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Abstract

In this thesis most parts of the computational study of Verweij et al. (2003) on the Sample
Average Approximation (SAA) method have been replicated. The SAA method uses Monte
Carlo simulation to solve stochastic optimization problems. Verweij et al. (2003) investigated
the Shortest Path Problem with Random Travel Times (SPRT), the Shortest Path Problem
with Random Arc Failures (SPAF) and the Traveling Salesman Problem with Random Travel
Times (TSPRT). We have replicated both the SPRT and TSPRT. Additionally, we extended the
TSPRT to a Vehicle Routing Problem with Random Travel Times (VRPRT).

Some differences in results are expected as different versions of the same commercial MIP
solver CPLEX have been used. Besides, the SAA method makes use of random generated sam-
ples, so different samples are expected. Precise instances are also not available, so reconstructing
them as close as possible was the only option, but the dimensions turned out to be different.

The results for the SPRT are close to those found by Verweij et al. (2003). However, for the
TSPRT the found values are much larger. When comparing the TSPRT and VRPRT results,
we see that the difference is quite small. Taking customer satisfaction into account, it might be
beneficial to use multiple vehicles. Further research on the VRPRT using different deadlines and
different amounts of vehicles could therefore be interesting.



1 Introduction

In this thesis, most parts of the computational study of Verweij et al. (2003) on the Sample Average
Approximation (SAA) method applied to stochastic routing problems are replicated. The SAA
method uses Monte Carlo simulation in order to solve stochastic optimization problems. In the
study of Verweij et al. (2003), multiple problems are investigated. In this thesis, only the shortest
path problem with random travel times (SPRT) and the traveling salesman problem with random
travel times (TSPRT) are investigated. In addition, we investigate the vehicle routing problem with
random travel times (VRPRT) as an extension of the TSPRT.

Applications for the SPRT, TSPRT and VRPRT are found in everyday life. Delivery companies
such as PostNL and DHL have to decide on routes up front, while having to deal with uncertainty
about possible delays. These delays can be a result of traffic, road work, accidents or more generally
congestion. Similarly, for shipping companies, weather conditions could lead to uncertainty about
travel times. Applications for the deterministic TSP and VRP are described by Matai et al. (2010).

The stochastic routing problems in this thesis consist of two stages. In the first stage, a route
has to be selected. Here, the random travel times are only known with a probability distribution.
In the second stage, a decision has to be made based on the first stage route and known delays and
a penalty is incurred according to a penalty or recourse function.

Although we try to replicate the results of Verweij et al. (2003) as good as possible, some
differences are expected. The SAA method uses randomly generated samples, so it is expected that
samples will differ from the ones used by Verweij et al. (2003). Furthermore, differences can occur
due to the use of a different version of the commercial MIP solver CPLEX. We have used CPLEX
version 12.6.3, while Verweij et al. (2003) have used CPLEX version 7.0. Also, the precise instances
used by Verweij et al. (2003) are not available, so we reconstructed them as close as possible.

The remainder of the paper is structured as follows. First, we give a brief literature review in
Section 2. Then, in Section 3 we give a description of the three problems investigated in this thesis.
Next, in Section 4 we first introduce the SAA method for general two-stage stochastic routing
problems. Then we introduce the branch-and-cut framework used to solve the problems and finally
we highlight how we solved each problem specifically. After that, in Section 5 we describe how we
generated instances to test the SAA method. In Section 6 we describe our results and in Section 7
we give a conclusion.

2 Literature Review

Early solution methods for stochastic routing problems are based on dynamic programming (An-
dreatta, 1987; Andreatta and Romeo, 1988) and on heuristics (Spaccamela et al., 1984). These
methods are however not applicable in general. Cases with a small number of scenarios have been
solved by Laporte et al. (1992, 1994b,a) by using the fact that a small number of scenarios allows
for exact evaluation of the recourse function. Solving the stochastic routing problems was done by
using the integer L-shaped method of Laporte and Louveaux (1993). The integer L-shaped method
underestimates the value of the recourse function and iteratively adds optimality cuts to better ap-
proximate it. For two-stage stochastic problems where the first-stage feasible set is convex and the
second stage involves routing decisions, Wallace (1986, 1987, 1988) has studied the exact evaluation
of the recourse function.

