The ‘Inevitable’ Rise of the Administrators
A Sociologicd Sudy on Control in ICT

Thesis submitted for the MA degree in Sociology

by
André van Cleeff

Supervisor: Dr. Hans Pruijt
Erasmus University Rotterdam
May 2006

Abstract

The research subject in this pgper is the control structure indde of authoring and
publishing systems. More precisg, it is examined how systems such as blogs, forums and content
management systems regulate what people can and cannot do with them. For example: How is it
determined tha someone can publish an aticle on the front page of a webste? Is there any
censorship? Does someone have to goprove of the text that another person wrote? Who
determinesthat goprova must take place?

The subject of control in ICT is of great importance; the way control is modded in
authoring and publishing systems influences (or is influenced by) issues such as freedom of
speech, copyright protection, non-proliferation and censorship. In fact, the Internet itsdlf is one
huge authoring and publishing system. AsICT itsdf proliferates, it can be expected that the issue
of control (and security) will dominate the debate on ICT in the next decades.

Although ICT isfor alarge part asocid congruction, and thus worthy of examination by
sociologists, most sociologicd research on this subject does not focus on ICT itsdf but on its
context. Organizations are studied, not software. The result isaggp in our understanding of 1CT.
In thistheds, an atempt is made to dose this gap by studying ICT itsdf, gpart from its context.
The research indicates that, dthough there are potentidly many ways to sructure control, most
control structures share common characteristics.

- Control ishierarchicd,;

- Stuated a the top of the hierarchy, there is an dl-powerful administraor who gives
authorizationsto others;

- Within asystem, people can cooperate, but the cannot a2 jointly. No two persons can ever dlick
‘OK’ together.

Combined, it can be concluded that individuals (as opposed to groups) exercise control inside

ICT, in hierarchically structured networks, with administrators having full control. This is the

cause for authoring and publishing systems, but the results can easily be generalized to other

systems.

With the rise of the Internet, the importance of good computer security has arisen: -
protected systems are prone to viruses, worms and other malicious programs that loom on
computer networks. Sensitive data stored on computers should not fall into the wrong hands. A
lot of effort has been put in patching systems and developing tools as virus scanners. Yet this
does not solve what appears to be the largest security hole 4y design: the lack of any checks and
balances inside ICT. No system is protected from ill will of an administrator. Few, if any, checks
and balances are znside of ICT. As ICT proliferates, more and more power is put in the hands of
individual administrators.

In how far is this an undesirable situation? A counterargument is that many other
technologies do not contain check & balances. A surgical knife (no matter how well designed)
does protect neither the patient nor the doctor from fatal accidents. A car does not protect
people from being overrun. However, ICT differs in three ways:

- The potential amount of damage is much bigger. A knife can injure only one patient at a time
in one place. An administrator with too much power can disable the ICT infrastructure of an
entire hospital within seconds, putting many more lives at stake.

- ICT has autonomous capabilities. A knife doesn’t injure by itself, but a computer virus
spreads itself in seconds across the globe, compromising many administrator accounts. The
Internet has thus short-circuited the checks and balances that exist in the physical and social
world.

- lronically, ICT 4oes contain a social structure. Many applications require people to identify
themselves before gaining access; they can only do what the system allows them to. Knives
lack such features. If we think these structures in ICT are necessary, it seems illogical to have
all-powerful administrators who can negate all security measures.

What has caused this problem to arise?

A firg observation is that safeguards againgt abuse are currently ouzside of ICT, in the
embedding of administrators within organizations, their education and indoctrination. These
complement the minimd safeguardsinsde of ICT.

A technologicd explanation is the way tha ICT itsdf is structured, conssting of
hardware, programs and running applications. A program must be ingdled on a piece of
hardware to become a running gpplication; only an adminigtrator can do this. He then grants the
authorizations to other people. There is thus an inherent tendency to centrdize. This is an
indication of technologicad determinism: It is not organizations that choose a particular
configuration; rather their options seem limited by the technology itsdlf.

Another explanation is evolutionary. Because early sysems had adminigtrators, no one
ever saw the need to change this. It was easest to copy and reuse the existing authorization
structures.

How can we change this stuaion? A possbility for existing syssems is to split them up
into smdler ones: this potentidly limits the power of asingle administrator. Future systems could
be equipped with more checks and badances indde. An especidly interesting idea would be to
implement group actions, actions that can only be performed by a group of people instead of a
sngle user. A more radicd ideais to embed democratic or juridicd procedures in software. For
example, virtud dections can be held in which users vote for their administrators, who must be
re-dected after a certan period (and might be recdled earlier). Time and space could dso be
reintroduced, an gpplication would be spread over multiple locations and actions could teke a
week to complete instead of just milliseconds.

If implemented a a sufficiently low level, such measures would aso reduce the dangers of
exigting security flaws. In this scenario, a malicious program could possibly take over one user’s
account, or one location — only to find that it needed someone else’s cooperation to gain full
access, and wait a whole day before it could do any real damage.

Table of contents

ADSITACL. ..o 2
TADIE OF CONLENTS......ooeeeeeeee et sss st ss s ss s ssss s 4
PIEFBOR. ...ttt sbs s sb s bR 7
L IEOAUCION oottt ssse s sss s sss s sss s s ssssssseessssens 8
L1 INEFOQUCLION ...ttt ettt bbbt ee s bbb bbb s st s b s 8
L2 IMIOLIVELION ...ttt ettt bbb bbb bbbt sttt 8
L3 A ettt bbbt b bt ae Attt s et s e aten e 10
R O TV 11 =TT 10
Part |: Theoreticad Framework......oe 1
2. ICT Research in the SOCIAl STENCES...........cooocvvevveeeesseessesssees s sssssssesnnns 12
21 INEEOAUCHION ..ottt et bbb et s ettt bbb antens 12
22 REIACN OMENEALIONS.cvceeecereseireeesees s eesesessssssse s ss s sse st sss s ssessssssssssssnsesssssssesnseeas 12
23 Metastudy on power and information technology reSearch...........ocveveereereereereeeeecireenens 12
24 CONCIUSION......oviteteeeete ettt ettt bbb ettt b s ettt bbb s antans 14
3. 0CE AFPECLS OF ICT ... s sss s 15
135 R 1 0110 T [F o 1[0 PO 15
32 Theréationdity Of COMPULES STIENCEc.oceieeerierieriereeresseeese et see st ssssesssse s s ssesees 15
3.3 Therdaion between ICT and the SOCid WOTId..........ccovrereererereeerererereeresesse e 16
3 o o 1 [0 TP 18
A, TECNNOIOGYoooeeeeveeeees s ssss s sss s s s ss s s ss s 19
7 A 1 {0 L8 o1 o] IOV 19
4.2 SocCiety’s eVOIULION ANd IS CAUSEScvvieeuerieereeserssre st sssst s s s st ssees 19
N =Tt o1 010} [0 0 VPR 19
4.4 Technology MOUEL ...t 20
45 Technology as enabling and CONSEIAININGccueueruriririreineirei s seeees 21
R o o131 o o OO 21
£ TR [IO OO 22
5.1 INTFOTUUCTION ..ottt 22
5.2 WAL IS ICT? oottt ettt sttt bbb bbb s st bbbttt ennais 22
5.3 TCT MOUE .ottt bbb bbb e b bbb bbb nnais 22
o3 O o [0TSR 25
6. RESEACN APPIOBCHcoooovviii e eerececeeeeesissss s esessssssssssss s sssssssssssssssssssssse 26
6.1 INTFOTUUCTION ..ot bbbt 26
6.2 ReSEArCN reQUIFEMENTS.......civeciececte ettt et s a e s a s sna et s nns 26
6.3 Sociological elements: Enabling and CONSLIaINING.........cccccevvverereesnensee s sseesensenns 27
6.4 ICT: Authoring and publiShing SYStEMS..........ccccurrcrrie e snee e 27
G T O o [0TSR 28
7. Control (Enabling and CONSITANING)crrrreeeeeeeemmmmsmmssssssseeseessssessssssssssssssseee 29
7.1 Power and control in SOCIOIOQY.......cccccuruririicieiiceiscictetsise ettt ssassennnes 29
7.2 ldentifying power and control i ICT ...t snes e 29
7.3 ldentifying control elements iN ICT ... e snes s nnas 30
74 Implementing CONEIONIN TCT ... 30
7.5 The fEALUIE - USEI MALIIX c..v.veevreeeeeeerirecisesisessesssesssssese s sssssssssssessssessssssssssssesssssssessssessessssnes 34
7.6 Value of enabling and constraining iN ICT ..o 36
TT CONCIUSION ...ttt et st b bbbttt s b et bbb et b s st bs st et ennais 37
8. Authoring and PubliShing SYSLEMS.............cccoovviieeriisesesisseessissssessssssssssssssssssnnns 38
8.1 INTFOTUCTION ..ot bbbt 38

I B T < 1 1 (o] o TR 38

8.3 Identifying hierarchies and control in the publishing process.........covvcevevcsveccssesenenns 38
84 Thelnternet as one huge authoring and publishing SyStemovrrreneeeeieieireenes 40
85 CONCIUSION.....oeeteteeccte ettt ettt bbb sttt s bbbt antans 42
Part I1: Empirical Research......oo 43
9. ReSEACN QUESLIONS.......ooeooveeeveesessssisssssesssssssssss s sssssss s ssssssss s ssssss s sssssssans 44
9.1 FOUr reSearCh QUESLIONS.......c.cccueeeceirees ettt st es st s st es st s snsasees 44
LS 1 0 11 F= 1) 010 1 -5 IO 44
10, SAMPING....o bbb s s 46
0.1 INEFOAUCHION......cececteeecccteecte ettt ettt bbb et s st et es bt s st ban e 46
10.2 SAMPIING. .t e 46
10.3 OVEVIEN OF COEES. ..ottt st ettt s s b st s bt s s bt en e 48
104 EXAMINAION PrOCESS.....couruueueuessasssseasesssssessessesssssssessesss s ssssss s sss s ssssssssssssssssessssssssssnssssns 51
105 CONCUSION ...ttt bbb 51
L1 STUCLUIE......ooeeseesete st 52
9 A 1 01 0o L1 o 1 o OO OO OO EU U RTTRTO 52
112 CONLIOl SEIUCLUIE.....coeceeeecteteetet et tee sttt st es s bbb es bt s st sannaas 52
T3 WOTKEIOW ..ttt ettt bbb et bbb bbb naas 53
114 CONENE SITUCLUIE....c.cuieereeee ittt st seas sttt bbb nnas 53
115 Initiaion/ InSalaion ProCEAUrE..........ccueceeirecie sttt ssse e seesee e 5
116 Organizaiona CHOICE?........couiueereeeterrese ettt es st et s st esssntssennans 56
L1177 CONCIUSION ...ttt st 57
R i 1= o £SO 59
121 INEFOAUCKION. ...ttt ettt bbb et s s s s et en bt s et b s e 59
J2.2 SECUMEY ettt et 59
123 CONCIUSION ...ttt ettt st bbb sttt s s bbb s bt s s bt ennaas 59
L3, CAUSES. ...ttt ss s bbb s 60
131 INEFOAUCKION. ...ttt ettt bbb et s e s s et es bt s st b s e 60
132 SOCIE EXPIBNEIONS........oceeeeeiei et 60
133 Technologicd explanations (including physicad and conceptud)cceeeereeeneerceneenes 62
134 EVOIUtIONAY EXPIANGLIONS........coeueeieereireeseeseiseieeasese s esssns s 63
135 CONCUSION ...ttt bbb 65
LA, AREINEIVES. ... ssssessssssssssssssss s ssss s ssssseesssssssanessens 66
7 R 1 011 0o U o[o PPV 66
722 0 To] o = - 1 o o TR 66
TA3 OHIING U et e 67
4.4 AUAIE TFEI ..ottt bbb et s s s s bbb st b en e 68
TA5 CONCIUSION ...ttt bbb bbb bt as s et es bt s s bt en et 68
Part [11: ConclusioNs...eeeeeeee 69
15. Discussion: Rise of the ADMINISIFAOIS?.............coeeeeeveeeeeeeeeeceeeeeeeesseese s sssssseeseens 70
151 Finding asuitable namefor the ICT revolULION..........c.cceeeceerccse e seeeeeenas 70
152 Threeviews on the admMiNISITALOcovrernees s seses 70
16, CONCIUSION ..ot ssss s sss s s s ssssss s sssssenessees 72
Reflections on the researCh gopProach ... s 72
S YT o SO 72
17. RECOMMENUAIONS..........oooevveeeeeeiissesss s ssssesss s sss s sss s sssss s sssss s ssssssssssens 73
0 R 1 011 0o U o £) o PPV 73
172 MENOUOIOGY. .. ceieieieeereerieeinsississ e s 73

181 Print€d PUBIICAIONS.......coouueeierincieieieiseisei ettt 74
182 ONlNE PUDIICAIONSc.eeeeieierireie ettt 76
183 INtErVIEWS & CONVEISAIONS......ouumirecereireiseesesseaeeasess s s 7
S S o 11,T7= ST 7
APPENAIX A: TEDIES........oo st sss s s sss s 78
APPENAIX B2 FIQUIES........eeeceeeeeeeemessmsssssesesseeesssessssssssssssssssssssssesses 79
AppendiX C: Daaase MOUEING.......reeeeeeeeeeesmmsssssssssessesessessssessssssssssssssssesssssssssssssssses 80
Daabase diagramming tECHNIQUES...........cucucrereccses ettt et 80
APPENAIX D2 SITUCLUIE......ooocee st ssss s sss s sssssssssssss s sssssssss s 81
CONEIOL SITUCLUIE......ooeeeiceet it bbb bbb 81
WVOTKEIOW ...ttt ess st sess s ss st ne st s snnsnsnnsnsses 84
L0001 1 1o (U OO 86
APPENAIX B2 CBUSES........eeeeeeeeeeeeeeessssssssssssesesessssssessssssssssssssssssssssessses R
R D L= T g 0 S 1Y TP 92
E.2Dedgn Of TAMON CMS.....cssce vttt ettt es st 93
E.3 DEIQN Of ECOGHIT ...ttt s e sa s 93
E.4 Usage of Slvaa Erasmus University, Faculty of Social SCIences..........cooeveereneeneeneeneeneeneen. 9%
E.5 Usage of Open Market CMSa NRC..........coiereeeneeneeseesesseesesssas s esssssssssssssesseens 97
E.6 Usage of phpBB a HElIPOrTONLINE.........cociiiririrereeeeereeseeseeseeseeseessssessessessessesseesssssessesseens 98

Preface

Jugt after my graduation in computer science (Leiden University, 2001) | was overcome by the
feding tha somehow | was not finished studying. But instead of pursuing a PhD in computer
science | decided it was time for something completely different. Thus, | took up sociology in
September 2001 & Erasmus University Rotterdam, while working full-time as a software engineer
for an IT company. (A ‘dotcom’ or ‘startup’ as it was known at the time).

Already in 2001 it became clear that these were indeed totally different worlds, with
completely different views on software. Generalizing, computer science is about theoretical
modeling of software; amongst other things, sociology is about understanding the role of
software in society; software engineering is about creating usable software in a neat, efficient and
controllable way. Few ideas managed to get across the boundaries of these disciplines; there
obviously was an opportunity to improve this situation.

One of the most interesting problems | had to tackle as a software engineer had to do
with authorizations: Who is allowed to do what? This is relatively simple if you have an
application that only has users, but it becomes difficult when you deal with people who are
employed by different organizations, with all the connections that exist between them. For
example: Is an employee E working for company C allowed to place an order O for product P at
company D with a 10% discount? Is he even allowed to see that such a discount is given?

A solution to this problem also has to include assigning authorizations: At some point in
time, someone has to grant employee E the right to perform this task; unwanted persons have to
be kept out. From an engineering point view this is about security: how to build software that
unauthorized persons can never gain access to; or detect that this has happened; In sociological
terms it is the issue of control or more broadly power.

It leaves little doubt that this problem had not been addressed properly; As a software
engineer | could not find any existing solution for my authorization problems and had to build
my own; In fact, it turned out that even for the simplest cases there were no off-the-shelf
solutions. From a computer scientific point there was (and to my knowledge still is) no such a
thing as adequately secure software; the stream of news items about viruses, worms and patches
continues. From a sociological perspective there seemed to be little meaningful sociological
research on this subject. All in all, I got the idea that it was an interesting research subject.

Although multidisciplinary in nature, the orientation in this paper is still sociological: |
investigate power and control in software from a sociological perspective, using my knowledge of
computer science and software engineering. | have tried to limit the usage of terminology and
applied them only where it served clarity. Some definitions, expressions and diagrams could be
considered somewhat informal; such is the price you have to pay for bridging disciplines while
keeping a paper readable. | had no intention to mystify anything. Most of the technical content is
located in the appendices.

Finally, I would like to point out that this paper — like so many others - is indirectly the
product of many people. | hereby thank them for their contributions.

André van Cleeff
Rotterdam, May 2006

1. Introduction

1.1 Introduction

In thisthesis it is examined how people have structured control insde ICT. Control means here
the ability to restrain (or dlow) people to perform certain actions. As such there is a dear link
with the sociologicd concept of power in the sense tha someone who controls dso has power.
For now, ICT is amply defined as information and communication technology, comprising of
such things as computers and networks, software and running gpplications. Chapter 5 contains a
more precise description.

The methodology differs from norma gpproaches. Most sociologicd research is done
from the contextud perspective of organizations tha «se software; here software zzse/f is sudied,
before looking a the context. The motivaion for this thesisis discussed in this firs chapter —in
terms of the subject, the research approach and the relevance.

Figure 1-1: Two approaches for the study of ICT

1.2 Motivation

The state of existing sociological research on ICT

Several years ago, Orlikowski and lacono stated that information system researchers - among

whom many sociologists - have not dived too deeply into their core subject, namely ICT

(Orlikowski & lacono, 2001). Instead, they focused on ICT’s context. As will be shown in

Chapter 2, this is probably still true today. Given this situation, should ICT be examined at a

closer level? Positively formulated, there are several reasons why this question can be answered

with ‘yes’

1. The simplest reason is that ICT itself is a social construction: behind the facade of hard
technology it is in fact quite soft and malleable, open to influences from society. Therefore a
sociological view on ICT has the potency to deliver more valuable insights than a pure
technical view ever could. ICT research should not be the sole domain of computer scientists.

2. It also follows that the validity of existing information system research can be called into
question: The research likely missed important sociological elements in ICT. Obviously there
is a great opportunity to improve the validity of information system research. But such a view
can only be developed if one does no evade the subject.

3. ICT provides an easy research medium to study society. With some technological expertise
you can easily investigate the social world (or its digital equivalent). Because everything inside
ICT is measurable, it is easy to gather hard data that is difficult to get elsewhere; it should not
be necessary to bother research subjects with interviews or surveys. In other words: ICT
research is non-obtrusive.

4. ICT proliferates more and more: An increasing part of our social life revolves around ICT. In
fact, ICT research increasingly becomes socia/ research per se: Or put more formally: its
external validity keeps increasing.

The timeless subject of control

Now that it has been concluded that ICT itsdf (and not its context) should be the focus of the
research, wha should be the subject? Clearly, it should be a subject that can be studied outside of
its context. We should not study how a software program was used in such and such an
organization, a least not in the first place. Idedly, it should be a timeess subject that dso has a
clear link to sociology. In this respect control is a good subject: The aspect of control is dways
present, it can be studied gpart from its context and it is linked to the sociologica concept of
power.

The increasing importance of control
In fact, concerning the sociologica relevance, it can be expected that as ICT proliferaes the issue
of control will dominate the debate on ICT the next decades. A few decades ago the key threet to
gobd security was a nudear conflict between the United Sates and the Soviet Union. This
particular threet is no more, but the proliferation of wegpons of mass destruction is still a mgor
concern. Worse, 9/ 11 has made it dear that non-nuclear wegpons can dso be very effective, and
these turn out to be very hard to counter. In dl this, the Internet plays akey role. Firg, the rise of
the Internet crested a whole new category of vulnerabilities for society, computer viruses can
potentidly wresk havoc to any organization that is connected. Secondly, the Internet is an
excelent platform for the proliferaion of potentidly dangerous information. For example, the
genetic sequence of the 1918 influenza virus (that killed 50 million people a the time) was
published on the Internet in the GenBank database (Kurzwell & Joy, 2006). Knowing the genetic
sequence, people can relatively eesly recregte the lethd virus. Worse, as science progresses the
amount of information that can be misused increases likewise. Dismantling existing atomic
bombs is hard enough, but the removd of dangerous information from the public domain is
totdly infeasble. Once someone puts a text on the Internet, which is picked up by other users
within seconds, it becomes impossible to remove. There is no cure, only prevention, hence the
need for complete control of the publishing process will arise sooner or laer.

In fact, the Internet is dso an opportunity for survellance as has never exised before.
Even for the East Gaman Sas it used to be impossble to keep track of everybody’s
whereabouts, but such bookkeeping is feasible today. One need only to look at the wiretapping
power of agencies such as United States’ NSA or the effort the Chinese government is putting in
the creating of the ‘Great Firewall of China’. These are all examples where some form of control
over content is exercised.

The question of how the Internet is managed, i.e. the question of power, how we deal
with issues of copyright protection, freedom of speech, proliferation of potentially dangerous
information and censorship is fundamental.

Control in authoring and publishing systems

In what systems should control best be examined? In the last section we have seen that
present and future issues revolve around the ability to create, publish and read texts. Thus, it
would be logical to study systems that provide such functionalities. In this paper, these systems
are called authoring and publishing systems.*

This category includes programs such as content management systems and discussion
forums. There are several additional advantages to studying such systems: There is a great variety
between such systems, from applications in use by individuals (weblogs) to large corporations
(content management systems). They also have a relatively long history. The World Wide Web, of
which they are a part, has existed for over 10 years. This makes it possible to study their
evolution. Last but not least, they are relatively simple systems: It doesn’t take much additional
expertise; many people use text editors, search the Internet for information and publish their
adventures on weblogs.

1 Thisterm wes derived from M. Faassen’s description of the program ‘Silva’, an ‘authoring and publication system’ (Faassen, 2005). The term
accurately captures a whole range of systems that are usually not seen as belonging together.

1.3 Aims

This thesis tries to investigate ICT itself (and not just it’s context) from a sociological perspective.

As such, the goal for this thesis is to prove that such an approach
- Isfeasible and sometimes even preferable over other approaches
- Can lead to new insights that are not easily obtained by other means

The particular point of interest is control or more broadly power (as one of the most important

issues in sociology) and how it is channeled in ICT.

Hopefully it will demonstrate to sociologists that

- ICT is for a large part a social construction, not a purely technical artifact and thus worthy of
examination;

- Itis possible to gather relevant sociological data simply by studying ICT itself;

- Therefore, there is no compelling need to study ICT from a pure process view (development,
implementation, usage);

- The only requirements for ICT research are simple (but powerful) theories combined with
some technological expertise.

As for computer scientists and software engineers it could help them

- To realize how they reconstruct the social world and that therefore, their responsibility is not
limited to creating models or “getting things to work’ with the tools at hand,;

- To realize that in fact, their toolkits are also social constructions, and question the validity
and usefulness of those toolkits and not take them for granted.

