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Abstract

Alpha is used as a measure of model comparison as model mispricing, usually by modeling

test-asset returns. However, Barillas and Shanken (2017) give an idea that test assets are

irrelevant in model comparison and excluded factors are more reliable evidence. In this

paper, we replicate the work of Barillas and Shanken (2017), with illustrations of non-nested

model comparison. Most of the replication is quite successful, except that the result of

model comparison based on the likelihood metric is different, which is acceptable because

likelihood and model alpha have different norms in model comparison. As extensions, we

further confirm the power of different methods of comparison for nested models, as well as

with a nonsensical factor. It turns out that both excluded factors and test assets perform well

for nested models, while the likelihood always gives inaccurate results. With a nonsensical

factor, excluded factors fail to make a correct conclusion, but the test-asset evidence is

still reliable, which gives an opposite opinion with Barillas and Shanken (2017). Another

extension is about model comparison with nontraded factors, where we find that the test-

asset evidence turns out to be inaccurate due to the effect of mimicking portfolios.



1 Introduction

Alpha is commonly used to measure the performance of mutual funds and all types of investments

in modern financial market. It is often considered as the active return on an investment, which

indicates the performance of that investment against a benchmark. In asset pricing, alpha can

also serve as a measure of model mispricing as the deviation from the expected value determined

by benchmark factors. Jensen (1968) in the early paper first raises ”Jensen’s alpha”, where he

considers excess market returns as the only benchmark factor. Over the decades, more and more

factors have been introduced in asset pricing model. The Fama-French (FF3, 1993) three-factor

model is one of the most significant factor models, which includes the small minus big (SMB)

size factor and high minus low (HML) value factor. As extensions of FF3, researchers further

come up with other factor models such as Fama-French (FF5, 2015) five-factor model and the

eight-factor model recently introduced by Skocir and Loncarski (2018).

Alpha is useful in obtaining an efficient portfolio as well. Sharpe ratio is a kind of tool

to measure portfolio performance, which equals to the expected excess return divided by the

standard deviation of a portfolio. A nonzero alpha means the Sharpe ratio can be improved by

complementing investment in the benchmark portfolios with a position in the given asset. Thus

the aim of asset pricing is equivalent to spanning an efficient portfolio.

Normally when comparing asset pricing models, researchers emphasize the competition in

pricing test-asset returns. While in the paper of Barillas and Shanken (2017), they argue that

models should be compared in terms of their ability to price all returns, both test assets and

factors. In particular, the ability to price excluded factors plays the key role in model comparison,

and test assets should be irrelevant. Besides, Barillas and Shanken (2017) also gives a likelihood

metric, where models can be ranked based on their likelihoods.

In this paper, we replicate the work of Barillas and Shanken (2017). During the replica-

tion, we further confirm that excluded factor is a more reliable evidence for model comparison

compared to test asset for non-nested models, while deviation arises in the replication of the

illustration of likelihood, which is explainable since likelihood and alpha have different objectives

in model comparison. However, it is still unclear whether the conclusion still holds for nested

models, and whether these methods are still applicable with certain disturbance. Therefore,

as an extension, we give further exploration for these questions. The extension consists of two

parts. The first part focuses on the research question whether excluded factors are still a better

evidence than test assets for nested model comparison, where we use the FF5 model which nests

FF3 as an illustration. It turns out that excluded factors and test assets have almost equivalent

performance. In the second part, a random walk process is generated based on the standard

normal distribution, which serves as a nonsensical factor in order to answer the research ques-

tion whether excluded factors and test assets still work for model comparison with a nonsensical

factor. The result exposes the defect of excluded-factor evidence because in this case it favors

the inefficient ”FF3 with the nonsensical factor” against FF3. In contrast, test assets can still

give the correct conclusion without being affected by the nonsensical factor, which is opposite
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with Barillas and Shanken (2017).

In terms of model comparison with nontraded factors, Barillas and Shanken (2017) do not

dive into it. The difference with model comparison with traded factors is that test assets can be

used to construct mimicking portfolios of nontraded factors. Since the weight of each test asset

in mimicking portfolios are different, the conclusions of different test-asset regressions might also

be diverse. Thus in the second extension, we further explore this problem based on the research

question that how test assets impact model comparison with nontraded factors. To answer this

question, an empirical illustration is conducted, where we still use FF3 as the basic model, and

add nontraded factors to form a larger model to compare. Harvey, Liu and Zhu (2015) collects

hundreds of risk factors and estimate their significance. Here we use the civilian unemployment

rate and consumer price index (CPI), which are both nontraded and proved significant factors.

Besides, we also include the impressive nontraded liquidity factor, introduced by Pastor and

Stambaugh (2003). Even though we choose three nontraded factors, it turns out that only the

liquidity factor can be captured by the test assets, thus it is the only nontraded factor which we

finally adopt. With the mimicking portfolio as a substitute for the nontraded factor, we draw

the conclusion that test-asset evidence is not reliable in this case since it is highly affected by

which test asset we use.

Overall, this paper contributes for alpha-based model comparison, and helps financial insti-

tutions or managers to choose the proper method to compare models with different conditions,

therefore optimize portfolios.

The paper is organized as follows. Section 2 introduces the structure and sources for the

data applied in this paper. It follows with replication. Section 3 summarizes the basic idea of

test-asset irrelevance in Barillas and Shanken (2017). Section 4 discusses how to perform alpha-

based model comparison for nested and non-nested models. Section 5 introduces the likelihood

metric and a corresponding illustration as well. Section 6 gives an example of non-nested model

comparison provided in Barillas and Shanken (2017). The subsequent sections expand Barillas

and Shanken (2017) with two extensions. Section 7 discusses nested model comparison and gives

some examples as well. Section 8 incorporates nontraded factors and discusses how test assets

make a difference in model comparison. Finally Section 9 gives a summary for this paper.