For problems where the number of scenarios is large, exact evaluation methods are not applicable.
Typically, sampling methods are used to solve such problems. We are able to classify sampling
methods into two main groups: interior and exterior sampling methods. Interior sampling methods
allow for the samples to be modified during the optimization process, for example by taking subsets
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of previous samples or generating new samples. Slyke and Wets (1969), Higle and Sen (1991) and
Infanger (1992) have, for example, proposed methods that modify samples within the L-shaped
algorithm.

In exterior sampling methods, a sample {ω1, . . . , ωN} is generated according to a known proba-
bility distribution up front. After that, a deterministic optimization problem is solved. One of the
exterior sampling methods is the SAA method. The SAA method has been used by, for example,
Rubinstein and Shapiro (1990) and Geyer and Thompson (1992). Plambeck et al. (1996), Shapiro
(1996), Shapiro and Homem-de Mello (1998) and Mak et al. (1999) have proposed SAA methods
for stochastic linear programs.

The shortest path problem with random travel times has been investigated previously by Poly-
chronopoulos and Tsitsiklis (1996), where a dynamic programming approach is used to solve the
problem. Using the nearest neighbour rule to solve the traveling salesman problem with random
travel times has been studied by Leipälä (1978). An overview of literature on stochastic vehicle
routing problems is given by Gendreau et al. (1996).

Other routing problems with uncertainty that have been researched include the capacitated ve-
hicle routing problem with unknown demands (Bertsimas, 1992), the capacitated traveling salesman
location problem with unknown customer positions (Bertazzi and Maggioni, 2015) and the vehicle
routing problem with random travel times, soft time windows and service cost (Taş et al., 2013).

3 Problem Description

In this section we define the problems that are investigated in this thesis. Firstly, we define the
shortest path problem with random travel times. Next, we formulate the traveling salesman problem
with random travel times. The formulations for these problems are taken from Verweij et al. (2003).
Finally, we investigate the vehicle routing problem with random travel times which extends the
TSPRT by introducing multiple vehicles.

3.1 Shortest Path Problem with Random Travel Times

The shortest path problem with random travel times (SPRT) is defined on an directed graph
G = (V,A). Here, V = {v1, v2, . . . , vn} denotes the set of vertices. In this set, node vs ∈ V denotes
the sink node and vt ∈ V denotes the source node. The set of arcs is denoted by A = {(vi, vj) :

vi, vj ∈ V, i 6= j}, with arc costs c ∈ R|A|+ . The set of scenarios is denoted by Ω. The probability

distribution P of the vector of random travel times ξ(ω) ∈ R|A|+ corresponding to scenario ω ∈ Ω is
known, as is the deadline κ ∈ R. The goal is to find a vs − vt path that minimizes traversed arc
cost plus the expected violation of the deadline.

We make use of the binary decision vector x ∈ {0, 1}|A| to represent a path. If arc a is in the
path xa = 1, otherwise xa = 0. Let δ+

G(vi) denote the set of arcs in G leaving vertex vi ∈ V .
Similarly, let δ−G(vi) denote the set of arcs in G entering vertex vi. For any S ⊆ V , let γG(S) denote
the set of arcs in G that have both endpoints in S. For any x ∈ R|A| and A′ ⊆ A, x(A′) denotes∑

x∈A′ xa. The SPRT can then be formulated as the following two-stage stochastic integer program:
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min
x∈{0,1}|A|

cTx+ EP [Q(x, ξ(ω))] (1)

subject to x(δ+
G(vi))− x(δ−G(vi)) =


1, for vi = vs

−1, for vi = vt

0, for vi ∈ V \ {vs, vt}
(2)

where the recourse function Q(x, ξ(ω)) is given by

Q(x, ξ(ω)) = max{ξ(ω)Tx− κ, 0}. (3)

The objective function (1) minimizes total expected cost. Constraints (2) ensure appropriate flow
over the arcs. In our case, we have a positive cost-vector c. If c is non-positive and G contains
negative-cost cycles, the following constraints need to be added to the model:

x(γG(S)) ≤ |S| − 1, for all S ⊂ V with |S| ≥ 2. (4)

These constraints ensure negative-cost cycles are eliminated.

