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Abstract
This research investigates forecasting Short Life Cycle Product demand with a fuzzy cluster-
ing approach. The forecasting methods from Basallo-Triana, Rodríguez-Sarasty, and Benitez-
Restrepo (2017) are verified in this research. In their framework, fuzzy clustering is used to
identify clusters of analogous sales profiles. A predictive model – Multiple Linear Regression
(MLR) – is then trained on each cluster. They then assign a new product to a cluster, after which
it follows that specific model for prediction.

In verifying their methods, we provide proof that the use of the distance measure from Frigui
and Krishnapuram (1999) does not minimise the fuzzy clustering cost function. Therefore,
the original Gustafson-Kessel algorithm is implemented in this research (Gustafson & Kessel,
1979). Actual sales from a Dutch e-commerce retailer is then predicted with MLR. Forecasts
are attempted to be improved with Multivariate Adaptive Regression Splines (MARS), log-
transformations and a weighted forecast. The latter incorporates the fuzzy clustering approach,
in which a new product is assigned to a weighted combination of all identified clusters.

In terms of Root Mean Squared Error (RMSE) of out-of-sample forecasts, it is shown that
analogue-based forecasting with MLR beats a simple naive benchmark. However, a first in-
dication on MARS show no substantial improvement compared to MLR, while it does provide
a great extra computational burden. Moreover, clustering performance seems to limit model
performance, resulting in poor overall forecasting performance.
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Chapter 1

Introduction
Short Life-Cycle Products (SLCP) are increasingly common within the online retail industry;
life cycles of only months are not remarkable within e.g. fashion and electronics industries.
Accurate demand forecasts are necessary both for preventing obsolete stock and meeting high
consumer demands. Moreover, forecasting insights can lead to better operational decisions in
order to influence sales when desired.

1.1 Analogue Based Forecasting with Fuzzy Clustering

In recent research, Basallo-Triana et al. (2017) propose to use fuzzy clustering to identify clus-
ters of analogous products, in the sense that they have comparable sales profiles over a short
period of time. A predictive model is trained for each of these identified clusters, incorporating
clustering uncertainty with fuzzy observation weights. Although not entirely in line with the
fuzzy nature, they then assign a new, out-of-sample product to one cluster and predict its sales
using the corresponding cluster model.

This analogue-based forecasting method is especially relevant for an e-commerce retailer, with
a large assortment that consists of a wide variety of products and many different demand pro-
files. Using clusters of analogous sales profiles, product demand can be predicted over a cross-
section of sales profiles, without needing a lot of historical data of the product itself.

The original fuzzy c-means clustering methods were developed by Dunn (1973) and later im-
proved by Bezdek (1981). Fuzzy clustering is based on the minimisation of a cost function,
which is a weighted sum over the distances between observations and the cluster means. In
the original fuzzy c-means, this measure is the simple Euclidean distance, but Gustafson and
Kessel (1979) transformed this measure involving fuzzy covariance matrices. It has been shown
that this method was especially suited for the identification of hyperplanar clusters.
Basallo-Triana et al. (2017) implement the Gustafson-Kessel (GK) framework, but make use
of a different distance measure as defined by Frigui and Krishnapuram (1999). This Frigui-
Krishnapuram (FK) distance measure originates from Bezdek (1981) and was later modified by
Davé (1990) for line clusters in 2D. Frigui and Krishnapuram (1999) generalised the distance
measure to its current form.

In this research, it is shown that this distance measure is problematic when using it in the
original GK framework. Mathematical arguments for this conclusion are provided by solving
the fuzzy clustering minimisation with the FK distance measure. The result demonstrates that
the use of the FK distance measure does not minimise the fuzzy clustering cost function. There-
fore it does not result in the optimal identification of clusters. This finding is one of the main
contributions of this research.

As the distance measure does not provide well-behaved clustering, the methods and results
of Basallo-Triana et al. (2017) are disputable, moreover due to flawed computational imple-
mentation. Therefore, the original GK distance measure is implemented and the findings of
Basallo-Triana et al. (2017) are verified. Furthermore, an alternative forecasting method is pro-
posed to make fully use of the fuzzy nature of clustering. This method does not assume only
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one cluster for a new product, but uses a fuzzy weighted combination of cluster model predic-
tion.

1.2 Predictive Models: MLR and MARS

Basallo-Triana et al. (2017) use a relatively straightforward Multiple Linear Regression (MLR) as
predictive model for each cluster, including lagged sales as predictor variables. However, this
model has some limitations. First, MLR cannot cope with non-linear dependencies between
sales and any of the predictive variables. Secondly, the model contains no product specific in-
formation such as price (position) and moment of introduction, such that the model will not
provide any operational insights to influence sales when necessary. In this research a model is
investigate that could be suited to overcome these limitations. This model is called Multivari-
ate Adaptive Regression Splines (MARS, J. H. Friedman 1991).

MARS is proven to be successful in forecasting sales and can be used to identify key opera-
tional decision variables instead of using time series data (Lu, Lee, & Lian, 2012). Opposed
to MLR, MARS is able to capture non-linear dependencies between sales and descriptive vari-
ables. MARS basically divides the variable space into sub-intervals for which it performs lin-
ear regression. Hence, a continuous and possibly non-linear relation is found over the entire
variable space. In order to prevent over-fitting, a second stage of the training process uses gen-
eralised cross-validation to reduce complexity of the model.

We compare the MLR and MARS models as predictive models within the fuzzy clustering
framework. As results of Basallo-Triana et al. (2017) are disputable, both models are com-
pared with a simple naive benchmark as well. MLR is shown to improve forecasting slightly
compared to the naive forecast in terms of Root Mean Squared Error of predicted sales. Unfor-
tunately, MARS does not improve forecasting performance.

1.3 Related Work

Many different predictive models have been proposed in the past to forecast SLCP demand.
Besides general forecasting tools – e.g. regression approaches or Box-Jenkins models – the dif-
fusion model from Bass (1969) tries to characterise the specific stages of SLCP demand: product
introduction, maturity and decline. Various extensions of this model have been proposed by
including seasonal effects (Radas & Shugan, 1998) or decision variables such as price and ad-
vertising (Bass, Krishnan, & Jain, 1994). Although showing relative success in forecasting SLCP
demand, these models have limitations. Model parameters have to be tuned with data, which
is especially scarce in short life cycles. Bayesian updating tries to overcome this restraint as car-
ried out by Zhu and Thonemann (2004). However, the model still assumes life-cycle patterns
that may not be observed for real products with limited sales.

Naturally, non-parametric methods have been proposed as well. These methods include the
use of Artificial Neural Networks (ANN) (Zhang & Qi, 2005) and Support Vector Regressions
(SVR) (Lu, 2014). These data-driven methods have clear advantages over parametric models
as they do not assume any particular sales profiles and are able to capture non-linear effects.
However, these models are prone to over-fitting, models often lack clear interpretation and
performance seems strongly dependent on the specific application and often results.

Other methods using clustering exist as well and also try to identify clusters of demand profiles
within historical sales, e.g. the method of Thomassey and Happiette (2007). In this cold start
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approach, no time series data of new products is necessary for prediction, as classification can
be done by e.g. price, expected lifespan and starting date. Although this model showed rela-
tive success, the research was conducted on specific industries and generalisation is not easily
carried out.

1.4 Research Scope & Structure

The main objective of this research is to verify whether SLCP demand can be predicted by
means of analogue-based forecasting with fuzzy clustering. To this extent, Chapter 3 provides
a detailed description of the fuzzy clustering algorithm. In this chapter it is also proven math-
ematically why the Frigui-Krishnapuram distance measure does not minimise the fuzzy clus-
tering cost function.

Furthermore, it is investigated whether MLR can be used as predictive model for the iden-
tified clusters, and whether it can be improved by using MARS. Both models are defined in
Chapter 4 in respect to this research and the actual one-step-ahead forecasting procedure is
described in this chapter as well. Chapter 5 describes the evaluation procedure and produced
results. The research is concluded with recommendations in Chapter 6.

All empirical results in this research are based on actual sales and offer data from a Dutch
e-commerce retailer. To this extent, the following Chapter 2 describes the data acquisition,
clean-up procedure and its characteristics.
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Chapter 2

Data
The data used for this research are based on actual offer and sales data from a Dutch e-commerce
retailer. The data are retrieved for products within the electronics and entertainment sectors.
Products in the data set range from video games to computers and other hardware, mimicking
the actual product assortment. For products with sales starting after 1 January 2016 daily data
is retrieved up to 31 August 2017 - a period of around 80 weeks.

The data consists of time series of 9149 products and combines daily data for the following
observable variables:

• Quantity of daily sales;

• Consumer price (e) of the product. If sales data is available, the daily average of the price
for which the goods are bought is used. For days without any sales a snapshot of the price
is taken at the end of each day at 24:00 hours;

• Price position of the product relative to market. This information is captured in an integer
ranging from 1 - very high price compared to market - to 5 (very low price compared to
market). This value is calculated with benchmark information from other sellers or e.g.
consumer advice price (CAP). If no information is available, a value of zero is assigned to
the specific offer;

• Time information, retrieved as dummy variable for the week number;

• Orderability of the product, as a product can be taken offline and hence not be sold;

• Delivery information, captured in a dummy variable on the minimal delivery time, rang-
ing from 1 to 5.

As the data is prone to manual intervention it is necessary to clean-up data by e.g. filling in
gaps of data. Also, to be able to use the data for clustering, normalisation is carried out. This
process is carried out in the following steps:

• Missing days of data are filled in by substituting previous day data, given the fact that
products were actually online and orderable;

• The first day of sales for every product is normalised so that all sales profiles start on the
same fictive time unit. Of course, dummy information on time remains;

• Data is aggregated over the longer interval of 7 days, in order to smoothen sales data.
Sales data is summed, the minimum price and delivery information are stored and the
maximum value for price position is used. Aslo, the percentage of the interval for which
the product was online is also used, e.g. ∼14% if a product was only orderable for only 1
out of 7 days;

• Only products are taken into account with total sales over the sample period between 20
and 2000 units. With a very large assortment, the majority of the products have few sales,
as can be seen in Figure 2.1. Products with too few sales are taken out, because this would
allow for many zero sales profiles within the data, reducing computation speed greatly.
Products with high sales are taken out as well, to prevent too many outliers within the
data. Besides, these products are generally monitored often and an expert view can cope
with the forecasts. Figure 2.1 shows the distribution of products over the sales within
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the sample period. Especially from Figure 2.1b it can be observed that most density lies
within products with few sales. For example, by only taking into account products with
500 sales or less, over 80% of the data set is covered.
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FIGURE 2.1: Distribution info of the data set with respect to total sales. Figure (a)
contains a histogram showing how many products have a specific range of total
sales. Figure (b) shows a cumulative density, indicating how many products (%)

have total sales equal or less than a specfic amount.

