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Abstract

The research focuses on the fill rate and waiting time performance measure in the finite
horizon. The two measures will be investigated in a periodic review order-up-to policy.
Investigating these performance measures in a finite horizon is relevant because suppliers
have contracts regards the supply of goods and obtaining a certain service level for supplying
these goods. This research will first verify the results of Thomas (2005) regards the fill rate
performance in a finite horizon. Afterwards the focus will shift towards what implication a
deterministic positive lead-time has on these results. On top of that, the waiting time of
customers is analyzed as a second performance level. The research shows that most results
found by Thomas (2005) still hold to an extent. In the discussion it is reviewed to what
extend these results hold.
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1 Introduction

For a supplier stocking goods and delivering
these goods to customers always has a trade off
between potentially not meeting customers de-
mand and having excess inventory. Having an
excess inventory brings inventory costs but it is
also definitely not desired to have an inventory
below the demand since than opportunity loss
increases. By opportunity loss is meant that
you could have sold more goods if there was
more inventory present at that certain time or
satisfied more customers by being able to de-
liver goods within time. In addition, suppliers
often have contracts and get penalized for not
meeting the set requirements. To ensure that
a certain part of the demand can be satisfied
by in-stock goods a target level for the fill rate
is introduced. The fraction of demand that
is satisfied by in-stock goods is known as the
fill rate. This research focuses on the fill rate
performance in a finite horizon, in particularly
focusing on the effect of the lead-time on the
target level performance of for example the fill
rate. Reason to review the performance over a
finite horizon could be that a supplier has a con-
tract regarding the supply of goods. Besides,
the service level and efficiency of a company is
often analyzed over a finite period. Therefore
it is important for the management of a supply
business to have a sense of what the probabil-
ity is of meeting those requirements regarding
the fill rate. The finite period over which the
performance measures are analyzed is referred
to as review horizon. First the results found by
Thomas (2005) will be verified and afterwards
the effect of the lead-time will be investigated.

In the research of Thomas (2005) a periodic
review model in a finite horizon is studied. The
study is restricted to the order-up-to policy
with the assumptions of having zero lead-time,
stationary demand and no ordering costs. The

order-up-to policy means that at the beginning
of every time period the current inventory is
being reviewed and restocked up to s units.
Demand that could not be satisfied by the cur-
rent in-stock goods is being backlogged. The s
is calculated by a formula given in Chen (2003)
which is stated in Section 3. As mentioned
above, the study of Thomas (2005) assumes
zero lead-time. Since in practice it is hardly
ever the case that the lead-time is zero an ex-
tension is being introduced that relaxes this
assumption. The research question will be how
the lead-time effects the probability of meet-
ing target levels in a finite horizon. The fill
rate performance and the waiting time of cus-
tomers is analyzed for different deterministic
lead-times. In addition to the fill rate, waiting
time performance is of interest in service level
agreements. It is worthwhile to investigate
these two performance measures (i.e. fill rate
and waiting time) are related to each other. In
Section 3 a more detailed outline of the proce-
dure is given.

The global outline of this article is as fol-
lows. Section 2 presents the related litera-
ture. Section 3 formulates the model and in-
troduces notation. Section 4 provides the re-
search analysis to verify the results found by
Thomas (2005). Section 5 presents the set-up of
the extension model as well as the correspond-
ing numerical experiments. On top of that, an
analysis regarding the performance measures is
provided and insight in those results is given.
In Section 6 a conclusion is drawn, in addition
the limitations of the research are mentioned
combined with future research directions.
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2 Literature review

Different analysis on the periodic performance
review system with order-up-to policy have
been done. Chen (2003) defines a formula for
the fill rate in a finite horizon. Thomas (2005)
uses this formula to examine how the length
of the finite-horizon influences the target per-
formance of the fill rate. Furthermore, there
are also papers that based their research on
the results found by Thomas (2005). For ex-
ample Liang et al. (2013) investigate what
an appropriate penalize function to penalize
underperformance in a periodic review system
with an order-up-to policy would be, includ-
ing a positive constant lead-time. Evidence is
found that it is preferable that penalties should
be proportional to the underperformance. The
research also shows that a supplier benefits less
from the chosen strategic behavior in case of
a positive lead-time. A possible cause that is
named is the information delay that is present,
a supplier cannot respond to the performance
history as effectively as in the case of having a
zero lead-time. In addition Katok et al. (2008)
consider fill rate performance in a finite hori-
zon, using a static periodic-review base-stock
model with zero lead-time. It is found that
overall longer period performance reviews are
more effective in inducing higher stocking lev-
els. Which is related to one of the statements
made by Thomas(2005). Thomas (2005) states
that for smaller horizons it is more likely to
achieve very high or very low fill rates. Such
that by increasing the horizon length the chance
of deviating substantially from the average be-
comes less likely. Thomas (2005) also shows
that by increasing the horizon length the re-
quired inventory level increases initially, yet
after a while it decreases to a lower level. On
top of that, Katok et al. (2008) notice is that
for higher target levels it takes longer to recover
from a large demand realization.

In the extension, the focus will be on the
deterministic lead-time as well as the perfor-
mance measure waiting time. Chopra et al.
(2004) focus their research on how lead-time
uncertainty influences the safety stock level.
They investigate that if a business is inter-
ested in lowering their inventory levels while
maintaining their service levels, it should fo-
cus on reducing the lead-time rather than the
lead-time variability. This result holds for a
business who has a fill rate target between 97
and 99% or a cycle service level target between
50 and 70%. Chopra et al. (2004) assume an
indivisible period of analysis and a gamma dis-
tributed lead-time with varying parameters. In
addition, some research has been conducted re-
garding the waiting time performance measure.
Houtum et al. (2015) found that maintaining a
certain aggregate mean waiting time is closely
related to having a target level on the total
amount of backorder demands.

3 Model and notation

In this section, the inventory model is pre-
sented, as well as the inventory model that is
used for the extension. In addition, some nota-
tion is introduced.

The study focuses on a periodic evaluation
performance system with an order-up-to pol-
icy. This model assumes that there is stochas-
tic demand (which is i.i.d. in each period), no
reordering costs. Demand is assumed to be
Erlang(k,1) distributed what implies that on
average k customers arrive per period. The
values for parameter k that are considered in
this research are 1, 3, 5 and 9. In addition, to
verify the result found by Thomas (2005) zero
lead-time is assumed. In the extension part of
this research the lead-time is assumed to be
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deterministic and non zero.