2 Data

In asset pricing models, most of the risk factors we use in this paper are introduced by Fama

and Fench (1993, 2015). There are three traditional Fama-Fench factors: the excess return of

the market portfolio (Mkt), small minus big (SMB) size factor and high minus low (HML) value

factor. Besides, there are two newly introduced factors: the profitability factor (RMW) and

the investment factor (CMA). The data of these factors, as well as the sorted portfolios which

we use as test assets, are available in Kenneth French’s website. The data of HMLm, which is

another version of HML, is downloaded from the website of AQR Capital Management: ”The
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Devil in HML’s Details” data set. For the nontraded factors, data of civilian unemployment

rate and consumer price index (CPI) is obtained from the website of Federal Reserve Economic

Data (FRED), and the data for the nontraded liquidity factor is provided by Lubos Pastor’s Re-

search. During the replication, we use the same sample period as Barillas and Shanken (2017),

which is from July 1963 to December 2013. The data for the two extensions are relatively more

recent, while still considering the limitation of data availability, which is from January 1968 to

December 2017. All of the data stated above is monthly data.

3 Test-Asset Irrelevance under the Sharpe improvement metric

The main idea of Barillas and Shanken (2017) is that model comparison should be based on the

extent to which each model is able to price the factors in the other models, indicated by the

excluded-factor alphas, which should be irrelevant with test assets. To clarify this idea, they

start with a theoretical evidence under Sharpe improvement metric to show that test assets are

irrelevant in model comparison. The proof is as follows:

Assume there are two imperfect pricing models, M1 with factors f1 and M2 with factors f2.

Now a set of test-asset returns R is provided to evaluate the models. Since they are imperfect

models, adding additional information can attain improvement in the squared Sharpe ratio. In

this way, if M1 performs better, then the Sharpe improvement gained from adding the excluded

factors and test assets to M1 is smaller than that to M2. The following relation holds,

Sh2(f1, f2, R)− Sh2(f1) < Sh2(f2, f1, R)− Sh2(f2), (1)

where Sh2(·) denotes the maximum available squared Sharpe ratio from the portfolios of the

given returns. Since both sides of Equation (1) are the sum of Sharpe improvement gained from

adding the excluded factors and test assets, the improvement from test assets can be canceled.

Then we have the following relation,

Sh2(f1, f2)− Sh2(f1) < Sh2(f2, f1)− Sh2(f2). (2)

This process implies the test-asset irrelevance in model comparison. Intuitively, test-asset pric-

ing is a kind of absolute test, thus it cannot measure the relative performance of two models.

However, it is still important to evaluate the ”absolute” ability of the better model by pricing

test assets.

4 Alpha-based model comparison

In this section, we replicate the work of Barillas and Shanken (2017) about how to perform model

comparison with traded factors based on alpha. On the basic of Gibbons, Ross, and Shanken
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(GRS, 1989) test, Barillas and Shanken (2017) give a relation between a quadratic form of alphas

and improvement in squared Sharpe ratio, which is the center of the methodology. During the

replication, we clarify the relation first, furthermore derive specific implications for nested and

non-nested model comparison.

4.1 Relation between alpha and Sharpe ratio

Before giving the relation between model alpha and Sharpe ratio, it is important to make it

clear that what asset pricing factor model is. It is a kind of factor models for the asset price.

For example, capital asset pricing model (CAPM) can be viewed as a sing-factor model with

excess market returns, and FF3 is a model with three factors to price asset returns. The essen-

tial idea of factor models is to describe the N asset returns Rit in terms of k common factors fit, as

Rit = αi + βi1f1t + βi2f2t + ...+ βikfkt + εit, (3)

where Rit is the return on asset i in period t, fjt is the j-th common factor and βij is the factor

loading for asset i on factor j, with error terms εit. (i= 1, ..., N and j= 1, ..., k).

We can also write the returns Rt = (R1t, R2t, ..., RNt)
′ on N assets compactly as

Rt = α+ βft + εt (4)

where ft = (f1t, f2t, ..., fkt)
′ and β is a N × k matrix with factor loadings. There are three

assumptions for factor models: (1) the factor realizations ft are stationary with constant mean

and variance; (2) error terms εit have zero mean and invertible covariance matrix, and they are

uncorrelated serially as well as across assets; (3) error terms εit are uncorrelated with each of

the factors fit.

Here we refer the assets Rt as test assets, and denote the alpha of test assets on factors in

Equation (4) as αR. Gibbons, Ross, and Shanken (1989) show that the improvement in the

squared Sharpe ratio from adding test-asset returns to the universe of factors is equivalent to a

quadratic form of the test-asset alphas:

α′RΣ−1αR = Sh(f,R)2 − Sh(f)2, (5)

where Σ is the covariance matrix of the error terms εit. With this relation, we can perform

alpha-based model comparison in terms of Sharpe improvement.

4.2 Implications for nested model comparison

A model is nested in a larger model when its factors are all included in the larger model. In

this way, M1 with factors f1 is nested in a larger model M with factors f = {f1, f2}. Since test

assets are irrelevant in model comparison as proved in Section 3, we focus on excluded factors
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solely. Regressing f2 on f1, then we can obtain the excluded-factor regression as follows:

f2t = α21 + df1t + ut. (6)

where α21 is the excluded-factor alpha, d denotes (matrix of) coefficients and ut is the error

term. As shown in Fama and French (2016), the idea behind the excluded-factor regression is

that, if a factor can be captured by its exposures to the other factors in a model, then the factor

plays no role in the explanation of the model. According to Equation (6), when the alphas are

zeros for all the excluded factors, which means α21 = 0, it holds that Sh(f)2 = Sh(f1)
2. With

the equivalent Sharpe ratios of two models, we favor M1 which has less factors according to the

parsimony principle. Alternatively, if α21 6= 0, which means Sh(f)2 6= Sh(f1)
2. It must hold

that Sh(f)2 > Sh(f1)
2 because the left-hand side of Equation (5) is a quadratic form of alphas

with positive definiteness. So that model M is a better model compared to M1. Thus we can

conclude that the nested model is the better model if and only if α21 = 0.

