in the Rome (Georgia)
market is used to illustrate the different procedures
and to select an appropriate model for the data set.
Lastly, the selected LCM model is estimated and in-
terpreted.

Previous research has mainly based model selection in
a latent class context on information criteria, in partic-
ular on the BIC. However, there are many other model
selection methods available that can be applied to the
LCM. This paper focuses on adapting those methods
to fit the LCM and discusses the interpretation of the
results.

This research finds that (i) existing selection meth-
ods other than the BIC can provide valuable informa-
tion during the model selection process and (ii) none
of the three methods considered in this paper pro-
vide enough information to adequately select a single
model on their own.

This paper is structured as follows. A brief descrip-
tion of previous research is given in Section 2. We pro-
vide descriptions of the MNL and LCM in Section 3

and Section 4 respectively. Different model selection
procedures are discussed in Section 5. The empirical
panel data used in this paper is described in Section 6.
The results are presented in Section 7, followed by a
discussion and concluding remarks in Section 8.

2 Theoretical Framework

Modelling discrete choices has been of great interest to
researchers over the past decades. A classic and sim-
ple model to describe such decision making processes
is the multinomial logit model (MNL) by McFadden
(1974). Since the development of this model, it has
been found to be too restrictive in many applications.
The underlying assumptions of the MNL are often
unrealistic. One of those important and widely de-
bated assumptions is the independence of irrelevant
alternatives (IIA).

Another assumption, that is often found to be too
restrictive, is that the fundamental tastes for observed
attributes are equal across individuals. This assump-
tion is often unrealistic, especially in the context of
consumer decision making. Using a good model for
discrete consumer decisions is crucial for developing
effective marketing and pricing strategies. Therefore,
several extensions of the MNL have been proposed
that allow for unobserved taste heterogeneity. Two
popular alternatives are the latent class model (LCM)
by Greene and Hensher (2003) and the mixed logit
model by McFadden and Train (2000).

This paper focusses on the LCM and in particular
on the larger total number of parameters in compar-
ison to the traditional MNL. The in-sample fit of a
larger model is naturally better, but the additional
parameters come with a risk of overfitting the data
(Hitchcock and Sober, 2004). When overfitting occurs,
a model corresponds to a data set too closely and may
fail to fit additional data points. A good model se-
lection procedure is critical to prevent overfitting in a
latent class context.

One widely adopted method for model selection in
the context of the LCM is the use of model selection
information criteria (Lin and Dayton, 1997). In re-
cent literature, especially the BIC value by Schwarz
(1978) has been a popular model selection criterion.
This method is for example used by Greene and Hen-
sher (2003) and Fiebig et al. (2010). However, there
are many more model selection methods available in
the literature, applied to a variety of statistical models.

Some alternative methods, discussed by Rao et al.
(2001) and others, are hypothesis testing and selec-
tion based on the out-of-sample fit of a model. In this
paper, hypothesis testing is considered in the form of
the likelihood ratio (LR) test. The out-of-sample fit for
discrete choice models can be measured by, for exam-
ple, predictive log likelihood or hit rates. In this paper,



hit rates are used as a measure for out-of-sample fit, as
they do not penalise incorrect predictions as heavily
as the predictive log likelihood measure (Rossi and
Allenby, 1993).

3 The Multinomial Logit Model

A traditional model to describe an unordered dis-
crete choice is the multinomial logit model (MNL).
The model describes the discrete choice of individual
among | alternatives in T; choice situations.The prob-
ability of choice j by individual 7 in choice situation ¢
is given by
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The decision by individual i in choice situation ¢ is
represented by the random variable Yj;. The dis-
crete outcome of that decision is given by y;;. In the
model, coefficients B correspond to variables x;; j with
a generic effect across alternatives. Coefficients 1y; cor-
respond to variables z;; ; with an alternative-specific
effect.

This model is only identified, if variables z;;; show
enough variation over time. To incorporate time-
invariant variables, such as a constant, a restriction
needs to be imposed on ;. Such a restriction on a
time-invariant attribute m can be q,, = 0. This re-
striction causes the model to be identified.

In this paper, the MNL is estimated using maximum
likelihood estimation (MLE). The choice situations T;
are assumed to be independent. The contribution of
individual i, given their choices y;;, to the likelihood
is

@)

where I(y;; = j) is the indicator function. This func-
tion takes the value 1 if individual 7 in choice situation
t has chosen option j and the value 0 otherwise. Over
the entire sample of N individuals, the log likelihood
becomes
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The first order conditions for a maximum can be
solved numerically. In this paper, the Berndt-Hall-
Hall-Hausman (BHHH) algorithm by Berndt et al.
(1974) is used for the maximisation, using the gradi-
ent of the log likelihood function in (3). The partial
derivatives needed in the BHHH algorithm are given
in Section A.1. The MLE is done using the R package
mlogit by Croissant (2018).