The order-up-to policy is combined with a
periodic review period. For simplicity the same
notation as in the research of Thomas (2005) is
used. The fill rate random variable for T peri-
ods is given in Equation 1 were Xt is defined as
the demand random variable of period t. Be-
sides Yt represents the filled demand which is
equal to the minimum of s and Xt were the
level of the inventory is restocked up to s. The
definition of the expected fill rate is given in
Equation 2 for a infinite horizon.

αT (s) =
Y1 + ...+ YT
X1 + ...+XT

(1)

lim
T→∞

E[αT (s)] =
E(Y )

E(X)
(2)

The performance measure waiting time is
defined as the number of periods which elapse
between the receipt of the customer’s order and
the delivery of the goods. There are two types
of average waiting time. The first one includes
the customer that is served directly and the
second option is the waiting time given that
the customer could not be served directly. It
is chosen to display the waiting time including
customers that were served directly. The rea-
son being that in a service contract it is usually
stated that a customer has the right to receive
his goods within a certain time. The way it is
calculated is the following. If a customers could
not be served directly the arrival time of this
customers is recorded. Then when the system
is able to serve this customer, the waiting time
is calculated. In the end, the waiting times of
customers are added and this is divided by the
number of customers.

The long-run order-up-to level which is re-
quired to obtain a certain fill rate is computed
by using Algorithm 3. For this calculation a

horizon length of 100,000 (this is considered as
long-run) and a 100 replications are used.

The alternative method for calculating the
long-run s is done by deriving this s from the
ESC which is the number of shortages (per
cycle), the interested reader is referred to Co-
pra and Meindl (2004). The formula is given
in Equation 3 were s stands for the order-
up-to level that is required and f(x) is den-
sity function of demand distribution during
the lead-time (which is Erlang distributed in
this research). Equation 4 shows the relation
between the ESC and the fill rate. Q is the
expected demand within a cycle.

ESC =

∫ ∞
s

(x− s) · f(x), dx (3)

fillrate = 1− ESC

Q
(4)

3.1 The extension model

Thereafter the deterministic lead-time is im-
plemented in the simulation. Several vari-
ables must be recorded during the simulation.
The on-order inventory is defined as the num-
ber of units that have been ordered, but still
have to arrive (from now on referred to as the
OO-inventory). The on-hand inventory (OH-
inventory) which is equal to the number of
units that are at that point ready to serve
the demand. Backorder is defined as the total
amount of demand that has not been satisfied
yet. If new goods become available, the backo-
rder demand is first satisfied. With use of these
variables the inventory level (IL) is set equal
to the on-hand inventory minus the backorder
and the inventory position (IP) is set equal to
the on-order inventory plus the inventory level.
How to update these variables in the simulation
can be found in algorithm 4 and Equations 5 -
8. In Section 5 the decisions regards the exten-

7



sion are explained.

OHt = max(0, ILt) (5)

Bt = max(0,−ILt) (6)

ILt+1 = ILt +OOt+1−L − dt (7)

IPt+1 = ILt+1 +

t∑
i=t+2−L

OOi (8)

As described before, the level of inventory
should be restocked up to s units, making the
order quantity (Q) per period equal to s mi-
nus the inventory position. Since there is a
non zero lead-time, a warm-up period is intro-
duced. The warm-up period is determined by
running the system for a series of replications
and calculating the mean fill rate for the first
period after the (differing) warm-up period. If
the warm-up length does not effect the mean
fill rate anymore, then the conclusion is drawn
that warm-up period is sufficiently long. By
not effecting is meant that the relative differ-
ence of the mean fill rate should not exceed 1%.
This method is further explained in Section 5.1.
In case of zero lead-time a warm-up period is
unnecessary because it is known that at the
beginning of each period the OH-inventory is
equal to s. Whereas if the lead-time is for ex-
ample three days, in the first three days of the
simulation no replenishments arrive whereas
from that day on goods could arrive every day.
On top of that, is the OH-inventory at the be-
ginning of each period not necessary equal to
s.

4 Verifying the Results of
Thomas (2005)

In this section, the results found by Thomas
(2005) are compared to the results found in
this research. An analysis of the similarities
and differences is done. Furthermore, is insight
given into why some results may differ.

To determine the long-run s Algorithm 3
is used with horizon length of 100,000 and 100
replication. Thomas (2005) does not specify a
long-run horizon length. The long-run s was
obtained with two decimal precision. After
obtaining the long-run s, it is checked if the
performance of this long-run s in a finite hori-
zon are the same as Thomas (2005) finds. It is
checked by using 1,000,000 replications. There
appears to be a small difference between the
results found by Thomas (2005) and the re-
sults found in this research. For instance in
the case with a horizon length of T = 20 and
demand being Erlang(1) distributed, the algo-
rithm finds an s equal to 3.00 which is presented
in the last row of Table 1. Thomas (2005) pro-
vides a long-run value of s rounded by two
decimals. To check whether these results are in
line with the results found by Thomas (2005)
a 95% confidence interval is used. The confi-
dence intervals can be found in the last column
of Table 1. The mean that is found by Thomas
(2005) in this case is equal to 0.9567 which is
outside the found confidence interval. A possi-
ble explanation can be that rounding s to two
decimal precision is not sufficient to obtain the
same results. To check whether this is indeed
the case, the long-run value of s for each case
was computed with a three decimal precision.
Table 1 provides the distribution characteristics
when using a three decimal precision for s and
Figure 2 represents the corresponding distribu-
tion plot.It can be concluded that by increasing
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the number of digits of the long-run s the re-
sults become closer to the results of Thomas
(2005). For the case previously mentioned, a s
equal to 2.996 is obtained and for this long-run
value of s the mean found by Thomas (2005)
is inside the confidence interval. Concluding
that by increasing the number of digits even
further the results will become even closer to
the results found in Thomas (2005), however
these results are already within the confidence
interval.