4.3 Implications for non-nested model comparison

When we compare non-nested models, we can transform them into nested models and follow

the same method above. More explicitly, suppose we need to compare models M1 and M2 with

factors f1 and f2 respectively. M1 and M2 are non-nested in each other, which means there are

excluded factors for both of the models. However, M1 and M2 can be seen as nested models

of a larger model M with factors f = f1 ∪ f2. Let f∗1 denotes the factors of f after removing

factors of f1 and f∗2 denotes the factors of f after removing factors of f2. When we perform

the excluded-factor regression of M1, we regress f∗1 on f1 and obtain excluded-factor alpha α∗1.

Similarly, the excluded-factor regression for M2 is regressing f∗2 on f2 and get α∗2. However,

instead of testing whether the alphas are equal to zeros as nested model comparison, we need to

compare the magnitudes of α∗1 and α∗2. A smaller alpha implies a better ability to price excluded

factors, which indicates that the model is better than the other.

5 Likelihood-based model comparison

In the last section, we summarize how to perform alpha-based model comparison. In fact, in the

paper of Barillas and Shanken (2017), they also provide a likelihood-based model comparison

metric, which can prove test-asset irrelevance as well. In this section, we introduce the likelihood

metric, and further replicate the corresponding illustration performed by Barillas and Shanken

(2017).

To elaborate this metric, we require additional notations. Let f∗it denotes the factors in ft

excluded from fit at period t, and let α∗i denotes the intercept in the regression of f∗it on fit,

i = 1, 2. Dt represents all the data at period t, Dt=(ft, Rt).
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Now we try to draw the likelihood function for model Mi. Since the data universe Dt for

each model i can be divided into three parts, ft, f
∗
t and Rt, we can use their marginal and

conditional densities to rewrite the joint density. Thus the likelihood of model Mi consists of

three parts:

(1) the marginal density of fit. Assume normal distribution, it can be written as a function

of two parameters µfi and Σfi , then the likelihood is represented by Li(µfi ,Σfi |fit);
(2) the conditional density of f∗it given fit. If we write the regression of f∗it on fit as follows,

f∗it = α∗i + β∗i fit + ε∗it, (7)

with Cov(ε∗it|fit) = Σ∗i , then the corresponding likelihood is Li∗(α∗i , β
∗
i ,Σ

∗
i |ft);

(3) the conditional density of Rt given ft. Assume the regression of Rt on ft is

Rt = αR + βRft + εRt (8)

with Cov(εRt|ft) = ΣR, the likelihood would be LR(αR, βR,ΣR|Dt).

The product of the three likelihoods gives an expression for the likelihood of Mi. But it

is not enough since we still need to impose the restrictions that model Mi can price both the

test-asset returns and excluded-factor returns (αR = 0 and α∗i = 0). With the restrictions, now

it gives the likelihood of Mi:

L(Mi) = Li(µfi ,Σfi |fit)× Li∗(0, β∗i ,Σ
∗
i |ft)× LR(0, βR,ΣR|Dt). (9)

5.1 An illustration of model comparison under the Likelihood metric

Now we replicate the model comparison based on likelihood as Barillas and Shanken (2017).

The objective is to see whether we can succeed in replicating their result. If not, we need to find

out the reasons which could be causing the differences.

The maximal likelihood Lmax(Mi) of each model Mi is obtained by maximizing the three

components in Equation (9) respectively, and a higher likelihood value indicates a better model.

However, a model with more parameters is likely to overfit even though it could has a higher

likelihood value. To avoid such situation, we apply the well-known Akaike information criterion

(AIC) as another instrument where the number of parameters mi is incorporated:

AICi = −2ln[Lmax(Mi)] + 2mi. (10)

AIC can serve as a measure of adjusted likelihood. Unlike the likelihood, a better model should

have a lower value of AIC.

With these criterion, now we introduce the two models which Barillas and Shanken (2017)

use to compare: FF3 model with factors Mkt, SMB and HML, and 4FM model with factors

Mkt, SMB, HMLm and UMD. Most of the definitions of the factors are already given in Section
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2. There are two common factors in the models. For 4FM, there is an additional factor UMD as

well as HMLm which is a substitution of HML. The standard method to construct HML factor

is calculating book-to-market using lagged data only. This method ignores the most recent price

movements and lacks update. HMLm factor solves this problem. It is constructed with more

timely data and using all the necessary lags to measure book instead of using lagged book data

only, raised by Asness and Frazzini (2013). The up-minus-down factor (UMD) is a momentum

factor, obtained by the average return on two high prior return portfolios minus the average

return on two low prior return portfolios, as Jegadeesh and Titman (1993).

Both of FF3 and 4FM can be nested in the larger model M={Mkt SMB HML HMLm

UMD}, then for FF3, f1={Mkt SMB HML} and f∗1={HMLm UMD}, and for 4FM, f2={Mkt

SMB HMLm UMD} and f∗2={HML}. In this example, we assume all the densities multivariate

normal, then for a multivariate linear regression Y = α+Xβ + U , with covariance matrix ΣU ,

the log likelihood of the data under joint normality and serial independence of U given X is

given by:

ln(L(α, β,ΣU |Dt)) = −1

2
[NTln(2π) + T ln|ΣU |+ trace(U ′UΣ−1U )], (11)

where T is the number of time-series observations and N is the number of independent variables.

