ERASMUS UNIVERSITY ROTTERDAM

ERASMUS SCHOOL OF ECONOMICS

BACHELOR THESIS ECONOMETRICS

Majorization methods for solving the convex
clustering problem

Supervisor:
Author: P.J.F. GROENEN
Tom VAN DEN BERG,
432879tb Second assessor:
S.I. BIRBIL

July 7, 2018

Abstract

The convex clustering problem is a convex relaxation of the problem of finding similar
groups in data. Solving this yields a global minimum that can be used to construct a solution
path or a network that shows how data points cluster. This research looks at majorization
methods to solve the [convex clustering problem and compares it with gradient descent
in runtime. First, a proximal distance method is used and improved to get a majorization
algorithm, next a norm marorization technique is used that gives a fast algorithm that
involves solving a system of equations. Finally, another round of majorization gives a method
based on eigenvalues, which bypasses solving a linear system and is thus faster for larger
problems. The norm majorization method finds the Iy solution path in the same runtime
on average as the gradient descent method, which suggests that implementing this norm
method in a low level programming language gives a fast algorithm to solve the convex
clustering problem.

1 Introduction

In marketing data, often groups are present in the data structure. For example when reviewing
respondents to a marketing campaign groups of people with the same characteristics can be
formed. In this research, we study one of these algorithms that finds homogeneous groups
in the data. This unsupervised learning algorithm is called clusterpath and is developed by
Hocking, Joulin, Bach, and Vert| (2011). The clusterpath algorithm finds clusters in the data
in an agglomerative fashion, were all the observations start in a separate cluster and end in
one cluster that contains all the observations. Where other methods like average linkage use a
heuristic algorithm to find the clusters, clusterpath uses a convex relaxation of the clustering
problem.

This convex relaxation results in cost function for the data matrix X € R™? with n
observations and d features. The centroids of the clusters are represented by the matrix A €
R™*?, so that each unique row of A represents a centroid of a cluster. If multiple rows of X
form a cluster, then the same rows of A are equal to the centroid of this cluster. The cost
function is

1
falAX) = S 1A= XIF+AY s lai - g, 1)

1<j

where [|-[|,, ¢ > 1 is the l;-norm and ||| is the squared Frobenius norm, with the Frobenius
norm of a matrix X defined as || X||% = > Zj|xij|2.

Hocking et al.| (2011) use the weights w;; = exp(—7 ||&; — :B]||§) For v = 0 this is interpeted
as equal weights between the observations and v = 1 means that observations closer to each
other have a larger weight so local density in the data is accounted for. These weights are called
decreasing because the weight for two points decreases as the distance between these points
increases. It is important to note that the weights are influenced by the number of features d
in the data. A remedy for this is to divide ~ by d.

The main advantages of the convex clustering approach is that is converges to a global minimum,
where other heuristic methods often get trapped in a local minimum. Another advantage is that
the amount of clusters does not have to be known in advance, which is the case with k-means
clustering. Solving the convex clustering problem for different values of A reveals a solution
path or a tree like structure of the data points that can be interpreted to find clusters. Figure
gives an example for two dimensions.

°
o0 - .:o.
< . “ o. 0o’ ¥ °0..
«“i® oo @ 2y < . ° .
o &° o 4 o’ ¢ ’o e :
o o %se ® o &% o o
o e’e o .
‘S. L o o
N — L] F 4 - & o . ::0
.0:00 . ¢ . ¢ Ny o % i ot %
° "o < ° L L it e,/ ole®
[LY « (S o0 o o
'o...o.; ¢ ": % oo ® .: ° .". ..o: :
© 7 ° $ ¢ .. ® e 0:’0.:0
0.: .°. 4 ? oy ¢ ¢
.. . ’ o : ‘ [} [
J L M o
(TJ] ° i 0.0‘0.0::' .:o..o .o.
°
°
I I I I I I I
-4 -2 0 2 4 6 8

Figure 1: [5 Solution path of the convex clustering problem of the interlocking Moons data with
n = 300 and v = 4. The solution path correctly identifies two moon-shaped clusters.

This research will focus on the ls-norm, because this problem can not be split on dimensions
like the [j-norm (Hocking et al., 2011), so it will take the whole observation into account
when clustering. In the literature, several methods have been developed to solve the Iy convex
clustering problem.

Hocking et al.| (2011]) use a gradient descent algorithm for minimizing the cost function for
varying values of A\. They found that gradient descent uses many iterations before converging
to the optimal solution. Also, they use that if two cluster centers get close to each other, they
fuse. They conjecture that for decreasing weights, once clusters are fused, they can not split for
larger \’s.

Chi and Lange (2015)) propose a alternating direction method of multipliers (ADMM) and a
alternating minimization algorithm (AMA) method for finding the solution path. Both methods
split the variables in variables describing the cluster centers and variables describing the differ-
ence between cluster centers. The advantage of these methods is that they can be parallelized,
which means that the problem can be split in similar smaller problems for fast calculation on
multiple cores. They find that both methods are faster in runtime than gradient descent with
AMA being the fastest. A disadvantage is a quadratic memory requirement, because of us-
ing the dual formulation and variable splitting. They solve this by using only the nearest k
neighbors for defining the weights w;;, which makes the variables with zero weights redundant.

Chen, Chi, Ranola, and Lange (2015) show that the convex clustering problem can also be
solved by proximal distance methods from Lange and Keys| (2015). This method also uses
variable splitting, but they use the MM (majorization-minimization) principle to guarantee a
descent step each iteration. They find that this method takes long to find the solution path.

A coordinate descent method can also be used, because the cost function is convex. [Duckworth
(2013) developed this method, he states that the algorithm is quick in finding a solution path
but because it uses the dual formulation and variable splitting the number of variables grow
quadratically and this lays a burden on memory.

It can be seen from the above literature review that most methods use the variable splitting
for solving the convex clustering problem, which increases memory usage. The only method
not using variable splitting is the gradient descent from |[Hocking et al. (2011)), which has linear
variable growth. However, this method uses many iterations to find the optimal solution.
This research aims to improve the gradient descent method by finding an algorithm that uses
majorization for finding the lo solution path. We will focus on the following research question:

Can majorization techniques be used to solve the lo convex clustering problem in shorter runtime
than the gradient descent method?

To answer the research question, we develop majorization methods and implement and improve
the proximal distance method to solve the convex clustering problem. Then we compare these
majorization methods with the gradient descent method from Hocking et al.|(2011)) in runtime
and precision. Like Hocking et al.| (2011)), we do this for two different generated datasets, the
Moons Data and the Gaussian Clusters dataset.

This proposal is organized as follows: chapter 2 discusses the methodology used to solve the
research problem and chapter 3 shows the data. Chapter 4 shows the comparison and results
and chapter 5 gives the discussion and conclusion. The appendix contains the R code used in
this research.

2 Methodology

This section is laid out as follows. First, we give the notation used. Second, we describe the
methods in the literature, namely average linkage and k-means. Third, we give the different
methods used to solve the convex clustering problem. Finally, we describe the adjusted Rand
index.

We consider the following notation. X is a n x d data matrix consisting of n observations with d
features. x; represents row i of matrix X. Let C = {C1,Cy,...,Ci} be a partitioning of X into
k clusters. The following properties hold: C; C {1,...,n}, C; N C; = @ and UX_,C; = {1,...,n}
fori,j=1,...,k and i # j. The content of cluster C; is a list of integers corresponding to rows
of X that form a cluster.

