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Abstract
In this thesis, we apply the sample average approximation method to
stochastic routing problems. We replicate the results by Verweij et al.
(2003) with respect to the shortest path problem with random travel

times and the traveling salesman problem with random travel times. In
addition, we propose a branch-and-cut framework to apply the sample
average approximation method to the traveling salesman problem with
random travel times and soft time windows. Different approaches for
eliminating subtours are evaluated. We find that we can solve the

problems using less memory by adding subtour elimination constraints in
fractional branch-and-bound nodes.



1 Introduction
The subjects of this thesis are the shortest path problem, traveling salesman problem and traveling
salesman problem with soft time windows, all with uncertain travel times. In each problem, the
objective is to minimize the sum of the deterministic routing cost and the expected value of
possible delays. Each problem is formulated as a two-stage stochastic problem. We adopt the
Sample Average Approximation method, as described in Verweij et al. (2003). We replicate the
results of Verweij et al. (2003) and extend their methodology to the traveling salesman problem
with random travel times and soft time windows.

The Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial
optimization. This problem is part of a more general class of problems, called Vehicle Routing
Problems (VRPs). It consists of finding a Hamiltonian cycle that visits each of a specified set of
destinations and minimizes travel cost. Early formulations and solution approaches were presented
by Dantzig et al. (1954) and Flood (1956). Since then, the TSP has been studied extensively and
it has been expanded to include additional constraints such as limited vehicle capacity or customer
time windows. The academic interest is mainly due to the fact that this problem arises often
in practice. The practical relevance of the traveling salesman problem with time windows has
increased over the past few decades. The growth of the internet has given rise to many online sales
of products which increases the need for efficient deliveries of these orders. A delivery vehicle often
starts and ends at a depot and an efficient route is desired, visiting all demand locations. Usually,
customers can choose a time window in which they would like the product to be delivered. The
delivery company will try to satisfy these customer preferences as much as possible. This type of
problem also arises in supermarkets, delivering groceries at its customers’ homes. In this thesis,
we contribute to the academic literature on this subject.

In combinatorial optimization, many other routing problems have been considered, for instance
the Shortest Path Problem (SPP) and Vehicle Routing Problem. Most research has focused on
solving deterministic problem instances. However, uncertainty often plays a role in practice. For
example, traffic congestion caused by road works or accidents appears randomly, meaning that the
traveling time on certain roads is variable. Hence, it is difficult to determine a priori the shortest
path from one destination to another.

In this thesis, we address two types of Stochastic Routing Problems (SRPs), namely the shortest
path problem with random travel times (SPPRT) and the traveling salesman problem with random
travel times (TSPRT). The traveling times follow a discrete probability distribution. These SRPs
are formulated using two stages. This means that two decisions have to be made at different
points in time. The first decision is made when the traveling times are uncertain and only their
distributions are known. This decision involves selecting a route (either a path or tour) and this
is called the first-stage problem. The second decision is made after the traveling times have been
realized. For the given traveling times, the route determined in the first stage may not be optimal
or feasible anymore. Therefore, an adjustment, called a recourse, can be made to the path or tour.
The objective is to minimize the total of the first-stage routing costs and the expected recourse
cost. In the formulation of our problems, the recourse cost is defined as a penalty if the traveling
time exceeds a given deadline, like in Verweij et al. (2003) and Laporte et al. (1992).

A realization of the stochastic traveling time on each arc combined is called a scenario. If for
each arc there is a number of possible traveling times and if the number of arcs grows large, a huge
number of possible scenarios exist. Each scenario has a certain probability of occurring, meaning
that the expected recourse cost can be expressed as a weighted sum of the recourse cost in each
scenario. Thus, the objective function becomes a complicated minimization problem, where exact
algorithms are difficult to apply. To solve the problem, we apply an exterior sampling approx-
imation, called the Sample Average Approximation (SAA). First, we generate multiple samples
of scenarios using the Monte Carlo method. In each sample, the expected recourse function is
approximated by the sample average. Hence, for each sample a deterministic problem instance can
be solved. Kleywegt et al. (2002) show that the optimal solution of the approximating problem
converges to the optimal solution of the original stochastic problem.

In this thesis, we first replicate most of the results derived by Verweij et al. (2003). To be more
precise, we apply the SAA method to the SPPRT and TSPRT, where the arcs have deterministic
costs and random travel times. In the SAA method, deterministic problem instances are solved
for each generated sample. For solving these non-stochastic problem instances, a branch-and-cut
framework is used, based on decomposition. We see a decrease in computation time compared to
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the results in Verweij et al. (2003). Computing power has increased strongly over the last 15 years
and commercial MIP solvers have made several advancements.

In addition, we apply the SAA methodology to a more involved version of the TSPRT, namely
with time windows included. Each destination should be visited within a pre-specified time interval.
We deal with soft time windows, meaning that a penalty is incurred if a destination is visited too
late. If the destination is visited too early, the vehicle has to wait. Such constraints arise often in
practice but the literature on this problem with random travel times is limited. Moreover, as far
as we know, the SAA method has not been applied to such problems yet. We apply the SAA and
evaluate its performance. We find that it is difficult to solve the deterministic problems for each
sample in the SAA to optimality. The algorithm is applied to a routing problem with one vehicle
without capacity constraints. In addition, it could be utilized to solve VRPs with stochastic travel
times with m vehicles within heuristic procedures, for instance to find efficient routes per vehicle
after customers have been clustered.

The structure of this thesis is as follows. Section 2 gives an overview of the literature on SRPs
and the solution approaches that have been applied. In Section 3 the problems addressed in this
thesis are defined and Section 4 describes the solution methods. Section 5 gives a description of
how the problem instances are generated. Next, Section 6 reports the results for our computations.
Section 7 concludes.

2 Literature review
Stochastic Routing Problems (SRPs) have received considerably less attention in the literature
than their deterministic counterparts. For most deterministic routing problems, many different
solution algorithms exist. For instance, the SPP can be solved in polynomial time using Dijkstra’s
algorithm, given there are no negative-cost cycles in the graph (Dijkstra, 1959). For the TSP,
several solution approaches have been introduced. Because the TSP is well known to be an NP-
hard problem (Laporte, 1992), both exact methods and heuristic procedures have been proposed.
Most exact procedures use branch-and-bound algorithms, which begin with a linear programming
relaxation. Such algorithms represent the solution space by a tree, in which each branch represents
a subspace of the solution space and each node is a candidate solution. The algorithm explores the
branches to find the optimal integer solution and an upper and lower bound are computed at each
node. Branches can be pruned if the lower and upper bound of that branch make it impossible
that a better solution will be found than the current best solution. Sometimes, difficult constraints
are left out at the beginning of the branch-and-bound but they are added iteratively during the
solution process (Laporte, 1992). This if often referred to as branch-and-cut. Notable heuristics
for the TSP are the one proposed by Christofides (1976) and the algorithm of Lin and Kernighan
(1973).

Solution methods for routing problems are not only helpful in logistics, but can be applied more
generally. Some scheduling problems can be formulated as a TSP. For example, if n jobs need to be
performed on a single machine and change-over times exist between different jobs, then the most
efficient sequence of jobs can be found using TSP solution methods (Laporte, 1992).

In real-world applications of routing problems, more problem aspects have to be taken into
account. For example, at the time of planning a route, some characteristics might not be known
with certainty yet. In the literature, different cases of uncertainty have been investigated. The most
studied variant of SRP is probably the vehicle routing problem with stochastic demands (VRPSD).
In this problem, a set of least-cost routes should be determined using a number of vehicles with
limited capacity while the demand of customers is uncertain. The first heuristic solution method
was introduced by Tillman (1969). Stewart and Golden (1983) give another heuristic solution
method. They also provide different formulations for the problem, with either random variables in
the objective function or in the constraints.

These two types of formulations are very common in stochastic programming problems. When
random variables are present in the constraints only, we use the term Chance Constrained Pro-
gramming (CCP). When random variables occur in the objective function, the problem is often
modeled using two stages. In the first stage, a decision should be made when only the distributions
of the random variables are known and in the second stage a so-called recourse action must be
taken after the random variables are realized. For example, in the VRPSD, a route determined in
the first stage may turn out to be infeasible if the realized demand on that route is higher than the
vehicle capacity. If the original route is executed, a recourse action is required, namely to return to
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the depot somewhere on the route. This is necessary in order to feasibly serve the next customers
on the route by the capacity limited vehicle. In this case, the recourse cost is the extra distance
that has to be traveled due to the recourse action.

A different approach for the recourse function is to define it as the penalty for exceeding a
given deadline on the route duration. For example, a penalty for late route completions arises
naturally in the paper by Lambert et al. (1993) from a banking context. Money collection routes
are designed in the presence of stochastic travel times, while late arrivals at the depot imply that
all money contained in the vehicle loses one day’s interest.

Another common SRP is the vehicle routing problem with stochastic customers (VRPSC), in
which each location has a certain probability of requiring a visit, but the demands are determin-
istic. The traveling salesman problem with stochastic customers, sometimes referred to as the
probabilistic traveling salesman problem (PTSP), was introduced by Jaillet (1985). This study
presents some interesting properties of the problem, particularly that an optimal solution to this
problem defined in a plane, may cross itself, contrary to optimal solutions to deterministic TSPs.
An exact solution approach, proposed by Laporte et al. (1994), uses the integer L-shaped method.
The main idea of this method is that the two stages of the problem are separated. When solving the
second-stage problem, the first-stage solution is taken as given and a lower bound for the objective
of the second-stage problem is computed. Each solution of the second stage adds a constraint,
called an optimality cut, to the first-stage problem, improving its solution. When solving the first-
stage problem, the second-stage objective is approximated by a constant. This constant should
satisfy a number of constraints, namely the optimality cuts. We iteratively solve the first- and
second-stage problems until a stopping criterion is met. This procedure can be applied to mixed
integer problems in general. Then, it is often called the Benders decomposition method (Benders,
1962). It is explained in more detail in Section 4.2. With their approach, Laporte et al. (1994)
can solve instances of up to 50 locations to optimality.

A heuristic method for the PTSP was introduced by Bianchi et al. (2005). It uses local search,
which means small adjustments are made to feasible tours to see if improvements are possible. A
combination of stochastic customers and stochastic demands has been investigated for the vehicle
routing problem by Gendreau et al. (1995). For a survey of SRPs, we refer to Gendreau et al.
(1996).

An SRP that has received considerably less attention in the literature is the TSP with random
travel times and time windows. Jula et al. (2006) study a TSP with time windows in which
the travel times and service times are stochastic processes. The time windows do not have to be
satisfied always, but a route is considered feasible if the probability of arriving at each destination
within its time window is greater than a certain value. The solution method is based on dynamic
programming and finds an approximate solution because the distribution of the arrival time at
each node is approximated using the first and second moment of these random variables. Tas
et al. (2014) examine a more general problem, namely the VRP with soft time windows and
stochastic travel times. In their problem, the distribution of the travel times is time-dependent.
The objective is to minimize a convex combination of the time window violations and the vehicle
costs. The problem is solved using different types of local search. The VRP with deterministic
time-dependent travel times is more often studied, see Hill & Benton (1992) and Donati et al.
(2008).

Several solution approaches have been applied to SRPs, most of which can be applied to stochas-
tic programming problems in general. We focus on those that can be applied to two-stage stochastic
programs, where in the second stage a recourse decision should be taken. For cases with a small
number of scenarios, exact mathematical programming techniques have been applied in which the
expected recourse cost is evaluated exactly. The most notable solution approach is the integer
L-shaped method, which has been applied to solve all kinds of stochastic VRPs, see Laporte et al.
(1992) and Gendreau et al. (1995).

For problem instances with a large number of scenarios, exact algorithms are intractable and
hence most approaches for these cases are based on sampling. One of the first approximations is the
Stochastic Approximation (SA), which was introduced by Robbins and Monro (1951). The classical
SA algorithm mimicks a simple subgradient descent method by iteratively calculating subgradients
of the expected recourse function and calculating the projection unto the set of feasible solutions
X, while sampling scenarios in each iteration (Nemirovski et al., 2009). It performs well for a
certain class of stochastic problems with convex objective functions. This method can be classified
as an interior sampling approach, since the samples are modified during the optimization process.
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Other interior sampling methods modify samples within the integer L-shaped method for stochastic
linear programming problems (Slyke & Wets, 1969).