- To create software that is more secure

Or to put it simpler: The aim of this thesis is to create ”a sociology of control” for ICT, useful in

various disciplines.

1.4 Outline
The paper consists of three parts:

Part 1: Theory

In this part some recent sociological research on ICT is examined, to see where it falls short.
Next a small theoretical framework is constructed to guide the research. It also argues why conzro/
is such a promising research field. (This is an elaboration of the ‘motivation’ section of this
chapter.)

Part 2: Empirical Research
Here the lessons from the first part are applied and tested in practice. It also contributes to the
understanding of ICT itself.

Part 3: Conclusions

In the last part conclusions will be formulated

- About how ICT related research should be done in general
- About the nature of ICT, it’s causes and effects

The paper ends with some general implications.

10

Part I: Theoretical Framework

11

2. ICT Research in the Social Sciences

2.1 Introduction

Originaly, work on this thesis sarted with aliterature study on software” and power. Asit turned
out, the scope of the subject was potentidly huge. Software in relation to power can be aresearch
subject in various disciplines, ranging from sociology, information sciences, STS (science,
technology and society) studies and business administration, just to name a few. Remarkably, no
aticle was found tha actudly examined sofiware in relaion to power; Many research articles
featured only smdl glimpses of the technology that they were examining. There seemed to be a
gap in the research. Of course ahigh leve view can be very useful. It should not be necessary to
understand ICT from the firgt to the last bit. But such a view has drawbacks, important detals
can be obscured; it would a least be prudent to mention why a certain level of dgraction was
chosen.

It would be very interesting to research the way socid scientists research technology itsdlf.
However, tha is not the main god here: The am of this chapter isto illustrate how easy it isto
perform an eaborate sudy on technology and till missimportant aspects of it. From thiswe can
draw conclusions about how it can be done better. But first, we differ between severd types of
research questions.

2.2 Research orientations

Auguste Comte, one of the founding fathers of the sociologicd discipline, divided sociology in
two parts. gatics (on structures) and dynamics (on processes) (De Jong, 1997). In his thinking
Comte was influenced by successes of the scientific method in other disciplines such as
mathematics and physics, For example, the movements (dynamics) of the planets (statics) could
be predicted with great accuracy. Although the scientific method was never as successful in
sociology as it was for physics, the digtinction remains useful. When seeing society as a dynamic
dructure it follows that we can ask two types of questions:

- Process oriented questions such as, “How does an organization evolve over time?”

- Structural questions such as “What is the structure of an organization?”
In reality these questions are often combined; For example the book ‘Structures in Fives’
(Mintzberg, 1992), on designing effective organization structures, does not only describe
organization structures but also explains how an organization changes its shape. This doesnt
mean that there is not a logical order in which the research should be done: In general it’s hard to
examine change if you do not know what it is that’s changing. In quantitative research, structural
guestions logically predate process questions. When someone creates a conceptual model, where
different concepts influence each other, the first step is to define those concepts (Neumann,
2000).

2.3 Meta study on power and information technology research

An exemplary study on software and power was done by Jasperson e.a. (2002). The article
(Review: Power and Information Technology Research: A Metatriangulation Review) is a meta
study of 82 other research articles that deal with power and information technology. In the
introduction the authors conclude that

2 Chapter 5 contains more precise descriptions of ICT and software.

12

"In general, MIS (Management Information Systems, AvC) researchers have focused on three broad

Study topics:

(1) Impact of IT,

(2) Development, deployment, and use of I'T, and

(3) Organization and management of I'T resources including centralized | decentralized governance

structures (Orlikowski and Barley 2001).

We incorporate these three topical areas by examining research that investigates IT Impacts, Deployment

or Development, Management or Use (ITIDMU)."
This might seem an adequate and broad description of IT issues. But on closer examination one
could notice that something very fundamentd is missing: What it says is that basicdly, 1T itsdf
never was the study of research, only it’s impact, development, deployment, use, organization and
management was conddered. (Indeed, a managerid perspective, but a vison tha is most
definitely not limited to managers.) Next, Jasperson ea sate:

"Our purpose is to

(1) Explore the paradigms that have been used to investigate power and I'TIDMU,

(2) Describe patterns that have emerged in previous research on power and ITIDMU, and

(3) Use the disparity and complementarity across paradigms to develop metaconjectures about the

relationship between power and the specific constructs within ITIDMU. "
Again, not power and IT is researched, but power and ITIDMU.
Subsequently, the authors move on to the description of the ‘lenses’ through which the research
is being done, or more simply put, points of view. Two pairs of lenses are used, the first deals
with technology, the second with power. The lenses are divided between technological,
organizational and emergent lenses. All three deal with the causal relations between technology
and organizations:

Lens Orientation/Viewpoint

Technological The impact of technology in an organization. Is
there evidence of technological determinism?*

Organizational How an organization chooses the technology it
uses
Emergent Usage of technology as a process determined by

both organizations and the technology itself

Table 2-1: Research lenses

Again, to the inattentive reader this is as an adequate set of lenses. In general, given two topics IT
and O we could examine whether any one of

IT—>0

IT<—O

IT~O
holds true and in which conditions.
But regardless of the relation one assumes, IT is never studied. No one uses IT as his or her
research unit. The articles examined in the meta study do #oz study IT and neither does the meta
review.
What is actually ICT, is it the computers, the software, the IT department, the Internet and the
people who are using it? We cannot say. If one is to understand anything about IT, then it must
at some point be the focus of research itself.

31T can be considered equivaent to ICT.
4 See section 4.2 for more information on technologica determinism

13

Another problem is that research that doesn’t examine IT itself has the built-in tendency to
focus on larger organizations. These have naturally
- More software
- Alarger IT budget (possibly spent on social research!)
- More IT related problems (having to integrate all these software packages)
The Jasperson paper is again a good example. Although this article is intended as a meta study
and should offer a wider view on power and information technology it still suffers from what
could be called the "large organization and management perspective” bias. People at home use
software, as well as do small business and sport clubs. From this viewpoint, many studies are
lacking.
Some further research seemed to confirm that IT is seldom the core subject of research,
see for example (Orlikowski & lacono, 2001):
“The field of information systems is premised on the centrality of information technology in everyday socio-
economic life. Yet, drawing on a review of the full set of articles published in Information Systems Research
(ISR) over the past ten years, we argue that the field has not deeply engaged ifs core subject matter--the
information technology (IT) artifact. Instead, we find that IS researchers tend to give central theoretical
significance to the context (within which some nsnally unspecified technology is seen to operate), the discrete
processing capabilities of the artifact (as separable from its context or use), or the dependent variable (that
which Zs posited to be affected or changed as technology is developed, implemented, and used). The IT artifact
itself tends to disappear from view, be taken for granted, or is presumed to be unproblematic once it is built
and installed.”
Orlikowski & lacono provide the following solution to counter this problem:
We believe that to understand these implications (intended and unintended, for individuals, groups,
organizations and society - AvC) we must theorize about the meanings, capabilities and nse of IT artifacts,
their munltiple, emergent and dynamic properties, as well as the recursive transformations occurring in the
varions social worlds in which they are embedded. We believe that the lack of theories abont IT artifacts, the
ways in which they emerge and evolve over time, and how they become interdependent with socio-economic
context and practices, are key unresolved issues for our field and ones that will become even more problematic
in these dynamic and innovative times...
We will differ from this view, because it can be read as yet another call to evade IT: It is not the
IT artifact that needs to be studied; it must be zieorized, With this in mind we can sum op the
conclusions.

2.4 Conclusion

There are several pitfalls to avoid when researching technology from a social perspective. In
general researchers have a tendency to focus on context, rather than ICT itself and to research
processes rather then structures. The research unit is almost never ICT itself and large
organizations are favored. This does not lead to an adequate understanding of ICT. It follows
that this situation can be improved if we examine the structure of ICT itself. Only then can we
study its effects. A small theoretical framework can be helpful in the research, but it should be
noted that the most progress is possible only if we focus on ICT rather than on theory.

14

3. Social Aspects of ICT

3.1 Introduction

In Chapter 2 we saw there is a tendency in sociologicd IT research to focus on contextud
processes rather than IT gructures. Thus, socid research seems to favor ‘soft facts” over ‘hard
facts’.

In this chapter we look in the opposite direction: It is argued that computer science and other
related disciplines (such as software engineering or information sciences) focus on hard facts
rather than soft facts; However, such a view isn’t necessary better than the social view: Many
‘hard’ disciplines are not purely exact sciences. For some part they are — as many other disciplines
— social constructions, although their constructedness is hidden behind a facade of rationality.
The same holds true for the application of their knowledge in software. It follows that social
scientists researching ICT must also study software in detail: It is not a pure technological artifact.

3.2 The rationality of computer science

Earlier in section 2.2 we saw that Comte envisioned sociology as a real science, like physics or
mathematics, but that this idea was never fulfilled. We can ask the same question about computer
science and related studies: in how far are they in line with positivist ideas of science, in how far
are they rational?
There are several arguments to support this hypothesis:
1 Computer science is applied science, basically an extension of mathematics
2 Computer science is about performance, efficiency, improving algorithms, all of which
are — to some extend - quantifiable and testable.
3 Software creation is nowadays a solid, well-defined process resulting in standard
applications that fit into a neat multi-tiered architecture.
These will be addressed in the next sections.

Argument 1: mathematical basis

Unlike sociology, computer science has a solid mathematical basis in the form of the Church-
Turing Thesis, developed in 1936 by Alonzo Church and Alan Turing. (Wood, 1987) It claims
that a Turing Machine, a theoretical type of computer, can carry out every effective computation.
Modern computers are equivalent to Turing machines in the sense that every computer can
simulate any Turing Machine and each Turing Machine can simulate any other computer.

This equivalence has some far running implications:

- All algorithms can (at least theoretically) run on any type of computer and we need not
concern ourselves with any particular type of system or structure. Of course, some
computers are faster than others, or have more storage capacity than others, but these
differences are not fundamental.

- Asecond consequence of the Church-Turing Thesis is that connecting two computers in
a network does not really generate a new type of computing — so much for the ‘real’
Internet revolution.

- Another consequence is that the difference that is usually made between hardware (the
physical items that make up a computer) and the software (the bits and bytes representing
the data and programs) is blurred. We can use a computer from the 1970s to run a
program created on brand new computer — and vice versa. A whole range of software
called emulators OF virtual machines is available to simulate old hardware. Hardware is in this
sense very soft and software can be as hard as hardware.

To summarize: this mathematical basis is so solid that on top of it everything else could be
considered a human construction.

15

Argument 2: performance and efficiency

A refutation of the first argument could be that some ways of computing are more efficient than
others. The Turing machine has no predefined speed or storage capacity but these do matter in
red life. If we want to sort a collection of numbers there are various dgorithms to do so°.
Logicdly those that are faster and more efficient should be more widely used. To some extend
this is true — but the for most applications, the immense increase in computing power over the
last decades have put less emphasis on this type of efficiency. Other goals have become more
important, such as maintainability and security. For example: Compare the creation of a database
with the creation of a hotel booking system. The first can be examined in a strict manner: how
fast is it, how efficient? For the latter one has to take into account the various practices of hotels
and travel agencies. These practices can sometimes be rational, but sometimes less so.

Argument 3: software development process

The last argument can be rejected on the grounds that in many cases, software development
starts with the user requirements®: These originate in the social world and thus most software
development is driven by needs in the social world.

General counterargument: evolution

A final counterargument is that software itself evolves and this needn’t be a purely rational
process — or outcome. Computer programs generally do not come out of thin air. More precisely,
people create software; they have been building millions of programs in the last decades.
Software is built using existing programs and tools: It is impossible to start from scratch. As an
illustration— below are two graphical representations of a software program at two particular
points in time (Brisset, 2001).

Figure 3-1: Graphical representation of the changing
structure of a software program

These structures show the relations between parts of the program. The exact meaning of the lines
and dots in the pictures will not explained here, but hopefully the pictures convey the fact that
software programs can be very complicated structures that evolve. A new version is created with
the previous version as a point of departure. If the software is sufficiently complex, it is likely that
most parts do not change; Change takes time, involves the risk of making errors and if a part is
deemed adequate there is no need to change it. Thus software evolves slowly and programs are
built in dependence of each other. How much rationality is there after so many decades of
evolution?

3.3 The relation between ICT and the social world

In fact, there are very good reasons to examine software from a sociological perspective.
Software has been evolving for several decades now — and we can do research about what sort of

5 Including bubblesort, quicksort, heapsort to name afew — the exact working is not relevant here

6 For more on the software development process, see Section 5.3

16

dructure has been created during that time. Each piece of software could be seen as a sort of
ontology, which results in more (and digitaized) knowledge about society, or more smply, how
things work. As any socid congtruction, this ontology is partly seif fulfilling - usng software is 1o
some exctend accepting it's ontological points of departure. NO doubt some things are ‘real’, even before the
age of computers there were employees and taxes, but others are less so. Along with computers
new things as ‘email’ and ‘database’ and ‘user’ arrived. But for anyone who builds or uses
software these days, users and email are very much real items. Thus the virtual becomes real, or
“real virtuality” emerges. (Castells, 2000) People try to capture reality and depict (‘map’) it onto
software that in turn becomes part of reality itself.

How much do ICT and the social world differ from each other? As said before, ICT
transforms physical processes to digital ones. Arguably these do not correspond completely.

Let’s first look at the similarities: Inside algorithms some form of information or
knowledge is encoded, possibly related to the social world. This can also be seen as a social
process: Every software program has a creator(s), who holds certain ideas about society and how
it works or should function. The program is constructed to perform certain tasks in that same
society. During this construction, a bit of the creator’s knowledge about the outside world slips
into the program: it is required to let the program successfully complete its task. For example, a
payroll system must contain some knowledge about employees and tax regulations. There must
be some similarity between social and digital processes: You cannot create a program for filing
you tax form without any knowledge about laws and regulations. A spell checker has to contain
knowledge of the user’s language. In other words: The program is a (limited) model of the real
world.

This doesnt mean though that there is a need for an exact 1:1 correspondence between
physical (social) and digital (social) processes. If there were an exact match, why would someone
build something (spend time and money) to recreate something that already exists? It would be
more logical to try to optimize existing physical processes, make them more efficient, better
manageable or simply develop something that is totally impossible in the normal physical world.

Secondly it is likely that the properties of ICT itself tend to change physical process. For
example processes are always speed up, simply because the possibility is there. Slow social
processes thus could become faster— even if this is not beneficial.

ICT is thus located between two extremes:

Usefulness
and likelihood
of ICT

No correspondence Tota correspondence

Correspondence between socia and digital processes

Figure 3-2: Correspondence between social and digital processes

7 The exact differences between data, information and knowledge are not deemed important here

17

3.4 Conclusions

We have seen that ICT is not just atechnicd artifact but contains alot of sociologica aspects. In
fact, on top of a solid mathematicd basis everything could be considered a socid construction.
Software evolves out of exigting software and changes are weighed for their usefulness in society.
Thus it becomes arelevant research subject for socid scientids.

18

4. Technology

4.1 Introduction

In the previous chapters, we concluded that ICT is sddom the subject of social sciences’
research, but that it should be, because there are many sociological aspects in ICT.

We can now try to avoid the pitfalls and build a small theoretical framework for the study of
technology (and later especially for ICT). It is important to focus on structure and not only on
process; this cannot be done without a proper understanding of the concept of technology itself,
of which ICT (information and communication technology) is a part. This chapter examines the
concept of technology and its relation with society. But first we start with some views on
society’s evolution.

4.2 Society’s evolution and it’s causes

Obviously, society has changed enormously in the last 10.000 years; it is also clear that
technological developments are an essential part of this process. Society has it’s origins in the
past, evolving from societies based on hunting and gathering to horticultural and pastoral,
agrarian, industrial and finally into the post-industrial information based societies that millions of
people live in today (Macionis & Plummer, 1997). But does that mean that technology causes
changes in society? The three main sociological paradigms (functional, conflict and symbolic
interaction) each look differently (and thus explain differently) to what drives these changes:
Symbolic interaction sees zdeas as the cause for society’s change from a traditional to a rational
one. For conflict theory it is the zechnological and social process of economic production, for functional
theory it is an expanding division of labor and the needs of society as a whole.

Macionis & Plummer hold an intermediate position and see technology as essentially neutral
artifacts that can be put to different uses. They refer to studies done by Gerhard Lenski and Jean
Lenski, who have researched technological changes and call the focus of their work ‘sociocultural
evolution’, the process of change that results from a society’s gaining new information,
particularly technology. According to them, technologies create preconditions for different ways of
organizing society (this is somewhat between the ‘emergent” and ‘organizational’ perspective we
saw in Section 2.3), but it does not mean that technology dezermines society. The latter view is
more commonly KNown as zechnological determinism. But what is technology, actually?

4.3 Technology?
The Oxford Dictionary of Sociology (1998) defines technology as

A term used rather loosely in sociology, to mean either machines, equipment, and possibly the productive
technigue assoctated with them, or a type of social relationship dictated by the technical organization and
mechanization of work.’
This definition doesn’t exactly pinpoint technology. What is does very well though, is to illustrate
the problem that sociologist have when trying to understand technology, and reason with it in
terms of cause and effect.

Example: car technology

As an example, let’s try to apply the definition to cars. Obviously cars are a form of technology,
but so are the people that use them for transportation or the factories where they are constructed
(the productive technique associated with cars).

Using the previous definition, a sentence such as “the use of car technology allowed
people to migrate to suburbs” is problematic: The car technology is inseparable from the people
that use them. If we try to eliminate people from the car technology (and end up with just cars)
we must deal with the problem that the existence of cars alone cannot have any effect, they must
be used by people; people must choose to use them. Does it mean that people ultimately
determine society and not technology? A counterexample is that, living in suburbs with little

19

public transport; people have no choice but to use cars. Their lives are determined by the need for
trangportation, they are dependent on it. To make matters more complicated we could aso point
out that technology does not only dezernzine but is possbly determined itsdf: The human need for
trangportation might have lead to the development of the car technology. Which makes
technology a human congtruction and not ahard physicd thing. Oppostely, we could dso see the
physicd properties of cars (the sted, the engines) as a determinant for car development. Snce
technologicd developments have been going on for thousands of years we can adso see the
devdopment of society as an evolutionary process of the continuous interaction of technology
(the narrow definition) with the people that use them.

Ideas and technology

S far, technology was seen as a physicd atifact but dso as something that is located in usage.
Does this mean that something that is not (dways) used and has no physicd properties cannot be
consdered technology? For example, how should we view idess?

Ldeas as technology

Can idess be aform of technology as wel? Some authors concur with this, for example (Sern,
2004). In ‘Terror in the name of God’, a book on religious terrorism, the author reaches the
conclusion that religion is a sort of technology, “making good people better and bad people
worse”. In this sense, Stern could be considered a proponent of the theory of technological
determinism.

But unlike cars, ideas do not have physical properties. Oppositely it can be argued that
technology is somehow related to ideas: without the concept of wheels, the idea of the
combustion engine and the blueprint for the rear suspension there can be no cars. Ideas are not
exactly technology, but they are surely an essential part of it.

Ldeas as canses and effects of technology

We will now discuss the concept of ideas in relation to technology further. In Section 4.2 it was
mentioned that the symbolic interaction paradigm sees ideas as the driving force behind change
in society. If this is so then ideas also have an effect on technology. Can technology also
determine ideas? It seems possible but we have to separate the idea of technological determinism
with technological determinism itself. This is made clear by (Smith & Marx, 1994) People can
believe that technology influences them — but that doesn’t mean there’ is technological
determinism per se.?

Two extreme positions

It appears that there are two extremes positions for the definition of technology. If we use a
narrow definition of technology than there is a significant difference between society and
technology; If we use a broad definition, they are roughly the same, with the consequence that it’s
hard to break events down in causes and effects. Intuitively, technology should be somewhere
between these extremes: It is neither a pure technical construction — nor is it inseparable from
human and physical influences. In the next section we will try to create a model that reflects these
properties.

4.4 Technology model

Precisely because it’s very hard to pinpoint technology, maybe it’s better to think of technology as
inherently fractured, consisting of interacting parts. This leads to two models, one structural and
one causal (process) model:

8 In their book “Does Technology Drive History?” the authors argue that from its earliest beginnings, the United States had a strong and positive
belief in technology. Applying and inventing technology was supposed to have beneficial effects.

Other good examples can be found in advertising. Most campaigns support some sort technological deterministic thought by emphasizing the
beneficial effects of a product on its buyers.

20

Structural model of technology

Technological element Description

Physicd Thered technicd parts
Conceptud Theidess, the design, the blueprint
Socid The usage, the human interaction

Table 4-1: Structural model of technology

Causal model of technology
Next, we can identify five types of causes and effects.

Cause/Effect Description

Physicd Physicd causes and effects

Conceptud | dess as causes and effects

Socid Humean (inter) action as cause and effect

Technologicd The combined physicd, conceptud and socid
causes and effects

Evolutionary The causes and effects seen as aevolution

Table 4-2: Causal model of technology

Notetha in these modds an ideais not technology itsdlf, but it can be apart of technology,
influence technology, or be created because of technology.

4.5 Technology as enabling and constraining

Now that we have seen the difficulty of grasping the concept of technology, it’s time to introduce
two ever-present properties of technology: enabling and constraining (Metselaar, 2000).
Technology makes things possible but limits at the same time. These properties are often two
sides of the same coin: Cars make it possible to travel between home and work easily, but
constrain the options of urban planners at the same time, because they must include parking
facilities for each new block that is created. Note that the constraining is not limited to physical
actions but can also be applied to thought processes: If you have a car you might never consider
moving closer to work. These properties are thus an alternative way of looking at the effects of
technology.

4.6 Conclusion

The concept of technology is difficult to grasp for sociologists, narrow and broad definitions can
be used. In this paper technology is seen as a construct of three different parts: physical,
conceptual and social.
Causes and effects of technology are divided in five:
- Physical, conceptual, social
- Technological: the combined causes/ effects of the physical, conceptual and social parts
of technology
- Evolutionary: the causes/ effects of the continuous interaction between the parts over
time
Technology always includes the causal effects of enabling and constraining: It allows you to do
things, but limits you as well.

21

5. ICT

5.1 Introduction

In Chapter 3 we saw tha ICT contains a lot of socid dements, in Chapter 4 a modd of
technology was created tha indluded socid eements. We will now continue with a specific mode
for ICT. But first ICT is defined.

5.2 What is ICT?

Terminology

ICT is an acronym for information and communicaion technology. Basicaly, information
technology dlows complex cdculaions to be peformed very quickly; Communication
technology dlows daa to be exchanged very quickly. As such, ICT is an accderaor, which
speeds up physicd processes after they have been transformed into digita ones. During this
transformation, processes are dtered and thus digitd processes differ somewha from the
physicd ones. Other common terms used in conjunction with ICT are IT and software. These
terms will not be used here, IT more or less equals ICT nowadays and ‘software’ is comparable to
the term ‘program’”.

5.3 ICT model

How should ICT be modeled? There is no shortage of models in relation of ICT. In fact,
modeling itself seems an important aspect of creating programs. Many types of models can be
used, for example representing the inner workings of applications (class diagrams), the network
structures, program components and their interaction (Booch, Rumbaugh, Jacobson, 1999) or the
evolution of ICT in an organization (Nolan, 1979). Some of these models are quite complicated,
possibly unnecessarily so. Thus, we will first enumerate the requirements for the model. This
allows us to leave out the unnecessary parts. In fact there are just two requirements:

- The model should allow us to locate (parts of) ICT

- The model should allow us to locate ICT cause and effect relations

Structural models
Based on the general model of technology we can split the ICT into three distinct parts, namely
programs, hardware and applications.

