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Abstract
This paper aims to investigate the effect of marketing activities on the probability that an individual

purchases a specific brand from a set of substitutable alternatives and the individual-specific

heterogeneity of intrinsic preferences. To circumvent the Independence of Irrelevant Alternatives, the

discrete choice model that is employed is the probit model. This paper estimates the parameters

replicating the work of Chintagunta and Honore (1996) by using the Method of Simulated Moments.

The results of this method show a trade-off between running-time and accuracy, making it an inefficient

method. The research is extended by estimating the parameters using the Gibbs sampling approach,

which proves more efficient. Incorporation of heterogeneity is done using either a brand-loyalty variable,

which provides biased results due to the incorporation of purchase-history, or a random-effects model,

which assumes that the heterogeneity is distributed normally over the population. This research shows

that the method that provides the least biased results is the Method of Simulated Moments, with

incorporation of heterogeneity by means of a random-effects model.
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1 Introduction

In the current market, companies compete with each other to lure consumers to buy their prod-

ucts. In markets where the products are substitutable, companies engage largely in brand-

management to achieve this aim. Such brand management includes brand positioning strategies,

pricing strategies and marketing and promotion activities. Increased investment in these types

of activities can improve brand-performance and hence allow for companies to stand out as a

brand. For companies to know which activities reap the most reward, they need to know how

consumers individually and collectively respond to these marketing activities.

In this study, I will investigate this unknown effect as analyzed and evaluated by Chintagunta

and Honore (1996). A discrete choice model is employed to model the purchase behavior of

individuals, specifically focusing on the multinomial logit and probit models. When there are

more than four alternatives, estimation of the logit model can be done using parametric methods

such as the Maximum Likelihood method, whereas the probit model requires estimation methods

which can be done non-parametrically. With these estimation methods at the focus of this study,

I pose the following research question:

To what extent can a discrete choice model be accurately and efficiently estimated

using sampling based approaches while incorporating heterogeneity?

To answer the research question, this paper replicates and then extends the work of Chinta-

gunta and Honore (1996). To do this, the discrete choice models are estimated using Maximum

Likelihood and the Method of Simulated Moments, as done in their paper. Then, I extend their

research by evaluating the Gibbs Sampling approach as a potential solution that tackles some

of the problems of the other methods. The Gibbs Sampling approach can be compared to the

Method of Simulated Moments as they are both Monte Carlo sampling methods. Additionally,

the incorporation of heterogeneity to allow for different preferences across individuals further

extends the research of Chintagunta and Honore (1996).

2 Problem Description and Literature Review

To answer the research question, a heterogeneous discrete choice model is used. There are several

problems that come into play regarding the decision of which model and variable specification

to use. In this section I address the problems and provide the solutions that have been found in

existing literature.

2



2.1 Independence of Irrelevant Alternatives

To tackle the estimation of the effect of the marketing variables on choice probabilities, many

researchers employ a multinomial logit model. Though this model allows for the choice between

alternatives to be analyzed, it depends strongly on the Independence of Irrelevant Alternatives

(IIA) assumption. This assumption states that an individual’s preference of one brand over

another should not be affected by the presence of other, irrelevant brands. When the products

from different brands are hard to differentiate, which is the case for substitutable goods, Currim

(1982) suggests that this may not be the case. If the IIA does not hold, this may be problematic

in estimating the effect of marketing variables using the logit model. Chintagunta and Honore

(1996) state that this assumption causes the prediction of the joint probability of selection of

the similar brands to be too high. Specifically, the IIA hinders the accurate estimation of the

effect due to the overestimation of the probability. This assumption underlies not only the logit

model, but all models that do not incorporate correlation between the alternative brands, such

as the independent probit. To circumvent the IIA, Hausman and Wise (1978) suggest to use the

multinomial probit model which allows for general similarities across the brands and therefore

acknowledges the dependence between the alternatives. This dependence is incorporated in that

the covariance structure of a probit model allows for correlation across brand alternatives.

2.2 Estimation of the Probit Model

Though the multinomial probit model circumvents the problem of the IIA, it comes with com-

plications that are not characterized by the logit model. The problem of the probit model is

that the estimation of its parameters are not as straightforward as in the logit model. For the

evaluation of the discrete choice models, a distribution of the error term needs to be assumed.

The probit model is dependent on the normal distribution, which is further explained in sec-

tion 3, where the probit model is specified. The normal distribution is more complex to use

than the logistic distribution for the logit model. This results in computational difficulties when

estimating the parameters, as the integral is taken with respect to the number of alternatives.

McFadden (1989) states that the direct numerical integration to estimate the parameters of a

probit model is still possible when there are less or equal to 4 alternative brands, suggesting that

the use of maximum likelihood is then still feasible.

The focus that I would like to place in this study is the use of sampling based approaches

to estimate the parameters of a probit model. In sampling approaches, the probabilities are

not calculated using the integral, but rather estimated using sampling methods. This solves the

problem of the complicated integration. One such sampling method is the Method of Simulated
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Moments, as explored by Chintagunta and Honore (1996). McFadden (1989) and Gourieroux

and Monfort (1990) exemplified this method, and use it to estimate the coefficients of a probit

model. A downside of simulation methods is that they can be time-consuming and if not enough

replications are made then this may cause the results to be inaccurate.

McCulloch and Rossi (1994) specify a different method to use for the estimation, the Gibbs

sampler. This is also recommended by Chintagunta and Honore (1996) as it is a more recent

method. The Gibbs sampler aims to provide an approximation of the exact likelihood by means

of sampling from conditional distributions. This is a less time-consuming method of sampling,

though it still uses Monte-Carlo chains, as in Method of Simulated Moments. However, the

Gibbs Sampler works more efficiently. If sampling from the conditional distributions is done

sufficiently, McCulloch and Rossi (1994) state that the draws converge to stable estimates.