The likelihood is maximized at the usual OLS estimates. In particular, when we calculate the

likelihood of multivariate normal distribution, we use the difference between observations and

means of factors for U , and ΣU equals the maximum likelihood estimate of covariance matrix

for factors. Besides, we take the twenty-five portfolios formed on size and momentum as the

test asset. Then we have:

ln[Lmax(FF3)] = ln(Lmax
FF3) + ln(Lmax

FF3∗) + ln(Lmax
R )

= 3080.7 + 2733.1 + 26446.8 = 32260.6

ln[Lmax(4FM)] = ln(Lmax
4FM ) + ln(Lmax

4FM∗) + ln(Lmax
R ) (12)

= 4212.0 + 1015.9 + 26446.8 = 31674.7

The likelihood of the test-asset portion is the same for both models, then it has no impact

for the model comparison, which establishes the test-asset irrelevance again. To compute the

AIC values, we need to find out the number of parameters of each model first. After imposing

the zero-alpha constraints, for FF3 model, there are three factor means, six factor variances

and covariances, six betas and three residual variances and covariances, thus there are eighteen

parameters in total. For 4FM model, there is one more parameter compared to FF3 due to one

fewer zero-alpha constraint. Thus the AIC of FF3 model is -2*32260.6+2*18=-64485.2, and for

4FM model is -2*31674.7+2*19=-63311.4.

Based on the result, FF3 model has a higher likelihood value and lower AIC, both of which

imply that FF3 is a better model against 4FM. The conclusion is different with the original
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paper. To find out the reasons, we look at the three components of each likelihood in detail.

Since the third component is always the same for the two models, it cannot affect the relative

magnitude of likelihoods. There is a slight decrease in the relative value of the first compo-

nent for FF3, but it is not significant, so the key lies in the second component. In the original

paper, the ratio of the second component between FF3 and 4FM is 1.6, and now it turns to

be 2.7, which means that the relative ability of FF3 to explain the excluded factors increases

dramatically. It is largely due to the worse performance of 4FM to price its excluded factor

HML, since the absolute value of FF3 does not change a lot. It could be caused by the update

of data for HML or certain factors of 4FM, which affects the fitting of data. However, since

the data Barillas and Shanken (2017) use is not available, this speculation is short of confirming.

6 Example of Non-nested model comparison

In this section, we replicate the example of non-nested model comparison provided in Barillas and

Shanken (2017). As mentioned before, we aim to find out the difference during the replication

and come up with some other insights. Based on FF3 and 4FM, excluded-factor regressions and

test-asset regressions are performed respectively.

Table 1: Excluded factor regression for non-nested models

Panel A: Excluded-factor regressions for the FF3 model:

Coefficients
LHS Alpha Mkt SMB HML R2

HMLm -0.66 0.06 0.03 0.97 0.61
(0.09) (0.02) (0.03) (0.03)

UMD 10.87 -0.18 0.02 -0.33 0.06
(0.17) (0.04) (0.06) (0.06)

Panel B: Excluded-factor regressions for the 4FM model:

Coefficients
LHS Alpha Mkt SMB HMLm UMD R2

HML -2.00 -0.02 -0.06 0.92 0.36 0.80
(0.06) (0.01) (0.02) (0.02) (0.02)

The table shows the OLS estimates of coefficients and R2 for excluded regressions
of two models. Panel A is for FF3 model, which regress the excluded factors
HMLm and UMD on FF3={Mkt, SMB, HML} respectively. Panel B shows of
result of regression of HML on 4FM={Mkt, SMB, HMLm, UMD}. The alphas
are annualized and the numbers in parentheses are the corresponding standard
errors of the coefficients.

The result of excluded-factor regressions is summarized in Table 1. Since what we use is

monthly data, we simply multiply the alphas by twelve to get annualized alphas as reported in

the table. For the excluded-factor regressions of FF3, the annualized alpha estimates are -0.66%

and 10.87% for HMLm and UMD respectively. As for the excluded-factor regression for 4FM
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of HML, the alpha estimate is -2%. The alpha of UMD on FF3 factors is significantly larger

than the others, which suggests terrible ability of FF3 to price the momentum factor. Since the

alphas for included factors are always zero, we can calculate the average absolute alpha over the

five factors of each model as follows: for FF3 it is (0.66+10.87+0+0+0)/5=2.31% and for 4FM

the value is (2.00+0+0+0+0)/5=0.40%. Thus the excluded-factor evidence implies that 4FM

is a better model against FF3. This result is consistent with the original paper. However, it is

worth noting that in our replication, the result of excluded-factor evidence is inconsistent with

that based on likelihood in the previous section. Even though it seems illogical, the truth is

that model comparison based on alpha and likelihood are substantially different. Alpha means

to measure the failure of pricing. More explicitly, it is the difference between the expected

excess return formed by model factors and the actual return on the security. On the other hand,

likelihood estimation is a kind of statistical tool used to find the parameters maximizing the

likelihood function given observations. Thus when we use two methods with different objectives

to compare models, it is no surprise that the results could be different.

The result of test-asset regressions is shown in Table 2. For each test-asset regression, we

perform Gibbons, Ross, and Shanken (1989, GRS) test to see whether all the cross-section

regression intercepts are equal to zero. The GRS test is widely used in asset pricing, but as

shown in Harvey and Liu (2014), there are some problems with this test. The first problem is

about its assumption of normal distribution of test-asset returns. It is a common problem for

many statistical tests and the result will be inaccurate if the test-asset returns are not normally

distributed. The second problem is that the GRS test almost always rejects, which leads to

that when applying this test in asset pricing models, researchers focus on the relative magnitude

of GRS statistics instead of whether the models are rejected or not. However, it is not what

GRS test is designed to. To overcome these problems, Harvey and Liu (2014) create another

method based on bootstrap approach. Their method allows for general types of distribution,

cross-sectional dependency and time-series dependency, which is more robust and reliable than

GRS test, making it a better alternative. However, since the application of this method is quite

complex compared to GRS test, and it is not what this paper focuses on, we decide to still follow

Barillas and Shanken (2017) and adopt GRS test in our replication.

Among the test-asset regressions, the regression of 16 size-B/M-OP-INV portfolios is missed

because the data of this test asset is not accessible on Ken French’s website. For most of the

other test assets, the result is quite similar to the original paper. While for some test assets, the

result is a bit different. For example, in the original paper, the annualized alphas of 25 size-B/M

portfolios for FF3 and 4FM are 1.21 and 1.30 respectively, which means it favors FF3 over 4FM.

