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Abstract

Forecasting demand for upcoming periods is an issue that has been thoroughly discussed and re-

searched. It is of great importance as company strategies and schedules are made based on these

forecasts every day. This thesis investigates and compares four types of existing forecasting methods

and proposes a new one that is consistent with a failure mode in which items can also be replaced

with newer models instead of invariably fixed. Specifically, there are two major contributions made to

the existing literature.

Firstly, it provides a detailed explanation of a comparison of four existing methods used in fore-

casting of demand. It evaluates the strength and weaknesses of these methods, and states the most

efficient method given the setup of the sample. The findings indicate that the best forecasting method

depends on the error function and the sample size of the items.

Secondly, this paper defines two modes of failure and contributes a new forecasting method tailored

to it. The first failure mode is set up in such a way that a failure of an item is always cause for demand.

In the second failure mode, an item is either fixed or replaced. Only the items that are fixed are cause

for demand. In accordance with the second failure mode, a new method is proposed. This method is

under certain circumstances an improvement to existing methods.
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1 Problem Statement

Malfunctioning of appliances can have significant economic consequences. The problem must be

resolved as swiftly as possible. At a private level, it causes discomfort. At a corporate level it causes

loss in revenue, delays, lower quality and, again, discomfort.

Researchers have been investigating and are able to make reasonable forecasts of spare part de-

mand, occurring whenever an item fails. Fixing a failed item is called corrective maintenance. The

other cause for demand is regular preventive maintenance. At preventive maintenances, the parts of

an appliance are checked to catch a faulty item before it causes a failure. Preventive maintenance

causes a spike in demand at the size of faulty appliances at the time of inspection, because there is

a delay time between the appearance of an error and the failure time. This causes, along with the

randomness of error and failure time, an intermittent demand pattern [11]. The types of maintenance

differ in their nature: preventive maintenance is deterministic in occurrence and stochastic in demand

size, whereas corrective maintenance is stochastic in occurrence and demand size is always one.

The variation in demand occurrence is not all. Additionally the sample size can also to predict for

can also vary over time. As an appliance gets outdated, or is discarded, a user can choose to update to

a newer model, rather than have it fixed again. A practical application of this is the maintenance of

wind turbines. Proper lubrication and other preventive actions can avoid expensive and unnecessary

repairs. At the same time, rapid development ensures that companies are producing larger windmills

and maintenance equipment providers, such as lubrication producers, need to produce materials that

keep up with the industry [5]. Moreover as illustration, Figure 1, shows that spare parts for outdated

aircraft model no longer sell well over time.

Figure 1. mba Insight graph illustrating the average value
of an aircraft spare part over time. source: www.mba.aero/

Intermittent demand patterns and forecasting for such has been researched thoroughly. The liter-

ature in section 2 shows four existing methods to forecast demand, three time series model, and the

Delay Time model (DT) [11]. The DT model is the cornerstone for this thesis. In addition to existing

literature, the DT method is compared to more methods than just SBA, as it has been in the paper

by Wang et al. [11]. It is now also compared to TSB and LES. Also, this thesis provides an insight
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into a new model in which there are two failure modes. Originally there was only one failure mode in

which a failed item was always fixed and cause for demand of a spare part, as applied in the paper

by Wang et al. [11]. The second (new) failure mode, a failed/faulty item is either fixed OR replaced

with a new item, based on an additional variable that states at which point in time an item becomes

outdated. If an item is replaced, there is no demand for a spare part. These research goals can be

summarized in the research questions (RQ) stated below.

RQ1: How can one incorporate the two failure modes in a DT model to forecast spare parts demand

for items that might be replaced?

RQ2: What is the best method for forecasting spare part demand for one and for two failure modes?

The build-up of the paper is as follows: section 2 discusses past literature, section 3 provides

insight in how the data used in this paper is generated and applied, in section 4 the methodology is

discussed, section 5 discusses tests and their results for the methodology and lastly section 6 states a

summary and some concluding remarks.

2 Literature

There have been many models to forecast demand over the years. One of the first and a basis for

future models was put forward by Croston, 1972 [2]. He proposed a method that deals with demand

patterns by forecasting the interval between the occurrence of demand and the demand size when this

happens uncorrelated to each other. Croston time series method outperformed the Single Exponential

Smoothing (SES). Croston’s method estimated the mean demand per period. In time period t, zt is

the actual demand size, z′t is the smoothed estimate of the next period for zt, pt is the actual demand

interval, p′t is the smoothed estimate of the next period for pt, α is a smoothing parameter where

0 ≤ α ≤ 1, Ft is the forecast for the next period. In the method, the variables are only updated in

periods with non-zero demand. The forecast is given in equation 1.

Ft =
z′t
p′t

(1)

where if zt > 0: p′t = p′t−1 + α(pt − p′t−1), z′t = z′t−1 + α(zt − z′t−1)

The method by Croston was proven to be biased in 2001 by Syntetos and Boylan [8], with a bias

equal to Bias ≈ α
2−α ·E[zt] · p−1p2 . Subsequently, Syntetos and Boylan, 2005 [9] put forward a solution

that combats the bias, transforming the forecast from equation 1 slightly. They use the same definition

for the variables. The estimator is called the Syntetos Boylan Approximator (SBA). The forecast of

the SBA method is given in equation 2.

Ft = (1− α

2
) · z

′
t

p′t
(2)
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The paper by Teunter et al., 2011 [10] extended the method with an unbiased estimator using

demand occurrence probability and instead of demand interval, named after Teunter, Syntetos and

Babai (TSB). This allegedly incorporates a faster reaction to a decrease in demand and had a smaller

variance than the SBA and Croston methods given that the right smoothing constants are used. When

an item becomes obsolescent its forecasts degenerate exponentially to zero. The variable are defined

with ρt as the occurrence of demand in period t and ρ′t as the probability of a demand occurrence

at the end of period t. Furthermore, they introduce two different smoothing variables α and β for

demand size and demand occurrence respectively. The forecast is given in equation 3:

Ft = ρ′t · z′t (3)

where if ρt = 0: ρ′t = ρ′t + β(0− ρ′t), z′t = z′t−1

else ρt = 1: ρ′t = ρ′t + β(1− ρ′t), z′t = z′t−1 + α(zt − z′t−1)

Another forecasting method showing promising results is Linear-Exponential Smoothing (LES) put

forward by Prestwich et al., 2014 [6]. It is similar to the method of Hyperbolic-Exponential Smoothing

(HES) [7] put forward by Prestwich et al, 2014. HES estimates demand size, z′t, and inter-demand

interval, p′t, and increases the interval in periods where demand is zero, zt = 0 which decreases the

forecast for the next period: Ft > Ft−1. This is comparable to a combination of TSB, updating when

nonzero, and SBA working with demand interval. The forecast is given in equation 4.

Ft =


z′t
p′t

if zt > 0

z′t
p′t+

βpt
2

if zt = 0
(4)

where if zt > 0: p′t = p′t−1 + β(pt − p′t−1), z′t = z′t−1 + α(zt − z′t−1)

The method LES [6] differs from HES [7] in the way it updates Ft, and enables LES to forecast

zero demand, which was not possible yet with HES or TSB. They update z′t and p′t the same as with

HES. The forecasts for LES are given in equation 5.

Ft =


z′t
p′t

if zt > 0

z′t
p′t
·max{0, 1− βpt

2p′t
} if zt = 0

(5)

In variance to all of the methods mentioned (Croston, SBA, TSB, HES, LES) that react to data,

there is also a method proposed by Wang et al., 2011 [11] that incorporates the sources of demand

patterns to develop a pro-active mannerism to forecast the demand for spare parts. The forecast

equals the addition of the probabilities of failure within the time period and the probability of a

part being faulty at moment of inspection at the beginning of the time period. The method is called
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Delay Time method (DT), as it builds upon the intermittent nature of demand sizes provided by the

delay time between the point an error arose and the point it caused a failure. Allegedly, given that

the distributions for occurrence of error and failure, it outperformed SBA. A fuller description of the

mathematics to support their method is given in section 4.2.

To summarize the literature, when the paper by Wang et al. [11] was published in 2011, SBA was

best shown to outperform other Croston-based methods by a paper from Eaves et al. [3], Gutierrez et

al. [4] and Syntetos et al. [9], but DT outperformed SBA still. Since then, improvements different time

series based methods have been published: TSB, HES and LES. HES is not included in the analysis,

because HES and LES are very similar, but LES has been proven superior in Prestwich et al, [6]. The

new model proposed in this paper: DTRP is an extension of DT that also includes the probability

of items being replaced. DTRP will be compared to DT, SBA, TSB and LES in order to provide a

thorough understanding of the possibilities or limitations of DTRP contrasting ingrained methods in

the field of forecasting spare parts demand. In addition, the findings from [11] are reproduced when

comparing the performances of DT and SBA.

3 Simulation study

The data used to test the performances is simulated. Two types of data are considered, distinguished

as two different failure modes. The first one is in accommodation with the DT model where all

failures/faulty items are always fixed and cause demand. The second failure mode is in accommodation

with the DTRP model, where failures/faulty items can either be fixed and cause demand or replaced

with a new model, without causing demand for a spare part. The maintenance schedule is age based,

meaning that an item is only checked if it was checked longer than a certain time ago. This is a

practical situation, which saves a repair man some time.