2.3 Individual-Specific Heterogeneity in Intrinsic Preferences

When considering the effect of marketing variables, not all individuals react the same. A fea-

ture of a brand in the newspaper for one individual may affect them more than when another

individual is faced with the same feature. Similarly, when two individuals are confronted with

a special display of a brand in the store, one may be more inclined to buy the product while

the other remains indifferent between the alternatives. This reflects the intrinsic preferences of

an individual, which can be interpreted as heterogeneity across the population. The concept of

brand loyalty suggests that individuals may be inclined to buy the same products, regardless of

the marketing of alternative brands. This difference in intrinsic brand preferences across individ-

uals and households must be taken into account when estimating the effect on the probability of

an individual buying one brand, as otherwise it can over- or under-estimated when considering

different individuals.

The heterogeneity due to the differences in individuals is not implicitly considered in a normal

multinomial probit model. This can be considered by a individual-specific variable, such as

brand-loyalty, suggested by Guadagni and Little (1983). This variable takes into account the

purchase history of an individual, which is updated every time a consumer buys a specific brand.

The criticism that this variable has received is that the effect of the marketing variable on the

purchase history is not filtered out when updating the brand-loyalty variable. What this suggests

is that the promotion and price variables of the previous purchases affected those brand choices

as well, and thus using the purchase history in the brand-loyalty variable will still contain the

marketing mix effects. As a result, the intrinsic preferences of an individual towards one brand

may be overstated by use of this variable.

4



Hausman and Wise (1978) suggest to use a random coefficients specification to take into

account the heterogeneity, advocated by Heckman and Singer (1984). Such a specification as-

sumes that the preferences are distributed across individuals following a specific distribution,

such as the normal distribution. However, if the distribution is incorrectly specified then this

yields biased results. Chintagunta et al. (1991) and Kamakura and Russell (1989) suggests the

estimation and use of support points to estimate the distribution of the intrinsic preference.

The starting point is the general framework of a discrete choice model as introduced by

McFadden (1989), which is specified to circumvent the IIA. Subsequently, the heterogeneous

intrinsic preferences are incorporated.

3 Methodology

In section 3.1, the discrete choice model is explained. This general framework is then used

to establish a multinomial logit, multinomial probit and independent probit model as different

specifications of the discrete choice model. The multinomial logit model is estimated using

Maximum Likelihood, and both the independent and multinomial probit model are estimated

using the Method of Simulated Moments and the Gibbs Sampler, for which the methodology is

presented in section 3.2 and 3.3, respectively. The incorporation of heterogeneity is explained in

section 3.4.

3.1 Discrete Choice Model

For the general discrete choice model there are n individuals, K brands and T purchase occasions.

Then, the utility Uikt for individual i, where i = 1, ..., n, of buying brand k, where k = 1, ...,K

at time t, where t = 1, ..., T , is modeled as

Uikt = Xiktβi + αik + εikt. (1)

Xikt is a set of explanatory variables and βi is a set of parameters. εikt are the error terms. As can

be seen, the explanatory variables are household and brand dependent, whereas the parameters

only vary across households. αik’s are the intrinsic brand preferences of the households.

Chintagunta and Honore (1996) specify the identification of the model such that the inter-

pretation of the intrinsic preference for one brand is presented as relative to a base brand. This

identification provides the following final model specification:

Ũikt = (Xikt −XiKt)βi + (αik − αiK) + (εikt − εiKt), (2)
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which leads to:

Ũikt = X̃iktβi + α̃ik + ε̃ikt, (3a)

ŨiKt = 0, (3b)

where Ũikt is the utility of brand k with respect to the base brand, K.

For simplicity, there are a few more vectors defined by Chintagunta and Honore (1996). First,

µi is a vector of intrinsic preferences (α̃i) and slope coefficients(β̃i), µi = {α̃i, β̃i}. Additionally,

the vector θ contains all parameters that must be estimated in the model. θ0 then is the vector

of true values of θ.

This set up then applies to the standard multinomial logit by assuming that the error terms,

εikt, of the latent variable follow a logistic distribution. For the probit model, the error terms

are assumed to be normally distributed. This distribution in the error terms of the probit model

allows for a correlation between the alternatives. The independent probit model is a special case

of the multinomial probit model, as it assumes the same normal distribution of the error terms.

However, the independent probit assumes that there is no correlation between the alternatives,

which suggests that the off-diagonal values of the covariance are zero. This leads to the identity

matrix being the covariance matrix.

3.2 Method of Simulated Moments

The use of the Method of Simulated Moments (MSM) is justified when there are more than

four alternatives (McFadden, 1989). When this is the case, the integral that must be solved

to find the estimates of the coefficients of the probit model is too complex, and thus methods

such as Maximum Likelihood (ML) cannot be used. The MSM does not require the numerical

integration, but rather uses simulation to provide an exact solution of an approximation of the

likelihood.

To obtain the parameter estimates the moment conditions must be defined, as is done in

the general method of moments. In the simple method of moments methodology, the aim is to

obtain parameters for which the sample moments equal the true moment of the distribution of

Di|Xi:

E[Di|Xi] = Eθ0 [Di|Xi], (4)

where Di is a vector of observed responses, such that Dikt is 1 if individual i chooses alternative

k at time t and 0 otherwise. Consequently, the moment condition that the method of moments

uses is given by:

E[(Di − Pθ[Di|Xi])Wi] = 0, (5)
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where Pθ[Di|Xi] is the probability that individual i chooses alternative k at time t, dependent

on the parameters, θ. This moment equation as specified by Chintagunta and Honore (1996)

includes instruments, Wi, rather than only the explanatory variables, Xi. This is done due to

the number of parameters to be estimated. Thus, solving the optimization problem is done using

the following equation:

θmm = arg minθ(D − P (θ))′W ′W (D − P (θ)), (6)

where P (θ) = Pθ[D|X] for simplicity.

