Erasmus University Rotterdam

MSc in Maritime Economics and Logistics

2017/2018

Cascading Effects and Optimal Network Configuration Design for Liner Shipping

by

Rafiazka Millanida Hilman

copyright © Rafiazka Millanida Hilman

Acknowledgement

Hartelijk dank dat ik StuNed-beurs heb mogen ontvangen, hierdoor was ik in staat om mijn studie in Nederland te vervolgen. Het was ondenkbaar om aan de andere kant van de wereld een masteropleiding te volgen zonder de steun van het Koninkrijk der Nederlanden.

> *Lieve Prof. dr. Ir. Rommert Dekker,* Dank u wel voor deze kans en ik wens u het beste.

Lieve mijn ouders, Ik ben jullie dankbaar voor de steun en vrijheid die jullie mij geven om mijn eigen keuzen te kunnen maken.

> Lieve het leven van mij, Ik heb gezegd.

Ik ben tot de tanden gewapend. Doe maar gewoon, dan doe je al genoeg.

Abstract

Container liner shipping gains it centrality in the maritime transportation research along with the growth of seaborne trade. Global trade performance at higher speed brings twofold impact. The attractiveness of economies of scale captures the attention of major container liner as lower shipping cost per TEU may allow thicker profit margin. The deployment of Ultra Large Container Vessel (ULCV) afterwards is motivated by the aforementioned assumption. Consequently, persistent entrance of ULCV could exacerbate overcapacity condition. Falling transportation cost per TEU and tightening competition among shipping liners are the critical implication to which container liner should deal with.

Most of ULCV are phased into Asia-Europe route due to demand hike within this trade lane. A swing in preference of the container liners towards ULCV triggers reallocation of ship assignment. The previously dominant medium size vessels are allocated to smaller routes, widely known as cascading phenomenon. It serves the main focus of this thesis to examine the subtle point to challenge: Is that a strategic decision to make given the presence of ULCV? Does ULCV guarantee economies of scale such that profit can be maximized? What is strategic response that may lead to optimum solution for container liner in this setting?

The objective of this thesis is to construct a model for the situation where cascading phenomena driven by the deployment of ULCV exist in container liner shipping and propose a network design as a strategic response to the current situation such that profit is maximized. At first, network structure is analyzed based on network properties in graph theory such as degree centrality and betweenness centrality. Using a mix integer programming formulation, combined ship-scheduling and cargo-routing problem is solved by conducting two-phase problem namely Regional Route Network Design (RRND) and Route Construction and Ship Allocation (RCSA) are solved. In order to reduce the problem size, clustering algorithms of PAM and DBSCAN are performed to ports located along Asia and Europe trade lane.

This thesis highlights the implication of ULCV deployment on profitability of liner shipping in which Maersk is used as a case study. To capture the cascading phenomena, two consecutive periods are selected based on the development of ULCV namely 2010 and 2018. Maersk original routes in Asia-Europe service network are used as a reference network. There are 1,935 OD pair demand observed between 58 ports for both year, while demand in 2018 is projected by 34% growth from the initial period in 2010.

This thesis finds that highly centralized and connected ports can be regarded as candidates of additional port to be called on route, among others are Shanghai, Hong Kong, Rotterdam, and Singapore. On the clustering part, PAM clustering is upper hand than DBSCAN as it results in shorter distance and larger demand concentration at hub ports. Overall, the proposed network CBN A with 10 clusters is the best to compare to reference network because both are performed under slow steaming practice at 15 knots with demand volume in 2010. It allows higher profit by 30 with cost efficiency of 12%. This finding indicates that more competitive financial performance can be induced by properly adjusted network design with combination of maximized cargo flow between ports given minimized distance.

Table of Contents

Acknowledgement	ii
Abstract	iii
Table of Contents	iv
List of Figures	vi
List of Tables	vii
Chapter 1 Introduction	1
1.1. Problem Description and Complexity	2
1.2. Research Problem	2
1.3. Contribution	2
1.4. Structure	3
Chapter 2 Literature Review	4
2.1. ULCV Economies of Scale	4
2.2. Liner Network Design	10
2.3. Decision-making Level	12
Chapter 3 Methodology	15
3.1. Network Structure	15
3.2. Problem Formulation	16
3.3. Solution Algorithm	17
3.4. Assumptions	24
3.5. Conclusions	24
Chapter 4 Data	26
4.1. Port	
4.2. Distance	
4.3. Ship and Network	
4.4. Speed	27
4.5. Demand	27
4.6. Port Tariff	27
4.7. Cost	27
4.8. Revenue	
4.9. Conclusion	
Chapter 5 Theoretical Proof of Economies of Scale on ULCV	29
5.1. The Model	29

5.2. Proofs of Cost	. 29			
5.3. Proofs of Economies of Scale	. 30			
Chapter 6 Cascading Effects on Existing Maersk Network	. 31			
6.1. Original Route Network	. 31			
6.2. Weighted Demand Network	. 33			
6.3. Cascading Phenomena	. 34			
6.4. Conclusion	. 36			
Chapter 7 Estimated Profitability of the ULCV Deployment	. 37			
7.1. Capital Cost	. 37			
7.2. Operating Cost	. 37			
7.3. Fuel Cost	. 38			
7.4. Movement Cost	. 38			
7.5. Total Cost	. 39			
7.6. Revenue and Profit	. 39			
7.7. Conclusion	. 40			
Chapter 8 PAM and DBSCAN Clustering Algorithm	. 41			
8.1. PAM Clustering Algorithm	. 41			
8.2. DBSCAN Clustering Algorithm	. 45			
8.3. Conclusion	. 47			
Chapter 9 Network Configuration Design	. 48			
9.1. Reference Network Design	. 48			
9.2. Optimal Hub Network Design	. 49			
9.3. Optimal Feeder Network Design	. 52			
9.4. Optimal Hub and Spoke Network Design	. 54			
9.5. Optimal Network	. 56			
9.6. Estimated Profitability and Optimal Profitability	. 57			
9.7. Reference Network and Optimal Network	. 58			
9.8. Conclusion	. 58			
Chapter 10 Discussion	. 59			
Chapter 11 Conclusion	. 60			
Bibliography	. 62			
Appendix A: Data	. 66			
Appendix B: Maersk Route, Ship, and Routes				
Appendix C: Maersk Network Properties	. 94			

List of Figures

FIGURE 2.1. TEU TO GDP MULTIPLIER, 1985-2016	4
FIGURE 2.2. EVOLUTIONARY SIZE OF CONTAINER VESSEL	6
FIGURE 2.3. VESSEL COSTS AND TRANSPORTATION COSTS	8
FIGURE 2.4. SIMULATION OF COST SAVINGS	9
FIGURE 2.5. CASCADING EFFECTS IN CONTAINER SHIPPING TRADE	E LANE 10
FIGURE 2.6. HUB AND SPOKE ROUTE	11
FIGURE 2.7. BUTTERFLY ROUTE	11
FIGURE 2.8. PENDULUM ROUTE	12
FIGURE 2.9. CIRCULAR ROUTE	12
FIGURE 3.1. SCHEMATIC OVERVIEW OF CLUSTERING PROCEDURE	18
FIGURE 6.1. MAERSK PORT CALL NETWORK, 2010	32
FIGURE 6.2. MAERSK PORT CALL NETWORK, 2018	
FIGURE 6.3. MAERSK WEIGHTED DEMAND NETWORK, 2010	34
FIGURE 8.1. PAM CLUSTER MAP FOR 10 CLUSTERS	
FIGURE 8.2. PAM CLUSTER MAP FOR 13 CLUSTERS	
FIGURE 8.3. PAM CLUSTER MAP FOR 15 CLUSTERS	45
FIGURE 8.4. DBSCAN CLUSTER MAP FOR 10 CLUSTERS	