The standard errors of the parameter estimates can
be derived from the hessian matrix of the log likeli-
hood function, evaluated at the estimated parameter
vector 7j. The vector # contains parameters § and 7.
The estimated variance of the parameter estimates is
given by

P Ly:n) <17>>1 @
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The standard errors can be computed by taking the
square root of the diagonal elements of the matrix

V().

4 The Latent Class Model

Greene and Hensher (2003) extend the traditional
multinomial logit model (MNL) and assume that indi-
viduals are implicitly sorted into Q latent classes. The
MNL corresponds to Q = 1. This latent class model
(LCM) for the analysis of discrete choices is based on
the assumption that individual behaviour depends on
observable characteristics as well as on latent hetero-
geneity. It is unknown to the analyst which individual
belongs to which class.

The model describes the discrete choice of individ-
ual i among | alternatives in T; choice situations. The
probability of choice j by individual 7 in choice situa-
tion ¢, given that the individual belongs to class g, is
given by

= P(Yy =j|Si =q)
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Random variable S; represents the class that individ-
ual i belongs to. The actual class, which is unknown
to the analyst, is given by s;. To incorporate a time-
invariant attribute m, a restriction such as 7y, = 0
needs to be imposed for identification purposes.

The model is estimated using maximum likelihood
estimation (MLE). Since the class assignment is un-
known, the prior probability for individual i for class
g needs to be considered in the likelihood function. In
this paper, this probability is assumed to be equal for
all individuals and is represented by the parameters
8;. The restrictions, that apply to these parameters,
are

Q
Zqu
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and

0<6, <1 forg=1,...,Q. 7)

Choice situations T; are assumed to be independent.
Hence, the log likelihood over the entire sample be-
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The log likelihood is maximised using the R package
gmnl by Sarrias and Daziano (2017). The Berndt-Hall-
Hall-Hausman (BHHH) algorithm is used to directly
apply MLE to the log likelihood as given in (8). The
package makes use of the analytic derivatives of the
log likelihood function in the BHHH algorithm.

To ensure that we find the global maximum using
the gmnl package, we use random starting values.
The starting values are selected uniformly between
—5 and 5. For each model, this random selection is
repeated 200 times and each of those times the MLE is
carried out for that set of values. Out of the 200 model
estimates, the estimate with the highest log likelihood
is selected.

The standard errors can be computed in the same
way as for the MNL, as described in (4). Parameter
vector 77 contains parameters 3, y and 6.

5 The Model Selection Process

The latent class model (LCM) requires further spec-
ification to be applied in an empirical setting. The
model incorporates a set of variables, which can ei-
ther have an alternative-specific or a generic effect on
the discrete choice. If a model assumes an alternative-
specific effect of the variable, the fit of the model will
always be larger than if the model assumes a generic
effect. However, the number of parameters increases
by Q x (] — 1) for each variable that is assumed to
have an alternative-specific rather than a generic ef-
fect. Another model selection issue is the choice of
Q in the LCM. The parameter Q represents the total
number of latent classes. As Q increases, the number
of parameters to be estimated goes up rapidly.

Including too many parameters in the model may
cause the model to be overfitted. We wish to keep the
number of parameters low and the fit of the model
high. Several existing methods can help us to decide
which variables should have an alternative-specific
effect and which value of Q should be chosen. Three
of these methods are compared in this paper. The
likelihood ratio (LR) test is covered in Section 5.1. The
Bayesian Information Criterion (BIC) is described in
Section 5.2. The out-of-sample predictive ability is
discussed in Section 5.3.

5.1 Likelihood Ratio Tests

To determine whether a variable has an alternative-
specific or a generic effect, a likelihood ratio (LR) test

can be used. An LR test is generally used to test
restrictions on the parameters of a model. It statis-
tically compares the restricted model and the unre-
stricted model. In the case of the LCM, the restricted
model assumes a generic effect of (a) certain vari-
able(s) on choice and the unrestricted model allows
for an alternative-specific effect of the variable(s). The
LR test statistic (Heij et al., 2004) is given by

ln(LR))r (9)

where Ly corresponds to the likelihood of the un-
restricted model and Ly to the likelihood of the re-
stricted model. Under the null hypothesis that the re-
stricted model is correct, it can be shown that

LR = 2(In(Ly) —

LR % x2(g), (10)
where g corresponds to the number of parameter re-
strictions imposed. To test whether a certain variable
has an alternative-specific effect on choice, one can
look at a series of different models. For every model,
there can be an unrestricted model, in which the par-
ticular variable has an alternative-specific effect, and
a restricted model, in which the variable has a generic
effect. When the two models have been estimated,
their likelihood can be compared through the LR test
to determine whether the alternative-specific effect is
significant enough to reject the null hypothesis of a
generic effect.