The MSM replaces the actual computation of probability or expectation, P (θ), with a simu-

lator. This is done such that the expected value does not have to be calculated and thus there is

no need to compute the complicated integral. The smooth unbiased estimators are random vari-

ables conditional on Wi, as exemplified by McFadden (1989). This suggests that it is calculated

such that Ũik = Xikβ̃ + εij is computed using a fixed set of parameters, β̃. Then,

P (θ) =
1

R

R∑
r=1

(Ũi1 − Ũik) (7)

is calculated. This provides enough information to calculate the moment condition, and thus to

provide information on the the fit of the fixed β̃. This is then iteratively done until the β̃ gives

the smallest moment condition.

3.3 Gibbs Sampling Approach

The Gibbs Sampling approach is a Bayesian method to sampling. In this paper I will not expand

on the methodology to a great extent, but rather give an intuition of the method.

The specification of a prior, p(β,Σ), is needed in order to do the Bayesian analysis of the

multinomial probit model, as stated by McCulloch and Rossi (1994). The posterior density

function is then obtained by:

p(β,Σ|y1, ...yN , X) ∝ p(β,Σ)p(y1, ...yN , X|β,Σ), (8)

where p(y1, ...yN , X|β,Σ) is the model likelihood, l(β,Σ) . For the multinomial probit model,

this is the product of the independent multinomial distributions. The direct evaluation of the

likelihood of the normal distribution is costly and thus the Gibbs sampler is employed.

McCulloch and Rossi (1994) state that the Gibbs sampler does not sample from the joint

distribution but rather from the conditional distributions. In practice, the Gibbs sampler does

iterative sampling of one parameter from the conditional distribution of the parameters of the

previous iteration. This process of repeated draws from the conditional distribution is done
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recursively, and eventually should converge in distribution to the joint distribution. In theory,

this suggests that the method does not require the joint distribution, but relies fully on the

conditional distributions in order to represent the full distribution.

3.4 Incorporating Unobserved Heterogeneity

The two methods to incorporate heterogeneity in the discrete choice models are explained in the

following subsections.

3.4.1 Brand Loyalty

To account for unobserved heterogeneity in the models, the intrinsic brand preferences must be

incorporated into the model. Guadagni and Little (1983) specify one method to do this, by the

use of a brandloyalty variable to represent these the household-specific differences. This variable

is constructed using the purchase history of a household and updating this loyalty of a brand

per purchase. It is calculated as follows:

Loyikt = γLoyik(t−1) + (1− γ)Dik(t−1), (9)

where Loyikt is the loyalty of individual i of brand k at purchase t, and Dikt = 1 if individual i

bought brand k at purchase t and 0 otherwise. γ is the carry-over constant. The use of brand

loyalty accounts for heterogeneity in the logit model by incorporating purchase history.

3.4.2 Random Effects Model

Papers by Chintagunta et al. (1991) and Chintagunta and Honore (1996) state that the intrinsic

preferences of individuals follow a distribution over the population. This suggests that if this

distribution is known, the parameters can be estimated and the heterogeneity can be taken into

account, such that the model becomes:

Uij = Ū(Xij , ai) + ε(Xij , ai) = β̄ijXij + βijXij + γij . (10)

As suggested by Hausman and Wise (1978), β are the taste parameters, and γ represents the

truly random term.

There are multiple ways of defining the heterogeneity distribution. Chintagunta and Honore

(1996) suggest the use of support points to estimate the underlying distribution. Doing this would

allow for an accurate representation of the heterogeneity of the population. It is incorporated

such that there are a finite amount of support points which each have a probability mass, a mean

and standard deviation. This discrete distribution is estimated for the sake of interpretation,

but is not used for the estimation of the model due to complexity in programming.
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For this research, it is assumed that the heterogeneity is normally distributed over the pop-

ulation, and it is incorporated accordingly into the logit model using the Maximum Likelihood

method of estimation. Additionally, I incorporate heterogeneity by means of the random-effects

probit model using the Method of Simulated Moments to estimate the parameters.

4 Data

To implement the methodology, scanner data is needed on purchase behavior of households

buying alternative brands that produce substitutable goods. For each purchase occasion, which

is when an individual purchases one of the alternative brands, information that is brand specific

but also household specific is optimal to have. Additional to this, it is preferable that the data

is clean.

The data that is used in this paper is scanner information on four Saltine Cracker brands that

are sold in the US. The names of these brands are Nabisco, Sunshine, Keebler and a Private Label

and they provide a substitutable product. The variables that are included in the discrete choice

models are price, display and feature. Price of each alternative of Nabisco, Keebler, Sunshine

and the private label are reported for each purchase occasion. Price is a continuous variable.

The variables display and feature are dummy variables. For display, displayijt presents whether

there was a display for household i for brand j at purchase occasion t. For featureijt it has the

same set-up, representing whether the brand was featured in a newspaper at time of purchase.

Table 1 presents the summary table of the variables for each brand.