List of Tables

TABLE 6.1. CASCADING SHIP ON ROUTE BETWEEN 2010 AND 2018	35
TABLE 6.2. ROUTE CAPACITIES IN 2010 AND 2018	36
TABLE 7.1. CAPITAL COST OF ULCV	37
TABLE 7.2. OPERATING COST OF ULCV	37
TABLE 7.3. FUEL COST OF ULCV	38
TABLE 7.4. MOVEMENT COST OF ULCV	38
TABLE 7.5. TOTAL COST OF ULCV	39
TABLE 7.6. REVENUE AND PROFIT OF ULCV	39
TABLE 8.1. PAM CLUSTERING FOR 10 CLUSTERS	42
TABLE 8.2. PAM CLUSTERING FOR 13 CLUSTERS	43
TABLE 8.3. PAM CLUSTERING FOR 15 CLUSTERS	44
TABLE 8.4. DBSCAN CLUSTERING FOR 10 CLUSTERS	46
TABLE 9.1. PROFITABILITY OF THE REFERENCE NETWORK	48
TABLE 9.2. OPERATIONAL PERFORMANCE OF THE REFERENCE NETW	VORK
	49
TABLE 9.3. COST STRUCTURE OF CBHN A	50
TABLE 9.4. OPERATIONAL PERFORMANCE OF CBHN A	50
TABLE 9.5. COST STRUCTURE OF CBHN B	51
TABLE 9.6. OPERATIONAL PERFORMANCE OF CBHN B	51
TABLE 9.7. COST STRUCTURE OF CBHN C	51
TABLE 9.8. OPERATIONAL PERFORMANCE OF CBHN C	52
TABLE 9.9. COST STRUCTURE OF CBFN A	52
TABLE 9.10. OPERATIONAL PERFORMANCE OF CBFN A	52
TABLE 9.11. COST STRUCTURE OF CBFN B	53
TABLE 9.12. OPERATIONAL PERFORMANCE OF CBFN B	53
TABLE 9.13. COST STRUCTURE OF CBFN C	54
TABLE 9.14. OPERATIONAL PERFORMANCE OF CBFN C	54
TABLE 9.15. PROFITABILITY OF CBN A	54
TABLE 9.16. OPERATIONAL PERFORMANCE OF CBN A	55
TABLE 9.17. PROFITABILITY OF CBN B	55
TABLE 9.18. OPERATIONAL PERFORMANCE OF CBN B	55
TABLE 9.19. PROFITABILITY OF CBN C	55
TABLE 9.20. OPERATIONAL PERFORMANCE OF CBN C	56
TABLE 9.21. PROFITABILITY OF OPTIMAL NETWORK	56
TABLE 9.22. OPERATIONAL PERFORMANCE OF OPTIMAL NETWORK	57
TABLE 9.23. ESTIMATED AND OPTIMAL PROFITABILITY OF ULCV	57
TABLE 9.24. COMPARATIVE FINANCIAL PERFORMANCE	58

Chapter 1 Introduction

Container liner shipping gains it centrality in the maritime transportation research along with the growth of seaborne trade. UNCTAD (2017) reports that 10.3 billion tons in seaborne trade volumes reached in 2016. Among others, containerized trade accounts for 1,720 million tons approximately 16.7% of seaborne trade by volume and 60% by value. Furthermore, the projected trade volume growth at 2.8% in 2017 allows over 260 million tons more loaded on the vessels than in the previous year.

This positive expectation brings back the market optimism after the prolonged depressed demand triggered by global economic contraction at the moment the US hit financial crisis in 2008. Shipping industry was severely affected by global recession at its shipping cycle peak. Subsequent staggering effect was created by an imminent downfall in demand for container shipping slightly after a significant capacity upgrade. At that point, orderbook was six times higher than the average orders placed between 1980 and 2006 (Haralambides and Thanopoulou, 2014).

Global trade performance at higher speed brings twofold impact. Heaver (2002) observe that an increasing vessel size is could be a blatant consequence of the growing seaborne trade. Causation between volume of goods traded across oceans and size of ship deployed on services holds, assuming the characteristics of container shipping as derived demand of international trade. Unsurprisingly, the attractiveness of economies of scale captures the attention of major container liner as lower shipping cost per TEU may allow thicker profit margin. However, less cautious decision on vessel order placement with respect to business cycle may have more harm to the industry. Container shipping, for instance, is still under the shadow of an oversupply to the upcoming years because expected delivery from preceding orderbook that has been made before global crisis put idle capacity on a longer list.

Persistent entrance of ultra large container vessels (ULCV) both before and after economic downturn such as Emma Maersk (14,770 TEU) in 2006 and MSC Oscar (19,224 TEU) in 2015 could exacerbate overcapacity condition. The trend towards pronounced increase in container ship size is estimated to sustain as reflected by the delivery of newbuilding in 2017 such as MOL Triumph (20,150 TEU), Maersk Madrid (20,568 TEU), and OOCL Hong Kong (21,413 TEU). Larger size vessel does present in orderbook, including CMA CMG expecting 9 units of 22,000 TEU vessel in 2019 (Hand, 2017). Falling transportation cost per TEU and tightening competition among shipping liners are the critical implication to which container liner should deal with.

Most of ULCV are phased into Asia-Europe route for being expanded to 23% of containerized trade in 2016 (UNCTAD, 2017). Nevertheless, World Maritime News (2018) citing SeaIntel Maritime Analysis asserts that the annual capacity that can be adsorbed within this trade lane does not exceed 5%. Consequently, the previously dominant medium size vessels are allocated to smaller routes because scrapping is too early to consider. Otherwise stated, container liner attempts to push excess capacity to other markets, thus, taking the cascading effects into accounts. There is subtle point to challenge: Is that a strategic decision to make given the presence of ULCV? Does ULCV guarantee economies of scale such that profit can be maximized?

What is strategic response that may lead to optimum solution for container liner in this setting?

1.1. Problem Description and Complexity

The presence of ULCV inevitably affects the network structure of container shipping. Smaller number of port of calls and more tendencies towards indirect from direct service in order to maximize the volume of cargo carried in a voyage are likely to be the pattern if the trend continues. Another complexity brought by ULCV is on the adequacy of port specification as not all ports are capable in handling such a large container ship. Either way, it is financially unsound for liner shipping company to call at a port with low demand. As it is the case, the shifting from the predominant circular, pendulum, and butterfly routes to hub-and-spoke route with transshipment option is expected.

1.2. Research Problem

The objective of this thesis is to construct a model for the situation where cascading phenomena driven by the deployment of ULCV exist in container liner shipping and propose a network design as a strategic response to the current situation such that profit is maximized. Furthermore, the optimization method discussed in the model is tested on the empirical case of Asia-Europe Container shipping route in which Maersk network in 2010 used as a reference network.

This results in the main research question as follows:

To what extent the optimality of network configuration design can be guaranteed under cascading phenomena driven by the deployment of ULCV?

In order to adequately address the main research question, number of issues and sub research questions should be clarified as follows:

- 1. How does the trend of ULCV deployment drive cascading phenomena in container liner shipping network?
- 2. How does the shifting in structure of hub and regional network of container liner shipping between 2010 and 2018 take place?
- 3. Which model can be used to design container liner shipping networks for liner shipping in response to cascading phenomena?
- 4. Which mathematical programming technique can be used to solve combined decision making on fleet-design, ship-scheduling and cargo-routing problem?
- 5. Which proposed network is the best to compare to reference network?

1.3. Contribution

This thesis contributes to the use of mathematical programming technique in designing efficient route network for container liner. A model for simultaneous network design and vessel deployment with multiple hubs and regions is presented. A more realistic setting is adopted in the problem formulation concerning on the ULCV deployment with weekly service window and flexible demand fulfilment. This thesis differs from the major literatures in this field by initializing the principle of network theory derived from graph theory where connectivity (edge) between points (node) matters. Ports are treated as nodes under directed network while number of trade links and cargo flows to other ports are represented by edge so that port call and transshipment can be strategically determined by referring to port with high

connectivity and throughput as well as route or sea leg with considerable amount of demand. Insight from this particular aspect could improve the performance of the widely recognized three level of decision making comprising fleet-design, cargo-routing, and ship-scheduling problem. Furthermore, this thesis offers an alternative perspective by looking at optimal solution for profit maximization under recent uncertainty faced by container liner namely cascading effect.

1.4. Structure

This thesis is organized as follows. Chapter 2 reviews relevant literatures related to network design and decision making in container liner shipping comprising strategic planning level, tactical planning level and operational planning level. Sub-question 3 is addressed in this part. Chapter 3 discusses methodology including problem formulation of fleet-design, cargo-routing, and ship-scheduling along with iterative and clustering algorithm as solution algorithm, assumptions, and scenarios. Chapter 4 provides available data required in this thesis research. Both chapters are dedicated to establish foundation for a rigorous mathematical programming technique raised on sub-question 4.

Analytical parts are delivered from Chapter 5 to Chapter 10. Chapter 5 provides theoretical proof for the feasibility of economies of scale assumption in the case of ULCV. It aims to mathematically justify the significance of ULCV deployment that drives cascading phenomena in container liner shipping network. Chapter 6 identifies the cascading phenomena in the container liner shipping as a result of the ULCV deployment that may affect the network structure. It attempts to answer sub-question 1 and 2. Chapter 7 delivers the estimation of profitability regarding to the deployment of ULCV. This serves as an empirical case to theoretical proof established in Chapter 5 as well as a benchmark to optimal solution presented in Chapter 9.

Chapter 8 presents the result of clustering algorithm for various k-centroids (PAM Clustering) and density-based approach (DBSCAN Clustering). It is necessary to run these algorithms in order to: i) simplify the large and complex problem in container liner decision making; and ii) ruminate over set of ports into two classes namely hub and feeder. The first reason falls into sub-question 4 on the congruity of mixed integer program while the second makes a point in regards to sub-question 3 where hub-and-spoke design is the case. Chapter 9 reports comparative performance of proposed network design over the reference network design in pursuant to sub-question 5. Last but not least, discussion and main findings in this thesis are summed up in Chapter 10 as a stepping stone to further research direction in the future.