But in our result, the alphas turn to be 1.27 and 1.26, which increases for FF3 and decreases for

4FM. So that the 25 size-B/M portfolios favors 4FM now. Since the result of Table 1 is quite

close to that of Barillas and Shanken (2017), which indicates there is no big change in the data

of the factors. Thus the difference in our replication might largely due to the changes in the

data of test-asset returns. It further proves the defect of model comparison based on test assets.
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Table 2: Test-asset regression for non-nested models

Model factors A|ai| A|ai| /A|ri| GRS p(GRS)
17 industries

FF3 2.21 2.19 3.43 .0000
4FM 2.40 2.38 4.90 .0000

25 size-B/M
FF3 1.27 0.56 3.64 .0000
4FM 1.26 0.56 4.12 .0000

25 size-UMD
FF3 3.90 1.14 4.76 .0000
4FM 1.43 0.42 3.70 .0000

25 size-INV
FF3 1.33 0.64 4.65 .0000
4FM 0.93 0.45 3.45 .0000

25 B/M-INV
FF3 1.32 0.88 1.99 .0030
4FM 1.82 1.21 2.42 .0002

25 size-OP
FF3 1.31 0.69 2.63 .0000
4FM 1.32 0.70 2.95 .0000

32 size-B/M-OP
FF3 1.89 0.61 2.71 .0000
4FM 1.88 0.61 3.31 .0000

32 size-B/M-INV
FF3 1.57 0.67 2.99 .0000
4FM 1.76 0.75 3.32 .0000

32 size-OP-INV
FF3 2.21 0.80 4.58 .0000
4FM 1.90 0.68 3.68 .0000

This table shows the result of test-asset regressions with FF3 and 4FM. The first
column of this table gives nine different kinds of portfolios as the test assets.
They are formed on the following characteristics: size, book-to-market (B/M),
momentum (UMD), investment (INV), operating profitability (OP), and indus-
try; the second column shows the annualized average absolute value of alphas
A|ai| and the smaller value between two models of each test asset is marked in
bold; the third column is the annualized average absolute value of alphas over the
average absolute value of return deviation of portfolio i, where A|ri| is the aver-
age absolute difference between the returns of portfolio i and the cross-sectional
average return over all portfolios; and the fourth and fifth columns shows the Gib-
bons, Ross, and Shanken (1989) (GRS) F-statistic as well as the corresponding
p-values for testing whether the alphas all equal to zero.

Because the result of test-asset regression is related to the return of test assets, which could

lead the conclusion of model comparison inaccurate. Conversely, the excluded-factor regression

is not affected by the change of test-asset returns, thus the conclusion based on that is more

robust and dependable.
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7 Extension 1: Example of Nested model comparison

In the previous example, we prove that the excluded-factor evidence is more reliable than test-

asset evidence for non-nested models, but is it still the case for nested models? In this extension,

we focus on model comparison of nested models and try to answer the research question whether

excluded factor is still a better evidence than test asset.

First we need to determine two nested models. Fama and French (2015) develop the FF3

model by introducing two additional factors: profitability factor (RMW) which is the difference

between the returns of diversified portfolios with robust and weak profitability, and investment

factor (CMA) which is calculated by the difference between the returns on diversified portfolios

of the stocks of low and high investment firms. In this way, a five-factor model (FF5) is formed.

As in Fama and French (2015), this model has a problem of failure to fully capture the low

average returns of small stocks whose returns perform like those firms that invest aggressively

due to low profitability. However, as proved in Fama and French (2015) as well as Martins and

Eid (2015), FF5 still has a better performance than FF3.

Table 3: Excluded factor regression for nested models

Coefficients
LHS Alpha Mkt SMB HML R2

RMW 4.07 -0.07 -0.25 0.02 0.16
(0.09) (0.02) (0.03) (0.03)

CMA 2.67 -0.11 0.03 0.44 0.53
(0.06) (0.01) (0.02) (0.02)

The table shows the OLS estimates of coefficients and R2 for excluded regres-
sions for FF3 model. There are two excluded factors for FF3: profitability factor
(RMW) and investment factor (CMA). The alphas are annualized and the num-
bers in parentheses are the corresponding standard errors of the coefficients.

Similar with the non-nested example, we perform excluded-factor regressions as well as test-

asset regressions here with the sample period from January 1968 to December 2017. Since they

are nested models, there are only two excluded factors for FF3. The result of the excluded-factor

regressions for FF3 is shown in Table 3. The annualized alphas for RMW and CMA are smaller

than that of UMD in the previous example, which means the ability of FF3 to price these two

factors is better than that to price UMD. The average absolute alpha over the five factors for

FF3 is (4.07+2.67+0+0+0)/5=1.35%, and for FF5 is 0. Based on this result, FF5 model is

favored over FF3.

For test-asset regressions, we choose portfolios formed based on size, book-to-market (B/M),

investment (INV), operating profitability (OP) and industry as test assets. As shown in Table 4,

nine of ten test assets prefer FF5 over FF3, and only 17-industry portfolios favors FF3. The result

is almost consistent with the conclusion drawn by the excluded-factor evidence. In this case, the

relative performance of test assets against excluded factors is different with comparison of non-

nested models. Thus we can conclude that the test-asset evidence has a better performance for
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Table 4: Test-asset regression for nested models