Share Price Display Feat

Sunshine 0.073 0.957 0.129 0.038

Keebler 0.069 1.126 0.106 0.043

Nabisco 0.544 1.079 0.340 0.087

Private 0.314 0.681 0.099 0.047

Table 1: Summary of Saltine Crackers Data, where the share of the amount of time that the brand was

purchased is presented in the first column. The average price, amount of time that the brand was on

display or had a feature are presented respectively.

This table clearly shows that Nabisco is the most commonly bought brand, with the private

label following. Sunshine and Keebler appear to have a less large market share, being bought

only on about 7% of the occasions. The highest priced brand is Keebler, followed by Nabisco.

The lowest priced brand is the private label. Nabisco was both displayed and featured most
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frequently throughout time, suggesting a prevalent marketing strategy. Contrasting to this is

the private label, with a low average price and fewer marketing activities. This suggests that the

private label is a cheap variant, such as a house-brand.

5 Results

The estimation of the multinomial logit, multinomial probit and independent probit models are

chosen with the following reasoning. The multinomial logit and independent probit model are

compared to show the effect of the method of estimation of the probit model, and each method’s

ability to accurately estimate the parameters of the model. Both of these models suffer from

the Independence of Irrelevant Alternatives (IIA) assumption. The multinomial probit model

can be compared with the independent probit model to show the influence that the correlations

between the brands have on the estimates.

The results are given in the following order. The results of the replication are presented

first. The multinomial logit model, independent probit model and the multinomial probit model

are estimated using both the Maximum Likelihood (ML) approach and the Method of Simu-

lated Moments (MSM). Consequently, the estimates of these results are analyzed and compared.

Hereafter, the results of the Gibbs Estimation Approach are given, alongside a comparison of

its performance compared to the MSM. Last, the incorporation of heterogeneity by means of

random-effects is included, presented by the mixed logit model and the random-coefficient probit

model.

These ML results are produced using the package mlogit by Croissant (2018). For the MSM,

there are no available packages or code to use to estimate the estimates. Thus, the largest bulk

of time for this study was spent on exploring this method, finding an algorithm and writing the

code to run the Method of Simulated Moments. The R code for the MSM that is used in this

paper is presented in Appendix A. To estimate the results for the Gibbs Sampling, the package

bayesm by Rossi (2017) is used. For the mixed logit model, the gmnl package by Sarrias and

Daziano (2017) is used. The random-coefficient probit model required an adaptation of the MSM

code. This adaptation is presented in Appendix B.

The results for the elasticities models are calculated using the code presented in Appendix C.

Due to the complexity of the multinomial probit model, the elasticities are calculated by scaling

the estimates of the probit models to fit the logit model. Though this is not entirely correct, it

allows for the interpretation of the estimates, and thus it is useful.
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Table 2: Parameters Estimates

Parameters estimates:

Multinomial

Logit (ML)

Multinomial

Probit (ML)

Independent

Probit (MSM)

Multinomial Probit

(MSM)

Multinomial Probit

(MSM: 50 Replications)

Multinomial

Probit (Gibbs)

Keebler:(intercept) 0.618 0.451 0.62 0.619 -0.624 -2.072

(0.127) (0.098) (0.541)

Nabisco:(intercept) 1.137 0.616 1.309 1.137 2.446 -3.004

(0.106) (0.079) (0.486)

Private:(intercept) -0.434 -0.143 -0.434 -0.43 0.647 0.447

(0.119) (0.084) (0.067)

Price -3.777 -1.823 -3.77 -3.778 -3.36 0.094

(0.299) (0.211) (0.086)

Display 0.299 0.158 0.423 0.303 0.042 -0.069

(0.091) (0.045) (0.033)

Feature 0.737 0.385 0.737 0.741 0.489 -0.132

(0.134) (0.073) (0.048)

Loyalty 3.534 1.973 3.516 3.533 -1.126

(0.082) (0.176) (0.151)

Parameters estimates and their standard errors (presented in the parenthesis below the estimates) for the models that account for heterogeneity

through the brand loyalty variable. The standard errors for the MSM are not calculated in the code, thus also not presented here.

5.1 Maximum Likelihood

McFadden (1989) states that the direct numerical integration to estimate the parameters of a

probit model is still possible when there are less or equal to 4 alternative brands. For the data of

the Saltine Crackers, there are only four brands. This suggests that it is possible to estimate the

probit model using Maximum Likelihood. Thus, I report the results of the probit model using

Maximum Likelihood (ML) in this section for comparison to the simulation methods. These

results are presented in the first two columns of Table 2.

The results in Table 2 show that the signs for each coefficient are the same in both the

multinomial logit and probit model. This is quite a crucial observation, as it confirms that the

marketing variables have a positive influence on the utility of each brand. If the signs of the

marketing variables were negative, it could suggest a problem in the model or a bias in the

estimates. This statement is under the presumption that marketing activities have either no

effect or a positive effect on the probability that a consumer buys a product. Though it can be

seen that the estimates for the multinomial logit are approximately double the size of those of

the probit model, the estimates cannot be interpreted directly with respect to the probabilities.

Thus, the marginal effects are analyzed in the following section.
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5.1.1 Choice-Price Elasticities

The marginal effects of price are mentioned in the first and third columns of Table 5, where

they show each marginal effect of price of one brand on the probability of each alternative being

chosen. These marginal effects I refer to as choice-price elasticities. The results for the estimates

using ML in the choice-price elasticities table shows that an increase in price of each brand

results in a decreased probability of an individual purchasing that brand. This is known as the

demand elasticity of a brand. Intuitively, this is straight forward as individuals are less likely to

buy brands with increased prices, which is a law in economics.

The marginal effects of the other prices can be interpreted as cross-price elasticity and this is

an interesting finding, as it allows for interpretation as to how a price of one brand can effect the

purchase probability of another brand. This concept is especially useful for brands to understand

the competing brands that they are most price-competitive with. Additionally, this gives insight

into how the brands interact.