Chapter 2 Literature Review

Container shipping operation is a complex decision making that counts each individual problem solution and joint decision making between respected problems in the model. An increasing complexity is found as heavy swing towards ULCV is getting bold in practice. Consequently, overcapacity on supply side presses down freight rate generating lower profit. It shows that despite global trade bounces back to positively firm growth, number of uncertainties and ambiguities still exist. Container shipping liner are battling with conflicting ideas especially on cargo routing such that profit can be maximized: Whether fewer port availability for ULCV leads to fewer port calls? Whether slow steaming option taken by ULCV leads to fuel cost efficiency? Whether the spacious dimension of ULCV leads to hub-and-spoke system?

This chapter highlights these issues by reviewing the previous works related liner network design and decision-making level in the context of ULCV. At first, this chapter highlights the emergence of ULCV as an attempt to exploit economies of scale (Section 2.1). Continuous deployment of ULCV in particular route ultimately results in cascading effects in other routes. Section 2.2 provides numbers of network design in container liner namely hub and spoke, butterfly, pendulum, and circular route as previously discussed in Mulder (2016). Last but not least, decision-making level is available in Section 2.3 where individual and combined problem are addressed.

2.1. ULCV Economies of Scale

The scope of ULCV deployment is not limited to the extent container shipbuilding takes place, but also alters the very central maritime infrastructure which is container port and terminal. As the workhouse of global economy, container vessel should be able to timely adapt to the market dynamics. Prior to the crisis in 2008, container volume growth was above Gross Domestic Product (GDP) growth rate. Multiplier of 2.5 GDP, for instance, can be interpreted as for 1% of GDP growth, container volume grows at 2.5%. The robust growth for quite a long period triggers continual upgrade in ship size so does container volume loaded into it.

Figure 2.3 illustrates the relational state expressed in multiplier between container volume and GDP from 1985 to 2016. Container volume is represented by total handing volumes at ports. Rodrigue, Notteboom, and Slack (2017) suggests that there are four phases to identify. Firstly, initial speed up process of containerization along with globalization and trade liberalization took place between 1960s and 1990 resulting in multipliers within 2 to 2.5. The second phases occurred from 1990 to 1999 marked by surging multiplier up to 4 due to the expansion of service network among liners and port development worldwide. Slightly corrected from the previous phase, the multiplier stood still at peak growth of 3 between 2000 and 2008 given hefty growth of container port volume in China and major ports across hemisphere. Notwithstanding, massive wave of global economic contraction actuated by the US financial crisis in 2008 shifted the multiplier to tumultuous downward. It unceasingly is weakened from the range of 2 in the initial years of the fourth phase to the value less than 1 in 2015 and ended up at 0 by 2016.

A positive sign towards global economic recovery in 2017 brought a better prospect for container shipping industry. Alphaliner quoted by World Maritime News (2018) states that TEU to GDP multiplier could be lifted to 1.7 in 2017 considering the growth of global container throughput at 6.7% with Chinese ports on the frontier at 9.1%. Even though less multiplying effects exist at the present, Rodrigue, Notteboom, and Slack (2017) argues that this ratio is still relevant to anticipate container volume in port traffic forecasting because it captures the interaction between trade performance and container liner decision: the flow of empty containers (trade imbalance) and transshipment (service network).

A captivating concept of economies of scale evolves under particular expectation that lower transportation cost per TEU could be sustained due to cost saving at sea leg. Moreover, the tight competition among container shipping liners leave a narrow choice for another option besides looking at size factor to secure their competitiveness in the market. Lim (1998) argues that according to incontrovertible basic theory of scale economies, there are two types of cost consideration. Firstly, an increase in cargo capacity does not linearly relates to building costs. Secondly, the lower unit cost per TEU during the sailing period offers higher earning per TEU given a steady freight rate. He recognizes the prospect for alliances in container shipping industry to optimize the scale power.

In consonance with this point, McKinsey (2017) asserts that cost efficiencies in crew, emission, and fuel are the primary logics behind the search for scale. Structural consolidations that have been on the air for more than a decade justify Lim (1998). Operating a single ship jointly between two liners on a route is financially more plausible than running two small vessels independently.

2.1.1. Container Fleet Development

Since its pioneering step after taking a transformation from a World War II oil tanker to the 58 TEU SS Ideal X, a dramatic increase in size of container vessel capacity is clearly seen (McKinsey, 2017). The presence of containerization in shipping business changes the embedded nature of cargo handling and port activities that previously was characterized by employment irregularity, lack of coordination, and extemporaneousness of schedule.

introduction	Vessel size, meters	Company	Capacit
1956		Pan-Atlantic Steamship	5
//	T-		
1964		Associated Steamship	~1,00
11			
1981		Hapag-Lloyd	3,05
//			
1985	فعلامت استاسانيه	US Line	4,45
//		Marriel	0.00
1996		Maersk	6,00
4007		. Marant	7.00
1997		Maersk	1,22
//		0001	0.00
2003		OOCL	8,06
2004		China Shinning	9.46
2004			0,40
2005		MSC	9.20
			-,
0000		Manual	44.77
2006		Maersk	14,//
11			
2012		CMA CGM	16,02
2013		Maersk	18,27
	-		
2014	- CARLES AND A DESCRIPTION OF A DESCRIPT	China Shinning	10.10
2014			19,10
2015		MSC	19,22
2017		OOCL	21,41

Figure 2.2. Evolutionary Size of Container Vessel

sel capacity, TEU

Maximum container-ve

The definition of large vessels, not to mention ULCV, changes over times. Figure 2.2 illustrates the development of container vessel size since its introduction in 1956 until 2017. The sequence of capacities and requirements imposed are as follows:

- The first generation accommodates the largest at capacity closer to 1,000 TEU (with LOA <175 m and draught <9 m).
- The second generation loads maximum 2,000 TEU to 3,000 TEU (with LOA <175 m and draught <9 m).
- The third generation allows capacity at most 3,000 TEU to 5,000 TEU (with LOA <270 m and draught <11.5 m).

Source: McKinsey (2017)

- The fourth generation known as Panamax contains up to 6,800 TEU (with LOA <300 m and draught <13.6 m).
- The fifth generation known as Post-Panamax carries maximum 6,000 TEU to 8,000 TEU (with LOA <350 m and draught <14 m).
- The sixth generation has space for maximum 10,000 TEU to 13,600 TEU (with LOA <405 m and draught <16.5 m).
- The seventh generation allows containers to be loaded maximum 14,000 TEU to 22,000 TEU (with LOA <405 m and draught <16.5 m).

Classifying container vessels with the immense wave of larger vessels in the recent time could be varied because of the absence of common denominator that refers to particular types of container vessel. Category evaluation based on capability of Panama Canal and Suez Canal to accommodate such vessels comes more often than others, therefore, the third and fourth generation are named after. In the context of contemporary largest container vessels, Prokopowicz and Berg-Andreassen (2016) highlight that vague definition stumbles upon Very Large Container Ships (VLCS) and Ultra Large Container Ships (ULCS). The consider VLCS for vessel size all 10,000 TEU and 20,000 TEU and ULCS for vessel size above 20,000 TEU. In this matter, VLCS and ULCS correspond to VLCV and ULCV because the term of ship is interchangeable with vessel.

Considering the period of observation in this thesis is between 2010 and 2018, ULCV is defined as a container vessel with maximum design capacity starting from 14,000 TEU to 22,000 TEU. Consequently, the availability of ships that is discussed in Chapter 3 should fall into this range and port selection is subject to draft restriction at 16.5 m.

2.1.2. Container Port and Terminal Development

Handling ULCV requires more advance technique and waterside infrastructure at port. McKinsey (2017) discusses the physical constraints including the narrowness of waterways. Number of port to visit is limited due to draft restriction. The today largest vessel OOCL Hong Kong with 21,413 TEU capacity needs a clearance for its 16 m draught. It is a challenge for Hamburg where restricted draft is 15.1 m during high tide and even does not exceed 12.8 m during low tide (Prokopowicz and Berg-Andreassen, 2016). Furthermore, it raises an issue on the provision of adjusted port infrastructure. Port operators and terminal are strained in cash due to heavy investment on upgrading quay cranes and dredging equipment, building quay walls, and extending berth length.

The lineup of largest container vessel in the mid-1990s, Regina Maersk (7,500 TEU), put upstream seaports such as Antwerp and Hamburg into discourse. Baird (1996) convince that as scale increases, more harms to competitiveness of these ports are more likely to be the case. The fact that the container market shares of Hamburg-Le Havre range increase instead, as argued by Notteboom et al. (1997), is by the means of artificial extension of the lifecycle motivated by political forces, according to Baird (1997). He projects that calling at ports located in narrow inland waterways will not prolong in the future.