For the data, the failure pattern is implemented described in the paper by Wang et al. [11]. A

total of N items are in the sample size. The time point item i presents an error is given at Ui, if an

error has not occurred already. This error causes a failure at time point Si. The time it takes between

Ui and Si is called the delay time, Hi. Items are inspected at a regular interval of length t. If the

item is inspected and there is an error, it is fixed immediately. Also, if a failure occurs, the item is

fixed/replaced immediately. The error time is Weibull distributed and the delay time is exponentially

distributed. The last time an item was placed is given as: tir. The variable that indicates from what

usage time on an item is to be inspected, is given with τ . The last checkup time is tip. Using age

based maintenance, if an item is very freshly placed it does not have to be inspected; if tnow − tr ≤ τ .

When the data includes replacement possibility, an item gets outdated at time point Oi. If an

item is inspected and faulty or fails after Oi, it is replaced with a new model. If this is the case,

the item doesn’t cause demand for a spare part. The occurrence of a part needing replacement is
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distributed with the Weibull distribution starting from the moment item i was placed in the machine.

A representation of the failure pattern is given in figure 2.

Figure 2. Schematic demand pattern.

To implement the simulation with a solid foundation, five assumptions have to be made in the age

based maintenance scheme.

1. If the item is inspected, any present error is fixed, causing demand equal to 1 per item, or the

item is replaced, causing no demand.

2. Inspections are undertaken at a regular interval t.

3. When the technicians performed an inspection or fixes a failure, they put a label on the item

showing the time of the inspection or replacement so that the next inspection is taking place

after t time from that particular day.

4. The distribution for the time elapsed between the introduction of a new item and the point Ui

is Weibull; the delay time distribution is exponential (fitted result).

5. The technicians goes around every period t but only those associated with a time elapsed since

the last inspection or replacement of more than τ are inspected again according to the label

attached to the appliance.

The current time period looked at is time period m, ranged between 1 ≤ m ≤ int(T/t). The

moment of replacement is given as Oi. If an item is never replaced, Oi is not generated but set

to infinity, meaning that the blue part is always true. If items are replaced, Oi is generated as the

expiration date of an item, and as soon as the item is faulty at inspection or failed, it is replaced. With

these variables, the data is simulated in a manner as represented in figure 3. The gray boxes indicate

an update mechanism of planned maintenances that are happening in periods without failures/errors,

in order to keep track of the last time of inspection: tip. These blocks are an addition to the block

scheme in the paper by Wang et al. [11].
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Figure 3. Block scheme, age based maintenance
o* is set to infinity if replacement is disregarded.

4 Methodology

The performance of three types of models is to be compared: time series models based on Croston’s

method [2], the DT model [11] and an extension of the DT model: DTRP. First the Croston based

methods and their implementations are given in section 4.1. Secondly, the math for the DT method is

described as it is implemented in this paper in section 4.2. This is different, but roughly equivalent, to

how it was proposed in the original paper by Wang et al. [11], which is stated in Appendix C. Lastly,

the DTRP method is proposed in section 4.3.
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4.1 Time Series Methods

Croston based time series methods use previously observed demand and the time passed between

previous non-zero demand periods to forecast the next period’s average demand. As discussed in

section 2, three methods are considered: SBA [9], TSB [10] and LES [6]. These models are one step

ahead forecasts, relying on the actual values from last period and using these to adjust to previous

forecasts. An overview of the methods is given in table 1.

SBA [9] TSB [10] LES [6]

variables smoothing var α smoothing var α, β smoothing var α, β

demand in t: zt demand in t: zt demand in t: zt

forecast zt: z
′
t forecast zt: z

′
t forecast zt: z

′
t

demand interval t: pt demand prob at t: ρt demand interval t: pt

forecast pt: p
′
t forecast ρt: ρ

′
t forecast pt: p

′
t

forecast Ft = (1− α
2 )

z′t
p′t

Ft = z′t · ρ′t Ft =

z
′
t/p
′
t if zt > 0

(z′t/p
′
t) · (1− βpt/2p′t)+ if zt = 0

variable if zt > 0 if ρt = 1 if zt > 0

updates z′t = z′t−1 + α(zt − z′t−1) z′t = z′t−1 + ρtα(zt − z′t−1) z′t = αzt + (1− α)z′t

p′t = p′t−1 + α(pt − p′t−1) ρ′t = ρ′t−1 + β(ρt − ρ′t−1) p′t = βpt + (1− β)p′t

else zt = 0 else ρt = 0 else zt = 0

z′t = z′t−1 z′t = z′t−1 z′t = z′t−1

p′t = p′t−1 ρ′t = ρ′t−1 + β(ρt − ρ′t−1) pt = pt + 1

staring z′0 = 0; z′0 = 0; z′0 = 0;

values p′0 = 0; ρ′0 = 0; p′0 = 0;

Table 1. Attributes of three time series methods for demand forecast

Note that these three methods only rely on past demand. This means two things to keep in mind

for the testing. Firstly, they need some adjustment time to cope with the demand pattern: in each test

the first 20/40 time periods are disregarded as an in-sample period for the time-series based methods.

Secondly, because these methods do not rely on the number of items that are in place in the model,

they are practically equal for the model with one failure mode as for the model with two failure modes.

As the smoothing variable is very important for the implications of these methods, when the

distributive values for the initial and delay time are known. As the distribution is known for the

DT and DTRP prediction, this can also be applied for the grid-search without making any new

assumptions. The best values for α and β for each of the methods is calculated using grid search with

step sizes equal to 0.05 along the values ranging in [0.05,1]. An example of grid-search is stated in the

values displayed in Appendix B, used for a graph in section 5.1.
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4.2 Delay Time model: DT

The DT model uses the distributive characteristics of the initial time and delay time function of

items to pro-actively forecast demand. It is not based on past demand occurrence like the time series

method. The initial time distribution function is distributed Weibull(λ, κ) by assumption. The delay

time distribution function is distributed Exponential(µ). These distributions are used to forecast the

probability of an item needing to be fixed and therefore demand for spare parts, in a time period of

length t.

The pdf. and the cdf. of the initial time of an error is given by fU (u) and FU (u). The conditional

distribution uses that the initial time Ui is zero at the time if placement of item i, tir, given that i

was last inspected and non-faulty at tip. This is gives the conditional pdf. for general U is given in

equation 6.

fU (u|U > tip − tir) =


fU (u+tip−tir)∫∞
tip−tir

fU (u)du
tir < tip, 0 < u <∞

fU (u) tir = tip, 0 < u <∞
(6)

For the delay time, the pdf. and cdf. are given as fH(h) and FH(h) respectively. It is known that

after an error occurs, if H has not already happened at the current time, tnow. The conditional pdf.

for general H is given in equation 7.

fH(h|H > tnow) =


fH(h+tnow)∫∞
tnow

fH(h)dh
u < tnow, 0 < h <∞

fH(h) u ≥ tnow, 0 < h <∞
(7)

For simplicity we make Assumption 1: In the calculations of the DT model, an item has never a

failure after replacement within the time span of t: Ui + Hi > t. E.q. it is not possible to fail or be

faulty at inspection at tnow, be replaced and have another error occurring between (tnow, tnow + t).

This calculation error made because of this assumption, ε, is expected to be zero.

These definitions of the distributions for fU (u) and fH(h) and Assumption 1 are taken from the

paper by Wang et al. [11]. But as there were some typing mistakes and inconsistencies, the following

demand forecasts are different than used in that paper. The main difference is that in this way every

time period is forecasted for, whereas the paper by Wang et al. [11] simulates for two time periods.

Though, the formulations are equivalent as they both still rely on the initial time and delay time

functions, fU (u) and fH(h) respectively. Their mathematics of the DT model is given in Appendix C.

The expected demand for a period with age based maintenance data is calculated. For this type

of calculation, there are two scenarios for all items i ∈ N :

Scenario 1: the item is inspected at period tnow.

Scenario 2: the item does not have to be inspected at period tnow.
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First, consider Scenario 1, in which the item is inspected at this moment (tnow), and has not been

inspected since tip. The probability of an item i needing fixing at moment tnow is the probability of

an item an error having occurred between the last inspection/failure and this one: between (tip, tnow),

plus the probability of an error occurring and failure between (tnow + t). Assumption 1 states that

there is no possibility of a second failure within (tnow + t). Therefore, the only other possibility is that

an error presents after tnow meaning tnow + t − tip > Ui > tnow − tip. For notation, Dem1i(s1, s2) is

the event of there being demand for item i ∈ N with maintenance in both s1 and period s2 for time

period (s1, s2) for ∀s1, s2 ∈ {1, T}. The demand due to items in scenario 2 is given in equation 8.