To replicate the results of Hocking et al. (2011) we compare k-means, clusterpath and average
linkage in their accuracy and runtime. The accuracy is measured with the normalized Rand
index discussed later in this section. We first discuss average linkage and k-means. |Groenen
and Dalmeijer| (2016b)) explains these clustering methods in detail.

Average linkage clustering is a agglomerative clustering method, which means that the obser-
vations each start in a separate cluster. Let C be the set of k clusters, C = {C1,C>,...,Ck}.
Each observation x;, i = 1,...,n, starts in a single cluster C;, so we have k =n and C; = {i}.

In the first iteration of the algorithm, the dissimilarities between the clusters is defined as the
dissimilarities between the observations x;. Next, in each iteration, the two clusters with the
smallest dissimilarity between them are merged into one cluster. If clusters C; and C; are the
clusters with the smallest dissimilarity, they are combined to cluster Cy = C; U C;. The set of
clusters C is then updated by Cpew = Coiq \ Ci \ Cj U C, with \ the set difference operator. The
dissimilarity matrix is updated with respect to the other clusters C; € Cpew \ Ct as follows:

|C¢’diSSCiCq + |Cj |diSSCqu
|Cil+C ’

dissc,c, = (2)
were diss is the function to calculate dissimilarities, for example the Euclidean distance. The
algorithm stops when there is one cluster left.

The advantages of this algorithm are that it is computationally efficient. The interpetation is
that clusters that are close to each other are merged. The algorithm has a tendency to produce
long, stringy clusters and non convex cluster shapes.

Another popular method is k-means, it minimizes the within cluster distance by choosing k
appropriate centroids and partitions of the data. The number of clusters k is known in advance.
It minimizes the cost function

ESS =X — UM|j. (3)

where ||| is the squared Frobenius norm, X is the n x d data matrix and M is a k x d matrix
of the k cluster centroids. Also, U is a n X k matrix with u;; = 1 if observation ¢ belongs to
cluster 7 and 0 otherwise, for 1 <¢<mnand 1 <j <k.

Hartigan and Wong| (1979)) describe a fast algorithm to minimize the cost function. The basic
idea is to assign each point to its closest cluster center, updating the cluster centers and then
transferring points between clusters so that the within cluster distance gets smaller. Repeating
this procedure results in a local minimum. To increase the probability of finding the global
minimum (Groenen and Dalmeijer| (2016b) advice to use many random starts for the cluster
centers.

In contrast, the convex clustering problem has a global minimum for different values of .
Finding these reveals a solution path that minimize for different values of A, we call this the
clusterpath. For A = 0, the solution is A = X and for some large A, the rows in A are all equal
to the mean of X because the distance between the rows is set to zero. For the \’s in between,
rows of A move towards each other and towards the center of X. As this happens, rows of A
can get close to each other and cluster which means that the rows describe the same cluster
centroid.

This can be exploited by using A = UM, in the same fashion as the k-means cost function.
Note however, that the number of clusters does not have to be set in advance as is the case
with k-means, because as A increases, more clusters fuse together and U and M shrink with
the number of clusters.

Revealing the clusterpath can be done iteratively by starting with a low value for A and then
using that solution as a warm restart for the minimization problem with a larger A. This
works because the [y clusterpath is continuous (Hocking et al., 2011). Algorithm [1| describes

the clusterpath.

Algorithm 1: Clusterpath-L2
Input: data X € R™*?, weights matrix W € R™ ", with wij = wj; > 0,w;; =0
t <+ 0;
M, U, < Detect-cluster-fusion(X, I,);
while |clusters| > 1 do
MtJrl, Ut+1 — SOIVG—LZ(Ut, Mt,)\t);
)‘t—i-l —)\t X 1.5;
t+—t+1;
end
return Optimal Ay = UM, with corresponding Ay for all t

W N O O W N =

Where Hocking et al. (2011) pass the solution matrix A to Solve-L2, we pass U and M. This
is possible, because the rows of A that are clustered are identical. This trick of splitting A is
important, because it makes the method Solve-L2 faster. This is because the method now only
has to update the cluster centroids in M instead of all rows of A. When more rows of A get
clustered, M gets less rows and can be updated quicker.

Note however, that once clusters have fused, they can not unfuse. This can be problematic
for finding the optimal solution, Hocking et al.| (2011)) even found an example in which the
optimal solution path contained a cluster split. Using this trick thus means that the optimal
solution might not be found. They conjecture that the clusterpath does not split for the weights
wij = exp(— ||z; — aszg), but this has not been proven. Hocking et al.| (2011) did not observe
cluster splits in their calculated solution paths for identity weights and neither did we.

For clustering, Hocking et al.|(2011)) use a method called Detect-cluster-fusion. This method
fuses clusters together when the distance between their centroids is small. Two clusters C1, Cy €
C fuse when

lme, — meyll, <6 | Join i — x;l, - (4)
0 is a fraction that determines how close the cluster centroids have to be related to distance
between the two closest point in the data matrix X . Using this makes the threshold for cluster-
ing dependent on the dataset used. This is important because this prevents data points from
clustering in early iterations and it makes sure that the clusterpath is not dependent on the
scale of the data. When clusters C7 and Cs fuse, the centroid of the new cluster C' becomes

_ [Cilme, + |Co[me,

5
|C1|+|Co| (5)

mc

The method then returns the new clustering U and the updated cluster centroids M. Algorithm

gives a detailed description of the fusion algorithm.

Algorithm 2: Detect-cluster-fusion

Input: M, U and cluster threshold

if rank(U) = 1 then

‘ return M and U

end

i,j < argmin,; [[m; — m|[,;

if ||m; — m;||, < threshold then
combine rows ¢ and j of M with ;
combine columns 7 and j of U to u.; + u.j;

end
return M and U

© 0 N O AW N

Before finding the solution path, we apply a few rounds of cluster fusions with a small threshold.
This is to cluster points that lie on top of each other and to prevent points starting with a
distance of zero to each other, which result in problems. For example, the calculation of the
gradient has division by the distance between points and if this distance is zero numerical
problems arise.

Next, we give different methods for solving the convex clustering problem for a given value of
A. First we describe the gradient descent method used by Hocking et al| (2011)) to solve the Iy
convex clustering problem. By looking at the first order conditions of , they find the following
sufficient condition for an optimal A:

O=a;—z;i+XA Y L P— H +A Y wiBy (6)
JFi T2 JFi
a;j#a; a;j=a;

with 8;; € RY, ||Byj]l, < 1 and B;; = —B;;. To get the gradient for the cluster C = {i : a; = ac},
they sum over all i € C' to get

ac — aj
go=ac — CT————— (7)
|C| Z e HaC - G'JHQ

where Zc = Y .. x;/|C| and wjc = >, wij. This gradient is used in the gradient descent
step. The gradient descent method is given in algorithm

Algorithm 3: Solve-L2-gradient
Input: initial guess M, initial clustering U, data X, weights matrix W, parameter A
G < Subgradient-L2(-);
while 1 | G||% > eps do
M <+ Subgradient-step(-);
M, U + Detect-cluster-fusion(-);
G < Subgradient-L2(-);
end
return M, U

N o Ok WY =

In algorithm [3| Subgradient-L2 calculates the gradients per cluster and returns a matrix G,
with on row ¢ the gradient belonging to cluster ¢ using . In Subgradient-step the matrix

M gets updated. Because the method takes many steps to converge to the optimal solution,
Hocking et al.|(2011)) alternate every step with a decreasing step or a line search. The decreasing
step is the update M < M —r G, with r = 1/iteration. For the line search method we use the
golden section method, because this method requires a small number of function evaluations.