Figure 2.3. Vessel Costs and Transportation Costs

Source: Author's illustration based on OECD (2015)

Number of studies investigate the validity of economies of scale notion in the case of larger container vessels in the contest of optimal ship size (Chen and Zhang, 2008; Sys et al. 2008; and Tran and Haasis, 2014). It is widely believed that the search of size upgrade is motivated by cost saving as discussed previously in Section 2.1. However, a contrasting point of view from OECD (2015) shows a negative relation between ship size and handling costs. Decreasing vessel cost per TEU is actually followed by increasing handling costs per TEU, making even higher total transportation cost per TEU. This standpoint seems quite pessimistic in viewing the prospect of economies of scale in the case of ULCV. The stated argument holds only if the utilization rate of ULCV is high due to fixed handling charge imposed by terminal operator. To this point, yet to be found that terminal operator levies higher handling charge for ULCV. Therefore, it could not be fully taken as granted. The critical insight from theoretical perspective is made in Chapter 5 while empirical figures are presented in Chapter 7 and Chapter 9.

Figure 2.4. Simulation of Cost Savings

Source: OECD (2015)

Misleading path regarding to the interpretation of economies of scale could be triggered by less materialized fact that cost savings decrease as ships get bigger. Figure 2.4 indicates that a large proportion of cost savings generated when a vessel is upsized from 8,500 TEU to 15,000 TEU, meanwhile, a larger ship being introduced leads to a lower proportion of cost savings (15,000 TEU to 20,000 TEU). An incremental size upgrading as seen in the first shifting from an old ship with smaller size to a new ship with larger size account for this finding supports Sys et al. (2008) and Veldman (2011).

2.1.3. Cascading Effects

OECD (2015) observes that ULCV deployment on particular trade lane, such as Asia-Europe may affect the condition and infrastructure requirement in other regions where other routes remain. These larger newbuilds may replace the existing fleet design and become redundant. Alternatively, container shipping liner assigns the displaced ships to another route where those smaller ships may serve smaller trade volume. As the trickle-down-phenomenon prevails on the trade lane with the smallest trade volume and set of ships, cascading effects hold. Thus, the massive impact of ULCV and a seemingly boundless future for the development of larger ships, may bring continuously changing configuration of maritime transport chain.

An empirical study proposed by Cariou and Cheaitou (2014) exhibit cascading pattern of medium-size ships coming from or sailing to South America, for instance North Europe-South America trade. Build on the premises that the potential overcapacity would likely be responded by container shipping liner through adding transshipment hubs, they compare the profit outcomes between direct service and indirect service using 2 sets of ships: 4,000 TEU and 6,000 TEU of which constitutes 7 vessels each. Tangier and Algeciras are selected as transshipment hubs. It is found that an additional call at transshipment hub is conditional upon the sizeable cargo collected there especially after substituting 6,000 TEU vessels for 4,000 TEU vessels.

Figure 2.5. Cascading Effects in Container Shipping Trade Lane

Source: Drewry (2018)

Figure 2.5 reveals the cascading patterns in container shipping. Vessels with capacities 16,000 TEU that in 2011 and 2013 served Asia-North Europe is on routes from Asia to Mediterranean in 2015 and 2017 as a subsequent decision to deploying larger vessels with capacities 19,000 TEU in 2015 and 21,000 TEU in 2017. Similar phenomena are apparent during the period on other trade lanes such as between Transpacific and Asia-South America, Transatlantic and Asia-West Africa, as well as Transpacific and Asia-West Africa.

2.2. Liner Network Design

In liner network design, there are four route systems that are generally examined: Hub and spoke, Butterfly, Pendulum, and Circular. This section is adopted from Mulder (2016) where shipping lines in Indonesia being a central point in the case study. The six main ports are presented and properties of liner shipping including economies of scale and route efficiency based of route system. Demand imbalances between regions where each port located occur. Sorong, for instance, is the farthest port in the east with relatively away smaller demand comparing to the western counterparts such as Jakarta and Surabaya where cargos are densely centralized. Thereupon, as transporting cargo from Surabaya to Sorong is more expensive than to elsewhere, a container liner should build a pricing strategy in order to maintain the attractiveness of sailing to Sorong.

2.2.1. Hub and Spoke

Surabaya serves as a hub in this route system where the rest of ports namely Jakarta, Belawan, Banjarmasin, Makassar, and Sorong are the spokes. There are three routes determined: F1, F2, and F3. The first route connects Surabaya-Jakarta-Belawan-and Surabaya on the go. The second route offers a direct feeder service between Surabaya and Sorong. The third route sails along Surabaya-Banjarmasin-Makasar-Surabaya. As a hub is connected to various feeder ports, container liner can allocate different ships that fit to different routes by taking demands into account.

Figure 2.6. Hub and Spoke Route

Source: Mulder (2016)

2.2.2. Butterfly

Butterfly route system allows hub port to be called twice in a sailing period. In this case, the order of port visit is Belawan-Surabaya-Banjarmasin-Makassar-Sorong-Surabaya-Jakarta-Belawan. Comparing to Circular route system, Butterfly route system performs better in term of capacity utilization. As Surabaya is called twice on route and Jakarta is called directly after, a cargo from Jakarta to Surabaya only spends one sea leg.

Source: Mulder (2016)

2.2.3. Pendulum

Multiple calls at one port are made in the Pendulum route system. It shows that each port is visited twice in a reversed order. This route system requires the lowest capacity because all ports are called twice. It has less flexibility on the fleet size deployment comparing to hub and spoke because a single type of ship sails to every port during a journey without considering demands and port restrictions.

Source: Mulder (2016)

2.2.4. Circular

In the circular route, every port is visited once in a round. The journey starts from Surabaya to Sorong, Makassar, Banjarmasin, Belawan, Jakarta, and returns to Surabaya. This results in longer period spent in on sea leg so that efficient capacity utilization cannot be obtained. Surabaya and Jakarta that is close by distance requires considerable time to transport a cargo because a cargo from Surabaya are on the round tour visiting all ports on route before retrieving Jakarta that is at the end of the route.

Figure 2.9. Circular Route

Source: Mulder (2016)

2.3. Decision-making Level

Transformation brought by containerized shipping in the market in the following year does affect the types of operations. Lawrence (1972) outlines three types of operations namely tramp shipping, industrial shipping, and liner shipping. The first refers to the on-demand assignment of ship so that a fixed schedule is not required and a supernormal profit can be generated due to a higher freight rate. The second

represents a shipping operation directly controlled by cargo owner expecting the lowest shipping cost. The later mentioned illustrates a shipping practice attached to regularity in term of both route and schedule. Container liner afterwards falls into this category.

Today, container liner deals with an integrated approach in maintaining its operational standard. Agarwal and Ergun (2008) specify decision making level of liner shipping into three constituting strategic planning level, tactical planning level, and operational planning level. The strategic planning level involves selection of fleet based on number of vessel and vessel size such that the optimal fleet design can be determined. Furthermore, tactical planning level aims to solve the ship-scheduling problem by designing service network. It consists of routes creation and ship allocation to the respective routes. The subsequent stage which is the operational planning level copes with the cargo-routing problem by choosing the cargo on board and the route used to transport the cargo.

2.3.1. Fleet-design

The optimal fleet size is determined by Fagerhold (1999) using an integrated solution approach that consists of 3 phases. At first, the largest fleets are deployed to the routes where demands do not always as large as capacities. Ship size can be scaled down upon the evaluation and the ships serving each route with least cost are selected. The second phase creates routes combination with a week sailing period is imposed. The ship size of the new route should not exceed the largest ship on the previous routes that are combined. Last phase is set as a partitioning problem where larger problems need longer computational time to solve following exponential increase in time.

Powell and Perakis (1997) prefers an integer programming to solve the optimality of fleet size. However, as frequently perceived as a challenge for an integer programming, integer solutions should be fulfilled. Result manipulations generate suboptimal solutions. Moreover, larger problems turn to be time consuming.

2.3.2. Ship-scheduling

Ronen (1983) is among the first providing literature review ship routing and scheduling. An updated version can be found in Ronen (1993) after observing the development of maritime transport literate within a decade. Similar objective is retrieved by Christiansen, Fagerholt, and Ronen (2004) for observation period from 1994 to 2004.

Ting and Tzeng (2003) apply dynamic programming algorithm to manage minimal total expected variation of time window in a set of preferred port sequence. They suggest various options to control the ship-scheduling, among other are speed adjustment and port visit order. The usual time window is set at weekly schedule. Agarwal and Ergun (2008) note that service offered by container liners mostly available once a week in order to bring certainty to customer with regularity in schedule.

2.3.3. Cargo-routing

Boffey et al. (1979) suggests a heuristics method to maintain optimal solution for cargo-routing problem such that maximizing profit is in parallel with maximize revenue under fixed costs environment. Demand is assumed to be independent to service so

that transit time becomes a critical parameter. Thereupon the longer transit time than limit required, port pair selection should be reviewed.