Pr(Dem1i(tnow, tnow + t)) = Pr(error in (tip, tnow)) + Pr(error ∧ failure in (tnow, tnow + t))

= Pr(U < tnow − tip|U > tip − tir)

+ Pr(tnow − tip < U < tnow + t|U > tip − tir, H < tnow + t) + ε

=

∫ tnow−tip

0
fU (u|U > tip − tir)du+

+

∫ tnow−tip+t

tnow−tip
fU (u|U > tip − tir)

∫ t−u

0
fH(h)dhdu+ ε

=

∫ tnow−tip

0
fU (u|U > tip − tir)du

+

∫ t

0
fU (u|U > tip − tir)FH(t− u)du+ ε

≈
∫ tnow−tip

0
fU (u|U > tip − tir)du

+

∫ t

0
fU (u|U > tip − tir)(FH(t− u))du

(8)

Now consider an item i in Scenario 2. The last time it was inspected was time tip and at this time

it was non-faulty and still working. At the current time tnow, it has not yet failed, and it was checked

last for errors/fixed at tip. Therefore, three things can happen to i. The first possibility is that it is

found to be non-faulty at the next inspection at tnow + t and remains and remains non-faulty until

tnow + 2t, two inspection periods from now. This would not cause any demand in general. Secondly,

it can be found faulty at the next inspection, at (tnow + t) is replaced and hadn’t failed. This would

only cause demand in the following period, as is also evident from equation 8. Thirdly, a failure

occurs before tnow + t, before the next inspection. This is the only scenario that causes demand for

the current period. In this case either an error has occurred between (tip, tnow) and the failure occurs

between tnow, tnow + t) or an error and failure combination occurs as error in (tnow, u) and failure in

(u, tnow + t), for tnow < u < tnow + t. Again, due to Assumption 1, it is not possible to have a second

failure before tnow + t. For notation, Dem2i(s1, s2) is the event of there being demand for item i ∈ N

with maintenance is not held at s1 and is done at s2 for time period (s1, s2) for ∀s1, s2 ∈ {1, T}. The
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demand due to items in scenario 2 is given in equation 9.

Pr(Dem2i(tnow, tnow + t)) = Pr(error in (tip, tnow) ∧ failure in tnow, tnow + t)

+ Pr(error ∧ failure in (tnow, tnow + t))

= Pr(U < tnow|U > tip − tir, H < tnow + t|H > tnow)du

+ Pr(tnow − tip < U < tnow + t|U > tp − tir, H < tnow + t|H > tnow + t− u) + ε

=

∫ tnow−tip

0
fU (u|U > tip − tir) ·

∫ t−u

0
fH(h|H > tnow)dhdu

+

∫ tnow−tip+t

tnow−tip
fU (u|U > tip − tir)

∫ t−u

0
fH(h)dhdu+ ε

≈
∫ tnow−tip

0
fU (u|U > tip − tir) · FH(t− u|H > tnow)du

+

∫ t

0
fU (u|U > tip − tir)FH(t− u)du

(9)

The total expected number of replacements, F (tnow, tnow+t), and therefore the forecasted demand

in the coming period (tnow, tnow + t) is given in equation 10.

E[F (tnow, tnow + t)] =

N∑
i=1

Dem1i(tnow, tnow + t) · δi +

N∑
i=1

Dem2i(tnow, tnow + t) · (1− δi)

=
N∑
i=1

(∫ tnow−tip

0
fU (u|U > tip − tir)du

+

∫ t

0
fU (u|U > tip − tir)(FH(t− u))du

)
· δi

+
N∑
i=1

(∫ tnow−tip

0
fU (u|U > tip − tir) · FH(t− u|H > tnow)du

+

∫ t

0
fU (u|U > tip − tir)FH(t− u)du

)
· (1− δi)

=

N∑
i=1

∫ t

0
fU (u|U > tip − tir)FH(t− u)du

+

∫ tnow−tip

0
fU (u|U > tip − tir)du · δi

+

∫ tnow−tip

0
fU (u|U > tip − tir) · FH(t− u|H > tnow)du · (1− δi)

(10)

where δi =


1 if the item is in Scenario 1

0 if the item is in Scenario 2

If an item goes obsolete in the period in between inspections, this will be noted at the next

inspection and the item will be taken out of inspection rotation and demand is noted to be zero for

all coming periods.
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4.3 Delay Time model with replacement possibility: DTRP

For the DTRP method, there are two failure modes. An item is either fixed or replaced after inspected

faulty/failure. The moment Oi, is distributed by the Weibull distribution with pdf. fO(o) and cdf.

FO(o). After an item is outdated, it gets replaced at the following failure or when it is inspected and

faulty.

At every point in time of prediction, that Oi is larger than the moment of last fixing the item,

tir. Then there are two cases. Either the last moment of fixing an item has happened in the previous

period, or it happened before. The conditional pdf. for general O is given in equation 11.

fO(o|O > tir) =


fO(o+tir)∫∞
tir

fO(o)do
tir < tip, 0 < d <∞

fO(o) tir = tip, 0 < o <∞
(11)

Subsequently, the probability of replacement, q′i(s1,s2), is given in equation 12.

q′i(s1,s2) = Pr(i replaced in period (s1,s2))

= Pr(O < s2|O > tir)

=

∫ s2

0
fO(o|O > tir)do

(12)

In the forecast, items are dismissed if they have been replaced. In this case, variable Di is set to 0,

else it is 1. The DT method is thusly transformed to predict the possibility of error/failure occurrences

that are not replaced in that time period. Multiplying equation 10 with the probability that they are

not replaced, gives the forecasts of the DTRP model. The forecasted demand in the coming period

(tnow, tnow + t) is given in equation 13.

E[F (tnow, tnow + t)] =

N∑
i=1

Di(1− q′i(tnow,tnow+t)) ·

(∫ t

0
fU (u|U > tip − tir)FH(tnow + t− u)du

+

∫ tnow−tip

0
fU (u|U > tip − tir)du · δi +

∫ tnow+t−u

0
fH(h|H > tnow)dh · (1− δi)

)
(13)

Using this, it is possible to adjust the forecasts to the replacement of old parts, using the original

DT model. Thus far, RQ1 is theoretically answered. Although, to evaluate the performance of the

DTRP method, tests should be run and analyzed. Only then it can be concluded if this model is a

satisfactory improvement.
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5 Results

To analyze the performance of the methods considered, the total absolute errors of the forecasts are

compared. The total absolute errors of Meth ∈ {SBA,DT, TSB,LES} is given in equation 14.

ErrorMeth =
Number of simulations∑

s=i

∑T
t=1 |zt −Meth(Ft)|

Number of simulations
(14)

For the distributions following, the initial time is distributed by the Weibull distribution with scale

(λu) and shape (κu) parameters, given in equation 15. The delay time is exponentially distributed

with parameter (µ), given in equation 16.

f(u;λ, κ) =
κ

λ

(u
λ

)κ−1
e−(

u
λ
)κ (15)

f(h;µ) =
1

µ
e
−h
µ (16)

In section 5.1 the results found in the paper by Wang et al. [11] are reproduced and the findings

are validated: DT outperforms SBA. Additionally, DT is compared to TSB and HES. Section 5.2

shows a theoretical experiment that investigates different situations and to find in which situation

DT is preferred over LES and vice versa. In section 5.3, the performance and additional value of the

DTRP method is discussed and compared to other methods.

5.1 Reproduction

In the paper by Wang et al. [11], an aggregated demand graph for a block based scheme was published.

In a block based scheme, the maintenance check-ups are consistently scheduled and performed every

time period t, regardless of an items’ age. Additionally, the paper calculates the errors for two types

of pumps with age based inspection. This is reproduced using solely age based data (see section 3)

and the definition of DT that predicts for every t and not every 2t (see section 4.2. Proceeding, mostly

the same variables are used as in the original paper.

First a demand simulation is produced. The set-up of the experiment is 20 simulation runs with 20

items, the initial time is distributed with λ and κ parameters equal to 1052.6 and 8.907 respectively

and the delay time with µ equal to 574.71. The time periods are adjusted for age based data: using

shorter periods of t = 12, for a maximum of 140 periods, so T = 1680, where the first 40 are out of

sample. Lastly, τ is taken at 21. To find the the optimal values for the smoothing coefficients, α and

β, grid search is used. These are equal for SBA to α = 0.05, for TSB to α = 0.05 and β = 1 and for

LES to α = 1 and β = 0.05 (for total table, see Appendix B). The demand aggregation and forecasts

are given in figure 4. The main difference between this graph and the one in Wang et al. [11] is that

4 presents spikes. This is due to the age based data and the fact that there is a prediction for each
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period. If there is no inspection in a period, the forecasted demand is far lower than if there is an

inspection period. The total errors are calculated as in equation 14 given in table 2.

Figure 4. Demand simulation

SBA TSB LES DT

Average absolute errors 29.2750 26.9747 15.9310 19.2559

Table 2. Overview of the performances of four forecasting methods, one failure mode.

Next in the paper by Wang et al. [11], specific values are used in age based maintenance scheme

to test DT again, using values fitted for pumps in a paper by Baker et al. [1]. This case uses two

types of pumps: volumetric and peristaltic. For both types, there are 2000 time units, t lasts 28 time

units, meaning that there are 71 forecasting periods of which 20 are used to initialize the Croston

based methods. The minimum age of inspection is 42 time units.

For the volumetric pump, it is used that λ = 588.24, κ = 1.42, µ = 57.4712, and N = 105.

Moreover, SBA uses α = 1, TSB uses α = 0.05 and β = 1, LES uses α = 1 and β = 0.05. The total

absolute errors are shown in figure 5a.

For the peristaltic pumps, it is used that λ equals 1369,863, κ equals 2.41, µ equals 1111.11, and

N equals 35. Moreover, SBA uses α = 0.05, TSB uses α = 0.05 and β = 0.1, LES uses α = 0.7 and

β = 0.05. The results are shown in figure 5b.