Analyzing these choice-price elasticities for the models estimated using ML, it can be seen

that the change in price of Sunshine specifically affects the probability that individuals purchase

Nabisco. This suggests that they are seen as very similar alternatives for households, as a slight

price in one can encourage individuals to switch to the other. Additionally, the private label

appears to increase most in purchase probability if there is a Nabisco price increase.

5.2 Method of Simulated Moments

The results obtained by estimating the parameters of independent and multinomial probit model

using Method of Simulated Moments (MSM) are presented in the third and fourth columns of

Table 2 respectively, where the amount of random draws is set to 10.

The results in this table show that the estimates obtained using MSM are different in size

from the results obtained by Chintagunta and Honore (1996). It should be noted that the sign of

each estimate is the same as presented in their paper. This difference in size of estimates may be

due to the way that the results were obtained back in 1996, which may have been less accurate

or done differently. Additionally, the method of Simulated Moments never produces the same

estimates, thus this may just be due to the simulation.

To compare for credibility of the MSM, I compare the results to those found by the ML

method. Comparing these two estimates, there is quite a large difference. The signs of each

estimate is the same. However, the estimates produced by ML are approximately double the

size of the estimates that are the result of the MSM. This may suggest that the MSM is not a

very credible method. The results are relatively similar to the multinomial logit model. This
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may be due to the fact that the initial estimates for the parameters provided to the optimization

program in R are those of the multinomial logit. As the optimization method searches for points

close to this starting value, it can explain why these results are so similar.

Comparing the independent probit to the multinomial probit model again shows extremely

similar results. Some results only differ by one hundredth. This may be due to the small amount

of random draws taken, which would suggest that the correlation between the variables was

not taken into account enough through the simulation procedure and thus the difference is not

noticeable. The effect of IIA can therefore not be extracted from these results.

To evaluate the method, it must be noted how slow the program runs. To obtain estimates

with a replication set at 10, the running time was more than 7 hours. Any increase in R resulted

in even longer waiting times. As 10 is not a large amount of randomly drawn error vectors, the

results may not be reliable. This trade-off between time and accuracy is a large drawback of the

use of MSM, and a critical note must be placed on it.

An additional limitation mentioned by Chintagunta and Honore (1996) is that the usage of

the exponential distribution for smoothing can cause bias in the estimates. This is not the case

for the estimates presented here.

5.2.1 Sensitivity Analysis: 50 Random Draws

In an attempt to produce more accurate results, the MSM with R = 50 results are also reported.

The loyalty variable is removed as otherwise the method takes too long. The program required

more than 12 hours to produce output. The results are presented in the fifth column of Table 2.

These results appear different than those with R = 10 suggesting that an increased number

of random draws may change the parameters significantly (though this cannot be said as a fact

as the standard errors are not reported in this method). Such differences can be seen in, for

example, the brand-specific intercept of Nabisco, that is 1.137 with R = 10 and increases to

2.446 when R = 50. Such a change in coefficients due to a change in R questions the reliability

and robustness of the MSM as a method for estimating the probit model. With an R too low,

the estimates appear biased and inaccurate, however increasing the amount of random draws

will produce a running time that is even longer. Due to time constraints the results could not

be done with a larger amount of random draws, though it is not infeasible.

5.2.2 Choice-Price Elasticities

The choice-price elasticities for the probit models estimated using MSM are presented in the

second and fourth columns of Table 5. Comparing the results obtained using MSM for the
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multinomial probit model with those obtained with ML show a similarity. The estimates appear

to not differ largely from each other, providing the same conclusions about cross-price elasticities

as mentioned previously. The cross-price elasticities of Nabisco and the private label remain

largest, while all brands are negatively impacted by their own price increases.

When comparing the independent probit model and the multinomial logit model, one can

make inferences about the effect of the IIA on estimates of the model. It can be seen that

the price-choice elasticities are much larger in the multinomial logit model than in those of the

independent probit model, such as the price effects of sunshine on its own probability are −0.219

and −0.089, respectively. This effect may be due to the violation of the IIA.

5.3 Gibbs Sampling Approach

The Gibbs sampling method is a way to produce estimates for the probit model in a much faster

way, thus allowing for more accurate estimates. The results using this approach are presented

in the last column of Table 2.

The estimates returned by the Gibbs sampler are significantly different from those obtained

by both the ML estimation and the MSM estimates. This difference is specifically noticeable

when considering the price coefficient. Those of MSM and ML both provided estimates ranging

between −1.7 and −4, which is contrary to the estimate for price of the Gibbs sampler, which

is around 0.094. A positive influence of price on the utility of a brand appears inconsistent with

the results obtained in this study.

The results provided for the choice-price elasticities, as shown in the fifth column of Table

5, are equally as illogical. This provides positive price-elasticities for some brands, and negative

cross-price elasticities throughout the analysis.

This difference in estimates and cross-price elasticities can be explained by a number of

reasons. As the simulation draws from conditional distributions, there is a chance that these may

be wrongly defined. Additionally, if not enough draws are performed, the results do not converge

to a stable estimate, resulting in biased and inaccurate estimates. For the results presented,

the amount of draws is set to 1000. Results for R = 10000 provide estimates of coefficients

larger than 10. It may be explained by the idea that the chain did not converge within 10000

draws. This behavior can be avoided by applying a burn-in phase of 1000 draws. These results,

however, appeared similar to the previous ones. My knowledge of Bayesian econometrics is,

however, limited and thus I cannot further explain this.
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5.4 Incorporating Unobserved Heterogeneity: Random Effects

As stated previously, the methodology for using the brand-loyalty variable is flawed due to the

use of purchase history. The random-effects methodology does not depend on this but rather

depends on a specified distribution of heterogeneity over the population. In this section the

discrete support points are analyzed and the random-effects logit and probit model results are

presented.