3.2 Traveling Salesman Problem with Random Travel Times

The traveling salesman problem with random travel times (TSPRT) is defined on an undirected
graph G = (V,E). The set V = {v1, v2, . . . , vn} denotes the set of vertices. The set E = {(vi, vj) :

vi, vj ∈ V, i < j} denotes the set of edges with edge costs c ∈ R|E|+ . The set of scenarios is denoted by

Ω. The probability distribution P of the vector of random travel times ξ(ω) ∈ R|E|+ corresponding
to scenario ω ∈ Ω is known, as is the deadline κ ∈ R. The goal is to find a cycle visiting all nodes
in G exactly once, while minimizing total traversed edge costs plus the expected violation of the
deadline.

We make use of the binary decision vector x ∈ {0, 1}|E| to represent the cycle, where xe = 1 if
edge e is in the cycle and xe = 0 otherwise. The set of edges incident to vertex vi is denoted by
δG(vi). The TSPRT can be formulated as the following two-stage stochastic integer program:

min cTx+ E[Q(x, ξ(ω))] (5)

subject to x(δG(vi)) = 2, for vi ∈ V , (6)

x(γG(S)) ≤ |S| − 1, for S ⊂ V with |S| ≥ 2, (7)

x ∈ {0, 1}|E|, (8)

where the recourse function Q(x, ξ(ω)) is given by

Q(x, ξ(ω)) = max{ξ(ω)Tx− κ, 0}. (9)

The objective function (5) minimizes the total expected cost. Constraints (6) ensure every node is
visited exactly once. Constraints (7) ensure sub-tours are eliminated.

3.3 Vehicle Routing Problem with Random Travel Times

The vehicle routing problem with random travel times (VRPRT) is an extension of the TSPRT, in
which multiple vehicle are available. The VRPRT is defined on a directed graph G = (V,A). The
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set V = Vc ∪ {0} is the set of nodes, with Vc = {1, 2, . . . , n}. Node 0 represents the depot. The

set A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the set of arcs with arc costs c ∈ R|E|+ . The set of scenarios

is denoted by Ω. The probability distribution P of the vector of random travel times ξ(ω) ∈ R|E|+

corresponding to scenario ω ∈ Ω is known. Let there be R identical vehicles. For each vehicle
r ∈ {1, . . . , R}, there is a deadline κr ∈ R. The goal is to find at most R routes starting and ending
at the depot in such a way that all nodes in Vc are visited exactly once, while minimizing the total
traversed arc costs plus the expected violation of the deadline of each vehicle.

We make use of the binary decision variable xijr ∈ {0, 1}, where xijr = 1 if arc (vi, vj) is
traversed by vehicle r and xijr = 0 otherwise. The VRPRT can be formulated as the following
two-stage stochastic integer program:

min
R∑

r=1

∑
(i,j)∈E

cijxijr + E[Q(x, ξ(ω))] (10)

subject to

R∑
r=1

n∑
i=0,i 6=j

xijr = 1 ∀j ∈ {1, . . . , n}, (11)

n∑
j=1

x0jr ≤ 1 ∀r ∈ {1, . . . , R}, (12)

n∑
i=0,i 6=j

xijr −
n∑

i=0,i 6=j

xjir = 0 ∀j ∈ {0, . . . , n}, r ∈ {1, . . . , R}, (13)

∑
i∈S

∑
j∈S,i6=j

xijr ≤ |S| − 1 ∀S ⊆ {1, . . . , n}, ∀r ∈ {1, . . . , R}, (14)

xijr ∈ {0, 1}, (15)

where the recourse function Q(x, ξ(ω)) is given by

Q(x, ξ(ω)) =
R∑

r=1

max{ξr(ω)Txr − κr, 0}. (16)

The objective function (10) minimizes the total expected travel cost. Constraints (11) ensure that
each customer is visited exactly once by one vehicle. Flow constraints (12) and (13) guarantee that
each vehicle can leave the depot only once and that the number of vehicles arriving at a node equals
the number leaving. The inequality in constraints (12) makes it possible for vehicles to not be used
if this is more cost efficient. The sub-tour elimination constraints (14) ensure no cycles disconnected
from the depot.