The golden section line search method finds the minimum of a scalar valued function f(x) in
an interval [a, b]. The method tries to use as few function evaluations as possible, by iteratively
decreasing interval by the golden ratio ¢ = (1 + v/5)/2, hence the method is named the golden
section method. We give an algorithm of the method in appendix [A]

In our implementation, we use f(r) = fo(U(M —rG), X), with f» being the cost function ().
The choice for the interval is [a, b] = [0, 1] and for the accuracy e = 0.001. Because the interval
shrinks with 1/¢ each iteration golden section takes log;* /log(%) function evaluations to com-
plete (round up to nearest integer). In this case golden section takes 15 function evaluations to
converge.

A disadvantage of the gradient descent method is that it takes many iterations before finding
the optimum, even with the use of linesearch techniques. This research tries to solve this issue,
by using majorization methods to solve the convex clustering problem. Let us first look at what
majorization is exactly.

Majorization Minimization (Hunter & Lange, 2004) is a technique used to find a minimum of
an objective function f(x) with respect to x. The main idea of majorization is to replace a
difficult optimization problem by a simple problem. Then the optimal solution of the simple
problem can be used to make a step towards the optimum of the difficult problem. This is done
iteratively until the process finds the optimum of the difficult problem. The cost function of
the simple problem is called a surrogate function, and it majorizes f(x).

Lange and Keys (2015) explain that if a surrogate function g(x|x,) majorizes f(z), two
properties hold: the tangency condition g(z,|z,) = f(z,) and the domination condition
g(x|xy) > f(x). These mean that g(x|x,) lies above f(x) for all z and g(x|z,) touches
f(x) at © = z,,. Now, to get a step closer to the minimum of f(z), we can use the following: if
x* is the minimum of g(x | z,) with respect to x, then

f@®) < g [zn) < g(an|zn) = f(zn). (8)

This shows that minimizing g(x | z,,) with respect to x results in a lower objective function f(x).
Below we give a general algorithm for majorization (from Groenen| (2017)).

Algorithm 4: Majorization algorithm
Input: some initial &y € R

Set k + 1; 1
while k =1 or |f(xx) — f(xx_1)|> € do 2
Tpy1 < argming g(x|xzy); 3
k<+—k+1; 4
end 5
return x; 6

The majorization algorithm stops if the change in the objective function due to the updates gets

small. This is the case when the optimization is in a local minimum. Thus the majorization al-
gorithm converges to a stationary point of the objective function. The difficulty of majorization
is finding a surrogate function that majorizes the objective function. But if it can be shown
that a surrogate function exists and the minimum of this surrogate can be found easily, then
majorization is a fast method to find the minimum of the objective function.

A method that uses majorization is the proximal distance algorithm, which is used to solve con-
strained optimization problems (Lange & Keys, 2015)). The idea of this method is to minimize
f(z) constrained by x € R, with R a set of constraints forming a closed set. |Clarke| (1990)
replace the constraint problem by f(z) + pdist(z, R), where dist(x,R) = inf{|r — z|: r € R}
represents the distance from = to R. If & adheres to the constraints in R, then the distance
from z to R becomes small. A solution that minimizes f(z)+ pdist(x, R) is a solution that has
a low value for f(z) while still adhering to the restrictions. For larger p’s, the restrictions get
imposed more on the solution.

For solving the constraint problem, |Lange and Keys| (2015)) use an approximate objective func-
tion. They replace f(x) + pdist(z, R) by f(z) + p+/dist(z, R)? 4+ €. This is an approximation,
but if epsilon tends to zero, the two functions become equal. This approximate function can be
majorized in two steps. Lange and Keys (2015) propose

dist(z, R) < [z — Pr(ar)ll, (9)

where Pg(z)) is the projection of the current iterate zj on set R, and the Taylor expansion of
the square root

Vit+e< Vi +e+ (t —tg,). (10)

1
2/t + €

Applying these to majorizations to the approximate objective function results in the surrogate
function

g(@| @) = f(@) + 5" | = Pr(@,)|l (1)
P

Wy, = .
VIlza — Pr(@a)|? +

Solving this function with respect to @ results in a majorization update. This procedure is
called the proximal distance method.

Chen et al.| (2015) use this method to solve the convex clustering problem. We will show their
steps and expand upon them and improve them. Let us first look at how they used the proximal

distance algorithm on the convex clustering problem.

First, to introduce constraints in the convex clustering problem, they replace by:

1 2
(A, X) = S IA = X5+ 2D wig [|vgll, (12)
1<j
where v;; is equal to a; — a;, ||-||% is the squared Frobenius norm and ||-||, is the lo-norm or

Fuclidean norm. Now, by applying the proximal distance method to this cost function, we get

the approximate objective function

1 2 P |(A A\ |
A, V)|(A —ClA-X _p 1
(AL V)| (Ar. V)] = 21 \1F+Al§<j:wjuvgu2+2dkH(V) ()] e
Ak Ak 2
- _P .
o \/H<Vk> R<Vk> F+6

In this surrogate function, A; and V' are the matrices of the current iterate. The optimal
solution of the surrogate function can be found by looking at the first order conditions. For the
update of A we solve and get

Oh[(A, V)|(Ax, Vi)l p
: . =A-X+-—-(A-A")=0
0 (vec A) + dk(2
dy; P
X +
di +p di +p

with A} the part of the projection pertaining to Aj. Chen et al. (2015) found the update for

2
v;; by minimizing Awij [|vg;l, + 55 ||vij — vy ;|| - This results in
)\wid
— J Yk p
Vi = max{ | 1- 9%) 0 b b (15)
P . ’
P\ Vkiis

Here, UZ ij is the part of the projection pertaining to vy ;;.

For finding the projection AP and V? of PR(‘:}) we minimize

1 & 5 1
m(Ar) =33 lla? — @il +5 Y|
i=1]

Chen et al. (2015) use a block update approach, but we found a way to solve it explicitly. This
can be done by writing function m as

2
- (16)

p P .
a; —a; — vjj

m(A4) = Tr (A7~ A)(A” — A)) + JTr (47 V1 47) =T (47 'V2) 4 3 T (0300).
i#]
Vi= ZEija E;; = (e;—ej)(e; — €;),
i#]
VQ = Z(ez — ej)'v,-j.
i#]
Solving the first order conditions yield
om(AP) ! ap _
= AP =(I,+ V1) {(A+ V). (17)

Here, I,, is the n x n identity matrix. We can explicitly solve (I, + V1)~!, because V1 is a
matrix with —2 on the off diagonal elements and 2(n — 1) on the diagonal elements. We can
use the Sherman Morrison identity (Bartlett, [1951))

Q lzy' Q!