Rana and Vickson (1991) in which later instigated by Reinhardt et al. (2007) underlines the relevance of loops in routing where it is perceived as connected routes because it mirrors the industry. Choosing particular cargo instead of loading all available cargo is possible. Reinhardt et al. (2007) applies one route per ship during the planning horizon with an insertion of optimal ports for transshipment, meanwhile Fagerholt (2004) set a ship to sail at least one route. Although cargo selection is feasible, the unassigned cargo volume should be minimized in keeping with service. Song et al. (2007) introduce two objectives namely unassigned cargo minimization and minimize total costs minimization corresponding under minimal assigned cargo and use heuristics approach to solve the problem.

Multi-port calling, and hub-and-spoke networks is tested by Imai et al. (2009) to achieve least-cost combination among routing scenarios. To minimize distance with respect to demands, a genetic algorithm is employed. Chuang et al. (2010) also use a genetic algorithm to find the fittest route under circular design where pre-determined port at starting point is the same at end point.

2.3.4. Combined Ship-scheduling and cargo-routing problem

Fagerholt (2004) comes up with two-phase solution method for a multi-trip vehicle routing problem (VRP) in the case of real liner shipping problem. At first, route generation out of 120 ports is conducted for all feasible solutions in which later is used as input to an integer programming to deal with the combined problem of ship-scheduling and cargo-routing. This approach works for a small and well-constrained problem where the proportion of demand at each port to ship capacity, so the ratio between voyage times and maximum time available is. Meanwhile, he suggests heuristics to assure optimal solution within a reasonable amount of time for a larger problem, so does for not well-constrained structure of problem.

Alternatively, Álvarez (2009) present comparative performance of three algorithms namely a greedy heuristic, column generation, and Benders decomposition as a strategy to maintain the quality of solution in short computational time. This methodological approach is derived from the combination of mathematical programming and meta-heuristics mechanism. The joint routing and ship deployment problem is formulated as a mixed integer program (MIP) and is solved separately using the previously stated method. In term of solution quality, the column generation and Benders decomposition do not differ. Contrastingly, Benders decomposition allows faster computational time. Gelareh and Pisinger (2011) impose similar decomposition technique particularly a branch-and-cut to the fleet deployment on hub and spoke network (FDHSN). Nonetheless, challenge faced by a larger problem remains the same: exponential growth of time required to have an optimal solution. On this point, heuristics can be considered.

Chapter 3 Methodology

This part of the thesis aims to provide a systematic overview of the problem formulation that has been introduced in Chapter 1. In the beginning, network structure is introduced to lay a theoretical foundation of port call selection. It relates to the second sub-research question on the shifting in structure of container liner shipping network. These centrality measures are calculated in Chapter 6 using Cytoscape. It is followed by the problem description for both independent and combined decision making in the following sections in order to respond the third, fourth, and fifth sub research question respectively on model, mathematical programming, and proposed network. A solution algorithm is proposed along with assumptions and scenarios. In the independent decision making, three individual problems namely fleet-design, cargo-routing, and ship-scheduling problem are given before formulating the combined ship-scheduling and cargo routing problem. The later mentioned problem is executed software program developed by Mulder (2016) with some adjustment made by author to fit the model specification in this thesis.

3.1. Network Structure

Centrality is one of the focal point in the network study because the centrality of a node in a network captures a number of ideas relating to the prominence of a node in a network. There are two main centrality measurements used in this thesis namely degree centrality (C_D) and betweenness centrality ($C_B(N)$). Degree centrality captures the relative prominence of a node comparing to other nodes in the form of the degree. A node with degree n - 1 (the maximum possible degree) would be directly connected to all other nodes, hence this node is quite central to the network. Therefore, a node that has 2 edges or simply said that a node is connected to only 2 other nodes within a network that consists of large number of n is considered to be less central. Thus, degree centrality can be computed as,

$$C_D = d_i(g) = \#(i; g_{ij} = 1) = \sum_{j \neq i}^N g_{ij}$$
(3.1)

The representation of a network as specified in De Benedictis et. al. (2013) is a graph that consists of a set of nodes $N = \{1, 2, 3, .., n\}$ and edges $g \in \{0, 1\}$ where all possible networks on *n* nodes is denoted by g as described by an $N \times N$ adjacency matrix $g = [g_{ij}]$. The binary value of g_{ij} shows the existence of relationship between node *i* and *j* in which the value of 1 signifies the presence of link between two nodes and 0 otherwise. Let $N_i(g) = \{j \in N \mid g_{ij} = 1\}$ denote the nodes with which node *i* has a link, thus this set will be referred to as the neighbors of *i*. The terminology of node in this thesis refers to port that are called in container shipping network, while edge is interchangeable to cargo demand flow between ports. That being so, neighbor is in parallel with other ports that a particular port is connected to through cargo flow.

Since the measure of degree centrality depends on the number of nodes in the network, it is impractical to make a comparison between networks with different size of node. On that account degree centrality can be transformed into the normalized form by putting normalized factor N - 1 of the total number of possible neighbors excluding self,

$$C_D^N = d_i(g) = \#(i; g_{ij} = 1) = \frac{\sum_{j \neq i}^N g_{ij}}{N-1}$$
 (3.2)

If the edge is directed, the degree centrality of node has two components namely the out-degree centrality and in-degree centrality. The first corresponds to the number of outgoing link, meanwhile, the second represents the number of ingoing link. The value of this parameter ranges from 0 to 1. The closer the degree centrality to 1 indicates the more a node is directly connected to the other edges in the network.

$$C_{D_out}^N = \frac{\sum_{j\neq i}^N g_{ij}}{\sum_{j=1}^N (N-1)}$$
(3.3)

$$C_{D_in}^{N} = \frac{\sum_{j\neq i}^{N} \mathscr{G}_{ji}}{N-1}$$
(3.4)

Betweenness centrality amplitudes the superior position of a node concerning on the flow of information between node pairs in the network. It captures degree of the shortest paths to reach a node such that the one lies on the central has a potential to exploit the flow of information. The measurement of this type of centrality is defined as

$$C_B(N) = \sum_{x \neq n \neq y} \frac{\sigma_{xy}(N)}{\sigma_{xy}}$$
(3.5)

where the number of shortest paths in the network ranging from node x and y is denoted by σ_{xy} so that $\sigma_{xy}(N)$ constitutes the number of shortest paths that are characterized by the inclusion of node n. Therefore, higher value of betweenness centrality value indicates signaling pathways of information. In shipping route and network design, a node with high betweenness centrality is perceived as an intersection of cargo flows such as in the case of transshipment.

3.2. Problem Formulation

Agarwal and Ergun (2008) specifies the scope of individual decision making in liner shipping namely fleet design problem (Section 3.2.1), ship-scheduling and network design problem (Section 3.2.2), and cargo routing problem (Section 3.2.3). In order to formulate problem closer to the real liner shipping problem as suggested by Fagerholt (2004), a joint problem between ship-scheduling and cargo routing is proposed in Section 3.2.4.

3.2.1. Fleet-Design Problem

Fleet-design problem stands on the objective of setting fleet composition in terms of number and size optimally. This problem should be solved due to high costs barrier identified as fixed costs arising from capital expenditure and variable costs resurging from operating expenditure. The preference towards ULCV is commonly driven by economies of scale. Lower transportation cost per TEU, however, is followed by higher fixed costs. Therefore, proper demand estimation in selected route should be made.

3.2.2. Ship-Scheduling and Network Design Problem

Ship-scheduling problem focuses on the design of service network where routes and ship allocation to the designated routes are determined given a certain fleet. The

restricted nature of ship allocation to specific routes is due to the limitation of port specification, given the particular ship type. This is the case in which not all ports can be visited by ULCV recalling the issues on depth of harbor, width of harbor entrance, quay length, and crane dimension. Regarding to port call and transshipment, hub and spoke network design is constructed.

3.2.3. Cargo-Routing Problem

Cargo-routing problem sets the demand volume that should be accepted and determine the route to transport this cargo given a fleet and a fleet schedule. Costs incur during the sailing between origin and destination port in parallel with revenue collected based on freight rate. For the purpose of profit maximization setting, only demand pair that satisfies or partly satisfies is taken.

3.2.4. Combined Ship-Scheduling and Cargo-Routing Problem

A combinatorial approach between ship-scheduling and cargo routing problem is motivated by the contingency characteristics of the aforementioned problems. Inadequate decision related to service network on ship-scheduling may result in suboptimum profit on cargo routing. Accordingly, it is justified to formulate simultaneous decision making where service network is constructed with routes set in order to transport cargo from origin to destination such that profit maximization holds.

3.3. Solution Algorithm

As a means to design a network that satisfies the hub-and-spoke specification, an iterative solution algorithm based on a MIP is applied. It is more preferred to a genetic algorithm-based approach because the improvement in network by iteration can be guaranteed (Mulder and Dekker, 2016). Hub and regional routes are iteratively updated while other routes remain the same.