2.1 Autocorrelation in Sales

Basallo-Triana et al. (2017) use lagged sales as predictor variables in MLR. They show substan-
tial autocorrelation in their data, which provides an extra argument to use lagged sales in their
model.

For the data set, highly fluctuating autocorrelation is observed for the various products within
the selection. Sample autocorrelation for two illustrative products is given in Table 2.1, demon-
strating fluctuating autocorrelations between two products with high sales. This heterogeneity
in autocorrelation across the product selection can make it cumbersome to provide a single
predictive model for the entire product selection. This provides extra support for clustering of
sales profiles and modelling each cluster independently; differences in explanatory power of
the variables need different models to forecast sales accurately. A second observation is that
autocorrelation can be very low, which is even worse for products with very few sales. This
indicates it can be useful to look into other explanatory variables besides lagged sales.

TABLE 2.1: For two illustrative products, the sample auto-correlation within four-
day interval sales is shown. Up to five lags are taken into account.

Product ρ1 ρ2 ρ3 ρ4 ρ5

Fantastic Beasts and Where to Find Them 0.84 0.72 0.59 0.51 0.41
Sony Action-Cam HDR-AS50 0.29 0.28 0.17 0.11 0.22
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Chapter 3

Fuzzy Clustering
This section provides a detailed description of the fuzzy clustering algorithm as used in this
research. In this approach, the methods of Basallo-Triana et al. (2017) are not followed. In
their clustering effort, they make use of the FK distance measure defined by Frigui and Krish-
napuram (1999). In this chapter, mathematical proof is given that this distance measure does
not minimise the fuzzy clustering cost function, and thus the methods of Basallo-Triana et al.
(2017) are incorrect. Before describing this result, the general fuzzy clustering problem defini-
tion is provided. This problem is then solved for the Gustafson-Kessel (GK) distance measure
(Gustafson & Kessel, 1979), which is used throughout this research.

3.1 General Framework

Fuzzy clustering is used to find clusters of analogous sales profiles for each time t. Predictive
models can then be trained to suit the specific cluster of analogies. Opposed to hard cluster-
ing, an observation can belong to multiple clusters simultaneously and thus can mitigate bias
imposed by hard clustering. The general framework of Bezdek, Ehrlich, and Full (1984) is
demonstrated, including the distance measure of Gustafson and Kessel (1979). Notation and
computational implementation are based on the work of Theodoridis and Koutroumbas (2008).

On each time instance t, the data consists of N observation vectors xi. Each vector contains
a short sales profile based on ` = p + 1 time periods, with p indicating the number of lags
included. This results in observation vectors xi = (yi,t−p, . . . , yi,t), where yi,t denotes the sales
of product i on time t. The observations, collected in the N × ` matrix X, are clustered towards
K clusters. In fuzzy clustering, any observation vector xi (i = 1 . . . N) belongs to some extent
to any of the clusters k = 1 . . . K, which is captured by the grade of membership uik ∈ [0, 1].
In general, a cluster is characterised by a point representation (cluster centre or centroid) ck,
which has the same dimensions as the observation vectors.

The elements uik of the N × K matrix U, and values of ck of the K × ` matrix C are found
by minimising the following cost function with respect to all its variables (Bezdek et al., 1984;
Theodoridis & Koutroumbas, 2008):

Jq(U, C) =
N

∑
i=1

K

∑
k=1

uq
ik d2(xi, ck),

s.t.
K

∑
k=1

uik = 1, uik ≥ 0. (3.1)

For this cost function, one must specify the value of q(≥ 1), which is called the fuzzifier. This
fuzzifier impact the extent to which the clustering is fuzzy. In the limit q→ 1, the values of uik
will converge to either 0 or 1, implying hard or crisp clustering. For the limit q → ∞, no clus-
tering takes place, i.e. all observations will belong to one cluster. For practical use this value is
often set to q = 2 in absence of any hard evidence against this choice. In this research ths value
is used as well.
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The cost function of (3.1) uses d2
ik = d2(xi, ck), which is a distance measure between any ob-

servation vector and any of the cluster centroids. All values of d2
ik are contained in the N × K

matrix D. The choice of distance measure naturally influences the solution to the minimisa-
tion. A most simple form of this distance measure would be the use of the Euclidean distance,
resulting in spherical clusters.

First the solution of this mathematical problem is provided for the Gustafson-Kessel (GK) dis-
tance measure. It has been shown that this distance measure performs well for hyperplanar
clusters and is often used in e.g. image line reconstructions. In a similar fashion, it is then
argued why the methods of Basallo-Triana et al. (2017) are incorrect, since it is proven math-
ematically that the use of their FK distance measure (Frigui & Krishnapuram, 1999) does not
minimise (3.1).

3.2 Gustafson-Kessel Distance Measure and Solution

Gustafson and Kessel (1979) use the following general distance measure:

d2
GK(xi, Ak, ck) = (xi − ck)

′Ak(xi − ck), (3.2)

in which Ak is a symmetrical and positive definite matrix of dimensions ` × `, similar to the
length of the vectors xi and ck. As the cost function from (3.1) is linear in Ak, minimising with
respect to Ak is meaningless, as it would result in Ak = 0. Gustafson and Kessel (1979) solve
this problem by adding an extra constraint:

|Ak| = ρk, ρk > 0, (3.3)

which implies a volume constraint. Gustafson and Kessel (1979) propose to set ρk = 1, which
is also used in this research.

The values for U, ck and Ak are found by minimising a Lagrangian based on (3.1) and the
constraint from (3.3). This derivation can be found in Appendix A and results in the following
solution of uik, ck and Ak:

uik =
d2(xi, ck)

−1/q−1

∑K
l=1 d2(xi, cl)−1/q−1

(3.4a)

ck =
∑N

i=1 uq
ikxi

∑N
i=1 uq

ik

(3.4b)

Ak = [ρk|Fk|]1/` F−1
k , (3.4c)

in which the fuzzy covariance matrix Fk is defined as

Fk =
∑N

i=1 uq
ik(xi − ck)(xi − ck)

′

∑N
i=1 uq

ik

. (3.4d)

With this result, every cluster is characterised by its centroid ck and a weighted covariance
matrix Fk. It can be observed that the distance measure is normalised by this fuzzy covari-
ance matrix, allowing clusters to vary in shape. This behaviour can be observed in Figure 3.1,
in which a heat map and contour plot of two different distance measures d2(xi, 0) is plotted.
These plots show the value of the distance measure for two possible 2D clusters with centroids
at (0, 0). In Figure 3.1a a fuzzy covariance matrix FA = (1 0; 0 1) is used for the cluster, while
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Figure 3.1b shows the distance measure of a cluster with FB = (0.25 0.0625; 0.0625 0.0625).

With equations (3.2) and (3.4c) the resulting transformed distance measures is calculated. It
can be observed that unity matrix FA results in the Euclidean distance. However, FB results in
a transformed distance measure, such that observations are penalised less if they are close to
the shape and direction of the cluster covariance matrix. Therefore, the inclusion of the fuzzy
cluster covariance matrix allows for variations in shape and direction of the clusters.
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FIGURE 3.1: Heat map and contour plot of distance measure from (3.2) for 2D
examples with cluster centres at (0, 0), calculated for a 2D grid of possible obser-
vation vectors. Two matrices Ak are used: (a) unity matrix for Euclidean distance

and (b) transformed matrix.

3.3 Computational Implementation

Since the updates in (3.4) are coupled, an iterative algorithm is necessary for their solutions.
Algorithm 1 shows the GK algorithm, an adaptation of the Generalised Fuzzy Algorithmic
Scheme (GFAS) from Theodoridis and Koutroumbas (2008) that is used to solve for the param-
eters numerically.

This algorithm can be computationally challenging, especially in computing the determinant
and inverse of the covariance matrix in (3.4c). Fk might not be positive definite, i.e. |Fk| ≤ 0. If
this is the case,the matrix cannot be inverted and taking the `-th root of the determinant is not
possible. One of the possible causes for this problem is that there are few observations within
a cluster or that they are co-linear, causing the rank of the matrix to be smaller than its dimen-
sions.

We follow Babuska, Van der Veen, and Kaymak (2002) to improve covariance estimation in
(3.4d). They propose adding a scaled identity matrix to the fuzzy covariance matrix in each
iteration of Algorithm 1:

Fnew
k = γFk + (1− γ)|F0|1/`I`,
F0 = cov(X), (3.5)
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as well as bounding the eigenvalues of the new matrix Fnew
k = EkΛE′k:

λk,l = λk,max/β ∀l for which λk,max/λk,l > β,
λk,max = max

l=1...`
λk,l . (3.6)

The necessary tuning parameters β and γ are set to 1015 and 10−5 respectively. In practice, these
adjustments cause the covariance matrix to be positive definite. Babuska et al. (2002) show the
altered algorithm still converges monotonically, with only minor accuracy losses. It should be
noted that another possible solution for the inversion of singular matrices would be to use the
Moore-Penrose pseudo-inverse. However, while this allows one to invert Fk, it is observed
that the algorithm does not converges monotonically. An example of this behaviour can be
observed in Appendix B. Hence, this solution is not pursued in this research.

A second drawback of the fuzzy clustering algorithm is convergence to a local minimum.
Bezdek and Hathaway (1992) show that these type of algorithms do converge to a local mini-
mum, but the first guess of U can alter the local minimum to which the algorithm converges. To
overcome this problem, random initialisation of U can be repeated, which may provide more
confidence of having found an optimal solution of the fuzzy clustering.

Algorithm 1 Gustafson-Kessel (GK) algorithm for fuzzy clustering

Set τ ← 0.

Choose an initial random estimate for Uτ, such that the constraint of (3.1) holds.

With the values of Uτ, calculate Dτ, Cτ, Aτ
k and Fτ

k using (3.2) and (3.4b) - (3.4d) respectively.

while max
i,k

∣∣∣uτ
ik − uτ−1

ik

∣∣∣ < ε do

Set τ ← τ + 1

Update grades of membership:
Calculate Uτ using (3.4a) with Dτ−1.

Calculate parameters:
Calculate Cτ using (3.4b) with Uτ.
Calculate Fτ

k using (3.4d). This matrix is updated for robustness using (3.5, 3.6)
Calculate Aτ

k using (3.4c) with Fτ
k .