As can be seen from (10), the LR test takes into ac-
count the number of parameter restrictions imposed,
which corresponds to the difference in the number
of parameters between the restricted and the unre-
stricted model. However, the test does not consider
the total number of parameters in either of the mod-
els. To capture the effect of the size of the model, a
different method needs to be used.

5.2 BIC Values

A measure that captures both the size and the fit of
a model is the BIC by Schwarz (1978). This measure
gets smaller as the likelihood of the model goes up,
but penalises a model with a large amount of param-
eters. This penalty is incorporated in the form of an
added term that increases with the size of the model.
The BIC is given by

BIC(p) = —2In(L,) + pIn(N). (11)

This criterion evaluates a model with p parameters
applied to a sample of size N. The likelihood of this
model is given by L,. The value of the BIC is small,
if the fit of the model is large and the total number of
parameters small. Hence, the selected model ideally
has a BIC value as small as possible.

This value can be used in the context of determin-
ing which variables have an alternative-specific and
generic effect, but it does not statistically test for such



an effect. The LR test, on the other hand, does test for
the significance of an alternative-specific effect. The
BIC value is also suitable for giving an insight into
the choice of Q, because it takes the size of the entire
model into account.

5.3 Out-of-sample Predictive Ability

The ultimate test for overfitting is to compare the out-
of-sample predictive performance of different models.
To measure this performance, a hold-in sample and a
hold-out sample need to be selected from the data set.
The model is estimated to fit the hold-in sample and
thereafter used to forecast the hold-out sample. Two
different methods to forecast the discrete choices in
the hold-out sample are used to measure the predic-
tive ability of different models in this paper.

In the context of the LCM, we need to take into ac-
count that individuals can belong to any of the Q
classes. To get a good estimate of the individual choice
probabilities, we can take the expected value over all
classes. This can be done using posterior estimates of
the latent class probabilities. These estimated proba-
bilities are given by
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The expected value of the probability of individual i
choosing brand j in an out-of-sample choice situation
t* can be computed as follows:

Tily; =
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Using the predicted choice probabilities Py (j) as a
choice probability distribution, two different methods
can be used to forecast the discrete choice of individ-
ual 7 in choice situation t*.

e The Maximum Probability (MP) method: we
forecast the discrete choice for which the esti-
mated choice probability is the highest.

e The Monte Carlo (MC) method: we generate a
draw from the estimated choice probability dis-
tribution and forecast the discrete choice that
was randomly drawn.

For the MP method, we can compute the actual out-
of-sample hit rate h},, as given by
Itmp
1 ¥ 5 o
= Z T Z <]/it* = {HgmaX(Pit* (]))) , (14)
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where N* is the total number of individuals in the
hold-out sample, T} is the total number of choice sit-
uations of individual i in the hold-out sample and y;;-

is the actual choice of individual 7 in out-of-sample
choice situation t*.

For the MC method, we can compute a theoretical
out-of-sample hit rate h},-, that would be observed
as the number of randomly drawn forecasts would
approach infinity. This theoretical hit rate is given by

1 N B
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6 Data

For the empirical analysis we use optical scanner
panel data, collected by the firm Information Research
Incorporated. The data set contains information on
the purchases of saltine crackers made by 136 house-
holds in the Rome (Georgia) market. The data was
collected over a two-year period and a total of 3,292
purchases has been recorded. For every purchase ob-
servation, the brand choice of the household as well as
information on the store and marketing environment
at the time of purchase are available. With every visit
to the supermarket, the households were presented
with several brand alternatives. Among the alterna-
tives, there are three large brands: Nabisco, Keebler
and Sunshine with respective market shares of 54.4%,
7.3% and 6.9%. The remaining market share of 31.4%
is held by several local brands, grouped together in
the data set as "private labels". Each brand alternative
has three recorded characteristics, regarding the store
and marketing environment at the time of purchase.
Those characteristics are referred to in the data set as
price, display and feature and are defined as follows:

o Price: the price of a 16-ounce unit of the brand in
US dollars at the time of purchase. For the pur-
chased brand, the actual price is used (the shelf
price net of the value of any redeemed coupons).
For all other brands, the shelf price is used.

e Display: 1 if there was an in-store display of the
brand at the time of purchase and 0 otherwise.

o Feature: 1 if there was a newspaper feature ad-
vertisement for the brand at the time of purchase
and 0 otherwise.

Descriptive statistics of this data set are provided in
Table 1. The values for the variables Display and Fea-
ture in the table correspond to the fraction of purchase
occasions that each brand was on display or featured
in a newspaper respectively. The prices in the table
correspond to the average sample price of a 16-ounce
unit for each brand.