An alternative method for calculating the
long-run s is to derive this s from the ESC,
which is the number of shortages as described
in Section 3. Algorithm 1 is used to determine
the long-run s. To compute the distribution
characteristics corresponding with these s val-
ues Algorithm 2 is used. By allowing a gap
of 0.0001 in Algorithm 1 and using 1,000,000
replications in Algorithm 2. The results can

be found in Table 4. The results found by this
method are also in line with the results found
by Thomas (2005).

Furthermore in Figure 3 the distribution
of the mean fill rate with different arrival in-
tensities is shown. The obtained results corre-
spond with the results found by Thomas (2005).
In addition the results provided in Figure 2
also correspond with Thomas (2005). Thomas
(2005) states: "Here we observe, not surpris-
ingly, that with very short horizons, very high
and very low realized fill rates are more likely".
The standard deviation in Table 1 and the plots
in Figure 2 help to support this claim. By in-
creasing the horizon length, deviation from the
average becomes less likely. When examining
Figure 2, the conclusion is drawn that the re-
sults are in line Thomas (2005).

Table 1: Descriptive statistics for distributions shown in Figure 1 and Figure 2. By using a three
decimal long-run s.

s m-erlang fill rate % Length (T) mean std. dev. median skewness CI 95%
7.262 5 95 5 0.9577 0.0585 0.9890 -1.5886 [0.9576 0.9578]
7.262 5 95 10 0.9541 0.0449 0.9647 -1.0968 [0.9540 0.9542]
7.262 5 95 20 0.9521 0.0276 0.9543 -0.5948 [0.9513 0.9515]
7.262 5 95 100 0.9504 0.0153 0.9512 -0.3248 [0.9503 0.9505]

2.996 1 95 20 0.9568 0.0549 0.97901 -1.5452 [0.9567 0.9569]
5.188 3 95 20 0.9531 0.0388 0.9601 -0.9348 [0.9530 0.9532]
7.262 5 95 20 0.9521 0.0331 0.9569 -0.7526 [0.9520 0.9522]
11.284 9 95 20 0.9514 0.0276 0.9543 -0.5948 [0.9513 0.9515]
3.00 1 95 20 0.9574 0.0543 0.9794 -1.5516 [0.9573 0.9575]
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Minimum required order-up-to level

To find the minimum order-up-to level for
which a fill rate of 95% or 99% is obtained Al-
gorithm 5 is used. The required minimum stock
level are obtained for horizon lengths between
1 and 100. The horizon step length to obtain s
for each horizon length was 5. A different step
size than Thomas (2005) is chosen to obtain a
more precise and detailed plot, that was based
on more data points. After examining those
results, there were relatively high changes of
s for small horizon lengths (T between 1 and
25). Therefore, the step size between those
horizon lengths was set smaller to a step size
of 1. Decreasing the step lengths for these in-
tervals resulted in the Figures shown in 4 and 5.

The Figures 4 and 5 are less smooth than
the results provided by Thomas (2005). A
possible cause could be that the number of
replicates was not sufficient to create a smooth
line (100,000 replicates are used and a gap of
0.05 was allowed). However, from the figures
provided in the appendix the same conclusion
as Thomas (2005) can be drawn, namely: that
small horizon lengths benefit from potentially
avoiding large demand realizations is greater for
higher variability demand. Such that the order-
up-to level is lower for small horizon lengths.

To examine if the roughness in the lines
could be explained by an insufficient number
of replicates, the number of replicates for the
Erlang(5) with a fill rate target of 95% was
increased to 1,000,000. The results are shown
in Figure 6, by increasing the number of repli-
cations the lines become smoother. However it
is still not entirely smooth, by reducing the al-
lowed gap between the lower- and upperbound
and increasing the replications to 10,000,000.
Expecting that the figures will be even more
similar. A specially because most of the bumps

appear for longer horizon lengths. This could
be due to the gap of 0.05 that is allowed. If
the actual value of two different horizon lengths
is smaller than 0.05, then those two horizons
would probably end up with the same order-
up-to level even though the actual required
order-up-to levels differ slightly.

5 Numerical experiments

In this section, the research executes numerical
experiments in order to test the performance
of the target level measures. The performance
is compared for different lead-times. First, the
long-run value of s is computed for the dif-
ferent positive lead-times with an Erlang(5)
demand distribution. Here the performance
measures are analyzed when using this long-
run s in a finite horizon setting. Secondly,
these performances are analyzed for varying
horizon lengths, to investigate the effect of a
positive lead-time on the order-up-to level over
varying horizon lengths. In third, the effect of
a positive lead-time in combination with vary-
ing Erlang(k, 1) is investigated for differing
horizon lengths. Besides the set-up for the ex-
tension given in Section 5.1.

5.1 Set-up of the extension

The effect of having a positive lead-time and
its effect on the performance measures is ex-
amined. The lead-time lengths that will be
considered are: 1, 2, 3 and 4. By use of simula-
tion and a bisection algorithm the lowest value
for s for which we can guarantee in x% of the
cases a 95% fill rate performance is searched.
The algorithm works in the following way and
is presented by Algorithm 5. The function that
is called inside this algorithm is the simula-
tion that calculates the performance measure
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given: the order-up-to level (s), horizon length,
Erlang(k, 1). The algorithm uses a bisection
method. If the target level is not met for a
given value of T and s. It divides the inter-
val in two and checks again if this new s will
meet the requirements. The algorithm allows
a gap between the lower- and the upperbound.
Once the gap becomes sufficiently small, the
order-up-to level is saved and the waiting time
of customers is examined given this s.

As described in Section 3 the average of the
waiting time is calculated. The clarification of
the calculation of the waiting time is the follow-
ing. Since there is a warm-up period prior to
the review horizon, it can occur that there are
customers who are already in line before the re-
view horizon starts. The way this is dealt with
is the following. Only customers who arrive in
the review horizon are taken into account when
calculating the waiting time average. In the
same way it can occur that at the end of the
review horizon there are still customers waiting
for their order. For those customers the after
period is introduced. The after period is an ex-
tension at the end of the simulation, such that
it is possible to know when those customers
eventually get served (and there waiting time
can be calculated).