Calculate Dτ using (3.2) with Uτ, Cτ and Aτ
k .

end while

3.4 Improper Frigui-Krishnapuram Distance Measure

Basallo-Triana et al. (2017) do not use the GK distance measure from (3.2). They use the FK
distance measure which was originally defined by Bezdek (1981). Davé (1990) modified the
definition for 2D clusters and Frigui and Krishnapuram (1999) finally generalised this distance
measure to more dimensions. This distance measure uses a decomposition of the fuzzy co-
variance matrix Fk = EkΛkE′k from (3.4d). The matrix Λk contains the eigenvalues of Fk on
its diagonals in descending order. The eigenvector matrix Ek is ordered correspondingly as
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follows:

Ek =
(
ek,1 . . . ek,`

)
, Λk =

λk,1 . . . 0
...

. . .
...

0 . . . λk,`

 . (3.7)

The Frigui-Krishnapuram (FK) distance measure is then defined as follows:

d2
FK(xi, ck) = λk,1(xi − ck)

′EkΛ−1
k E′k(xi − ck). (3.8)

The distance measure is quite similar to the GK distance measure, but it is scaled by the largest
eigenvalue of Fk. With this FK distance measure Frigui and Krishnapuram (1999) – and Basallo-
Triana et al. (2017) all the same – use (3.4a), (3.4b) and (3.4d) as solution to the minimisation
problem, exactly similar to Gustafson and Kessel (1979). Strictly speaking however, the original
solution as presented above does not minimise the cost function from (3.1) when using the
distance measure of Frigui and Krishnapuram (1999).

3.4.1 Framework of Minimisation with FK Distance Measure

In order to proof the FK distance measure cannot be used to minimise (3.1) and hence the
methods of Basallo-Triana et al. (2017) are erroneous, an exact solution to the fuzzy clustering
minimisation of (3.1) is provided with a distance measure in the form of (3.8). To this extent
(3.8) is generalised:

d2
G(xi, ck) = (xi − ck)

′EkΓ−1
k E′k(xi − ck). (3.9)

This general form is matched to the FK distance measure, in the sense that similar constraints
are assumed on the form and values of Ek and Γk. Ek is therefore defined as a general ` × `
matrix, but with the constraint that E′kEk = I`. The diagonal `× ` matrix Γk is defined as:

Γk =

γk,1 . . . 0
...

. . .
...

0 . . . γk,`

 ,

{
γk,l = 1, l = 1
0 < γk,l ≤ 1 l = 2 . . . `

(3.10)

With the extra constraints, d2
G attains a similar range of possible values as the FK distance mea-

sure. If the FK distance measure were to be correct, the values of Ek and Γk that minimise (3.1)
should result in values such that d2

G = d2
FK. The values of U and C are not explicitly calculated

here. Following the derivation of Appendix A, it can be easily shown that both d2
FK and d2

G
result in the same solutions (3.4a) and (3.4b) for these values.

For the solution of Ek and Γk, d2
G is substituted into (3.1). Since only a minimisation with respect

to Ek and Γk is of interest, only relevant terms are collected, assuming all other terms remain
constant. This results in the following altered cost function:

J(Ek, Γk) =
N

∑
i=1

uq
ik(xi − ck)

′EkΓ−1
k E′k(xi − ck). (3.11)

3.4.2 Derivation of Minimisation

To solve the minimisation with respect to Ek, first (3.11) is rewritten. Since the resulting value
of the cost function in (3.11) is a scalar, a trace operator can be applied without changing its
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value. This trace operator allows rearranging the terms cyclically (Petersen & Pedersen, 2012):

J(Ek, Γk) = Tr

[
N

∑
i=1

uq
ik(xi − ck)

′EkΓ−1
k E′k(xi − ck)

]

= Tr

[
E′k

N

∑
i=1

uq
ik(xi − ck)(xi − ck)

′EkΓ−1
k

]
= Tr

[
E′kGkEkΓ−1

k

]
. (3.12)

Here, Gk = ∑N
i=1 uq

ik(xi − ck)(xi − ck)
′, similar to Appendix A.

Applying the trace operator to the cost function allows us to use Kristof’s upper bound for trace
functions (Kristof, 1969). Following this theorem, it is possible to find the values of Ek, without
the need of solving a Lagrangian.

The theorem of Kristof (1969) and its generalisation by Ten Berge (1983) states the following.
Define Ci to be ` × ` orthonormal matrices and Di to be ` × ` diagonal matrices, with its di-
agonal elements in weakly descending order and i = 1, . . . , n. It is proven that limits can be
attained for

Tr [C1Di · · · CnDn] ≤ Tr [D1 · · ·Dn] . (3.13)

This theorem is not directly applicable to (3.12) for two reasons. First, the theorem finds an
upper bound for trace functions while in this case a minimisation is required. Hence, the sign of
the trace function is changed and maximisation can be performed. Secondly, Gk is not diagonal
in structure. However, it is assumed an eigenvalue decomposition of Gk exists. Since Gk is
symmetric by definition this results in Gk = KkΘkK′k. The column vectors of Kk and diagonal
elements of Θk are arranged in descending order of the eigenvalue. Multiplying (3.12) by minus
one and substituting the eigenvalue decomposition results in:

J̃(Ek, Γk) = Tr
[
−E′kKkΘkK′kEkΓ−1

k

]
(3.14)

From their definitions, both Ek and Kk are orthonormal and the product of the two matrices is
also orthonormal (Ten Berge, 1983). Now it is possible to use Kristof’s theorem and the limits
for

Tr
[
−E′kKkΘkK′kEkΓ−1

k

]
≥ Tr

[
−ΘkΓ−1

k

]
(3.15)

are attained if both E′kKk and K′kEk are equal to I`. From its definition it is known that K′kKk =
I`. Hence, limits of this trace function are attained if Ek = Kk.

This implies that Ek can be retrieved with the eigenvalue decomposition of Gk. It can be easily
verified that this is the same as retrieving the eigenvalue decomposition of the fuzzy covari-
ance matrix Fk, defined in (3.4d). Hence, the matrix Ek that minimises the fuzzy clustering cost
function is found by the eigenvalue decomposition of Fk = EkΛkE′k. This is actually similar to
the FK distance measure.

However, the solution of Γk is different from Frigui and Krishnapuram (1999). From (3.11)
and the diagonal structure of Γk, it can be observed that the cost function is linear in each diag-
onal element γ−1

k,l . This implies (3.11) is minimised if all individual γ−1
k,l are at their minimum.

The constraints from (3.10) show that each element γk,l is bounded between 0 and 1, which
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imply that the range of each γ−1
k,l is given by 1 ≤ γ−1

k,l < ∞. The first element γk,1 is just a special
case of this argument and its value is already fixed at 1.
Hence, it is observed that Γk = I` minimises the fuzzy clustering cost function.

3.4.3 Solution to FK Distance Measure

Substituting the solutions for Γk and Ek into (3.9) it is observed that the distance measure re-
duces to:

d2
G(xi, ck) = (xi − ck)

′EkΓ−1
k E′k(xi − ck)

= (xi − ck)
′EkI`E′k(xi − ck)

= (xi − ck)
′(xi − ck). (3.16)

This is the regular Euclidean distance between an observation and a cluster centroid. Since
this is definitely not equal to (3.8), it is proven that the FK distance measure does not minimise
the fuzzy clustering cost function. In practice this can e.g. lead to a non decreasing and non
converging cost function (3.1) over the iterations of the algorithm.

In this research, the FK distance measure is not used in the clustering algorithm like Basallo-
Triana et al. (2017). Instead, the original GK algorithm is implemented.

3.4.4 Alternative Distance Measure as Adaptive Fuzzy Clustering

Although it is proven that the methods of Frigui and Krishnapuram (1999) are problematic,
they provide some extra intuition and reasoning as to why they use the FK distance measure.
To this extent, they compare the GK and FK distance measures, since both measures should be
equal if they result in the same solution.

Substituting the definition of Ak from (3.4c) into the general distance measure of (3.2) results
in:

d2
GK(xi, ck) = [ρk|Fk|]1/` (xi − ck)

′F−1
k (xi − ci). (3.17)

This expression is comparable to (3.8), by using the eigenvalue decomposition F−1
k = EkΛ−1

k E′k.
If both distance measures result in the same solution, this imposes:

ρk =
λ`

k,1

|Fk|
(3.18)

Strictly this is not a valid relation for ρk, since the problem as defined by Gustafson and Kessel
(1979) require a predefined, fixed value for ρk in (3.3). For the distance measure d2

FK, however,
this value is revised in every iteration of Algorithm 1, hoping that it improves the initial esti-
mate of ρk. Hence, the FK distance measure can be seen as an adaptive clustering algorithm.
Although its experimental performance is demonstrated in several papers, e.g. the paper of
(Davé, 1990), it is proven here that this distance measure does not minimise the fuzzy cluster-
ing cost function. Hence, the original GK distance measure is used in the clustering effort of
this research.
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Chapter 4

Forecasting Models
Clusters of historical sales profiles can be identified using Algorithm 1 on each time instance
t− 1. For each of these clusters, a predictive model is trained. To forecast the sales of a new
product at time t, denoted by ŷi,t, this product is first assigned to one of the clusters using a
minimum distance criteria. Its sales can then be predicted using the trained model of the re-
spective cluster.

In this research, two predictive models are investigated: Multiple Linear Regression (MLR)
and Multivariate Adaptive Regression Splines (MARS). This section first provides a descrip-
tion of both models. Second, the forecasting procedure is described to predict sales of new
products using historical sales.

4.1 Multiple Linear Regression

Basallo-Triana et al. (2017) suggested to use fairly straightforward Multiple Linear Regression
(MLR) to forecast sales yt, using p lagged sales as predictive variables. This choice is backed up
by significant autocovariance within the sales series used in their research. This autoregressive
regression can be considered cross-sectional and is given as follows:

yt = Btwt + εt, (4.1)

where yt contains the sales of all products at time t, w is the parameter vector and Bt contains
the observation vectors of lagged sales preceded by ones to incorporate an intercept. These
matrices are thus build up as follows:

wt =

wt
0

...
wt

p

 , Bt =

1 y1,t−1 . . . y1,t−p
...

...
. . .

...
1 yN,t−1 . . . yN,t−p

 . (4.2)

It can be easily verified that yt and Bt are build up from the matrix Xt, which is the observa-
tion matrix from Section 3. Such a linear regression model is solved by minimising the sum of
squared errors (yt − Btwt)

′ (yt − Btwt) with respect to wt.