Model factors A|ai| A|ai| /A|ri| GRS p(GRS)
17 industries

FF3 2.09 2.08 2.95 .0001
FF5 2.42 2.40 3.13 .0000

25 size-INV
FF3 1.37 0.75 4.60 .0000
FF5 0.93 0.51 3.44 .0000

25 size-OP
FF3 1.31 0.82 2.48 .0001
FF5 0.76 0.48 1.93 .0047

25 size-B/M
FF3 1.20 0.66 3.87 .0000
FF5 1.13 0.62 3.23 .0000

25 OP-INV
FF3 1.98 1.19 2.49 .0001
FF5 1.00 0.60 1.24 .1926

25 B/M-INV
FF3 1.33 0.98 2.05 .0022
FF5 1.32 0.98 1.70 .0181

25 B/M-OP
FF3 1.52 0.73 1.90 .0055
FF5 1.36 0.66 1.42 .0845

32 size-B/M-OP
FF3 1.61 0.66 2.50 .0000
FF5 1.31 0.54 2.17 .0003

32 size-B/M-INV
FF3 1.69 0.87 3.32 .0000
FF5 1.28 0.66 2.48 .0000

32 size-OP-INV
FF3 2.21 0.92 4.48 .0000
FF5 1.33 0.55 3.40 .0000

This table shows the result of test-asset regressions for FF3 and FF5. The
structure is the same with Table 2, thus the explanation is omitted.

nested models compared to non-nested models, and the difference between these two evidences

is quite small.

We also apply the likelihood to further compare the two nested models. The difference with

non-nested models is that, for the larger model FF5, the data universe Dt can only be divided

into two parts, ft and Rt, since there is no excluded factor for FF5. Thus the likelihood of FF5

is computed by the product of two components, Lmax
FF5 and Lmax

R . The log-likelihoods are as

follows:

ln[Lmax(FF3)] = ln(Lmax
FF3) + ln(Lmax

FF3∗) + ln(Lmax
R )

= 3063.4 + 2346.6 + 24299.2 = 29709.2
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ln[Lmax(FF5)] = ln(Lmax
FF5) + ln(Lmax

R ) (13)

= 4289.4 + 24299.2 = 28588.6

As shown above, the likelihood ratio of FF3 to FF5 is exp(5603/5), which is overwhelmingly

in favor of FF3. This result is inconsistent with excluded factors neither test assets. However,

since in this case the components of the two models are different. Thus we cannot say that it is

completely fair” to compare the models based on their likelihoods.

7.1 Nested models with nonsensical factors

A nonsensical factor, also called ”useless” factor, is defined as being independent of all the test-

asset returns. In the paper of Kan and Zhang (1999), they argue that with large sample size,

there is a large chance to reject the null hypothesis that the risk premium of a useless factor

equals zero. Gospodinov, Kan and Robotti (2013) also prove that the presence of a useless factor

makes it difficult to infer the remaining model factors and conclude the correct specification.

They all point to a fact that the inclusion of a useless factor can interfere the judgment for

model factors, thus it might also cause problems in model selection. In this section, we focus on

the research question that what the effect of nonsensical factors on different metrics in model

comparison. A random walk variable, denoted by RW, is generated as the nonsensical factor,

and added in FF3. We define the new model as FF3rw={Mrt SMB HML RW} which nests

FF3. Then model comparison is performed based on excluded factors, test assets as well as the

likelihood.

The random walk is generated by the following equation:

yt = yt−1 + εt, (14)

where yt is computed by the lagged value plus a random error term εt, εt ∼ N(0, 1). The random

walk with a drift is not applicable here because a drift term would imply a non-zero alpha in the

excluded-factor regression by default. We treat the random walk as a time-series variable with

the same sample size of other factors. The result of excluded-factor regression is as follows:

Table 5: Excluded-factor regression for nested models

Coefficients
LHS Alpha Mkt SMB HML R2

RW -110.53 -0.05 0.04 -0.05 0.002
(0.23) (0.05) (0.08) (0.08)

The table shows the OLS estimates of coefficients and R2 for excluded-factor
regression of FF3 model. The alpha is annualized and the numbers in parentheses
are the corresponding standard errors of the coefficients.

The annualized alpha in the regression of random walk on FF3 factors is large enough with

-110.53, and R2 is pretty small. It is inevitable because the excluded factor is totally nonsensical
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and random, thus for sure it cannot be explained by any of these financial factors. The average

absolute annualized alpha over the four factors is 27.63 for FF3 and 0 for FF3rw, which is a

strong indication that FF3rw is a much better model than FF3. But is it really the case? The

only difference between the two models is the random walk factor, which is totally useless for

explaining excess returns. Now the larger model turns to be a much better one just because the

factors in the nested model cannot explain the nonsensical factor, which does not make sense.

On the other hand, test-asset regression does not have such problem. As shown in Table

6, all the test assets favor FF3 against FF3rw, which draws an opposite conclusion with the

excluded-factor evidence.

Table 6: Test-asset regression for nested models with nonsensical factor

Model factors A|ai| A|ai| /A|ri| GRS p(GRS)
17 industries

FF3 2.09 2.08 2.95 .0001
FF3rw 2.53 2.51 1.16 .2936

25 size-INV
FF3 1.37 0.75 4.60 .0000
FF3rw 2.36 1.29 2.37 .0002

25 size-OP
FF3 1.31 0.82 2.48 .0001
FF3rw 1.66 1.04 1.74 .0152

25 size-B/M
FF3 1.20 0.66 3.87 .0000
FF3rw 1.76 0.96 1.77 .0124

25 OP-INV
FF3 1.98 1.19 2.49 .0001
FF3rw 2.07 1.25 1.03 .4241

25 B/M-INV
FF3 1.33 0.98 2.05 .0022
FF3rw 2.07 1.53 1.35 .1189

25 B/M-OP
FF3 1.52 0.73 1.90 .0055
FF3rw 2.01 0.96 0.81 .7313

32 size-B/M-OP
FF3 1.61 0.66 2.50 .0000
FF5 1.82 0.75 1.19 .2174

32 size-B/M-INV
FF3 1.69 0.87 3.32 .0000
FF3rw 2.64 1.36 2.28 .0001

32 size-OP-INV
FF3 2.21 0.92 4.48 .0000
FF3rw 2.26 0.94 2.01 .0010

This table shows the result of test-asset regressions for FF3 and FF3 with random
walk. The structure is the same with Table 2, thus the explanation is omitted.