Applications

Part Technological part
Hardware | Physical

Program Conceptual
Applications | Social

Figure 5-1: Structural model of ICT

- Programs consist of algorithms, executable code, basically collections of bits and bytes
residing on some sort of medium that specify calculations. A more common term is of course
software.

- Hardware is the physical component that is capable of executing programs.

22

- Applications are programs running on hardware within a socid context. That is, humans use
them.

In its turn, programs consst of features, different parts that could be executed separatdy if the

program was executing. A feature could be anything, for example an editor has afeatureto cregte

anew document or to print an existing document.

Program

Feature A | Feaure B

Feature C | Feature D | Feature E

Feature F | Feature G | Feature H

Table 5-1: Schematic overview of a program consisting of different features

Why splitting gpplications into feetures is essentia we be examined in the next section.

An additiond benefit and judtification of this modd is that it corresponds to the way
vaue is created in the IT industry: Organizations can make a profit sdling hardware (such as
processors, harddisks), software (operating systems, spreadsheets, games) and applications
(software that runs online, such as search engines). The latter way of cregting vaue is cdled the
ASP modd, (short for Application Service Provider), or more recently SaaS (Software as a
Sarvice). The application is a service that customers can use; yet the customer doesnt owz the
application itself; he is given a usage license for a particular period (a year) and/ or a transaction
volume (storage capacity).

Software development and architecture

To be precise we must mention that the previous model is somewnhat lacking: ICT is not simply a
‘three part monolithic whole’. In any given setting there is never one program, one piece of
hardware and one application. There are multiple pieces, each interacting with each other. This
doesn’t become a mess though, because most ICT is developed in hierarchical layers. Dividing
ICT into distinct parts (modules, libraries) is an effective way to reduce (and conquer) the
complexity. Separate parts that focus on special tasks are easy to replace, develop and test. A high
level architecture is the so-called three-tier model (Fowler 1999):

Layer Task Typical
Program

Presentation | User interaction | Webbrowser

Application® | Logic, calculation | Webserver

Data source |Data storage Database

Table 5-2: Logical application tiers

Each of these layers should only communicate with its nearest members: The presentation layer
doesn’t communicate directly with the data source. This makes it easier to replace parts without
disrupting the whole. In fact the entire hierarchy has two more parts: The actual hardware and
the operating system as a sort of abstraction for the communication with the hardware. The
complete picture is given below:

Tier Typical Program
/Level

Presentation Webbrowser

Application Webserver

Database Database

Operating system | Operating system

9 The term ‘application layer” is confusing: In normal speech (as elsewhere in this paper) an application consists of all three layers (data,
application, presentation)

23

| Hardware | Hardware |

Table 5-3: Complete architecture

Process models
The models described previoudy are not exactly causad models, in the sense that Part A or event
A caunses Part B or event B. Instead A aways predates B because of some reason.

Technological model

Hardware is used to creste programs and goplications. Naturdly, a program predates an
goplication. In the software development life cycle the requirements guide the development of
programs. Asfor the effects of ICT on society, programs are supposed to have an effect in so far
they are used within asocid context. If no one uses aprogram than it can have no effect. Effects
‘work’ through features: A feature that is not present in a program cannot be present in any
application. The reverse is possible though: it could be disabled in a certain situation.

Software development life cycle model
How should the software development process (the life cycle) be organized most effectively?
There are dozens of versions of the software development life cycle; take for example (Ghezzi,
Jazayeri, Mandrioli, 1991) below is the (ideal) process of the so-called waterfall model:

1) Feasibility study

2) Requirements analysis and specification

3) Design and specification

4) Coding and module testing

5) Integration and system testing

6) Delivery and maintenance
A key footnote to this model is that software development generally does not halt at phase six;
several iterations of this process (or cycles) might be necessary to achieve the desired results.
Every iteration can provide useful information (feedback) for the next phase. Depending on the
particular development method an iteration can be as short as few minutes and as long as a whole
year. But in every iteration program are altered, which thus slowly evolve:

al

- Feasibility study

- Requirements andysis and specification

- Design and specification

- Coding and module testing

- Integration and system testing

Figure 5-2: Graphical representation of the software development lifecycle

24

Additional benefits of the technological model

This mode helpsto undersand severd things First it illustrates clearly why sociologicd views of

ICT are often incomplete (as is the norma computer science view):

- Sociology tends to look & running applications within the socia context of an organization,
without looking & the underlying progran structure.

- Computer science (and related disciplines) look too much & programs without paying atention
to their constructedness, ignoring that their evolution takes place through usage as applications.

Secondly it identifies causd relation inside | CT itsdf. This property will be used laer.

5.4 Conclusion

The physicd, conceptud and socid parts of technology dso exist in ICT: They are hardware,
programs and gpplications. Programs are cregted in iteraions or cycles. ICT itsdf is organized in
ahierarchicd layered way.

25

6. Research Approach

6.1 Introduction

So far we have concdluded the following: ICT research in the socid sciences tends to ignore ICT
itsdf and focus on its context. Ironicaly, abig part of ICT isin fact socid in naure; this provides
agood reason for socid scientiststo study ICT.

Then, we investigated what ICT actudly is We saw that, ICT, like other technologies,
congsts of three parts, physcd (hardware), conceptud (programs) and socid (gpplications).
Logicdly, the next questions are aout how ICT was constructed, and what its effect are on
society. In this chapter we will determine how these questions should best be answered.

6.2 Research requirements

Previoudy, the causes and effects of technology were split in five parts (physicd, conceptud,
socid, technologicd™ en evolutionary™ causes and effects). We will firs examine severd
important causes of I1CT, to find out how we can best setup the research.

Technological / social causes and effects

The mogt interesting question that we would like to answer is about technologica determinism:
Does technology shgpe society? If there is no technologicd determinism, people are free to
choose any type of technology that suits them (and they are not limited by it); on the other hand,
if there is technological determinism their wishes are not relevant, because there’s only a limited
amount of options available to fulfill their needs.

If we want to assess this, we need to find a category of social requirements that is ever
present but which contains a lot of variety. We could than investigate how the variation in
requirements is transformed into ICT: If they are all mapped onto the same structure this could
be evidence of some sort of technological determinism.

Evolutionary causes and effects

To research evolutionary determinants it would be important to study ICT artifacts with a long
history. For example, if we research cell phone applications we effectively split the whole ICT era
into three parts:

- A past when there were no such applications

- Apresent when there is such an application

- A (possible) future when such applications will not be there (or will be heavily modified)

We might derive that these applications allow the tracking of cell phone users — and possibly
cause a reduction of privacy. But how can we generalize these conclusions into the past and the
future? Do they not only hold for cell phone applications? It would be helpful to find an aspect
that is somehow always present.

Other requirements

Concerning the usage of ICT, we can add that we should not only study ICT used in large
organizations but also pay attention to the smaller ones, or even to ICT in use by individuals, this
is not done often enough (see Chapter 2).

A final requirement is that the studied ICT artifact should be sufficiently simple: we do not
want to spend more time on technicalities than necessary (and a too complicated subject makes it
difficult to generalize).

10 The combined physical, conceptud and socia causes and effects
11 The causes and effects seen asaevolution

26

We conclude that we need to study I CT artifectsthat:

- Areshaped by socid requirements with sufficient variaion

- Havealong history

- Arein useby large and small organizetions

- Areaufficiently smple

All in dl this gpproach should deliver results that can be eadily generdized to other ICT artifects.

6.3 Sociological elements: Enabling and constraining

Remembering that most ICT will be useful to some extent — what type of usefulness will remain
over time? During your interaction with ICT you have to submit to its rules, no matter how loose
they may be. These can be as simple and explicit as a certain workflow (or wizard) that you have
to execute, or as subtle as a particular line of thought that is imprinted on you, for example that
it’s easiest to write everything in English because only an English spell checker is available. Such a
feature enables — but it also constrains.

As said before, technology enables and constrains. In fact, it is precisely the constraining
requirements of ICT that remain: If an application is used in a social context it’s value can
diminish if anyone can get unlimited access. This was as true in the past as it is now; and will be
equally true in the future. It must be possible to turn features on and off.

A simple example is that of an application that keeps track of cars. Users can lookup a
license plate and find out information about cars. Such a system can be very helpful to the police;
it could exable them to find out whether a particular car has been stolen. However, the system will
loose its value when everyone is capable of changing data inside it. As people with ulterior
motives (or simply lacking a proper understanding of the application) gain access the data
becomes less trustworthy. It is the constraints that create the added value. In fact it would also be
possible to charge users for the information in the application; Someone who buys a car might be
willing to pay a fee to lookup whether the car has sustained any damages during it’s lifetime.
Again: limiting access creates value.

Note that access is between two extremes: If everyone gains access the application
becomes valueless but this is also the case if no one gets access. Derived from the constraining
requirement is the need for human interaction with the application. ICT does not work in a
vacuum; it interacts with people in society. Now we have a sociological starting point for the
study of ICT.

6.4 ICT: Authoring and publishing systems

To study ICT it would be best to choose simple, widely used programs that are similar in
function and of which there is a great variety. Applications such as forums, content management
systems and blogs are therefore good research subjects, especially once you consider the fact that
the Internet as a whole is a huge authoring and publishing system. The constraining requirements
vary quite a lot: Some programs strive mostly for control (content management systems) others
for freedom (blogs, wikis). Furthermore they have a relative long history (the world wide web is
over 10 years old).

Yet there are other reasons why authoring and publishing systems are such good subjects.

Let’s begin with imagining that, for example, we were to study the guidance systems of
cruise missiles. This would make research very difficult. The military nature of cruise missiles
means that we would be confronted with issues such as non-disclosure agreements, background
checks and probably a lot of politics. It is questionable whether we would be allowed to publish
the full results.

Even more problematic, it would be doubtful if someone would understand the
conclusions, since missile guidance systems expertise among most people is fairly limited.

27

Furthermore how would we generdize our results, would they not only gpply to the cruise missile
systems?

Turning to authoring and publishing systems we get a completely different picture. They

are in use by dmost everyone, be it active (writing, cregting, publishing) or passive (reading,
viewing), to look up the latest news, write articles or soriesfor study, work or maybe just for fun.
There are various types of authoring and publishing systems including porzals, content management
systems, wikis, forums ad blogs. This software usage is not limited to the military: Individuas use it,
as do families, foundations, smal business, multinationa companies and so do governments as
well asthe UN.
The interesting thing is that authoring and publishing systems scde very well, from one individud
to the biggest organization, from one page of text to a million. We could research perfectly well
what happens when we increase the amount of textsin a sysem, or dlow more people to work
together on the same texts. In contrast, software that addresses the needs of a human resource
department is typicdly used by organizations tha have HRM departments in the first place,
which usudly means tha they employ fifty or more people. This makes it hard to track how
organizations function with fewer than fifty people, and what hagppens if they grow beyond this
threshold.

Another reason to use authoring and publishing systems is that the publishing process
they facilitate has been around for quite a while. Long before the age of computers people were
writing, printing, distributing and reading texts. Looking & the proliferation of IT we can see
what part of this processis dtered or afected by I T - and possbly more important - which part
is not. Of course, with some imagination one can compare missile guidance systems to ice age-
men throwing javelins, but alot of programs do not have a clear non-digitd equivdent. (Wha is
the equivdent of aweb-browser, an operating sysem?)

Furthermore, the nature of certan software sysems makes that for practica purposes
there will only be afew of them. Auction software is a good example: The bigger an auction site
becomes (i.e. the more items are offered) the more interesting it becomes for both sdlers and
buyers. This reduces the amount of subjects to do research on. It dso means that the difference
between the program and its usage blurs: the program s in fact the running gpplication. Thereis
not necessaily (or likely) another company tha uses the same software program to fulfill
different needs. Therefore we would not be ably to research the impact of a certan program on
an organization. In contrast, there’s a plethora of authoring and publishing systems that are
specially adapted to specific purposes, in use by many different organizations.

6.5 Conclusion

In this chapter we have formulated the research approach for the study. We should find a
sociological theme that can be identified in ICT. The ICT artifacts that we study should have
sufficient variation, have a history, be in use by large and small organizations and be sufficiently
simple. It was concluded that focusing on the enabling and constraining properties of authoring
and publishing systems would offer good changes of fulfilling these requirements.

28

7. Control (Enabling and Constraining)

We will now further examine the concepts of enabling and constraining. Obvioudy, enabling and
condraning hasto do with sociologica concepts such as power and control: Who constrans dso
controls. To identify parts in ICT that are rdevant to the topic we must firs know how to
identify them: Therefore we discuss afew sociologicd theories on power and control; with these
in mind we can again look & the software.

7.1 Power and control in sociology

To examine the sociologicd perspective we will discuss two distinct views on power.
Thefirst view isfrom Weber (Macionis & Plummer, 1997). Weber defined power as the ability to
achieve desired ends despite resstance from others. Power can have its basisin force (physica or
psychologicd) but these forms are not conducive to a society’s stability. A stable society requires
authority, meaning power perceived as legitimate rather than coercive. There are three basic
sources of authority:
- Rational-legal, power legitimized by legally enacted rules and regulations;
- Traditional, power legitimized through long established cultural patterns;
- Charismatic, power legitimized through extraordinary personal abilities that inspire
devotion and obedience.
Weber sees rational-legal power, as the basis of the bureaucracy and a successor of traditional and
charismatic authority.
Lukes (1974) created another theory on power. His view is that power is not always observable;
there is not always resistance from others that can be detected. Basically there are three levels on
which power can be wielded.
1. Exercising of power through decision-making and observable behavior.
2. Applying power to prevent decision-making (a so called non-decision). For example by
controlling the ‘agenda’, people prevent certain issues to be discussed.
3. Affecting other peoples’ ideas and thoughts about a certain issue: Note that these might
not even be aware that power is exercised over them.
The first dimension is obviously the most visible and the third is the most difficult to detect.

From these definitions it is obvious that some forms of power are subtler than others. Is
resistance (as in Weber’s definition) a fundamental aspect of power? If someone operates at
Lukes’ third dimension no one might ever notice that he is being coerced into doing something.
And following Weber’s own definition, you might be very much willing to abide to the wishes of
a charismatic person.

In relation to enabling and constraining we can say that both enabling and constraining
can be goals that someone wants to achieve. These do not have to be explicit — someone can be
constrained without knowing it himself. The constraining part seems to be the best visible: If
someone decides someone should »oz be able to do something than this is more visible than if
someone a/lows someone to do something new. This visibility (or lack thereof) has implications
for the research design: It’s easiest to focus on structures that explicitly constrain people.

7.2 Identifying power and control in ICT

Both Lukes and Weber see power as a relation involving people, in the sense that person A has
power over person B. A needs B to achieve his goals or A decides for B.

At a first glance such a line of thought seems logic, but on second thought it becomes
problematic. For example, it could be the case that A finds a way in which he does not depend
on B to achieve a certain goal. A is certainly not powerless in this case; you could even argue that
he is more powerful, since he doesn’t need B’s compliance. Another possibility is that A
substitutes B for a machine or device. In both cases there is no direct relationship between

29

person A and person B, but common sensetells usthat A has power nonetheless. D oes machine
B dso has some sort of power over A? Does B have any gods? In this pgper we will choose an
ingrumentd view of ICT: It has no gods itsdf but is used by people to enable and congtrain
others.

Note tha when we examine ICT (instead of it’s context) there are no actors, no goals and
therefore power cannot be identified: There is only control over what can and cannot be done.
Control can be examined: What is the structure of control? How does the control structure
change?

Hierarchy of control
A key question is the hierarchical nature of control: Does one group control another group more
than vice versa? How is a hierarchy constructed and how does it change?

7.3 Identifying control elements in ICT

First, let’s theorize on what types of control could be exercised in ICT. As a starting point we can
differ between four types of control. These types are not mutually exclusive (and thus somewhat
arbitrary) but they do clarify what and how things can be controlled.

Control over tasks

At a certain moment someone might want to lookup a license number; or create a new entry for a
car. We have now two tasks in our system:

- Lookup a license number

- Create a new entry for a car

These could either be allowed or denied to someone.

Control over data

We could also take another approach and look at the license plate information. For example the
application contains information from various countries; Normal users can only lookup or
change data from their own country;,

Some people can only lookup data (such as Interpol) while others can only edit data. No one can
every delete data.

Control over delegation

Another option is to investigate who can delegate control to others; someone must be able to
grant another person access to the application or deny it in case of abuse. We could call this
category “control over control”: who controls the controller and who decides what controlling
mechanisms are used?

Control over process

We could image a sort of flowchart of operations. A car can only be reported stolen by a person
who is known to the system as a police officer. He has to fill in a detailed report of the
circumstances. This report has to be authorized by another person. The car now gets the status
stolen. If the car is found then another report must be made where the card was found and how
identification was possible. It is not possible to remove cars from the database.

7.4 Implementing control in ICT

Control over tasks

Role based access contro/
How do applications constrain what people can and cannot do? A very common method is so
called role based access control as, for example as described in (Ferraiolo, Kuhn, 1992 p. 4):

“A role can be thought of as a set of transactions that a user or set of users can perform within the context
of an organization. Transactions are allocated to roles by a system administrator.”

Thisisillustrated below.*

Transaction Role
N
|~

Figure 7-1: Role based access control

For example, in ahospita system we could have the roles of patient, doctor and nurse, which al
perform different (and possibly overlgpping) functionsin the system.

A person is given arole, and based on that role he can perform severd functions. Thisis

done for practicd and efficiency reasons. if we assign dl the functionsto individud users instead
of groups it would be hard to change the sysem and the chance of errors would be higher.
(Imagine an organization with athousand employees and a hundred functionsl)
Notice people can be in multiple roles a the same time a doctor can & some day become a
patient. This can pose a problem: we don’t want an accountant (who has to check a company’s
balance sheet for irregularities) to have the role of treasurer at the same time. This is a role
conflict, and some systems can enforce rules on them. If you had role A you can never access
anything that you could access using role B. This is called a ‘deny’.

In practice another term is used, that of a group. One system’s group is another systems
role and vice versa. The difference is not very clear. In practice roles tend to be sort of static and
groups more dynamic. An organization can add groups to an application but the roles usually
remain the same.

Access control lists

An important question is at what level we apply these functions. As cited earlier: “4 role can be
thonght of as a set of transactions that a user or set of users can perform within the context of an organigation.”
Sometimes that’s just not good enough, we might want to specify access to an zndividual patient’s
medical record, NOt TOr all patients’ records in the hospital. This type of access specification is most
common in file systems, where it’s usually possible to specify access to an individual file. For
example a document can only be changed the author, who can also specify access hierarchically
and set the permissions on the ‘thesis folder’ that contains the paper. For more information on
this specification type see (Custer, 1994).

Control over data

)
3 3
L))

Does the content itself have to be included in the research about control? The answer is yes. To
find out why this is the case we need to look close at content structures. First of all, let’s assume
that our world consists of pieces of text, which have no connection with each other.

Figure 7-2: Mesh of unconnected nodes

12 The diagranming technique for thisimage is explained Appendix C.

31

No we gart connecting those pieces, forming awhole network (in mathematica terms agreph).

==l
o]

Figure 7-3: Graph
This is not necessary a hierarchicd structure, in fact, a hierarchicad structure is a specid type of
graph.

Figure 7-4: Hierarchical graph with root

Now we can remember the access control list type of control: Access tha is specified for a
certain item. In a hierarchica structure, if someone has access to the top level he is implicitly
granted access to the nodes a the lower levels. Therefore ahierarchica content structure dlows a
hierarchica form of control. In the example: If one is given access to node A one automaticaly
gets accessto nodeB,C and D.

Let’s now take a look at the depth of a hierarchy. In the first example, a book consists of
chapters that are organized into paragraphs, resulting in a fixed three-layered structure.

Book . o Chapter . o Paragraph
= =

Figure 7-5: Fixed three-layer hierarchy

In some circumstances the depth of the hierarchy is less fixed. For example, we could
have paragraphs (1.1 — 1.10) containing subparagraphs (1.1.1 — 1.1.10) containing other
subparagraphs (1.1.1.1, 1.1.1...10) and so forth.

Two key differences are:

- In terms of graphs, in the first example we have three node types, in the last one there are
only paragraphs.

- The first example does not allow a repetition of node types in its graph. A book cannot
contain another book. But paragraphs can contain other paragraphs.

32

Paragraph

Figure 7-6 Unlimited depth hierarchy

Thus, some database structures (or parts of it) have a fixed hierarchical depth while others’ depth
is arbitrary.

Content structure revisited

To make matters more complicated we cannot simply state that content is either structured

hierarchically or not. This is because ICT is layered (see section 5.3). For example, it would be

possible for an application to read data from the database, convert it in some way and present it

in a totally different way to the user. Or, because the webbrowser of the user resides at his

computer, the user can determine the content presentation by himself. What if any — would be

the ‘real’ content structure?

The answer is that although it’s certainly possible to have a three (or more) layered structure

where the content has a different representation at each level, in practice this doesn’t happen that

often and the content structure is determined at two levels:

- Database level: The database structure, where the content is split over different tables,
containing records

- Application/ Presentation level: We would call this the ‘textual level”. Each piece of text in the
database can itself contain a hierarchical structure. For example an application can put all
texts into one table with no links to itself (and thus a non hierarchical structure) but store the
text as a hierarchy:

Content
ID (Primary | Text
key)
1 « Land plants (embryophytes)
o Non-vascular plants (bryophytes)
= Hepatophwta - liverworts
= Anthocerophyta - hornworts
= Bryophyta - mosses
o Vascular plants (tracheophytes)
= Lycopodiophyta - clubmosses
= Equisetophyta - horsetails
= Pteridophyta - "true" ferns
= Psilotophyta - whisk ferns
= Ophioglossophyta - adderstongues
» Seed lemts (spermatophytes)
tPteridospermatophyta - seed ferns
= Pinophyta - conifers
= Cycadophyta - cycads
= Ginkgophwyta - ginkgo
= Gnetophyta - gnetae
= Magnoliophyta - flowering plants
2

Table 7-1: Hierarchical content inside a database text

The database structure is normaly not changesable by the user; it can only fill it with data But it is
possible to create one’s own structures in every piece of text that is stored. So if we have a
hierarchical database structure we can create or own non-hierarchical structure on top of it. And
the other is also possible — we can potentially create a hierarchical structure on top of a non-
hierarchical one.

Control over delegation

Some people must be allowed to do certain things, but how it this determined? Logic dictates that
some persons must be able to delegate control and grant others access. This is usually
implemented as a special role that someone can have or a task that can be executed.

Control over process

A complication of the role based access control and access control lists is that they lack the
option to specify the process itself: while some functions may (or should not) be applicable at a
given moment, others need to be executed in a specific order. For example, during a patient
registration process in a hospital, the person who does the intake enters the patient’s date of
birth, name and address, and it’s only possible to register the results of any blood tests after
patient registration. We call this wor£flow and some applications can not only determine whar but
also the order in wWhich users execute tasks by presenting (and enforcing) a so called work list.