- Potential hub ports are selected from the data.
- Port clustering is designed using clustering algorithm.
- Route network consists of hub and regional routes.
- A string of ports is a directed network denoting the order of port visit.
- Optimization of connecting hub routes is made given set of regional routes.
- Optimal design for regional routes can be generated under satisfied demand obtained with fixed hub routes.
- Initial regional route network is obtained by solving the regional route network design (RRND) problem considering initial demand between each OD-pair.
- Ship allocation and cargo routing (SACR) problem is solved in which satisfied demand is later used as a new input in the RRND problem.

3.3.1. Initial Cluster Set Up

Clustering algorithms are applied to reduce the size of problems in RRND and SACR. These algorithms assign data objects into clusters based on shared characteristics. Cluster in itself, according to Everitt (1980), can be defined as "an aggregate of points in the test space such that the distance between any point in the cluster is less than the distance between any point not in it". This serves as a basis of the first type of clustering algorithm used in this thesis which is partitional model such as Partitioning Around Medoids (PAM) clustering algorithm (Kaufman and Rousseeuw, 1990).

In conjunction with this concept, Everitt et. al. (1980) discussed another operational definition of cluster which is "continuous regions of this space (d-dimensional feature space) containing a relatively high density of points separated from other such regions by regions containing a relatively low density of points". The later mentioned represents density model of clustering algorithm such as Density-based (DBSCAN) clustering algorithm (Ester et al., 1996). Collectively, these definitions outline the presence of internal homogeneity and external separation (Gordon, 1999).

In constructing port clusters $C = \{C_1, ..., C_K\}$ given a set of ports $P = \{p_1, ..., p_N\}$, the procedure follows Figure 3.1. Feature selection suggests a particular characteristic that could be used to distinguish a subset from other subsets, while feature extraction attempts to do data transformation in order to extract a novel feature (Jain et. al., 2000). Both terminologies are somehow interchangeably in a large and growing body of clustering literature as the two are in search of a salient feature p_{ii} .

Feature Selection and Extraction

Assessing clustering tendency aims to check whether the dataset contains any inherent clusters with non-random structures. A salient feature is extracted using visual and statistical determination of clustering tendency namely Visual Analysis for Cluster Tendency Assessment (VAT) and Hopkins Statistic. Hathaway and Bezdek (2002) originally propose VAT to examine the clustering tendency of a set of data by virtual means. A matrix of pairwise objects in the dataset are reordered based on dissimilarities as in this case is distance. Distribution of clusters is indicated by the dark and intense block images along pairwise diagonal.

Algorithm 1: Visual Analysis for Cluster Tendency Assessment (VAT)

- 1. For each pairwise object in the dataset, compute the dissimilarity matrix (DM) using Euclidean distance.
- 2. Construct an ordered dissimilarity matrix (ODM) based on reordered DM where similar objects are located next to each other, *vice versa*.
- 3. Display visual illustration of ODM as an ordered dissimilarity image (ODI).

Implementation of VAT in R uses the combination of three R packages: *factoextra, clustertend, and seriation*. It reveals that the white shade is proportional to the value of the dissimilarity between objects as pure red plotted if $dist(p_i, p_j) = 0$ and pure blue plotted if $dist(p_i, p_j) = 1$. The square shaped dark blocks along the diagonal line indicates the number of clusters. In the case of Asia-Europe trade lane, it appears

that three well-formed red blocks presented implying three main port clusters comprising Asia, Mediterranean, and Europe. Further clustering algorithms in the next stage are performed to generate reasonable number of cluster that may minimize distance and maximize cargo carrying capacity within a respected route.

Algorithm 2: Hopkins Statistic

- 1. Set a sample of *n* points $(p_1, ..., p_n)$ from the dataset *D* under uniform distribution.
- 2. Find the nearest neighbor p_j for each point $p_i \in D$ with distance function between p_i and p_j defined as $x_i = dist(p_i, p_j)$.
- 3. Construct a simulated dataset $rand_D$ under random uniform distribution that consists of a sample of *n* points $(q_1, ..., q_n)$ with the same variance as the dataset *D*.
- 4. Find the nearest neighbor q_j for each point $q_i \in rand_D$ with distance function between q_i and q_j defined as $x_i = dist(q_i, q_j)$.
- 5. Measure the Hopkin Statistics $H = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i}$ as the ratio between the mean of the nearest neighbor distance in dataset $rand_D$ and the summation over the mean nearest neighbor distances in both dataset.

In addition to visual representation of clustering tendency using VAT, Hopkins Statistic detects spatial randomness in the dataset that may hinder the accuracy of clustering. Hopkins and Skellam (1954) proposed *H* estimator as probability that a dataset under a uniform data distribution. The null hypothesis states that the dataset *D* is uniformly distributed where no meaningful clusters found, meanwhile, the alternative hypothesis states otherwise implying the existence of meaningful clusters in the dataset. Hopkins Statistic is computed in R with *clustertend* package. In the dataset of 58 ports along Asia-Europe trade network retrieved from Lachner and Boskamp (2011), *H* value is 0.19. As *H* value closer to 0 (or far below the cutting point of 0.5), it suggests the rejection of null hypothesis and it can be concluded that this dataset contains clusters.

Clustering Algorithm Design and Selection

In constructing a route, port call should be determined beforehand. As a port has a unique location, the exclusivity of port in a single cluster should be guaranteed by $C_i \cap C_n = \emptyset$, where i, j = 1, ..., K and $i \neq j$ recalling that $C_i \neq \emptyset$ i = i, ..., K and $\bigcup_{i=1}^{K} C_i = P$. Thereupon, hard clustering is preferred with two variations: strict partitioning clustering and strict partitioning clustering with outliers. The first enforces singularity membership of an object into one cluster using PAM. The second allows outlier objects belong to no cluster using DBSCAN.

Algorithm 3: PAM Clustering Algorithm

- 1. Assign k ports as the initial medoids.
- 2. Construct a distance matrix between each origin and destination (OD) pair where $\exists i: \{p \in P: p \in C_i\}$ using Euclidean distance function $d(i, j) = d(i, j) = \sqrt{(j_1 i_1)^2 (j_2 i_2)^2}$.
- 3. Determine initial hubs using k largest ports with regards to demand criteria.

- 4. Search non-hub ports that close to particulars hubs such that lower average distance obtained.
- 5. Assign those ports to the closest hub ports.

Initial clusters are determined by applying k-medoids clustering algorithm with k potential hub port attached to it. The rest of ports are allocated to the closest hub port using Euclidean distance function with regards to demand between ports. It generates number of clusters that minimizes average distance between ports within respected cluster. PAM clustering algorithm is performed in R with *factoextra* package.

Algorithm 4: DBSCAN Clustering Algorithm

- 1. Assign k ports as the initial medoids.
- 2. Construct a distance matrix between each origin and destination (OD) pair where $\exists i: \{p \in P: p \in C_i\}$ using Euclidean distance function $d(i, j) = d(i, j) = \sqrt{(j_1 i_1)^2 (j_2 i_2)^2}$.
- 3. Determine initial hubs using k largest ports with regards to demand criteria.
- 4. Search non-hub ports that close to particulars hubs such that lower average distance obtained.
- 5. Assign those ports to the closest hub ports.

Comparing to PAM clustering algorithm that requires distinctively separated clusters, DBSCAN clustering algorithm accommodates clusters of arbitrary shape. On that account, PAM clustering algorithm fits to spherical-shaped distribution of objects or convex clusters, while DBSCAN clustering algorithm deals with non-convex clusters and outliers. In order to find the proper cluster for ports across Asia and Europe, DBSCAN clustering algorithm is conducted in R under *factoextra* package.

DBSCAN operates in order to generate a density estimate over the data space. The density around a point is estimated by using the concept of ϵ -neighborhood. This algorithm sets value for $N_{\epsilon}(p)$ and a *minPts* to indicate density of a region and to categorize the points in a dataset under core, border, or noise points. $N_{\epsilon}(p)$ sets the closeness among points and to be considered a part of a cluster, meanwhile *minPts* keeps the number of neighbors that belongs to a point should to be included into a cluster.

Cluster Validation

Cluster validation comes in to verify whether a particular structure in the data exists in the partition or scanning produced by clustering algorithm. It incorporates two approaches: internal validation and external validation. According to Xu and Wunsch (2009), internal validation is independent of prior information as direct examination on the original data regarding to clustering structure is taken, for instance Silhouette Method. On contrary, external validation depends on prespecified structure of data, such as Corrected Rand Index.

Algorithm 5: Silhouette Method

- 1. Compute PAM clustering algorithm for different values of k.
- 2. For each k, calculate the average silhouette of observations using s(i) =
 - $\frac{b(i)-a(i)}{max\{a(i),b(i)\}}$ and it results in respective category:
 - a. A strong cluster structure (0.71-1.0)
 - b. A reasonable cluster structure (0.51-0.70)
 - c. An artificially weak cluster structure (0.26-0.50)
 - d. No substantial cluster structure (<0.25)
- 3. Plot the curve of average silhouette according to the number of clusters k.
- 4. The location of the maximum average silhouette is considered as the appropriate number of clusters.