In fact, Equation (5) implies that for nested models, the squared Sharpe ratio of the larger

model is always at least as high as that for the nested model, due to the positiveness of the
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quadratic form of alphas. However, the larger model is not always superior to the nested one.

In this example, FF3 is supposed to be better than FF3rw. To further confirm it, we look at

the coefficients of random walk in test-asset regressions. Without surprise, for most of the test

assets, the coefficients of random walk are insignificant, which implies the poor ability of random

walk to price excess returns. Overall, the excluded-factor evidence does not give us a correct

conclusion.

This finding exposes the drawback of model comparison based on excluded factors, especially

for nested models. In our example, a nonsensical excluded factor produces a large excluded-

alpha, which suggests that the larger model is better than the nested one. In practice, without

knowing whether the excluded factors are useful or not, if we only focus on the excluded-factor

test, we could choose a model including a useless factor just like the random walk, while abandon

the more efficient and accurate model. To avoid such situation, I suggest to be careful when

all the test-asset regressions imply an opposite conclusion with the excluded-factor evidence.

In this case, it needs to be figured out whether the excluded factors are useful to price excess

returns on earth.

Lastly we apply the likelihood metric. As mentioned before, due to the different components

of likelihood functions, the likelihood metric might not be a good method to compare nested

models. The result further proves our expectation. By Equation (15), the difference between

the log likelihoods of FF3 and FF3rw is 951.5, which obviously favors FF3. Thus the likelihood

metric again gives a wrong conclusion for nested model comparison.

ln[Lmax(FF3)] = ln(Lmax
FF3) + ln(Lmax

FF3∗) + ln(Lmax
R )

= 3063.4 + 2263.5 + 251933.8 = 257260.7

ln[Lmax(FF3rw)] = ln(Lmax
FF3rw) + ln(Lmax

R ) (15)

= 4375.4 + 251933.8 = 256309.2

8 Extension 2: Model comparison with nontraded factors

Until now we have discussed about model comparison with traded factors and how it is related

with test assets. However, for models with nontraded factors, it might be a different story.

For nontraded factors, we can use test assets to form mimicking portfolios, so that test assets

can still impact asset pricing. In this section, we focus on model comparison with nontraded

factors and try to answer the research question that how test assets affect model comparison

with nontraded factors through mimicking portfolios.

8.1 Mimicking portfolio

As mentioned above, when we deal with nontraded factors, we use traded mimicking portfolios

to replace them. There are several ways to form mimicking portfolios, such as projecting these
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factors on a set of base assets, where test assets are still irrelevant. Another method is to use

test assets to construct mimicking portfolios. In this way, test assets are involved in model com-

parison. To get such mimicking portfolios, we need to regress the nontraded factors respectively

on a constant and returns of test assets:

ct = a+
∑
k

bkrkt + εt, (16)

where ct denotes a nontraded factor and rkt denotes the return of the k-th test asset at time t.

The mimicking portfolio is constructed by the weighted average over the individual test asset,

and the weight of each test asset is equal to the absolute estimated coefficient of the test asset

divided by the sum of absolute coefficients over all the test assets: wk = |bk|/
∑

k |bk|. Then the

return of the mimicking portfolio is
∑

k wkrk.

8.2 Example

To further analyze how test assets affect mode comparison with nontraded factors, an example

is performed here. First we need to select some nontraded factors to add in FF3 and form a

larger model. When choosing risk factors, the most commonly used statistical significance is a t-

statistics that exceeds 2.0. However, Harvey, Liu and Zhu (2015) raise a objection to this method

and suggest that a newly introduced risk factor should have a t-statistic exceeding 3.0. Civilian

unemployment rate (UMR) and consumer price index (CPI) are two of the satisfactory nontraded

factors. Intuitively, the conditions of labor market can reflect the state of investment market to

some extent, and CPI, the indicator of inflation, can also imply the depreciation or appreciation

of assets price. Besides, there is another factor that draws attention which is the nontraded

liquidity factor created by Pastor and Stambaugh (2003), who argue that the sensitivities of

stock returns to fluctuations in aggregate liquidity is important in asset pricing. There is also

a traded counterpart for the liquidity factor which might be useful in mimicking the nontraded

liquidity factor, but since we aim to find out how test assets impact model comparison by forming

mimicking portfolios, including other factors other than test assets might be a disturbance, thus

it is left out of consideration.

Table 7: Statistics for regressions of nontraded factors on test assets

UMR CPI LIQ

R2
adj 0.12 0.03 0.31

F-statistics 1.31 1.08 2.02
p-value 0.01 0.24 0.00

The table shows adjusted R2 of the OLS regressions of three non-traded factors
on test assets, as well as F-statistics of joint significance and the corresponding
p-value.

During the construction of mimicking portfolios, it turns out that single test asset gives
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terrible fitting for the nontraded factors. Thus to fit them at the most extent, we include

all the ten test assets in the regression of nontraded factors. However, in this way there are:

17+25*6+3*32 = 263 predictors in total, which might cause overfitting and produce misleadingly

high value of R2. To avoid such situation, we use adjusted R2 instead of ordinary R2. The

adjusted R2 is calculated by:

R2
adj = 1− (n− 1)(1−R2)

(n− k − 1)
, (17)

where n is the number of observations and k is the number of explanatory variables excluding the

constant. Table 7 implies how the test assets fit the nontraded factors. According to adjusted R2

, the test assets are explanatory for LIQ and UMR, but not for CPI. Figure 1 further plots the

actual values (red line) and estimated values (blue line) of the nontraded factors, which shows

obvious overfitting for UMR and CPI. It means that even though the regression of UMR has a

proper value of adjusted R2 and does not fail the F-test, there still exists overfitting. Overall,

the test assets are able to price LIQ, and fail to capture the other two factors. Thus we only

include LIQ in FF3 and define the new model as FN={Mkt, SMB, HML, LIQ}. Table 8 gives

the resulting weight of each test asset in the mimicking portfolio of LIQ. It can be seen that

the three 25 size-sorted test assets together with the three 32 size-sorted test assets account for

higher weights in the mimicking portfolio compared to the others.