Reproducing these findings and comparing the errors produced shows similar results to those in

the paper by Wang et al. [11]: DT outperforms SBA. Additionally to the reproduction, LES and

TSB are considered and compared as forecasters. It shows that TSB performs worst for the pumps.

LES performs best in figure 4 because the systematic low forecasts and fit ultimately well with the

actual values of single run demand, even though the average of DT fits closer. The difference in

relative performances between DT and LES is noteworthy for the pumps in figure 5. LES performs

best in figure 5b, though DT is close. DT performs best in figure 5a. Assessing the properties of these

different situations (Appendix A) shows that the difference in performance between LES and DT could

13



(a) Errors: Volumetric pumps (b) Errors: Peristaltic pumps

Figure 5. A sum of the absolute forecasting error for different types of forecasting: SBA, TSB, LES and DT

be because the variance is higher for the case in figure 5b, standard deviation equals 537.02, than in

figure 5a, standard deviation equals 379.24. The use of the DT model is more accurate if the variance

is low, because in that case the intermittent demand is better matched by the probability distribution.

Contrarily, the Croston based methods profit from a larger variance, since larger variance in their case

means a more flattened out demand pattern. These methods are unable to predict demand spikes and

rely on the past observations, as is indicated in figure 4. Another influence can be the sample size.

DT does not predict demand equal to zero, so in periods in advance to actual demand, predictions

are already off, if there is no demand. As the sample size increases the chance of demand occurring

in the tail periods leading up to the mean of the initial time distribution. A larger sample size leads

to a better fit of predictions if the variance is relatively high. To conclude, a relatively high variance,

which is present in all figures 4, and 5 is beneficial for LES in general, unless the sample size is also

large. In that case, DT might be preferred.

The limitation was not touched upon in [11], because the largest variance considered was 26000.

This restraint means that demand is never spread out so far that DT loses its accuracy significantly

compared to SBA. It is merely hinted at in their findings, as they find that the difference in errors

of DT and SBA is larger when variance is low and mean is high. They state: “...as the variance

decreases and mean increases the advantage of the DT approach becomes even more obvious”, but

the limitations are not further considered.

5.2 The effect of variance coefficient and sample size on DT

This section backs up the theory that variance and sample sizes affect which method performs best.

Consider the following theoretical experiment exploiting the two extreme cases of failure distribution: a

single spike because of a small variance coefficient (CV = 0.0028), and a flattened out demand because

of high variance coefficient (CV = 2.1). The coefficient of the variance is given as CV =
√
var

mean .
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For both cases, t = 12, T = 1680, τ = 21, µ = 57.4713 and the number of repetitions is equal to

20. For the low variance coefficient, the initial time is simulated with λ = 427.7515 and κ = 0.5192.

The distribution of LES is used with α = β = 0.05, optimized using grid search. The figures are given

in 6a and 6c. For the low variance coefficient, the initial time is simulated with λ = 801.0059 and

κ = 457.9269. The distribution of LES is used with α = β = 0.05, optimized using grid search. The

figures are given in 6b and 6d. These figures are run for N = {20, 100}, to evaluate the difference in

demand as a result of variance and of number of items. The corresponding errors are given in table 3.

(a) N=20, high variance coefficient (b) N=20, low variance coefficient

(c) N=100, high variance coefficient (d) N=100, low variance coefficient

High variance coefficient Low variance coefficient
min. max. average DT LES min. max. average DT LES

N= demand demand demand Error Error demand demand demand Error Error
20 0 1.2 0.4385 41.4224 30.8922 0 18.35 0.3846 4.53282 19.7952
100 0.2 5.6 2.0923 104.4965 119.5737 0 94 1.9231 24.2315 98.9847

Table 3. Distribution characteristics and errors per demand pattern and sample size.

As is evident from table 3, DT performs always best for a distribution with a small variance

coefficient. For the high variance coefficient, LES performs better if the sample size is small. The

larger sample size makes that in general the demand simulated fits the initial distribution closer and

therefore DT is still closer. This can be seen in the figures 6a and 6c. These results help formulate an

answer to RQ2 for one failure mode.

5.3 Delay Time Replacement Possibility: DTRP

Next, simulations with two failure modes are considered to examine the performance of DTRP.

First a demand graph is evaluated. Using the same variables as used for graph 4, the variables are

given by 20 simulation runs with 20 items, the error time is distributed with λu and κu parameters
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equal to 1052.6 and 8.907 respectively, µ = 574.71, t = 12, τ = 21, T = 1680, of which the first 20

are out of sample for time series methods to catch up. Lastly, The optimal smoothing coefficients

are found using grid search and are equal for SBA to α = 0.05, for TSB to α = 0.05 and β = 1 and

for LES to α = 1 and β = 0.05. Starting of, the replacement function is assumed to be distributed

according to the Weibull distribution, with scale parameter λu=λo and shape parameter κu=κo. The

demand graph for two failure modes is given in figure 7.

Comparing to figure 4, the small demand spikes from periods 120+ have disappeared. This is

because time point Oi is smaller than 120t for ∀i ∈ {1, .., N}. These items are either replaced earlier,

or are otherwise replaced when they fail in these later periods.

Furthermore, it is seen that maximum demand is lower than before. This was to be expected, as

there is no demand for the items that are replaced.

Lastly, it can be seen that the demand decline is more abrupt. The probability that the simulated

replacement time has passed is negatively correlated with Ui. Starting at period 80, this is displayed

more obvious in the graph. Mathematically this is stated for arbitrary time period ∀s ∈ {1, ..., N} as:

Pr(Oi < Ui|Ui > s) > Pr(Oi < Ui|Ui < s).

Table 4 shows the errors. LES has the lowest errors. The ranking is similar to 2. Again LES is

the lowest, due to small sample sizes in combination with a relatively large variance coefficient.

Figure 7. Demand simulation Replacement

SBA TSB LES DT DTRP

Average absolute errors 14.6799 10.8522 8.1755 11.3189 10.6939

Table 4. Overview of the performances of five forecasting methods, two failure modes.

Next, the shortcomings of DTRP are evaluated and the performance of DTRP compared to other

methods. The variables are similar to the case in figure 7, except for the distribution of the replacement

function, fO(o) and the sample size. These are varied to assess what specifically affects performance.

Two means are considered: one low mean equal to 795, in the middle of the total time period, and
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a high mean equal to 1095, at 3
4 of the total time period. Two sample sizes are considered: a small

one; N = 20, and a large one; N = 100. A total of 20 different values for coefficient of variation are

considered, for CV ∈ {0.05, ..., 1} with step size equal to 0.05. The errors are given in figure 8.

(a) Errors: N=20, Mean=795 (b) Errors: N=20, Mean=1095

(c) Errors: N=100, Mean=795 (d) Errors: N=100, Mean=1095

Figure 8. Errors of five forecasting methods

Firsly, the effect of the sample sizes is examined. For SBA and LES the sample size has no effect

on their relative performances. TSB performs relatively better (better than DT) with a small sample

size than a large sample size. This is due to the fact that the forecasts rely on demand probability,

set very low, creating always a low forecast as seen in figure 7. If the sample size is low, and the

demand stays lower, the TSB prediction are less far off. Furthermore, it is evident that the preference

of DTRP over DT switches as the sample size is increased. This is due to the nature of DTRP. DTRP

has as a benefit that it can predict non-demand if replacement occurs. But a disadvantage is that if

there is no replacement, the forecasts of DTRP are systematically too low. Apparently, as the sample

size increases, the relative benefits of predicting non-demand in one period is too small to compensate

the lower predictions. Only for a low mean and a very low variance (CV < 0.2), DTRP performs

better in a large sample.

Next, the effect of the distribution of the replacement function is examined. It is evident that

the errors for all methods are lower when the mean is small in general. The items are replaced at

an earlier stage. DT and DTRP don’t predict after replacement from the next point on (noticed at

maintenance) and the LES, and TSB adjust to consistent zero demand, aggregating low errors. SBA’s

predictions remain low, along with the demand. This means the errors are not so far off.

There is a difference in the effect of the variance depending on the mean. If the mean is low, the

errors are positively correlated with the variance. The reason for this is that some replacements are
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happening later, causing larger errors in general that are not compensated by the benefit of earlier

replacements. If the mean is high, errors are negatively correlated with the variance. This is due to

the fact that the decline of demand is less abrupt, benefiting the time series methods as well as DT and

DTRP, through DT’s characteristics as the parent method. It is shown that for a small sample size

and a larger variance, the benefit of DTRP over DT grows, because the items that are not replaced

benefit from the consistent adjustments made by incorporating replacement possibility. For a large

mean, the difference between errors is inconsistent.

Considering all of these influences seen so far, the goal is to answer RQ2 for the two failure

modes. SBA is the worst predictor in every case considered. This is also because SBA does not

adjust to obsolescence, and is therefore a poor predictor after all items are replaced. LES is the best

predictor in any case, because of the high variance of the initial time distribution (see section 5.2),

the quick adjustment to zero demand and consistently conservative predictions harmonizing with the

replacements. Even in large sample sizes, DT is still not better than LES. Both DT and DTRP are

stable in their predictions. If the sample size is low, DTRP is better than DT. If the sample size

is high, DT is preferred. TSB is not such a good predictor, except when the mean and sample size

are very low, but for suspicious reasons: TSB always has low predictions. Therefore, DTRP can be

preferred in this case to TSB.