Table 1: Descriptive Statistics for the Purchase of Saltine
Crackers (136 households and 3,292 purchases)

Brands
Variables Sunshine  Keebler ~ Nabisco  Private Label
Display” 0.129 0.106 0.340 0.099
Feature? 0.038 0.043 0.087 0.047
Price®($/ unit) 0.957 1.126 1.079 0.681
Brand Share 0.073 0.069 0.544 0.314

“The display variable corresponds to the fraction of purchase oc-
casions that each brand was on display.

YThe feature variable corresponds to the fraction of purchase oc-
casions that each brand was featured in a newspaper.

“The price variable is the average sample price across all purchase
occasions.

7 Results

The data described in Section 6 has been used to il-
lustrate and compare the methods described in this
paper. Section 7.1 describes the model selection pro-
cess in this empirical setting. The results of the likeli-
hood ratio (LR) tests can be found in Section 7.1.1. The
BIC values of the different models are considered in
Section 7.1.2. The out-of-sample predictive abilities of
each model are presented in Section 7.1.3. The selected
latent class model (LCM) is estimated and interpreted
in Section 7.2.

7.1 Selecting the Model

We wish to select a model, using the selection proce-
dures described in Section 5, that fits the empirical set-
ting described in Section 6. To ensure that the selected
model describes the data well and is not overfitted, we
compare eight different models based on various sta-
tistical tests and metrics. These eight models describe
which variables have an alternative-specific effect on
choice and which variables a generic effect. The effects
of the variables in the different models are specified in
Table 2

Table 2: Effects of the Variables for the Models Considered

Effect
Models Alternative-Specific Generic
Model 1 None All
Model 2 Feature Display and Price
Model 3 Display Feature and Price
Model 4 Price Feature and Display
Model 5 Feature and Display Price
Model 6  Feature and Price Display
Model 7  Display and Price Feature
Model 8 All None

For every model, we consider 1, 2, 3, 4 and 5 under-
lying latent classes. A model with one latent class is
equivalent to a multinomial logit model (MNL).

7.1.1 Likelihood Ratio Tests

LR tests have been performed to test for an
alternative-specific effect of each variable. For each
variable, two types of LR tests have been performed.
In the first set of tests, the restricted model assumes
that none of the variables have an alternative-specific
effect (Model 1). This restricted model is compared to
the unrestricted model, which assumes that only the
variable that is being tested has an alternative-specific
effect on choice (Models 2, 3 and 4). These tests de-
termine if the alternative-specific effect of the tested
variable adds a significant amount of extra value to a
small restrictive model.

In the second set of tests. the restricted model assumes
that all variables have an alternative-specific effect ex-
cept for the variable that is being tested (Models 5,
6 and 7). This restricted model is compared to the
unrestricted model, which assumes that all variables
have an alternative-specific effect on choice (Model
8). These tests determine whether the fit of a large de-
tailed model with many parameters still significantly
benefits from incorporating an alternative-specific ef-
fect of the tested variable.

For both sets of tests, the maximum log likelihoods
of the restricted and the unrestricted model are deter-
mined and used to compute the LR-Statistic as in (9)
on page 3. The p-value of the test statistic is computed
using the asymptotic distribution of the LR-Statistic
as in (10). The degrees of freedom for each test is the
number of restrictions § = 3Q. These LR tests have
been executed for models with 1, 2, 3, 4 and 5 latent
classes. The results of these LR tests for the variables
feature, display and price are presented in Table 3,
Table 4 and Table 5 respectively.



Table 3: Results of the Likelihood Ratio Tests for an Alternative-Specific Effect of Feature on Choice

Restricted Unrestricted Restricted Unrestricted
Q Log Likelihood — Log Likelihood ~ LR-Statistic ~P-Value Log Likelihood — Log Likelihood —LR-Statistic =~ P-Value
Model 17 Model 2° Model 7¢ Model 8*
1 —3347.71 —3339.25 16.92 0.001 —3314.20 —3314.04 0.31 0.959
2 —2328.88 —2317.24 23.27 0.001 —2281.98 —2279.87 422 0.646
3 —1959.67 —1952.71 13.91 0.125 —1918.44 —1912.05 12.77 0.173
4 —1832.80 —1822.89 19.82 0.071 —1779.84 —1770.44 18.80 0.093
5 —1756.38 —1745.49 21.79 0.113 —1690.39 —1678.72 23.33 0.077
? Alternative-specific: none. Generic: all
b Alternative-specific: feature. Generic: display and price.
¢ Alternative-specific: display and price. Generic: feature.
4 Alternative-specific: all. Generic: none.
Table 4: Results of the Likelihood Ratio Tests for an Alternative-Specific Effect of Display on Choice
Restricted Unrestricted Restricted Unrestricted
Q Log Likelihood  Log Likelihood ~ LR-Statistic ~P-Value Log Likelihood — Log Likelihood —LR-Statistic ~P-Value
Model 1° Model 3 Model 6° Model 8°
1 334771 —3336.50 22.42 0.000 —3317.11 —3314.04 6.12 0.106
2 —2328.88 —2309.78 38.19 0.000 —2287.79 —2279.87 15.84 0.015
3 —1959.67 —1949.77 19.79 0.019 —1917.93 —1912.05 11.75 0.228
4 —1832.80 —1810.78 44.02 0.000 —1786.89 —1770.44 32.92 0.001
5 —1756.38 —1729.44 53.89 0.000 —1710.93 —1678.72 64.41 0.000

? Alternative-specific: none. Generic: all.
b Alternative-specific: display. Generic: feature and price.
¢ Alternative-specific: feature and price. Generic: display.
4 Alternative-specific: all. Generic: none.