Figure 1: Fitting of test assets for nontraded factors

(a) UMR (b) CPI

(c) LIQ

Substitute the nontraded factor with mimicking portfolio
∑

k wkrk, we now focus on how

test assets influence model comparison. Since we aim to find out the difference of results drawn
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Table 8: Weight of test asset in mimicking portfolio of LIQ

Test assets Weights

17 industries 0.02
25 size-INV 0.15
25 size-OP 0.12

25 size-B/M 0.11
25 OP-INV 0.06
25 B/M-IN 0.09
25 B/M-OP 0.07

32 size-B/M-OP 0.13
32 size-B/M-INV 0.12
32 size-OP-INV 0.13

The table shows the weight of each test asset in the mimicking port-
folio of LIQ. It is calculated by the sum of absolute coefficients of
portfolios in one test asset divided by the sum of absolute coefficients
of portfolios over all the test assets.

by different test assets, we do not perform excluded-factor regression neither the likelihood

metric here. Table 9 summarizes the test-asset regressions of FF3 and FN. The alphas imply

that FN model has a better performance again FF3 for seven of ten test assets. If we look

at it in detail, we can find that most of these test assets take high weights in the mimicking

portfolio. Intuitively, if the mimicking portfolio is determined largely by one test asset, then as

a factor the mimicking portfolio can price this test asset to more extent. It is a disadvantage

for model comparison based on test-asset regression since the result is highly determined by

which test asset we use instead of which model is better. Thus it comes to a conclusion that for

model comparison with nontraded factors and test assets are used to form mimicking portfolios,

test-asset evidence is not reliable.

9 Conclusion

Barillas and Shanken (2017) argue that, test assets are irrelevant in model comparison and

excluded-factor evidence is more reliable, thus model comparison can be performed based on the

excluded-alpha. In this paper, the work of Barillas and Shanken (2017) is replicated, including

the non-nested example of model comparison and the illustration of the likelihood metric. The

replication of the former one is quite successful, while some deviation appears in the latter one.

More explicitly, during the replication of model comparison between FF3 and 4FM based on

likelihoods, we obtain the result that FF3 is better than 4FM, which is different with the original

paper. Through analyzing we conclude that it is caused by the worse ability of 4FM to price

the excluded factor HML, which mainly comes from the update of data. Nevertheless, there is a

limitation that the data of the original paper is unavailable, leading to the factors with changed

data unknown.

There are two problems Barillas and Shanken (2017) do not give further discussion: nested
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Table 9: Test-asset regression for FF3 and FN

Model factors A|ai| A|ai| /A|ri| GRS p(GRS)
17 industries

FF3 2.09 2.08 2.95 .0001
FN 2.26 2.51 3.01 .0000

25 size-INV
FF3 1.37 0.75 4.60 .0000
FN 1.26 1.34 4.55 .0000

25 size-OP
FF3 1.31 0.82 2.48 .0001
FN 1.13 0.98 2.44 .0001

25 size-B/M
FF3 1.20 0.66 3.87 .0000
FN 1.21 0.98 3.83 .0000

25 OP-INV
FF3 1.98 1.19 2.49 .0001
FN 1.87 0.97 2.47 .0001

25 B/M-INV
FF3 1.33 0.98 2.05 .0022
FN 1.37 1.50 2.00 .0029

25 B/M-OP
FF3 1.52 0.73 1.90 .0055
FN 1.56 0.96 2.18 .0009

32 size-B/M-OP
FF3 1.61 0.66 2.50 .0000
FN 1.58 0.75 2.86 .0000

32 size-B/M-INV
FF3 1.69 0.87 3.32 .0000
FN 1.68 1.39 3.27 .0000

32 size-OP-INV
FF3 2.21 0.92 4.48 .0000
FN 2.11 0.94 4.43 .000

This table shows the result of test-asset regressions with FF3 and FN. The non-
traded factor LIQ in FN is substituted by a traded mimicking portfolio con-
structed by the test assets. The structure is the same with Table 2, thus the
explanation is omitted.

model comparison and model comparison with nontraded factors, based on which we further

develop two extensions. In the first extension, we raise the research question that whether

excluded factor is still a better evidence than test asset for nested models, and the answer

is negative because they turn out to have almost equivalent performance. We also include a

nonsensical factor to perform another nested model comparison based on the research question

that what the effect of nonsensical factors on different metrics. The result exposes a significant

defect of excluded-factor evidence since excluded factors always favor the larger model no matter

what the excluded factors are. It can cause serious consequence during the application of

excluded-factor evidence because in practice we do not know whether the additional factors

are useful or not. In contrast, all the test assets give the correct conclusion. Therefore the

conclusion is that test assets are still important in model comparison because in the case that
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all the test-asset regressions give an opposite result with excluded factors, it sends a signal that

the additional factors can be useless.

The second extension is constructed on the research question that how test assets affect model

comparison with nontraded factors through mimicking portfolios. It turns out that in test-asset

regressions, traded factors with the mimicking portfolio of the nontraded factor show better

performance to price those test assets which take higher weights in the mimicking portfolio.

Thus we can say that in this case, test-asset evidence is not accurate because its result is highly

determined by which test asset we use, and the excluded-factor evidence is recommended.

There are some limitations in this paper. First, as mentioned before, the data of the orig-

inal paper is not accessible, making it hard to confirm the explanation of the deviation in our

replication. Second, in model comparison with nontraded factors, test assets fail to capture two

of three nontraded factors, leading to that only one nontraded factor is included in the model,

which can make the conclusion non-representative. In the future, researchers can include more

nontraded factors and try different methods of regression to avoid overfitting. In this way, one

can obtain a more accurate conclusion.
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