Equation (4.1) would hold if this model is trained on all products with equal weights. How-
ever, this model is trained for each cluster, using grades of membership as observation weights.
This means the weighted sum of squared errors is minimised for every clustermodel k:

min
wk

t

(
yt − Btwk

t

)′
diag(uk

t )
(

yt − Btwk
t

)
, (4.3)

where diag(uk
t ) is the diagonalization of column k of Ut. This minimisation results in the

weighted least squares estimator for wk
t (J. Friedman et al., 2001)

ŵk
t =

(
B′t diag(uk

t ) Bt

)−1
B′t diag(uk

t ) yt, (4.4)
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In this weighted multiple linear regression, the grades of membership are used that each obser-
vation has towards a cluster k. This info is contained in the weight matrix Uk

t = diag(u1k, . . . , uNk).
It should be noted that this weighted least squares can also be accomplished by multiplying

both the sales vector yt and observation matrix Bt by Uk
t

1/2
, with Uk

t = (Uk
t

1/2
)′(Uk

t
1/2

), and
performing a standard linear regression. It can be easily verified that this yields the same result
as equation (4.4).

In the MLR model of Basallo-Triana et al. (2017) only lagged sales are used as explanatory
variable. However, it surely is possible to perform MLR with other predictive variables as well
(e.g. price position). Both the parameter vector wk

t and observation matrix Bt are then extended
to incorporate these variables.

4.2 MARS

MLR is only capable of handling linear relationships between sales and any of its predictive
variables. MARS, however, can be used to approximate non-linear dependencies by means of
piece-wise linear regressions. Following J. Friedman et al. (2001), the general MARS function
of sales y as function of variables B is given by:

y(B) = w0 +
S

∑
s=1

wshs(B),

h0(B) = 1. (4.5)

In this model, hs(B) is a function from C, which is a set of of piece-wise linear basis functions
that can be considered as linear splines and are denoted here as reflected pairs:

C =
{
(Bj − bij)+, (bij − Bj)+

}
, i=1,...,N

j=1,...,J . (4.6)

In this function, bij denotes the location of the knot, which is one of the observations in the
matrix of predictors Bt. Bj denotes the parameter space of one variable j from the entire pa-
rameter space B. The set C contains up to 2NJ basis functions; from this set, hs(B) can be any
of the basis functions or a product of two or more of these functions. Given the choice for all
functions hs(B) in equation 4.5, the corresponding coefficients ws are estimated by minimising
the residual sum of squared errors (RSS).

In this effort, it is also possible to incorporate observation weights like in the MLR model.
As explained with (4.4), observation weights can be incorporated by multiplying observation
and sales vector with the diagonal weight matrix (Uk

l )
1/2. Since MARS essentially minimises

RSS, this approach still holds and although used in this research, it is not written down for
clarity.

The MARS procedure is all about optimising the construction of hs(B) from basis functions
from C. This is done in two stages:

1. Forward Building
Starting from the first basis function h0(B) = 1, each iteration adds a reflected pair from
the set C to the model. All possible products of functions hs() - existing in the model
already - with one of these reflected pairs are considered, resulting in a term of the form:

ŵ1hs(B) · (Bj − bij)+ + ŵ2hs(B) · (bij − Bj)+. (4.7)
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The weightings ws from equation (4.5) are estimated by least squares. Only one term is
actually added to the model, which is the one that results in the greatest decrease in RSS.
The forward building procedure is carried out until a preset maximum number of terms
is reached or the relative change in RSS becomes smaller than a preset value.

Two restrictions are imposed in this stage of the MARS procedure. First, no term is al-
lowed to be multiplied by itself, preventing higher order splines. Second, the model can be
made additive by excluding multiplications of basis functions. These restrictions improve
speed and stability, since a lot of possible combinations do not have to be examined.

2. Backward Deletion
The first stage typically overfits the data and a backward removal procedure is necessary
to decrease the complexity of the model. This decrease in complexity makes the model
more generalised, and probably better suitable for out-of-sample forecasts. With every
step in this procedure, the term that increases the RSS least is removed, resulting in an
optimal model ŷα with α terms in it. Although RSS increases, the complexity of the model
decreases. The following ’generalised cross validation’ criterion includes both RSS and
model complexity and is optimised to find the best α:

GCV(α) =
∑N

i=1(yi − ŷα(bi))
2

(1−M(α)/N)2 . (4.8)

M(α) can be seen as the effective number of parameters used in the model and it accounts
for the number of terms as well as the number of parameters used in selecting the optimal
positions of the knots. Following J. Friedman et al. (2001) M(α) = r + cκ, where r equals
the number of linearly independent basis functions, κ equals the number of knots selected
and c is typically set to 3. It should be noted that it is also possible to use ordinary cross-
validation. However, this is very time consuming and preferably uses a lot of training
data. The GCV criterion approximates and simplifies this procedure.

Similar to the MLR model the MARS model is trained for each cluster k. As MARS makes
use of least-squares, it is also possible to incorporate the fuzzy nature of clustering by means
of response weights. As with MLR, all data can be taken into account when performing the
MARS procedure and use the observations’ membership degrees from Uk

t as weights in the
least-squares minimisation of the MARS routine for cluster k. This is done by premultiplying
the observations and sales by the weight matrix (Uk

l )
1/2 as explained before.

Readily available R-packages can be used in the computational implementation, such as the
mda-package (Hastie, Tibshirani, Leisch, Hornik, & Ripley, 2016). Results in this research are
obtained with the earth-package (Milborrow, 2017), which allows observations weights op-
posed to the mda-package.

4.3 Log-transformed models

Both MLR and MARS seek (semi-)linear relations between sales and its predictor variables and
build up an additive model. Studies have shown that sales forecasting can also be done us-
ing multiplicative models (Kim, Blattberg, & Rossi, 1995). The sales-price dependency – price
elasticity – is a well-known example. A multiplicative model can be achieved by transforming
sales and its predictive variables by taking logs, and using least squares afterwards. In search
of the best forecast, it is therefore investigated whether log-transforms of both MLR and MARS
models increase forecasting performance.
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Performing a log-linear regression naturally values errors differently than a normal linear re-
gression. With a log-linear regression the ratio between the predicted sales and actual sales is
used as error, since log ŷi,t − log yi,t = log(ŷi,t/yi,t). This implies that high absolute differences
in sales are penalised relatively less compared to lower absolute differences.

Transforming sales has some practical implications. First, it means clustering needs to be car-
ried out with log transformed data as well. This is because the fuzzy clustering distance mea-
sure is used in the forecasting procedure, as will be explained in section 4.4. Second, the data
contains observations with zero sales, which cannot be transformed directly. One possibility
is to set zero sales to a small non-zero value. However, the choice on this non-zero value will
influence the forecasting heavily. Therefore, logs are taken after adding 1 to each observation
in Xt.

For MLR, this transformation results in a similar regression as (4.1):

log(yt + 1) = ỹt = B̃tw̃t + ε̃t, (4.9)

B̃t =

1 log(y1,t−1 + 1) . . . log(y1,t−p + 1)
...

...
. . .

...
1 log(yN,t−1 + 1) . . . log(yN,t−p + 1)

 .

This regression can be used to forecast a product’s transformed sales log(ŷi,t + 1), by calculating
its expected value E[log(ŷi,t + 1)] = E[ỹi,t] = b̃′i,tw̃t. However, actual sales are of interest for
practical use. This back-transformation involves the following:

E[ŷi,t] = E[exp(ỹi,t)− 1]

= E[exp(b̃′i,tw̃t + ε̃t)]− 1

= exp(b̃′i,tw̃t)E[exp(ε̃t)]− 1

It is important to realise the expectation of the exponent of ε̃t is not necessarily equal to the
exponent of the expectation as a result of Jensen’s inequality. The value of the actual expected
sales is approximated by the ’smearing’ estimate (Duan, 1983). The extra term in this estimate is
the average of the exponential residuals from the regression in (4.9) and proxies the inequality.
This method is the same for MARS.

E[ŷi,t] = exp(b̃′i,tw̃t)

(
1
N

N

∑
j=1

exp εj,t

)
− 1. (4.10)

4.4 Forecasting New Product Sales

Combining the fuzzy clustering algorithm and model specifications leads to the following fore-
casting procedure for new product sales ŷi,t. To verify the methods of Basallo-Triana et al.
(2017), the results of this research are mainly based on their procedure:

1. For the set of historical sales Xt, fuzzy clustering with Algorithm 1 yields K clusters;

2. For each cluster k a forecasting model is estimated using sales yt, observations matrix Bt

and membership grades Uk
t ;

3. At time t only observation information is available for a new product i, contained in bi,t.
With this observation vector new sales is predicted using all cluster models, resulting in
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K forecasts ŷk
i,t. This forecast is added to its lagged sales and yields the vectors x̂k

i,t =

(yi,t−p, . . . , yi,t−1, ŷk
i,t);

4. For each x̂k
i,t the distance measure to its cluster d2

GK(x̂
k
i,t, ck) is computed using (3.2);

5. The forecast ŷi,t that yields the smallest value for the distance measure is used as actual
forecast, i.e. we choose to follow cluster k̂ = arg mink d2

GK(x̂
k
i,t, ck).

Alternative Forecasting Procedure

It might seem counter intuitive that this procedure only incorporates one forecasting model
in the last step, while fuzzy clustering should allow for model uncertainty using membership
grades. In order make fully use of the fuzzy clustering approach, an alteration of this procedure
is proposed that replaces step 5 in the forecasting procedure:

5.* Substituting the values of d2
GK(x̂

k
i,t, ck) into (3.4a) result in fuzzy weights uik.

6.* The forecast of a new product is then calculated as the fuzzy weighted average of all
individual forecasts ŷk

i,t:

ŷi,t =
K

∑
k=1

uikŷk
i,t (4.11)

Note that this approach slightly abuses the original (3.4a), since this is normally used for calcu-
lating membership grades of a single observation to each cluster. However, since the value of
yi,t is not known in the forecasting effort, it is simply not possible to compute the actual mem-
bership grade of a single observation to each cluster. For this same reason, Basallo-Triana et al.
(2017) choose a cluster instead of performing a weighted forecast. It can be argued that their
procedure does not exploit the full benefits of fuzzy clustering and other clustering approaches
could be used as well.

Still, the calculated distance measures carry information on the uncertainty of the individual
forecasts. A forecast ŷk

i,t with a relative low distance d2
GK(x̂

k
i,t, ck) to the corresponding cluster

can be considered relatively certain compared to a forecast with a relatively high distance. Us-
ing (3.4a) allows for incorporating this uncertainty by calculating the weights in a fuzzy way.
It is easily verified the weights sum to a value of 1.
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Chapter 5

Results
Since the methods of Basallo-Triana et al. (2017) are flawed due to the incorrect FK distance
measure and erroneous implementation, their forecasting framework is verified while imple-
menting the GK distance measure in the clustering algorithm. In this section the results on
forecasting performance are provided and compared to a simple benchmark. Furthermore, it
is investigated whether forecasting improves when using MARS instead of MLR or when per-
forming a log-transformation.