5.4.1 Heterogeneity Distribution

The implementation of using a discrete heterogeneity distribution for the random-effects model

is too complex for the scope of this research. However, the support points for a discrete hetero-

geneity distribution are interesting to observe and can provide a valuable interpretation. The

distribution is presented in Table 3.

Probability Keebler:(intercept) Nabisco:(intercept) Private:(intercept) Price

Point 1 0.675 0.549 3.075 -2.062 -7.147

(0.853) (2.621) (2.810) (0.456)

Point 2 0.325 0.098 1.470 1.749 -0.389

(3.709) (3.472) (3.053) (0.774)

Table 3: Heterogeneity Distribution with Two Support Points. This shows that for point 1, which is

reached with a probability of 0.675, the estimates for the price and brand-specific intercepts are

presented horizontally next to it, with their standard deviations reported in the parenthesis below. The

results for the second support point are below.

The interpretation of these results is done as in Kamakura and Russell (1989), who presented

this as a method for market segmentation. The table shows that there is a 67.5% chance of an

individual to be at point 1, where the price sensitivity is much higher than at point 2. Due to

the model specification, it is difficult to make any conclusions about the intercepts, especially

considering the large standard errors.

The log-likelihood of using 2 discrete support points is −1567, which is better than using

1 support point. Increasing the amount of points did not yield much better results, with 3

points having a likelihood of −1553.7 and 4 points being −1555. Thus, using 2 points appears

appropriate, confirming results found by Chintagunta and Honore (1996).
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Keebler:(intercept) Nabisco:(intercept) Private:(intercept) Price Display Feature

Mixed Logit Model

Estimate 0.506 3.471 -0.871 -4.771 0.353 0.719

(0.155) (0.135) (0.146) (0.367) (0.095) (0.152)

Standard Dev. 1.668 2.893 3.376 5.530

(0.134) (0.120) (0.141) (0.342)

Random Effects Probit Model

Estimate 0.509 2.295 0.7651 -3.191 0.092 0.496

Table 4: Estimation Results Mixed Logit model and random-effects Probit Model. For the mixed logit,

the mean values for the estimates of the price and the brand-specific coefficients are presented, with the

standard deviations of these random variables presented below these. The display and feature variables

were not considered random, and thus their standard deviations are not reported. For the

random-coefficient probit model the no standard deviations nor standard errors were recorded.

5.4.2 Random Coefficients Logit Model (Mixed Logit)

The coefficients for the logit model that incorporates heterogeneity of intrinsic preferences by

means of a random effects method are presented in the top part of Table 4. The variables

considered to be random parameters are price and the brand-specific constants, as display and

feature are not of interest. This idea is based on Chintagunta and Honore (1996).

The results for the mixed logit model are interesting to compare to those of the multinomial

logit model. The logit model does not account for heterogeneity, and thus we can observe the

effect of heterogeneity on the estimates of this mixed logit.

This table shows that increasing prices maintains having a negative effect on the utility of

a brand. In the multinomial logit, this effect appears to be smaller than in the mixed logit

model. For the other estimates, the results appear similar to those of the multinomial logit.

The display and feature variables maintain a positive influence on the utility of a brand. The

standard deviations of each of the random variables are also interesting to observe. These show

that the private label has a much larger standard deviation for its intercept, which suggests

that individuals have clear preferences that are distinct for this private brand. For the price, a

standard deviation of 5.5 is very large, which may suggest that individuals could have a positive

relation between price and utility.

Comparing the choice-price elasticities of the mixed logit model, as presented in the last

column of Table 5, with those of the logit model, it can be seen that the elasticities are much

larger. Significantly for the price-elasticity of the brands themselves, some elasticities are almost

5 times larger in the mixed logit than in the multinomial logit, as shown for the brand sunshine
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increasing from −0.219 to −1.019 respectively. A noticeable distinction as well is that in the

mixed logit model, the cross-price elasticity of Nabisco on Keebler is the largest, rather than that

of Nabisco on the private label. This change may be due to the incorporation of heterogeneity.

5.4.3 Random Coefficient Probit Model

The random coefficient probit model, as previously explained, uses the Method of Simulated

Moments to estimate the probit model, while accounting for heterogeneity by assuming a normal

distribution of preference across the population by means of random coefficients. To incorporate

the random effects into a probit model, the code for the MSM for the probit model is adapted.

The changes in the code are presented in the appendix, as mentioned previously.

The results of the random-effects probit model are presented in the bottom part of Table 4.

These results can be compared to the probit model, allowing to extract the effect of heterogeneity.

Additionally, these results can also be compared to those of the mixed logit model as they both

use the random-effects methodology. The mixed logit model uses the same methodology for

random-effects and thus it is interesting to understand what effect heterogeneity has on the

coefficients and the utility.

The coefficients for the estimates of the random-effects probit model differ largely from those

obtained in the multinomial probit model that excludes the brand-loyalty variable. This suggests

that the effect of heterogeneity is not prominent. Comparing the results to the multinomial

probit model that does include the brand-loyalty variable, the estimates do differ, however not

consistently. This suggests that there is an effect of heterogeneity. Conclusions cannot be drawn

with certainty as the MSM method has not shown consistent results, as previously mentioned.

The coefficients of the random-effects probit model and mixed logit model appear similar, with

some minor differences in the display and private intercept parameter estimates.