To answer RQ2 to the best of our abilities:

Apparent from table 3: If there is no replacement (one failure mode), and the sample size is very

large, DT is most efficient.

If there is no replacement (one failure mode), the sample size is small and the variance of the

initial function is small, DT is most efficient.

If there is no replacement (one failure mode), the sample size is small and the variance of the

initial function is large, LES is most efficient.

Apparent from figures 6a and 8: If there are is replacement (two failure modes) and the variance

of the initial function is large, LES is most efficient.

Apparent from figures 6b, 8a and 8b: If there are is replacement (two failure modes), the vari-

ance is very small and the sample size is small, DTRP is most efficient.

Apparent from figures 6d, 8c and 8d: If there are is replacement (two failure modes), the vari-

ance is very small and the sample size is large, DT is most efficient.

6 Conclusion

Following the paper by Wang et al. (2011) [11], the first goal of this thesis was to confirm their findings

and investigate the grounds of these findings. In the paper, DT is said to outperform SBA [9], but
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is only applicable if the initial time and delay time distributions are known. Otherwise, SBA should

be applied instead. It is now found that there are three things wrong with this assumption. Firstly,

apparent after this research and others’, SBA is not the best alternative out there. The inclusion of

obsolescence and quick response to intermittent demand from LES [6] has been proven to outperform

SBA in each of the experiments performed. This is merely and update to their theory, as LES was

not discovered yet in 2011. Secondly, it is found that not only knowledge of the distribution is needed

for proper forecasting in the DT model, but also the variance should be small, otherwise time-series

methods might be preferred (see table 3). Thirdly, if the function is unknown or the variance is large

and the sample size is very large, DT is still preferred to other time series methods 3.

Next, a new model was proposed to incorporate the probability of replacement at a certain point

in time was added to the DT model to create the DTRP model. Under multiple conditions the

characteristics of DT and DTRP were compared, along the time series based methods. DTRP is still

not yet exclusively superior to DT, which just disregards replacement possibility in each period. The

abilities of DTRP that strengthen it to predict replacements, are undone in a period no replacement

is made: the forecasts to low. Also, LES performs better in all experiments performed regarding two

failure modes, so DTRP is not yet as well as idealized. At this point, further research should be done

to correct the DTRP model such that it takes into account these problems.A conclusion of which

method is best applied in which situation is given in figure 9.

For further research it might be useful to define the exact points which classify variance and sample

size as ‘large’, such to make a clear distinction when to use LES or DT/DTRP. Ultimately, a goal

could be to redefine the DTRP method in such a way that it is no longer crippling itself in periods

with zero replacement, and would for real outperform DT in any scenario.

Figure 9. Advice on which method to apply.

Further in the paper: Bibilography, Appendix A in which a table gives an overview of distribution values

used in this paper, Appendix B in which an overview of values is found using grid-search as an example for the

reader and Appendix C which gives a description of the DT-math used in the paper by Wang et al. [11].
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Appendix A

A clear overview of different values for the distribution of the Weibull function in table 5.

Descpription use figure items N scale λ shape κ mean variance st dev

Demand simulation fig 4 4 20 1052.6 8.907 996.31 17868 133.67
Vol pumps fig 5a 105 588.24 1.43 534.42 143820 379.24
Per pumps fig 5b 35 1369,863014 2.41 1214.5 288390 537.02

Flat Demand fig 6a, 6c 20,100 427.7517 0.5192 800 288300 1697.9
Spike Demand fig 6b, 6d 20,100 801.0059 457.9269 800 5.0044 2.2371

CV= 0.05 , low mean fig 8a, 8c 20, 100 812.5529574 24.94977518 795 1580.0625 39.75
CV= 0.1 , low mean fig 8a, 8c 20, 100 829.2149562 12.15343419 795 6320.25 79.5
CV= 0.15 , low mean fig 8a, 8c 20, 100 844.6610479 7.906926805 795 14220.5625 119.25
CV= 0.2 , low mean fig 8a, 8c 20, 100 858.5803726 5.797400066 795 25281 159
CV= 0.25 , low mean fig 8a, 8c 20, 100 870.6907884 4.542213092 795 39501.5625 198.75
CV= 0.3 , low mean fig 8a, 8c 20, 100 880.7517746 3.713772366 795 56882.25 238.5
CV= 0.35 , low mean fig 8a, 8c 20, 100 888.5744549 3.128794406 795 77423.0625 278.25
CV= 0.4 , low mean fig 8a, 8c 20, 100 894.027983 2.695621255 795 101124 318
CV= 0.45 , low mean fig 8a, 8c 20, 100 897.0420067 2.36332506 795 127985.0625 357.75
CV= 0.5 , low mean fig 8a, 8c 20, 100 897.6053947 2.101349095 795 158006.25 397.5
CV= 0.55 , low mean fig 8a, 8c 20, 100 895.7617766 1.890252797 795 191187.5625 437.25
CV= 0.6 , low mean fig 8a, 8c 20, 100 891.6026865 1.71708343 795 227529 477
CV= 0.65 , low mean fig 8a, 8c 20, 100 885.2591896 1.572883123 795 267030.5625 516.75
CV= 0.7 , low mean fig 8a, 8c 20, 100 876.892836 1.451263666 795 309692.25 556.5
CV= 0.75 , low mean fig 8a, 8c 20, 100 866.6866656 1.347550851 795 355514.0625 596.25
CV= 0.8 , low mean fig 8a, 8c 20, 100 854.8368175 1.258249263 795 404496 636
CV= 0.85 , low mean fig 8a, 8c 20, 100 841.5451134 1.180695654 795 456638.0625 675.75
CV= 0.9 , low mean fig 8a, 8c 20, 100 827.0128199 1.112827636 795 511940.25 715.5
CV= 0.95 , low mean fig 8a, 8c 20, 100 811.4356549 1.053025256 795 570402.5625 755.25

CV= 1 , low mean fig 8a, 8c 20, 100 795 1 795 632025 795
CV= 0.05 , high mean fig 8b, 8d 20, 100 1119.176715 24.94977518 1095 2997.5625 54.75
CV= 0.1 , high mean fig 8b, 8d 20, 100 1142.12626 12.15343419 1095 11990.25 109.5
CV= 0.15 , high mean fig 8b, 8d 20, 100 1163.401066 7.906926805 1095 26978.0625 164.25
CV= 0.2 , high mean fig 8b, 8d 20, 100 1182.572966 5.797400066 1095 47961 219
CV= 0.25 , high mean fig 8b, 8d 20, 100 1199.25335 4.542213092 1095 74939.0625 273.75
CV= 0.3 , high mean fig 8b, 8d 20, 100 1213.110935 3.713772366 1095 107912.25 328.5
CV= 0.35 , high mean fig 8b, 8d 20, 100 1223.88557 3.128794406 1095 146880.5625 383.25
CV= 0.4 , high mean fig 8b, 8d 20, 100 1231.397033 2.695621255 1095 191844 438
CV= 0.45 , high mean fig 8b, 8d 20, 100 1235.548424 2.36332506 1095 242802.5625 492.75
CV= 0.5 , high mean fig 8b, 8d 20, 100 1236.324412 2.101349095 1095 299756.25 547.5
CV= 0.55 , high mean fig 8b, 8d 20, 100 1233.785088 1.890252797 1095 362705.0625 602.25
CV= 0.6 , high mean fig 8b, 8d 20, 100 1228.056531 1.71708343 1095 431649 657
CV= 0.65 , high mean fig 8b, 8d 20, 100 1219.319261 1.572883123 1095 506588.0625 711.75
CV= 0.7 , high mean fig 8b, 8d 20, 100 1207.795793 1.451263666 1095 587522.25 766.5
CV= 0.75 , high mean fig 8b, 8d 20, 100 1193.738237 1.347550851 1095 674451.5625 821.25
CV= 0.8 , high mean fig 8b, 8d 20, 100 1177.416749 1.258249263 1095 767376 876
CV= 0.85 , high mean fig 8b, 8d 20, 100 1159.109307 1.180695654 1095 866295.5625 930.75
CV= 0.9 , high mean fig 8b, 8d 20, 100 1139.093129 1.112827636 1095 971210.25 985.5
CV= 0.95 , high mean fig 8b, 8d 20, 100 1117.637789 1.053025256 1095 1082120.063 1040.25

CV= 1 , high mean fig 8b, 8d 20, 100 1095 1 1095 1199025 1095

Table 5. Appendix A: Overview of values for the distribution of the initial/replacement time used in the
paper.

Where the mean and variance of the Weibull distribution with scale λ and shape κ are given in

equation 17 and equation 18 respectively.

meanWb = λΓ(1 +
1

κ
) (17)

varWb = λ2Γ(1 +
2

κ
)−meanWb

2 (18)
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Appendix B

The table 6 of values found for grid-search with step size=0.05, derived from an average run of demand

with t = 12, N = 20, scale = 1/0.00095, shape = 8.907, T = 140 ∗ t, τ = 21, µ = 1/0.00174. Errors

are calculated as in equation 14. Used as an example, similar for other cases.

Best values found are for SBA; α = 0.05, the error is equal to 29.5612.

Best values found are for TSB; α = 0.05, β = 1, the error is equal to 28.9251.