First, the evaluation framework and definition of the performance measure is provided. This
section then provides results on the following aspects:

1. Tuning clustering and model parameters;

2. Performance of MLR and MARS;

3. Adding more descriptive variables to MARS;

5.1 Evaluation Procedure

The entire forecasting procedure as described in Section 4.4 can be carried out at each time
instance t = 1, . . . , T, excluding some extra lagged sales used as first variables. In order to
provide out-of-sample measurements, the entire data set Xt is divided into a historical training
set and an out-of-sample test set. These sets are denoted by X(H)

t with N(H) observations and
X(T)

t with N(T) respectively. The sets are divided randomly with a ratio N(H)/N(T) of 80/20.
This division is carried out at each time instance t, to flatten out the effect of outliers and make
results more stable.

At each time instance, clustering is performed on X(H)
t and build predictive models for each

cluster using the resulting clustering weights. The set X(T)
t is then used to retrieve N(T) fore-

casts, which are compared to the actual sales. In total, N(T) × T forecasts can be compared to
their actual sales. These differences are aggregated in the Root Mean Squared Error (RMSE),
which is used as performace measure:

RMSE =

√√√√ 1
N(T)

1
T

N(T)

∑
i=1

T

∑
t=1

(ŷi,t − yi,t)
2 (5.1)
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This measure is absolute, in the sense that it has the same dimensions as the actual sales. To
provide a more intuitive measure, the dimensionless relative RMSE is used as well. This com-
putes the error in proportion to the sales:

RMSEr =

√√√√ 1
N(T)

1
T

N(T)

∑
i=1

T

∑
t=1

(
ŷi,t − yi,t

ȳt

)2

, (5.2)

ȳt =
1

N(T)

N(T)

∑
i=1

yi,t

5.1.1 Benchmarking RMSE

All results in this chapter, including tuning parameters and comparing models, are based on
forecasting performance in the form of the (relative) RMSE. In order to put the RMSE of various
settings and models into perspective, the results are bench-marked to a naive forecast, which
uses last period’s sales as forecast for current sales. This benchmark does therefore not rely on
clustering:

ŷi,t = yi,t−1 (5.3)

Besides putting actual forecasting performance into perspective, the naive benchmark also
plays an important role in comparing various models and settings. The setting or model that
decreases RMSE most compared to the naive forecast can then be seen as best performing. This
way, it is still possible to compare various settings and models.

5.1.2 Notes on RMSE

Some notes on the error measure are in place. First of all, the forecasts are continuous while
one can only order a discrete amount of products. The error measure can be adjusted to take
this into account by simply rounding the sales forecast to its nearest integer. However, due to
the large data set rounding is of little influence on the RMSE.

Secondly, erroneous forecasts may average out in practice due to changes in product stock
level. For example, if the forecast of a product is too high at time t and extra stock is added,
but is too low at time t + 1, the forecasting errors had almost no impact. Using this logic, the
current error measure – whether or not with rounded forecasts – would probably be biased
upwards. The solution to this problem lies in the forecasting procedure, which would need to
integrate stock and sourcing information.

Third, it can be justified to favour negative forecast errors opposed to positive errors. This
is related to the costs associated with these errors; negative errors can possibly lead to missed
profit, while positive errors can lead to obsolete stock due to bad sourcing. If this is the case,
the error should be adjusted into an asymmetrical error function. However, this also means
the model of choice should be able to handle this as well. This is not within the scope of this
research.

Finally, the quantity of products sold is used as variable of interest and measure performance
based on this quantity. However, an erroneous forecast has in practice more impact for high-
value items. Therefore, it would make sense to adjust the error to nominal sales (e) and alter
forecasting models similarly. This is also not within the scope of this research.
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5.2 Tuning Clustering and Model Parameters

In order to provide definite results on forecasting performance of all models and settings, it
is necessary to tune clustering and model parameters. This includes the amount of clusters
K and the number of lags in the MLR p. It is also observed that the RMSE is greatly affected
by the products within the data set, especially with respect to the total sales of products in
the sample period. All these aspects are optimised using the (relative) RMSE and increase in
forecasting performance compared to the naive benchmark. To limit computation time, not
every combination of these aspects are considered. Choices on parameters are therefore made
on individual behaviour, while keeping other settings constant.

5.2.1 Impact of taking into account highly sold products

In Chapter 2 back-up is provided on the choice of products used in this analysis. However,
it turns out that the total sales of products in the entire sample period impacts the forecasting
accuracy substantially. This behaviour can be observed in Table 5.1. For an increasing upper
bound of total sales, the (relative) RMSE is given for both naive and MLR forecasting, using
K = 6 clusters and p = 4 lags. It can be observed that for both naive and MLR forecasting, a
higher upper bound for total sales leads to a higher forecasting error.

A higher absolute RMSE makes sense since products with higher absolute sales are taken into
account. However, the relative RMSE tends to increase as well when products with very high
total sales are taken into account. Although MLR seems somewhat more robust to this charac-
teristic, the influence of taking highly sold products into account is still present. This behaviour
is likely due to the limited number of clusters that can be taken into account. This implies that
products with a wide range of sales are combined in one cluster, making it still cucmbersome
to fit one model for all observations in a cluster.

For practical use this characteristic implies that popular products cannot be taken into account.
Of course, this is problematic since forecasting errors on these products is especially relevant
and impactful. However, in practice these products are monitored on regular basis, so expert
view can usually cope with these forecasts. This result is used to set an upper bound for the
total sales products within the examined data set can have. As it is desired to apply the fore-
casting methods on the majority of the total data set, the total sales is limited at 1000 over the
entire sample period. This reduces the number of products within the data set to 8530, which
is used for all further results.

TABLE 5.1: Absolute (relative) RMSE for a range of upper bounds on total prod-
uct sales. RMSE is calculated for naive and MLR forecasting, using K = 6 clusters

and p = 4 lags.

Total Sales Naive MLR

<250 2.2 (1.8) 1.9 (1.5)
<500 3.2 (1.7) 2.9 (1.5)
<1000 5.4 (1.8) 4.7 (1.6)
<2000 7.8 (2.1) 6.9 (1.8)
<∞ 30.7 (3.7) 22.5 (2.9)
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5.2.2 Optimal Number of Clusters and Clustering Performance

The number of clusters K needs to be specified as input for the clustering algorithm. The be-
haviour of increasing K on one-step-ahead forecasting performance is examined, in order to
determine the optimal number of clusters. The (relative) RMSE is calculated for MLR fore-
casting using K = 2 . . . 8 clusters. The MLR model includes p = 5 lags and the naive RMSE
is calculated again for benchmarking. The results of this analysis are shown shown in Table 5.2.

TABLE 5.2: Absolute (relative) RMSE for MLR forecast using K = 2 . . . 8 clusters.
MLR includes p = 5 lags and performance is compared to the naive RMSE.

# of clusters Naive MLR

2 5.2 (1.8) 4.7 (1.6)
3 5.0 (1.7) 4.4 (1.5)
4 4.9 (1.7) 4.4 (1.5)
5 5.6 (1.9) 5.1 (1.7)
6 5.4 (1.8) 4.9 (1.7)
7 4.9 (1.9) 4.3 (1.6)
8 5.0 (1.8) 4.6 (1.6)

From Table 5.2, it stands out that the naive RMSE fluctuates over different settings of K. This
might be counter intuitive, since the naive forecast of (5.3) clearly does not depend in any way
on the cluster settings. However, as every RMSE is based on randomly divided test sets, this
fluctuation is possible. The naive RMSE is therefore still shown, since it possible to compare
various settings by observing the decrease in RMSE of MLR compared to naive forecasting.
This is possible because the naive and MLR RMSE of every setting is based on the same test
sets. Due to the fluctuation, only the first decimal of RMSE values is provided.

From Table 5.2, it seems the choice of K does not have a strong impact on the forecasting perfor-
mance of MLR since relative RMSE’s are very comparable. This behaviour can have multiple
reasons. First, clustering can show bad performance. Even though the number of clusters is
increased, it is still possible that most observations are clustered towards only a few clusters.
Increasing the number of clusters then proves not useful. An example of this behaviour can
be observed in Appendix C. Secondly, over-fitting can become a problem when increasing the
amount of clusters. Models are trained on less observations, causing models to be less gener-
alised.

Although results are quite comparable, using K = 7 clusters provides best performance. This
setting yields the greatest decrease in RMSE of MLR compared to naive forecasting.

5.2.3 Optimal Number of Lags

The number of lags p also influences forecasting performance of MLR. Table 5.3 shows fore-
casting performance of MLR for a range of lags p = 1 . . . 5. The number of clusters is set to
K = 7 in this analysis, based on results from the previous section. Again, it is observed that
RMSE does not vary substantially when altering the number of lags. However, including p = 5
lags is most accurate and provides the highest accuracy gain compared to naive forecasting. In
the next section, p = 5 lags are used to compare different models.
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TABLE 5.3: Absolute (relative) RMSE of MLR forecasting, including a range of
lagged sales p. Results are based on K = 7 clusters.

# lags Naive MLR

1 5.5 (1.9) 5.2 (1.8)
2 5.5 (1.8) 5.6 (1.8)
3 5.9 (1.9) 5.5 (1.7)
4 5.9 (1.8) 5.3 (1.7)
5 5.6 (1.9) 4.8 (1.6)

5.2.4 MLR performance

From the RMSE’s used to tune parameters, some conclusions on forecasting with clustering
and MLR can be made. Each setting in Tables 5.1, 5.2 and 5.3 leads to a decrease in RMSE com-
pared to naive forecasting. Hence, combining fuzzy clustering with MLR consistently beats
naive forecasting.

However, it must be noted that the clustering and MLR approach seems somewhat invariable
to parameter settings. Relative RMSE’s across all settings are within a small range of values.
In the next section a comparison is provided between MLR with tuned settings, i.e. p = 5 lags
and K = 7 clusters, and MARS. It is expected that MARS improves forecasting as it may detect
non-linear dependencies in the data.

5.3 Improving Forecasts: MARS & Log Transformations

To improve forecasting, several adjustments are proposed. MARS is investigated as a alterna-
tive predictive model, as well as taking log-transformations of the data to investigate multi-
plicative forms of the models.

5.3.1 Validating MARS and Log Transformations

Naturally, the MARS model can have a different optimum in terms of parameter tuning, e.g.
variables taken into account and number of clusters K. Hence, to examine the true difference
in forecasting performance, one should first tune the necessary parameters with a validation
set – just as carried out in section 5.2 – for all models individually. Then, on a separate test set
that is the same for all models concerned, one can calculate the (relative) RMSE and compare
results. Naturally, the same thing is true when considering log-transformations of the models
considered, described in Section 4.3.