NnN—=1_ n-1 __
(Q—{_my) _Q 1+y/Q_1IB

(18)

to get the inverse of I,, + V1. We use @ with 2n + 1 as diagonal elements and zero on the
off diagonal elements, £ = ¢ and y = —2¢. ¢ is a vector with only ones. This results in that
(I, + V1)~!is a matrix with 3/(2n + 1) on the diagonal elements and 2/(2n + 1) on the off
diagonal elements. To get the projection V? we use 'Ufj =al - a? .

We can use the clustering of A with A = U M to get the following update

ah[(UM, V)’(Ak’ Vk)] / / P / /
= M — X — M — APY =
3 (vec M)’ U'U U + dk(U U U k) 0

_ di. p
My.,=(UU)'U X AP) . 1
= k1 = () (dk+P +dk+p k) (19)

This trick does unfortunately not use the clustering, as the update is the mean of the clusters
of the update of Ay 1.

Lange and Keys (2015) propose to start with p small to emphasize minimization of the cost func-
tion in early iterations. They also advice to gradually decrease € to avoid the risk enforcing the
constraints too strongly in early iterations. They suggest the sequences pr = min(a* pg, pmax)
and €, = min(8 ey, emin) with o and B larger than 1 and py = ¢y = 1. They say that
on many problems aggresive choices for & and 3 are possible. In our implementation we use
a=15p8=15p =1l = 10_3,pmax = 10% and epin = 1075, This choice speeds up the
convergence without sacrificing too much precision.

These updates result in a majorization algorithm. Here, p and e also influence the value of
the approximate objective function . Because we update these values each iteration, the
cost function changes. This becomes problematic when increasing p, because this increases the
approximate objective function and then the stop condition of majorization algorithm [4] is not
valid anymore. To solve this, we change the stop condition to % < ¢, with f the
objective function and xj; the kth iterate. Now, the algorithm stops when the approximate
objective function stabilizes. The proximal distance algorithm is described by algorithm

Algorithm 5: Solve-proximal

Input: initial guess M, initial clustering U, data X, weights matrix W, parameter A
initialize A « UM,
initialize V' with v;; < a; — a;;
while stopping condition is not reached do
A, < find-projection(A, V);
update p and ¢;
update M and V;
M, U + Detect-cluster-fusion(-);
A+ UM;
end
return M, U

© 0 N O Ok W N =

=
o

Another way to majorize is by using the following trick: let & and y be vectors in R" space

10

and [|-[|, be the l;-norm. Then the following inequality holds

2 2

(lzll, = llyll,)* >0 = Nzl -2l lyl, + lyl, >0
2 2
= 2|z, lyll, <=l +lyll

2
L=l 1
2

= [z, <

<5 lyll, -
7 2yl !

If we use this trick on the cost function, we get

1
fo(4, X) = S 1A= X|[p+ A wi ai - aj],

i<j
2
1 5 1 lai—ajll; 1
S5|’A—X|’F+§)\Zwi]’m+§)\zwij||Clk:,i_(lk,j||q
1<J ’ wilg 1<)

= 9q(A[Ap).

This gives the surrogate function g,(A|Ay) to use in majorization. For ¢ = 2, we can write it
as

1 1 1
gQ(A’Ak) = §TI‘ ((X — A)/(X — A)) + 5)\Tr (A/VkA) + 5/\Zwij Ha;m- — akJHQ (20)
1<j

W
Vi=)_ [y Eij|, Eij=(ei—ej)(ei—¢;).

To get the minimum of go(A|Ay) with respect to A, we look at the first order conditions

9g2(A|Ay) _ _
= Ap1 =T+ AV 'X. (21)

By solving this system of equations, we get the next iteration of the majorization algorithm.

One problem with this update is the calculation of matrix V', because if rows ¢ and j of A get
close to each other, |lax; — agjl|, tends to zero and then V' can not be calculated because of
division by zero. This can be prevented by ensuring that rows can not get closer to each other
than a certain distance. Another solution is to again use the trick that A = U M. Let us first
look at the derivation of the update of M by examining the first order condition

8 vec gg(UM’Ak)
0 (vec M)’
— M, =(UU+\U'V,UUX. (23)

—M'UU-X'U+ MU' V,U=0 (22)

Now, the matrix V' is transformed by matrix U, which results in that the elements that tend
to infinity get subtracted out. An example of this is given in the proof of Theorem The
trick also reduces the computation time by a great deal, because in the update a smaller matrix
has to be inverted. This makes the update faster to calculate in later iterations. Algorithm [f]

11

describes the norm majorization algorithm.

Algorithm 6: Solve-norm-majorization
Input: initial guess M, initial clustering U, data X, weights matrix W, parameter A
calculate G with 1'
while 1 | G||% > eps do
update M with ;
M, U < Detect-cluster-fusion(-);
calculate G with ;

end
return M, U

FCT- YIS B N R O

In the previous method solving a linear system is needed to get the majorization update. For
large problems, say n > 1000, this will take a toll on the computation time. In the part
Tr (A’ V1, A) is the culprit that makes matrix solving a system of equations necessary for finding
the update. The remedy is another round of majorization. For a similar problem, |Groenen,
Heiser, and Meulman| (1999) propose to use the inequality

(z—y)(V-A)(z-y) <0
= z' Ve < z'z —2z(0\ - V)y+y' (A - V)y

from |Heiser| (1987). Here x,y are R"™ vectors, V is a n X n matrix and A is larger than or equal
to the largest eigenvalue of V.

This trick can be extended to a positive semidefinite matrix. This is a matrix whose eigenvalues
are all equal or larger than zero. Let @ be such a positive semidefinite matrix, because it is
positive semidefinite it follows that Tr (Q) > 0 and B'Q B, with B a n x d matrix with rank
d, is also positive semidefinite (Petersen & Pedersen, |2012)). It then follows with B = A — Ay
and Q = L — V that

Tr((A— Ap)(L— Vi)(A— Ag)) >0
— Tr (A'V;A) <Tr (A'LA) —2Tx (A'(L — Vi) Ag) + Tr (AL(L — Vi) Ay),

with L a zero matrix with upper bounds of the eigenvalues of V. as diagonal elements.

It is now left to prove that @ = L — V. is positive semidefinite. This can be done using the
eigendecomposition of V', as PAP’. We can show that L— V= PLP'—PAP' = P(L—A)P’
because PP’ = I and PLP' = LPP’'. With L— A > 0, all eigenvalues of L — V', are positive,
and thus it is a positive semidefinite matrix.

12

Applying this majorization on results in the following surrogate function

1
P24, X) = S A= X +AY wyllai - g,

i<j

<Imx—ayx—a)+ %)\Tr (A'V,A) + %Azwij lan; — an,

2 L 2
1<)
< %ﬁ (X -A)(X-A)+ %ATr (A'LA) — \Tr (A'(L — V) Ay)
1 1
+ GATr (AL = Vi) A) + 2A;wij lar: — ar,ll,
= 92(A[Ay).

Because the complexity of calculating the eigenvalues of a matrix is the same as solving a linear
system, namely O(n?), we use another trick to get an upper bound on the largest eigenvalue
of V. This can be done with Gerschgorin’s Theorem (Richard, [1989)) that states that the
eigenvalues of a matrix V fall in the intervals [vi — >_,; [vij|, vii + 32, [vij|]. Here, the
diagonal elements of L are a upper bound on the eigenvalues of V. L can be calculated easily
because of the structure of V', as the diagonal elements of Vi, vy i;, are equal to the absolute
sum of the ith row of Vi. Also, the off diagonal elements in V' are negative. This means that
the upper bound on the eigenvalues of Vi is equal to l; = vy 4 + Zyzl Uk, = 20k

Now the update can be derived by looking at the first order conditions using A = UM
0 vec go(UM|Ay)

0 (vec M)’
— My = (U'U+AU'LU) (U'X + \U'(L - V) Ay). (24)

=UUM-UX+) NULUM —\U'(L— V;)A,=0

The advantage of this update is that no difficult matrix inverses have to be calculated. Because
U' U+ U'LU is a matrix with zeros on the off-diagonal elements, its inverse can be calculated
quickly.