Before simulating the warm-up length has
to be determined. This was already briefly dis-
cussed in Section 3. The simulation length that
is a 100 periods, besides the number of repli-
cations is set to 1,000,000. The mean fill rate
for the first period within the review horizon
is plotted. This is done for different warm-up
length to examined when the mean fill rate
remains approximately constant. The results
are shown in Figure 7. In this Figure there
is clearly shown that longer lead-times require
a longer warm-up period. For instance if the

lead-time is 1 the fill rate remains relatively
constant for warm-up periods equal to 40 pe-
riods or more. However for a lead-time of 4,
40 periods does not seem sufficient. Further-
more, Figure 8 shows for different order-up-to
levels the mean fill rate over differing warm-up
lengths (given a lead-time of 2 periods). This
figure shows that the relative difference in the
mean fill rate does partly depend on the chosen
order-up-to level. For higher order-up-to levels
the difference in the mean fill rate is smaller.
An explanation can be that for higher order-
up-to levels it is less likely to have a waiting list
at the beginning of a period which influences
the fill rate performance. In case of low order-
up-to levels, not including a warm-up period
will result in absence of a waiting line at the
start of the simulation. Introducing a warm-
up period increases the likelihood of having a
waiting line at the start of the review horizon
that influences the performance measures.

In the end, it is decided that the warm-up
period for a lead-time of one period should be
40 periods, for a lead-time of two 50 periods.
The warm-up period for a lead-time of three
should be 60 and lastly that the warm-up pe-
riod for a lead-time of four is 70. This decision
was based on examining the plots for different
order-up-to levels and the benchmark that was
explained in Section 3.1. Namely that the rel-
ative difference of the mean fill rate should not
exceed 1%.

Since the research is restricted by time con-
straints, the precision of the extension part is
decreased. There are a few options, for ex-
ample to decrease the number of replications
or allow a bigger gap in the bisection method.
The Erlang(9) with a lead-time of 2 periods is
plotted, for various gaps and number of repli-
cations. This shows that by decreasing the
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number of replications, there appeared more
variation in the minimum required order-up-
to than is preferred. Therefore the decision is
made to still accept a gap of 0.05 and to use
100,000 replications. However, because Section
4 shows that the results of this research are in
line with the result of Thomas (2005), the step
size is changed to the step size that Thomas
(2005) uses. The step size is changed due to
time constraints, by changing the step size to
the step size Thomas (2005) uses the number
of order-up-to levels that have to be computed
decreases from 40 to 20.

5.2 Case 1: Effect of lead-time on
performance measures

For this Section the focus will be how the two
target measures perform over different lead-
time lengths. The distribution characteristics
that will be investigated are: the standard de-
viation, mean, skewness, the required order-up-
to level and lastly the minimum and maximum
waiting time of customers. First the long-run
s for the varying lead-times is determined for
which demand is Erlang(5) distributed. This is
done by using the about the same Algorithm
3 as for verifying the results found by Thomas
(2005). The structure of the algorithm is kept
the same, however line 6 to line 13 are replaced
by the extension Algorithm 4. Such that the
algorithm can calculate a long-run s for posi-
tive lead-times. Next, the focus shifts towards
examining this long-run s in a finite horizon

and its distribution characteristics within this
finite horizon.

The long-run s values that the algorithm
finds for the lead-times 0, 1, 2, 3 and 4 are
respectively s = 7.262, s = 13.759, s = 19.920,
s = 25.902 and s = 31.770. In Table 2 the dis-
tribution characteristics are shown for the fill
rate at a given horizon length of 20 periods and
with demand Erlang(5) distributed. Table 3
provides the results of the waiting time measure
for the same setting as mentioned above. Both
tables show that by increasing the lead-time
length the uncertainty of both measurements
increases. This can be seen by the standard
deviation that increases for longer lead-times.
A larger standard deviation indicates that the
obtained results are more spread. For instance
if the lead-time is zero the standard deviation
of the fill rate is 0.0330 and if the lead-time
is 4 periods the standard deviation is 0.07223.
Which is roughly twice as large.

Secondly, The amount of stock that is
required increases if the lead-time increases.
Which can be explained by the fact that if you
order goods at period t these goods do not ar-
rive until the beginning of period t + L. In
the mean time a business still has to maintain
there target levels and therefore has to increase
it safety stock, meaning there is a delay in
replenishment. This can be explained by the
same kind of information delay that was also
mentioned in Liang et al. (2013).
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Table 2: The fill rate descriptive statistics for which a fill rate of 95% is obtained on average in
the long-run. Demand is assumed to be Erlang(5) distributed and the review horizon is equal to
T = 20.
lead-time s mean std. dev. skewness

0 7.262 0.9520 0.0330 -0.7477
1 13.759 0.9530 0.0470 -1.2796
2 19.920 0.9536 0.0572 -1.6383
3 25.902 0.9541 0.0652 -1.9062
4 31.770 0.9543 0.0723 -2.1385

Table 3: The waiting time descriptive statistics for which a fill rate of 95% is obtained on
average in the long-run. Demand is assumed to be Erlang(5) distributed and the review horizon
is equal to T = 20. The minimum and maximum that are provided is the absolute minimum
and maximum over all replications.
lead-time mean std. dev. skewness [min,max] long-run mean

1 0.0475 0.0480 1.3618 [0,2] 0.0505
2 0.0479 0.0609 1.8381 [0,3] 0.0518
3 0.0487 0.0729 2.2512 [0,4] 0.0531
4 0.0496 0.0841 2.6085 [0,5] 0.0544

Third, even though the oder-up-to level
increases for longer lead-times (such that the
required fill rate level is still achieved on av-
erage), the average waiting time increases. By
further investigating this appears to be due by
large demand realizations. If the lead-time is
longer the quantity that compensates for the
large demand realization arrives later, making
the system less efficient. As a result, customers
may wait longer. This observation is also sup-
ported by examining the maximum waiting
time. For instance if the lead-time is equal to
1 period in the 100,000 replications that were
done, the longest a customers had to wait was
2 periods. Whereas if the lead-time is 4 peri-
ods there appeared a waiting time of 4 periods.
The maximum length of waiting time can be
related to the length of the lead-time. If a
customer can not be served at time t, than a
order is placed at the beginning of period t+1.
This order will arrive at t + 2 provided that
the lead-time is 1 period. In the end this cus-
tomer has to wait 2 periods. It makes sense
that this does not occur often because this will
mean that during t + 1 there was not enough

inventory to serve the outstanding backorder
let alone serve the customers arriving in period
t+1 (since backorders are satisfied first). If this
is the case there is a low fill rate obtained and
the average fill rate should be equal or higher
than 95%. Meaning this cannot occur often.
The maximum number of periods a customers
has to wait becomes equal to 1 + L.