The Workflow Management Coalition (TYPO3, 2005) defines workflow as follows:

A workflow, or workflow-process defines the predetermined succession of work steps, or activities, executed
by various users of a common system who differ in terms of rights, tasks and access rights. The Workflow
Management Coalition (WIMC, an international association of leading software vendors defining relevant
standards and models) further defines workflow as "the antomation of a business process, in whole or
part, during which documents, information or tasks are passed from one participant to another for action,
according to a set of procedural rules”.
A standard content life cycle probably conld contain the following steps for example:
Create todo — create instance - edit (copy of) existing content — edit copy — submit to predefined
group/ role - review cycle 1-n — release/ publication - live - archive — offline.
The most likely scenario for a workflow process will probably be the review cycles throngh which the system
iterates the status of the content. This conld possibly be any status of “edit, review, publish, and archive’.
This is commonly called the “Content life cycle’
Initiation
In fact we have forgotten something: in the previous section the implicit assumption was that we
had an authoring a publishing system in the first place. We did not pay any attention to who puts
the system into place: who installs it? This is not an irrelevant question, but an inherent part of
the design: The program does not install itself and without installing it one can never use it.
Therefore we must also examine the installation procedure.

Terminology

A note on terminology: A lot of different terms are used to indicate what a user needs to perform
a certain function. Among those are roles, permissions, authorizations, transactions, capabilities,
... the important thing to remember is that groups and roles bundle actions together. In this
paper permissions, authorizations, transactions, actions, capabilities all indicate features below the
role level.

7.5 The feature - user matrix

Next we will theorize on control structure in applications. The objective is to characterize how
they enable or constrain people. For this we will use the feature-user matrix: a table representing

A

goplication feetures and applicaion users. A feature represents some action that a user can
perform; in this sense, features loosdy cover control over tasks, data delegation and process. A
user either has or does not have a certain fegture. The matrix itself represents a particular point in
time. Below is an example of 4 features and 4 users.

User A |User B |User C |User D
Feature A X
Feature B X X
Feature C X X X
Feature D X X X

Table 7-2: Example of a feature user matrix

In this case user A is dlowed to execute the features B, C, D; user B can execute dl feaures, user
Cnoneand user D onlyCand D.

Amount of possible feature user matrices
Snce eech user can dther have or lack a feature, the totd number of possible festure-user
matricesin this caseis 2 = 2% = 65536.
In generd thisis
2(Feetur&stsers)

For example, in afesture-user matrix with 2 festures and 1 user we have:

User A User A User A User A
Fea. A Fea. A | X Fea. A Fea. A | X
Fea. B Feat. B Fea.B | X Fea.B | X

Table 7-3: feature-user matrix with 2 features and 1 user

Link with role based access control

Going back to role based access control, we remember tha this gpproach ties featuresto roles A
user is not granted the execution of a certain festure, but gets a certan role that implicitly dlows
him to use the feature. We can name each role in a syssem by the features that it contans. for
example therole ABC or therole AB, or AD.

How many of the available matrices are possibleif roles are used?1n generd there are two cases:
- A user can only have onerole
- A user can have multiple roles

One role for each nser

If auser can only have one role, the amount of roles needed to ‘cover’ the entire feature user
matrix is 27, In the previous example this means we have the roles A, B, AB and (None).
This situation is examined in the next example. We have three roles: ABCD, AB, CD.

An example of the user-feature matrix is:

User A |User B |User C |User D
Feature A X X
Feature B X X
Feature C X X X
Feature D X X X

Table 7-4: Feature-user matrix using roles

In this case, it is not possible to grant user A only feature A: he automatically gets B. Therefore a
fixed role system can limit the amount of available options to distribute features among users: the
options are predetermined.

Multiple roles for each nser

If auser can have more than one role, the amount of roles needed to ‘cover’ the entire feature
user matrix is exactly the same as the amount of features. In the example we need only roles A, B,
C, D. Each role corresponds with exactly one feature.

Hierarchies and roles

Looking from the perspective of hierarchies we wonder whether these structures have the
tendency to cluster hierarchically. If a user has feature B he automatically gets features C and D; a
feature at a high level (B) indicates that a user also has lower level authorizations. This is called a
Guttmann scale, and we can use it to identify hierarchies. Below is an example given the roles
ABCD, BCD, CD and D.

Role A |Role B |Role C |Role D

Feature A X

Feature B X X
Feature C X X X
Feature D X X X X

Table 7-5: Hierarchical role structure (role-feature matrix)

An example that is not hierarchical is: ABC, BCD, CD and D. The role ABC and BCD each have
an element (D and A) that the other one misses.

Workflow

Can we also use the feature - user matrix to model workflow? In fact, the previous examples were
all situated at one particular point in time. Workflow works over multiple points in time so we
can represent it like this:

Figure 7-7: Workflow as feature-user matrices in time

Over time, several users are allowed to execute different features. At one time a user can edit a
text, but after submitting it for review it becomes read-only.

7.6 Value of enabling and constraining in ICT

If a system is studied — how should we interpret its control structure? In the last sections it was
shown how hierarchies could be identified in control structures and that role based control
structures can limit the amount of options for the distribution of features over users. If this is the
case, does it mean that such a software package is more limited than others? We can also restate
‘enabling’ and ‘constraining’ in terms of an application’s value, based on the available features or
users’ actions.

More is better

More features, more data, more topics, more functions give more power to the user to do what
he wants to do. Set aside issues of usability (can a novice user find his way through all these
menus and options) such a view usually holds true for applications that are used on an individual

36

basis. Having a spel checker will automaticdly result in atext with fewer errors. Indeed, more is
better.

User A |User B |User C |User D
Feature A X X X X
Feature B X X X X
Feature C X X X X
Feature D X X X X

Table 7-6: ‘Ideal’ user / feature matrix (1)

Less is more

However, if severd people use our gpplication, questions of coordination, respongbility and trust
tend to arise. Thisis especidly the case in an environment where people have never met face to
face, for example on an Internet forum. In such a setting, limits must be imposed to what an
ordinary user is dlowed to do, or the system will sop functioning properly & some point in time.
There’s always someone who could abuse the system in ways that make it unworkable as a whole.
Out of all the options that users have some must be taken away to make the application function
properly. Note that the perspective has changed: We now look at what the exzre system achieves,
not at an individual’s contribution. To summarize: We started with a full set of options and have
taken some away, thus less is more.

User A |User B |User C |User D
Feature A X X
Feature B X
Feature C X X
Feature D X X

Table 7-7: ‘Ideal’ user / feature matrix (2)

As a result, a hierarchical control structure (as a special form of enabling and constraining) might
be very useful in a certain context.

7.7 Conclusion

Enabling and particularly constraining is a good focus point for our research because they are
always present in ICT. It is especially easy to see how ICT constrains people. There are four types
of enabling and constraining in ICT: tasks, data, delegation and process. Enabling and
constraining properties of a system can be modeled using feature user matrices. These help to
identify hierarchies in systems and to assess how much potential freedom there is to distribute
control. An implicit way of enabling and constraining is through the usage of roles: These are
basically groups of features that can be allowed or disallowed for users.

37

8. Authoring and Publishing Systems

8.1 Introduction

In the previous chapter we saw that power was linked to control which in it’s turn could be seen
as a form of enabling and constraining; The latter being easier to identify in ICT.

We will first look into authoring and publishing systems in greater detail. Next we examine the
general publishing process and see what types of enabling and constraining we can find there —
these might then also be present in authoring and publishing systems. To underline the relevance
of the research, we conclude with a look at the World Wide Web as one huge authoring and
publishing system.

8.2 Definition

How broadly should we interpret the term “Authoring and publishing systems?”

Authoring and publishing systems are programs whose primary purpose it is to facilitate the
creation and publishing of written texts, accessible from the World Wide Web, by multiple users
simultaneously.

This eliminates several types of systems:
- Applications designed for editing and publishing images, audio and movies
- Applications for sending E-mails, SMS messages, chat boxes, instant message
applications: these are all forms of personal cOmmunications

A few examples of authoring and publishing systems that ar included are given below:

Category Overview

Forum System that allows people to post messages (threads) to which
other people can reply, resulting in whole discussions

Blog Personal, online journal comprised of periodic articles and links

Wiki System that poses no editing restricting for anyone

Content management system | System used to organize and facilitate collaborative creation of
documents and other content

Table 8-1 Examples of authoring and publishing systems (Wikipedia, 2005)

8.3 Identifying hierarchies and control in the publishing process

How can control be identified in software systems? We will start by examining a general
publishing process. Drawing upon this information issues of control can be identified.

Publishing process
Publishing is a well-established tradition and this makes it possible to compare the old-fashioned
process of publishing a paper book with it’s pure digital counterpart and spot the differences that
might be relevant (related to power). In software engineering practices it is not uncommon to
write down an entire process in a so-called use case to identify the key actors, results and steps,
before digitalizing it. There are special diagrams and techniques; see for example (Booch,
Rumbaugh, Jacobson, 1999), but only a textual description is used here. The following section is
based upon (Kraaijeveld, 2005) and (Huijzer, Peer, Pol, 2005):
The publishing process varies from publisher to publisher and the process of publishing a
newspaper is quite different from publishing a book. The latter process is probably longer and we
use it here, for clarity. The general process has the following steps.

- Initiation

- Concept credtion

- Creation

- Makeing/ sdes

- Redization

- Publication

Delivery to customers

In the initiation phase people come up with new ideas about what should be published. Idess
can originate at the publisher self, a freelance author or even the publishers’ customers.

Next, a selection is made from these ideas: some are better (general: more profitable) than
others, not every idea can be realized.

In the creation phase one or more authors write the text. Editors help to improve it and make
suggestions for improvements. Finally a decision is made whether or not to publish the book.
Versions (called revisions) go back and forth between the author and the editor.

Even before the final printing of the book, the marketing and sales phase begins: the book is
advertised in a brochure or a so-called dummy is created with only the cover and a back flap text.
This helps to gather information from the market, about whether a book might be a success.
Some data is already available, such as the price, number of pages and the date of publication.

If the book seems commercially viable and no other problems occur, it can be realized. Once
the author and editor are agreed on the general text, the bureau-editor re-reads the text to correct
style and typing errors that have gone unnoticed. These are mostly small changes; the author is
informed of any important changes. Next the text5 layout is determined by the typesetter and a
proof is made. The bureau editor checks the proof for typesetting errors such as abbreviations
and ‘staircases’. If necessary the process is repeated. Sometimes but not always the author gets to
see the results. The following stage is pre-press: Graphic workers do a final print (the plotter
proof) to check printing errors such as missing pages. The publisher has to agree with this print:
all subsequently discovered errors will be his responsibility. During the printing a specific copy is
used to check the print quality (ink, paper).

Finally the books are delivered to the customers and the process starts all over.

Control in publishing
What does controlling publishing mean? We will pose several questions for each of the steps in
the publishing process. Answering these will help to define what control for the entire publishing
process means.
- Initiation
Initiation can come from multiple sources, who is allowed to initiate a publishing process?
- Concept creation
Who selects the concepts that will be published?
- Creation
Who creates the contents; who writes or changes the texts, creates drawings?
- Marketing/ sales
Who determines the price; who gets the publication under the users attention?
- Realization
Who decides when the publication is finished?
Who decides about the presentation, layout of the publication?
- Publication
Who distributes the publication to the customers, who determines who is allowed to read (or
copy) it and for how long?

This list allows us to link the publishing process with the control structured in ICT. It essentially

splits up the publishing process into distinct activities (or features) We can therefore look at who
is allowed to perform a certain activity, for example determine a book prize. But we can also ask a

39

meta question: who determines the way the entire process is managed?® This resambles the
concept of workflow.

8.4 The Internet as one huge authoring and publishing system

To further build the case for authoring and publishing systems as a research topic, the Internet is
essentidly a very big authoring and publishing system, in use by millions of people, thousands of
organizations and searchable through various search engines. Surely, it has changed from it’s early
popularization starting with Gopher (Network Working Group, 1993) Usenet (Lost in Usenet —
References, 2003) to the World Wide Web that we use nowadays, but the essential usage remains
the same: facilitating communication, creating and sharing information. The question of control
is also relevant on scale of the entire Internet: How we manage it, how we deal with issues of
copyright protection, freedom of speech, proliferation of potentially dangerous information and
censorship. All these issues have in some way to do with creating and publishing texts.

The original proposal for the World Wide Web

It has been over fifteen years since Tim Berners-Lee made his proposal for a distributed
hypertext system at CERN, which formed the basis of the World Wide Web. (Berners-Lee,
1989) In his “propasal concerning the management of general information” he describes that although
CERN is nominally organized into a hierarchical management structure, the actual shape of
communications is that of a multiple connected web. (See illustration below).

According to Berners-Lee, tree-like systems that were in use at that time were inaccurate
representations of the real world, because not everything fits into a hierarchy. For example in a
hierarchically oriented discussion group system, some discussions might belong to several
categories. It would therefore be better to create a system Whose wzezhod of storage does not place its
own restraints on the information. The original image of his proposal is presented below:

13 A sdeissueiswhether the publisher exercises some form of control over its readers. Qurely, publications contain knowledge that the readers
consume, altering ther idess as they reed the text. This goestoo far, we will only look here at who’s allowed to read or copy a text.

-/1‘

H\ 1Bh
I:-:-mputer - GmupTalk
liinferenung tme

~ forexample

\\\ —_
ﬁq_ﬁ*\
hf R R EEREEE R Hieramhical
" sydems
5 P
fc-rexample ¥ forexample
unlﬁes
---------- >
Linked CERNDOC
information des:cnbes

|ndudes

describes

|ndudes

C.E.R.M

describes This I- o
"Hy pertesd" *———| document ! divizsion
| |
I

o
refers group group
to |
wmte [T

|ndudes -:Iesr::nbes

= action
[I |
yperme dia Tim
Berners-Lee

Figure 8-1: proposal by T. Berners Lee

At the right we see the neat hierarchicd sructure of CERN, to the left a more complicated
‘mesh’ structure. Is this non-hierarchical structure indeed a better representation of reality? If we
see the World Wide Web as an experiment, it is tempting to agree. After all, the Word Wide Web
is a huge success since it’s introduction in 1989. An enormous amount of content is nowadays
accessible via the World Wide Web. Nevertheless, some doubt remains, especially because the
World Wide Web has changed significantly over time. Whereas CERN was forced to invent the
Web itself, we nowadays have numerous applications available that enable us to create and share
information. As technology has progressed more options are available to guide the content
creation and publishing process, both enabling and constraining users options. Could it be that
we have been steadily building hierarchies instead of meshes? Could the picture below be a more
accurate (because more hierarchical) representation of the Internet?

41

\d °
\d .
L °
o .
4 L]
\d °
\d .
L °
° [
L L]
L] L]
L] L]
- 3 «=
Other orgenization S ., TERN
\
\ ® .
\ oUses * .
\ L L]
SN i I Y v
Depatment Y o lN ‘
\ e / \ o Division
\ ° \ .

\e / \ .
. . o / \ %
Section ion o \ \

/ \ L]
&\ The Engire World Widé,Web ., Grow
R | 4 \ :
. \ . e |
. \ ione Section

Figure 8-2: Alternative (hierarchical) representation of the World Wide Web

8.5 Conclusion

Authoring and publishing systems seem to be good research subjects for whoever wantsto study
software. They are widdly used, easy to obtain and in use by many different types of users and
organizetions. In essence, the World Wide Web is one huge authoring and publishing system. In
the context of this paper it is interesting to point out tha it was specificadly designed as a non-
hierarchicd structure. Thisreaffirms the ideathat sudying control hierarchies is agood gpproach
for crossing the boundaries between sociology and computer science.

42

Part II: Empirical Research

9. Research Questions

9.1 Four research questions

In the previous chapters the research agpproach (sudy ICT gructure before looking a the
context) and topic (the control structure of authoring and publishing systems) were defined. We
will now formulae the research quegtions. Earlier it was stated tha the most improvements in
sociologica ICT research could be made if we focus on ICT raher than on theory. The first
question is therefore descriptive:

Question 1 - On structure: How is control structured in authoring and publishing
systems?

To address this first question we will research severd authoring and publishing systems to find
out how they ded with control issues.

We will especidly look at the hierarchicd nature of the control structure. Can users choose fredy
between hierarchicad and non-hierarchica structures? Maybe Berners-Lee was right when he
mentioned that it should be possible to store data non hierarchicdly — but does the same also
hold for control?

Next we can examine what has caused these control structures to be created. A particular
interesting question is about technological determinism: Do organizations have a choice in
selecting a particular control mechanism?

Question 2 — On causes: How can the control structure be explained?

In the chapter on technology we saw several types of causes and effects. Among these are:

- Social causes and effects.

Software programs must work in society, therefore we can study society and examine what
type of software is in demand and find out how the demand shapes the programs.

- Evolutionary causes and effects: The software development cycle shows that software is
created in iterations: The study of many iterations could lead to an evolutionary explanation
of how these systems evolved over time.

- Technological caused and effects: Also possible is that ICT has some inherent structural
properties that naturally guide its evolution; there is little choice in this case.

Subsequently we can look for other ways of structuring control:

Question 3 — On alternatives: Would it be possible to structure applications differently?

If the answer to question 2 is mostly technological, there would be little choice between different
structures. However, if the answer is primarily social or evolutionary it could be that some
options have been overlooked.

Finally we ask what the effects are of these control structures on society.

Question 4 — On effects: Discussion based on a, b and ¢
How can the results be interpreted, what are the implications?

9.2 Initial hypothesis

For question 1 and 2, we will assume that the structure of a program can purely be explained by
its usage or intended purpose. Based on this hypothesis, we estimate that a content management
system (with the emphasis on management) will be more hierarchical than a forum, where
individual contributions are deemed more important than control. This leads to the following
table:

Type Overview Expected hierarchical score
Content management System that dlows peopleto ++++
system post messages (threads) to

which other people can reply,

resulting in whole discussions

Forum Persond, online journd +++
comprised of periodic articles
and links

Wiki System that poses no editing ++
restricting for anyone.

Blog System used to organize and +

facilitate collaborative creaion
of documents and other content

Table 9-1: Expected hierarchical score

10. Sampling

10.1 Introduction

Before any sysdem could be studied, a sdection had to be made What authorization and
publishing systems should be chosen? In this chapter we look a the sampling process and find
out why certain systems were sdected over others.

10.2 Sampling

There are hundreds if not thousands of programs that can be classfied as authoring and
publishing systems. It would be impossible to examine dl of them. Snce thisis not aquantitative
study there was no need for random sampling methods, non-random methods were gpplied.
Neumann (2000) mentions severd ways of non-probability sampling:

Type of sample | Principle

Haphazard Get any casesin any matter that is convenient

Quota Get apreset number of casesin each of severd predetermined categories that
will reflect the diversity of the population, using haphazard methods

Purposive Ge dl possible cases that fit particular criteria, using various methods

Showbadl Get cases using referrds from one or a few cases, and then referrads from
those cases, and so forth

Deviant case Get cases tha subgtentidly differ from the dominant pattern (a specid type
of purposive sample)

Sequentid Get cases until there is no additiond information or new characterigtics
(often used with other sampling methods)

Theoreticd Get cases that will help reved features that are theoreticdly important about
aparticular setting/ topic

Table 10-1 Types of Non-probability samples

In retrogpect dl of these were used. At the end so-caled theoreticd saturation was reeched—
adding applications did not result in any new input, they seemed to converge into a general
model.

We will now describe some issues that might create a bias towards a certain program structure
and show this was compensated for

- Correlation with the software development model (the causes)

- Correlation with the software usage (the effects)

Software development <> software structure

Initially, there were two issues that had to be examined:

- The development method

Because open source software is freely available (and thus easier to research) the sampling was
biased towards open source.

We will not dive very deep into the exact differences between these two methods. Instead, we
only state that for the most part, they use different tools, methodology and that their perspective
on what a program should be (or do) are different. The reader can find more information on the
subject at (Open Source Initiative, 2005)

- Incorporation of changes in software over time

This issue is loosely related to the previous one. If the program is open source, everyone can
modify the existing version to fit his needs. It is not uncommon for open source programs to

“fork’ split into different programs if developers cannot agree on what should be included.* The
program gets multiple branches, it is not certain if changes in the ‘leaves’ are ever implemented in
the ‘root’ of the program tree. Another important option is the availability of a plug-in
architecture (which can be considered as a sign of technological maturity). In an ideal plug-in
architecture customizations are implemented as an add-on (‘plug-in’) that must be installed
separately from with the core version; it does not replace the core version but extends it. A plug-
in architecture is common in large programs, both under open and closed source. Should plug-ins

also be examined? For example, the core program could be considered very hierarchical, while a

plug-in would negate this characteristic.

Regarding these issues two conclusions were reached:

- Plug-ins should not be studied. There could be too many of them — only the core program
would be examined. If a program would have multiple forked versions just one relevant
version was studied.

- Several open source programs should be compared with closed source applications.

Two programs were studied: Sharepoint and a forum application in use by Microsoft about
their web development platform called ASP.NET (Microsoft, 2005) They did not stand out
significantly from the other systems but for practical reasons they are not included in this
paper.

Software usage< software structure

Obviously, an organization will try to find a match between its own characteristics (or

requirements) and a system’s characteristics. Its easy to say that the sample population consists of

programs and not of organizations, but that doesn’t mean there’s no relationship between them —
and knowing that this relationship exists you might as well use it to be sure your sampling
process was adequate.

Three special organizational characteristics are:

1) Organizational size
In general the requirements and needs of an organization change as it grows. Probably its
website will become bigger and maintenance and coordination are more time consuming.

2) The importance that an organization attributes to the application contents
An organization that has a particular view about a topic and wants to express in public, will
make sure that it displays a coherent set of texts, which possibly requires a stricter
authorization or workflow model. Oppositely, there are also websites where this is not the
case, instead whose owners try to generate a discussion aboxt a topic without holding a
particular view.

3) Organizational expertise
An organization that has its business in text writing itself (a publisher, marketing bureau etc.)
has naturally more knowledge about authoring and publishing. It can therefore be expected
to be able to formulate clearer, stricter requirements for its applications.

A bias was suspected towards applications in use by organizations that scored low on these

characteristics.

14 Examples of these are Silva (Infrae, 2005) based on Z ope (2005), CivicSpace (2005) derived from Drupa (2005), Project Minerva (2005) derived
from phpBB (2005)

47

To assessthe differences, the chief of the Internet edition of NRC was interviewed, alarge Dutch
newspaper (Benjamin, 2005) Secondly an interview was hdd with the Internet editor of the
faculty of socid sciences @ Erasmus University Rotterdam (Maan, 2005). The latter’s application
was also examined. Interestingly but also fortunately, both organizations did not use any
extraordinary applications or features that weren’t present or comparable in the sample
applications. (The Erasmus University’s system was examined though.) This also indicates that
the results can be easily generalized to other types of systems. Another form of stratification was
by selecting applications of different categories such as blogs, forums, and content management
systems.

Other sampling methods

Since this study is particularly interested in ‘what is there’ it was attempted to select systems that
are in widespread usage. Furthermore, one case (MediaWiki) was selected for it’s theoretical
relevance, because it was supposedly used in a non-authoritative way. Finally some cases were
chosen because their creators and users were easily accessible.