However, This update does have a problem. If two rows of A get a small distance, the matrix
Vi gets a large value in the corresponding row. This means that one of the eigenvalues of
V. will tend to infinity and then the update for the majorization can not be calculated. To
solve this problem we replace Tr (A’ V;A) in with Tr(M'U'V,UM). On the matrix
C, = U'V, U smaller upper bounds on its eigenvalues can be computed which solves the
problem. Also, this matrix has special properties, as it looks just like matrix V.

Theorem 1. Let V be a n X n symmetric matriz with negative values as off-diagonal elements
and the absolute sum of each row as diagonal elements. Let U be a nxk matriz with one element
per row equal to 1 and the other elements equal to zero. Then C = U VU is a symmetric matriz
with negative off-diagonal elements and the absolute sum of each row as diagonal elements.

Proof. V Looks as follows

PP IERUT I UPEEEE —Vlp
B ST —uy
v=| R o (25)
—Unl —Un2 ce Z];én Unj

13

with v;; = vj; for 1 <4,j5 < n. Because U contains only ones and zeros, multiplying by it from
left and right means that rows and columns are summed together. If for example U contains a
1 in the same position for the first and second row, then these rows get summed together, and
then the first and second column get summed together. This means that the new off-diagonal
elements of the first row and column become —(vy; + vy;) for j = 3,...,n and the diagonal
element becomes Z?ZS(UU + v1;). This results in a matrix with the same characteristics as
V', thus repeated operations of summing rows and columns together results in matrix C with
the property that the diagonal elements remain the sum of the off-diagonal elements of the
corresponding row. O

Theorem [1] can be applied on V' defined by (20), because it has —w;;/ ||ar; — a;|| as off-
diagonal elements and the sum of absolute elements in a row as diagonal elements. Because
a norm and the weights are all positive, the off diagonal elements of V' are all negative.
Also, the weights and the distances between rows of a matrix are symmetric, thus V', is also
symmetric. The resulting matrix C has the elements that resulted in large eigenvalues (v12 in
the example of the proof) removed by subtracting them out, because the rows with large values
are clustered. This is important, because now Gerschgorin’s Theorem (Richard} |1989)) can be
applied for finding smaller upper bounds of the eigenvalues of C}, namely If; = 2¢y ;.

The surrogate function now becomes

g2(UM|Ay) = %T&" (X —UM) (X - UM)) + %)\Tr (M'L°M)

— M\Tr (M'(L° — Cy)My,) +c,
with ¢ an irrelevant constant. The update becomes
0 vec g2(U M| Ayx)
0 (vec M)’
— My = (U'U+ ML) (U'X + A\L — Cr)My). (26)

—U'UM-U'X +AL°M — AL — Cy)M; =0

An advantage of this update, other than that is has no large eigenvalue problems, is that the
matrix C}, gets smaller as rows clusters and thus the update can be calculated quicker. The
algorithm for the eigenvalue majorization method is the same as for the norm majorization

method, but now M gets the update from .

For comparing the clustering performance of different clustering methods, we use the Adjusted
Rand Index from Hubert and Arabie| (1985). This index is an improvement of the Rand index
from Rand| (1971)), as it corrects the index for chance. Let & = {1,2,...,n} be the set of n
observations of data matrix X € R™*%. We compare two clusterings if there are k clusters, the
correct one U = {Uy,Us, ..., U} and the cluster result of a method C = {C4,Cy,...,C;} that
partitions the data in t clusters.

Let ni; = |U; N Cj|,1 <i < k,1 <j <t Dbethe amount of elements in cluster U; and C;. The
nomralized Rand index is defined as

T4 U; C; n
_ >y () =3 (90 3, (9)/()
1 U; Cy Ui Cil\ /(n)
[() + 2, (90] - = (9 2, (9)/6)
A Rand index of 0 means that the clustering C is not better than a random clustering of the
data. A Rand index of 1 means that C clusters the data correctly which means that C = U.

(27)

14

3 Data

For comparing the different methods to find the solution path of the convex clustering problem
we use generated datasets. This ensures that the methods can be compared for different number
of observations n. The main goal of the datasets is to compare the different implementations
in run time and performance. We use the following datasets:

Table 1: Datasets used for comparing clustering methods

name n d k reference

Moons Data 300 2 2 |Hocking et al. (2011)
Gaussian Clusters 200 2 4

n is the number of observations, d the number of features and
k the number of clusters in the dataset.

The Moons data is generated so that two half moon-shaped clusters that interlock are present
in the data. The Gaussian cluster data is also generated and has 4 Gaussian groups in a 2 x 2
grid. Both datasets have two dimensions so that the solution path can be plotted and inspected.
In appendix |B| code for generating the datasets can be found.

Normally one takes z-scores of each feature in the dataset, because then each feature is equal in
importance when clustering. For our datasets, we do not take z-scores because the datasets are
generated in such a way that each feature is equally important in clustering. No transformations
are made on the data before applying the clustering methods.

4 Results

For comparing the different methods of clustering and solving the convex clustering problem
we tested each method on the generated Moons dataset and compared them in accuracy and
runtime. The results are below in table [2| below. For all clustering methods, we used k = 2
because k-means requires the amount of cluster to be known in advance and the hierarchy of
the other methods had to be cut at some point to get the clustering. The resulting clustering
is then used to calculate the adjusted rand index as described in the methodology.

The method of [Hocking et al.| (2011)) is also implemented using their R package, so that it can be
compared with our methods. Their method did however not converge in 1000 iterations, which
gave an error, so we removed the maximum iteration limit. Furthermore, we also changed the
stopping condition for the gradient decent method from [Hocking et al.| (2011]) from Z§:1 llg;ll, <
eps to %HGH%7 < eps, here G is the gradient with rows g;, 1 < i < k and n the number of
observations. This way it has the same stopping condition as the norm majorization and the

eigenvalue majorization method, so these can be compared in runtime.

15

Table 2: Runtime and accuracy of clustering methods on Moons data

Rand SD seconds SD min max
gradient descent Hocking 0.80 0.42 23.12 13,50 9.03 46.69
gradient descent 0.80 0.42 107.64 64.78 49.29 226.55
norm majorization 0.80 0.42 17.32 253 13.71 21.20
eigenvalue majorization 0.80 0.42 25.88 5.52 1798 34.17
proximal distance method - - - - - -
k-means 0.24 0.05 0.00 0.00 0.00 0.00
average linkage 0.32 0.08 0.00 0.00 0.00 0.00

The different methods tested on 10 simulations of the Moons data with n = 300.
Rand gives the average adjusted Rand index of the clustering found and the seconds
are the average runtime of the algorithm for finding the s solution path. Min and
max give the minimum and maximum value for the runtime of each method. For
calculating the weights, v = 10 is used and as joining threshold § = 0.5 is used in
. The proximal distance method is not shown because it did not converge within

reasonable time.