Table 5: Results of the Likelihood Ratio Tests for an Alternative-Specific Effect of Price on Choice

Restricted Unrestricted Restricted Unrestricted
Q Log Likelihood — Log Likelihood ~ LR-Statistic ~P-Value Log Likelihood — Log Likelihood — LR-Statistic =~ P-Value
Model 1° Model 4° Model 5°¢ Model 8*
1 —3347.71 —3318.41 58.61 0.000 —3333.82 —3314.04 39.56 0.000
2 —2328.88 —2297.02 63.71 0.000 —2306.65 —2279.87 53.56 0.000
3 —1959.67 —1927.16 65.02 0.000 —1944.13 —1912.05 64.15 0.000
4 —1832.80 —1797.42 70.74 0.000 —1802.89 —1770.44 64.90 0.000
5 —1756.38 —1715.00 82.76 0.000 —1721.58 —1678.72 85.71 0.000

? Alternative-specific: none. Generic: all.
b Alternative-specific: price. Generic: feature and display.
¢ Alternative-specific: feature and display. Generic: price.
4 Alternative-specific: all. Generic: none.

From Table 3, Table 4 and Table 5, we can see that the

alternative-specific effect of the variable price always ~ 1ble 6: Results of the Likelihood Ratio Tests of Model 4

turns out to be significant in the LR tests. The results against Model 6

for the tests of the variables feature and display do not . '

show an unambiguous significant alternative-specific Restricted Unrestricted n

effect. Further tests are required to determine whether Q LO%L ISEZZZZ;) od  Log ngelhhl? od  LR-Statistic P-Value
these variables have an alternative-specific effect or  — —33108 ill _;\341073116 XS] 0456
not. Now that we know that the price variable hasa ~ , 5597 » 228779 18.46 0.005
significant alternative-specific effect, we can research 3 192714 ~1917.93 18.46 0.030
the null hypothesis that Model 4 is the true model. We 4 —1797.42 —1786.89 21.06 0.049
test this restricted model against the three less restric- 5 —1715.00 —1710.93 8.15 0.918

tive alternative models. These alternative models are ] ' o ) )
Models 6, 7 and 8. LR tests comparing Model 4 to bﬁ:ema?ve's}’eq?cf lfg n:e‘ Gengnc, featc?re and j%sl’}ay‘
Models 6, 7 and 8 are given in Table 6, Table 7 and crnativerspectic: featute and price. Tenenc: dispiay
Table 8 respectively.



Table 7: Results of the Likelihood Ratio Tests of Model 4

against Model 7

Restricted Unrestricted
Q Log Likelihood  Log Likelihood  LR-Statistic ~P-Value

Model 4° Model 7°
1 331841 —3314.20 8.42 0.038
2 —2297.02 —2281.98 30.08 0.000
3 —1927.16 —1918.44 17.44 0.042
4  —1797.42 —1779.84 35.18 0.000
5 —1715.00 —1690.39 49.23 0.000

“ Alternative-specific: price. Generic: feature and display.
b Alternative-specific: display and price. Generic: feature.

Table 8: Results of the Likelihood Ratio Tests of Model 4

against Model 8

Restricted Unrestricted
Q Log Likelihood  Log Likelihood  LR-Statistic ~P-Value

Model 4° Model 8
1 331841 —3314.04 8.73 0.033
2 =2297.02 —2279.87 34.31 0.000
3 —1927.16 —1912.05 30.21 0.000
4  —1797.42 —1770.44 53.98 0.000
5 —1715.00 —1678.72 72.56 0.000

?Alternative-specific: price. Generic: feature and display.
b Alternative-specific: all. Generic: none.

From Table 6, Table 7 and Table 8, we can see that the

null hypothesis is rejected by the alternative models
for most values of Q. However, the p-values are in
most cases slightly higher than the p-values that orig-
inally rejected Model 1 in favour of Model 4. Further-
more, the total number of parameters has not been
taken into account in these tests, meaning that the
negative effect of the large size of the Models 6, 7 and
8 has not been considered.

To summarise, the LR tests have given us somewhat
an idea of the value added by allowing each of the
variables to have an alternative-specific effect. How-
ever the testing process has been rather lengthy, as a
total of 40 models had to be estimated and many tests
had to be done. The tests also did not yet provide us
with a single optimal model to select.