This formulation is an adaptation of the three-index formulation for the capacitated vehicle
routing problem described by Borcinova (2017). We have removed the capacity constraints and
added stochasticity. While using a two-index formulation might give better performance, we have
decided to use this three-index formulation. By using this three-index formulation, it is easy to
keep track of the edges traversed by each vehicle, which simplifies the recourse function.

4 Solution Method

In this section we introduce the Sample Average Approximation (SAA) method as described by
Verweij et al. (2003). First, we introduce the SAA method for generic two-stage stochastic routing

5



problems. Then we introduce the branch-and-cut framework used to solve the stochastic routing
problems. Finally, we will highlight how we used it to solve the SPRT, TSPRT and VRPRT
specifically.

4.1 The Sample Average Approximation Method

A generic formulation for a two-stage stochastic routing problem is

z∗ = min
x∈X

cTx+ EP [Q(x, ξ(ω))], (17)

where the recourse function Q(x, ξ(ω)) is given by

Q(x, ξ(ω)) = min
y≥0
{q(ω)T y|Dy ≥ h(ω)− T (ω)x}. (18)

Here, the decision vector x denotes the first-stage decision. The first-stage feasible set is denoted by
X and the set of scenarios is denoted by Ω. When making the second-stage recourse decision y the
scenarios are known. Cost vector c represents the routing costs. It is assumed that the probability
distribution P on Ω is known. Q(x, ξ(ω)) represents the optimal value of the second-stage problem
corresponding to the first-stage solution x and second-stage parameters ξ(ω) = (q(ω), h(ω), T (ω))
used for the recourse decision problem, which might depend on scenario ω ∈ Ω.

The SAA method solves such stochastic routing problems by generating a sample of N scenar-
ios {ω1, . . . , ωN} according to the probability distribution P. Then, the expected value function
EP [Q(x, ξ(ω))] is approximated by the sample average function

∑N
n=1Q(x, ξ(ωn))/N . This gives us

the Sample Average Approximation problem corresponding to (17):

zN = min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn)). (19)

The SAA method makes use of M independent sample of size N . Solving the corresponding SAA
problems provides us with objective values z1

N , z
2
N , . . . , z

M
N and candidate solutions x̂1

N , x̂
2
N , . . . , x̂

M
N .

We denote the average objective value of the M SAA problems by z̄N , so

z̄N =
1

M

M∑
m=1

zmN . (20)

Mak et al. (1999) and Norkin et al. (1999) prove that E[z̄N ] ≤ z∗. This means that z̄N is a statistical
estimate for a lower bound on the optimal value of (17). An estimate for the variance of z̄N is

σ̂2
z̄N

=
1

(M − 1)M

M∑
m=1

(zmN − z̄N )2. (21)

For any feasible point x̂ ∈ X, an upper bound for z∗ can be given by objective value cT x̂ +
E[Q(x, ξ(ω))]. Using a independent sample of size N ′, the objective value can be estimated by

ẑN ′ = cT x̂+
1

N ′

N ′∑
n=1

Q(x̂, ξ(ωn)). (22)

Commonly, N ′ is chosen to be large. It is possible to do this for N ′, as we do not have to solve the
SAA problem with this large sample. Therefore it does not take a lot of time to compute this. If
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we would make N larger, it would have an effect on the computation time. It is therefore common
to take N ′ > N at least. This sample of size N ′ is independent of the sample used to generate x̂.
Therefore, ẑN ′(x̂) is an unbiased estimator of cTx+ EP [Q(x, ξ(ω))]. Then, for any feasible solution
x̂, it holds that E[ẑN ′(x̂)] ≥ z∗. An estimate for the variance of ẑN ′(x̂) is