Opposed to interior sampling methods, exterior sampling procedures first generate multiple
samples of scenarios according to the (known) probability distributions of the random variables.
Each sample consists of a number of realizations of the random variables and therefore, a determin-
istic optimization problem can be solved for each sample. We refer to this deterministic problem
as the SAA MIP. An advantage of these methods is that solution algorithms are known for the
deterministic problems. A very common exterior sampling method is the Sample Average Approxi-
mation (SAA) method. This approach is often applied to two-stage stochastic problems. The SAA
method approximates the expected value of the recourse function for each generated sample by the
sample average function. The resulting deterministic problem is then solved in each sample. The
optimal solution for each sample is an approximate solution to the original problem. The statistical
properties and convergence rate for this method, when applied to discrete optimization problems,
are discussed in Kleywegt et al. (2002). Because of its intuitive concept and wide applicability,
it has been used in various disciplines. For example, it has been employed in finance for solving
asset investment problems (Blomvall & Shapiro, 2006) and in economics to solve stochastic Nash
Equilibrium problems (Li, 2014). Its use is not restricted to two-stage stochastic problems, but
can also be applied to expected value or chance constrained programs (Wang & Ahmed, 2008;
Pagnoncelli et al., 2009). SAA methods for SRPs are investigated by Kenyon and Morton (2003),
Verweij et al. (2003) and Ahmed and Shapiro (2002). For a recent survey on the applications of
the SAA method, we refer to Emelogu et al. (2016).

One drawback of the SAA method is the difficulty in choosing the appropriate sample size.
This is important, because a size that is too small will lead to low-quality solutions whereas a
sample size that is too large will lead to a high computational burden (Emelogu et al., 2016).
While some authors keep the sample size constant throughout the optimization process (Verweij
et al., 2003; Nemirovski et al., 2009), others dynamically increase the number of scenarios in a
sample (Balaprakash et al., 2009). More recently, it was suggested to use clustering techniques to
dynamically update the sample size, leading to significant savings in computation time (Emelogu et
al., 2016). The basic idea of clustering is to generate a very large sample, divide it into clusters and
use the averages of the clusters as the sample. In this way, some information of the large sample
is included, but a smaller SAA MIP has to be solved. Other authors improve the performance of
the SAA by using more efficient sampling procedures, for example using Latin hypercube designs
(Tang & Qian, 2010). Latin hypercube sampling divides the sample space in disjoint regions and
the number of random variables generated from each region is proportional to the probability of
that region (Homem-de Mello, 2008). This ensures that the realizations in the sample are spread
more evenly across all possible values.

3 Problem description
In this section, we formulate the problems that we investigate in this thesis. We first give a general
formulation of two-stage stochastic integer programs. Next, we formulate the shortest path problem
with random travel times (SPPRT) and the traveling salesman problem with random travel times
(TSPRT). We also explain why the recourse function we use there is relevant and interesting.
Finally, we extend the TSPRT to include soft time windows.

3.1 Two-stage SRPs
The two-stage formulation is an important class of stochastic programs. In such problems, two
decisions have to be made at different points in time. The first decision is made when only the
distributions of the random variables are known. This decision involves selecting a route (either
a path or tour) and this is called the first-stage problem. The second decision is made after the
random variables have been realized. For the given realizations, the route determined in the first
stage may not be optimal or feasible. Therefore, an adjustment, called a recourse, can be made to
the path or tour. The objective is to minimize the total of the costs of the first-stage decision and
the expected recourse cost in the last stage.

Let Ω be the set of scenarios ω. We assume the random variables ω ∈ Ω have a discrete
probability distribution P resulting in a finite set of possible scenarios Ω. The decision vector
x denotes the first-stage decision, which has to be determined a priori. When the scenario ω is
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known, the recourse decision vector y is determined. Let the set X contain the set of feasible
solutions in the first stage, involving several constraints. A general formulation of a two-stage
stochastic integer programming problem is

z∗ = min
x∈X

cTx+ EP [Q(x, ξ(ω))], (1)

where c denotes the cost and the recourse function Q(x, ξ(ω)) is given by

Q(x, ξ(ω)) = min
y≥0
{q(ω)T y|Dy ≥ h(ω)− T (ω)x}. (2)

The recourse function Q(x, ξ(ω)) gives the optimal objective value of the second-stage recourse
problem for a given first-stage solution x and the parameters ξ(ω) = (q(ω), h(ω), T (ω)).

3.2 Shortest path problem with random travel times
The SPPRT is defined on a directed graph G = (V,A), with node set V and arc set A. The goal
is to find a least-cost path from a source node s ∈ V to a sink node t ∈ V . The cost consists of
two parts. The first part are arc costs, determined by a cost vector c ∈ R|A|≥0 . The second part is
the recourse cost, which measures the extent to which the actual total traveling time exceeds the
deadline κ ∈ R. The vector of random travel times is given by ξ(ω) ∈ R|A|≥0 for a scenario ω from
the set of scenarios Ω with associated probability distribution P. A path is defined as a selection
of arcs, meaning that for each arc (i, j) ∈ A there is decision variable xij with value 1 if the arc is
included in the path and value 0 otherwise. Hence, the path is represented by the decision vector
x ∈ {0, 1}|A|. Using this notation, the SPPRT can be formulated as follows:

min
x
cTx+ EP [Q(x, ξ(ω))] (3)

subject to
∑

j∈V \{i}

xij −
∑

j∈V \{i}

xji =


1, for i = s

−1, for i = t

0, for i ∈ V \{s, t}
(4)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (5)

where the recourse function Q(x, ξ(ω)) for a given first-stage solution x and scenario ω ∈ Ω is given
by

Q(x, ξ(ω)) = max{ξ(ω)Tx− κ, 0}. (6)

Constraints (4) ensure that the solution x is indeed an s − t path. Note that the arc costs are
defined to be nonnegative (c ∈ R|A|≥0). This implies that an optimal solution will not contain any
cycles and therefore, we do not need to formulate any constraints to eliminate them. The recourse
function (6) can be interpreted as a penalty for exceeding the deadline κ on the route duration.

The recourse function we use is the same as in Verweij et al. (2003). This recourse function
has an intuitive interpretation and does not seem to involve an optimization problem as shown in
(2). We will now show how this interpretation arises from an optimization problem of the form
(2). Laporte et al. (1992) show how to use the general formulation for this type of recourse for
a problem with multiple vehicles. Since we use only one vehicle, we let y be a variable with one
element. For our specific problems, q(ω), D and h(ω) are non-random. More specifically, we set
q(ω) = 1, D = 1 and h(ω) = −κ for some κ ∈ R. Let T (ω) be a vector with the negative of the
traveling time for each arc, so we can write T (ω) = −ξ(ω). Then the recourse function can be
written as

Q(x, ξ(ω)) = min
y≥0
{y|y ≥ −κ− T (ω)Tx} = min

y≥0
{y|y ≥ ξ(ω)Tx− κ} (7)

for which the solution for a given scenario ω and first-stage solution x, is given by y = max{ξ(ω)Tx−
κ, 0}. Hence, the recourse function can be seen as the penalty for exceeding a certain deadline κ
on the route duration.

From a mathematical point of view, it is interesting to formulate the recourse function with
a deadline. If instead, we would minimize the total expected travel time in the second stage, the
objective function would become

cTx+ EP [Q(x, ξ(ω))] = cTx+ EP [ξ(ω)Tx]. (8)
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However, the expectation now becomes linear in ξ because we can write

EP [ξ(ω)Tx] = EP [
∑
(i,j)

ξij(ω) · xij ] =
∑
(i,j)

EP [ξij(ω)]xij .

As shown above, we do not have to deal with stochasticity in this case because the random travel
times can be replaced by their means. This is often called the Mean Value Problem (MVP). The
MVP also leads to an optimal solution when the deadline κ is either very small or very large,
because then the expected violation of the deadline becomes linear in ξ(ω) as well. On the other
hand, for other values of κ, Verweij et al. (2003) show that optimal solutions to the MVP can
be arbitrarily bad compared to the optimal solution of the stochastic problem. For these cases,
we require mathematical algorithms, such as the SAA, that can cope with the stochasticity of the
variables.

3.3 Traveling salesman problem with random travel times
The TSPRT is defined on an undirected graph G = (V,E) with node set V and edge set E. Because
the graph is undirected, {i, j} ∈ E is only defined for i < j. The goal is to find a least-cost tour
which visits all nodes in V . The costs are made up of edge costs, determined by a cost vector
c ∈ R|E|≥0 , and the recourse cost, determined by the vector of random travel times ξ(ω) ∈ R|E|≥0 with
associated probability distribution P and deadline κ ∈ R. A tour is defined as a selection of edges,
meaning that to each edge {i, j} ∈ E there corresponds a decision variable xij with value 1 if it
is included in the tour and value 0 otherwise. Hence, the tour is represented by a decision vector
x ∈ {0, 1}|E|. Using this notation, the TSPRT can be formulated in the following way:

min
x
cTx+ EP [Q(x, ξ(ω))] (9)

subject to
∑

j∈V :{i,j}∈E

xij +
∑

j∈V :{j,i}∈E

xji = 2, ∀i ∈ V, (10)

∑
{i,j}∈E:i∈S,j /∈S

xij +
∑

{j,i}∈E:i∈S,j /∈S

xji ≥ 2, ∀S ⊂ V with |S| ≥ 2, (11)

xij ∈ {0, 1}, ∀{i, j} ∈ E, (12)

where the recourse function Q(x, ξ(ω)) for a given first-stage solution x and scenario ω ∈ Ω is given
by

Q(x, ξ(ω)) = max{ξ(ω)Tx− κ, 0}.

Constraints (10) ensure that each node in V is connected to two edges and (11) make sure that
subtours are eliminated. The recourse function is identical to the one used for the SPPRT.

3.4 TSPRT with soft time windows
We consider an extension to the TSPRT, namely the traveling salesman problem with random travel
times and soft time windows (TSPRTTW). In contrast to the TSPRT, the problem is defined on
a directed graph G = (V,A). Also, we define a starting point for the tour, the so-called depot.
This starting point is labeled node 0, which is included in V . For the formulation, we will also
use the set V ′ = V ∪ {n + 1} where the node n + 1 is an extra node for the depot. Furthermore,
the arc set A′ is the same as the set A, except for the arcs from and to the depot. The outarcs of
the depot leave from node 0 whereas the inarcs of the depot go to node n + 1. The TSPRTTW
is defined as finding a least-cost tour, visiting each node in the graph, while each node should be
visited within a pre-specified time window or otherwise a penalty is incurred. Therefore, we need
to know in which direction an arc (i, j) is traveled which is the reason for using the directed graph.
Let [ai, bi] denote the time interval during which node i ∈ V ′ should be visited, with ai ∈ R≥0 and
bi ∈ R≥0. In addition, the decision variable yi ∈ R represents the time at which node i is visited
and the decision variable zi is defined as the violation of the latest arrival time bi at node i ∈ V ′.
Furthermore, tij(ω) denotes the travel time on arc (i, j) ∈ A′ for the scenario ω ∈ Ω.

7



The formulation is given below. The timing constraints in the second-stage problem are based
on the formulation given by Desrosiers et al. (1988) for the VRP with time windows.

min
x
cTx+ EP [Q(x, ξ(ω))] (13)

subject to
∑

j∈V ′\{i}

xij = 1, ∀i ∈ V ′\{n+ 1}, (14)

∑
j∈V ′\{i}

xji = 1, ∀i ∈ V ′\{0}, (15)

∑
(i,j)∈A′:i∈S,j /∈S

xij ≥ 1, ∀S ⊂ V with |S| ≥ 2, (16)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (17)

where the recourse function Q(x, ξ(ω)) is defined as

Q(x, ξ(ω)) = min
z

∑
i∈V ′

zi (18)

yj − yi ≥ tij(ω) +M(xij − 1), ∀i, j ∈ V ′, s.t. (i, j) ∈ A′, (19)
yi ≥ ai, ∀i ∈ V ′, (20)

zi − yi ≥ −bi, ∀i ∈ V ′, (21)
zi ≥ 0, ∀i ∈ V ′. (22)

The objective is to minimize the cost of the tour and the sum of the expected penalties for
arriving too late at nodes. Arriving too early does not incur a penalty, but the vehicle must wait
a location i until ai due to constraints (20). Constraints (14) ensure that each node is visited and
(19) make sure that, if we travel from i to j, j is visited after i. To be more precise, if xij = 1 the
constraint requires that yj ≥ yi + tij . So j can be visited no earlier than the time we arrived at i
plus the traveling time from i to j. Additionally, this set of constraints ensure increasing arrival
times at each node along a tour, making subtours infeasible (Desrosiers et al., 1988). The constant
M is taken large enough to make sure that the constraints are always satisfied if xij = 0. For the
depot node, we define an extra variable yn+1, besides y0, to make sure that we can leave from the
depot at a certain time and arrive at a much later time. Using only one variable corresponding to
the depot, constraints (19) would make any tour of positive length infeasible. Therefore, we use
y0 = 0 to denote the time we leave the depot and yn+1 for the arrival time. Additionally, we set
a0 = b0 = 0 and an+1 = 0.