7.1.2 BIC Values

To gain more insight into the information provided by
the different models, we take a look at the BIC value,
as described in (11) on page 3. The total number of
parameters is given by p = 7Q — 1 for Model 1, by
p = 10Q — 1 for Models 2, 3 and 4, by p = 13Q — 1
for Models 5, 6 and 7 and by p = 16Q — 1 for Model
8. The BIC value takes the likelihood of the model as
well as the total number of parameters into account.
According to the BIC, a model is good if the BIC value
is small. The BIC values of all eight models are sum-
marised in Table 9.

Table 9: BIC Values of the Models Considered

BIC Values  BIC Values  BIC Values  BIC Values  BIC Values BIC Values BIC Values  BIC Values
Q of Model 1 of Model 2°  of Model 3°  of Model 4*  of Model 5°  of Model 6/ of Model 73 of Model 8"
1 6744.02 6751.39 6745.90 6709.71 6764.84 6731.40 6725.58 6749.58
2 4763.04 4788.37 4773.44 4747.92 4815.77 4778.06 4766.44 4810.81
3 4081.32 4140.30 4134.42 4089.20 4196.03 4143.63 4144.65 4204.77
4  3884.27 3961.64 3937.44 3910.72 4018.83 3986.85 3972.73 4051.12
5 3788.14 3887.84 3855.74 3826.86 3961.50 3940.20 3899.12 3997.28

? Alternative-specific: none. Generic: all.

b Alternative-specific: feature. Generic: display and price.
¢ Alternative-specific: display. Generic: feature and price.
4 Alternative-specific: price. Generic: feature and display.
¢Alternative-specific: feature and display. Generic: price.
fAlternative-specific: feature and price. Generic: display.
8 Alternative-specific: display and price. Generic: feature.
" Alternative-specific: all. Generic: none.

We can see from Table 9 that Model 1 with five latent
classes has the lowest BIC value, followed by Model
4 with five latent classes. We can also see that every
model has the lowest BIC value for Q = 5, meaning
that the assumption of five latent classes rather than
1,2, 3 or 4 seems to be reasonable.

Looking at both the BIC values and the LR tests,
one could argue that Model 4 with five latent classes
seems to be the best model so far. It assumes an
alternative-specific effect of price on choice, which
shows an unambiguous significance in the LR tests

and it also has the second lowest BIC value out of all
considered models.

Both of the methods considered so far have been fo-
cussed on preventing overfitting, which occurs when
a model fits the data set too closely and fails to accu-
rately predictions in an out-of-sample context. How-
ever, these methods have only taken into account the
in-sample fit of the different models.



7.1.3 Out-of-Sample Predictive Ability

To examine the out-of-sample predictive ability of the
different models, two different prediction methods are
considered, as described in Section 5.3. The Maximum
Probability (MP) method gives actual out-of-sample
hit rates for every considered model. The Monte Carlo
(MC) method gives theoretical out-of-sample hit rates.

The models are estimated using a hold-in sample.
This sample is made up of the first ten purchase oc-
casions of each of the 136 households. The hold-in
sample therefore consists of a total of 1360 purchase
occasions. The data of the hold-in sample and the esti-
mated model are used together to determine the pos-
terior estimates of the latent class probabilities. The
estimated model and the posterior estimates of the
latent class probabilities are then used to predict the
choices of the hold-out sample. The hold-out sample
consists of the four purchase occasions that directly
followed the first ten purchases of each of the 136
households. The total number of purchase occasions
in the hold-out sample is 544.

The reason for selecting 10 in-sample and 4 out-of-
sample purchase occasions for each household is that
every household is treated equally with regards to
the estimation procedures. There is an equal amount
of information on each household and also an equal
amount of predictions to be made. This means that
all households are represented equally in the out-of-
sample hit rates.

The out-of-sample hit rates of the MP method and

the MC method can be found in Table 10 and Table 11
respectively.

From Table 10, we can see that the hit rates of all
models are very close to each other. The highest hit
rate is the rate of 0.818 for Model 5 with four latent
classes. However, because the hit rates in the table are
so close together, there is not one single model that
consistently performs better than another. It is worth
noting that Model 8 (the largest model) predicts less
well than smaller models, especially as the number
of latent classes increases. This illustrates the risk of
overfitting. A large model can create less accurate
out-of-sample predictions than a smaller model if it is
fitted too closely to the in-sample data points.

From Table 11, we can see that Model 4 with five
latent classes has the highest hit rate. A general trend
that can be observed from this table is that Models 4, 6
and 7 consistently produce more accurate predictions
than the other models. These three models all spec-
ify price to have an alternative-specific effect. The hit
rate also appears to increase as the number of latent
classes goes up to 5. We can again see that the large
Model 8 predicts less well than the smaller models.