σ̂2
ẑN′ (x̂) =

1

(N ′ − 1)N ′

N ′∑
n=1

(cT x̂+Q(x̂, ξ(ωn))− ẑN ′(x̂))2. (23)

In the above procedures, we have obtained M different candidate solutions. We take x̂∗ as the
candidate solution with the best objective value. The quality of the solution x̂∗ can be evaluated
by computing the optimality gap estimate

∆̂ = ẑN ′(x̂
∗)− z̄N . (24)

Here ẑN ′(x̂
∗) is the objective value of x̂∗ using an independent sample of size N ′. This is done in

order to obtain an unbiased estimate. According to Kleywegt et al. (2001), the variance of this
optimality gap estimator can be estimated by

σ̂2
∆̂

= σ̂2
ẑN′ (x̂

∗) + σ̂2
z̄N
. (25)

4.2 Solving the SAA problem using a Branch-and-Cut Algorithm

A branch-and-cut procedure can be used to solve mixed integer programming problems. It uses
the simplex method to solve LP relaxations. When an optimal solution for the relaxation is found,
and the integrality constraints have not been satisfied, a cutting plane algorithm is used tighten
the feasible region while not removing any feasible integer points. The new LP problems are solved
and the process is repeated. During this process, feasibility and optimality cuts can be added.
These cuts help to find a good solution. In our branch-and-cut algorithm, the sub-tour elimination
constraints are added as feasibility cuts for the TSPRT and VRPRT. For all problems, optimality
cuts are added. The procedure of generating these optimality cuts will be discussed in Section 4.3.

To be able to use the branch-and-cut algorithm to solve the SAA problem (19), we rewrite it as

min
x∈X

cTx+
1

N
QN (x), (26)

where X is the set of feasible first-stage solutions and

QN (x) =
N∑

n=1

Q(x, ξ(ωn)). (27)

Here Q(x, ξ(ω)) is given by Equation (18). Verweij et al. (2003) state that it is well-known that
Q(x, ξ(ω)) in Equation (18), and therefore QN (x), are piecewise linear and convex in x. This means
that QN (x) = max{aTi x−ai0 |i ∈ {1, 2, . . . , L}} for all x ∈ X, for some {(ai, ai0), i = 1, 2, . . . L}, and
positive integer L. This means that we can rewrite problem (26) as a mixed-integer linear program
with L constraints as follows:

min cTx+ θ/N (28)

subject to θ ≥ aTi x− ai0 for i ∈ {1, 2, . . . , L}, (29)

x ∈ X. (30)
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For a given first-stage solution x, the optimal value of θ equals QN (x). The coefficients of the
optimality cuts (29), {(ai, ai0)}, are given by the extreme subgradients of QN (x). These are them-
selves given by the extreme point optimal dual solutions of the second-stage problems (18). The
number of constraints (29), L, is usually very large. Instead of including all of these constraints,
only a subset will be generated within the branch-and-cut framework using the well-known integer
L-shaped decomposition method (Slyke and Wets, 1969).

4.3 Optimality cut generation

As mentioned before, within the branch-and-cut framework optimality cuts are iteratively generated
at each integer solution. In this subsection we describe how we generate these for each of the
investigated problems.

4.3.1 SPRT and TSPRT

For the SPRT and the TSPRT the second-stage recourse problem for sample scenario ωn, with
n ∈ {1, 2, . . . , N}, is given by

Qn(x) = max(ξ(ωn)Tx− κ, 0). (31)

It holds that
N∑

n=1

Qn(x) = max

{∑
n∈S

(ξ(ωn)Tx− κ)

∣∣∣∣∣ S ⊆ {1, . . . , N}
}
. (32)

Therefore, the sample average approximation problem can be formulated as

min cTx+ θ/N (33)

subject to Ax ≤ b, (34)

θ ≥
∑
n∈S

(ξ(ωn)Tx− κ) for S ⊆ {1, 2, . . . , N}, (35)

x ∈ {0, 1}|D|, (36)

where D is the set of arcs A when solving the SPRT and the set of edges E when solving the
TSPRT.