We can draw two conclusions from table First, the solution path cut off at £k = 2 clusters
gives a better clustering than k-means and average linkage, because of a larger Rand index.
This is the same as Hocking et al.| (2011)) found. Second, the gradient descent from Hocking et
al. (2011) is slower on average than the norm majorization, but it is sometimes faster. To see
if this holds for other datasets we look at the results of applying the methods on the Gaussian

clusters data in table Bl

Table 3: Runtime and accuracy of clustering methods on Gaussian Clusters data

Rand SD seconds SD min max
gradient descent Hocking 1.00 0.00 1.13 080 0.70 3.28
gradient descent 1.00 0.00 10.63 3.99 799 21.32
norm majorization 1.00 0.00 0.88 0.13 070 1.09
eigenvalue majorization 1.00 0.00 1.63 052 1.14 2.89
proximal distance method - - 21.28 4.01 17.75 29.77
k-means 0.92 0.13 0.00 0.00 0.00 0.00
average linkage 0.92 0.13 0.00 0.00 0.00 0.00

The different methods tested on 10 simulations of the Gaussian clusters data with
n = 200. Rand gives the average adjusted Rand index of the clustering found and
the seconds are the average runtime of the algorithm for finding the Iy solution
path. Min and max give the minimum and maximum value for the runtime of each
method. For calculating the weights, v = 4 is used and as joining threshold § = 0.5
is used in . The proximal distance method did not cluster points correctly, so

its adjusted Rand index is not shown.

When we compare the methods on the Gaussian clusters data, we see that the norm majorization
and the gradient descent from Hocking et al. (2011) are both the fastest methods on average.
Also, the k-means performs better than on the Moons data and almost identifies the clustering
correctly. This is because k-means works well for detecting clusters that are bell-shaped.

The proximal distance method did converge on this data. However, it is the slowest method,

16

and it did not converge in reasonable time on the moons data. This method is not fast enough
for finding the optimal solution path and due to its approximative nature its solutions differ
from the other methods and a clustering can not be found because the cluster centroids do not
get close enough to fuse. This can be seen in figure 2l We conclude that the proximal distance
method is not the best method for solving the convex clustering problem.

o | T3le& . o D
o J"_? . oo w, oi J"_-\ % D i
‘ . ’ . T . ‘ . . T .
v 0
— —
. L3 ? . L3 |4
. P A .\@ - 77 - ¢ \@
. “ o...: i 20, . " "'3 K :'.'..
— e %s T ad”’ & = : P L R & se
- . :’,.}:?.:." . o =‘.-..""' = - . :',.':?.:.‘. . B 3:‘-..'"
. - * ¥ é .
T T T T T T
1.0 15 2.0 1.0 15 2.0
(a) Norm majorization method. (b) Proximal distance method.

Figure 2: The ls solution paths of the norm majorization method and the proximal distance
method run on the same Gaussian Clusters data with n = 200, v = 4 and the joining threshold
d set to 0.5.

It can be seen from comparing tables [2 and [3] that the norm majorization is faster on average
than the eigenvalue majorization method. However, for large n the eigenvalue method should be
faster because its update does not involve solving a system of equations. In figure [3| we compare
both methods in runtime for finding the solution in different steps of the solution path.

17

1000 - \

750 -
o method
(] .
% 500- eigen
=)
o =& norm

250 -

O -
0 500 1000 1500 2000
time

Figure 3: Runtime of the eigenvalue and norm majorization compared to the number of clusters
in the [y solution path. The run starts with all the observations each in its own cluster and
ends with all the observations in one single cluster. As the solver progresses, observations are
grouped together in clusters and the number of clusters decreases. The run is done on the
Moons data with n = 1000, v = 10 and é = 0.5.

Figure 3] shows that for a large problem, eigenvalue majorization is faster than norm majorizia-
tion in the first six steps of the solution path. After that, the norm majorization is faster. This
means that it is quicker to use eigenvalue majorization in the first few steps, until the problem
becomes small enough for solving the system of equations.

5 Conclusion

We used majorization techniques and information about the clustering of the data to create
methods to solve the convex clustering problem. First, the proximal distance method was
applied on the clustering problem with explicit solutions for the projection instead of block
descent approaches. Then, the majorization of the norm was used to get an update that
involved solving a system of equations. Because this is slow for large problems, another round
of majorization was used to get an update that uses upper bounds on eigenvalues instead. These
methods were compared in runtime and clustering accuracy on the same problems.

Timing the methods on finding the I solution path on two different datasets reveals that both
gradient descent and norm majorization have the shortest runtime on average. Eigenvalue
majorization is on average 1.1 — 1.5x slower than gradient descent and the proximal distance

method has the largest runtime and is approximately 18x slower than gradient descent.

Gradient descent, norm majorization and eigenvalue majorization did not use variable splitting,

18

which makes the memory required linear in problem size. Also, this makes it possible to use
a hard clustering approach which means that once rows are clustered, they remain clustered.
Like [Hocking et al.| (2011), we found that this improves the speed of the algorithm, especially
in later iterations once observations have fused to only a few clusters.

It is important to note however, that this hard clustering can result in not finding the global
minimum to the convex clustering problem. Hocking et al. (2011) found such an example
problem in which using hard clustering did not find the optimal solution, but they also found
that problems with decreasing weights do not have cluster splits. Therefore they conjecture
that for decreasing weights observations can not split once they have fused, meaning that hard
clustering finds the global minimum.

Another limitation of our methods is that they were programmed in R instead of C++ asHocking
et al. (2011) uses. Also using C++ for the majorization methods might speed up the majorization
algorithms, as C++ is usually faster than R.

We found two unexpected findings about the proximal distance method. First, it was slow
compared to what |Chen et al.| (2015]) found, which is because they used parallelization techniques
to increase the speed of the algorithm, and we did not. Second, the clustering results of the
proximal distance method were poor, because the cluster centroids did not get close enough to
be fused by our fusion method. However, clusters were visible in its solution path, thus the
solution path has to be interpreted differently for getting a correct clustering result.

We also investigated for what problem size eigenvalue majorization is quicker than norm ma-
jorization. For a problem with 1000 observations eigenvalue majorization was faster than norm
majorization in only the first six steps, which suggests that eigenvalue majorization should be
used for very large problems, until the problem is small enough for norm majorization.

In summary, our main finding is that the use of majorization can improve the runtime of
solving the convex clustering problem compared to gradient descent. This means that norm
majorization, our fastest method, could be used to solve the Iy convex clustering problem in
short runtime. This will make the work flow of convex clustering more efficient, and hopefully
more popular.

Next steps for building on this research can be to investigate using sparse weights for the convex
clustering problem, which can increase the speed of the norm majorization algorithm because
then it solves a system of equations with many zeros which is faster. This is in line with what
Chen et al. (2015) and (Chi and Lange (2015]) found for their methods. They suggest to use the
nearest k-neighbors for defining the weights, which introduces sparsity.