10.3 Overview of cases

Below is a list of all programs that were studied. The appendix contains more information
(vendor, URL, version number) of all the programs. Of each system the latest (obtainable)
version was examined to make sure that the study was as up-to-date as possible.

Name Category

Drupal Content management system, generic
D Space Document management

Mambo Content management system
MediaWiki Wiki

Movable Type Blog

phpBB Forum

Silva Content management system
TYPO3 Content management system

Table 10-2 Overview of cases

A short description of each system (taken from the systems’ websites) is given below:

Drupal
Drugd (Drupd, 2005) is software that dlows an individud or a community of usersto
eadly publish, manage and organize a great variety of content on a webste. Tens of
thousands of people and organizations have used Drupd to set up scores of different
kinds of web gtes, including

- community web portas and discussion Sites

- corporate web dtes/ intranet portas

- persond web Stes

- dicionado stes

- e-commerce gpplications

- resource directories
Drupd includes featuresto enable

- content management systems

- blogs

- collaborative authoring environments

- forums

- newdetters

- picture gdleries

- file uploads and download

DSpace

D$ace (DSpace, 2005) is a groundbresking digitd repository system that captures,
sores, indexes, preserves, and redistributes an organization’s reseaerch data

Jointly developed by MIT Libraries and Hewlett-Packard Labs, the D Space software
plaform serves avariety of digitd archiving needs.

Research ingtitutions worldwide use D Space to meet avariety of digitd archiving needs:
- Ingitutiona Repostories (IR9)

- Learning Object Repositories (LORS)

- eTheses

- Electronic Records Management (ERM)

- Digitd Preservation

- Publishing

- and more

Mambo

First and foremost, Mambo (Mambo, 2005) is a Content Management System (CMS). It
is the engine behind your webste that smplifies the creation, management, and sharing
of content.

The god of the Mambo project isto meet most of the requirements highlighted in the
above aticle. As each day in devdopment goes by we are getting nearer and neare,
while & the same time building a solid core which can be extended by third party
developers.

In the hands of a cusom developer, this makes Mambo a powerful platform for awide
variety of Internet gpplications that go far aove and beyond the smple cregtion of
content.

49

MediaWiki

MediaWiki (MediaWiki, 2005) is the collaborative editing software that runs Wikipedia,
the free encyclopedia, and other projects. It's designed to handle a large number of
users and pages without imposing too rigid a structure or workflow.

Movable Type

Movable Type (Sxapart, 2005) is the premier blog publishing platform for businesses,
organizations, deveopers, and web desgners. Powerful customization gives you
control over everything you publish and the degant interface keegps things smple and
Clear.

PhpBB

phpBB (phpBB, 2005) is a high powered, fully scdable, and highly customizable Open
Source bulletin board package. phpBB has a user-friendly interface, smple and
draghtforward adminigration panel, and helpful FAQ. Based on the powerful PHP
sarver language and your choice of MySQL, MSSQL, PostgreSQL or Access ODBC
daabase servers, phpBB istheided free community solution for al web sStes.

Silva

Siva (Slva, 2005) is a powerful CMS for managing content for the web, paper, and
other media Content is stored in a dean and future-proof format, independent of
layout and presentation. Festures include a multi-verson workflow system, integrd
WYSWYG editor (Kupu), content reuse in multiple publications, sophisticated access
management, extensive import/ export facilities, fine-grained templating, and hi-res
image storage and manipulation.

TYPO3

TYPO3 (TYPO3, 2005) is a free Open Source content management system for
enterprise purposes on the web and in intranets. It offers full flexibility and
extendibility while featuring an accomplished set of ready-made interfaces, functions
and modules.

10.4 Examination process

Triangulaion (a mixture of research methods) was used as much as possble without any
involvement of creators or users. This non-obtrusive gpproach made it possible to research more
systems; to do so without biasand let the programs ‘speak for themselves’.

Before starting the examination it was necessary to install most programs beforehand,
which turned out to be a non-trivial task. (In fact this was an important result - we will later
return to the issue of installation). Each program was used for a while, some data was entered,
users were added, and permissions were changed, to find out how it worked. Manuals were
examined — if they were available. If possible the underlying database or source code was studied,
these formed a good check on the user interface — as it turned out some applications where
structured in a whole different way then you would expect from using it alone. This also helped
to spot similarities between applications that would otherwise have gone unnoticed.

For each system, things that seemed to be connected to control and hierarchies were
noted, keeping in mind the different aspects of content structure, authorization structure and
workflow. After studying one system the next one was examined, sometimes finding out that
something was missed in a previously examined application and it was necessary to go back.

10.5 Conclusion

In this chapter we described the sampling process. The sampling population consists of many
authoring and publication systems. Several programs were selected, using non-probability
sampling techniques. Effort was made to correct for biases towards certain program structures.
Finally, eight programs were selected. Each programs was examined using various methods,
without involvement of users or creators.

51

11. Structure

1.1 Introduction

We will now examine the way in which authorization and publishing systems were structured.
Ealier the functiondity of authoring and publishing syssems was split into four different parts.
control structure, workflow, content structure and initiation, this divison is mantained in the
conclusons. How hierarchicdly is control structured in gpplications?

11.2 Control structure

Ranking the control structures

We will now look a the roles tha programs provide. In Chapter 7 it was concluded tha role
based security can be hierarchicdly and tha it can dso limit the options to digtribute
authorizations among users. How should we interpret the results? We use a scde for the
hierarchica score:

Score Interpretation

- Role are non-hierarchica or absent

+ An adminigtrator is present, basicdly atwo levd hierarchy

++ Roles are hierarchicd but the role structure is conceptudly split in two sections
+++ More than two roles exist which form agtrict hierarchy

Table 11-1: Interpretation of control structure scores

The table below shows the scores for each program. In this table (and in subsequent tables) the
actud hierarchical score is shown next to the hierarchica score as derived from intended use (the
letter is based on the hypothesisin section 9.2 that the intended usage determined the structure).

Name Type Roles Hierarchical score |Actual
as derived from hierarchical
intended use score

Drupd Content Anonymous ++++ +

management | Authenticated
system, generic

D Space D ocument Anonymous ++++ +

management Admin

Mambo Content Regigered, Author, Editor, | ++++ ++

management Publisher
system Manager, Administrator,
Super Adminigtrator
Mediawiki Wiki User, Deveoper, ++ +++
Bureaucrat, Sysop
Movable Type | Blog - + -
phpBB Forum Ordinary user ++ ++
Administrator
Slva Content Reeder, Author, Editor, ++++ ++
management Chief Editor, Manager
system Everybody, Authenticated,
Viewer, Viewer+,
Viewer++

TYPO3 Content Ordinary user, ++++ +

management Administrator

52

| system | | |

Table 11-2: Actual applications scores on control structure

From this viewpoint, MediaWiki is the most hierarchica gpplication; Drupd and Movable Type
arethe least hierarchicd. The hypothesis on the control structure does not seem to be supported
by the evidence.

11.3 Workflow

It turns out to be more difficult to create a scae for workflow. Some gpplication have workflow
options, other do not. If we do have aworkflow (conssting of two or more steps) we can check
if the person who authorizes the content has more authorizations than the user who submits the
content. If this is the case it’s an indication that the workflow is hierarchical.

We will again use a scale for the hierarchical score:

Score Interpretation

- No workflow present

+ Workflow present, non-hierarchical

++ Both hierarchical and non hierarchical workflow possible
+++ Workflow present, hierarchical

Table 11-3: Interpretation of workflow scores

Name Workflow features Hierarchical score | Hierarchical
as derived from workflow
intended use scote

Drupal Moderation queue, voting ++++ -

Authenticated

D Space Three step process, steps can be skipped | ++++ +

Mambo Two step process ++++ +++

MediaWiki | Two step process (lock and unlock pages) |++ +++

Movable - + -

Type

PhpBB - ++ 5

Silva Two step process ++++ +++

TYPO3 Three or four step process ++++ ++

Table 11-4: Actual applications scores on workflow

Of the five applications that have workflow functionality, only two have non-hierarchical
workflow. The hypothesis on the control structure does not seem to be supported by the
evidence.

11.4 Content structure

Each system allows its content to be structured in one way or another and all systems have some
form of hierarchy. Earlier hierarchical content structures were linked to hierarchical control

53

dructures. who has control over atop or root content dement usudly controls the underlying
elements.

An application is therefore more hierarchicd if the content structure
1. Isorganized hierarchicaly
2. Isorganized hierarchicdly and can be of unlimited depth (see Section 7.3)
3. Allows permissions on all of it’s elements
4. Allows permissions to be propagated to lower nodes (In other words: a permission that is
set on a high level node also determines permissions at lower levels)

Again, a scale for the for the hierarchical score; This time, we will count each of these items as
one +.

System Hierarchy | Propagation | Depth of | Permissions | Hierarchical Actual
Name hierarchy | on all levels |score as hierarchical
derived from score
intended use
Drupal Yes No Arbitrary | No ++++ ++
DSpace | Yes No Arbitrary | Yes ++++ +++
Mambo | Yes No Fixed No ++++ +
MediaWiki | No (only |[No Fixed No ++
textual
level)
Movable | Yes No Arbitrary | No + ++
Type
phpBB Yes No Fixed No ++ +
Silva Yes Yes Arbitrary | Yes ++++ ++++
TYPO3 |Yes Yes Arbitrary | Yes ++++ ++++

Table 11-5: Actual applications scores on content structure

Thus, MediaWiki can be considered the least hierarchical application; Silva and TYPO3 are the
most hierarchical applications.

The hypothesis on the control structure seems to be supported by the evidence, with the noted
exception of Mambo.

11.5

The first finding was that installation procedures were in many cases far from trivial, even for
someone skilled in software engineering. In spite of wizards and ‘automatic’ configurations they
require a fair amount of knowledge.™ Another finding was that a typical installation procedure
results in the creation of an initial administrator account. This administrator can create other
users and delegate authorizations to these users. However, he remains in control for the duration
of the application usage.

The only notable exception is Movable Type, which has a slightly different type of
administrator: The first user can create other users, but can only remove (or administer) users he
has created. All users have the same amount of permissions but run the risk of being deleted by
those who created them.

Below are some screenshots and excerpts from manuals.

Initiation / Installation procedure

15 The technicdlities of specific installation procedures are not discussed here. More information on ingtallation problems can befound on the
websites of the examined systems (see Section 18.4)

YWelcome to your new Drupal-powered website, This message will
guide you through your first steps with Drupal, and will disappear
once you have posted your first piece of content,

The first thing you will need to do is create the first account, This
account will have full administration rights and will allow you to
configure your website, Once logged in, you can visit the
administration section and set up your site's configuration.

Figure 11-1: Drupal installation

9, Create an initial administrator account:

[dspace]l/bhin/create—administrator

Figure 11-2: DSpace installation

LRL | |

Path | |
Y our | |
E-tnail

Addmin |
password

Figure 11-3: Mambo installation

Sysop account name: WikiSysop
password; [fust not be blank
aga.i.n.: Mu.{

Figure 11-4: MediaWiki installation

Z. Log in with the author name Melody and the password Nelson.

3. The first thing vou should do is change your author name and passwaord.
To do so, click Edit wour profile, then change the author name and
password there,

Figure 11-5: Movable Type installation

Admin Configuration

Adrnin Email Address: |

Domain Name: |

Server Port: [0
Script path: prhpbl:uf

Administrator Username:

Administrator Password:

Administrator Password [Confirm

Figure 11-6: phpBB installation

Uszername and Pazzword :
Enter your ugername and pazsword for the Zope Management Interface 5

The uzermame and pazsword are required to zecure the Zope Management Interface
[ZMI] and the Silva Management Interfface [SMI). If you forget your pazswaord, vou can
uze the zpazzwd.py Puthon zcript in the Zope directary to create a new one.

IJzermarme:

Pazswoard:

Figure 11-7: Silva installation

Apparently you have completed the basic setup of the
TYPO3 database.
Mow wou can choose between these options:

- Go to the frontend pages

- Go to the backend login
(username may be: adrin, password may be: passwaord.)

Figure 11-8: TYPO3 installation

11.6 Organizational choice?

We will now reflect upon the issue of organizationd choice. How much choice do organizations
haveto create their own control structuresinsde their applications?

We can try to answer this question by reexamining Mediawiki, which was found to be reatively
hierarchicd in dructure, compared to other systems. However, Mediawiki is dso used by
Wikipedia, an on-line free encyclopedia, (Wikipedia, 2005) is based. With some exceptions,
everyone is dlowed to update articles & Wikipedia. Can a system be both hierarchicd and open?
The key to answering this question isto make adigtinction between the progran and the appiication:
The MediaWiki software program is hierarchicd in naure. Yet this does not tel us anything
about how the gpplication is used. The hierarchicd gructure of the Mediawiki is fixed, but its
usage is not.

We can use the feature-user and festure-role matrices to illustrae this. MediaWiki has four roles:
(Ordinary) User, Developer, Bureaucrat and Sysop.

Sysop | Bureaucrat| Developer | (Ordinary) User
Feature ‘Move page’ X X X X
Feature ‘Site admin’ X X X
Feature ‘Set user rights’ X X
Feature ‘Protect page’ X

Table 11-6: roles and features of MediaWiki

Thisisadear hierarchicd gructure: Anyone with the Sysop role can use more features than with
role Bureaucrat or role (Ordinary) User. Now consder two running gpplications & two
organizations P and Q: Both have 4 users.

User A |User B |User C | User D

Role Sysop X X

Role Bureaucrat X X

Role User

Table 11-7: Role distribution at organization P16

User A |User B |User C | User D

Role Sysop X

Role Bureaucrat

Role User X X X

Table 11-8: Role distribution at organization Q

Both organizations cannot escape the hierarchicd naure of the program: They both have
hierarchicad control dructures. Yet the role didribution is different: the average user a
organization P can use much more features than a organization Q. The structure of the program
dlows thus for some organizationa choice.

Decentralization?

As addeissue One of the returning questions about |CT is whether it leads to centrdization or
decentrdization (Zuurmond, 1994) within organizations. Looking & the content structure of a
program, a smple answer can be found: Within one program, decentrdization isin fact a specid
festure of a hierarchicd structure. You cannot decentrdize before you have centrdized; the
festure can dways be turned off. The tendency isthusto centrdize.

11.7 Conclusion

Initial hypothesis on control structures

The hypothesis that content management systems would be more hierarchicd than other types of
goplications was not proven. Most evidence does not support this hypothesis. For example, the
MediaWiki program has avery hierarchicd control structure; this was not expected.

General observations
In generd we observe three things.

1) Within a program, control structures have a tendency to be hierarchicd. Within the
context of an gpplication, decentrdization should therefore be conddered as a specid
feaure tha —if turned on — can always be turned off.

2) The transition from program to application (the installation procedure) almost always
results in the creation of some sort of administrator who grants rights to other people.
Installation procedures require a fair amount of knowledge and are not easily done by
someone with little technological expertise.

3) Noteworthy is also the transition from persons to users. There is not necessarily a one-to-
one link between persons and users, some persons share user accounts, people can have
multiple accounts. Within applications groups of users can be attributed rights, but it is
impossible for users to collective 4 something, collaborative actions are basically
independent, individual actions. No two persons can ever click ‘OK” together.

These conclusions are regardless of the original requirements (controlled or uncontrolled) behind
the programs: It could be assumed that there is a shared underlying factor that causes this. (We
will look for such a cause in Chapter 13.)

16 Obvioudy, a Sysop isadso an (ordinary) user. To make diagram not too difficult to read only the most important role is shown.

57

Organizational choice
In many cases, the program determines the control structure. Thus, if an organization uses a
certain program it has alimited amount of choice regarding the control structure.

12. Effects

12.1 Introduction

Chapter 11 ended with the concluson that control structuresin authoring and publishing sysems
share common characterigtics, regardless of the requirements: control is hierarchicd, with an dl
powerful adminigtrator on top, who rules done. The next two chapters ded with the causes and
effects of such a setup. We will start with the effects because this suits the logicd flow of the
paper best.

12.2 Security

The biggest impact is probably on security: AsICT proliferates, the mgor implication of
dl thisisthat the correct functioning of fewer (but more criticd and bigger) applications — at any
point in time — is determined by the individual actions of all-powerful administrators. No limits
are imposed on their actions. Society becomes more centralized and more vulnerable as a result.

As for software development, it is interesting to see that a lot of effort has been put in
fixing security holes in software that can be exploited by malicious programs and users to
circumvent existing security measures. But the biggest security holes are by design. No anti-virus or
spyware solution can ever solve the administrator security hole.

Therefore, the net effects of applying present day technologies on improving security are
probably quite limited. They can be even negative up to a point because ICT does not provide
any safeguards to counter the administrator’s power. In the information age, where knowledge
equals power and administrators guard knowledge, this should be a cause for concern.

Or should it not be? A counterargument is that many technologies do not contain
safeguards. A surgical knife (no matter how well designed) does protect neither the patient nor
the doctor from fatal accidents. A car does not protect people from being overrun. Should ICT
be protected from administrators? ICT differs in at least two ways from ‘ordinary’ technology:

- The potential amount of damage caused by abuse of ICT is much bigger. A knife can injure
only one patient at a time in one place. An administrator with too much power can disable or
misuse the ICT infrastructure of an entire hospital within seconds, putting many more lives at
stake. ICT also controls many other forms of technology.

- ICT has autonomous capabilities. A knife doesn’t injure by itself, but a computer virus
spreads itself in seconds across the globe, possibly compromising many administrator
accounts. The Internet has thus short-circuited many barriers that exist in the physical and
social world.

Ironically, ICT does contain a social structure. Many applications require people to identify

themselves before gaining access; they can only do what the system allows them to. Knives lack

such features. If we think these structures in ICT are necessary, it seems illogical to have all-
powerful administrators who can negate all security measures.

12.3 Conclusion

At any given time, the functioning of an application depends on the proper behavior of at
least oze user, the administrator. This setup has made society very vulnerable to abuse, by human
administrators but also by computer viruses. ICT has two characteristics that make it different
from most other technology that can be abused: Its potential impact is bigger; it has autonomous
capabilities. In the next chapter we will try to find out how this could have happened.

59

13. Causes

13.1 Introduction

In the previous chapter, we examined the hierarchicd control structure of severd programs.
After this descriptive part we will now attempt to explan how they evolved, using three types of
explanations.

- Socid explanaions

- Technologicd explanations

- Evolutionary explanations

As gated before, software is created in so-cdled iterations. In each such period, software is

developed before it is used; this usage leads to knowledge that forms the input for the next

iteration. Therefore, two directions were followed:

- Looking & the design phase of the software development life cycle (Slva, Tdmon, EcoGrid)
Data was gathered usng severd methods. by participating in the design of one specific
program and by interviewing software developers.

- Looking & the usage phase of the software development life cycle (Erasmus Universty,
NRC, Heliport)

For each, severd users were interviewed who work regularly with authoring and publishing
systems. The interviews were haf structured and each took gpproximately an hour.

A brief description of the casesis given below:

Phase Program Program category | Organization
Design Slva Content Infrae
management
system
Tdmon CMS Content Tadmon
management
system
EcoGrid Mixed UVA
Usge Slva Content Erasmus University
management
system
Open Market | Content NRC
CMS management
system
PhpBB Forum Hédiport

Table 13-1: Examined programs and organizations

The remaining part of this chapter contains the aggregated results of the interviews aswel as data
from other sources. More data on the interviews can be found in gppendix E.

The quegtion that we try to answer here is. How did we end up with such hierarchicd systems,
over which individud dl-powerful administrators rule?

13.2 Social explanations

Looking from asocid perspective we find three explanaions.

Disinterest in websites and content management

From the interviews, it becomes clear tha webste management has a sort of negative vaue.
From the users’ perspective, the people that were interviewed at NRC and EUR would love to
involve more people in the content creation process, but this hasn’t happened yet. In these
organizations, the value that people attribute to authoring and creating content for websites

60

themsdvesis not very big."” For Tdmon as a software company, deploying content management
systems dlows their customers to change smal things themsalves — relieving them from of a lot
of tedious work. This reduces their webmaster bottleneck.

For a part, this has to do with technological problems. The technology behind the World
Wide Web is older than a decade — but a lot of applications are still difficult to handle. These
problems start with difficult installation procedures and continue throughout the content creation
process, where there is the risk of ‘breaking’ parts. This is something that webmasters like to
prevent — but this attitude is also applicable for a lot of (potential) users. Looking from an
evolutionary perspective this problem might even become bigger over time: as a website grows
there’s simply more to break. Whether employees perceive websites as important or not, they still
are essential communication tools for the organization. It could be that the users’ relative lack of
interest and skills leads to centralization — in the end someone has to be responsible for the
website.

This also affects the authorization process — since few people are really interested in
content management the attitude is to keep the authorization structure very simple, both from
the perspective of developers (who do not want to waste their programming time) as of the users,
who do not like to be bothered with too much procedures. Of course: strict procedures become
only essential until the amount of users grows beyond a certain threshold: when personal
communication becomes difficult.

An indication that people do not take authorizations serious is that it is generally not
possible to query users’ rights to perform a certain action. (In security terms: an audit) Indeed,
applications have roles and users can be in roles that allow actions to be performed. But is it
possible to find out what a particular user can or could do? Can user A edit this text? Could user
A edit this text last week? Most applications make it very hard if not impossible to answer these
guestions. This makes implementing workflow particular difficult. If the administrator has
decided that you cannot edit a text — but you just found a typo — to whom do you need to turn to
have it corrected? If you can’t find out who can — it might never be fixed. A side effect could be
that users have a tendency to be over-privileged, how can they otherwise work with the system?

Clear lines of responsibility

Maintenance is almost always necessary and requires someone with very high privileges. The idea
that a single person should be able to perform maintenance is a reasonable requirement,
especially for smaller organizations where technical expertise is limited. This results in a simple
and hierarchical structure.

Keeping in control

More critical is the explanation that administrators want to retain their power: Once in control,
they do not want to relinquish control to other users. The same goes for developers who create
the programs themselves. Again, this results in simple and hierarchical structures.

But during the research for EcoGrid (see Appendix E) it seems that the opposite was the case:
The developers would like to turn over control to the users — but fear the consequences of
improper usage at the same time.

An incomplete informatization process

Can the structure of authoring and publishing systems be explained by looking at the
informatization process as a whole and at software as a part of society? Certainly this process is
far from finished. The authorization system of the examined systems is rudimentary. Why does it
work? The negative value of website management can only be a partly explanation because
sometimes content management does matter. The answer has to be that the checks and balances
are somewhere else - in the ‘real” world outside of ICT. An administrator has seemingly a lot of

v (In the case of NRC it isto be expected that employees will be far more interested to have their article printed on the front page of the paper
edition.)

61

power — but is still employed by an organization. If he wants to keep the job he cannot afford to
make too many mistakes or abuse the system. Thus the results indicate that:

Socialization, training and indoctrination are the most important safeguards and complement the
simplicity of current day authorization systems.