The inequalities (35) are the optimality cuts, and the system Ax ≤ b represents the con-
straints in the original problem. For the SPRT, these are only constraints (2) and for the TSPRT
these are constraints (6) and (7). However, constraints (7) are added as feasibility cuts. Note
that (35) represents a very large number of constraints. However, in our branch-and-cut al-
gorithm we only add the maximally violated optimality cut, which corresponds to the subset
S(x) =

{
n ∈ {1, 2, . . . , N}

∣∣ξ(ωn)Tx > κ
}

for a feasible x and ωn ∈ Ω.

4.3.2 VRPRT

For the VRPRT the second-stage recourse problem for sample scenario ωn, with n ∈ {1, 2, . . . , N}
is given by

Qn(x) =

R∑
r=1

max{ξ(ωn)Tx− κr, 0}. (37)

It holds that
N∑

n=1

Qn(x) = max

 ∑
(n,r)∈S

(
ξ(ωn)Txr − κr

) ∣∣∣∣∣∣ S ⊆ Ψ

 , (38)
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where Ψ = {(n, r) | n ∈ {1, 2, . . . , N}, r ∈ {1, . . . , R}}. Therefore the sample average approximation
problem can be formulated as

min cTx+ θ/N (39)

subject to Ax ≤ b, (40)

θ ≥
∑

(n,r)∈S

(
ξ(ωn)Txr − κr

)
for S ⊆ Ψ, (41)

x ∈ {0, 1}|D|, (42)

Here the inequalities (41) represent the optimality cuts, and the system Ax ≤ b represents the
constraint in the original problem. For the VRPRT these are constraints (11) – (14). Again,
constraints (14) are iteratively added as feasibility cuts. Note that again (41) represents a very
large number of constraints. In the branch-and-cut algorithm we only add the maximally violated
optimality cut, which corresponds to the subset S(x) = {(n, r) ∈ Ψ|

(
ξ(ωn)Txr − κr

)
> 0} for a

feasible x and ωn ∈ Ω.

5 Computational Experiments

This section describes the methods used to generate the instances used to solve the SPRT, TSPRT
and VRPRT problems. We implemented the SAA method and Branch-and-Cut algorithm using the
commercial MIP solver CPLEX version 12.6.3 with Java version 8. We made use of the LazyCon-
straintCallback function within CPLEX. This way we were able to add feasibility and optimality
cuts at integer solutions.

5.1 Instances

Since the precise instances of Verweij et al. (2003) are not available, we have used their description
to generate the instances. We now describe this process of generating a problem instance using the
well-known TSPlib instances (Reinelt, 1995). Each TSPlib instance has a set coordinates for each
of the cities in it and states in which way the inter-city distance can be determined.

5.1.1 Shortest Path with Random Travel Times

The procedure used by Verweij et al. (2003) to generate a SPRT instance from a TSPlib instance
can be summarized as follows.

To generate the directed graph G = (V,A), we associate city i from the TSPlib instance with
vertex vi ∈ V . We iterate over the vertices in G in ascending order, from v1 to vn. In iteration
i, we connect the δ closest vertices that have not yet been connected with vertex vi. Connecting
vertices vi and vj is done by adding arcs (vi, vj) and (vj , vi) to A. For the cost cij of arc (vi, vj) we
take the corresponding distance dij . Choosing the source node vs and sink node vt is done by first
finding all pairs (vi, vj) with vi, vj ∈ V that maximize the minimum number of arcs traversed over
the optimal vi – vj path. We then choose one pair uniformly at random to be the source and sink
nodes. We denote the vector of random travel times by ξ(ω) according to scenario ω ∈ Ω. For arc
a ∈ A we use the following probability distribution:

P{ξa(ω) = Fca} =

{
p, if ca ≤ c̄
0, if ca ≥ c̄

and P{ξa(ω) = ca} =

{
1− p, if ca ≤ c̄
1, if ca ≥ c̄
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Here c̄ denotes the median arc length and F > 1 and 0 < p < 1 are given parameters. We determine
deadline κ by computing the shortest path in G with respect to the arc costs.