In fourth, when examining Figure 9 there
are a few things that stand out. The first thing
is the spread of the fill rate distribution. For
instance if the lead-time is 4 periods there are
fill rates obtained of 75%. Whereas if the lead-
time is zero this does not occur. Also lower fill
rates (fill rates below the 95% benchmark) are
obtained more frequently. On the other hand
the number of times the fill rate was equal
to 1 increases (meaning every customer was
served directly). For instance achieving a fill
rate of a 100% given that the lead-time is zero,
is roughly around 4%. This in comparison to
42% chance if the lead-time is 4 periods (us-
ing interval width of 0.01). This is related to
the first statement of this case that for longer
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lead-time the uncertainty in achieving a re-
quired target fill rate level increases, such that
deviating from the average becomes more likely.

Moreover, it is clear that the waiting time
and the fill rate have some correlation. Namely,
if a high fill rate target is set it becomes less
likely that a customer has to wait. Not only
the chance of ending up in the waiting line
decreases, but also the average waiting time of
customers that have to wait decreases. Because
if there is a high chance of serving a customer
directly for every period (by having a high
enough up-to-order level). It means that the
backorder also has to be served quickly other-
wise you can not serve new customers directly.

Although, Table 2 shows that by increas-
ing the lead-time the fill rate average increases.
While if Table 3 is examined, the average wait-
ing time also increases. This indicates that it
cannot be said with certainty that by maintain-
ing a particular fill rate performance a certain
waiting time performance is also obtained.

Lastly, the mean fill rate in the finite hori-
zon is higher than the fill rate that is obtained
in the long-run (0.95 for each case). Chen
(2003) proves that the expected fill rate of the
finite horizon is greater of equal than the ex-
pected fill rate of the infinite horizon given
that the lead-time is zero. To check whether
this result also holds for positive lead-time a
simulation is used. In Figure 10 the average fill
rate is provided for different horizon lengths us-
ing the long-run s, this was done for 10,000,000
replications. The figure shows that the mean
fill rate for horizon lengths between 1 and a
100 periods is higher than the 0.95 that is ob-
tained in the long-run. When comparing the
average waiting time in a finite horizon with
the case of an infinite horizon, it shows that for

the finite horizon the average is lower. Which
can be partly explained by the fact that the
fill rate (fraction of customers that is served
directly) is higher for the finite case. The same
was executed for horizon lengths between 1 and
100,000 periods given that the lead-time was 4
periods. However, the figure did not provide
additional insight.

5.3 Case 2: Lead-time Behavior over
varying Horizon Lengths

In this case, the research examines the mini-
mum order-up-to level for which a fill rate of
95% is obtained for a certain percentage of the
replications. First it is assumed that demand
is Erlang(5) distributed and that the lead-time
varies between 0 and 4 periods. The algo-
rithm that this case uses to find the minimum
order-up-to level is the same as used for veri-
fying the minimum order-up-to level obtained
by Thomas (2005), namely Algorithm 5. The
number of replications is equal to 100,000 and
the gap that is allowed between the lower- and
upperbound is 0.05.

The first thing to notice when examining
the behavior of the order-up-to levels in Figure
11 is that (particularly for the line that repre-
sents the 99% certainty that a 95% fill rate is
obtained) the lines become more flat when the
lead-time is longer. A possible explanation is
that if the lead-time is 0 and there is a short
horizon length (for instance T = 1) there is a
high chance of avoiding a large demand realiza-
tion making it more likely to meet the target
level. Whereas if the lead-time is 4 periods,
a large demand realization before the review
horizon starts (so that it occurs at the end of
the warm-up horizon) can still affect the target
level in the review horizon. For longer lead-
times it takes longer to recover from a large
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demand realization since the system becomes
less efficient. The system becomes less efficient
because the goods that compensates for the
large demand realization arrive later for longer
lead-times, this longer recovery will reflect in
the fill rate performance. Therefore, it becomes
less likely for long lead-times to totally avoid
a large demand realization even for small hori-
zons. When the lead-time is 0 the OH inventory
at the beginning of each period is equal to the
order-up-to level. This is not the case for pos-
itive lead-times. If a large demand realization
occurs at time t, than this can effect the num-
ber of customers that can be served at time
t + 1. How long this large demand realization
is effecting other periods depends on the length
of the lead-time as explained in Case 1.

It seems that for a fill rate of 95% that is
guaranteed to be obtained in 99% of the cases,
might convert slowly towards a straight line.
If that is indeed the case then, there would be
no difference between a short and a long re-
view horizon. To test whether this is true, the
minimum order-up-to levels is computed for a
lead-time of 10 periods, which is also shown in
Figure 11.

However, when examining the lead-time of
10 periods there is still a difference between the
short horizon and the long horizons. This raise
the suspicion that it will always eventually be
the case that by increasing the horizon length
the required order-up-to level will be lower. For
shorter lead-times it appears that the order-
up-to level decreases earlier and more rapidly.
From the figure right below in Figure 11 with
a lead-time of 10 periods it is not entirely clear
whether the order-up-to level decreases at the
end or not. However, if the horizon is increased
length to T = 200 the required order-up-to
level indeed decreased (shown in Figure 12).

Furthermore, it seems to be the case that
for small lead-time (0 and 1 period) the relative
difference in the minimum order-up-to level de-
creases. Such that the difference in required
order-up-to level is smaller for differing hori-
zons. For instance taking the case for which
you can guarantee a 95% fill rate in 95% of the
cases. If the lead-time is 4 periods the maxi-
mum level of order-up-to levels is around 36.59

and the lowest order-up-to level is around 33.38,
the relative difference is 1.096. If the lead-time
is 1 the highest order-up-to level is about 23.88
and the lowest is around 21.59 with a rela-
tive difference of 1.106, which is slightly larger.
This again shows that for longer lead-times you
benefit less from having a short review horizon.