Best values found are for LES; α = 1, β = 0.05, the error is equals to 18.5201. LES performs best

overall.
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λ κ error SBA error TSB error LES λ κ error SBA error TSB error LES
0.05 0.05 29.56118044 267.750027 21.30395086 0.3 0.05 37.56065428 573.2758712 20.9653779
0.05 0.1 29.56118044 707.184759 21.30395086 0.3 0.1 37.56065428 1311.631048 20.9653779
0.05 0.15 29.56118044 3186.642553 21.30395086 0.3 0.15 37.56065428 5709.061578 20.9653779
0.05 0.2 29.56118044 19048.92788 21.30395086 0.3 0.2 37.56065428 33910.05291 20.9653779
0.05 0.25 29.56118044 139613.1373 21.30395086 0.3 0.25 37.56065428 248283.2195 20.9653779
0.05 0.3 29.56118044 1239883.671 21.30395086 0.3 0.3 37.56065428 2204659.414 20.9653779
0.05 0.35 29.56118044 13500329.55 21.30395086 0.3 0.35 37.56065428 24004781.91 20.9653779
0.05 0.4 29.56118044 184499215.9 21.30395086 0.3 0.4 37.56065428 328055412.8 20.9653779
0.05 0.45 29.56118044 3271060183 21.30395086 0.3 0.45 37.56065428 5816224481 20.9653779
0.05 0.5 29.56118044 78639524089 21.30395086 0.3 0.5 37.56065428 1.39828E+11 20.9653779
0.05 0.55 29.56118044 2.72036E+12 21.30395086 0.3 0.55 37.56065428 4.83704E+12 20.9653779
0.05 0.6 29.56118044 1.46872E+14 21.30395086 0.3 0.6 37.56065428 2.6115E+14 20.9653779
0.05 0.65 29.56118044 1.39E+16 21.30395086 0.3 0.65 37.56065428 2.47E+16 20.9653779
0.05 0.7 29.56118044 2.72E+18 21.30395086 0.3 0.7 37.56065428 4.83E+18 20.9653779
0.05 0.75 29.56118044 1.44E+21 21.30395086 0.3 0.75 37.56065428 2.55E+21 20.9653779
0.05 0.8 29.56118044 3.18E+24 21.30395086 0.3 0.8 37.56065428 5.65E+24 20.9653779
0.05 0.85 29.56118044 6.76E+28 21.30395086 0.3 0.85 37.56065428 1.20E+29 20.9653779
0.05 0.9 29.56118044 8.89E+34 21.30395086 0.3 0.9 37.56065428 1.58E+35 20.9653779
0.05 0.95 29.56118044 2.76E+45 21.30395086 0.3 0.95 37.56065428 4.91E+45 20.9653779
0.05 1 29.56118044 28.92507731 21.30395086 0.3 1 37.56065428 40.18822816 20.9653779
0.1 0.05 31.94659778 415.2233183 21.02609737 0.35 0.05 37.4352775 578.6015258 20.67419386
0.1 0.1 31.94659778 1061.01143 21.02609737 0.35 0.1 37.4352775 1294.750556 20.67419386
0.1 0.15 31.94659778 4755.031562 21.02609737 0.35 0.15 37.4352775 5597.946023 20.67419386
0.1 0.2 31.94659778 28396.35525 21.02609737 0.35 0.2 37.4352775 33206.33148 20.67419386
0.1 0.25 31.94659778 208088.921 21.02609737 0.35 0.25 37.4352775 243081.4389 20.67419386
0.1 0.3 31.94659778 1847964.446 21.02609737 0.35 0.3 37.4352775 2158412.662 20.67419386
0.1 0.35 31.94659778 20121288.76 21.02609737 0.35 0.35 37.4352775 23501164.95 20.67419386
0.1 0.4 31.94659778 274982982.5 21.02609737 0.35 0.4 37.4352775 321172758.3 20.67419386
0.1 0.45 31.94659778 4875282843 21.02609737 0.35 0.45 37.4352775 5694199032 20.67419386
0.1 0.5 31.94659778 1.17207E+11 21.02609737 0.35 0.5 37.4352775 1.36894E+11 20.67419386
0.1 0.55 31.94659778 4.05451E+12 21.02609737 0.35 0.55 37.4352775 4.73556E+12 20.67419386
0.1 0.6 31.94659778 2.18902E+14 21.02609737 0.35 0.6 37.4352775 2.55671E+14 20.67419386
0.1 0.65 31.94659778 2.07E+16 21.02609737 0.35 0.65 37.4352775 2.42E+16 20.67419386
0.1 0.7 31.94659778 4.05E+18 21.02609737 0.35 0.7 37.4352775 4.73E+18 20.67419386
0.1 0.75 31.94659778 2.14E+21 21.02609737 0.35 0.75 37.4352775 2.50E+21 20.67419386
0.1 0.8 31.94659778 4.74E+24 21.02609737 0.35 0.8 37.4352775 5.53E+24 20.67419386
0.1 0.85 31.94659778 1.01E+29 21.02609737 0.35 0.85 37.4352775 1.18E+29 20.67419386
0.1 0.9 31.94659778 1.32E+35 21.02609737 0.35 0.9 37.4352775 1.55E+35 20.67419386
0.1 0.95 31.94659778 4.12E+45 21.02609737 0.35 0.95 37.4352775 4.81E+45 20.67419386
0.1 1 31.94659778 33.32159026 21.02609737 0.35 1 37.4352775 40.82200364 20.67419386
0.15 0.05 34.09436334 496.3485788 21.00656148 0.4 0.05 36.95789482 580.5790266 20.29430637
0.15 0.1 34.09436334 1228.155523 21.00656148 0.4 0.1 36.95789482 1272.780341 20.29430637
0.15 0.15 34.09436334 5464.331403 21.00656148 0.4 0.15 36.95789482 5468.439344 20.29430637
0.15 0.2 34.09436334 32589.87731 21.00656148 0.4 0.2 36.95789482 32397.96777 20.29430637
0.15 0.25 34.09436334 238767.3853 21.00656148 0.4 0.25 36.95789482 237117.2746 20.29430637
0.15 0.3 34.09436334 2120344.472 21.00656148 0.4 0.3 36.95789482 2105400.571 20.29430637
0.15 0.35 34.09436334 23086975.14 21.00656148 0.4 0.35 36.95789482 22923894.26 20.29430637
0.15 0.4 34.09436334 315512743.8 21.00656148 0.4 0.4 36.95789482 313283545.1 20.29430637
0.15 0.45 34.09436334 5593850970 21.00656148 0.4 0.45 36.95789482 5554327920 20.29430637
0.15 0.5 34.09436334 1.34482E+11 21.00656148 0.4 0.5 36.95789482 1.33532E+11 20.29430637
0.15 0.55 34.09436334 4.6521E+12 21.00656148 0.4 0.55 36.95789482 4.61923E+12 20.29430637
0.15 0.6 34.09436334 2.51165E+14 21.00656148 0.4 0.6 36.95789482 2.49391E+14 20.29430637
0.15 0.65 34.09436334 2.37E+16 21.00656148 0.4 0.65 36.95789482 2.36E+16 20.29430637
0.15 0.7 34.09436334 4.65E+18 21.00656148 0.4 0.7 36.95789482 4.62E+18 20.29430637
0.15 0.75 34.09436334 2.46E+21 21.00656148 0.4 0.75 36.95789482 2.44E+21 20.29430637
0.15 0.8 34.09436334 5.44E+24 21.00656148 0.4 0.8 36.95789482 5.40E+24 20.29430637
0.15 0.85 34.09436334 1.16E+29 21.00656148 0.4 0.85 36.95789482 1.15E+29 20.29430637
0.15 0.9 34.09436334 1.52E+35 21.00656148 0.4 0.9 36.95789482 1.51E+35 20.29430637
0.15 0.95 34.09436334 4.72E+45 21.00656148 0.4 0.95 36.95789482 4.69E+45 20.29430637
0.15 1 34.09436334 36.1605286 21.00656148 0.4 1 36.95789482 41.28876725 20.29430637
0.2 0.05 35.90673027 539.4426718 21.07893068 0.45 0.05 36.33098668 580.6704553 19.90104786
0.2 0.1 35.90673027 1297.133766 21.07893068 0.45 0.1 36.33098668 1249.108193 19.90104786
0.2 0.15 35.90673027 5729.609534 21.07893068 0.45 0.15 36.33098668 5335.176075 19.90104786
0.2 0.2 35.90673027 34124.28565 21.07893068 0.45 0.2 36.33098668 31571.59486 19.90104786
0.2 0.25 35.90673027 249956.7646 21.07893068 0.45 0.25 36.33098668 231026.7608 19.90104786
0.2 0.3 35.90673027 2219647.522 21.07893068 0.45 0.3 36.33098668 2051271.008 19.90104786
0.2 0.35 35.90673027 24168136.56 21.07893068 0.45 0.35 36.33098668 22334461.68 19.90104786
0.2 0.4 35.90673027 330288073.6 21.07893068 0.45 0.4 36.33098668 305228135.7 19.90104786
0.2 0.45 35.90673027 5855808514 21.07893068 0.45 0.45 36.33098668 5411510267 19.90104786
0.2 0.5 35.90673027 1.40779E+11 21.07893068 0.45 0.5 36.33098668 1.30098E+11 19.90104786
0.2 0.55 35.90673027 4.86996E+12 21.07893068 0.45 0.55 36.33098668 4.50046E+12 19.90104786
0.2 0.6 35.90673027 2.62927E+14 21.07893068 0.45 0.6 36.33098668 2.42978E+14 19.90104786
0.2 0.65 35.90673027 2.48E+16 21.07893068 0.45 0.65 36.33098668 2.30E+16 19.90104786
0.2 0.7 35.90673027 4.87E+18 21.07893068 0.45 0.7 36.33098668 4.50E+18 19.90104786
0.2 0.75 35.90673027 2.57E+21 21.07893068 0.45 0.75 36.33098668 2.38E+21 19.90104786
0.2 0.8 35.90673027 5.69E+24 21.07893068 0.45 0.8 36.33098668 5.26E+24 19.90104786
0.2 0.85 35.90673027 1.21E+29 21.07893068 0.45 0.85 36.33098668 1.12E+29 19.90104786
0.2 0.9 35.90673027 1.59E+35 21.07893068 0.45 0.9 36.33098668 1.47E+35 19.90104786
0.2 0.95 35.90673027 4.94E+45 21.07893068 0.45 0.95 36.33098668 4.57E+45 19.90104786
0.2 1 35.90673027 38.03449312 21.07893068 0.45 1 36.33098668 41.64134671 19.90104786
0.25 0.05 37.09690039 561.9087681 21.09946038 0.5 0.05 35.6806229 579.6977477 19.54437738
0.25 0.1 37.09690039 1316.743381 21.09946038 0.5 0.1 35.6806229 1225.468024 19.54437738
0.25 0.15 37.09690039 5772.37937 21.09946038 0.5 0.15 35.6806229 5205.40302 19.54437738
0.25 0.2 37.09690039 34333.51513 21.09946038 0.5 0.2 35.6806229 30769.96292 19.54437738
0.25 0.25 37.09690039 251434.9614 21.09946038 0.5 0.25 35.6806229 225122.2495 19.54437738
0.25 0.3 37.09690039 2232708.554 21.09946038 0.5 0.3 35.6806229 1998799.313 19.54437738
0.25 0.35 37.09690039 24310267.25 21.09946038 0.5 0.35 35.6806229 21763086.46 19.54437738
0.25 0.4 37.09690039 332230360.9 21.09946038 0.5 0.4 35.6806229 297419508.2 19.54437738
0.25 0.45 37.09690039 5890243944 21.09946038 0.5 0.45 35.6806229 5273067921 19.54437738
0.25 0.5 37.09690039 1.41607E+11 21.09946038 0.5 0.5 35.6806229 1.2677E+11 19.54437738
0.25 0.55 37.09690039 4.8986E+12 21.09946038 0.5 0.55 35.6806229 4.38532E+12 19.54437738
0.25 0.6 37.09690039 2.64474E+14 21.09946038 0.5 0.6 35.6806229 2.36762E+14 19.54437738
0.25 0.65 37.09690039 2.50E+16 21.09946038 0.5 0.65 35.6806229 2.24E+16 19.54437738
0.25 0.7 37.09690039 4.90E+18 21.09946038 0.5 0.7 35.6806229 4.38E+18 19.54437738
0.25 0.75 37.09690039 2.59E+21 21.09946038 0.5 0.75 35.6806229 2.31E+21 19.54437738
0.25 0.8 37.09690039 5.72E+24 21.09946038 0.5 0.8 35.6806229 5.13E+24 19.54437738
0.25 0.85 37.09690039 1.22E+29 21.09946038 0.5 0.85 35.6806229 1.09E+29 19.54437738
0.25 0.9 37.09690039 1.60E+35 21.09946038 0.5 0.9 35.6806229 1.43E+35 19.54437738