5.1.2 Traveling Salesman Problem with Random Travel Times

The procedure used by Verweij et al. (2003) to generate a TSPRT instance from a TSPlib instance
is similar to the one of the SPRT. The difference is in how we connect two vertices as we have an
undirected graph G = (V,E) in the TSPRT. For the TSPRT, connecting the vertices v and w is
done by adding edge (v, w) to E where we take the edge cost cvw to be the corresponding distance
dvw. We denote the vector of random travel times by ξ(ω) according to scenario ω ∈ Ω. For edge
e ∈ E we use the following probability distribution:

P{ξe(ω) = Fce} =

{
p, if ce ≤ c̄
0, if ce ≥ c̄

and P{ξe(ω) = ce} =

{
1− p, if ce ≤ c̄
1, if ce ≥ c̄

Here c̄ denotes the median edge cost, and F > 1 and 0 < p < 1 are given parameters. The deadline
κ is taken to be the cost of the shortest Hamiltonian cycle in G.

The dimensions of the graphs generated following this method can be seen in Table 1. In this
table, the dimensions of the graphs generated by Verweij et al. (2003) can be seen as well. When
comparing the results, we find quite some differences. This could lead to differences in the final
results.

Table 1: Dimensions of the graphs generated from the TSPlib instances

Our Result Verweij et al. Our Result Verweij et al.

Instance |V | |A| |E| |A| |E| Instance |V | |A| |E| |A| |E|

burma14 14 182 91 172 86 rat99 99 1980 990 1872 936
ulysses16 16 228 114 212 106 kroA100 100 2000 1000 1892 946
ulysses22 22 404 202 332 166 kroB100 100 2000 1000 1892 946
eil51 51 1020 510 912 456 kroC100 100 2000 1000 1892 946
berlin52 52 1040 520 932 466 kroD100 100 2000 1000 1892 946
st70 70 1400 700 1292 646 kroE100 100 2000 1000 1892 946
eil76 76 1520 760 1412 706 rd100 100 2000 1000 1892 946
pr76 76 1520 760 1412 706 eil101 101 2020 1010 1912 956
gr96 96 1920 960 1812 906

This table contains the dimensions of the graphs generated from TSPlib instances for both our results and the
results of Verweij et al. (2003). As can be seen, the dimensions differ quite a lot.

5.1.3 Vehicle Routing Problem with Random Travel Times

The procedure used to generate a VRPRT instance from a TSPlib instance is very similar to
procedure for the SPRT instances. The directed graph G = (V,A) is generated exactly the same.
For the VRPRT we have to determine which node will function as a depot instead of finding a pair
of sink and source nodes. Determining the depot is done by computing the distance from a node
vi ∈ V to all other nodes vj ∈ V , j 6= i. We chose the node vi with the smallest total distance to
be our depot. This way we ensure the depot is located relatively centered in the instance.
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The deadline κr corresponding to vehicle r ∈ {1, . . . , R} is chosen to be the deadline for the
TSPRT devided by the amount of vehicles r, so κr = κ/R. In our case, we only look at the problem
where 2 vehicles are available, so κr = κ/2.

5.1.4 Parameter choice

The parameters are chosen to be the same as the parameters used by Verweij et al. (2003).
For the probability distribution, the following parameters are used: F = 10 for the SPRT and

F = 20 for the TSPRT and VRPRT, and p = 0.1 for all problems. For the generation of the graphs,
δ is set to 10. We generate M = 10 samples when using the SAA method. A sample size of N ′ = 105

is used when generating a sample of scenarios to check the quality of our solution.

6 Results

In Table 2 the results of the computational experiments can be found. For a lot of the TSPRT
and VRPRT instances, the results are not available. This is because of unexpected out-of-memory
errors and time restrictions.

When comparing these values with the values found by Verweij et al. (2003), we see some
differences. These differences are especially visible for instances where the nodes are given by
geographical coordinates in the TSPlib. When comparing the value for the TSPRT for the burma14

instance found by Verweij et al. (2003) and the optimal value for a Hamiltonian cycle in this instance
given in the TSPLib documentation, we find that the value found by Verweij et al. (2003) is around
half of this optimal value. As the TSPRT should give at best the optimal cycle, we think something
went wrong with the implementation of this distance by Verweij et al. (2003).