Using the out-of-sample hit rates, it appears that
specifying price to have an alternative-specific effect
comes with a better predictive performance. The hit
rate also seems to increase with the number of latent
classes, at least up to five classes. Considering the
LR test results and the BIC values discussed earlier,
it seems reasonable to assume that Model 4 with five
latent classes is suitable for selection.

Table 10: The Actual Out-of-Sample Hit Rates Using the MP Prediction Method for the Models Considered

Out-of-Sample  Out-of-Sample  Out-of-Sample

Out-of-Sample

Out-of-Sample  Out-of-Sample ~ Out-of-Sample ~ Out-of-Sample

Q Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate
for Model 1° for Model 2" for Model 3¢ for Model 4¢ for Model 5° for Model 6 for Model 78 for Model 8"

1 0.546 0.561 0.577 0.544 0.563 0.583 0.588 0.588

2 0.750 0.744 0.750 0.748 0.748 0.752 0.756 0.752

3 0.796 0.785 0.796 0.785 0.783 0.781 0.787 0.783

4 0.816 0.811 0.807 0.816 0.818 0.779 0.778 0.774

5 0.813 0.798 0.792 0.811 0.790 0.813 0.811 0.765

none. Generic: all.

feature. Generic: display and price.
display. Generic: feature and price.
price. Generic: feature and display.
feature and display. Generic: price.
feature and price. Generic: display.
display and price. Generic: feature.
all. Generic: none.

? Alternative-specific:
b Alternative-specific:
¢ Alternative-specific:
4 Alternative-specific:
¢Alternative-specific:
fAlternative-specific:
8 Alternative-specific:
} ' Alternative-specific:



Table 11: The Theoretical Out-of-Sample Hit Rates Using the MC Prediction Method for the Models Considered

Out-of-Sample ~ Out-of-Sample ~ Out-of-Sample ~ Out-of-Sample ~ Out-of-Sample ~ Out-of-Sample  Out-of-Sample ~ Out-of-Sample
Q Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate Hitrate

for Model 1 for Model 2" for Model 3¢ for Model 4¢ for Model 5° for Model 6 for Model 78 for Model 8"
1 0.427 0.427 0.433 0.434 0.429 0.436 0.441 0.437
2 0.635 0.633 0.636 0.656 0.634 0.653 0.655 0.652
3 0.695 0.693 0.696 0.711 0.696 0.707 0.711 0.708
4 0.718 0.719 0.723 0.734 0.721 0.728 0.730 0.727
5 0.739 0.731 0.736 0.755 0.731 0.754 0.751 0.712

none. Generic: all.

feature. Generic: display and price.
display. Generic: feature and price.
price. Generic: feature and display.
feature and display. Generic: price.
feature and price. Generic: display.
display and price. Generic: feature.
all. Generic: none.

 Alternative-specific:
b Alternative-specific:
¢ Alternative-specific:
4 Alternative-specific:
¢Alternative-specific:
fAlternative-specific:
8 Alternative-specific:
" Alternative-specific:

7.2 The Estimated Models

Both the MNL and the selected LCM have been esti-
mated. The results are summarized in Table 12. In the
two models, price is specified to have an alternative-
specific effect on choice. The display and feature vari-
ables are specified to have a generic effect on choice.
The model with five latent classes has been selected
out of the options 1, 2, 3, 4 and 5 classes.

From the table, we can see that the five classes show
different characteristics. We can see that individuals
belonging to class 1 are more likely to buy the pri-
vate label than individuals in class 3. The table also
shows the strong alternative-specific effect of price.

The choice of an individual in class 1 is for example
more negatively affected by a price increase of the
brand Sunshine in comparison to a price increase of
the brand Nabisco.

We can also see that the standard errors for the classes
with a smaller latent class probability (class 3 and 4)
are very large for some coefficients. This is some-
thing that needs to be taken into consideration when
using the LCM. A large amount of uncertainty with
regards to the estimated parameters can lead to inac-
curate predictions for those smaller classes. One could
consider selecting a model with less latent classes or
using a sample with a larger number of observations
to combat this issue.



Table 12: Estimated Discrete Choice Models (Standard Errors in Parentheses)