Next the research analyzes the the waiting
time performance measure for the minimum
order-up-to level that has to be present to re-
quire a certain fill rate performance. Figure 1
shows the average waiting time matching the
minimum order-up-to level of Figure 11 for
1,000,000 replications. A 1,000,000 replications
were used because when computing the same
for a 100,000 replications the figure was less
smooth than was preferred.

The first observation that is made is that
the average waiting time is somewhat corre-
lated to the minimum order-up-to level. For
short horizons the required order-up-to level is
lower because it has to potential benefit from
avoiding a large demand realization. A conse-
quence is that by lowering this order-up-to level
it becomes more likely that customers have to
wait (or have to wait for longer). The same
relation is shown for long horizons (around
100 periods), longer review horizons have more
time to recover from a large demand realization
as mentioned by Thomas (2005). Therefore,
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Figure 1: The figure presents the waiting time average over varying horizon lengths with the
corresponding minimum order-up-to level which was found in Case 2.
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the required order-up-to level can be lower, al-
though this does increase the average waiting
time.

Another observation that can be made by
examining Figure 1, is that for longer lead-time
the average waiting time is higher. Besides, it
does show that for higher fill rate targets the
average waiting time is lower. This can be seen
by the fact that in case were the requirement

is to hit the fill rate target 70%, the average
waiting time is higher than in the case were the
requirement is 90%. The figure overall shows
that maintaining a specific fill rate target over
a finite horizon does not give you a guarantee
that you will obtain a certain waiting aver-
age. Because, even though the fill rate remains
constant over the differing horizon lengths the
waiting time average does not.

5.4 Case 3: Lead-time behavior for
varying Erlang distributions

This case examines the fill rate performance of
95% for which we can guarantee either 99% or
95% of the cases for varying Erlang demand
distributions. This is done by using the same
simulation as in Case 2. The 90% and the 70%
are not included in this case due to time con-
straints. The reason being that the overall be-
havior can still be examined by just examining
the 99% and the 95% case. Also, the preference
was given to examine those two cases with more
precision rather than examining all four cases
with decreased precision. The main reason to
investigate the lead-time behavior under differ-
ent Erlang distributions is that the uncertainty
in demand increases. A statement that is made

by Thomas (2005) is that short-horizon benefit
from potentially avoiding large demand realiza-
tions is greater for higher variability demand.
This case will investigate if this statement is
still valid for positive lead-times.

The Erlang(k, 1) distribution that this re-
search considers are the same as Thomas (2005)
namely: k = 1, k = 3, k = 5 and k = 9. First,
the long-run value of s for these Erlang distribu-
tion is determined by using again Algorithm 3
with the modifications described in Section 5.2.

The long-run values for s are in Table 5.
The long-run values that are found relate to the
findings of Case 1, by increasing the lead-time
the required order-up-to level increases. Fig-
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ure 13 shows the required order-up-to level for
varying lead-time lengths, given that demand
is Erlang(1) distributed. Figure 14 shows the
same but for Erlang(3) and Figure 15 for Er-
lang(9).

The figures show overall the same behav-
ior. For longer lead-time, short review horizons
benefit less, due to the fact that avoiding a
large demand realization becomes less likely as
explained in Case 2. Besides, it shows that the
point at which lengthening the horizon reduces
the necessary stock level occurs much later for
longer lead-times. The benefit from a long re-
view horizon was that the system is not doomed
by one single large demand realization. If the
lead-time increases, the recovery time is longer
due to the delay in replenishment mentioned
before. It therefore makes sense that the sys-
tem takes longer to recover and the necessary
order-up-to level starts to decreases for longer
review horizons. Katok et al. (2008) find that
for higher target levels it takes longer to recover
from a large demand realization. So there are
two important factors that can influence the
speed of the recovery, i.e. the target level itself
and the lead-time.

Furthermore, it continues to be the case
that the length of the review horizon signifi-
cantly impact the required order-up-to level.
For instance if Figure 13 were the lead-time
is 3 periods. The minimum order-up-to level
(meeting the 95% case) for T = 1 is about 7.7
and for T = 20 is approximately equal to 10.1.

6 Discussion

In this section a summary of the results of
Thomas (2005) is given, next to the discussing
of the extend to which these results till hold
in cases with a positive lead-time. Afterwards,

the research discusses the most important find-
ings of the extension part.

For all cases Thomas (2005) considers, the
necessary order-up-to level increases for short
review horizons but eventually decreases. If
the demand is relatively low in variability the
order-up-to level decreases faster, due to po-
tentially avoiding large demand realizations.
In the case of having a deterministic positive
lead-time this remains true. Yet, for longer
lead-times the benefit from having a short re-
view horizon decreases. As discussed in Section
5 this is partly due to the delay in replenish-
ment that increases if the lead-time increases.
The longer the lead-time, the longer recovery
the system needs from a large demand realiza-
tion. So, if a large demand realization occurs
in the warm-up period this could still affect the
performance measures in the review horizon.
Making short review horizons less beneficial.

Secondly, Thomas (2005) finds that long
review horizons increase the chance that large
demand realizations are seen but also give the
supplier more opportunity to recover from these
large realizations. This statement is given to
explain why the required order-up-to level even-
tually decreases. Again, the overall behavior
remains the same, but because of this delay
in replenishment the recovery is more slowly,
meaning that the horizon length should be
longer to be beneficial. For instance in Figure
1 of Case 2 the fill rate is shown given a lead-
time of 10 periods. The required order-up-to
level nearly stays constant for long review pe-
riods. Although it does decrease, the decrease
occurs beyond the range of the plot. Whereas
if the lead-time is zero, the decreasing of the
order-up-to level starts around a review period
length of 13.
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Third, Chen (2003) proved that if the lead-
time is 0 the expected fill rate mean in a finite
horizon is higher than the one for the infinite
horizon. In Case 1 Table 2 suggested that this
might be the case as well for positive lead-
times. To confirm these suspicions, the mean
fill rate was computed for different review hori-
zon lengths. These results show that the mean
fill rate that was obtained in a finite horizon
was indeed higher.