Silhouette method computes the average silhouette of observations for different values of k. The optimal number of clusters k is the one that maximize the average silhouette over a range of possible values for k (Kaufman and Rousseeuw, 1990). The formal expression of Silhouette method is stated in Algorithm 5 where a(i) the average distance between port i and all other ports within the same cluster meanwhile b(i) is the lowest average distance of port i to all points in any other cluster, of which port i is not a member. Taking a(i) as a measurement of dissimilarity of port i to its own cluster and b(i) represents a poor matching to its neighboring cluster, a small value of a(i) and a large value of b(i) are expected to have a well-matched port i to cluster k.

On the external validation, Rand Index is computed to examine whether k-medoids clustering suits to the original structure of the data (Rand, 1971). Corrected Rand Index takes the similarity measurement between two clustering. It yields a value within 0 (no agreement) and +1 (perfect agreement) range. In dataset collected from Lachner and Boskamp (2011) on Asia-Europe container flows, the probability of pair of ports are clustered similarly in the subset *X* and *Y* is at 0.80. Thus, the agreement between the *X* and *Y* clustering regarding to the port pairs is 80% asserting high validity of cluster.

3.3.2. Hub Selection

The new hub is selected based on shortest average distance. In Equation 3.1, demand between clusters is represented by d_c and the present hub of cluster c' is indicated by h'_c .

$$\Delta_{hc} = c^{nm} \sum_{c \in C} \Delta_{hh_{c'}} \left(d_{cc'} + d_{c'c} \right) \tag{3.1}$$

$$\Delta_h^c = \frac{\sum p \in P\Delta_{ph}}{|P|} + \alpha \Delta_{hc}$$
(3.2)

The first requirement mentioned above is similar to Mulder and Dekker (2016) stipulating a hub to be located at the central of the cluster. The second requirement is derived from Koning (2018) where factor α is added to augment attractiveness of hub location as seen in Equation 3.2. The iterative process takes places until steady state is reached for every cluster.

3.3.3. Regional Route Network Design

Regional network represents a set of ports that could be visited in each cluster where number of feeder ports are connected to a hub. On a journey, feeder ports only can be visited once. Vessel speed is assumed to be constant as the existing average speed is considered as optimal, while Mulder and Dekker (2016) allows speed optimization in the problem formulation. It aims to satisfy weekly demand of each port under similar setting to vehicle routing problem with heterogeneous fleet where deliveries and pickups are simultaneous.

The following sets are introduced.

Sets

- *P^c* Set of all ports in the particular cluster (excluding the hub port)
- R Set of routes
- R_p Set of routes which contain port $p \in P^c$
- S^c Set of available ships in the particular cluster

The notation above is used in the following parameters. **Parameters**

- c_{rs}^r Weekly route cost of route $r \in R$ using ship $s \in S^c$
- c_r^t Transshipment cost of route $r \in R$ for transporting demand for cargo between ports in the same cluster
- t_{rs} Duration of route $r \in R$ using ship $s \in S^c$ at existing average speed and number of required ships to be allocated for weekly frequency
- n_s Number of available ships of type $s \in S^c$
- q_{prs} Fraction of satisfied demand of port $p \in P^c$ due to weekly sailing on route $r \in R$ using ship $s \in S^c$
- k Constant denominates number of available ships

The model decision variables thusly are

Decision variables

- y_{rs} Number of weekly port calls on route $r \in R$ using ship $s \in S^c$
- *z_r* Binary variable representing the preference towards route $r \in R$ where $z_r = 1$ if the route is used and $z_r = 0$ if otherwise

The problem can be expressed as a MIP with the objective function minimizing the total costs incur on the selected route.

Problem Formulation

$$\min \sum_{r \in R} \sum_{s \in S^c} c_{rs}^r t_{rs} y_{rs} + \sum_{r \in R} c_r^t z_r$$
(3.4)
$$s.t. \sum \frac{1}{r} y_{rs} \le z_r$$

$$\sum_{s \in S^c} k^{STS} = 2r$$

$$\forall r \in R, s \in S^c(3.5)$$

$$\sum_{r \in R} \sum_{s \in S^c} q_{prs} y_{rs} \ge 1$$

$$\forall p \in P^c (3.6)$$

$$\sum_{r \in R_p} z_r = 1$$

$$\forall p \in P^c (3.7)$$

$\sum_{r\in R} t_{rs} y_{rs} \le n_s$	
n 6 7	$\forall s \in S^c \ (3.8)$
$y_{rs} \in \mathbb{Z}$	$\forall r \in R, \forall s \in S^c$ (3.9)
$z_r \in \{0.1\}$	$\forall r \in R(3.10)$

In the direction of obtaining an optimal solution to stated problem in the objective function 3.4, number of constraints are bounded. Constraints (3.5) ensure the value of $z_r = 1$ if a ship sails on a route $r \in R$. To have all demand satisfied, Constraints (3.6) is applied. In addition to the demand requirement, Constraints (3.7) make sure that each port in the cluster could only be visited once. Number of ships used per ship type is limited by Constraints (3.8). Meanwhile, binary and integrality conditions of aforementioned variables are enforced by Constraints (3.9) and (3.10).

3.3.4. Route Construction and Ship Allocation

Section 3.2.3 on Regional Route Network Design provided regional network as the input for route construction. Another input left is regarding to ship allocation to each of those routes. Recalling that all possible routes only visit some of the hub ports, decision on which routes to sail should be made. The model specifications in this section is in parallel with Mulder and Dekker (2016) except the existing average speed is considered as optimal.

The following sets are admitted.

Sets

- L Set of legs
- *D* Sets of origin-destination demand pairs (OD-pairs)
- *Q* Sets of paths
- Q_l Set of paths that accounts for leg $l \in L$
- Q_{od} Set of paths that satisfied demand $od \in D$
- R_l Set of routes that accounts for leg $l \in L$

The above-mentioned notation implies in the following parameters. **Parameters**

- c_q^q Cost of transporting one TEU along path $q \in Q$
- b_s Maximum TEU capacity of ship type $s \in S$
- d_{od} Demand of OD pair $od \in D$

The model decision variables are as follows. **Decision variables**

 x_q TEU amount of satisfied demand that is transported along path $q \in Q$

The problem can be expressed as a MIP with the objective function minimizing the total costs minus revenue. In another word, it is a total profit maximization model where negative values resulted from the objective function reflect the positive profit.

Problem Formulation

 $\min \sum_{r \in P} \sum_{s \in S^c} c_{rs}^r t_{rs} y_{rs} + \sum_{q \in Q} c_q^q x_q$

$$s.t. \sum_{q \in Q_{od}} x_q = d_{od}$$

$$\forall od \in D (3.12)$$

$$\sum_{q \in Q_l} x_q \leq \sum_{r \in R} \sum_{s \in S^c} b_s y_{rs}$$

$$\forall l \in L (3.13)$$

$$\sum_{r \in R} t_{rs} y_{rs} \leq n_s$$

$$\forall s \in S^c (3.14)$$

$$q \in Q (3.15)$$

$$\forall r \in R, \forall s \in S^c (3.16)$$

There are three types of costs entitled to the model 3.11: (un)loading and transshipment costs, penalties due to unsatisfied demands, and total route costs. The later mentioned costs include fixed ship cots, port call costs, berthing costs, and fuel costs. Constraints (3.12) is used to restrict partially satisfied demands because demands should be either fully satisfied using one of the OD-paths or unsatisfied (as it is counted as lost sales). Leg capacity constraints in the network are introduced by Constraints (3.13). Number of ships used per ship type is limited as stated under Constraints (3.14). Thoroughly, non-negativity and integrality conditions of the path flows, and number of allocated ships are enforced by Constraints (3.15) and (3.16).

3.4. Assumptions

There are number of assumptions made related to fleet-design problem, shipscheduling problem, and cargo-routing problem as discussed above.

- Initial fleet is given.
- Availability of all ships has been made since the initial planning period.
- Once a ship is assigned to a particular route, it will serve the route during time horizon stated in planning.
- Demand is assumed to be constant across planning horizon.
- Port restrictions are imposed on the size of ships.
- Weekly service window is applied.
- Multiple visit to port in a route is allowed.
- Hub and feeder networks are generated simultaneously.

3.5. Conclusions

Assumptions stipulated in Section 3.4 enables the model to illustrate and construct the ideal condition for container liner in designing ship-scheduling and cargo-routing. Regarding to fleet availability, instead of specifying the ships at individual level using IMO number, this thesis defines the ship class by size ranging from 10,000 TEU to 22,000 TEU for hub service and from and 1,200 TEU to 9,600 TEU for feeder service. This specification results in a prescriptive analysis to the extent that preference over ship size should be made to reach optimal profitability. Moreover, ships are allocated to certain route based on cargo demand since the beginning of planning period and remain on operation within time horizon. These first three assumptions are enforced under particular consideration namely limited access to AIS database. However, it still

(2 11)

fits to the objective of this thesis in examining the impact of vessel size on optimal profit level.