Although constraints (19) do not allow for any subtours in the second stage, constraints (16)
are necessary in the solution approach we apply. We need to make sure that the first-stage solution
does not contain any subtours because otherwise, no feasible solution to the second-stage problems
exists. This will be explained in more detail in Section 4.2.

4 Solution methods
In this section, we explain how we apply the Sample Average Approximation (SAA) method to
the SPPRT, TSPRT and TSPRTTW by describing how it can be applied to a general form of
two-stage SRPs. When using the SAA, many deterministic mixed integer programs need to be
solved. In order to find solutions efficiently, Benders decomposition is applied. We will explain
this method in general and show how it can be applied to the SPPRT, TSPRT and TSPRTTW.
In the final part of this section, we summarize the branch-and-cut framework, which we use to
implement Benders decomposition.

4.1 Sample Average Approximation method
We apply the SAA to a general two-stage SRP described by the first-stage problem (1) and
the second-stage problem (2) in Section 3.1. The scenarios ω ∈ Ω follow a discrete probability
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distribution P, given by {p1, p2, . . . , p|Ω|} ∈ [0, 1]|Ω|. Consequently, the expected recourse cost
EP [Q(x, ξ(ω))] can be written as follows:

EP [Q(x, ξ(ω))] =

|Ω|∑
k=1

pkQ(x, ξ(ωk)). (23)

Solving SRPs with such a second-stage objective function becomes very difficult if the number of
scenarios grows large, because for a given x, the solution of numerous second-stage optimization
problems is required. The following example illustrates that the number of scenarios can grow
exponentially in the dimension of x: given a graph of 100 arcs, where the parameter for each arc
has 3 potential values. This gives |Ω| = 3100 possible scenarios, which means the computational
effort of evaluating function (23) is immense (Verweij et al., 2003). In addition, since EP [Q(x, ξ(ω))]
is a function of x ∈ Rd while X involves integrality constraints on x, Verweij et al. (2003) show
that the SRP involves minimizing a piecewise linear objective function over an integer feasible
region which can be very challenging in itself.

Therefore, the SAA simplifies the problem by using Monte Carlo sampling. M independent sam-
ples of a certain size N are generated using the probability distribution P. A generated scenario n is
denoted as ωn so a sample can be represented by {ω1, ω2, . . . , ωN}. For each sample, the expected
recourse function in (23) is approximated by the sample average function 1

N

∑N
n=1Q(x, ξ(ωn)).

The following problem, called the SAA MIP, is then solved for each sample:

zN = min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn)). (24)

The solution x̂ to the SAA MIP (24) and the corresponding objective value zN for each sample are
an approximation of the true solution x∗ to equation (1) with objective value z∗ respectively. This
gives M candidate solutions x̂1, x̂2, . . . , x̂M and objective values z1

N , z
2
N , . . . , z

M
N . It is proven in

Mak et al. (1999) that, in expectation, the average of these objective values, z̄N , is a lower bound
for the true objective value z∗. In other words, it holds that

E[z̄N ] = E[
1

M

M∑
m=1

zmN ] ≤ z∗. (25)

As the samples are all generated from the same distribution P,

E[
1

M

M∑
m=1

zmN ] = E[zmN ], (26)

so it suffices to prove that E[zmN ] ≤ z∗ for m = 1, . . . ,M . For a given sample, we denoted the
objective value of the SAA MIP by zN in (24). Therefore, proving that E[zN ] ≤ z∗ gives the desired
result. We highlight the proof given by Mak et al. (1999) below and we add some intermediate
steps.

Theorem 1. Given a two-stage stochastic program z∗ = minx∈X c
Tx + EP [Q(x, ξ(ω))] and an

i.i.d. sample {ω1, ω2, . . . , ωN} from the discrete probability distribution P, then

E[zN ] = E[min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn))] ≤ z∗.

Proof. First we rewrite

zN = E[min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn))] = E[min
x∈X

1

N

N∑
n=1

(
cTx+Q(x, ξ(ωn))

)
].

Because the random variables ω1, ω2, . . . , ωN are identically distributed and the probability distri-
bution P is discrete, we can write

E[min
x∈X

1

N

N∑
n=1

(
cTx+Q(x, ξ(ωn))

)
] =

|Ω|∑
k=1

pk[min
x∈X

1

N

N∑
n=1

(
cTx+Q(x, ξ(ωk))

)
]
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If each term in this weighted sum is minimized separately, the objective value can be made at least
as low compared to the case where we minimize the total of the weighted sum, meaning that

|Ω|∑
k=1

pk[min
x∈X

1

N

N∑
n=1

(
cTx+Q(x, ξ(ωk))

)
] ≤ min

x∈X

|Ω|∑
k=1

pk[
1

N

N∑
n=1

(
cTx+Q(x, ξ(ωk))

)
]

Finally, we rewrite

min
x∈X

|Ω|∑
k=1

pk[
1

N

N∑
n=1

(
cTx+Q(x, ξ(ωk))

)
] = min

x∈X
E[

1

N

N∑
n=1

(
cTx+Q(x, ξ(ωk))

)
] = min

x∈X
E[cTx+Q(x, ξ(ω))]

= min
x∈X

cTx+ E[Q(x, ξ(ω))] = z∗.

It follows that E[zN ] ≤ z∗ for a given two-stage stochastic program z∗ = minx∈X c
Tx+EP [Q(x, ξ(ω))]

and a given i.i.d. sample {ω1, ω2, . . . , ωN} from the discrete probability distribution P.

Besides a lower bound, the candidate solutions obtained from the sample can also be used to
obtain an upper bound on z∗ by evaluating the objective function. Specifically, we know that
for the solution x̂m of each sample m it holds that cT x̂m + E[Q(x̂m, ξ(ω))] ≥ z∗. Evaluating the
expected recourse function over all possible scenarios in Ω can require a large computational effort.
Therefore, we generate another sample of size N ′, independent of the M other samples, in order
to derive an unbiased estimate of z∗. This estimate is given by

zN ′(x̂
m) = cT x̂m +

1

N ′

N ′∑
n=1

[Q(x̂m, ξ(ωn))]. (27)

N ′ can be taken much larger than N because evaluating the recourse function for a given first-stage
solution generally requires much less computational effort than optimizing it. Because zN ′(x̂m) is an
unbiased estimator of the true objective value corresponding to x̂m given by cT x̂m+E[Q(x̂m, ξ(ω))],
we know that, for each candidate solution x̂m, it holds that

E[zN ′(x̂
m)] ≥ z∗ (28)

Since we want the upper bound to be as tight as possible, we choose the candidate solution from
the sample m for which the unbiased estimator zN ′(x̂m) is lowest. Let this solution be denoted by
x̂∗ As for a given random variable, the sample variance of an i.i.d. sample is an unbiased estimator
of the true variance, we can estimate the variance of the lower bound z̄N by

σ̂2
z̄N =

1

(M − 1)M

M∑
m=1

(zmN − z̄N )2 (29)

and the variance of the upper bound by

σ̂2
ẑN′ (x̂

∗) =
1

(N ′ − 1)N ′

N ′∑
n=1

[cT x̂∗ +Q(x̂∗, ξ(ωn))− ẑN ′(x̂∗)]2. (30)

The optimality gap of the solution x̂∗ can be computed as

zN ′(x̂
∗)− z̄N , (31)

with an estimated variance of
σ̂2
zN′ (x̂

∗)−z̄N = σ̂2
ẑN′ (x̂

∗) + σ̂2
z̄N (32)

because the upper and lower bound are independent (Verweij et al., 2003). The SAA procedure of
generating M samples and calculating the upper and lower bound is repeated until the optimality
gap is smaller than a certain stopping value ε. At iteration l, the lower bound z̄lN is given by the
average objective value of all SAA MIPs solved so far. More precisely,

z̄lN =
1

lM

lM∑
m=1

zmN . (33)
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4.2 Benders decomposition
When applying the SAA method, we need to solve the SAA MIP in (24) for each generated sample.
Therefore, it is crucial to employ an efficient solution algorithm. In this thesis, we will use a solution
method similar to the one used in Verweij et al. (2003), which is often referred to as the Benders
decomposition method. When this method is applied to stochastic programming problems where
the first-stage solution should be an integer variable, the term integer L-shaped method is often
used. In what follows, we use the term Benders decomposition. It was introduced as a solution
approach for difficult mixed integer problems, not necessarily for stochastic programming problems
(Benders, 1962).

The basic idea is to partition the problem into two separate problems. Then, the first problem is
solved, while the second problem is being approximated. This approximation consists of constraints
that are added to the first problem. This process is iterated multiple times, where in each iteration,
a constraint is added to the first problem, improving the approximation of the second problem. In
two-stage stochastic programming, this partition arises naturally, since a distinction can be made
between the first- and second-stage problem.

In this section, we explain how the procedure can be applied to an SRP for one scenario n of
the form

z = min
x∈X

cTx+ q(ωn)T y (34)

subject to Dy ≥ h(ωn)− T (ωn)x, (35)
y ≥ 0, (36)

where the notation has the same meaning as before. After that, the explanation is extended to the
SAA MIP in (24). The two problems that can be distinguished are the first-stage problem

z = min
x∈X

cTx (37)

and the second-stage problem
Q(x, ξ(ωn)) = min

y≥0
q(ωn)T y (38)

subject to Dy ≥ h(ωn)− T (ωn)x. (39)

In Benders decomposition, these problems are solved iteratively, where in each iteration, the first
stage is solved before the second stage. However, notice that the second stage is not present when
solving (37). In order to account for that, a decision variable θ is added to the objective of the
first stage, such that it approximates the second-stage objective. We make sure θ approximates
the second-stage objective by adding constraints. We will now explain how this can be achieved.

In the second stage, the solution to the first-stage problem is taken as given and we optimize over
the variable y. The way we defined θ means that it serves as a lower bound for the objective value
Q(x, ξ(ωn)) of the second-stage problem. Therefore, we aim to find a lower bound for Q(x, ξ(ωn))
in terms of the first-stage variable x. Notice that the second-stage problem described in (38) and
(39) is an LP. Hence, we can find a lower bound by examining the dual of the second-stage problem.
It can be denoted as

max
π≥0

πT [h(ωn)− T (ωn)x] (40)

subject to DTπ ≤ q(ωn), (41)

where π is the vector of dual decision variables. The objective value of the dual problem is
lower than or equal to the objective of the primal problem. Furthermore, for non-optimal x-
vectors, the objective value of the dual will always be lower than the optimal primal objective
value corresponding to the optimal solution x∗. Hence, for every x ∈ X it holds that Q(x, ξ(ωn)) ≥
πT [h(ωn)− T (ω)x]. We define e = πTh(ωn) and E = πTT (ωn) so

Q(x, ξ(ωn)) ≥ e− Ex. (42)

In each iteration p, we solve the first-stage problem to get a solution x. Then, we solve the dual
problem, resulting in ep = π∗Tp h(ωn) and Ep = π∗Tp T (ωn), and the lower bound on θ, which we
call an optimality cut, is added to the first-stage problem. The first-stage problem is then denoted
as

z = min
x∈X

cTx+ θ (43)
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subject to θ ≥ ep − Epx, p = 1, . . . , P (44)

where constraints (44) are the optimality cuts. An optimality cut θ is added in each iteration, such
that the approximation of the second-stage objective improves.