Other steps include investigations of step doubling in majorization, where the majorization
step is doubled each iteration. This is possible because the objective function is convex, so
in the worst case the majorization update results in the same objective value. This technique
can possible double the convergence speed of the majorization methods, but they have to be
examined further.

19

References

Bartlett, M. S. (1951). An inverse matrix adjustment arising in discriminant analysis. The
Annals of Mathematical Statistics, 22(1), 107-111. Retrieved from http://www.jstor
.org/stable/2236707

Chen, G. K., Chi, E. C., Ranola, J. M. O., & Lange, K. (2015, 05). Convex clustering: An
attractive alternative to hierarchical clustering. PLOS Computational Biology, 11(5),
1-31. doi: 10.1371/journal.pcbi.1004228

Chi, E. C., & Lange, K. (2015). Splitting methods for convex clustering. Journal of Computa-
tional and Graphical Statistics, 24(4), 994-1013. doi: 10.1080/10618600.2014.948181

Clarke, F. H. (1990). Optimization and nonsmooth analysis (Vol. 5). Siam.

Duckworth, D. (2013). Coordinate ascent for convex clustering. http://www.stronglyconvex
.com/. Retrieved 2018-05-07, from http://www.stronglyconvex.com/blog/coordinate
-ascent-convex—-clustering.html

Groenen, P. J. F. (2017). Feb22006-16: Nonlinear optimization, week 4: Majorization
lecture motes. Retrieved from https://bb-app02.ict.eur.nl/bbcswebdav/pid-147880
-dt-content-rid-435334_1/courses/FEB22006-16/Lecture 4 _students_large.pdf
(PowerPoint slides)

Groenen, P. J. F., & Dalmeijer, K. (2016a). Feb22006-16: Nonlinear opti-
mization, week 83: Derivative-free optimization lecture mnotes. Retrieved from
https://bb-app02.ict.eur.nl/bbcswebdav/pid-1455565-dt-content-rid-427975.1/
courses/FEB22006-16/Lecture 3_students_large.pdf (PowerPoint slides)

Groenen, P. J. F.; & Dalmeijer, K. (2016b). Statistical methods, week 7: Cluster analysis lecture
notes.

Groenen, P. J. F., Heiser, W. J., & Meulman, J. J. (1999, Jul 01). Global optimization in
least-squares multidimensional scaling by distance smoothing. Journal of Classification,
16(2), 225-254. doi: 10.1007 /5003579900055

Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C' (Applied Statistics), 28(1), 100-108. doi:
10.2307/2346830

Heiser, W. J. (1987). Correspondence analysis with least absolute residuals. Computational
Statistics € Data Analysis, 5(4), 337-356. doi: 10.1016/0167-9473(87)90057-0

Hocking, T. D., Joulin, A., Bach, F., & Vert, J.-P. (2011, June). Clusterpath An Algorithm for
Clustering using Convex Fusion Penalties. In 28th international conference on machine
learning (p. 1). United States.

Hubert, L., & Arabie, P. (1985, Dec 01). Comparing partitions. Journal of Classification, 2(1),
193-218. doi: 10.1007/BF01908075

Hunter, D. R., & Lange, K. (2004). A tutorial on mm algorithms. The American Statistician,
58(1), 30-37. doi: 10.1198/0003130042836

Lange, K., & Keys, K. L. (2015). The proximal distance algorithm. arXiv preprint
arXw:1507.07598 .

Petersen, K. B., & Pedersen, M. S. (2012). The matriz cookbook. Retrieved from https://
www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical Association, 66(336), 846-850. doi: 10.1080/01621459.1971
.10482356

Richard, B. (1989). Schaum’s outline of theory and problems of matriz operations. New York:
McGraw—Hill.

20

http://www.jstor.org/stable/2236707
http://www.jstor.org/stable/2236707
http://www.stronglyconvex.com/
http://www.stronglyconvex.com/
http://www.stronglyconvex.com/blog/coordinate-ascent-convex-clustering.html
http://www.stronglyconvex.com/blog/coordinate-ascent-convex-clustering.html
https://bb-app02.ict.eur.nl/bbcswebdav/pid-147880-dt-content-rid-435334_1/courses/FEB22006-16/Lecture_4_students_large.pdf
https://bb-app02.ict.eur.nl/bbcswebdav/pid-147880-dt-content-rid-435334_1/courses/FEB22006-16/Lecture_4_students_large.pdf
https://bb-app02.ict.eur.nl/bbcswebdav/pid-145555-dt-content-rid-427975_1/courses/FEB22006-16/Lecture_3_students_large.pdf
https://bb-app02.ict.eur.nl/bbcswebdav/pid-145555-dt-content-rid-427975_1/courses/FEB22006-16/Lecture_3_students_large.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

A Golden section algorithm

This algorithm was taken from |Groenen and Dalmeijer| (2016a).

Algorithm 7: Golden-Section

Input: function f, interval [a, b] that contains minimum of f
cb—(b—a)/e;
d<a+(b—a)/d;

fe < f(e);

fa < f(d);

while |¢ — d|> eps do

if f. < fq then
b+ d;

d <+ ¢
c—b—(b—a)/d;
Ja < fe;

fe f(o);

else

a < ¢

c <+ d;
d<a+(b—a)/d;
Je < fa;

fa < f(d);

end

end
return (b —a)/2

© ® N O ot W N

T el e I e o i =
©C © W N O U bk W N = O

B Data generation

Below is the R code used for generating the Gaussian clusters data and the Moons data.

Generate Gaussian clusters
gaussian.data <- function(n=200) {
k <-4
X <- NULL
for (q in 1:2) {
for (j in 1:2) {
mu <- c(q, j)
var <- rbind(c(0.015,0), c(0,0.015))
X <- rbind(X, cbind(mvtnorm::rmvnorm(n/4, mean = mu,
sigma = var), group=(q-1)*2+j))
}
}

return(X)

21

From: https://rdrr.to/rforge/clusterpathRcpp/src/R/sim.R
Edited by: Tom van den Berg
simulate some data in the shape of 2 half-moons
halfmoon.cluster.data <- function(N=150,noise=0.5) {
halfcircle <- function(r,center=c(0,0),class,sign){
angle <- runif(N,0,pi)
rad <- rnorm(N,r,noise)
return(cbind(rad*cos(angle)+center[1],
sign*rad*sin(angle)+center[2], class))
}
pts <- rbind(halfcircle(4,c(0,0),1,1),
halfcircle(4,c(4,2),2,-1))
return(pts)
}

C R code

Below is the R code used for solving the convex clustering problem for given A using the gradient
descent method.

solve_gradient<- function(U, M, X, W, lambda, threshold) {
iteration <- 1
G <- subgradient_L2(U, M, X, W, lambda)
f_k <- cost_function(U%*%M, X, lambda, W)
n <- nrow(X)

while (sum(G~"2)/n > 0.001 && iteration < 1000) {

if (iteration %% 2 == 0) {
r <- 1/iteration
} else {
r <- golden_section(function(x) cost_function(U%x*%(M-x*G), X,
lambda, W), 0, 1)