This hypothesis was verified by interviewing a database administrator (Anonymous, 2006)
Because of the sensitivity of the information this was done on condition of anonymity. During
the past five years, the interviewee he has worked on a project basis in the financial and
telecommunications industry, for various large organizations. As such he deals with systems for
which the security requirements are generally higher than for the average authoring and
publishing systems examined here.
Typically, there are three tasks that a database administrator must perform:
- Operational management: For example, creating and restoring backups
- Database design/ layout: making sure that the database performance is optimal
- Database programming: creating programs that work with the data
For each of these tasks it is not necessary to get full administrator access, but usually this is
possible though. In general he describes the security measures as 'insufficient’. Available security
protocols are not properly implemented. Data is not encrypted (any administrator can read
information from the database). Audit trails are setup but seldom examined. Many older (legacy)
applications are not designed according to today's security standards.
However, gaining entrance to these databases is a more complicated process. A candidate
must demonstrate that:
- He has the proper training: a certification or diploma for the database that must be
maintained)
Obviously, one of the elements of this training is dealing with and securing sensitive
information.
- He has been of good conduct (no criminal offences)
- He has good references
Additional examinations are done using intelligence and psychological tests. For extra sensitive
database background checks are performed on family and friends. Initially new employees are
carefully watched - but this practice is abandoned once someone had demonstrated that he does
his job properly. It can also be said that additional loyalty is bought - a good database
administrator can earn a substantial amount of money. In general the working conditions are
good. Once you have setup your working environment properly (right database configurations,
usage of the right tools) there's in fact little to do. Overall, few incidents have happened - he
doesn't know of incidents in the past years where data was compromised or abused by
administrators.

13.3 Technological explanations (including physical and conceptual)

First of all, let’s point out that theoretically there can be no real limitations - any piece of
hardware can run programs that are equivalent to a Turing Machine (see Section 3.2). In this
sense, ICT cannot be limited by itself. However, the Church-Turing thesis doesn’t state anything
about how Turing Machines come about and how they are supposed to interact with the outside
world. Limits in it’s creation and communication would have no real meaning for a running
Turing Machine; but they sure could have for those who use them.

When a program is installed on a single piece of hardware (and becomes an application)
there is always one (and exactly one) administrator who does the installation. The underlying
hardware and software forbid that two people can install a program together. True cooperation

62

during the ingdlation requires specid hardware and/ or software (something like the proverbid
two keys tha must be turned to launch anuclear missile)

Without such specid hardware or software it would ill be possible to creste a program
that requires two or more ingdlations (possibly on different hardware). The applications would
then work together, forming a new gpplication on top of the existing ones. Multiple ingdlations
would negate the power of a sngle administrator. This is evidence agang technologica
determinism. But such asetup could be very complicated and costly.

Once an gpplication is available other users must be granted access. The easiest way to do
thisis to have an administrator grant those users access. This automaticdly creates a hierarchicd
role structure. When an administrator is present it doesn’t make sense to constrain people too
much or require them to cooperate. (In the end the application’s weakest link is the
administrator. Thus ICT always exables more than it constrains.)

13.4 Evolutionary explanations

How can the control structure of authoring and publishing systems be explained? Earlier we
mentioned: “As any social construction, this ontology is partly self fulfilling - using software is to some extend
accepting it's ontological points of departure.” From this point of view software represents the way
things are — and is thus self explaining. However this does not take into account that software has
evolved. There were no content management systems in the early days of the World Wide Web,
but they are here now.

Evolutionary explanations

ICT consists of hardware, programs and applications. These are essential building blocks for the
creation of ICT that can only be put together in a certain way. A program is installed on a piece
of hardware and becomes an application. Once this setup was created it became (and still is) very
difficult to escape the idea of a single administrator, for reasons of logic, cost and
standardization. The existing programs and application serve as inspiration and basis for new
programs and applications: the idea of an administrator has been around for a long time:
everyone knows such a setup: deviating from the standard “line of thought” becomes difficult.
There could have been other possibilities — but only this one survived.

Website evolution

Why did we end up with authorization and publishing sysems in the first place? Below isa smal
table adapted from (Gijzd, 2003) that describes the evolution of a non-gpecific website into a
webdite based on a content management system.

Phase Add content Visitor Workflow
feedback management
1 | Brochure webste None (File level access | None None
by vendor)
2 | Extended webste with File level access Emall form |None
webmaster
3 | Dadbase driven webste Soecid page protected | 2+ None
by user login comments
4 | Web content management 3+ Soecid page 3+ Rudimentary
protected by user login | Discusson
forums
5 | Adaptive business 4 + vaioussources, |4+ Extended
communication possibly automatic Collaboration
on
documents

Table 13-2 Website phases

In the first phase the organization outsources webste creation and maintenance. The
website contains no more than a brochure and the organization’s postal address and phone
number.

Next the organization retakes control (possibly realizing the strategic possibilities of the
website) and hires a webmaster. The webmaster controls the structure, contents and layout of the
website. Everything is stored in flat HTML files that must be uploaded to the webserver.
Sometimes the webmaster writes texts himself or others ask him to publish a text on their behalf.
This creates the so-called ‘webmaster bottleneck’: as the site’s size increases it becomes more and
more difficult to maintain. Dead links, different layout of web pages created a tough job for the
webmaster. The solution is found in phase three: separate the content (text) of its presentation
that are intertwined in traditional HTML files. Now that the content is stored in a database
people can write texts without worrying (more than necessary) about the way they were
presented. Users are encouraged to edit their own texts, relieving the webmaster who only has to
determine the generic structure and layout.

In the 4™ stage the workflow starts to take hold: users can no longer just publish anything,
contents has to be approved by an editor.

The final phase is reached when the system is no longer seen as an extension of the
website but an integral part of the organization, with backend connections such as payment
processing.

Note that the sites have become more and more interactive over time. With phase three the
organization starts using the three-tier model described in Section 5.3.

Benefits of content management systems
Hartman Communicatie (Hartman Communicatie BV, 2005), a consultancy for information
architecture and content management strategy, mentions four positive effects from content
management systems:

7) The website is easier to update and therefore more up-to-date

8) The website is more consistent because style and layout can be enforced throughout the

website
9) The website can be personalized — information can be tailored for specific users

10) Overdl maintenance costs go down because less webmaster timeis required

Snce there were no content management sysems in the early days we can see this process as
essentidly technology driven: as the technology to improve things becomes avalable it is gpplied.
Because the pgper deds with content management systems in the broad sense — do the same
reasons hold up for other applications like forums or blogs? Another important advantage of
content management over traditional HTML file websites is the ability to have more people
contribute to the website, even if they do not have an account at the webserver itself. Content
management allows for more collaboration.

Authorization evolution and hierarchy

How did the authorization structure evolve into what it is now? In the early days, users were
given full control of (a part of) the website. They uploaded their HTML files onto the website,
using a special user account. Unfortunately this account (typically created for a webmaster)
normally allowed access to the entire site (or part of it). Therefore it was unsuitable to use in
collaboration with other people, especially when their trustworthiness was unknown. To counter
this a new system was built on top of this, and a whole new sets of accounts was created in a
database.

But the webmaster account is still in use: whoever decides to use a content management system
must first install it on the webserver, which up to this day means uploading files on the
webserver. Because content is now added via the application the old webmaster account is used
less and less.

In a sense it was duplicated in the administrator role in a typical content management system (and
in fact, a similar role must exist in the database as well).

If it were possible to do away with the administrator account of an authorization and
publishing system, this would not make much sense because the all-powerful webmaster account
still gives access to all files and content. At some point in time it must be re-used, for example to
install an update of the authorization and publishing system.

Given a number of features in an application, people can be granted the right to use them.
But there has to be someone who grants them this right and this creates the need for a sort of
administrator who can oversee the entire system. To some extend this negates the fear of
someone breaking the system: the omnipotent administrator can destroy the system whenever he
wants — and this obviously doesn’t happen very often or the system could have been altered. And
indeed — most ordinary users behave quite decently.

13.5 Conclusion

Why are control structures are so hierarchical? Possible social explanations are the general lack of
interest in websites and content management; the importance of clear lines of responsibility; the
wish of developers and administrators to stay in control; the existence of checks and balances
outside of ICT. A technological explanation is that it’s very hard to create a system without some
sort of initial administrator. Finally an evolutionary explanation shows us why and how authoring
and publishing systems have evolved over time.

65

14. Alternatives

14.1 Introduction

In the previous chapter we tried to find explanations for the evolution of the examined sysems
by researching therr development and usage. Dozens of iterations consisting of desgning and
using software have resulted in a wide array of systems, but this doesn’t necessarily mean that
there are no alternatives, that these applications are somehow the logical conclusion of
automation and informatization. Maybe they could be structured in a whole different way. Can
software be non-hierarchically? Can we create a system without administrators?

14.2 Cooperation

One of the findings was that is it generally not possible is to perform an act zgezher. In a typical
scenario for an organization, one day the company board decides that the organization will start
using a software package. This is the last real collaborative action in the whole software
deployment chain. Certainly, it is nowadays possible to collaborate on a document, if necessary
with thousands of other users — but this colaborative result is created by individual efforts.
Workflow does nothing to counter this: it consists of a series of steps done by individuals, not
real collaboration.

Actions are always attributed to users, not to groups: Groups can be given permissions, but a
group cannot jointly 4 something. This is visible in every system log. It never mentions that a
group has done something zogezher. It is always user X performed action Y.

This is easy to understand if one searches for “Last edited by” in a search engine. There’s a
big chance that you will only find user names. There’s never a group that publishes or changes
something. Some people have realized that this can be incorrect — a statement could be issued
from an organizational unit rather than a person. They will then create a specific user for this
purpose, for example (Tzoumas, 2005), or hide the person that last edited the entry from view.
And let’s not forget that the installation creates a single individual administrator.

How would we imagine a system where people act together? We can reuse the feature-user matrix
for this purpose. Initially we have the following situation:

User A |User B |User C |User D
Feature A X
Feature B X X
Feature C X X X
Feature D X X X

Table 14-1: Example of feature user matrix

Next we could create a ‘cooperation matrix’ where we describe the actions that are only jointly
possible.

Group |Group | Group |Group

Feature A A B C D

Feature B AB DC

Feature C | ABCD

Feature D AB AC BC

Table 14-2: Example of cooperation matrix

For example, User A, B, C and D can perform function A alone, but they must do feature C all
together. And for feature D they users A, B and C need the cooperation of one other user. There
is no reason why such a system could not be implemented. Why isn’t it done? One would suspect
that it takes extra effort. Maybe hierarchies are simply more efficient.

66

14.3 Splitting up

One system, different parts

Because of the negative atitude that was perceived towards website management, authoring and
publishing syssems might not be the best case to look for dternatives. An interview was arranged
with a sysem administrator (Govers, 2005). It was learnt tha redly criticd systems (such as
banking gpplications) are split up into different parts that communicate with each other. As a
whole, this creates a less hierarchicd gpplication. In a sense this is a sort of workflow, but
because each system is separated from the other the result is somewhat different. The cashier can
accept the money from the cussomer and the truck driver can transport the money to a centrd
safe, but there is no way tha the truck driver can ever become cashier or vice versa Another
solution is to split-up a system dtogether and have the parts run completely independent from
each other. These three stuations are illustrated below. First we see one huge hierarchicaly
dructured system:

Figure 14-1: Monolithic hierarchical system

Next we split the system in two different (but ill hierarchicd) systems that communicate with
eech other.

ﬁ\ /&
N/

Figure 14-2: Multiple hierarchical systems with communication between them

Findly we sever the ties between these systems, which now function completely independent of
esch other.

VANJAN

Figure 14-3: Multiple systems without direct communication

67

14.4 Audit trail

In Chapter 11 we examined the on-line encyclopedia Wikipedia, and mentioned that amost dl
users are dlowed to edit its articles. How can such a system function a al- why do vandals not
destroy the Wikipedia? In fact, vandalism does occur, but it is repaired. Wikipedia contains an
extensive audit trail of all the changes that articles undergo. If someone adds advertisements or
profane language, others can restore the article to a previous version easily. Most users do not
have direct database access — and are therefore not capable of changing the audit trail. (Again -
this functionality is limited to people higher in the hierarchy).

Thus, a good audit trail, combined with version management can reduce a system’s
vulnerabilities, without extensive authorization rules. But the systems is therefore not as open as
one might think — and more hierarchical at the same time. More importantly, such a feature is
only useful in an environment where the information that is stored is not very sensitive, and
changes have a limited effect on the physical world. If changes also affect the physical world they
could be impossible to roll back (consider someone publishing the blueprint for an atomic
bomb).

14.5 Conclusion

There are indeed alternatives for the way that current authorization and publishing systems are
set up. Splitting up hierarchies is something that is already implemented in other systems. If the
information is not particularly sensitive an audit trail combined with version management can do
the job as well. What is not yet available is the option to perform group actions, to act as a
collective.

Part III: Conclusions

69

15. Discussion: Rise of the Administrators?

15.1 Finding a suitable name for the ICT revolution

How should the last decades of ICT proliferation be described? Castells (2000) coined his book
“Rise of the network society” and indeed our society has become a network of interconnected
nodes. But this is nothing new - already hundreds of years ago there were networks of cities
trading goods with each other. In that sense nothing fundamentally has changed — or will ever
change. It’s also interesting to point out that most networks in this paper turn out to be
hierarchical. In a lot of circumstances a network seems too loose a structure to be useful. Maybe
‘Rise of the Networked Hierarchical Society’ might be a more accurate description. But were
networks not always hierarchical?
But although ICT is ubiguitous, some expectations did not come true. The arrival of a new
intelligent species as envisioned in the movie “2001: A Space Odyssey” has not happened. It is
also way too early to speak of a “Rise of the Robots” to recall another one. Only recently have we
witnessed the first vehicles that were capable of driving themselves autonomously through the
desert (DARPA, 2005). We are a long way from intelligent machines. To the contrary, we have
seen that old-fashioned people — the administrators — are in total control.

Marx’s theory that the industrial revolution caused the capitalist class is questionable, but
ICT certainly gave rise to a whole new group of people, the administrators. And just as the
capitalist class replicated itself every generation so does the administrator class in some way: The
operating system administrator creates a database administrator, who in turn creates an
application administrator.
Maybe the best description of what is happening would be: “Rise of the Administrators”. If this
paper makes anything clear, it is the ‘inevitable’ rise of a new class of people who rule the digital —
and the physical — world.

15.2 Three views on the administrator

Within an organization, administrators are situated in the techno structure. As such, they are less
visible than line managers, but over the years they have managed to control a vital part of our
society that we cannot live without.

Who is the administrator? He has many names (application manager, sysadmin, admin,
root, network manager, IT manager, systems manager to name a few) and this makes it hard to
describe his position. Is he the all-powerful operator in a system that he completely controls?
(Constraining) Or is he the trouble-shooter who has to fix a system in the middle of the night if
something goes wrong? (Enabling) It appears that we can look at the administrator in many ways.
We will now describe three distinct views on his position.

The administrator in Lukes’ 3" dimension

When asked, an administrator will probably deny that he has any power — emphasize his
subordinate position in the organization, point out that he doesn’t work alone and consults
others before taking action. (Anonymous, 2006) But an administrator is in many cases the sole
and supreme authority in ICT. Ordinary users can only suspect this. For example it is often
assumed in organizations that administrators can read everyone’s email (and gather a substantial
amount of information)- but in many cases these remain suspicions (Anonymous, 2006). Using
Lukes’ theory on power: They seem to operate in the third dimension.

The administrator as a street-level bureaucrat

Where should we place the administrator in an organization? Could he be described as a street-
level bureaucrat (Lipsky (1983), who has much more discretionary power than intended? Lipsky
argued that in bureaucracies, policy is often made at the lowest levels where bureaucrats interact
with clients. Their power is especially great if performance is hard to measure, there are limited
resources, clients are forced to use the service and if there are no clear goals for what should be

70

done. These stuations can indeed occur for adminigrators. We should however differ between
severd cases.
- Theclients are within the organization itsdf;
In this case they often need to use certain services.
- Thedlients are outsde of the organization and use the gpplication voluntarily.
If the application is not criticd then clients can smply opt out. For example, if a blog
adminigraor changes the policies then someone can smply signup a another blog.
Thus the administrator’s real power depends on the exact circumstances — but this doesn’t
change anything about the underlying control structures inside the application.

Metaphor of the digital dive

The administrator’s position can also understood when we use a metaphor, and see ICT usage as
taking a dive into a submerged digital world. For deep sea diving, it holds that a dive cannot be
done safely if no one remains on the surface. A line tender is needed who controls the line to
which the diver is attached. If something goes wrong the line tender can ‘simply’ pull up the
diver. But the diver is also completely dependent on the line tender: if he would sever the line,
the diver would be in a lot of trouble.

The administrator is in a similar position. His position is not on the surface right between
air and water, but right between the digital and the physical world. In case of trouble — he can
rescue the users. Without him, using ICT is not safe — but as the same time he has complete
control over them.

The line tender is also not the most important person on the diving team — but his position
makes him important nonetheless, the same thing holds for the administrator of an organization.
He does not rival the CEO or even the CIO, but does perform an essential and critical function.
Seen from this point of view, administrators are necessary when groups of people attempt a d:giza/
dive together. His position flows naturally from any type of technology that allows physical
processes to be transformed into digital ones. It also shows that ICT has an inherent physical
component — of which it cannot free itself. As such there is an inherent limit as to what can be
digitalized.

71

16. Conclusion

Citing the introduction, the am was to investigate ICT itself (and not it’s context) from a
sociological perspective and prove that such an approach

1. Is feasible and sometimes even preferable over other approaches

2. Can lead to new insights that are not easily obtained by other means
We will now reflect on whether this has been the case.

Reflections on the research approach

Indeed, it was possible to study ICT apart from its context: It is very well feasible to investigate
programs and find out about their structure, rather than organizations. But such an approach
must be complemented by other means: If we want to explain why control structures are the way
they are, we must also look at their development and usage — process that take place in society.
While trying to explain ICT we can therefore not ignore context.

Key insights

ICT is structured hierarchically and — for now - cannot do without all-powerful administrators.
Ultimately, this makes ICT very insecure.
ICT’s control structure can be explained in three ways:

A technological explanation is the way that ICT itself is structured, consisting of
hardware, programs and running applications. A program must be installed on a piece of
hardware to become a running application; only an administrator can do this. He then grants the
authorizations to other people. There is thus an inherent tendency to centralize. This is an
indication of technological determinism: It is not organizations that choose a particular
configuration; rather their options seem limited by the technology itself.

A social explanation is that safeguards against abuse are currently oxzide of ICT, in the
embedding of administrators within organizations, their education and indoctrination.
Socialization complements the minimal safeguards inside of ICT.

Another explanation is evolutionary: Because early systems had administrators, no one
ever saw the need to change this. It was easiest to copy and reuse the existing authorization
structures.

Options to mitigate (and possibly eliminate) the critical role of administrators include the creation
of true cooperation within applications, the splitting up of applications and the creation of audit
trails.

The results can be used for further research and to improve the security of both existing and new
applications.

72

17. Recommendations

17.1 Introduction

This chapter gives severd recommendations for future research projects.

17.2 Methodology

Version control systems

To hep the research of authoring and publishing systems evolve, an important step would be to
do research with the ad of verson management systems. In this paper, state of the art programs
were examined and a number of interviews were taken to research ther evolution. However,
many organizetions keep ther software versons in separate, 0 cdled verson management
sysems.

If properly used, these contain the entire history of a software package and this data can be used
to study the software’s evolution.

One program, multiple applications

In this paper several programs were examined. Another approach would be to examine one
program and see how several organizations make use of the control structure. Do organizations
differ in this respect? How much organizational choice is there?

Experimental systems

One practical research approach could be an attempt to create an administrator-less system,
where all users are equal. Another idea would be to implement a sort of democratic process
inside an application, where users can choose their administrators for a predetermined period.

17.3 Subjects

High risk systems

Although the examined systems had authorizations and audit trails, probably no one designed
these systems to be completely secure. Has this lead to a bias — would other types of systems
have yielded different results? To complement this paper, more critical systems could be
examined, for example systems used by banks, intelligence organizations, pharmaceutical
companies.

Initially, the hypothesis could be that these systems also suffer from the administrator
vulnerability, but that they have tighter social and/ or physical control mechanisms in place.

Former communist systems
All examined systems were designed in the western world. Could there be a cultural or temporal
bias in this? For example, we could contrast them with systems designed under communist rule.

The Great Firewall of China
How is this filtering system controlled? Who decides what is to be filtered and how? How do the
censors know what must be censored if they cannot find it themselves?

Control over the entire Internet
How is the entire Internet governed? For example, who controls the domain name system
(DNS), the protocols etcetera? How hierarchical is the entire Internet really?