Next, the target performance waiting time
of customers was added. For a supply busi-
ness it is important to realize that the two
target performance measures are not one-to-
one related. A business cannot assure that the
average waiting time will stay below a certain
benchmark just by reaching a certain fill rate
target. To illustrate this, Case 2 showed that
by setting the order-up-to level in such a way
that a 95% was obtained, did not result in a
constant waiting time average. They should
carefully consider the requirements that are set
in these contracts and base their performance
measures based on those requirements.Besides,
an increasing lead-time results in an increase
in the maximum number of periods a customer
had to wait increases. For instance in Case 1,
for a lead-time of 1 period the longest a cus-
tomer had to wait was 2 periods. If we compare
this, a customer could be waiting up to 4 peri-
ods if the lead-time is 4.

7 Conclusion and Future Re-
search

This research observes the fill rate performance
as well as the waiting time of customers in
a finite horizon with a periodic performance
review system. The motivation behind this
research was to investigate what effect a deter-

ministic lead-time had on meeting target levels
that might be set by service contracts. First,
the results found by Thomas (2005) were repli-
cated. Although there were sometimes slight
deviations, the conclusion could be drawn that
the statements made by Thomas (2005) still
hold. Secondly, it was investigated to what
extent these results would hold for a non-zero
deterministic lead-time. Short review horizons
still benefit the supplier, as large demand re-
alizations may not occur during the review
horizon. This increases the chance of meeting
both performance measure requirements. How-
ever, if the lead-time increases this advantage
decreases since large demand realizations in the
warm-up period can still affect the small review
period.

Another observation that is made by
Thomas (2005) is that long horizon length do
not have this advantage. Nevertheless, the
long horizon also gives the supplier the chance
to recover from this large demand realization.
This observation still holds for a deterministic
lead-time, although a note of caution has to be
made here. For longer lead-times the recovery
is more slowly, meaning that the horizon length
should be longer to be equally beneficial. The
numerical experiments further show that the
expected fill rate mean in a finite horizon is
higher than in the infinite horizon.

An important consequence of having a pos-
itive deterministic lead-time will be state once
more. For longer lead-time the uncertainty
in the performance measures increases, mak-
ing it more likely to "overshoot" but also to
"undershoot" in a finite review period. A man-
ager of a supply business needs to be aware of
this uncertainty, since it becomes more likely
to get penalized for not meeting the required
performance measures. The same holds for
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higher demand variability, for a lead-time of
zero higher demand variability benefit more
from a short review period because it can avoid
possible large demand realizations. However if
the lead-time increases this benefit decreases
faster than for low demand variabilities. An-
other important consequence of increasing the
lead-time is that the maximum periods a cus-
tomer has to wait increases. A manager of a
supply business has to realize this consequence
when setting service level contracts.

This research can be further extended by
introducing a stochastic lead-time. It can be
expected that the overall uncertainty increases
and it will be harder for a supply business to
guarantee a certain level in a finite horizon set-
ting. Besides, the research is restricted to de-
mand being Erlang(k, 1) distributed. It would
be interesting to see how these performance
measure behave under different demand distri-
butions.
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Appendix

Algorithm 1 The algorithm that is used to determine the long time s by mean of the ESC.
1: procedure S approximationTheoretical(precision, λ, benchmark)
2: bigS=100;
3: smallS=1;
4: while (bigS − smallS) < precision do
5:

{
6: middle = bigS+smallS

2
7: ESCmiddle = (x− s) · gampdf(x, λ, 1)
8: fillrate = 1− ESCmiddle

λ
9: if fillrate ≥ benchmark then

10:
{
bigS = middleS

}
11: else
12:

{
smalllS = middleS

}
13:

}
14: Return: bigS

[1]

Algorithm 2 The algorithm that is used to determine the long time s that is required to obtain
a certain fill rate target.

procedure S calculation(s, λ, numrep, horizonlength, benchmark)
2: for replications = 1 : numrep do{
4: sumx=0

sumy=0
6: for currenttime = 1:horizonlength do{

Generate X
8: Y = min(s,X)

sumx = sumx +X
10: sumy = sumy +Y}
12: fillrate(replications) = sumy

sumx}
14: succesfull = (fillrate > benchmark)

fracsucces = sum(succesfull)
numrep

[2]
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Algorithm 3 The algorithm that is used to determine the long time s that is required to obtain
a certain fill rate target.

procedure S approximation(precision, λ, numrep, horizonlength)
while decimal < precision do

3:
{
initialize all variables
for s = Begin : 1/10decimal : Begin+ 1 do

6:
{
for replications = 1 : numrep do{

9: sumx=0
sumy=0
for currenttime = 1:horizonlength do

12:
{
Generate X

Y = min(s,X)
sumx = sumx +X

15: sumy = sumy +Y}
fillrate(replications) = sumy

sumx
18:

}
if mean(fillrate) ≥ 0.95 then{

begin = s− (1/10decimal)
21: decimal = decimal +1

Break}
24:

}}
[3]

Table 4: Descriptive statistics, using the alternative method (the ESC method).
s m-erlang fill rate % Length (T) mean std. dev. median skewness

7.2639 5 95 5 0.9578 0.0584 0.9890 -1.5910
7.2639 5 95 10 0.9541 0.0448 0.9547 -1.0918
7.2639 5 95 20 0.9521 0.0330 0.9567 -0.7523
7.2639 5 95 100 0.9504 0.0153 0.9513 -0.3276

2.9957 1 95 20 0.9567 0.0550 0.9789 -1.5408
5.1863 3 95 20 0.9530 0.0388 0.9600 -0.9342
7.2639 5 95 20 0.9521 0.0330 0.9567 -0.7523
11.2858 9 95 20 0.9514 0.0276 0.9543 -0.5961
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Algorithm 4 The simulation model including a positive lead-time. The after period is included
such that if a customer arrives in the review horizon but could not be served within this horizon
the waiting time of this customer can still be calculated.

procedure S approximation(T, S, λ, numrep, L,warmup)
for i = 1 : numrep do{

Initialize variables and set variables empty
4: extra = L+ 1 . to prevent the code from calling non positive index in vectors

for t = 1:(T+warmup+afterperiod do{
if length(arrivaltime) > 0 and OO(t-L+extra)>0 then

8:
{
taken =0

while length(arrivaltime)>0 and OO(t-L+extra)-taken>0 do{
if frequency(1) > OO(t-l+extra)-taken then