However, as proof of principle and as prospect on the possible performance of MARS, (rel-
ative) RMSE of a MARS model is validated. This is done by comparing a MARS and MLR with
the same number of lags p = 5 and number of clusters K = 7. In theory, MARS should be able
to result in models comparable to MLR, but with possible non-linear dependencies between
current and lagged sales. This should result in comparable (relative) RMSE on the validation
set.

This is also carried out for a log-transformation of the data. Note again, this only gives a
prospect on actual performance and one should not interpret the results as actual comparison
between different models. Results of log transformations and a basic MARS model for p = 5
lags and K = 7 clusters are shown in Table 5.4.
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TABLE 5.4: Absolute (relative) RMSE of naive, MLR and MARS forecasting. Ab-
solute and log-transformed MLR and MARS models include lagged sales as de-
scriptive variables, with up to p = 5 lag. K = 7 clusters are used in the forecasting

process.

Model Type Naive MLR MARS
Absolute 5.2 (1.9) 4.7 (1.6) 4.7 (1.7)
Log-transform 5.6 (1.8) 5.3 (1.7) 5.2 (1.6)

As expected, results of MARS and MLR are comparable when considering the same set of tun-
ing parameters, although MARS performance is slightly worse. This can have several reasons.
First, non-linear effects might not be present within the data, so the MARS procedure does not
identify any more dependencies as MLR does. Second, the MARS model can be prone to over-
fitting, so any found dependencies do not generalise to the test set. The GCV criterion of (4.8)
should account for this, but the default settings of the earth-package are not optimised in this
research.

While (relative) RMSE for MLR and MARS are very similar in this setting, computation times
are definitely not. For the models presented in Table 5.4, computation time is measured that
was necessary to build the models on the training set. This was done for every iteration over
time t = 1 . . . T.
On average, MARS needed 67(±37) times as much computation time to train a model com-
pared to MLR. On average, MARS needed 22(±20) seconds to train a model for one cluster,
while for MLR this was only 0.4(±0.3) seconds. The large standard deviation in timing differ-
ences is mainly due to the varying size of training sets across time iterations.

Unfortunately, timing issues will be even greater when more descriptive variables are added to
the model or models are trained with more data. The fact that all available data points are used
and observation weights are incorporated does not help in this matter either. The set of splines
in (4.6) becomes much larger when using larger data sets and inclusion of more variables,
which results in many more function combinations the MARS procedure needs to examine. In
practice, these computational burdens would be possibly insurmountable, especially when no
severe forecasting improvements are expected.

A first indication for the log transformed models on similar settings (p = 5 lags and K = 7
clusters) yields that performance is again very similar in terms of relative RMSE, compared to
absolute models. Again, this is only a validation and not a full comparison on actual perfor-
mance differences between MLR, MARS and log transformations. However, it is an indication
that log transformations are possible, which is very relevant for using more descriptive vari-
ables such as price position, which dependencies with sales are expected to be multiplicative.

5.3.2 Adding more descriptive variables

Because of the timing issues mentioned, it is unfeasible to perform tuning of all parameters
and perform a thorough comparison of MLR and MARS. However, a first indication of perfor-
mance of MARS with more descriptive variables at its disposal is given in this section. This
is done for a log-transformed model, since dependencies between sales and e.g. price are ex-
pected to be multiplicative, as described in Section 4.3. Moreover, Table 5.4 gives an indication
that transforming lagged sales shows no large impact.

Variables that are added to the model are week number, price, price position, delivery time,
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and percentage of time t a product was actually online. To limit computation time, the num-
ber of lags included in the model is 2, although clustering is still carried out on sales profiles
including p = 5 lags. Limiting the variable space is necessary to decrease computation time.
Otherwise, the variable space that MARS needs to cover becomes too large. Results are based
on K = 4 clusters to reduce computation time even further.

Relative RMSE’s for naive, MLR and MARS performance are found to be 1.8, 1.6 and 1.5 re-
spectively. Performance of MLR and MARS is not significantly increased compared to other
methods, both in terms of relative RMSE and improvement compared to naive forecasting are
similar to any other model and setting.

5.3.3 MLR and MARS Example

All results are based on RMSE’s, which are aggregated over all test observations and time in-
stances. However, to provide some extra intuition on model behaviour a specific example an
MLR and MARS model is described. For this purpose, a log-transformed MLR and MARS
model are trained for a specific time instance t, resulting in K = 7 models for both MLR and
MARS. In this section some key observations are described, but extended figures and plots are
found in Appendix D.

The examples show very bad clustering performance, since models across different clusters
can be extremely similar. This is true both for MLR and MARS. Besides, MARS does not show
much non-linear dependencies between sales and lagged sales. This result might explain sev-
eral observations from this section. First, it might be the reason why so little variation in perfor-
mance is observed while tuning the parameters. If clusters consist of ’garbage’, any resulting
model will probably be garbage as well. Moreover, this might also explain why the first results
of a comparison between MLR and MARS are similar as well, since MARS is simply not able
to detect any other significant dependencies in the heterogeneous cluster data.

5.4 Improving Forecasts: Fuzzy Weighted Forecast

All results in this section are based on the forecasting procedure of Basallo-Triana et al. (2017).
However, this method chooses a single cluster model for a product. Hence, it does not employ
the full potential benefits of fuzzy clustering in which cluster uncertainty is taken into account.
This section provides a prospect of accuracy differences between the methods of Basallo-Triana
et al. (2017) and the weighted forecast as proposed in Section 4.4.

To this extent, the unweighted (BT) forecast is compared to the fuzzy weighted (FW) forecast.
This is done for MLR forecasting with p = 5 lags and to exclude any possible dependency on
the cluster amount, several values of K are considered. The results are shown in Table 5.5. It is
observed that fuzzy weighted forecasts result in very similar (relative) RMSE compared to the
methods of Basallo-Triana et al. (2017). The fuzzy weighted forecast consistently show lower
RMSE, but this difference is only noticeable in the second decimal.

Unfortunately, the improvements are not as great as expected. It is believed this is due to
bad clustering performance. As explained in Section 5.3.3, the models generally show very
little difference across the different clusters. This means forecasts with various clustermodels
are similar and distances will be similar as well. Incorporating more forecasts therefore is not
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very effective, only decreasing RMSE slightly. Still, it can be expected that in better data sam-
ples, in which clusters are well-separated, a fuzzy weighted forecast improves the methods of
Basallo-Triana et al. (2017).

TABLE 5.5: Absolute (relative) RMSE for MLR forecast using K = 2 . . . 8 clusters
using an unweighted forecast (BT) and a fuzzy weighted forecast (FW), incorpo-
rating cluster uncertainty. MLR includes p = 5 lags and performance is compared

to the naive RMSE.

# of clusters Naive MLR-BT MLR-FW

3 5.0 (1.8) 4.6 (1.6) 4.6 (1.6)
4 4.9 (1.8) 4.4 (1.6) 4.3 (1.6)
5 5.1 (1.8) 4.6 (1.6) 4.5 (1.6)
6 5.5 (1.9) 4.7 (1.6) 4.5 (1.6)
7 5.0 (1.8) 4.6 (1.6) 4.5 (1.6)
8 5.2 (1.8) 4.7 (1.7) 4.6 (1.6)



28

Chapter 6

Conclusions & Recommendations
This research attempted to verify and extend the methods of Basallo-Triana et al. (2017) to fore-
cast Short Life Cycle Product (SLCP) demand. These methods include fuzzy clustering to clus-
ter analogous sales profiles, after which Multiple Linear Regression (MLR) models are trained
on each cluster. A new product is assigned to a cluster and its forecast is calculated with the
respective cluster model. Extensions considered are Multivariate Adaptive Regression Splines
(MARS) as predictive model, log-transformations of the data and using a weighted forecast
that fully exploits the fuzzy nature of the clustering opposed to the methods of Basallo-Triana
et al. (2017).

In effort to verify their methods, a theoretical background is provided with a focus on their
clustering approach using an improper distance measure. With a different clustering algo-
rithm, forecasting capabilities of analogue based forecasting are investigated using actual sales
data of a Dutch e-commerce retailer. This chapter concludes on both of these aspects and pro-
vides recommendations for further research on each of these aspects.

6.1 Improper Frigui-Krishnapuram Distance Measure

In their clustering approach, Basallo-Triana et al. (2017) make use of the FK distance measure as
defined by Frigui and Krishnapuram (1999). In this research, the fuzzy clustering minimisation
is solved for a generalisation of this FK distance measure. With this derivation it is shown that
the solution reduces to the simple Euclidean distance, implying that the FK distance measure
does not minimise the fuzzy clustering cost function. Moreover, it is observed that the compu-
tational implementation of Basallo-Triana et al. (2017) is flawed.

Hence, in this research the original Gustafson-Kessel distance is used, which has a well-known
solution to the clustering problem (Gustafson & Kessel, 1979). It must be noted that this algo-
rithm showed some computational challenges, especially with respect to the fuzzy covariance
matrix and computing its determinant and inverse. This is solved by following Babuska et al.
(2002), as solving this issue with the Moore-Penrose inverse still showed ill-behaving conver-
gence.

6.1.1 Recommendations on the Gustafson-Kessel Algorithm

While the GK clustering algorithm has shown to be useful for the identification of hyperplanar
clusters in literature, the clustering algorithm requires its user to predefine various parameters.
This includes the number of clusters K, the degree of fuzziness q as well as the constraints on
the GK distance measure. Only K is actively tuned in this research, while other settings might
influence and optimisation over these values can enhance forecasting performance as well. Ap-
pendix E shows extra back-up for this conclusion, in which the behaviour of various values of
q is examined.

The computational challenges regarding the determinant and inversion of the fuzzy covari-
ance matrix could be solved more properly, as the methods of Babuska et al. (2002) decrease
clustering performance. The Moore-Penrose inverse might still show potential, although it
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must be examined whether the constraints on the GK distance measure can still be maintained
when implementing this solution.

Finally, other clustering algorithms might show superior performance compared to the GK al-
gorithm. This includes other (non-fuzzy) clustering approaches, as well as the investigation of
other distance measures. The rationale of the improper FK distance measure, e.g. constraining
the eigenvalues of the fuzzy covariance matrix, can still make sense, but need a valid mathe-
matical solution to guarantee convergence. In other directions, one might try to find clustering
algorithms that optimise the number of clusters in the same algorithm. From a theoretical per-
spective it might also be interesting to look into possibilities of solving clustering and fitting
minimum least squares models in one minimisation. Now, clustering is used merely as a tool
to identify clusters of products that share a common prediction model, while minimising ac-
tual least squares is the main goal. However, both cost definition depend on the same set of
variables.