Subgradient step
M <- M - r*G

Check for fustons
o <- find_cluster_fusion(U, M, threshold)
if (o$fusion) {

U <- o$U
M <- o$M
iteration <- 0

22

Subgradient
G <- subgradient_L2(U, M, X, W, lambda)
iteration <- iteration + 1
}
return(list ("U" = U, "M" = M))
}
golden_section <- function(f, a, b, tol=0.001) {
gr <- (1+sqrt(5))/2
c <- b-(b-a)/gr
d <- a+(b-a)/gr
f_c <= £(c)
f_d <- f£(d)
while(abs(c-d)>tol) {
if (f_c < £_d) {

b <-d
d <-c¢c
f_d <- f_c
c <- b-(b-a)/gr
f_c <= f(c)
} else {
a<-c
c <-d
f_c <- f_d
d <- at+(b-a)/gr
f_d <- £(d)
}
}
return((b+a)/2)

}
subgradient_L2 <- function(U, M, X, W, lambda) {
a <- U%x%M
a_c <- M
X_c <- crossprod(U, X)/colSums(U)
W_c <- crossprod(U, W) * t(1-U)
s <- M
for (i in 1:nrow(M)) {
diff <- -sweep(a, 2, M[i,])
sq <- sqrt(rowSums(diff~2))
sqlsq==0] <- 1 # will be multiplied out by W_c
sum_1 <- W_c[i,] %*% (diff / sq)
s[i,] <- sum_1

}
G <- a_c - X_c + lambda / colSums(U) * s
return(G)

Below is the R code used for solving the convex clustering problem for given A using the proximal
distance method.

23

solve_proximal <- function(U, M, X, W, lambda, threshold) {
Init

A <- U%*%M

n <- nrow(A)

d <- ncol(A)

V <- array(0, dim=c(n, n, 4))

VIl <- apply(A, 2, function(x) {tt <- matrix(rep(x, n),

nrow=n); t(tt)-tt}) # Difference array

Vp <- V

k <- 0

f_ k<-0

f k1 <-1

max_iterations <- 1000

rho <- 1

while (k < 1 || abs(f_k_1 - f_k)/abs(f_k_1) > 0.001
&& k < max_iterations) {
Find projection
Ap <- find_projection(A, V)
Vpl[]l <- apply(Ap, 2, function(x) {tt <- matrix(rep(x, n),
nrow=n); t(tt)-tt}) # Difference array

Update eps and Tho

eps <- max(le-3%1.57(-k), le-6)

rho <- min(1.5"(k), 1e3)

mapdist <- sum((A-Ap)~2) + sum((V-Vp)~2)
d_m <- sqrt(mapdist + eps)

Update M and V
M <- (d_m/(d_m+rho) *crossprod(U,X)+rho/(d_m+rho) *
crossprod (U, Ap))/colSums (U)

Vp_norm <- as.matrix(dist(Ap))

Vp_norm <- pmax(Vp_norm, le-8)

S <- pmax(1-lambda*W+d_m/(rho*Vp_norm), 0)
V[] <- apply(Vp, 3, function(R) S*R)

Check for fusion
o <- find_cluster_fusion(U, M, threshold)
if (o$fusion) {
U <- o$U
M <- o$M
}

A <= UM

f_k_1 <- f_k

mapdist <- sum((A-Ap)~2) + sum((V-Vp)~2)

f_k <= 0.5%sum((A-X)"2) + lambda*sum(W[lower.tri(W)]x*
S[lower.tri(S)]*dist(Ap)) + 0.5%rho*mapdist/d_m

24

k <- k+1

return(list("U" = U, "M" = M))
}
find_projection <- function(A, V) {
n <- nrow(A)
d <- ncol(A)
V2 <- t(apply(V, 2, colSums)-apply(V, 1, colSums))
solve_V1 <- matrix(2/(2*n+1), n, n)
diag(solve_V1) <- 3/(2*n+1)
Ap <- crossprod(solve_V1, A+V2)
return(Ap)

Below is the R code used for solving the convex clustering problem for given A using the norm
majorization method.

solve_norm <- function(U, M, X, W, lambda, threshold) {
n <- nrow(X)
eps <- le-8

Inait
k <- 1
g<-0

while (k == 1 || g > 0.001) {
k <- k+1

Find minimum of majorization function
Caculate V

D <- as.matrix(dist(U%*%M))

D <- pmax(D, eps)

V <- -W/D

diag(V) <- -rowSums (V)

Solve system

UX <- crossprod(U, X)

UVU <- crossprod(U, crossprod(V, U))

G <- crossprod(U,U%*%M) -UX+lambda*crossprod (UVU,M)
M <- solve(crossprod(U)+lambda*UVU, UX)

Check for fusions

repeat {
o <- find_cluster_fusion(U, M, threshold)
fusion <- o$fusion
if (lo$fusion)

25

break
U <- o$U
M <- o$M
}

g <= sum(G~2)/n

I'eturn(list("U" = U’ "M o= M))
}

Below is the R code used for solving the convex clustering problem for given A using the
eigenvalue majorization method.

solve_eigen <- function(U, M, X, W, lambda, threshold) {
n <- nrow(X)
eps <- le-8

Intt
k <-1
g <-0

while (k == Il g > 0.001) {
k <= k+1

Find minimum of majorization function
Caculate V

D <- as.matrix(dist (U%*%M))

D <- pmax(D, eps)

V <- -W/D

diag(V) <- -rowSums (V)

Upper bound on eigen values of C
C <- crossprod(U, V%*%U)

1 <~ 2*(diag(C)+eps)

diag(C) <- diag(C)-1

C <- -C # Result 1s L-C

Gradient and update

UX <- crossprod(U, X)

L_CM <- CY*%M

G <- crossprod(U,U%*%M) -UX+1lambda*1*M-lambda*L_CM
M <- (UX + lambda*L_CM)/(lambda*1l+colSums(U))

Check for fustons

repeat {
o <- find_cluster_fusion(U, M, threshold)
fusion <- o$fusion

26

if (lo$fusion)

break
U <- o$U
M <- o$M

g <- sum(G~2)/n
}

return(list("U" = U, "M" = M))
}

Below the R code for cluster fusions and the cost function.

find_cluster_fusion <- function(U, M, threshold) {

if (ncol(U) == 1) {
return(list("U" = U, "M" = M, "fusion" = FALSE))
}

diff <- as.matrix(dist(M))
diff_min <- min(diff[diff>0])

if (diff_min > threshold) {
return(list("U" = U, "M" = M, "fusion"
} else {
idx <- which(diff == diff_min, arr.ind=TRUE)
i <= idx[2, 1]
j <- idx[2, 2]
it follows that 7 < j

FALSE))

nC_i <- sum(U[,i])
nC_j <- sum(U[, ;1)
a_c <- (nC_i*M[i,]+nC_j*M[j,]1) / (nC_i+nC_j)

M[i,] <- a_c

M <- M[-j,,drop=F]
U[,i] <- U[,i]+U[,j]
U <- U[,-j,drop=F]

return(list("U" = U, "M" = M, "fusion" = TRUE))
}
cost_function <- function(A, X, lambda, W) {
return(0.5*sum((A-X) "2)+lambda*sum (W [lower.tri(W)]*dist(A)))
}

27

	1 Introduction
	2 Methodology
	3 Data
	4 Results
	5 Conclusion
	A Golden section algorithm
	B Data generation
	C R code