12:
{
if arrivaltime(1)>(warmup) and (T+warmup)≥arrivaltime(1) then{

servedwaitingtime =[servedwaitingtime; (t-arrivaltime(1)]
servedfrequency =[servedfrequency; (OO(t-l+extra)-taken)]

}
16: taken = OO(t-L+extra)

frequency(1) = frequency(1) - (OO(t-l+extra)-taken)}
else

20:
{
if arrivaltime(1)>(warmup) and (T+warmup)≥arrivaltime(1) then{

servedwaitingtime =[servedwaitingtime; (t-arrivaltime(1)]
servedfrequency = [servedfrequency; frequency(1)]

}
24: taken = taken + frequency(1)

delete arrivaltime(1), frequency(1)}}
28:

}
IL(t + extra) = IL(t − 1 + extra) + OO(t − L + extra) − d(t − 1 + extra), set

OO(t-L+extra) =0
IP (t+ extra) = sum(OO) + IL(t+ extra)
OO(t+ extra) = Q = S − IP (t+ extra)

32: OH(t+ extra) = max(0, IL(t+ extra))
B(t+ extra) = max(0,−IL(t+ extra))
d(t+ extra) = X = gamrnd(lapda, 1) . play the actual period
Y = min(OH(t+ extra), X)

36: if t > warmup and (warmup+ T ) ≥ t then{
sumx = sumx+X, sumy = sumy + Y

if Y == X then{
arrivaltime = [arrivaltime; t]

40: frequency = [frequency; (X −OH(t+ extra)]
}}}

fillrate(i) = sumy/sumx
44:

}
[4]
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Algorithm 5 The algorithm that is used to determine the minimum required order-up-to level.
For the verifying the results of Thomas (2005), the standard algorithm (partly described in
Algorithm 3 is used instead of the extensionsimulation function that is called in the pseudo
code. A general comment: extensionsimulation returns more than just these variables but only
the one relevant for this algorithm are stated.

procedure Find Required order-up-to level(percentage, λ, L,warmup, benchmark, gap)
stepsize = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100] . The stepsize

used for the extension part
stepsize = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100] . The stepsize used for

verifying Thomas (2005)
5: for counter = 1 : length(stepsize) do{

T = stepsize(counter)
small = 1
big = 100
get fillratemeansmall = extensionsimulation(T, small, λ, L,warmup, benchmark)

10: get fillratemeanbig = extensionsimulation(T, big, λ, L,warmup, benchmark)
while big - small > gap do{

middle = (small + big)/2
get fillratemeanmiddle, fillratefractionsuccesmiddle =

extensionsimulation(T,middle, λ, L,warmup, benchmark)
if fillratefractionsuccesmiddle ≥ percentage then

15:
{
big = middle

}
else if then{

small = middle
}}

get waitingtimemean = extensionsimulation(T, big, λ, L,warmup, benchmark)
20: OrderUpToLevel = [OrderUpToLevel; big]

waitingaverage = [waitingaverage;waitingtimemean]}
[5]
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Figure 2: Distribution of fill rate with the same stocking level and per-period demand distribution
but different horizon lengths, T .
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Figure 3: Distribution of fill rate with the same stocking level and per-period demand distribution
but different horizon lengths, T .
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Figure 4: Stock levels required to have a specific chance of meeting a 99% target fill rate, with
demand Erlang distributed. The stripped green line represents the long-run value of s.

0 10 20 30 40 50 60 70 80 90 100

Time horizon (T)

1

2

3

4

5

6

7

8

9

o
rd

e
r-

u
p

-t
o

 l
e

v
e

l

Erlang(1)

70% success

90% success

95% success

99% success

0 10 20 30 40 50 60 70 80 90 100

Time horizon (T)

3

4

5

6

7

8

9

10

11

12

o
rd

e
r-

u
p

-t
o

 l
e

v
e

l

Erlang(3)

70% success

90% success

95% success

99% success

0 10 20 30 40 50 60 70 80 90 100

Time horizon (T)

5

6

7

8

9

10

11

12

13

14

15

o
rd

e
r-

u
p

-t
o

 l
e

v
e

l

Erlang(5)

70% success

90% success

95% success

99% success

0 10 20 30 40 50 60 70 80 90 100

Time horizon (T)

10

12

14

16

18

20

22

o
rd

e
r-

u
p

-t
o

 l
e

v
e

l

Erlang(9)

70% success

90% success

95% success

99% success

26



Figure 5: Stock levels required to have a specific chance of meeting a 95% target fill rate, with
demand Erlang distributed. The stripped green line represents the long-run value of s.
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Figure 6: Erlang(5) distribution with an increased number of replications for a 95% fill rate
requirement.
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Figure 7: The mean fill rate for an Erlang(5) distribution with differing warm-up periods (T=1)
and for different leading times plotted.
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Figure 8: The mean fill rate for T = 1 for different order-up-to levels and a lead-time of 2 periods.
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Table 5: The Table shows the required long-run value of s to obtain a 95% fill rate.
Erlang(k,1) lead-time 1 lead-time 2 lead-time 3 lead-time 4

1 4.741 6.300 7.750 9.150
3 9.4250 13.3610 17.1430 20.821
5 13.759 19.920 25.902 31.770
9 22.098 32.562 42.810 52.9410

Figure 9: The distribution of the mean fill rate for an Erlang(5) and a horizon length of T = 20.
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Figure 10: The mean fill rate for an Erlang(5) demand distribution over differing horizon lengths.
The stripped green line represents the mean fill rate for an infinite horizon.
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Figure 11: The stripped green line represents the long-run value of s for a fill rate requirement
of 95% is obtained for Erlang(5) demand. The figure shows the required order-up-to levels for
various lead-time lengths.
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Figure 12: The stripped green line represents the long-run value of s for a fill rate requirement of
95% is obtained. The figure shows the lead-time 10 behavior for a horizon length up to T = 200.
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Figure 13: The stripped green line represents the long-run value of s for a fill rate requirement
of 95% with demand being Erlang(1) distributed.
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Figure 14: The stripped green line represents the long-run value of s for a fill rate requirement
of 95% with demand being Erlang(3) distributed.
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Figure 15: The stripped green line represents the long-run value of s for a fill rate requirement
of 95% with demand being Erlang(9) distributed.
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