Now, we explain how we apply Benders decomposition to the SAA MIP in (24). For general
two-stage SRPs, it can be formulated as

zN = min
x∈X

cTx+
1

N

N∑
n=1

Q(x, ξ(ωn)). (45)

We approximate the second part of the objective value by introducing a decision variable θ, resulting
in

zN = min
x∈X

cTx+
θ

N
, (46)

where optimality cuts need to be added to improve the approximation θ. To generate the optimality
cuts, the second-stage problem for each scenario n = 1, . . . , N is solved and the optimal solution
to the dual problem for a certain scenario n is denoted by π∗n. The dual objective value for each
scenario provides a lower bound on Q(x, ξ(ωn)) in (45). Therefore, θ should be greater than or
equal to the sum of the dual objectives, which gives the optimality cut

θ ≥
N∑
n=1

π∗Tn [h(ωn)− T (ωn)x]. (47)

4.3 The branch-and-cut framework
Now, we will give an overview of how we solve the SAA MIP in Equation (24). The pseudocode is
provided in Algorithm 1 . We solve the problem with a branch-and-cut algorithm. This means we
start a branch-and-bound search with a relaxed problem and add constraints iteratively during the
solution process. For the SPPRT, we only relax the integrality constraints (5) and for the TSPRT,
we relax both the subtour elimination constraints (11) and the integrality constraints (12). For
the TSPRTTW, we also relax both the subtour elimination constraints (16) and the integrality
requirements (17). So, the branch-and-bound search is initialized with a linear programming
problem. The solution space is represented by a tree, in which each branch represents a subspace
of the solution space and each node is a candidate solution. The algorithm explores the branches
to find the optimal integer solution. At each node, an upper and lower bound are computed.
Branches can be pruned if the lower and upper bound of that branch make it impossible that a
better solution will be found than the current best solution. Because we use branch-and-cut, we
also add constraints at certain nodes in the tree. If a constraint is added at a given node, the
problem is solved again at this node and we check once more whether we should add a constraint.

As described in the previous section, some of the constraints we add iteratively are the op-
timality cuts. For the TSPRT and TSPRTTW, we also add the subtour elimination constraints
iteratively. The number of subtour elimination constraints (11) and (16) is exponential in the
number of edges or arcs. For most instances, it would require too much memory to enumerate all
of them. Hence, we add them iteratively to the solver during the branch-and-cut algorithm. This
can be done in two ways, namely at integer branch-and-bound nodes and at fractional and integer
branch-and-bound nodes. In this thesis, we adopt both approaches and compare the results.

The first approach is that we add a subtour elimination constraint at integer solutions. An
integer solution has an intuitive interpretation. It is a tour, but it may consist of subtours. In
this case, determining whether such subtours are present is straightforward. We can simply start
at any solution node, and follow the arcs or edges until we arrive back at the same node. We will
return to the same node because of the other constraints in the model. If we visited all nodes, the
tour contains no subtours and we do not have to add a constraint. We can add an optimality cut,
because we found a feasible solution in the first stage. However, if we only visited a set of nodes
S ⊂ V , a subtour is present and we eliminate this subtour by adding the appropriate constraint.

The second approach, which is used by Verweij et al. (2003), is to check for each solution in the
branch-and-bound tree, fractional and integer, whether a subtour elimination constraint is being
violated. This requires solving several minimum cut problems, for which we use the algorithm of
Hao and Olrin (1992). This algorithm is also used by Verweij et al. (2003) and it is explained in
Section 4.5.
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Algorithm 1: BranchAndCut(addSubtourConstr,addFracSubtourConstr)

Input: addSubtourConstr is a boolean indicating whether we add subtour constraints or not. It
has value true for the TSPRT and TSPRTTW and false for the SPPRT. addFracSubtourConstr
is a boolean indicating whether we are adding subtour constraints at fractional solutions.

Initialize the branch-and-bound tree.
Start with relaxed MIP model in current node;
while an optimal solution is not found do

Solve the current node;
if the current solution is fractional and addFracSubtourConstr = true then

Determine whether a subtour constraint is violated;
if a subtour constraint is violated then

Add the violated constraint;
else Continue branching and select next node to explore;
end if

else if the current solution is integer then
if addSubtourConstr, = true then

Determine whether a subtour constraint is violated;
if a subtour constraint is violated then

Add the violated constraint;
else

Solve the second-stage problem and add an optimality cut;
end if

else
Solve the second-stage problem and add an optimality cut;

end if
else Continue branching and select next node to explore;
end if

end while
Return the optimal solution.
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4.4 The optimality cuts for the SPPRT, TSPRT and TSPRTTW
For the SPPRT and TSPRT, the primal second-stage problem is described in Equation (7). The
dual of this problem for a given scenario n is given by

max
π≥0

π[ξ(ωn)Tx− κ] (48)

subject to π ≤ 1. (49)

It requires no derivation to see that the optimal solution is given by π∗ = 0 if ξ(ωn)Tx−κ ≤ 0 and
π∗ = 1 otherwise. Therefore, the problem does not actually need to be solved, since the optimality
cut is easily derived for a given first-stage solution x. Taking this into account and defining S(x)
as the subset of scenarios in the sample for a given solution x for which ξ(ωn)Tx − κ > 0, the
optimality cut can be written as

θ ≥
∑

n∈S(x)

[ξ(ωn)Tx− κ]. (50)

On the other hand, for the TSPRTTW, the second-stage problem is not that straightforward.
There, we need to solve an LP problem for every scenario n = 1, . . . , N to determine an optimality
cut for a given first-stage solution x. We take the objective of the dual problem of each scenario
which gives the following optimality cut:

θ ≥
N∑
n=1

[ ∑
(i,j)∈A

πnij [tij(ω
n) +M(1− xij)] +

∑
i∈V

πni [ai] +
∑
j∈V

πnj [−bj ]
]
. (51)

In the dual objective, we sum over the arcs for constraints (19) and we sum over the nodes for
constraints (20) and (21).

4.5 Algorithm for finding subtours in fractional solutions
Determining whether a subtour constraint is being violated in a fractional solution is more involved,
since a tour is not defined for a non-integer solution. In this case, we have to determine whether
the nodes can be divided in two sets, say S and V \ S, such that∑

{i,j}∈E:i∈S,j∈V \S

xij +
∑

{j,i}∈E:i∈S,j∈V \S

xji < 2. (52)

Or, on a directed graph, we want to determine whether there exists a subset of nodes S ⊂ V such
that ∑

(i,j)∈A:i∈S,j /∈S

xij < 1. (53)

If we interpret the values xij as capacities for a minimum cut problem, we can define this problem
as finding the minimum cut in a network and checking whether its value is smaller than two or
smaller than one (Hao & Orlin, 1992). By applying this methodology, we hope to find tours without
subtours using less branch-and-bound nodes.

For finding the minimum cut in a network, several algorithms exist. In this thesis, we use the
algorithm of Hao and Orlin (1992), which is also used by Verweij et al. (2003). This algorithm
finds the minimum cut in a directed graph. Because the TSPRT is defined on an undirected graph,
we create two arcs (i, j) and (j, i) for each edge {i, j} ∈ E for the minimum cut problem. The
TSPRTTW is already defined on a directed graph. Let s be any node from V and let n = |V |.
The basic idea of the algorithm is to find the minimum s − j cut and the minimum j − s cut for
each j 6= s and to select the minimum of these 2n− 2 cuts. The Hao and Orlin (1992) algorithm
is formulated in such a way that the total running time for solving the n − 1 minimum s − j cut
problems is comparable to the time to solve one minimum s− j cut problem. The running time is
O(nm log(n

2

m )), where m is the number of arcs.
We define u(S∗, V \S∗) as the value of the cut (S∗, V \S∗), defined as the sum of the capacities

of all arcs from S to V \ S. A high-level description is given in Algorithm 2. Note that the sink
node t changes in each minimum cut problem.
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Algorithm 2: FindMinCut(s)

S ← {s};
BestValue ←∞;
Cut ← ∅;
while S 6= V do

Select a sink t ∈ V \ S;
Determine a minimum S − t cut (S∗, V \ S∗);
z ← u(S∗, V \ S∗);
if z < BestValue then

Cut ← (S∗, V \ S∗);
BestValue ← z;

end if
Add t to S;

end while

To solve minimum cut problems, the preflow-push algorithm is applied (Hao & Orlin, 1992). We
will now provide a summary of this algorithm. The interested reader is referred to the Appendix
which contains a more detailed explanation and all the pseudocode. Recall that the minimum cut
problem is solved on a directed graph G = (V,A), where the capacity for each arc arc (i, j) ∈ A is
given by xij . A preflow is defined as a vector y ∈ R|A| which satisfies a number of conditions. For
each node i ∈ V we define the excess of node i as

e(i) =
∑

j∈V :(j,i)∈A

yji −
∑

j∈V :(i,j)∈A

yij (54)

Then, y is a preflow if the flow yij on each arc satisfies the capacity limit and if the flow into
every node i exceeds the outflow (except for the source node). In other words, y is a preflow if
0 ≤ yij ≤ xij for each (i, j) ∈ A and e(i) ≥ 0 for each i ∈ V . For a given preflow y, we define the
residual capacity rij on each arc (i, j) ∈ A as the maximum additional flow that can be sent from
node i to node j via the arc (i, j). Obviously, the flow from i to j can be increased if yij < xij .
In addition, if yji > 0, we can cancel the flow from j to i to enlarge the net flow from i to j.
Therefore, we define rij = xij − yij + yji.

The algorithm starts by sending as much flow as possible away from the source node. In other
words, all arcs leaving the source are saturated. This means the excess of other nodes becomes
strictly positive and we can send flow from these nodes. The flow will be sent from nodes with
positive excess via arcs with residual capacity. To make sure the flow goes to the sink, so-called
distance labels are used. For a detailed explanation, we refer to Hao and Orlin (1992). We
continue this procedure until no more flow can be pushed towards the sink. At this point, we find
a maximum flow, and thus a minimum cut. After a problem is solved, a new sink node should be
selected. By choosing the next sink node carefully and implementing the methods of the preflow-
push algorithm appropriately, the computation time of solving n − 1 minimum cut problems is
reduced to the computation time of solving one problem.

5 Problem instances
In this section, we give a description of how we generate the problem instances. Unfortunately,
the exact problem instances used by Verweij et al. (2003) are unavailable. Therefore, we tried to
generate them ourselves, using the description provided in their paper. We use the TSP library
(Reinelt, 1991) which contains TSP instances. Each instance consists of a set of cities and a
distance matrix, specifying the distance between any pair of cities. Based on the TSP instance, we
generate a graph G accompanied by a cost vector c and a probability distribution over the travel
times of the arcs or edges in G. For the TSPRT and TSPRTTW, we also generate deadlines.

For the SPPRT, we generate a directed graph G = (V,A), where each node vi ∈ V corresponds
to a certain city i from the TSP library instance. The distances between any pair of cities (i, j)
is defined as dij . We say that nodes vi and vj have a direct connection if there exist arcs (i, j)
and (j, i). In order to generate the arcs, we iterate over the nodes in V . In iteration i, we make a
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Table 1: Dimensions of the graphs generated from the TSP library instances

|A| |E| |A| |E|
Name |V | Our Verweij Our Verweij Name |V | Our Verweij Our Verweij

burma14 14 182 172 91 86 rat99 99 1980 1872 990 936
ulysses16 16 230 212 115 106 kroA100 100 2000 1892 1000 946
ulysses22 22 400 332 200 166 kroB100 100 2000 1892 1000 946
eil51 51 1020 912 510 456 kroC100 100 2000 1892 1000 946
berlin52 52 1040 932 520 466 kroD100 100 2000 1892 1000 946
st70 70 1400 1292 700 646 kroE100 100 2000 1892 1000 946
eil76 76 1520 1412 760 706 rd100 100 2000 1892 1000 946
pr76 76 1520 1412 760 706 eil101 101 2020 1912 1010 956
gr96 96 1920 1812 960 906
This table shows the dimensions of the graphs that are generated using the TSP library instances. For each instance, the table displays
the number of nodes, arcs and edges. In addition, the graphs are compared with those in Verweij et al. (2003).

direct connection between vi and the δ closest nodes with which it has no direct connection yet.
Therefore, we will add 2δ arcs for each node, unless it already has a direct connection with more
than |V | − 1 − δ nodes. In that case, we connect this node to the remaining nodes with which it
has no direct connection yet, meaning we will add less arcs. The cost of each arc is added to c
with value c(vi,vj) = dij . To select a source and a sink, we find the pair of nodes (vs, vt) for which
the minimum number of arcs in a vs − vt path is maximal. If multiple such pairs exist, we choose
a pair randomly, with each pair having equal probability of being chosen. Next, we determine
the distribution of travel times over the arcs in such a way that the use of short arcs is made
unattractive. To be more precise, the traveling time on short arcs can become very large with a
certain probability p while the traveling time on long arcs is kept deterministic. If we define c̄ as
the median of the arc lengths and ξa(ω) as the random travel time corresponding to arc a ∈ A, we
set

P{ξa(ω) = Fca} =

{
p, if ca ≤ c̄
0, if ca > c̄

and P{ξa(ω) = ca} =

{
1− p, if ca ≤ c̄
1, if ca > c̄

(55)

for some parameter F > 1. Finally, we solve a SPP for the source, sink and cost vector c defined
above and we take the expected travel time on this path. That is the value for κ, the deadline.