73

18. References

18.1 Printed publications

Booch, G., Rumbaugh, J, Jacobson, 1. (1999)
The Unified Moddling Language User Guide
Addison-Wedey

Brookshesar, J G. (1991)
Computer Science: an overview. 3¢ ed.
Benjamin/ Cummings

Cagtells, M (2000)
The Rise of the Network Society Volume |
Blackwell Publishing

Cugter, H. (1994)
Insdethe Windows NT File System
Microsoft Press

Ferraolo, D., R. Kuhn (1992)
Role-Based Access Control
Nationd Ingtitute of Sandard and Technology

Gaithersburg, Maryland, presented a proceedings of 15th Nationa Computer Security

Conference

Fowler, M. (1999)
Anayses paterns
Addison-Wedey

Ghezzi, C., Jazayeri, M., Mandrioli, D. (1991)
Fundamentdss of Software Engineering,
Prentice Hall

Gijzd, F. (2003)
Content Management systemen, een onderzoek naar succesfactoren,
UVA, doctoradscriptie

Huntington, Samuel P. (1998)
The clash of civilizations and the remaking of world order
Smon & Schuster

Jesperson et d. (2002)
Power & IT Research
MIS Quarterly Vol. 26 No. 4, pp. 397-459

Jong, M.-J. de (1997)
Grootmeesters van de sociologie
Boom

74

Lipsky, M (1983)
Sreet Leve Bureaucracy
Russdll Sage Foundation

Lukes, S (1974)
Power: A Radicd View
Macmillan: London

Macionis, J, Plummer, K. (1997)
Sociology - aGlobd Introduction
Prentice Hall

Metsdaar, C. (2000)
Sociad organisatorische gevolgen van kennistechnologie
SKS

Mintzberg, H (1992)
Sructure in Fives: D esigning Effective Organizations
Prentice Hall

Neuman, Lanrence W. (2000)
Socid Research Methods 4th edition
Allyn and Bacon

Nolan, R. L. (1979)
Managing the Crisesin Data Processing,
Harvard Business Review, April/ March

Orlikowski, Wanda J,, 1acono, Suzanne C. (2001)

Research Commentary: D esperately Seeking the "I T" in IT Research--A Cdl to Theorizing the I T
Artifact

Information Systems Research, Vol. 12, Issue 2

Roe Smith, M., Marx, L. (1994)
Does Technology Drive History?
MIT Press

Wood, D. (1987)
Theory of Computation
Wiley

Zuboff, S (1985)
Automae Informate: The Two Faces of Intdligent Technology
Organizationad Dynamics, Autumn

Zuurmond, A (1994)

De Infocratie: een theoretische en empirische heroriéntatie op Weber's ideaaltype in het
informatietijdperk

Den Haag, Phaedrus

Gordon, M (1998)

75

Oxford Dictionary of Sociology
Oxford Univerdty Press

18.2 Online publications

Berners-Lee, T (1989), Information Management: A Proposd, from World Wide Web Consortinm
(W3C), Retrieved August 18, 2005, http:/ / www.w3.org/ History/ 1989/ proposd.html

Brisset, P. (2001) A 3D animation of Linux source code development, Retrieved August 18, 2005,
http:/ / perso.wanadoo.fr/ pascd.brisset/ kernel3d/ kernd3d.html

Chandler, D (2005) Technologicd or Media Determinism, Retrieved August 18, 2005, University
of Waes, Aberystwyth, Media

http:/ / www.aber.ac.uk/ medial Documents/ tecdet/ tecdet.html

CivicSoace (2005) Retrieved August 28, 2005, http:/ / civicspaceabs.org

DARPA Grand Chdlenge 2005, Retrieved August 28, 2005, http:/ / www.grandchalenge.org/
Drupd (2005) Retrieved August 28, 2005, http:/ / drupd.org/

Hague, A (2003) Information Technology, GISand Democratic Vdues: Ethicd Implicationsfor
IT Professonds in Public Service,

Retrieved August 18, 2005, Universty of Alabamaat Birmingham

http:/ / images.main.uab.edu/ psychology/ gps/ GIS _Ethics Haque.pdf

Hartman Communicatie BV (2005) Retrieved August 18, 2005, http:/ / content.hartman-
communicatienl

Huijzer, D, Peer, P van, Pol, Huub van de (2005) Wegwijzer in de Uitgeverij

Retrieved August 18, 2005,

http:/ / www.wegwijzerindeuitgeverij.nl/ wegwijzerindeuitgeverij/ pdf/ Wegwijzer-H1-7.pdf

Infrae (2005) Retrieved August 28, 2005, http:/ / www.infrae.nl/

R. Kurzwelil, B. Joy, Recipe for Destruction (2005) Retrieved April 8, 2006,
http:/ / www.nytimes.com/ 2005/ 10/ 17/ opinion/ 17kurzweiljoy.html?ex=1287201600& en
=29351015130c0ebf& ei=5090& partner=rssuserland& emc=rss

Log in Usenet — References (2003), Retrieved August 18, 2005, from Internet EAQ Archives,
http:/ / www.fags.org/ usenet/

MediaWiki (2005), Retrieved August 28, 2005, http:/ / en.wikipedia.org/ wiki/ MediaWiki
Microsoft (2005), Retrieved August 28, 2005, http:/ / www.microsoft.com/

Network Working Group (1993), RFC 1436 - The Internet Gopher Protocol, Retrieved August
18, 2005, from Internet EAQ Archives, http:/ [www.fags.org/ rfcs/ rfc1436.html

Open Source Initiative (2005)
Retrieved August 28, 2005, http:/ / www.opensource.org

76

phpBB (2005) Retrieved August 28, 2005, http:/ / www.phpbb.com/

Princeton University (2005) Wordnet
Retrieved August 19, 2005, http:/ / wordnet.princeton.edu/ perl/ webwn

Project Minerva (2005) Retrieved August 28, 2005, http:/ / www.project-minerva.org

TYPO3 (2005) Workflow description
Retrieved August 27, 2005, http:/ / TYPO3.org/ devdopment/ projects/ workflow-

engine/ pagel 2/

Wikipedia (2005)
Retrieved August 27, 2005, http:/ / en.wikipediaorg/

Zawinski, J. (2005) Groupware Bad. Retrieved July 25, 2005,
http:/ / www.jwz.org/ doc/ groupwarehtml

Zope (2005) Retrieved August 28, 2005, http:/ / www.zope.org/

18.3 Interviews & conversations

Benjamin, J. (2005). Interview with the author on June 28, 2005. Rotterdam. [Notesin possesson

of author]

Faassen, M. (2005). Interview with the author on March 10, 2005. Rotterdam. [Notesin

possession of author]
Govers, V. (persond communication, July 20, 2005)
Kradjevdd, J (persond communication, July 12, 2005)

Linden, A.J van der. (persond communication, July 11, 2005)

Maen, I. (2005). Interview with the author on June 21, 2005. Rotterdam. [Notes in possession of

author]

Tzoumas, D (2005). I nterview with the author on July 10, 2005. Rotterdam. [Notes in possession

of author]

18.4 Software

Name Version | Retrieved from URL

Drupd 46.0 http:/ / www.drupd.org/

D Soace 122 http:/ / www.D Space.org/
Mambo 4523 | http/ / www.mamboserver.com/

MediaWiki 140 http:/ / sourceforge.net/ projects wikipedial

Movable Type | 3.16 http:/ / www.sixgpart.com/ movabletype/

PhpBB 2011 | http/ / www.phpbb.com/
Slva 11 http:/ / www.infrae.com/
TYPO3 380 http:/ / www.TYPO3.com/

77

Appendix A: Tables

TahlE 2-1: RESEACH IENSES.....cicerecie sttt et s ettt 13
Table 4-1: Sructurd Model Of tECHNOIOGY........cceiieeeereeeee et b e sr e s nenas 21
Table 4-2: Causd MOdE! Of tECHNOIOGY......cvvrerereerieeeariee ettt 21
Table 5-1: Schematic overview of aprogram consisting of different fERUreS.........covvrrerererreeeseseresesereeenenas 23
LI o[RS0 Mol T I o] o] o= Ao 0= R 23
Tahle 5-3: COMPIELE ACNILECLUIEcueeeeieteteeeee ettt trae s e s e e e bbb e rese b b e b e e e e bt et e e ne e s sessenenenen 24
Table 7-1: Hierarchica content inSde adataDase teXt.......cvvriererererirrrresises s st sessse s s ssssanns A
Table 7-2: Example Of afeature USEr METIXcccveeeieririerie st se e s s s st sssseenean 35
Table 7-3: festure-user matrix With 2 festUreS and L USENc.ceeevevevcceenrssisie s s sssssssss s sesssesssessssasanes 35
Table 7-4: Feature-User MatriX USING FOIES.....cuccurererereereureereseresssessesesesesessssssesssesssessssssssssessssssssessassesssssssseseaen 35
Table 7-5: Hierarchical role Structure (role-fEBUre METIX)coeeereuceeeerreeesireresese s esssss e e sese s 36
Table 8-1 Examples of authoring and publishing systems (Wikipedia, 2005).........ccccverereererieresieseneseseeseeens 38
Table 9-1: EXpected hierarChiCal SCOME.....uiiviiiriiirereieriese s ste st e s e ss st e st ns st e e seesesensens 45
Table 10-1 Types of Non-probability SAMPIES.........cceueuiirieiieeee et sn e nenas 46
TalE 10-2 OVEIVIEW Of COSES .uvurrurrerererriresireresesssssssssssesessssssssesesesssssssssssssessssssesssssssssssssssssssasssesssssssssnsssasanes 48
Table 11-1: Interpretation Of CONLIOl SEIUCLUIE SCOMES........covcvieerereuerereeresierereesesesessesese e e sesssseseesesessssssesesenan 52
Table 11-2: Actud applications Scores 0n CONtrol SLIUCLUNE..........cecivereererreresie e sressesee s s s s e sseseeneas 53
Table 11-3: Interpretation Of WOrKFIOW SCOFES.......co.coueeeeiere et sr e s 53
Table 11-4: Actual gpplications SCOreS 0N WOPKFIOWcoceveueeereerereecre e 53
Table 11-5: Actud applications SCOres 0N CONtENE SITUCIUNEceueevereereecees e se e 54
Table 11-6: roles and features 0f MEJIAWIKI.........ccceureeuerirerirereresese s ses s ss e sesssse e seseessnsenas 56
Table 11-7: Role distribution a Organization P...........ccceeeeiieeieeeiese et sese e sassesesenas 57
Table 11-8: Roledistribution a organization Q..........cccceeeeeieeeeeereseseres et sese e ssssssesesenan 57
Table 13-1: Examined programs and OrganiZatioNS.........cccceverrreriesessesessessesiessssesessessessssesssssssssssssessesseseeneas 60
TaDIE 13-2 WEDSILE PhASES.....coeeeei ettt sttt sttt e e e bbb e s st bt ebese e se b b et e senese s sersetnnenan 64
Table 14-1: Example Of FEBUIE USEr METIX....ccrevrerereeresreseseresersssssessseressssssssssesssessssssessnsssssssssesssssesssesssssssaen 66
Table 14-2: Example Of COOPErEON METIXecceiereeureeurieererereseseseesesssssssessesesesesesesssssssssssssssessesssesessssasases 66

78

Appendix B: Figures

Figure 1-1: Two approaches for the StUAY Of ICT ...ttt s s 8
Figure 3-1: Graphical representation of the changing structure of asoftware programc.cceeeveveevereereeneenes 16
Figure 3-2: Correspondence between socid and digital PrOCESSES........cocrerererrerenerereressseeeeesesesesesee e sesesesenes 17
Figure 5-1: STUCLUral MOGE! Of ICT ...ttt st ee bbb st be e sns st aebese e s e saeee 22
Figure 5-2: Graphica representation of the software development lifecycleooeoeeevcecencrceccecee e, 24
Figure 7-1: RoIE hasad @CCESS CONLIOL........ccevereeeeeertete ettt se bbb s bbb s ssssrsesesenese e sreaees 31
Figure 7-2: Mesh of UNCONNECEEA NOTES........c.cueieeiierieie ettt se s bbb sr s b b s s e aees 31
[T VTR € o) o TSP O PTPRRR 32
Figure 7-4: Hierarchical graph WIth FOOL..........c.ccceiiice ettt ee s 32
Figure 7-5: Fixed three-layer NIErarChy ...ttt s 32
Figure 7-6 Unlimited depth NIErarChy.........c.cceeercnreerecceee sttt 33
Figure 7-7: Workflow as feature-user MatriCeS iN tIME......ccererererereerrrerereresressesseesesesessssseseseesessssssesssesenes 36
Figure 8-1: propoSsa DY T. BETNEISLER.......c.cocueieeeieeer ettt et ae s ss e p s s s e eaes 41
Figure 8-2: Alternative (hierarchical) representation of the World Wide WEDcoeevevevevenccececennenesenenenes 42
Figure 11-1: Drupal iNSEABONc.cueeeeeeceterecce ettt et s a e snr e bbb s e nrnaees 55
Figure 11-2: DPaCe INSAIGION........cuceeereeietetee sttt et a et sese e bebe e se bbb se e essnre et b sese s santees 55
Figure 11-3; Mambo iNSLAlGON...........ccoceereeeietecce ettt s b e ser e bbb e nannees 55
Figure 11-4: MediaWiKi INSLAIBLIONcccvuieeirieiriceriesissese e sp e st 55
Figure 11-5: Movahle TYPe INSAIGHION.c..eueueeeerereeeeeeere e e see s e e s se s se e ssnes 55
Figure 11-6: phpBB INSLAIGION.......c.cviieiireiiricesr e se s 55
[T NIl S 1A= W1 1S = = o o T 56
Figure 11-8; TYPOS INSAIGON.......cuceeeereeierereeee sttt eseseseseestssesesesesssessesesesesesssessssesesssessssssssssesssensasnensnne 56
Figure 14-1: Monolithic hierarchiCal SYSLEMcucuceveieeeeceecre et 67
Figure 14-2: Multiple hierarchical sysemswith communication between them..........ccceevevevccceeninnerenenene 67
Figure 14-3: Multiple systems without direct COMMUNICAIONc.cucueeeeereeierereieee e ee s 67

79

Appendix C: Database modeling

Database diagramming techniques

In ICT various diagramming techniques are used to illustrate and document how programs are
dructured. On such gructure isthe database structure: The part where d the datais Sored that is
used by (and/ or created by) an gpplication. There are various database types, but the relational
database is most popular. Logicdly, it stores everything in tables, below is a amdl example
representing two tables “Publisher” and “Book”.

Publisher

ID Name

(Primary key)

AW Addison-Wesley

PH Prentice Hall

Book

ID Name Author Publisher

(Primary key) (Foreign

key)

CS Computer | Brookshear | AW
Science: an
overview.

SOC Sociology, a|Macionis, |PH
Global & Plummer
Introduction

Table C-1Tables Publisher and Book

Each table has a unique field called the primary &ey. Other tables can reference this field with a so-
called foreign key. In the example a book references a publisher.

A common notation is the crowfoot notation:

Book Publisher

I~
L~
Figure C-1 Example of crowfoot notation
This notation is used in the next sections and is interpreted as follows:

- From left to right: a book has only one publisher
(Going from the #hree Znes at the book you end up with oze publisher)

- From right to /eft. a publisher can publish multiple books
(Going from the single /ine at the publisher you end up with 7zu/iip/e bOOKS)

Appendix D: Structure

Control structure

Drupal

The only principd in Drupd is the user. A user can be in one ore more roles. Roles can be
granted permissons, based on those permissions users can perform certan actions. The
ingdlation defines two basic roles but it is possible to add new roles.

Role

Definition

Anonymous user

A user that has not identified itsdf

Authenticated user

A user that has logged in

Table D-1: Roles in Drupal

The ingdlaion procedure creates one account. The firg user of a Drupd dte automaticaly
receives dl permissons, no matter what role that user belongs to.

User Permissions granted
Firgt user All permissons

All other users Role based

Table D-2: Users and permissions in Drupal

DSpace

D Sace defined two basic groups.

Groups Definition
Adminigrators Can do anything in aste
Anonymous Not identified

Table D-3: Groups on DSpace
It is however possibleto create other groups.

81

Mambo

Mambo hastwo main hierarchies. one for accessto the Front-end (so users can log in to the web
site and view designated sections and pages) and one for Back-end Administration access. A user
can only have onerole.

Hierarchy Role Description

Front-end Registered This group dlows the user to login to the Front-end
interface.

Front-end Author This group dlows a user to post content, usudly viaa
link in the User Menu.

Front-end Editor This group dlows a user to post and edit any content
item from the Front-end.

Front-end Publisher This group dlows a user to pogt, edit and publish any
content item from the Front-end.

Backend Manager This group dlows access to content cregtion and other
system information.

Backend Adminigtrator This group dlows access to most administration
functions.

Backend Qper This group dlows access to dl administration

Administrator functions.

Table D-4: Roles in Mambo

MediaWiki

The only principd in MediaWiki is the user. Users can have certan rights, based on those rights
users can perform certain actions. The MediaWiki term ‘right” is best understood as a role, for
example a user has the role ‘developer’ or ‘sysop’. Users can be in one ore more roles.

Role Granted by
User All
Developer -

Bureaucrat Developer
Sysop Bureaucrat

Table D-5: Roles in MediaWiki

Roles are hierarchical as the table indicated: a developer creates a bureaucrat creates a sysop.
During the installation of MediaWiki a special user account (with the role of sysop) is created that
can perform various maintenance tasks. (This basically means that the top-level roles bureaucrat
and developer are not available via the user interface — the must be set in the database
themselves).

Movable Type

The only principal in Movable Type is the user. Users can be either registered or non-registered.
User Permissions granted

Registered user Depending on each user

Unregistered user Only option: allow comments

Table D-6: Users in Movable type

Registered users can be granted permissions, based on those permissions users can perform
certain actions. The installation procedure creates one account with the user name Me/sdy and the

82

password Ne/son who has dl permissons. Mdody can credte blog authors, who, in ther turn,
cregte yet other authors.

phpBB

Users can be granted the adminigtrator role.

User Permissions granted
Adminigrator Administrator
Non-Administrator Depending on other settings

Table D-7: Users in phpBB
The principasin phpBB are users and groups.

Silva
Slvahas severd predefined roles split into two hierarchies.

Chief
Action (feature) Reader Author Editor Editor Manager
Read, preview,
Copy content + + + + +
Cresete, edit, delete,
Unpublished content + + + +

Submit for publication + + + +
Create editable verson of
published content + + + +
Approve, publish content + + +
Define, change time frame + + +
Close, ddete published
content + + +
Creste new editors,
authors, readers, viewers + +
ZMI actions, add users,
add Extend Sources,
refresh content +

Table D-8 Silva roles and permissions

Action Everybody |Authenticated [Viewer Viewer+ Viewer++
View public
content + + + + +
View
authenticated
content + + + +
View
restricted
authenticated
content + + +
View IP
controlled
content Optiond Optiond Optiond Optiond Optiond

Table D-9 Silva roles and permissions (continued)

TYPO3

TYPO3 is divided into afront-end and a backend section, with corresponding user types. Only
content contributors are dlowed access to the backend - the administration of the webste. A
specid permission is the admin permisson. Admin users have full permissons. Users can be a
member of one or more groups and get their permissons from these groups. Groups are
organized hierarchicdly, a group can be a member of another group, receiving dl it's parents
permissions.

User Permissions granted
Administrator Full permissions
Non-Administrator Depending on other settings

Table D-10: Users in TOPY3

Workflow

Drupal

Drupd has a moderation feature: If goplied, users that lack a specific role must have ther
contents gpproved by others. Meanwhile the contents reside in a moderation guene. According to
the documentation: The queue provides away for your usersto vote on submitted content. Users
can moderate a post up (give it a point), or down (subtract a point). Several ‘thresholds’ give you
control over how many points are required for the status of a post to be automatically changed.

Threshold Description

Post threshold When a post gets this number of moderation points, it is promoted to the
front page automatically.

Dump threshold | When a post drops below this number of points, its status is changed to
unpublished.

Expiration When a post gets this number of points, its status is changed to unpublished.
threshold

Table D-11: the threshold system of Drupal

DSpace

DSpace has a three-step workflow process, and is one of the few systems in which workflow is
mentioned as a separate subject. From the manual:

A collection's workflow can have up to three steps. Each collection may have an associated e-person group for
performing each step; if no group is associated with a certain step, that step is skipped. If a collection has no e-
person groups associated with any step, submissions to that collection are installed straight into the main archive.

In other words, the sequence is this: The collection receives a submission. If the collection has a grounp assigned for
workflow step 1, that step is invoked, and the group is notified. Otherwise, workflow step 1 is skipped. Likewise,
workflow steps 2 and 3 are performed if and only if the collection has a group assigned to those steps.

When a step is invoked, the task of performing that workflow step put in the "task pool' of the associated group.
One member of that group takes the task from the pool, and it is then removed from the task pool, to avoid the
situation where several people in the group may be performing the same task without realizing it.

The member of the group who has taken the task from the pool may then perform one of three actions:

Workflow Step Possible actions

1 Can accept submission for inclusion, or reject
submission.

2 Can edit metadata provided by the user with the
submission, but cannot change the submitted files. Can

accept submission for inclusion, or rgect submission.

3 Can edit metadaa provided by the user with the
submission, but cannot change the submitted files. Must
then commit to archive; may not rgect submission.

Table D-12 DSpace workflow steps

Edit Metadata Edit Metadata
Submitter's | Submit Workflow Accept Workflow Accept Workflow Commit | em Added
“My DSpace" Step 1 Step 2 Step 3 to Archive
Reject Rejact

Figure D-1: Submission Workflow in DSpace

Mambo
In mambo, workflow is a two-step process. Authors and editors can submit content tha is
published by a publisher.

MediaWiki

MediaWiki has no enforceable workflow. Anyone with sufficient access can change any page
anytime. It is possble though for administrators to protect pages (make them read-only) and
change them upon request of other users. Another option isto add pagesto a’'watch list’, alist of
pages that are tracked for changes by others. Users can periodicdly view this page to check for
updates.

Movable Type
Movable Type has no red workflow. In fact, one of its man festures is caled QuickPost that
enables 'one-click publishing'. However, an entry can bein one of three Satuses:

Status Description

Draft Unpublished

Future To be published a afuture point in time
Publish Published

Table D-13 Movable type publication statuses

It is ds0 possble to keep track of new items on other Stes and vice versa via a so-called ‘track
back’ system.

phpBB

phpBB has no real workflow. It allows the user to get an email notification when a reply is posted
to a certain topic. Furthermore it has a feature to automatically delete topic after a number of
days after they have not been posted to (auto pruning). Somewhat incorrectly phpBB has a role
called moderator - but there is no submission queue to be moderated. In fact the moderator is
just a plain role that can be granted permissions for each forum.

Silva

Silva has a two-step workflow process:

Authors can submit content for publication, which must then be approved by an editor via his
To-Do list. Each piece of content has a publication an expiration date. If content is approved, it

85

will become publicly visible between these dates. A content dement can have different versons -
only one of these versions can be published a any time.
A content element (and verson) can bein one of five statuses:

Status Description

Dréft The content iswaiting for gpprova

Pending The gpprovd task is on some Editor's To-Do lig.

Approved The content has been gpproved, but is not published yet.

Published The content is visible for the public.

Closed Indicates tha there is no new verson and the public verson
is closed

Table D-14 Silva publication statuses

Slvadso has an email subscription feature; visitors can subscribe and receive email notification
when apart or parts of the Ste are updated.

TYPO3
Typo3 has very daborae workflow features to dlow for a variety of workflow modds to be
implemented. Specific workflows can be defined for existing or new content, for specific content
types (page content, dternative page language, guestbook, news, internd note), assgning steps to
users or groups. But in fact there are only two options for workflow:

[Editor] -> [Author] -> [Editor]
Thisinvolved two persons.

[Editor] -> [Author] -> [Reviewer] -> [Editor]
This adds athird person to the process.

Content structure

We will now link the conzent structure to the contro/ Sructure.

Drupal

Drupd has severd content types (cdled nodes), including stories, polls, blogs, forums and books.
Nodes can be hierarchically ordered. The core Drupal application doesn’t have ACL functionality
but there are modules such as ‘node privacy by role’ (Drupal, 2005) to determine which roles can
view or edit a node.

Figure D-2: Drupal node structure

DSpace

The basic content element is an item that consists of bundles and bit streams (Files in fact). Items
can be part of one or more collections that belong to a community. Communities can have sub-
communities. Access can be specified at each level.

Access type for element

Read

86

| Write |
Table D-15: Access levels in DSpace
Mambo
Mambo organizes text in content dements. Content dements belong to a category and a section.

A specid featureisto put content directly on the front page. For each content element the access
level can be specified.

Access level Users

Public All users

Registered Regisered user that islogged in

Soecid Any user created as Author, Editor, Publisher, Manager, Administrator or
Quper Adminigtrator is consdered a Specid User.

Table D-16 Access levels in Mambo

MediaWiki
MediaWiki is organized into pages, everything is grouped a the same leve.

Figure D-3: MediaWiki page structure

It has dso a category grouping system, to help users find things hierarchicdly (see for a live
example http:/ / en.wikipediaorg/ wiki/ Category:Botany) but this system alows to group itemsin
more than one category: there is not necessarily a single hierarchy. Links are cregted a the text
level.

Control of pages is done via ‘page protection’:

Page type Description
Protected Only users with sysop role can change the page
Unprotected Everyone can change the page

Table D-9 Page protection in MediaWiki

Movable Type

The basic content element is an entry that is placed in a blog. People can comment entries.
Entries can be organized into categories; an entry can belong to multiple categories but has only
one primary category. Each user can be given different access rights for each blog:

87

User rights

Post

Upload File

Edit All Posts

Edit Templates

Edit Authors
Permissions

&

Configure Blog

Rebuild Files

Send Notifications

Create and Edit Categories

Edit Address Book

Table D-18 Movable Type user rights for blog

phpBB

The badc content dement isaposting. There are severd kinds of pogtings.

a Normd

b) Sicky (before any other topicsin the form)
¢) Announcement (even before sticky topics)
d) Locked: only moderators can send messages to locked topics. Locked topic can dso be

unlocked

There’s also the option to create a poll. Postings are organized into topics, topics in forums and
forums into categories. Registered users can send private messages to each other that can only be
read by the sender/ receiver.