When comparing the instances that are generated according to euclidean distance, we see that
the results for the SPRT are close. For the TSPRT, however, the differences are larger. For every
instance, the values found by Verweij et al. (2003) for the TSPRT are much lower. The gap estimate
∆̂ and its variance differ as well. In our results, almost all gap estimates are negative, which is not
what is expected. Besides that, they are much further away from 0 than found by Verweij et al.
(2003). The variance of the gap estimate is also much larger than found by Verweij et al. (2003).

When comparing the values of the VRPRT and the TSPRT, we see that the costs have increased
a little. Taking the gap estimate of the TSPRT into account, the differences are not that big. This
small increase in routing costs could however be compensated by the increased customer service.
As time did not allow us to investigate other deadlines or different amount of vehicles, we do not
know what their effect would be on the final results. Further research has to be done in order to be
able to make good conclusions on this.
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Table 2: Summary of solution values for N = 1000

SPRT TSPRT VRPRT

Instance ẑN ′(x̂
∗) ∆̂ σ∆̂ ẑN ′(x̂

∗) ∆̂ σ∆̂ z̄N σz̄N

burma14† 482.0 -148 36.20 7214.9 37.15 88.25 8112.2 65.13
ulysses16† 1501.3 -367.8 155.00 12450.2 -145.5 641.02 13490.7 265.51
ulysses22† 1013.5 -328.8 155.00 10270.5 -2225.50 92.32 13440.8 103.43
eil51 69.0 1.1 0.23 1194.7 12.82 10.63 - -
berlin52 1229.0 219.4 28.19 12885.8 -1684.02 91.30 - -
st70 113.0 0.0 0.00 - - - - -
eil76 71.0 -11.2 1.87 - - - - -
pr76 15538.0 0.0 0.00 - - - - -
gr96† 8515.0 -867.9 198.58 - - - - -
rat99 211.0 0.0 0.00 3408.7 11.72 27.16 - -
kroA100 4132.2 -50.9 28.25 - - - - -
kroB100 4112.0 0.0 0.00 - - - - -
kroC100 3784.0 -106.4 70.93 - - - - -
kroD100 3970.0 -95.5 53.84 - - - - -
rd100 1121.2 -157.3 26.87 - - - - -
eil101 61.4 -6.8 1.29 - - - - -

This table contains the solution values for all three problems. The instance kroE100 has been taken out,
as no solution was found without going out of memory for all problems. For all instances with more than
25 nodes, a time limit of 2 hours has been set on the solution time for the TSPRT and VRPRT problems.
Still, when solving most of the instances out-of-memory errors were received. When decreasing the time
limit even further, no solution was found.
† Instances with nodes given by geographical coordinates

7 Conclusion

We have applied the Sample Average Approximation method to several stochastic routing problems.
Two of these problems, the shortest path problem with random travel times and the traveling
salesman problem with random travel times, have been previously studied by Verweij et al. (2003).
We have tried to replicate the results in their study. Additionally, as an extension on the TSPRT
where multiple vehicles are available, we have investigated the vehicle routing problem with random
travel times.

When comparing our results with those of Verweij et al. (2003), we have found that they are
quite similar. Extending the TSPRT to a VRPRT does not give much more routing costs, and
therefore it might be useful when in need of quick delivery and in general to increase customer
satisfaction. Computation time is very long for the VRPRT however. Therefore the method has
not been tested on larger instances. As a consequence it has also not been tested on instances with
euclidean distance.

For further research, a two-index model for the VRPRT may be interesting as this should
decrease computational time. Furthermore, a formulation with edges instead of arcs for the VPRRT
may be beneficial for the computational time. Other interesting research areas include the effect of
changing the deadline on the final result and the effect of having more than 2 vehicles on the final
result. Time restrictions and difficulties with the implementation prevented us from investigating
these areas.
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