Observing the choice-price elasticities, as presented in the second last column of Table 5,

they are all of logical sign. The values of the elasticities are consistently smaller than the mixed

logit elasticities. This is a difference that may be present due to the IIA, showing a promising

improvement of the probit model. For the cross-price elasticities, the results again show the

strong interaction between Nabisco and the private label, as previously found in the multinomial

logit models. However, the own price elasticities are shown to be higher for Sunshine, Keebler and

the private label, but lower for Nabisco. This shows that the heterogeneity in brand-preferences

is removed, allowing for more accurate estimates.
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6 Discussion

The theory depicts a clear preference towards the probit model for the estimation of the effect of

marketing variables on the probability of individuals buying specific brands. The Independence

of Irrelevant Alternatives assumption is clearly broken due to the correlation between the vari-

ables. When analyzing the results found by the Method of Simulated Moments for the estimation

of the coefficients, it can be seen that the estimates are quite similar. However, comparing their

elasticities, it is shown that there is a strong violation of IIA assumption, as these differ largely.

When considering the results from the simulation with 50 draws, the results appear more differ-

ent, suggesting that the probit model is more fitting to analyze substitutable alternatives. This

also suggests that running the model with more replications will further improve the coefficients,

and allow for the accurate estimation of the coefficients of the marketing-mix variables. In turn,

this will allow companies to make inferences on the effects of their marketing activities on the

probability of an individual purchasing their brand.

For the Method of Simulated Moments, the discussion can be extensive. The method is

slow, time-consuming and tedious to work with. Increasing the amount of replications increases

the time that the program needs to run significantly. However, only with a higher amount

of replications does the MSM appear more accurate and reliable. This trade-off for the MSM

method provides a strong negative aspect to the method. For further research, the code that I

wrote for the MSM program can be revised and improved. I suspect that one of the reasons for

the extensive running-time is that the code is not written efficiently. Due to time-constraints,

no improvements could be made during the duration of this study.

The Gibbs estimator, though more complex to understand, allows for the estimation of the

parameters to be less time-consuming. The sampling from conditional distributions is a more

efficient solution, which is the reason that the Gibbs sampler is a faster approach. However,

from the estimation done in this paper, it appears that the coefficients are not very reliable and

depend largely on the amount of random draws taken, and the amount of draws in the burn-out

phase. Even after removal of the burn-in phase, the results did not improve. Due to my limited

Bayesian econometrics knowledge, I could not improve this estimation further. However, this is

an interesting method to delve deeper into.

Lastly, I evaluate the incorporation of the heterogeneity in the data. The use of the brand loy-

alty variable, as theoretically shown, depends largely on the purchase history which may already

be affected by the marketing activities. Assuming that the heterogeneity is distributed over the

population following a normal distribution, and incorporating this by means of a random-effects

model is a solution that removes the purchase history dependency. However, if the heterogene-
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ity does not follow the normal distribution over the population, then the results found in this

study are biased due to the assumption of normality. A discrete support-point heterogeneity

distribution would then be a better distribution to assume. However, in this study this is not

done as it was too complex to incorporate. This suggestion by Chintagunta and Honore (1996)

is intuitively interesting, and should be evaluated in further research.

To conclude, Chintagunta and Honore (1996) provide an interesting research, going into depth

of the Method of Simulated Moments and the discrete support-point heterogeneity distribution.

Their contribution is interesting, and worth noting. The comparison to the Gibbs sampler,

and the incorporation of a normal-distributed heterogeneity is an addition to their study. Time

should be further spent in perfecting the estimation methods of the probit model, as this provides

interesting information to both companies and researchers alike.
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A Appendix: MSM Code

1 #Generate R draws o f e f o r each i ( Independent Probit )

2 e r r o r_vecto r <− r e p l i c a t e (R, rnorm (K, 0 , 1 ) )

3 #Generate R draws o f e f o r each i ( Mult inomial Probit )

4 # er r o r_vector <− r e p l i c a t e (R, rnorm (K, 0 , 1 ) )

5 # covar_e r r o r_vecto r_7 <− matrix ( c ( 1 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5

6 # , 0 . 5 , 1 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5

7 # , 0 . 5 , 0 . 5 , 1 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5

8 # , 0 . 5 , 0 . 5 , 0 . 5 , 1 , 0 . 5 , 0 . 5 , 0 . 5

9 # , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 , 0 . 5 , 0 . 5

10 # , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 , 0 . 5

11 # , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 1 ) ,

12 # nrow=7, nco l = 7)

13 # er r o r_vector <− mvrnorm(6 , mu = c (0 , 0 , 0 , 0 , 0 , 0 , 0 ) , Sigma = covar_e r r o r_vecto r_7)

14

15 #Function to c a l c u l a t e the moment cond i t i on va lue s

16 msm. ob j e c t i v e <− f unc t i on (Y, modelmatrix , param , R, K, J , e r r o r_vector , i d e n t i t y_

matrix ) {

17 #Obtain eta

18 p r obab i l i t y <− NULL

19 p r obab i l i t y . d e r i v a t i v e <− NULL

20 #For loop s t a r t s here

21 f o r ( i in seq ( from = 1 , to=N, by=4) )

22 {

23 eta . i <− data . matrix ( modelmatrix [ i : ( i+J−1) , ] ) %∗% data . matrix ( i d e n t i t y_matrix )

%∗% data . matrix ( e r r o r_vector )

24 #hold ing beta f ixed , generate u t i l i t y

25 u t i l i t y . i <− r e p l i c a t e (R, as . data . frame ( data . matrix ( modelmatrix [ i : ( i+J−1) , ] )%∗