6.2 Forecasting capabilities MLR and MARS

Like Basallo-Triana et al. (2017), MLR is used as predictive model alongside GK clustering.
Performance of this forecasting procedure is investigated with one-step-ahead forecasting of
out-of-sample sales and calculation of the relative Root Mean Squared Error (RMSE) of all pre-
dictions. These results are compared to a naive benchmark that uses last period’s sales as
forecast and is independent of the clustering approach. Besides, forecasting improvements are
pursued by investigating MARS as predictive model since it is able to detect non-linear depen-
dencies. Also, log-transforms of the models and fuzzy weighted forecasts are investigated as
methods to improve forecasting ability.

This research shows for MLR that using K = 7 clusters and p = 5 lags yields the best per-
formance. For the data set, these settings results in a relative RMSE of 1.6 compared to 1.9
achieved with naive forecasting.

Unfortunately, a full comparison between MLR, MARS and possible log transformations is not
carried out due to computational burdens, which causes the tuning of MARS models unfeasi-
ble. Computation times for MLR are found to be 67(±37) times less compared to MARS. How-
ever, a first prospect on forecasting performance show similar results between MLR, MARS
and log-transformations. In combination with heavy computational burdens, simple MLR is
favoured over any of the other considered models.

Exploiting the fuzzy nature of this clustering approach with a weighted forecast has not shown
much potential compared to the methods of Basallo-Triana et al. (2017), in which they assign
a product to one cluster model for forecasting. No considerable differences in (relative) RMSE
between the two methods are found.

Unfortunately, this decrease in RMSE compared to naive forecasts does not illustrate great po-
tential of analogue based forecasting on the data set used in this research. No large reductions
in relative RMSE are observed compared to naive forecasting. Besides, the forecasting pro-
cedure seems invariant to tuning, transformation or model choice. Also, models seem to be
extremely comparable across clusters. This problem can be caused by the very noisy data set,
which causes clustering performance to be very low. It has been observed that clustering still
leads to very inhomogeneous groups of sales profiles.
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6.2.1 Recommendations on Forecasting Framework

As forecasting performance is likely to be limited by the data set used, further research should
focus on data sets that have been proven to work well in forecasting. This way, a solid com-
parison between the different methods can be given. With a cleaner data set, the clustering
performance is possibly improved, so the research can be focused on the proposed extensions.

Of course, this does not mean no improvements can be given on forecasting sales with the
data set of this research. Naturally, these improvements rely on handling the data set differ-
ently. It has been showed that observations seem to be clustered mainly based on average sales.
By normalising each sales profile such that each sales profile attains the same volume might im-
prove forecasting accuracy. Second, forecasting might be carried out for a more contained data
set, excluding e.g. observations with almost no sales.

Of course very different forecasting frameworks might proof to be more fruitful, even within
the framework of analogue-based forecasting. In this effort, one could use historical sales to as-
sume sales profiles over the entire life cycle of a product. One could then use these parameters
as prior guess for a new product in a Bayesian updating framework. This way, information
on analogous products can be used, while the impact of other observations is reduces when
having enough data of the product itself.

In further practical research on sales forecasting, it might be necessary to include stock lev-
els in forecasts. In practice, up and downward errors might be evened out as stock can balance
these errors out. Using this procedure, actual performance in ecan be examined. This would
be useful in any research regarding sales forecasting.
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Appendix A

Derivation GK algorithm
In this appendix the solution is derived of the parameters that minimise the fuzzy cluster-
ing problem as defined by equations (3.1 - 3.3). This derivation is based on Theodoridis and
Koutroumbas (2008) and the original paper of Gustafson and Kessel (1979) on the GK algo-
rithm.

Taking into account the constraints from equations (3.1) and (3.3), a Lagrangian is constructed
that needs to be minimised:

J (U, A, C) =
N

∑
i=1

K

∑
k=1

uq
ik(xi − ck)

′Ak(xi − ck) −
N

∑
i=1

λi

(
K

∑
k=1

uik − 1

)

−
K

∑
k=1

βk (|Ak| − ρk) (A.1)

In this Lagrangian, λi and βk are the so called Lagrange multiplicators. In this derivation Ak
is assumed to be symmetrical and positive definite. Each parameter uik, ck and Ak is derived
by minimising the Lagrangian with respect to the specific parameter and setting it to zero.
Furthermore, for brevity (xi − ck)

′Ak(xi − ck) = d2(xi, ck) is written as d2
ik.

A.1 Membership grades

Minimising equation (A.1) with respect to uik and setting it to zero yields:

∂J
∂uik

= 0

quq−1
ik d2

ik − λi = 0.

uik =

(
λi

qd2
ik

)1/q−1

Using the constraint of (3.1) λi is solved, which after a bit of algebra becomes:

λi =
q(

∑K
l=1

(
1

d2
il

)1/q−1
)q−1

Substituting this expression for λi into the found relation for uik yields:

uik =
(d2

ik)
−1/q−1

∑K
l=1(d

2
il)
−1/q−1



Appendix A. Derivation GK algorithm 33

A.2 Cluster centroids

For the minimisation of equation (A.1) with respect to ck, linear algebra states: ∂
∂s (x− s)′W(x−

s) = −2W(x− s) (Petersen & Pedersen, 2012). In this case, this implies:

∂J
∂ck

= 0

−2Ak

N

∑
i=1

uq
ik(xi − ck) = 0

ck =
∑N

i=1 uq
ikxi

∑N
i=1 uq

ik

A.3 Distance transformation matrix

For the minimisation of equation (A.1) with respect to Ak, linear algebra dictates ∂
∂X a′Xa = aa′

and ∂
∂X |X| = |X|(X

−1)′ (Petersen & Pedersen, 2012). Setting the partial derivative to zero results
in:

∂J
∂Ak

= 0

N

∑
i=1

uq
ik(xi − ck)(xi − ck)

′ − βk|Ak|(A−1
k )′ = 0

For brevity Gk is defined as Gk = ∑N
i=1 uq

ik(xi − ck)(xi − ck)
′. Also, the symmetric nature of Ak

is used, which implies (A−1)′ = A−1. This results in

Gk − βk|Ak|A−1
k = 0

Ak = βk|Ak|G−1
k .

To solve for βk the constraint of |Ak| = ρk is used, as well as the relations |cX| = cn|X| for the
n× n matrix X and |X−1| = 1/|X|:

|Ak| =
∣∣∣(βk|Ak|G−1

k

)∣∣∣
ρk = (βkρk)

n |G−1
k |

βn
k = ρ1−n

k |Gk|
βk = ρ1/n−1

k |Gk|1/n.

Substituting this expression for βk into the solution for Ak yields

Ak = (ρk|Gk|)1/n G−1
k

Most often the fuzzy covariance matrix Fk = Gk/(∑N
i=1 uq

ik) is used (see equation (3.4d). With
this relation it can be easily verified that the above expression is equal to:

Ak = (ρk|Fk|)1/n F−1
k .
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Converge of GK algorithm
As described in Section 3.3, the GK algorithm has problems with inverting the fuzzy covari-
ance matrix Fk and calculating its determinant. This problem arises when Fk becomes singular
to working precision of the machine, which can also result in a negative determinant.

Two possible solutions for this drawback are proposed, for which converging behaviour is
shown of the algorithm with respect to the fuzzy clustering cost function from (3.1). The first
solution is proposed by Babuska et al. (2002), which add a scaled identity matrix to Fk in every
iteration of Algorithm 1, while bounding the eigenvalues λk,l of the eigenvalue decomposition
Fk = EkΛ as well:

Fnew
k = γFk + (1− γ)|F0|1/`I`
λk,l = λk,max/β ∀l for which λk,max/λk,l > β

In this research, the values of γ is to 10−5 and β is to 1015, so influence on the actual Fk is small.

The second solution proposes using the Moore-Penrose pseudo-inverse (Petersen & Pedersen,
2012) to invert Fk. We perform this inversion on its eigenvalue decomposition, since this also
allows to calculate the determinant of Fk as well:

F−k = EkΛ−k Ek

|Fk| =
r

∏
l=1

λk,l .

The matrix Λ−k denotes the pseudo-inverse of the diagonal eigenvalue matrix, which simply
implies that all non-zero elements are inverted (zero within working precision). The value r
denotes the rank of Λk. Hence, the determinant of Fk can be calculated by simply multiplying
the non-zero eigenvalues of Fk (Petersen & Pedersen, 2012).

Figure B.1 shows the cost function value versus hundred iterations of Algorithm 1 for two types
of added robustness: following Babuska et al. (2002) and using the Moore-Penrose pseudo-
inverse. The same initialisation of values in U is used for both methods and observations are
clustered into 7 clusters. It can be clearly observed that the methods from Babuska et al. (2002)
yield a monotonically decreasing cost function value, while implementing the Moore-Penrose
pseudo-inverse has convergence issues. It must be noted that the minimum cost function value
is actually lower when using the Moore-Penrose method. However, this difference is small
enough that reliable converge can be valued more. Therefore, the methods of Babuska et al.
(2002) are used instead.
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FIGURE B.1: Converge behaviour of GK fuzzy clustering algorithm, implented as
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Appendix C

Clustering Example
This appendix provides a fuzzy clustering example, in which a training set of N = 6926 sales
profiles on one time instance t are clustered using Algorithm 1. Each observation xi,t contains
6 weeks of sales, i.e. xi,t = (yi,t−5, . . . yi,t)

′. The total set Xt is clustered towards K = 7. Other
parameters that are used in this clustering are q = 2, ρk = 1 and the algorithm stops iteration
over τ when maxi,k |uik(τ)− uik(τ − 1)| < 10−3. These settings are used throughout this entire
research. However, an upper bound is not specified regarding the total sales a product in the
data set is allowed to have.

The GK algorithm result in grades of membership uik, denoting the extent to which obser-
vation xi,t belongs to cluster k. To provide some intuition in clustering performance, cluster k is
selected for each observation that has the maximum grade of membership. This is the so called
’hard partitioning’, resulting in only one cluster for each observation. This result can be seen in
Table C.1.

The clustering algorithm does not provide evenly distributed clusters. Especially Clusters 1
and 4 contain very few observations. The cluster centroids are plotted in Figure C.1. As can
be seen form this graph, Cluster 1 and 4 contain highest average sales and correspond to the
upper two centroids. It seems observations are mainly clustered based on average sales. The
actual sales profiles seem to be less distinct. This indicates model building can be meaningless
and forecasting improvements compared to naive forecast might not be as high as expected.