0.25 0.95 37.09690039 4.97E+45 21.09946038 0.5 0.95 35.6806229 4.45E+45 19.54437738
0.25 1 37.09690039 39.30390458 21.09946038 0.5 1 35.6806229 41.91390991 19.54437738
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α β error SBA error TSB error LES α β error SBA error TSB error LES
0.55 0.05 35.07046032 578.1451313 19.24757277 0.8 0.05 33.10349799 569.6683259 18.64448302
0.55 0.1 35.07046032 1202.760164 19.24757277 0.8 0.1 33.10349799 1114.855603 18.64448302
0.55 0.15 35.07046032 5082.697196 19.24757277 0.8 0.15 33.10349799 4616.222836 18.64448302
0.55 0.2 35.07046032 30013.94917 19.24757277 0.8 0.2 33.10349799 27150.49356 18.64448302
0.55 0.25 35.07046032 219556.1299 19.24757277 0.8 0.25 33.10349799 198488.199 18.64448302
0.55 0.3 35.07046032 1949337.861 19.24757277 0.8 0.3 33.10349799 1762144.041 18.64448302
0.55 0.35 35.07046032 21224494.48 19.24757277 0.8 0.35 33.10349799 19186144.14 18.64448302
0.55 0.4 35.07046032 290058913.9 19.24757277 0.8 0.4 33.10349799 262202113.4 18.64448302
0.55 0.45 35.07046032 5142568941 19.24757277 0.8 0.45 33.10349799 4648684417 18.64448302
0.55 0.5 35.07046032 1.23632E+11 19.24757277 0.8 0.5 33.10349799 1.11759E+11 18.64448302
0.55 0.55 35.07046032 4.27679E+12 19.24757277 0.8 0.55 33.10349799 3.86606E+12 18.64448302
0.55 0.6 35.07046032 2.30903E+14 19.24757277 0.8 0.6 33.10349799 2.08727E+14 18.64448302
0.55 0.65 35.07046032 2.18E+16 19.24757277 0.8 0.65 33.10349799 1.97E+16 18.64448302
0.55 0.7 35.07046032 4.27E+18 19.24757277 0.8 0.7 33.10349799 3.86E+18 18.64448302
0.55 0.75 35.07046032 2.26E+21 19.24757277 0.8 0.75 33.10349799 2.04E+21 18.64448302
0.55 0.8 35.07046032 5.00E+24 19.24757277 0.8 0.8 33.10349799 4.52E+24 18.64448302
0.55 0.85 35.07046032 1.06E+29 19.24757277 0.8 0.85 33.10349799 9.61E+28 18.64448302
0.55 0.9 35.07046032 1.40E+35 19.24757277 0.8 0.9 33.10349799 1.26E+35 18.64448302
0.55 0.95 35.07046032 4.34E+45 19.24757277 0.8 0.95 33.10349799 3.92E+45 18.64448302
0.55 1 35.07046032 42.12910529 19.24757277 0.8 1 33.10349799 42.74833088 18.64448302
0.6 0.05 34.52689769 576.314533 19.01632516 0.85 0.05 32.94154969 568.85155 18.6628484
0.6 0.1 34.52689769 1181.462126 19.01632516 0.85 0.1 32.94154969 1103.85581 18.6628484
0.6 0.15 34.52689769 4968.81349 19.01632516 0.85 0.15 32.94154969 4557.495671 18.6628484
0.6 0.2 34.52689769 29313.6072 19.01632516 0.85 0.2 32.94154969 26790.23477 18.6628484
0.6 0.25 34.52689769 214401.5486 19.01632516 0.85 0.25 32.94154969 195838.3626 18.6628484
0.6 0.3 34.52689769 1903535.573 19.01632516 0.85 0.3 32.94154969 1738601.02 18.6628484
0.6 0.35 34.52689769 20725750.53 19.01632516 0.85 0.35 32.94154969 18929786.92 18.6628484
0.6 0.4 34.52689769 283242901.4 19.01632516 0.85 0.4 32.94154969 258698650.7 18.6628484
0.6 0.45 34.52689769 5021725081 19.01632516 0.85 0.45 32.94154969 4586570110 18.6628484
0.6 0.5 34.52689769 1.20727E+11 19.01632516 0.85 0.5 32.94154969 1.10266E+11 18.6628484
0.6 0.55 34.52689769 4.1763E+12 19.01632516 0.85 0.55 32.94154969 3.8144E+12 18.6628484
0.6 0.6 34.52689769 2.25477E+14 19.01632516 0.85 0.6 32.94154969 2.05938E+14 18.6628484
0.6 0.65 34.52689769 2.13E+16 19.01632516 0.85 0.65 32.94154969 1.95E+16 18.6628484
0.6 0.7 34.52689769 4.17E+18 19.01632516 0.85 0.7 32.94154969 3.81E+18 18.6628484
0.6 0.75 34.52689769 2.20E+21 19.01632516 0.85 0.75 32.94154969 2.01E+21 18.6628484
0.6 0.8 34.52689769 4.88E+24 19.01632516 0.85 0.8 32.94154969 4.46E+24 18.6628484
0.6 0.85 34.52689769 1.04E+29 19.01632516 0.85 0.85 32.94154969 9.48E+28 18.6628484
0.6 0.9 34.52689769 1.36E+35 19.01632516 0.85 0.9 32.94154969 1.25E+35 18.6628484
0.6 0.95 34.52689769 4.24E+45 19.01632516 0.85 0.95 32.94154969 3.87E+45 18.6628484
0.6 1 34.52689769 42.30231793 19.01632516 0.85 1 32.94154969 42.82301126 18.6628484
0.65 0.05 34.05795454 574.4087565 18.84726108 0.9 0.05 32.85704345 568.6599887 18.7258011
0.65 0.1 34.05795454 1161.842819 18.84726108 0.9 0.1 32.85704345 1095.69929 18.7258011
0.65 0.15 34.05795454 4864.640762 18.84726108 0.9 0.15 32.85704345 4513.013298 18.7258011
0.65 0.2 34.05795454 28673.87941 18.84726108 0.9 0.2 32.85704345 26516.77816 18.7258011
0.65 0.25 34.05795454 209694.2713 18.84726108 0.9 0.25 32.85704345 193826.6176 18.7258011
0.65 0.3 34.05795454 1861709.505 18.84726108 0.9 0.3 32.85704345 1720727.084 18.7258011
0.65 0.35 34.05795454 20270306.08 18.84726108 0.9 0.35 32.85704345 18735159.76 18.7258011
0.65 0.4 34.05795454 277018638.4 18.84726108 0.9 0.4 32.85704345 256038811.7 18.7258011
0.65 0.45 34.05795454 4911372592 18.84726108 0.9 0.45 32.85704345 4539412750 18.7258011
0.65 0.5 34.05795454 1.18074E+11 18.84726108 0.9 0.5 32.85704345 1.09132E+11 18.7258011
0.65 0.55 34.05795454 4.08452E+12 18.84726108 0.9 0.55 32.85704345 3.77518E+12 18.7258011
0.65 0.6 34.05795454 2.20522E+14 18.84726108 0.9 0.6 32.85704345 2.03821E+14 18.7258011
0.65 0.65 34.05795454 2.08E+16 18.84726108 0.9 0.65 32.85704345 1.93E+16 18.7258011
0.65 0.7 34.05795454 4.08E+18 18.84726108 0.9 0.7 32.85704345 3.77E+18 18.7258011
0.65 0.75 34.05795454 2.16E+21 18.84726108 0.9 0.75 32.85704345 1.99E+21 18.7258011
0.65 0.8 34.05795454 4.77E+24 18.84726108 0.9 0.8 32.85704345 4.41E+24 18.7258011
0.65 0.85 34.05795454 1.01E+29 18.84726108 0.9 0.85 32.85704345 9.38E+28 18.7258011
0.65 0.9 34.05795454 1.33E+35 18.84726108 0.9 0.9 32.85704345 1.23E+35 18.7258011
0.65 0.95 34.05795454 4.15E+45 18.84726108 0.9 0.95 32.85704345 3.83E+45 18.7258011
0.65 1 34.05795454 42.44424205 18.84726108 0.9 1 32.85704345 42.88878787 18.7258011
0.7 0.05 33.66436064 572.5794183 18.73346434 0.95 0.05 32.81797791 569.2677849 18.80994299
0.7 0.1 33.66436064 1144.083766 18.73346434 0.95 0.1 32.81797791 1090.818321 18.80994299
0.7 0.15 33.66436064 4770.740151 18.73346434 0.95 0.15 32.81797791 4484.735836 18.80994299
0.7 0.2 33.66436064 28097.81237 18.73346434 0.95 0.2 32.81797791 26341.84093 18.80994299
0.7 0.25 33.66436064 205456.2468 18.73346434 0.95 0.25 32.81797791 192538.8282 18.80994299
0.7 0.3 33.66436064 1824054.097 18.73346434 0.95 0.3 32.81797791 1709284.746 18.80994299
0.7 0.35 33.66436064 19860277.62 18.73346434 0.95 0.35 32.81797791 18610565.13 18.80994299
0.7 0.4 33.66436064 271415048.6 18.73346434 0.95 0.4 32.81797791 254336060.2 18.80994299
0.7 0.45 33.66436064 4812024275 18.73346434 0.95 0.45 32.81797791 4509223981 18.80994299
0.7 0.5 33.66436064 1.15686E+11 18.73346434 0.95 0.5 32.81797791 1.08406E+11 18.80994299
0.7 0.55 33.66436064 4.0019E+12 18.73346434 0.95 0.55 32.81797791 3.75008E+12 18.80994299
0.7 0.6 33.66436064 2.16061E+14 18.73346434 0.95 0.6 32.81797791 2.02465E+14 18.80994299
0.7 0.65 33.66436064 2.04E+16 18.73346434 0.95 0.65 32.81797791 1.91E+16 18.80994299
0.7 0.7 33.66436064 4.00E+18 18.73346434 0.95 0.7 32.81797791 3.75E+18 18.80994299
0.7 0.75 33.66436064 2.11E+21 18.73346434 0.95 0.75 32.81797791 1.98E+21 18.80994299
0.7 0.8 33.66436064 4.68E+24 18.73346434 0.95 0.8 32.81797791 4.38E+24 18.80994299
0.7 0.85 33.66436064 9.94E+28 18.73346434 0.95 0.85 32.81797791 9.32E+28 18.80994299
0.7 0.9 33.66436064 1.31E+35 18.73346434 0.95 0.9 32.81797791 1.23E+35 18.80994299
0.7 0.95 33.66436064 4.06E+45 18.73346434 0.95 0.95 32.81797791 3.81E+45 18.80994299
0.7 1 33.66436064 42.56246815 18.73346434 0.95 1 32.81797791 42.94736216 18.80994299
0.75 0.05 33.34565828 570.9566879 18.66766639 1 0.05 32.75 570.8730092 18.52005071
0.75 0.1 33.34565828 1128.353655 18.66766639 1 0.1 32.75 1089.739965 18.52005071
0.75 0.15 33.34565828 4687.675559 18.66766639 1 0.15 32.75 4475.096803 18.52005071
0.75 0.2 33.34565828 27588.53191 18.66766639 1 0.2 32.75 26280.02823 18.52005071
0.75 0.25 33.34565828 201710.0803 18.66766639 1 0.25 32.75 192082.092 18.52005071
0.75 0.3 33.34565828 1790769.714 18.66766639 1 0.3 32.75 1705225.168 18.52005071
0.75 0.35 33.34565828 19497846.3 18.66766639 1 0.35 32.75 18566359.68 18.52005071
0.75 0.4 33.34565828 266461939.4 18.66766639 1 0.4 32.75 253731933.3 18.52005071
0.75 0.45 33.34565828 4724208596 18.66766639 1 0.45 32.75 4498513169 18.52005071
0.75 0.5 33.34565828 1.13575E+11 18.66766639 1 0.5 32.75 1.08149E+11 18.52005071
0.75 0.55 33.34565828 3.92887E+12 18.66766639 1 0.55 32.75 3.74117E+12 18.52005071
0.75 0.6 33.34565828 2.12118E+14 18.66766639 1 0.6 32.75 2.01984E+14 18.52005071
0.75 0.65 33.34565828 2.00E+16 18.66766639 1 0.65 32.75 1.91E+16 18.52005071
0.75 0.7 33.34565828 3.93E+18 18.66766639 1 0.7 32.75 3.74E+18 18.52005071
0.75 0.75 33.34565828 2.07E+21 18.66766639 1 0.75 32.75 1.97E+21 18.52005071
0.75 0.8 33.34565828 4.59E+24 18.66766639 1 0.8 32.75 4.37E+24 18.52005071
0.75 0.85 33.34565828 9.76E+28 18.66766639 1 0.85 32.75 9.30E+28 18.52005071
0.75 0.9 33.34565828 1.28E+35 18.66766639 1 0.9 32.75 1.22E+35 18.52005071
0.75 0.95 33.34565828 3.99E+45 18.66766639 1 0.95 32.75 3.80E+45 18.52005071
0.75 1 33.34565828 42.66248574 18.66766639 1 1 32.75 43 18.52005071