For the TSPRT, we create a graph G = (V,E) in the same way as for the SPPRT, except
that a direct connection between two nodes now exists if an undirected edge connects them. The
distribution over the travel times is determined in the same way. The deadline is determined by
solving a TSP with respect to the cost vector c. The expected length of an optimal tour is the
value for κ.

The following parameter values were used for generating the instances of both the SPPRT and
the TSPRT: δ = 10 and p = 0.1. For the travel time distribution, F = 10 is used for the SPPRT
and F = 20 for the TSPRT. The generated instances are summarized in Table 1. The number of
arcs and edges in the graphs generated by Verweij et al. (2003) are denoted by |A|V and |E|V,
respectively.

Notice that our resulting graphs differ from the ones generated in Verweij et al. (2003). We
generate more edges and arcs, but it is unclear to us where this comes from as the methodology of
Verweij et al. (2003) has been replicated. For the larger instances, the difference in the number of
edges is large, with a size of 54. Since this increases the number of possible routes and tours and
thus the sample space, it may have a downward effect on the objective value.

For generating the TSPRTTW instances, we use the same approach as for the TSPRT, with
some minor dissimilarities. The first important difference is that we need a directed graph G =
(V,A) instead of an undirected graph. Therefore, we connect nodes vi and vj by adding the arcs
(i, j) and (j, i) like for the SPPRT instances. Secondly, we need to select a depot, from which the
tour starts. For every instance, we take the first node as mentioned in the TSP library instance,
as the depot. Additionally, we create an extra node for the depot, which we label vn+1 Also, we
need to generate a time window for each node. For the last node in the route, the depot vn+1, the
latest arrival time bn+1 is taken as the value of the deadline κ derived for the TSPRT. an+1, a0

and b0 are set equal to zero. For the remaining ai and bi, we first compute the average arrival
times at each node from the best solution we found for the TSPRT. Let the average arrival time at
node i be denoted by ti. The time window for this node is then set to [ti − κ

2nα, ti + κ
2nα], where
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n is the number of nodes and α is a factor which determines the width of the intervals. Hence, all
windows have equal length. The TSPRTTW is evaluated for α ∈ {1, 3, 1000}. The value α = 1000
corresponds to the case where the TSPRTTW has no deadlines at intermediate nodes, meaning it
becomes identical to the TSPRT.

6 Computational results
In this section, we report and discuss the computational results. First, we discuss the optimization
software. Next, we show the results for the SPPRT and TSPRT, where we do not add subtour con-
straints at non-integer solutions of the TSPRT yet. Then, we report the results for the TSPRTTW
and we compare the solution approach for the TSPRTTW with the approach for the TSPRT.
Next, we display the results when the subtour constraints are also added at non-integer solutions.
Finally, we run the SAA for multiple iterations and investigate the convergence of the lower and
upper bound. All computations are performed on a computer with 4GB RAM and an Intel(R)
Core(TM) i7-4700MQ CPU with 2.40 GHz. Unless stated otherwise, the number of nodes in the
branch-and-bound tree is limited at 10000, for each SAA MIP.

6.1 CPLEX implementation
The solution methods of Section 4 have been implemented in Java using the commerical MIP
solver CPLEX, version 12.6.3. For adding cuts in the branch-and-bound tree at nodes where an
integer solution is found, we use the LazyConstraintCallback provided by CPLEX. We use the
UserCutCallback for adding the subtour constraints when a non-integer solution is found. Note
that CPLEX defines user cuts as constraints that do not cut off feasible integer solutions, but
only strengthen the formulation. The reason is that CPLEX does a variety of problem reductions,
both before and during the branch-and-bound search, to tighten the feasible region of the prob-
lem. Sometimes, solutions to dual problems are involved. If some constraints that restrict the
integer solution space are left out, the dual problem lacks the variables corresponding to these
constraints. This can lead to incorrect results. However, in our case the subtour constraints do
cut off (otherwise feasible) integer solutions. Therefore, if the UserCutCallback is enabled, we
also use the LazyConstraintCallback described previously, because when this callback is called,
the reductions are disabled by the solver. Furthermore, because CPLEX does not expect the user
cut to make an incumbent solution infeasible, the UserCutCallback will not be called at nodes
where an integer solution is found. Because the integer solutions may be infeasible as well, the
LazyConstraintCallback is needed too.

6.2 Computational results for the SPPRT and TSPRT
Table 2 displays the results for the SPPRT and TSPRT for a sample size of N = 1, 000. Further-
more, the Mean Value Problem (MVP) is solved and the results are shown. In this approach, each
random variable is replaced by its mean and the resulting deterministic problem is solved. The
gap of the MVP objective value is obtained by taking the difference of the MVP objective and the
objective resulting from the SAA. In most cases, the Mean Value approach clearly underperforms
when compared against the SAA. The objective value from the MVP is never lower and the gap is
often large. For the instances burma14 and ulysses22 of the SPPRT, the SAA and MVP produce
the same solution. In both cases, the solution of the SAA only contains arcs with one possible
travel time, because the standard deviation of the gap between the SAA upper and lower bound
is equal to zero. Therefore, it is not unreasonable that this path is also the shortest path with
respect to expected travel times. On the other hand, there are also instances for which the SAA
solution does not consist of random arcs, but the MVP gap is non-zero. This is not a surprising
observation if we recall how the randomness on the arcs was generated. For the values of F = 10
and p = 0.1, the expected travel time on arcs, defined in Equation (55), is not much higher than
the deterministic travel time. Hence, if the optimal path found by the SAA is non-random, there
may well exist a shorter path with respect to the expected travel time, found by the MVP.

Another observation from the table is that the objective values for the TSPRT are much larger
than those obtained for the SPPRT. The solution to the TSPRT is a cycle, which contains two
different paths between any pair of vertices (vi, vj). Therefore, the length of the path obtained in
the SPPRT can never exceed the length of a cycle.
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More interestingly, we observe that the objective values for the SPPRT differ strongly from the
results in Verweij et al. (2003) for some problem instances. For example, the objective value for
the berlin52 instance is 839.7 in Verweij et al. (2003) whereas we obtain a value of 1,670.1. One
possible explanation is that our graphs differ from the ones generated in Verweij et al. (2003).
Another explanation for the difference is the manner in which the source and the sink are chosen.
We first determine the pairs of vertices for which the shortest path contains the maximum number
of arcs. Next, we choose a pair randomly. Thus, the length of the resulting path can vary strongly,
because the length of the arcs is not taken into account when setting the source and sink. In
addition, the number of random arcs that have to be used can differ strongly between different
pairs of vertices. This also has an effect on the objective value, through the recourse function.
For other instances, the SPPRT objective values are of the same order of magnitude across the
instances as in Verweij et al. (2003), which gives some confidence that the results are correct.

Table 3: Detailed results for the SPPRT for eil51

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

eil51
z̄N 61.1 61.5 61.4 61.3 61.4 61.4 61.6 61.3 61.5
σ̂z̄N 0.17 0.21 0.18 0.13 0.12 0.11 0.15 0.09 0.11
ẑ105(x̂∗) 61.5 61.6 61.6 61.6 61.6 61.5 61.6 61.6 61.6
σ̂ẑ105 (x̂∗) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
Nodes 12.9 18.5 16.6 14.6 16.8 16.3 18.0 17.2 19.2
σ̂Nodes 5.79 8.15 4.61 4.20 6.14 3.29 4.80 4.24 3.89
CPU 0.8 1.3 1.7 2.2 3.0 3.8 4.8 6.0 7.0
σ̂CPU 0.08 0.16 0.25 0.17 0.12 0.21 0.44 0.75 0.69
Opt. Cuts 16.4 18.0 17.3 17.0 17.8 17.6 18.4 18.1 18.7
σ̂Opt. Cuts 2.11 2.14 2.41 1.41 1.08 1.11 1.11 0.70 0.90
Total CPU 8s 13s 17s 22s 30s 38s 48s 1m 1m11s
This table gives a detailed overview of the obtained results for the instance eil51. A
node limit of 10,000 was used for the SAA MIP in each sample. The table shows the
average lower bound, the upper bound, the average number of nodes used, the average
computation time and the average number of optimality cuts. Each of these values is
accompanied by the standard deviation. In the final row, the total computation time is
shown.

Table 4: Detailed results for the TSPRT for eil51

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

eil51
z̄N 538.1 546.0 543.6 541.5 545.7 547.1 547.6 547.7 548.8
σ̄z̄N 4.58 2.80 1.93 1.77 1.97 1.56 2.26 2.46 1.53
ẑ105(x̂∗) 555.9 550.1 558.5 550.0 553.3 548.9 554.4 549.6 553.8
σ̂ẑ105 (x̂∗) 1.03 1.16 1.17 1.25 1.22 1.29 1.31 1.21 1.20
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 39.3 59.1 74.9 92.0 137.4 166.4 217.5 249.7 294.1
σ̂CPU 7.43 12.51 14.36 10.06 26.04 19.46 37.63 24.11 23.58
Opt. Cuts 320.6 342.0 358.4 347.1 375.4 362.4 359.7 366.7 334.8
σ̂Opt. Cuts 46.84 69.77 57.14 42.94 64.61 41.34 51.31 32.12 25.58
Total CPU 6m17s 9m55s 12m33s 15m23s 22m57s 27m47s 36m18s 41m39s 49m4s
This table gives a detailed overview of the obtained results for the instance eil51. A node limit of 10,000 was used
for the SAA MIP in each sample. The table shows the average lower bound, the upper bound, the average number
of nodes used, the average computation time and the average number of optimality cuts. Each of these values is
accompanied by the standard deviation. In the final row, the total computation time is shown.
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Table 5: Detailed results for the SPPRT for st70

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

st70
z̄N 94.7 94.5 94.9 94.4 94.6 94.6 94.8 94.7 94.6
σ̄z̄N 0.27 0.18 0.21 0.09 0.15 0.10 0.12 0.19 0.09
ẑ105(x̂∗) 94.6 94.6 94.6 94.6 94.6 94.6 94.6 94.6 94.6
σ̂ẑ105 (x̂∗) 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30
Nodes 12.0 7.9 7.7 6.6 14.0 7.4 11.6 8.5 8.9
σ̂Nodes 6.96 2.98 4.54 3.98 7.51 5.04 8.38 6.22 4.61
CPU 0.7 1.4 2.4 3.2 4.6 5.3 6.1 7.8 8.4
σ̂CPU 0.16 0.29 0.62 0.56 1.15 0.61 1.46 1.07 1.50
Opt. Cuts 9.8 10.9 12.1 11.3 12.1 11.6 11.1 11.5 10.5
σ̂Opt. Cuts 2.44 2.30 3.18 2.05 3.36 1.69 2.43 1.36 1.75
Total CPU 8s 14s 24s 33s 46s 54s 1m1s 1m18s 1m24s
This table gives a detailed overview of the obtained results for the instance st70. A node
limit of 10,000 was used for the SAA MIP in each sample. The table shows the average
lower bound, the upper bound, the average number of nodes used, the average computation
time and the average number of optimality cuts. Each of these values is accompanied by the
standard deviation. In the final row, the total computation time is shown.