Attribute Alternative MNL Lem
Class 1 Class 2 Class 3 Class 4 Class 5
. R —4.9098*** —9.0735*** —6.0532*** —5.7031*** —2.6895 —6.8738***
Price” Sunshine
(0.46) (1.50) (1.27) (1.07) (6.19) (1.11)
. —5.7329*** —8.2866* —6.4392*** —7.7101*** —2.9596 —8.4792***
Price Keebler
(0.67) (3.44) (1.67) (1.85) (2.07) (1.95)
. . —3.2653*** —2.9116** —1.6726 —8.1214*** —6.9697*** —5.5869***
Price Nabisco
(0.28) (1.06) (1.00) (1.20) (1.81) (0.77)
. . —1.4905*** —2.9582** 0.7278 3.0837 —6.6836 0.7467
Price Private
(0.26) (1.03) (1.28) (2.42) (9.60) (0.69)
. b 0.0352 —0.1931 0.2161 —0.4074 0.8494* 0.5733***
Display All
(0.06) (0.28) (0.18) (0.23) (0.36) (0.14)
0.4813%** —0.5119 0.9881** 0.5605 0.3767 0.7847***
Feature® All
(0.10) (0.46) (0.33) (0.33) (0.90) (0.20)
Keebler Keebler 1.7258* 0.4159 1.7628 1.7140 3.9675 2.3713
Constant (0.81) (3.85) (1.93) (2.14) (6.63) (2.24)
Nabisco Nabisco 1.0096* —4.0030* 0.6304 3.3981* 6.3738 0.5689
Constant (0.48) (1.65) (1.28) (1.42) (6.15) (1.25)
Private Private —2.0481*** —2.1681 —5.4758*** —10.2313*** 0.9359 —5.6245***
Constant (0.44) (1.33) (1.24) (2.16) (8.29) (1.09)
Latent Class 0.2477 0.4458 0.0856 0.0479 0.1730
Probability
Log Likelihood? —3318.4 —1715.0

“Price is in US dollars per 16-ounce unit.

bDisplay takes the value 1 if there was an in-store display of the brand at the time of purchase and 0 otherwise.
Feature takes the value 1 if there was a newspaper feature advertisement for the brand at the time of purchase and 0 otherwise.

40bservations of 136 households making 3,292 purchases.

8 Conclusion

To summarise, this research has discussed the chal-
lenges that come with model selection in the context
of a latent class model (LCM). As the LCM is an ex-
tension of the multinomial logit model (MNL), it will
always give a better in-sample fit. As the number
of latent classes and the number of incorporated vari-
ables gets larger, the in-sample fit increases. However,
this better fit comes at a cost. Because the number of
parameters in the LCM is much larger, the estimated
model is at risk for overfitting. In this paper, several
existing model selection methods have been applied
to the latent class context and compared in an em-
pirical setting. Panel data on the purchases of saltine
crackers in the Rome (Georgia) market was used to
illustrate the different procedures.

Likelihood ratio (LR) tests have been discussed and
used to test different variables for an alternative-
specific effect on choice. These statistical test results
have given valuable information about the nature of
the incorporated variables. However, the process
of testing for all variables is lengthy and the results
do not lead to the unambiguous selection of a 'best’
model. The LR tests also do not take the total num-
ber of model parameters into account. The results are
only affected by the number of parameter restrictions
imposed.
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Another method discussed in this paper is the use
of BIC values. These values favour an increased fit of
a model, but penalise a model with a large number
of parameters. When this value is computed for sev-
eral models, one can pick the model with the lowest
BIC value. This is a very straightforward and un-
ambiguous method, but it could possibly overlook
a significant alternative-specific effect of a variable.
This was the case for the empirical setting discussed
in this paper. The BIC values alone are not powerful
enough to accurately select a single model. However,
the BIC values are very suitable to be used at the start
of the model selection process to create a short-list of
a few models to be considered for selection.

The last method discussed in this paper is the evalua-
tion of the out-of-sample predictive ability of different
models. Two different ways of forecasting the discrete
choices for the hold-out sample have been considered.
We have found that the hit rates of different models
are often close together and that it can be challenging
to draw a conclusion from the comparison of hit rates.
However, it was possible to derive certain trends from
the comparison. It also became apparent that a model
that is too large can actually lead to a lower out-of-
sample predictive performance.

In conclusion, we would recommend the following
model selection procedure to researchers who are
considering using the LCM in an empirical setting.



It is a good idea to first look at a combination of the could be compared. There are various other methods
BIC values and the out-of-sample hit rates to create a available that could be applied to the LCM. Another
short-list of models to consider for selection. LR tests limitation is that we have only considered models
can thereafter be used to statistically test the models with up to five latent classes in the empirical setting.
against each other. The estimation of such large models requires much
time and computing power, but is worth considering
One of the limitations of this research is that, due to for future research.
time constraints, only three model selection methods

A Appendix

A.1 Partial Derivatives of Log Likelihood Functions

The partial derivatives of the log likelihood function of the multinomial logit model (MNL) in (3) on page 2
are given by

N T J Y exp (%, ,B + iy, 7h)
lnL }//,B ’)’ ZZ ZI Vit _] x/'t,' h=1 1th it, it, (16)
5B i=1t=1j=1 v )y exp(x ithB + Zig 1)
and
5 N T exp(xj, ;B + 2, 7j)
s =) 2y | 1 =) - S r— : (17)
7 i=1t=1 Zh 1exp(x zthﬁ+zit,h7h)
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