Table 6. Appendix B: Gridsearch
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Appendix C

The mathematics for the DT model is given here as it was given in the paper by Wang et al. [11].

The conditional function for fU (u) is the same, and stated again in 11

fU (u|U > tp − tr) =


fU (u+t+p−tr)∫∞
tp−tr fU (u)du

tr < tp, 0 < u <∞

fU (u) tr = tp, 0 < u <∞
(19)

There are two scenarios defined an item can be in, reversed from how it is stated in section 4.2.

Scenario 1: the item does not have to be inspected at the current check-up point.

Scenario 2: the item is inspected at the current check-up point.

The concluding equation is given in figure 10. Where it says E[Nr(tp + t, tp + 2t)], it should say

E[Nr(tp + t, tp + 3t)], as forecasts for failure is still made for items in scenario 1 until tp + 3t, and it

says that they predict for 28 time units, and that t is set to 14. This is strange, as the prediction by

the way data is simulated is updated and the nature of demand vector x is divided for every time unit

t.

The period in which they are forecasting is given at tp + t if an item is in scenario 1.

The period in which they are forecasting seems given at tp if an item is in scenario 2, the probability

of failure is included from (tp, tp + 2t). There are two problems with this statement. Though, starting

at tp, seems to be off as the prediction starts a period later at tp+1: “E[Nr(tp+ t, tp+2t)]”. Secondly,

this is not in accommodation with the way data is simulated. This predicts that the maintenance in

an period counts as demand for the beginning of that period. This is stated in figure 3 and taken from

the paper by Wang et al. [11]. There is no prediction for the current immediate inspection and it is

not clear if there is a fix at the beginning in this period, which should update tp.

Figure 10. Appendix C: A snippit of the mathematics used in Wang et al. [11].
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