__ ->—__
[: N

(T rom)

Category Forum

(S

Users can be granted permissions at the forum level. (They can also be granted permissions via
the group to which they belong). For each forum, the easiest way is to use the simple ‘permission

levels’.

Permission level

Description

Public

Anonymous users can read and post. Registered Users can additionally
edit their posts, and create and vote in polls. Moderators and
administrators can make stickies and announcements.

Registered

Anonymous users can read the forum. Registered Users can additionally
post, reply, edit their posts, and create and vote in polls. Moderators and
administrators can make stickies and announcements.

Registered [Hidden]

Anonymous users may only register. Registered Users can read, post,
edit their posts, and create and vote in polls. Moderators and
administrators can make stickies and announcements.

Private

Non-Private users may only see the forum. Private Users can read, post,

reply, edit their posts, and create and vote in polls. Moderators and

88

administrators can make stickies and announcements.

Private [Hidden]

Only Private Users may see the forum. Private Users can read, podt,
reply, edit ther posts, and creste and vote in polls. Moderators and
adminigtrators can make stickies and announcements.

Moderaors

Anonymous and Normd users can only see the forum. Moderators and
adminigtrators can read, pog, reply, edit their posts, create polls, vote in
polls, and make gickies and announcements.

Moderaors [Hidden]

Normd users cannot see the forum. Moderators and administrators can
read, pod, reply, edit their pogs, cregte polls, vote in polls, and make

tickies and announcements.

Table D-19 phpBB simple permission levels

Next to the smple permission leves, users or groups can be given certain permission levels.

Permission levels

Description

All

Every user in the board is in this permisson level. This levd is used
paticularly to grant permissons to users who are not registered and/ or
logged in.

Registered

A use isin this permission leve if he/ sheis both registered at the board,
and is currently logged in.

Private

There are two patsto being a private member of aforum. In the forum
permissons, there must be a least one permisson type set to the
permisson leved PRIVATE. Additiondly, in the User Permissions or
Group Permissions pand, the user or group must be "Allowed Access'
to the private forum (or have permission types set to "ON" in advanced
mode.)

Moderaor

Someoneisin thispermisson levd if they are amoderator of the forum.

Administrator

Board administrators (and no one se) arein this permisson leve.

Table D-20 phpBB group permission levels

Notice that at the database level, there’s an odd similarity between the forum application phpBB
and the blog application Movable Type: They use the exact same content structure for different
purposes. Even the access specification is at the same level: phpBB specifies access to a forum,

Movable Type to a blog.

Application Element 1 Element 2 Element 3 Element 4
phpBB Category Forum Topic Post
Movable Type Category Blog Entry Comment

Table D-21 Side-by side comparison of phpBB and Movable Type content structure

Silva

Every node in Silva is part of one hierarchical structure. Roles (as mentioned before) can be
specified for each node. Users can be given local roles, meaning roles for a specific node.

89

Node

The complete list of node types is given below and illustrates Silva’s extensive features:

Accelerated HTTP Cache Manager Silva Group
Browser 1d Manager Silva IP Group
DTML Document Silva Image
DTML Method Silva Indexer
Docma Service Silva Layout Service
External Method Silva Link
File Silva Link Version
Filesystem Directory View Silva Message Service
Folder Silva Multi View Registry
Folder (Ordered) Silva Publication
Formulator Form Silva Renderer Registry Service
Image Silva Root
Mail Host Silva Sidebar Service
Page Template Silva Simple Member
Parsed XML Silva Simple Member Service
RAM Cache Manager Silva View Registry
ReStructuredText Document Silva Virtual Group
Script (Python) Site Error Log
Session Data Manager SiteRoot
Set Access Rule Transient Object Container
Silva AutoTOC User Folder
Silva CodeSource Charset Service Version
Silva Container Policy Registry Virtual Host Monster
Silva Document Vocabulary
Silva Document Version XMLWidgets Editor Service
Silva Editor Support Service XMLWidgets Registry
Silva Extension Service Z Gadfly Database Connection
Silva File Z SQL Method
Silva Files Service Z Search Interface
Silva Folder Z CTextIndex Lexicon
Silva Ghost Z Catalog
Silva Ghost Folder Z0ODB Mount Point
Silva Ghost Version Zope Tutorial

kupu editor

Table D-15 Node types in Silva

Note that these are not all content related, for example the ‘User Folder’ or the ‘kupu editor’. A
special feature is the option to link an existing hierarchy onto another node (a ghost folder).
Every user can be granted a role at each node (so called local roles).

TYPO3
TYPO3’s text is organized into pages that contain content.

Content

For each page, 5 basic permissions can be set for:
- The owner of the page

- The group of the page

- Everyone®

Permission Description

Show page Show/ Copy page and content.

Edit content Change/ Add/ Delete/ Move content.

Edit page Change/ Move page, e.g. change pagetitle etc.
Delete page Delete page and content.

New pages Create new pages under this page.

Table D-4 TYPO3 permission types

18 Thisis probably derived from the Unix/ Linux file system where each file has permissons for its owner, group and everyone else.

91

Appendix E: Causes

E.1Design of Silva

Introduction
According to the webste of Infrae (Infrae, 2005)
Silva is a powerful CMS for managing content for the web, paper, and other media. Content is stored in a
clean and future-proof format, independent of layout and presentation. Features include a multi-version
workflow system, integral WYSIWYG editor (Kupu), content reuse in multiple publications, sophisticated
access management, extensive import/ export facilities, fine-grained templating, and hi-res image storage and
manipulation.
To understand how Slva was designed Martijn Faassen wes interviewed. (Faassen, 2005)
Together with Kit Blake he sarted the company Infrae afew years ago and Slvais one of ther
most important products. Ther busness mode is open source and Siva s fredy avalable from
their website. Slvais built on top of Zope, aframework for content management systems. ™

Content and authorization structure

Zope has a completey hierarchicd database system tha contains everything in the application,
text, images, users, editors etc. This posed some chdlenges for Infrag, asthere can be amismatch
between the underlying application structure, the authorization structure and findly the way
things are presented to the user. For a particular customer they created so caled ghost directories, @
way to atach content to multiple locationsin the tree, without duplicating it.

As they dsarted cregting Slva they did not choose the Zope authorizaion structure
because it was deemed inadequate. Initidly Zope did not have user groups; neither did it support
locd user roles. A user could only have a globd role throughout the application (for example
manager) but they wanted to add a context to therole, to give a user the option to be manager of
only a pat of a webdte. Slva sarted with the following roles. Reader, Author, Editor, Chief
Editor, Manager and Viewer. On a customer’s request they added the TZewer+ and T zewer++
roles. These can be used for fine-grained control of sensitive documents.

Workflow

In the interview, while talking about publication permissions and the fact that only one user has
to authorize a publication, Faassen pointing out that the paper was actually about wor&flow and
gronpware features: Ways to prescribe how people collaborate on a given task. He was quite
skeptical about this and thought it wasn’t of much practical use. It’s something that managers
want when they buy something, but it doesn’t help making actual users enthusiastic for the
product (nor developers — not unimportant in the open source world), according to (Zawinski,
2005). It reminded of the Viewer+ and Viewer++ roles — his idea was that in practice they were
never used. Not surprisingly, Silva has only modest workflow features. He also pointed out that
Plone has a somewhat different workflow pattern compared to Silva (see the Silva section on
Workflow): Create => Publish => Retract => Modify => Publish. With this structure, you can’t
edit a web page that’s currently published; you have to retract it first.

User management

For some organizations identification is done with the help of another system. This way, Silva
can use the username and password that users already have, instead of creating new logins. As it
turned out this Zope feature wasn’t fast enough and they had to rewrite this feature.

Overall development

Looking back at the development of Silva his idea was that it went very gradually. In roughly
chronological way, Silva first had only users, followed by groups, IP address groups, audit trail
features and version management. There were no new authorizations features planned.

19 Another CMShuilt on top of Zopeis Plone

92

E.2 Design of Talmon CMS

Tdmon CMS is a content management system crested by Tdmon Communicatie
(www.tamon.nl) and is s0ld to customers for whom Tadmon has built websites. Via emall,
devedoper Aat Jan van der Linden was interviewed over the development of this sysem. (Van
der Linden, 2005).

As became dear, webste development is not the core business for Tdmon, ther focus is on
cregting multimedia presentations. As such, webste maintenance has a somewhat negetive vaue -
the man reason that they creasted the CMSwas to let the customer update his own ste, rdlieving
them from alot of work.

Neverthdess, the authorization system deveopment was demand driven: if an
organization would request a new feature it was built — but the overall idea was to keep it as
simple as possible. Talmon once had the idea of implementing workflow — but this was never in
demand and has never been realized. Different roles such as Editor and Chief editor were also
deemed unnecessary. for most websites, there are only a couple of people who actually put
information on them. Most of the time they have the same rights. There is however a difference
between Editors and Administrators — Editors cannot ‘damage’ the site (delete pages, create dead
links etc.) but administrators can. This allows less experienced users to participate. For one
specific customer they created an extra role, in order to grant a specific user rights to edit the
‘Careers’ section of the website.

E.3 Design of EcoGrid

In this section we will discuss the development the EcoGrid application. EcoGrid is not strictly
an authoring and publishing system. Unlike other applications in this paper it does not handle or
produce written text, instead it deals with observations on the Dutch flora and fauna. Developed
by the UvA (University of Amsterdam) it aims to create a joint platform for data collection and
mining. Various organizations that gather information about plant and animal life in the
Netherlands will provide the necessary input that — combined with other records such as soil
usage and weather - will create an enormously valuable set of data with observations on
thousands of locations and species, in some cases with a time span of a hundred years. In May
2005 Floris Sluiter (one of the developers) asked me (AvC) to contribute to the design of the
authorization scheme; this helped to get a case study. At this stage of the development there was
only a prototype. Its main purposes were to
- Find and solve technical problems before the actual program was being built
- Show the possibilities to potential participants
Not much time had been spent on authorization issues yet and the proposal was accepted.
ECOGRID seemed to be a very interesting case for a couple of reasons, also because it deviates
from the previously described systems.
1) Strict procedures need to be implemented:
- For data entry: Any observation done in the field should be validated to prevent database
corruption.
- For data retrieval:
It is not desirable that anyone can access the database at will. If a very rare bird or plant is
sighted this might attract lots of people wanting to observe it for themselves, or possibly try
to take it with them.
Furthermore, all participating organizations are still the legal owners of the data they collected
and want - if possible - to be paid for it’s usage.
However, the entire set of data is not owned by a specific organization, creating a lot of issues
with regard to the overall management of the system.
2) The authorization model that is needed to fulfill the above needs is more complicated

93

It involves more than one organizaion, creating inter-organizationd and organization-person
relations. An organization can grant certain rightsto other organizations, for example to perform
certain queries on the database. A person can be an employee of an organization but only a
sponsor of another.
They question of “what can someone do with this data” could therefore determined by:

- The role that one fulfills within your organization

- The organization’s rights with regard to the data
Next an overall introduction to the system was given; it’s goals and requirements. During a
couple of months a conceptual authorization scheme was developed.

Application architecture

In advance it was decided that each organization should be given it’s own database to store its
data. This seemed logical because they were the legal owner. If it - for one reason or another -
would decide to step out of the program it could be given back it’s own data. It also allowed the
organization to appoint it’s own administrators for maintenance purposes.

User management

A complication was the user management. A significant part of all users would need access to
databases owned by different organizations. Having each organization maintain it’s own users
would lead to data duplication (with all the problems of having to remember multiple passwords,
inconsistent address data etc.) Therefore it was decided that there should be a central database
that would store the users.

This would make the registration process easier but created other problems at the same time:

First the user management is now centralized and becomes critical for upholding the
authorization scheme of the system: but who is responsible for it’s maintenance?

Secondly: How would uses be identified? For example if a user J. Doe was registered centrally
how would the participating organizations know that J. Doe really was J Doe and not someone
else? If possible, a direct physical link has to be made between the accouns 0f J. Doe and the ser J.
Doe.

Each organization should be given several ways of identifying each person individually, either by
phone, email or home address. If a John Doe would be registered centrally and ask permission to
view certain data, the owner could look into John’s records, and identify John by phone as a
volunteer for a project. This successful authentication would be registered in the central database
and be visible to other organizations, and based on this information, allow other organizations to
make judgments about J. Doe’s reliability.

Authorization requirements
There were a couple of basic requirements for the overall authorization scheme:

- (1) It should be simple enough to allow users with limited IT skills to perform basic
authorization tasks.

- (2) Minimal centralization. If it was feasible to do something at a local level it should not
be centralized. (It should adhere to the subsidiary principle)

- (3) To reduce overall system complexity (and thus development and maintenance costs)
authorization features should be implemented in the same manner for all organizations
and for all items stored in the database.

- (4) It should allow for optimal data integrity (data entry) and protection (data retrieval).
Obviously these requirements bite each other: Dealing with authorizations in a uniform way (3)
contradicts (2). To make matters more complicated, if an organization has it’s own database
should it be given it’s own administrative password for maintenance? This could compromise (4)
while reflecting the legal facts. (To solve this problem it was suggested to give each organization a
closed envelop with the administrator password, automatically expiring all guarantees for proper
data entry and retrieval as soon as someone used it!)

Workflow
No one can just enter datainto EcoGrid; there are gtrict rules tha must be followed.
For example, if a certain type of bird is Sghted a a given locaion the likelihood of the
observetion is checked against the database with previous observaions and corrected for
seasonal influences etc. If it’s a rare bird further data must be filled in by the observer, before
someone else can validate the observation. This improves the overall validity of the data, while at
the same time restricting users in their way of working. Observations are done in visits of a
particular area, resulting in a form that contains all species that are either observed or not. Forms
are part of larger projects that can span years.
Forms can have four types of species:

- Species that must be counted (with a significant 0 meaning none was sighted)

- Species that can be counted (with a 0 meaning none was counted)

- Species that should not be counted

- Free fields for other species

Audit trail

Typically no data should be removed from the system because this would break the audit trail. An
observer could suddenly realize that for the past 5 years he has mistakenly identified bird species
X for species Y. In that case the system should be able to come up with all observations of this
person, correct them, make an entry in the log and preserve the invalid data.

Proposal
Based on all this information a small prototype was created that showed how the authorization
structure could be implemented. Users were given roles at two levels:
- On the organizational level
E.g. employee, observer, administrator
- On the level of a particular item (project, form, observation)
E.g. owner, observer, project leader
The roles on the organizational level were a function

F (action, role) => {yes, no}

Depending on their role users could request a particular set of data or perform a certain action.
An administrator can get a list of all projects or create a new project. An employee can view a list
of all other employees. For the roles at the item level hold that the possibilities also depend upon
the state of the item itself (a form of workflow). If a project is active, a project leader can add a
form to a project, but not if it’s status is closed.

Some other rules may also apply, for example a user can see data because his employer has paid
for it. This results in a function

F (item, action, status, role, other rules) -> {yes, no}

This forms a generic structure that can be used throughout the application. The disadvantage of
this solution was that the definitions of all these functions had to be defined before the system
was used and it would be difficult to change while it was being used. In most situations it would
be possible to change data via the user interface, there would typically be no need for an
administrator to bypass application security and change something in the database itself. Changes
would always be logged. The other option would be to create a non-generic solution and
implement authorizations on the fly. This results in a shorter development time before
deployment, but might create loops in the system that would be difficult to fix and also require an
administrator to fix things in the database.

95

E.4 Usage of Silva at Erasmus University, Faculty of Social Sciences

The Erasmus University (www.eur.nl) uses the software package Silva for it’s website. On June
21%, interviewed Ilse Maan was interviewed, the webmaster of the Faculty of Social Sciences
(FSW) (Maan, 2005)

Content and site structure

The first topic that we discussed was the structure of the website itself. Although the Erasmus
University as a whole uses Silva, some parts of it do not. For example the Faculty of Economic
Sciences (FEW) uses it’s own application and so does Psychology. User can also have their own
website, e.g. R. Veenhoven with the World database of Happiness. These sub-sites are hung’ into the
Silva tree of items.

There are some general agreements about the structure of the FSW website — it should follow the
guidelines set by those who manage the top Erasmus University website. The central automation
department of the EUR does the maintenance.

Identification
People can login onto Silva via their universal Erasmus Account called ERNA, which is a
separate system,; this allows users to remember only one password.

Authorization

The role distribution for FSW is as follows:

Role Users Cumulative
Manager 1 (Maan) 1

Chief editor 1 2

Editor 4 6

Author 8 14

Table E-1 Role distribution for FSW

Statistics are for FSW only: Maan can only access the Social Sciences part of the website. Note
that Silva allows local roles: you can be an editor in one section of the site and a manager in
another one, only the highest roles are listed; the cumulative column indicates the effective roles:
A manager is automatically a Chief editor. The Viewer+ and Viewer++ roles are not used. Note
that the overall majority of FSW employees (100+) do not have access to Silva.

Workflow

The I&A staff creates web pages. People can request the creation of a new page. The webmaster,
sometimes advised by the web editors, makes the decision. No one has access by default — people
can request access to perform certain tasks. First they get the role of author and if they appear to
know how to use it they are promoted to editor. This means that they can publish content
directly.

Cooperation usually takes place in Maan’s room, sometimes people email text for placement onto
the website. She would like more people to use the system. It would save her a lot of work if
people would maintain their own pages. Furthermore it would be good for the University as a
whole if the web presence of the well-known staff persons was improved.

Page responsibilities are divided by theme, for example Education and Research. Each member
of the Web editors has a special theme to look after.

The information officers are responsible for the main pages. She manages those for FSW, adds
announcements and press releases, normally once a day. There is no replacement for her — if
she’s on holiday old data remains on the site.

Before the usage of Silva the site has been hacked but this is long since. There is no real
censorship; the only agreement is that the employees’ home pages should not be too personal.
No one was ever banned from using the site.

9%

History

The webdte of the EUR is aout 10 years old. Until Slva in 2002 was introduced, they used
Notepad and FrontPage (flat HTML files). FSW didn’t want to maintain it’s own webserver and
agreed to use the central managed Silva system. The deployment of Silva was slowed down by
performance problems. These have been solved now, but limited the widespread usage and the
creation of new ‘value adding’ features. Now that the ‘window of opportunity’ is passed the
central automation department started looking at alternatives.

E.5 Usage of Open Market CMS at NRC

The Dutch newspaper NRC uses Open Market CMS (hereafter OCMS) as a content
management system. On June 28" 2005 Jan Benjamin was interviewed, the chief editor of the
NRC Internet edition. (www.nrc.nl) (Benjamin, 2005) He manages the daily website affairs and
reports to the main editing board (zbe hoofdredactic). He also writes articles himself.

Content and site structure

A lot of features are available via the website, most of which are actually separated systems, built
apart from Open CMS. There’s a web quiz, blogs, an archive and a reading club (see below). The
site maintenance is outsourced to Pink Roccade, a company that also maintains websites for
other newspapers that are owned by PCM (including de 1 olkskrant and het Algemeen Dagblad).
OCMS is a front-end itself for Coyote, an application used to author and publish the paper
newspaper.

The policy is not to throw anything away so that the URLs are preserved. If someone saves an
article it should still be accessible from that URL after a couple of years. The program that is used
to register people on the website (whether they have a subscription to the real newspaper or not)
is separated from OCMS. Approximately 70.000 unique visitors visit the site each day.

Authorization

NRC currently employs about 200 editors. Of those only ten people can access OCMS. Five are
the real Internet editors (including Benjamin) and five others who maintain files and lookup
information support them.

According to Benjamin, using OCMS properly requires a lot of technical skills. If more people
were given access it would be questionable if someone would make use of them. It would be nice
though; if for example foreign editors would maintain the pages with foreign news. This is not
the case at the moment.

NRC gets articles from all sorts of sources. Some of these sources — such as freelance editors —
do not want their articles published on the Internet. These articles are filtered out during the
export from Coyote to OCMS.

It is always possible to change data. If an error is detected (say a typo) the policy is to fix it as
soon as possible. There is no revision system — previous versions could be lost (note that in most
circumstances a copy is preserved in Coyote).

All five editors have the same authorizations, but at any time, one person has the overall
responsibility for the website.

The site has not been hacked for a long time, a few years ago something was ‘changed’ in files on
the Middle East.

Workflow

There’s a daily publishing cycle, in line with the paper edition. At 13:30 the paper edition is
finished for printing. About 12-15 articles are selected for publication on the web. Links to
external sources and NRC web archives are added. Web publication has to wait until 16:00
(shortly after this time the paper edition is delivered to the subscribers). Between 13:30 and 16:00
changes can still be made to make the edition as up-to-date as possible.

97

History

The NRC has a web presence since 1995. They first used flaa HTML files before switching to
OCMSin May 2001. (A decison made by PCM). It was seemed as an improvement, but maybe
things were smpler before OCMS. PCM s currently planning the usage of a new system that
combines severd fegtures tha are now split between Coyote, OCMS and other gpplications. The
paper edition, website, archive and layout functions will dl be done from one integrated system.

Reading club (de leesclub)

Every few months NRC compiles alist of books tha people can read and discuss on a separate
pat of the webste, based on phpBB. A subscription to NRC is not required, one only has to
register. The phpBB censorship feature is on; messages are checked, but dways afterwards. There
have been few problems with this procedure. Some people write very long articles —these are
removed. It helps if you ask direct questions rather than general comments.

E.6 Usage of phpBB at HeliportOnLine

In the centre of Rotterdam, owners and tenants of an apartment block called HeZpors have
organized themselves on the Internet. The website www.heliportonline.net serves as a means of
communication and contains a lot of useful information about Heliport in general. On July 10"
Dimitri Tzoumas was interviewed (Tzoumas 2005), the webmaster. He has been living there for
several years and is currently active on the board of HBB (He/iport Bewoners Belangen), the uniting
organization for tenants and owners. About a thousand people live in Heliport. At the time of the
interview, 67 people were registered at the website.

Content and site structure

The application uses CuteNews for some web pages, but most content is located in a forum built
using phpBB. Within phpBB there are nine separate forums, divided in three categories. The
board of HBB and Dimitri have access to webserver, they can access all content.

Authorization

Dimitri, Peter van Amen, and the HBB board are administrators in phpBB. There are no private
forums. All messages are readable, but the user HBB moderates four forums. Dimitri and Daan
Schultz use this account together to post messages that should appear to originate from the
board. Users can post anonymous messages, censorship is on but limited.

Site abuse does happen, phpBB is quite common on the Internet and there are scripting tools
that allow malicious users to post advertisements on the site. Dimitri blocks their usernames and
IP addresses and this solves the problem temporarily. Unsigned messages of scolding users are
also removed. A problem with phpBB is that it’s hard to figure out what a user actually can do on
the forum.

Workflow
Dimitri gets many emails whose texts he posts under the HBB account, but most people post
messages onto the forum themselves.

History

In 2002 Dimitri was a member of the communication committee of HBB and started building
the site, together with Peter van Amen. Dimitri chose phpBB because he had previous experience
with this application.