For Cluster 7, 34 observations are collected (chosen randomly) and their sales profiles are plot-
ted together with the cluster centroid. The plot can be found in Figure C.2. It seems there is still
a lot of variation across sales profiles. This shows the great heterogeneity in the data set, but
can also indicate the clustering algorithm finds it hard to distinguish sales profiles across dif-
ferent clusters. This may indicate clustering might be performed with other variables as well,
that might be more distinctive features for clustering.

TABLE C.1: Hard partitioning of GK fuzzy clustering algorithm, in which N =
6926 are clustered towards K = 7 clusters.

cluster k # of observations

1 4
2 1686
3 1749
4 6
5 1220
6 2116
7 145
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Appendix D

MLR and MARS Example
In this section an example is provided on both an MLR and a MARS model. This is used
to provide intuition on performance of both methods, specifically with respect to the data set
from this research. For both models, extra variables are incorporated such as price and delivery
info, similar to the settings in Section 5.3.2.

D.1 MLR

MLR models for K = 7 clusters are fitted to the data set. Resulting model parameters are pre-
sented in Table D.1. It immediately shows that six out of seven models are almost equal. This
is likely due to bad performing clustering, which fails to identify clusters of analogies. Only
cluster 4 seems substantially different from other clusters for model training. This difference is
mainly caused by an off-set in intercept as it can be seen that other weights are very similar to
the other clusters. This is in line with the clustering example of Appendix C, in which it seems
that clusters are mainly seperated by average sailes.

TABLE D.1: Fitted model parameters of log-transformed MLR, trained on K = 7
clusters with p = 5 lags.

Cluster w0 w1 w2 w3 w4 w5

1 0.207 0.107 0.021 0.187 0.147 0.253
2 0.206 0.107 0.021 0.188 0.147 0.254
3 0.207 0.107 0.021 0.187 0.147 0.253
4 0.046 0.139 0.052 0.197 0.185 0.272
5 0.207 0.107 0.021 0.187 0.147 0.253
6 0.207 0.107 0.021 0.187 0.147 0.253
7 0.207 0.107 0.021 0.187 0.147 0.253

D.2 MARS

MARS models are trained using the earth-package (Milborrow, 2017). This package provides a
descriptive summary of the acquired model, as well as several plots to investigate model train-
ing, observation residuals and parameter dependencies. These results are presented in Figures
D.1 - D.3.

The figures provide some interesting findings. First of all, all lags are used in the MARS model.
Second, dependencies show some ’kinks’, but in general seem to be quite linear. This can also
explain why only minor differences are observed in forecasting performance between MLR and
MARS. Third, residuals are not normally distributed and have fat tails. This could be resolved
by using generalized linear modeling instead of assuming normal errors.

Finally, different MARS models are very similar across the clusters. This is similar to MLR
and might indicate bad clustering performance.
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FIGURE D.1: Summary of log-transformed MARS model, provided by earth-
package (Milborrow, 2017). Scales are in logs.
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Forecasting dependency on fuzziness q
This section provides some extra back up on the forecasting performance for various settings
of fuzziness degree q in the GK algorithm. For a range of values for q, the relative RMSE is
calculated for MLR forecasting with K = 7 clusters and p = 5 lags. The results are shown in
Table E.1. Naive relative RMSE is calculated as well for benchmarking purposes.

It can be observed that possibly, forecasting performance might be improved for other set-
tings of q opposed to q = 2 which is used in this research. Greatest increase in performance
compared to the naive forecast is retrieved for q = 1.7. Performance increases are very similar
across different settings of q, although the limit to crisp clustering yields worse performance.
The slight increase in performance compared to q = 2 might indicate some marginal increase
in forecasting performance can be achieved when q is optimised.

TABLE E.1: Relative RMSE of MLR forecasting with K = 7 clusters and p = 5
lags. Naive relative RMSE is also shown for benchmarking purposes.

Fuzziness q Naive MLR

1.1 1.82 1.85
1.2 1.91 1.73
1.3 1.80 1.68
1.4 1.82 1.71
1.5 1.81 1.69
1.6 1.74 1.59
1.7 1.85 1.59
1.8 1.89 1.67
1.9 1.86 1.66
2 1.76 1.59
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Appendix F

R: Gustafson-Kessel Algorithm
# This function performs fuzzy clustering using the Gustafson -Kessel algorithm
# The distance measure used is an adapted version of the Mahalanobis distance
#
# Input:
# X: (Nxl) matrix consisting of N observations with l datapoints each
# k: number of clusters in data set
# q: fuzziness parameter (usually set to 2 for fuzzy clustering. 1 = hard clustering)
# tolerance: convergence of the GK algorithm (max dif in consecutive weights U)
#
# Output:
# U: (Nxk) matrix containing k cluster weigths for every (N) observation vector in X
# C: (kxl) matrix containing l cluster centroids for every (k) cluster
# F: (lxlxk) matrix containing k cluster covariance matrices (lxl)
# labels: (Nx1) vector containing ’hard ’ cluster labels for each observation vector in X
# J: vector (up to max_iter1) of cost function , mimimised using the GK algorithm

GK_cluster_GK <- function(X, k, q, tolerance , max_iter , rho){

#######################################################################################
## Preallocation of all matrices and variables

N<-nrow(X); #1st dimension of X
l<-ncol(X); #2nd dimension of X

U<-array(data=0, dim = c(N,k)); # (Nxk) matrix of fuzzy weights
F<-diag(l); # k (lxl) matrices of cluster covariances
F<-array(c(rep(F,k)),dim=c(l,l,k));
A<-F;
C=array(data=0,dim=c(k,l)); # (kxl) matrix of cluster centroids
Dist = array(data=0,dim=c(N,k)); # (Nxk) distance for N observations to clusters

U_prev = array(data=0, dim=dim(U)); # ’previous U’, necessary for iteration
J_old = 1e20; # cost function value zero
J = 0;
F_cond = array(data=0, dim=c(k,max_iter ));
F_det = F_cond;
A_det = F_det;

F_0 = cov(X);
F_gamm = (det(F_0)^(1/l))* diag(rep(1,l));
gamm = 1e-5;
beta = 1e15;
#######################################################################################

#######################################################################################
## Set up initial guess of U and calculate cluster centroids C, covariances F and D

t = 1;

#Generate random sample of U’s for which rows add up to 1
for (i in 1:N){

rand <-runif(k);
U[i,]<-rand;

}
sum_U<-apply(U,1,sum);
U<-U/sum_U;
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#First calculation of centroids C, covariances F and distances D based on initial U
for (j in 1:k){

# Initial Centroids
U_q = U[, j]^q
C[j,] = t(U_q) %*% X / sum(U_q)

#Initial Cluster Covariance
Xc = X - array(rep(C[j,],each=N),dim=c(N,l))
U_rep = array(rep(U_q,l),dim=c(N,l))
F[, , j] <- ( t(Xc) %*% (Xc * U_rep) ) / sum(U_q)

# Robustness of F through eigen decomposition etc (babuska , 2013)
F[, , j] <- (1 - gamm) * F[, , j] + gamm * F_gamm

eig <-eigen(F[, , j]);
V=eig$vectors;
D=eig$values;

sorting=sort(D, index.return = TRUE);
D=D[sorting$ix];
D[D[l] / D > beta] <- D[l]/beta;
V=V[, sorting$ix];

F[, , j]<- V %*% diag(D) %*% t(V);

# Calculate A and speed up distance calculation with eigenvalue decomposition
A[, , j] = ((rho[j] * det(F[,,j]))^(1/l)) * solve(F[, , j]);

eig <-eigen(A[, , j]);
E<-eig$vectors;
Lambda <-eig$values;

Dist[,j] = ( ( Xc %*% E )^2 ) %*% Lambda;

}

# Calculate cost function value , may be used as extra criteria in while loop.
J[t] = sum( (U^q) * Dist);
#######################################################################################

#######################################################################################
## While loop to minimize J until convergence or max t.
## Inside loop , first the weights in U(t) are updated based on C(t-1), F(t-1), D(t-1)
## Then , C(t), F(t) and D(t) are calculated based on U(t)
## Finally , the value of J (cost function) is evaluated for final check on convergence)

while (max(abs(U-U_prev)) > tolerance & t < max_iter){

#potential extra while clause: & J[t]<J_old

U_prev = U;
J_old = J[t];

t = t+1;

#Update cluster weight matrix U(t)
dummy_dist <- Dist^(-1/(q-1)); #individual distances to power of -1/q-1
dummy_sumdist <-apply(dummy_dist ,1,sum); # sum all dummy_distances in each row
U = dummy_dist / array(rep(dummy_sumdist ,k),dim=c(N,k));

#Loop over every cluster to calculate cluster centroids , F and new distances.
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for (j in 1:k){

#Calculate new cluster centroids
U_q = U[, j]^q;
C[j,] = t(U_q) %*% X / sum(U_q);

#Calculate new cluster Covariances
Xc = X - array(rep(C[j,],each=N),dim=c(N,l));
U_rep = array(rep(U_q,l),dim=c(N,l));
F[, , j] <- ( t(Xc) %*% (Xc * U_rep) ) / sum(U_q);

# Robustness of F through eigen decomposition etc (babuska , 2013)
F[, , j] <- (1 - gamm) * F[, , j] + gamm * F_gamm

eig <-eigen(F[, , j]);
V=eig$vectors;
D=eig$values;

sorting=sort(D, index.return = TRUE);
D=D[sorting$ix];
D[D[l] / D > beta]<- D[l]/beta;
V=V[, sorting$ix];

F[, , j]<- V %*% diag(D) %*% t(V);

# Calculate A and speed up distance calculation with eigenvalue decomposition
A[, , j] = ((rho[j] * det(F[,,j]))^(1/l)) * solve(F[, , j]);

eig <-eigen(A[, , j]);
E<-eig$vectors;
Lambda <-eig$values;

Dist[,j] = ( ( Xc %*% E )^2 ) %*% Lambda;

}

# Evaluate cost function (function that should be minimized with this algorithm)
J[t] = sum( (U^q) * Dist);

} # End while

#######################################################################################
## Calculate ’hard ’ labels of X for analysis and combine variables to function output.

labels = apply(U,1, function(x) which(x == max(x)));

## Calculate observations per cluster
cluster_count = array(data = 0, dim = c(k,2));
cluster_count[, 1] = 1:k;
for (i in 1:k){

cluster_count[i,2] = sum(labels ==i)
}

output <- list(U = U, C = C, F = F, Dist = Dist , A = A, labels = labels ,
J = J, num_iter = t, cluster_count = cluster_count)

} # End function
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