Concerning the TSPRT, the objective values are fairly similar to those reported in Verweij
et al. (2003). This is expected, since all nodes have to be visited. Because the scenarios are
generated randomly, the objective values can differ slightly. For the sample size of 1,000 used for
these results, this effect should be small. More importantly, the graphs we generated contain more
edges than those in Verweij et al. (2003) although we adopted their methodology in this thesis.
This means that more tours are possible and hence we expect the objective value to be lower here.
This is the case for many instances. However, if there are more edges, this also means that more
edges are made random because all edges shorter than the median length are made stochastic.
Additionally, the different approach for adding subtour cuts can cause the results to be dissimilar.
We will discuss the effect of the different strategy for adding subtour cuts in more detail later this
section, when discussing the negative gaps. Moreover, we also implement the approach of Verweij
et al. (2003) for adding the subtour cuts and compare the results in Section 6.5.

For the instances burma14, ulysses16, ulysses22 and gr96, the objective values for the TSPRT
diverge most clearly. It should be mentioned that these problem instances have an atypical distance
function. Distances are measured as geographical distances, which we calculated using the distance
function described by Reinelt (1991). However, we suspect that we used a different distance
function than Verweij et al. (2003) and hence we will not discuss the results regarding those
instances in more detail.

Surprisingly, we find a negative gap between the upper and lower bound for many instances of
the TSPRT. Both the upper and lower bound are random variables, implying that negative gaps
may occur. Verweij et al. (2003) argue that the size of the negative gap should not exceed two
times the standard deviation. The absolute value of most negative gaps is smaller than twice the
standard deviation, which shows that these results are not unexpected. However, for kroE100 and
rd100, the negative gap exceeds the allowed size. An explanation for this anomaly can be found
in the different approach for adding the subtour cuts. We only add subtour cuts in a branch-and-
bound node where an integer solution is found, whereas in Verweij et al. (2003) such a cut is added
at every node in the branch-and-bound process. Applying our methodology, the solver may need
more nodes to find a feasible tour. Since the number of nodes is limited at 10,000, less tours will
be found and we will often find a bad tour. In some of the M = 10 samples, we may find a good
tour. In other words, we expect that the optimality gap of some of the M SAA MIPs has not
become small yet when the node limit is reached.

This difference in the quality of the solutions to the SAA MIPs is seen clearly for the instance
kroB100, for which the detailed results are shown in Table 7. Especially for N = 1, 000 we see
that the number of optimality cuts is relatively low (for example compared with Tables 4 and 6)
and varies strongly. Recall that a cut is added every time a feasible tour is found. This means
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Table 6: Detailed results for the TSPRT for st70

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

st70
z̄N 784.6 790.1 790.0 799.9 797.1 801.5 800.4 799.5 801.0
σ̄z̄N 4.34 4.22 3.98 6.65 2.77 4.49 4.11 2.27 3.38
ẑ105(x̂∗) 788.3 795.6 827.1 813.5 814.1 795.6 828.7 796.6 808.1
σ̂ẑ105 (x̂∗) 1.54 1.79 1.65 1.62 1.82 2.01 1.97 2.11 2.63
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 70.8 85.8 108.9 138.1 197.6 201.5 249.1 324.0 380.2
σ̂CPU 8.20 12.68 13.58 22.51 32.01 34.16 39.16 23.61 44.61
Opt. Cuts 442.5 439.7 432.7 437.5 478.5 463.3 477.4 480.8 459.7
σ̂Opt. Cuts 62.31 57.57 48.36 73.15 46.19 71.15 89.71 40.75 50.36
Total CPU 11m52s 14m22s 18m13s 23m5s 32m59s 33m37s 41m35s 54m4s 1h3m26s
This table gives a detailed overview of the obtained results for the instance st70. A node limit of 10,000 was used for
the SAA MIP in each sample. The table shows the average lower bound, the upper bound, the average number of nodes
used, the average computation time and the average number of optimality cuts. Each of these values is accompanied by
the standard deviation. In the final row, the total computation time is shown.

Table 7: Detailed results for the TSPRT for the instance kroB100

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

kroB100
z̄N 30959.4 31200.9 39710.3 32133.3 36841.9 50467.4 28141.4 27318.6 37703.6
σ̄z̄N 5075.47 4298.27 7329.03 4824.85 6662.31 8470.65 648.57 453.53 7143.78
ẑ105(x̂∗) 25928.3 26687.9 25846.7 26863.7 25922.7 51126.6 27268.7 26778.6 25923.6
σ̂ẑ105 (x̂∗) 84.10 86.43 83.62 83.66 83.75 83.36 84.09 84.83 84.54
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 36s 42s 50s 1m16s 1m31s 1m18s 2m1s 2m49s 3m32s
σ̂CPU 5.96 4.48 14.60 13.67 28.58 31.09 41.47 38.44 61.41
Opt. Cuts 100.8 88.0 70.4 97.6 93.9 51.7 78.3 91.0 103.7
σ̂Opt. Cuts 35.23 42.18 47.84 43.56 56.43 46.90 45.41 40.34 58.46
Total CPU 6m1s 6m57s 8m15s 12m39s 15m9s 13m2s 20m7s 28m13s 35m33s
This table shows a detailed overview of the results obtained for the kroB100 instance for the TSPRT. Lower bounds, upper
bounds, number of nodes, computation time and computation time are shown with their standard deviation. In addition,
the total CPU time is shown. A node limit of 10,000 is used for the SAA MIP in each sample.

that in some cases, we find many tours whereas in other cases, we find only a few. A few very bad
tours are given as a solution, giving a huge variance in the lower and upper bound. For the lower
bound, we do take these bad solutions into account because we take the average of the M lower
bounds. However, for the upper bound we take the best one from the M solutions, leaving the bad
tours out of consideration. This is how the negative gap arises. For example, for N = 1000, we
find a very poor solution for two SAA MIPs. For these two cases, the objective values are 78431
and 82513, where 28 and 8 optimality cuts were added respectively. These values are far from the
average and thus, they cause the lower bound to be very high, whereas for the upper bound, these
two solutions are ignored.

From Table 7, it can also be seen that the number of optimality cuts does not increase with the
sample size. This is an important result in the paper by Verweij et al. (2003). It extends to our
analysis, which is shown more clearly in Figures 1 and 2. For both the SPPRT and TSPRT, the
average number of optimality cuts is fairly constant across the sample size. Note that the constant
number of cuts for the SPPRT arises when the shortest path only includes deterministic travel
times. At each integer solution, an optimality cut is added. The solver finds the same integer
solutions in the branch-and-bound process for differing sample size because the problem remains
approximately the same.
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We also replicate another result from Verweij et al. (2003), namely that the computation time
increases linearly with the sample size N . Figure 3 shows the average computation time for the
TSPRT for instances of varying size. The slope of the CPU time is fairly constant for all instances.
Note that the computation times for the larger instances are lower because less optimality cuts are
added there.

Finally, Tables 3, 4, 5 and 6 give a detailed description of the results for the SPPRT and TSPRT
corresponding to the instances eil51 and st70. The results are very similar to those in Verweij et
al. (2003). However, the computation times are much lower here. The decrease in CPU time is
around 70 percent. This is due to the increased computing power and advancements in the MIP
solver. For a more detailed overview of the results for other instances, we refer to the Appendix.

Figure 1: Average number of optimality cuts for the SPPRT

The average number of optimality cuts added in the SPPRT for instances of varying size.

Figure 2: Average number of optimality cuts for the TSPRT

The average number of optimality cuts added in the TSPRT for instances of varying size.
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Figure 3: Average computation time for the TSPRT

The average computation time for the TSPRT for instances of varying size.

6.3 Computational results for the TSPRTTW
The results for the TSPRTTW for instances eil51, st70, eil76, rat99, kroC100, kroD100 and rd100
are shown in Table 8. The problem instances have been solved for a sample size of N = 200 and
for each sample, the number of nodes in the branch-and-bound tree for the SAA MIP is limited
at 10,000. The objective value, defined in Equations (13) and (18), can be split up in three parts:
the deterministic routing cost, the violation of the final deadline and the violation of deadlines at
intermediate nodes. The first two values and the total are shown in the table. Furthermore, recall
from Section 5 that the time windows were derived using the average arrival times of a solution to
the TSPRT. We also report the objective value in the TSPRTTW setting using this solution (x̂∗T ).
We expect it to perform well, because the time windows are set around the average arrival time of
this route at the nodes. Therefore, we use it as a benchmark. This objective is also broken down
into the three components mentioned before.

Not surprisingly, we observe from the table that the objective values are much higher than the
results for the TSPRT shown in Table 2. The deterministic routing cost is of the same order of
magnitude as the objective of the TSPRT. However, when we include the violation of the final
deadline, the costs are always higher. This can be explained by the fact that avoiding the violation
of the final deadline is not the only objective when time windows are included. Several other
deadlines are at hand, meaning that it is sometimes more optimal to violate the final deadline
more, while incurring less violations at intermediate nodes. Another important reason for the high
violation at the depot, is that the vehicle has to wait till ai if it arrives at node i before that time.
This occurs several times in the solutions, which causes the delay at later nodes to increase. The
remaining costs are due to violating the deadlines of intermediate nodes on the tour. These costs
are very high, which means that the solutions we found may well be suboptimal due to the node
limit of 10,000. This is confirmed when we take into account the objective value corresponding to
the solution of the TSPRT, shown in column seven of Table 8. These objective values are much
lower for all instances, meaning that the solution we found is far from optimal. Hence, the solution
method is not capable of finding a good solution to the SAA MIPs in 10,000 nodes. This was also
discussed in Section 6.2, where we argued that the approach for adding subtour cuts causes the
solver to run out of nodes quickly, without finding a good solution.

Note that we could have found the solution x̂∗T by visiting the time windows in the chronological
order. However, this is not a good solution in general. Because of the way we generated the time
windows, the chronological order of the time windows corresponds with a short route in terms of
traveling time since it is based on a good tour for the TSPRT. In general, visiting the nodes in the
chronological order of the time windows may result in a very high objective value because it may
have a very high traveling time. In such cases, the solution approach we propose may well perform
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better.

Table 8: Solution values and gaps with the lower bound for the TSPRTTW

Instance ẑ105(x̂∗) ẑ105(x̂∗)Det ẑ105(x̂∗)Viol Gap σ̂Gap ẑ105(x̂∗T ) ẑ105(x̂∗T )Det ẑ105(x̂∗T )Viol

eil51 20630.2 496.1 458.3 -3826.1 1241.2 7528.7 460.5 154.8
st70 27124.0 853.1 401.1 -39333.6 9030.1 13736.8 706.2 147.5
eil76 35506.4 571.2 522.3 -17176.9 3146.2 11718.0 562.6 166.0
rat99 188551.5 1618.1 2604.2 -18295.8 5908.4 29942.3 1276.4 387.7
kroC100 2166552.7 36498.2 29188.6 -190833.5 29791.2 538808.2 21574.4 5598.4
kroD100 3773921.5 31773.8 43744.8 -1460006.0 334070.8 491709.5 22636.8 4800.3
rd100 1016216.6 12915.4 11862.9 -706775.4 139440.7 168344.3 8974.9 1752.9
This table shows the objective values of the solutions obtained for the TSPRTTW for problem instances of varying size. The number of
nodes in the branch-and-bound tree was set at 10,000 and a sample size of N = 200 was used. The third and fourth column show the
part of the costs that are due to the deterministic routing costs and the violation of the final deadline, respectively. The same is shown
in the last two columns for the solution x̂∗T , which denotes the solution obtained for the TSPRT on which the time windows are based.

The reason we discussed the node limit issue in Section 6.2 was that some large negative gaps
were found between the upper and lower bounds. Although it was only present for the larger
instances in that section, we find a large negative gap for every instance of the TSPRTTW. When
we measure the gap in terms of its standard deviation, the size seems to increase when the problem
size increases. For example, for the kroC100 instance, the size of the gap is approximately six
standard deviations. As explained previously, the upper and lower bound are random variables
and a negative gap up to two standard deviations would not be unexpected. However, the absolute
value of the gap is always larger here. Because the problem seems to be more severe for the large
instances, we again argue that the node limit is to blame. The SAA MIPs, arising in each sample,
are difficult to solve to optimality. A relatively good solution is found only rarely, and therefore
the variation in the lower bound is not that high whereas the best of the M = 10 solutions is much
lower than the average solution. So only in one or two out of the M = 10 samples, a good route is
found. For the other samples, we do not find a good tour yet, but we expect to find it when more
nodes can be used in the branch-and-bound process.