%data . matrix (param) ) ) + as . data . frame ( eta . i )

26 u t i l i t y . ih <− r e p l i c a t e (R, as . data . frame ( data . matrix ( modelmatrix [ i : ( i+J−1) , ] )%

∗%data . matrix (param−h) ) ) + as . data . frame ( eta . i )

27 prob . ih <− u t i l i t y . ih

28 prob . i <− u t i l i t y . i

29 #f ind r e l a t i v e f requency

30 f o r (m in 1 : ( J−1) ) {

31 prob . i [m, ] <− u t i l i t y . i [ J , ] − u t i l i t y . i [m, ]

32 prob . ih [m, ] <− u t i l i t y . ih [ J , ] − u t i l i t y . ih [m, ]

33 }

34 p r obab i l i t y . i <− rowSums( prob . i ) /R

35 p r obab i l i t y . ih <− rowSums( prob . ih ) /R

36 p r obab i l i t y <− rbind ( p robab i l i t y , p r obab i l i t y . i )

37 p r obab i l i t y . d e r i v a t i v e . i <− ( p r obab i l i t y . ih − p r obab i l i t y . i ) /2∗h

22



38 p r obab i l i t y . d e r i v a t i v e <− rbind ( p r obab i l i t y . d e r i va t i v e , p r obab i l i t y . d e r i v a t i v e

. i )

39 }

40 moment <− sum( rowSums ( (Y−p r obab i l i t y ) ∗ ( p r obab i l i t y . d e r i v a t i v e / p r obab i l i t y ) ) )

41 re turn (moment)

42 }

43 #Running the opt imiza t i on func t i on

44 r e s u l t s <− optim ( par = beta . 0 , fn = msm. ob j e c t i v e , method = "BFGS" ,Y = Y,

modelmatrix = modelmatrix , R=R, K=K,

45 J=J , e r r o r_vector=e r r o r_vector , i d e n t i t y_matrix = i d en t i t y_matrix )

B Appendix: MSM Adapted Code

1 #Generating he t e r ogene i t y e r r o r term

2 he t e r ogene i t y_e r r o r <− mvrnorm(N/4 , mu = c (0 , 0 , 0 , 0 ) , Sigma = covar_he t e r ogene i t y_

e r r o r )

3 he t e r ogene i t y_e r r o r <− as . vec to r ( he t e r ogene i t y_e r r o r )

4 modelmatrix <− cbind ( modelmatrix , h e t e r ogene i t y_e r r o r )

5 #sp e c i f y s t a r t i n g po int

6 beta . 0 <− append (summary( logitMSM)$ c o e f f i c i e n t s , 0 )

7 param <− beta . 0

C Appendix: Calculation of Elasticities

1 AverageValues <− with ( crackersmdf , data . frame ( p r i c e = tapply ( pr i c e , index (

l o g i tCra cke r ) $ a l t , mean) ,

2 di sp = tapply ( disp , index ( l o g i tCra cke r ) $ a l t ,

mean) ,

3 f e a t = tapply ( f ea t , index ( l o g i tCra cke r ) $ a l t ,

mean) ,

4 l o y a l t y = tapply ( l oya l ty , index ( l o g i tCra cke r ) $

a l t , mean) ) )

5

6 #Co e f f i c i e n t s f o r the l o g i t model

7 co e f <− c o e f f i c i e n t s ( l o g i tCra cke r )

8

9 #va r i a b l e s

10 c <− 6

11

12 #Co e f f i c i e n t s f o r the prob i t model
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13 c o e f p r ob i t <− r e su l t sHe t e r o g en e i t yP rob i t $par [ 1 : 6 ]

14 s c a l i n g <− 4/ sq r t (2 ∗ pi )

15 co e f <− c o e f p r ob i t ∗ s c a l i n g

16

17 #Calcu la t ing the p r o b a b i l i t i e s o f each cho i c e

18 exp . sunsh ine <− exp (sum( co e f [ c ( 4 : c ) ] ∗AverageValues [ 1 , ] ) )

19 exp . k e eb l e r <− exp ( co e f [ 1 ] + sum( co e f [ c ( 4 : c ) ] ∗AverageValues [ 2 , ] ) )

20 exp . nab i sco <− exp ( co e f [ 2 ] + sum( co e f [ c ( 4 : c ) ] ∗AverageValues [ 3 , ] ) )

21 exp . p r i va t e <− exp ( co e f [ 3 ] + sum( co e f [ c ( 4 : c ) ] ∗AverageValues [ 4 , ] ) )

22 exp . sum <− exp . sunsh ine + exp . k e eb l e r + exp . nab i sco + exp . p r i va t e

23 p r obab i l i t y . sunsh ine <− exp . sunsh ine / exp . sum

24 p r obab i l i t y . k e eb l e r <− exp . k e eb l e r / exp . sum

25 p r obab i l i t y . nab i sco <− exp . nab i sco / exp . sum

26 p r obab i l i t y . p r i va t e <− exp . p r i va t e / exp . sum

27 probs <− rbind ( p r obab i l i t y . sunshine , p r obab i l i t y . keeb le r , p r obab i l i t y . nabisco ,

p r obab i l i t y . p r i va t e )

28

29 #Calcu la t ing the e l a s t i c i t i e s

30 e l a s t i c i t i e s <− co e f [ 4 ] ∗ probs ∗ (1−probs )

31 c r o s s p r i c e <− −co e f [ 4 ] ∗ data . matrix ( probs )%∗%t ( data . matrix ( probs ) )

32 diag ( c r o s s p r i c e ) <− e l a s t i c i t i e s
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