Table 9: Detailed solutions for the TSPRTTW for eil51 and st70

Instance z̄N σ̂z̄N ẑ105(x̂∗) σ̂ẑ105 (x̂∗) CPU σ̂CPU Opt. Cuts σ̂Opt. Cuts Total CPU

eil51 24456.3 1239.25 20630.2 70.03 25m27s 248.47 553.5 82.90 4h14m41s
eil51 (N = 500) 21344.9 457.61 17804.0 59.65 1h10m43s 666.09 567.5 65.42 11h48m9s
eil51 (α = 3) 20544.6 1302.87 13538.5 46.04 23m25s 259.43 576.3 99.68 3h54m34s
st70 66457.6 9029.53 27124.0 100.45 19m35s 148.19 293.7 39.25 3h16m7s
This table gives a detailed overview of the obtained results for two instances: eil51 and st70. The sample size we used is N = 200, except for
the results in the third row. In the fourth row, α = 3 indicates that the width of the intervals is three times higher for this instance (see Section
5). If not indicated explicitly, α = 1. A node limit of 10,000 was used for the SAA MIP in each sample. The table shows the average lower
bound, the upper bound, the average computation time and the average number of optimality cuts. Each of these values is accompanied by
the standard deviation. In the last column, the total computation time is shown.

Table 10: Detailed solutions for the TSPRTTW for eil51 with a node limit of 30,000

Instance z̄N σ̂z̄N MIP Gap σ̂MIP Gap ẑ105(x̂∗) σ̂ẑ105 (x̂∗) CPU σ̂CPU Opt. Cuts σ̂Opt. Cuts Total CPU

eil51 20256.0 937.09 98% 0.00 14914.2 50.57 7285.4 744.42 2450.3 234.46 20h9m59s
This table gives a detailed overview of the obtained results for the instance eil51 where the node limit is increased to 30,000. The sample size we used is
N = 200. The table shows the average lower bound, the upper bound, the average optimality gap of the SAA MIPs, the average computation time and
the average number of optimality cuts. Each of these values is accompanied by the standard deviation. In the last column, the total computation time is
shown.

For eil51 and st70, a more detailed description of the results is given in Table 9. The variation
in the number of optimality cuts is high. For example, for the eil51 instance, the minimum number
of cuts added is 415 and the maximum is 687. This supports our argument that for some samples,
the solution found is much better than other solutions. If a lot of cuts are added, it means that
many feasible tours were found in the branch-and-bound process. Most likely, a better tour is
found than when the number of feasible tours found is rather small. This implies that the SAA
MIP in some samples is solved closer to optimality than in most other samples. To examine this
in more detail, we solved the same problem with a node limit of 30,000 instead of 10,000 of eil51.
The results in Table 10 indicate that the limit is still far too low. It seems that the TSPRTTW

24



instances are very difficult to solve to optimality with the applied methodology. The average SAA
MIP gap (98%) is high, although the objective value is lower than the one for the lower node limit
in Table 9. Furthermore, we find a strong correlation (0.98) between the objective of the SAA MIP
(i.e. the lower bound) and the gap of the SAA MIP. So the variation in the lower bounds is not
only due to the difference in the samples, but also due to the difference in solution quality.

We expect the variation in the samples to reduce if the sample size is increased. This seems
to hold, since we can see in Table 9 that for a sample size of N = 500, the variation in the lower
bound is smaller than the one for N = 200. We also observe that the objective value decreases
if the width of the time windows increases. In the fourth row of Table 9, we find that the costs
decrease by approximately 35%. Therefore, increasing the window width has a large effect on the
costs.

Another important result in the table is the strong increase in computation time compared to
the SPPRT and TSPRT. For example, for eil51, the total computation time is approximately 35
times as large as for the TSPRT, if we use a sample size of N = 200. This suggests that it requires
much more computational effort to generate the optimality cuts for the TSPRTTW than those for
the TSPRT. We investigate this in more detail in the next section.

6.4 Comparison of the methodology for TSPRT and TSPRTTW
The TSPRTTW is a more general problem than the TSPRT. If we set the time windows [ai, bi]
very wide (α = 1000) for all nodes except for the depot, we are left with the TSPRT. Therefore, we
can compare the solution approach for the TSPRT with the solution approach for the TSPRTTW.
The first-stage problem is similar, but the second-stage problem is different, leading to different
optimality cuts. By applying the solution approaches to identical problem instances, we can
compare the performance.

Table 11 reports the results for both methodologies on the instances eil51 and st70 for a sample
size of N = 200. In both cases, the node limit is set at 10,000 and this limit is reached always.
Clearly, the solutions for the TSPRT are better than those for the TSPRTTW. The reason is that
the TSPRT approach is able to solve the problems closer to optimality, as we observe that the
average SAA MIP gap for the TSPRT is lower. Because the number of optimality cuts is higher for
the TSPRTTW, it may well be that these cuts are weaker than the cuts for the TSPRT. Another
factor that plays a role is the graphs on which the problems are defined. The TSPRTTW is defined
with directed arcs, so it contains twice as much variables as the TSPRT. This will also make it
more difficult to solve the SAA MIPs. In addition, the variation in the SAA MIP gap is smaller
for the TSPRT. Earlier this section, we mentioned that the reason for the negative gaps may be
that some of the M problems are solved close the optimality, while for others the SAA MIP gap
is still large. The table seems to confirm this explanation as the optimality gap seems to become
lower (i.e. tending to −∞) when the variation in the SAA MIP gap is higher.

Another clear difference between the two approaches is the computation time. The TSPRT
is solved much faster. First of all, less optimality cuts are added in the TSPRT. Deriving those
cuts is the most time-consuming part of the solution process. As we discussed in Section 4, the
second-stage problem for the TSPRT is very straightforward, whereas for the TSPRTTW, N LP
problems need to be solved. For illustration, the average time to derive an optimality cut for eil51
is 0.03 seconds for the TSPRT, but 2.75 seconds for the TSPRTTW. This is the most important
factor for the difference in computation times. In addition, the graph for the TSPRTTW contains
two directed arcs for each edge in the TSPRT. Hence, the number of variables is twice as high in
the TSPRTTW, which also makes the problem more complex.

Table 11: Comparison of the methodology for the TSPRT and TSPRTTW for eil51 and st70

Instance Meth. z̄N σ̂z̄N MIP Gap σ̂MIP Gap ẑ105(x̂∗) σ̂ẑ105 (x̂∗) Opt. Cuts σ̂Opt. Cuts Total CPU

eil51 TSPRT 542.7 5.21 8% 0.01 556.5 1.85 177.6 20.68 3m36s
TSPRTTW 570.7 5.82 28% 0.02 575.3 1.95 189.1 22.67 1h32m28s

st70 TSPRT 783.0 3.25 11% 0.01 793.7 2.58 116.2 19.03 4m28s
TSPRTTW 967.5 33.81 38% 0.06 852.4 2.83 159.1 19.91 1h49m52s

This table gives a detailed comparison of the methodology for the TSPRT and the TSPRTTW for the instances eil51 and st70. For the TSPRTTW,
the time windows at the intermediate nodes are set very wide, such that they are never violated. The second column shows which type of methodology
is adopted. The sample size we used is N = 200 and a node limit of 10,000 was used for the SAA MIP in each sample. The table shows the average
lower bound, the upper bound, the average remaining optimality gap for the SAA MIPs at the node limit and the average number of optimality
cuts. Each of these values is accompanied by the standard deviation. In the last column, the total computation time is shown.
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6.5 Computational results with user cuts
Recall from Section 4 that there are two approaches to adding the subtour cuts. We can either add
them when an integer solution is found or also at fractional nodes. For the second approach, we
refer to the constraints added in fractional nodes as user cuts. The results for the first approach
are shown in Sections 6.1, 6.2 and 6.3. Now, we report the results for the TSPRT and TSPRTTW
with user cuts.

6.5.1 TSPRT

The motivation for adding subtour cuts in each node in branch-and-bound, is that we expect to
find a better route using less nodes in the search tree. In Table 2, we found some negative gaps
for the TSPRT which were larger than expected. We suspect that the optimality gap of the SAA
MIP in each sample differs across the M samples, giving rise to the large negative gaps. In Table
12, we compare the results for running the algorithm with and without user cuts. We use identical
samples (of size N = 1000) such that all the differences are due to the presence or absence of user
cuts.

As expected, the presence of user cuts means that we are able to add more optimality cuts.
The average number of optimality cuts is higher if user cuts are present for all instances. This
also means that the SAA MIP in each sample can be solved further, since the average SAA MIP
gap is always smaller with user cuts. For the larger instances, this difference is pronounced. For
example, for rd100 the average SAA MIP gap is 5% with user cuts and 20% without them. Like we
suspected, this leads to a reduction of the size of the negative gap. For kroE100, the negative gap
is much larger than twice the standard deviation without user cuts. When user cuts are added,
the negative gap is reduced strongly and it is slightly larger than twice the standard deviation.
For kroD100, the negative gap disappears with user cuts and for rd100 the size of the negative gap
is reduced. However, this comes at a cost. The computation time approximately doubles. This is
not surprising, since the in each non-integer node, we have to check whether a user cut should be
added. In addition, more optimality cuts are generated.

Table 12: Comparison of the results for the TSPRT with and without user cuts

Instance eil51 kroD100 kroE100 rd100

UserCuts No Yes No Yes No Yes No Yes
z̄N 544.8 543.4 25563.1 25395.3 26664.0 25275.8 9805.6 9448.5
σ̂z̄N 0.66 1.02 74.82 63.70 407.24 59.09 32.37 25.86
ẑ105(x̂∗) 548.8 548.8 25530.4 25487.5 25371.1 25022.7 9751.3 9424.7
σ̂ẑ105 (x̂∗) 1.81 1.83 83.02 82.15 82.15 80.71 31.69 30.46
Gap 4.1 5.4 -32.7 92.1 -1292.8 -253.1 -54.3 -23.8
σ̂Gap 1.93 2.09 111.76 103.95 415.44 100.03 45.30 39.96
MIP Gap 7% 6% 15% 7% 20% 6% 20% 5%
Opt. Cuts 198.3 268.6 160.5 211.7 76.3 98.1 105.1 149.4
σ̂Opt. Cuts 32.68 29.24 31.05 20.73 26.15 22.78 23.97 28.60
Total CPU 24m26s 47m21s 41m55s 1h36m3s 25m59s 1h21m40s 36m22s 1h42m50s
This table gives a detailed overview of the obtained results for the instances eil51, kroD100, kroE100 and rd100. For
each instance, we show the results for N = 1000 with and without applying user cuts. Including user cuts means
that we check for subtour cuts in each node of the branch-and-bound search, also in non-integer nodes. A node limit
of 10,000 was used for the SAA MIP in each sample. The table shows the average lower bound, the upper bound, the
optimality gap of the SAA MIPs, the average computation time and the average number of optimality cuts. Each of
these values is accompanied by the standard deviation. We also report the average of the remaining MIP gap of the
SAA MIP in each sample. In the final row, the total computation time is shown.

6.5.2 TSPRTTW

For the TSPRTTW, we report the results for the solution approaches with and without user cuts
in Table 13. Again, identical samples are used of size N = 200. The node limit is 10,000 and
is always reached. Like for the TSPRT, better tours are found when user cuts are applied. The
average lower bound is lower, because the presence of user cuts enables the solver to solve the SAA
MIPs further. This also results in a lower upper bound. In addition, the size of the negative gap
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between the upper and lower bound is reduced. However, the difference in the average SAA MIP
gap is only slightly smaller with user cuts. Moreover, the size of the negative gap does not reduce
when we measure it in terms of the standard deviation of the gap. Therefore, the advantage of
including user cuts seems to be small.

In contrast to the results for the TSPRT, the computation time is lower when user cuts are
present. The reduction in computation time is substantial. The main reason is that the number of
optimality cuts is much higher if we do not add user cuts. This is a peculiar result, since we expect
the solver to find more feasible tours in a given number of branch-and-bound nodes when user cuts
are present. For each feasible tour that the solver finds, an optimality cut is added. Although
more optimality cuts are added, the solutions found without user cuts are of inferior quality.

Table 13: Detailed solutions for the TSPRTTW for eil 51 with and without user cuts

UserCuts z̄N σ̂z̄N MIP Gap σ̂MIP Gap ẑ105(x̂∗) σ̂ẑ105 (x̂∗) CPU σ̂CPU Opt. Cuts σ̂Opt. Cuts Total CPU

No 24456.3 1239.25 98.3% 0.00 20630.2 70.03 1526.6 248.47 553.5 82.90 4h14m41s
Yes 19615.4 705.97 97.8% 0.00 17226.7 58.79 386.3 43.04 88.4 19.18 1h4m34s
This table gives a detailed overview of the obtained results for the instance eil51 both with and without user cuts. The sample size we used is N = 200. The
table shows the average lower bound, the average SAA MIP gap, the upper bound, the average computation time and the average number of optimality cuts.
Each of these values is accompanied by the standard deviation. In the last column, the total computation time is shown.

6.6 Running the SAA multiple iterations with user cuts
As explained in Section 4.1, we can generate M samples multiple times and solve the SAA MIPs
until the difference between the upper and lower bound converges to a small value ε. Although
this is also mentioned in Verweij et al. (2003), they only report results for a single iteration.
Therefore, we run the SAA for multiple iterations here. In each iteration, we update the upper
bound in the usual sense. If a smaller upper bound is found, we update it, but otherwise we keep
the same upper bound. For the lower bound, this process is different. In iteration l, the lower
bound is given by the average of the objective values found in all lM SAA MIPs solved previously,
as defined in Equation (33). Therefore, the lower bound can also decrease in value and the gap
between the upper and lower bound does not always decrease monotonically. We ran 10 iterations
for the TSPRT of the instance eil51. A node limit of 10,000 was used and user cuts were applied.
The size of each sample is N = 1000.

Figure 4: Running 10 iterations of the SAA for the TSPRT of eil51

The SAA is run for 10 iterations for the TSPRT of the instance eil51. The best upper and lower bound are shown
after each iteration. A sample size of N = 1000 is used and the node limit is 10000.

The results are shown in Figure 4. Clearly, the optimality gap does not decrease monotonically.
This is due to the fluctuation in the lower bound. The upper bound is an approximation with a
very small standard deviation, since it is based on a sample size of N ′ = 100000. On the other
hand, the standard deviation of the lower bound can be relatively large in the first iterations. For
example, in the first iteration, the lower bound is based on the average of the objective values of
M = 10 SAA MIPs, each based on a sample of size N = 1000. Therefore, the lower bound can
fluctuate in the first few iterations, but its standard deviation will decrease in higher iterations.

27



This can also be seen in the figure, because in the last few iterations, the lower bound is relatively
constant. At the ninth iteration, the optimality gap is 0.14 which is 0.03% of the lower bound.
This seems to indicate that the optimality gap will converge to zero if more iterations are added.
This suggests that the SAA method is a suitable approach for solving two-stage SRPs.

7 Conclusion
In this thesis, we applied the sample average approximation (SAA) method to the shortest path
problem, traveling salesman problem and the traveling salesman problem with soft time windows,
all with random travel times. The first two problems have also been investigated by Verweij et
al. (2003). We replicate their solution method, which implements the SAA in a branch-and-cut
framework based on Benders decomposition. We find similar results, for example that the number
of optimality cuts is constant in the sample size used in the SAA and that hence, the computation
time grows linearly with the sample size. We also investigated different approaches for adding
subtour elimination constraints to the traveling salesman problem with random travel times. We
find that adding the constraints also at fractional solutions, instead of only at integer solutions,
leads to a better solution when using a given number of nodes in the branch-and-bound tree.
Therefore, it is recommended to use this approach when computer memory is limited. It remains
to be seen whether it is also requires less computation time. This would be interesting to investigate
in future research. We also run the SAA for multiple iterations and observe that the gap between
the upper and lower bound converges to zero. However, the gap does not decrease monotonically
due to the way in which the lower bound is defined in the SAA.

We extended the SAA to the traveling salesman problem with random travel times and soft
time windows (TSPRTTW). We are not able to find good solutions to the deterministic SAA MIP
arising for each sample, using 10000 nodes in the branch-and-bound search. For most SAA MIPs,
an optimality gap of 98% remained at the node limit. Adding subtour elimination constraints also
at fractional branch-and-bound nodes, slightly improves the solution quality.

For all three types of problems, we find that it is important to have a good formulation and
solution algorithm for solving the SAA MIPs. If the remaining optimality gaps are large, we may
find differences in the optimality gaps across the samples. This can result in a negative gap between
the upper and lower bound that are computed with the SAA. We often find these negative gaps
for the TSPRTTW. Therefore, an interesting road ahead for future research is to find an improved
formulation or solution algorithm for the TSPRTTW. In addition, test instances are needed for
this type of problem.
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8 Appendix

8.1 Pseudocode for the Hao and Orlin (1992) algorithm
Besides the notation developed in Section 4.5, we define d(i) as the distance label corresponding
to node i ∈ V . This label is an integer in the range {0, 1, . . . , |V |}. These labels are used to make
sure that the flow is sent in the direction of the sink. Flow can only be sent to nodes with a lower
distance label. Therefore, the sink will have the lowest distance label.

Furthermore, the nodes are divided in two sets, D and W. The set D denotes the set of dormant
nodes and W the set of awake nodes. Nodes belong to D or W, depending on which condition they
satisfy. A node i belongs to D if there is no arc (i, j) such that rij > 0 and j ∈ W . On the other
hand, for two nodes i and j in W, it should hold that if rij > 0 then d(i) ≤ d(j) + 1. Then, we can
define a node i to be active if i ∈W \{t} and e(i) > 0. An arc (i, j) is admissible if i, j ∈W, rij > 0
and d(i) = d(j) + 1. The Hao and Orlin algorithm is then given by the following set of methods:

Algorithm FindMinCut(s)
Initialize;
while S 6= V do

while G contains an active node do
Select an active node i;
if G contains an admissible arc (i, j) then

push δ ← min{e(i), rij} units of flow from node i to node j;
else Relabel(i);
end if

end while
if u(D,W ) < BestValue then

Cut ← (D,W );
BestValue ← u(D,W );

end if
SelectNewSink;

end while

Algorithm Initialize
for each arc (0, j), send r0j units of flow on (0, j);
DormantSet(0) ← {0};
Dmax ← 0;
W ← V \ {0};
t← 1;
d(t)← 0;
for each j ∈ V \ {t} do

d(j)← 1;
end for
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Algorithm Relabel(i)
if i is the only node in W with distance label d(i) then

Dmax ← Dmax + 1;
R← {j ∈W : d(j) ≥ d(i)};
DormantSet(Dmax) ← R;
W ←W \R;

else if there is no arc (i, j) such that rij > 0 and j ∈W then
Dmax ← Dmax + 1;
DormantSet(Dmax) ← {i};
W ←W \ {i};

else d(i)← min{d(j) + 1 : (i, j) ∈ A, j ∈W and rij > 0};
end if

Algorithm SelectNewSink
delete t from W ;
add t to both set S and DormantSet(0);
if S=V then

quit;
end if
for each arc (t, k) ∈ A with k ∈ V \ S do

send rtk units of flow on arc (t, k);
end for
if W = ∅ then

W ← DormantSet(Dmax);
Dmax ← Dmax − 1;

end if
select j ∈W such that d(j) is minimum;
t← j;
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8.2 More detailed results for some instances
Here we report more detailed results for the instances kroD100, kroE100 and rd100. For some
large instances, we found a large negative gap for the TSPRT with a sample size of N = 1000. As
can be seen from the tables, we do not find a negative gap for all sample sizes.

Table 14: Detailed results for the TSPRT for the instance kroD100

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

kroD100
z̄N 25427.4 25538.9 25511.7 25305.6 25653.5 25444.5 25503.5 25697.6 25545.8
σ̄z̄N 79.14 130.64 78.04 125.00 72.29 92.77 81.78 63.28 78.52
ẑ105(x̂∗) 25891.0 25611.3 25623.2 25504.6 25540.3 25480.8 25486.7 25714.2 25596.3
σ̂ẑ105 (x̂∗) 84.00 83.14 83.24 83.68 82.93 82.45 82.40 83.06 82.46
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 37.1 50.3 69.4 78.3 106.0 139.9 174.8 235.9 267.6
σ̂CPU 4.51 6.65 7.81 12.03 10.72 21.52 23.51 29.15 53.88
Opt. Cuts 145.2 148.9 161.4 136.8 145.1 150.6 156.5 165.3 163.1
σ̂Opt. Cuts 29.57 23.05 12.70 23.90 17.47 24.15 25.20 22.53 35.29
Total CPU 6m15s 8m28s 11m38s 13m7s 17m24s 23m23s 29m53s 39m27s 44m41s
This table shows a detailed overview of the results obtained for the kroD100 instance for the TSPRT. Lower bounds, upper
bounds, number of nodes, computation time and computation time are shown with their standard deviation. In addition,
the total CPU time is shown. A node limit of 10,000 is used for the SAA MIP in each sample.

Table 15: Detailed results for the TSPRT for the instance kroE100

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

kroE100
z̄N 26002.6 26218.6 26350.9 26151.0 27010.6 26345.6 26629.4 26531.2 26435.1
σ̄z̄N 218.10 210.42 241.47 195.49 314.99 160.61 207.04 215.77 292.38
ẑ105(x̂∗) 25474.4 25709.9 25773.8 25329.5 26067.1 25833.4 25916.7 25700.3 24963.6
σ̂ẑ105 (x̂∗) 82.09 83.38 83.75 82.17 85.05 83.04 83.96 82.90 80.27
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 36.4 43.5 58.4 70.8 95.4 101.8 137.4 179.3 207.3
σ̂CPU 6.13 7.69 11.87 17.58 21.23 21.52 25.33 38.24 52.06
Opt. Cuts 90.2 73.4 94.5 86.1 86.3 81.0 95.3 97.7 96.7
σ̂Opt. Cuts 26.89 17.34 41.96 25.19 26.42 28.25 31.19 24.62 31.07
Total CPU 6m9s 7m20s 9m50s 11m54s 15m0s 17m4s 22m59s 29m58s 34m49s
This table shows a detailed overview of the results obtained for the kroE100 instance for the TSPRT. Lower bounds, upper
bounds, number of nodes, computation time and computation time are shown with their standard deviation. In addition,
the total CPU time is shown. A node limit of 10,000 is used for the SAA MIP in each sample.
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Table 16: Detailed results for the TSPRT for the instance rd100

Number of sample scenarios (N)

200 300 400 500 600 700 800 900 1000

rd100
z̄N 9943.4 9984.9 9747.5 10036.7 9900.1 9801.1 9841.7 9880.2 10184.5
σ̄z̄N 119.76 180.39 48.43 210.69 75.14 60.71 88.77 93.77 221.54
ẑ105(x̂∗) 9938.9 9747.1 9691.1 9676.5 9785.6 9681.9 9633.4 9628.2 9686.3
σ̂ẑ105 (x̂∗) 32.33 31.46 31.41 31.65 31.81 31.30 31.40 31.31 31.43
Nodes 10000 10000 10000 10000 10000 10000 10000 10000 10000
σ̂Nodes 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CPU 44.7 52.1 61.9 81.9 106.3 130.9 147.0 230.9 179.1
σ̂CPU 6.83 5.31 8.49 14.90 20.70 27.34 15.34 46.15 42.00
Opt. Cuts 95.9 76.3 73.7 89.1 91.9 100.7 95.8 122.3 76.9
σ̂Opt. Cuts 39.33 19.95 20.53 26.81 29.84 32.09 16.65 23.61 27.26
Total CPU 7m33s 8m46s 10m25s 13m45s 17m49s 21m54s 24m55s 38m33s 29m55s
This table shows a detailed overview of the results obtained for the rd100 instance for the TSPRT. Lower bounds,
upper bounds, number of nodes, computation time and computation time are shown with their standard deviation. In
addition, the total CPU time is shown. A node limit of 10,000 is used for the SAA MIP in each sample.
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