On demand side, this thesis assumes a limitation of constant demand level across planning timeline to simplify the model. In fact, container liner faces volatility across the period due to higher demand in Christmas and Chinese New Year. Port restrictions in term of draft is considered for the feasibility of ULCV deployment on hub routes. Meanwhile, weekly service window is necessary to maintain regularity of service. Multiple port visits respond high demand in larger ports such that high demand delivered and high profitability could be obtained. Last assumption is taken into account to guarantee the synchronized pickup and delivery between hub and feeder ports.

Chapter 4 Data

This part of the thesis specifies data generating process that is used in the thesis. The new dataset is created notwithstanding to represent the reality with an actual decision making. It consists of two separate datasets with identical structure of variables with different timeframe: 2010 and 2018. Running multiple datasets simultaneously is motivated by the shifted preference over larger ship size within the period. Maersk service network on the Asia-Europe trade route is used including port of call, ship, and speed. Demand matrix in 2010 is based on Lachner and Boskamp (2011) with updating for forecasted data in 2018. The cost data are from Linerlib (2012) in addition to distance matrix is retrieved from Lachner and Boskamp (2011). Moreover, the distances used in clustering are composed based on cartesian coordinate information gathered from Marine Traffic (2018).

4.1. Port

Port dataset are developed based on ports located along the main Asia-Europe trade lane that are visited by Maersk container vessels in 2010 and 2018. In the first period of observation Mulder (2011), there were 58 hub ports but in the second phase (Maersk, 2018), there are only 39 ports left. Less port of call phenomena is analyzed in the context of cascading effect in container shipping in Chapter 6. In Appendix A, the list of hub ports, countries and regions can be found in Table A.1.

4.2. Distance

The distances between ports are estimated in reference to sea distance collected from Lachner and Boskamp (2011) as provided in Appendix A in Table A.2. On clustering section, Euclidian distance between port *i* and *j* is formulated as an approximation to sea distance. Such distance is translated into the line segment length between the two $\overline{(ij)}$ that exists in Euclidean 2-space with Cartesian coordinates collected from Marine Traffic (2018). Using Pythagorean formula, the distance is computed in *R* program as

$$d(\mathbf{i}, \mathbf{j}) = d(\mathbf{i}, \mathbf{j}) = \sqrt{(j_1 - i_1)^2 - (j_2 - i_2)^2}$$
(4.1)

The use of Euclidean distance in the case of maritime transportation should be made cautiously and carefully to prevent misdirection caused by straightline connection. In order to improve the quality of distance data among ports, the results of clustering are validated by the sea distance in Lachner and Boskamp (2011). The one that results in minimum distant is chosen. As such clustering generate shortest average distance between ports in a cluster, this value remains valid.

4.3. Ship and Network

Ships deployed by Maersk Asia-Europe network in 2010 and 2018 become a reference that is compared with the best network proposed in this thesis. Maersk ships and capacities in that are assigned to each of 9 routes in 2010 can be retrieved in Appendix B in Table B.2. Moreover, the similar information for 2018 network are made available in Table B.3. The average capacity of ships operated in 2018 is 17,804

TEU, two times larger than the size of 2010 capacity. It leads to an indication that the preference of container shipping liners such as Maersk towards ULCV may drive the cascading effect. This issue is discussed in Chapter 6. The comparison on Maersk route capacities in 2010 and 2018 can be found in the aforementioned appendix in Table B.4.

Pertaining to the network, the shifting from a more complex route structure to a leaner design is captured in Chapter 7 in conjunction with the direction settling in hub and spoke network structure. Maersk decides to reduce the number of routes within Asia-Europe trade lanes from 8 in 2010 to 6 in 2018 as shown in Table B.4, Table B.5, and Table B.6 in Appendix B.

4.4. Speed

Notteboom (2006) observes that the speed variation of container vessel ranges from 18 to 26 nautical miles per hour. This could be the case for 2010 observation when the operational speed was close to the design speed at 24 nautical miles per hour on average (Appendix B in Table B.5). However, the introduction of slow streaming obviously reduces the speed rate to 61% in 2018 (Appendix B in Table B.6). Therefore, constant speed at 15 nautical miles per hour is considered for ships deployed in 2018 (Appendix B in Table B.7).

4.5. Demand

Demand matrix for 2010 refers to data supplied by Lachner and Boskamp (2011) in Appendix A (Table A.3) with 1,935 OD demand pairs, meanwhile the dataset for 2018 is estimated using global average forecasting at 34% growth between 2010 and 2018 (World Bank, 2017). Aggregation method for non-selected hub ports in the same clusters is accommodated to make use of flow concentration in a way that economies of scale can be obtained on the hub network. Demands from and to non-selected hub ports are then served via the closest selected hub ports using feeder network service. Consequently, cost saving from sea leg activities is expected to improve the profitability of liner service.

4.6. Port Tariff

Following Mulder and Dekker (2013) and Koning (2018), terminal handling cost for unloading and transshipment are assumed to be constant per route type. Port cost incurs at fixed rate USD 25,000 for hub ports, meanwhile, USD 15,000 is imposed on feeder route. On top of that, variable costs are subject to vessel size in the case of unloading and transshipment. The amount of USD 170/TEU should be paid by the container carriers for cargo handling at hub ports, meanwhile USD 85/TEU is charged at feeder ports. This rate is based on the average handling charge provided in K-Line (2017) for Asian ports at USD 144 per TEU and European ports at USD 171 per TEU.

4.7. Cost

Fleet costs can be specified into three cost categories: capital cost, operating cost, and fuel cost. Capital cost is related to ship size and purchase price of ship. Operating cost consists of general overhead cost, crew cost, and maintenance cost. Linerlib

(2012) present the operating cost as the summation of 5% of the newbuilding purchase price and the 1.5 times of crew cost. Fuel cost is calculated based on IFO180 global average price assumption USD 500 per ton (Ship and Bunker, 2018).

4.8. Revenue

Revenue per unit is represented by container freight rate for Far East-Europe market in UNCTAD (2018). On Shanghai–Northern Europe trade bound during the period of observation which is between 2010 and 2018, the freight rates are strikingly fluctuated. In 2010, the peak was at USD 1,789 per TEU, however, it was halted by half to USD 881 per TEU a year after due to global economic crisis. Until 2015, the figures were higher than USD 1,000 per TEU. Slowing down in container shipping market in the following years due to simultaneous delivery of newbuilding especially on the ULCV class pushes freight rate into USD 700 per TEU. This latter figure is used in this thesis as a basis of revenue. On feeder route, it is about USD 105 per TEU.

4.9. Conclusion

This thesis refers to routes served by Maersk in 2010 to test the model performance for both observation periods which are 2010 and 2018. Consequently, demand between ports visited on Maersk routes as available in Lachner and Boskamp (2011) is used to indicate demand size in 2010 and the forecasted demand by 34% growth based on that initial level is assumed to measure demand in 2018. This approach is set down because of limited access to real time data. Comparing routes in both years, less than 50% demand between port pairs matched because of expansion of recent port pairs within the new network that are not available previously. As this measurement is taken, quality of data shall not affect the reliability of model constructed because this thesis primarily focuses on methodological part in looking at ship-scheduling and cargo-routing problem.

Chapter 5 Theoretical Proof of Economies of Scale on ULCV

The model set up used in this thesis has been presented in Chapter 3. This thesis focuses on finding an optimal solution for a combined ship-scheduling and cargo routing problem given the presence of ULCV. A profit maximization model is constructed with the objective function minimizing the total costs minus revenue. Accordingly, two sub-problems are studied: i) Regional Route Network Design (RRND); and ii) Route Construction and Ship Allocation (SACR).

Notwithstanding the above-mentioned problem formulation in Chapter 3, the formal theoretical insight is not yet properly addressed. In complement to an introductory discussion in Chapter 2 by comparing and contrasting the economies of scale arguments between Chen and Zhang (2008), Sys et al. (2008), Tran and Haasis (2014), and OECD (2015), this chapter derives theoretical proof into the problems in the direction of sub-research question 1: "How does the trend of ULCV deployment drive cascading phenomena in container liner shipping network?" Later in this data-independent chapter, it shows that the strict preference towards ULCV assignment on main network such as Asia-Europe trade lane is triggered by economies of scale concept. It is expected that deploying a larger ship on route with higher demand will induce: i) revenue-increment per route and ii) cost-saving per TEU on route in such way that the profitability can be improved in the network.

5.1. The Model

On the Route Construction and Ship Allocation problem, a ship is assigned on a route for *V* round voyages within *T* time units, therefore, *VT* is found to be a planned time window of the ship assignment. As $V \to \infty$, the long run average cost $c^*(s)$ becomes the main consideration as the development of ULCV is motivated by the decreasing cost per TEU. In the round tour, $P = \{1, ..., |P|\}$ with $p \in P$ are the ports visited and the number of port calls is N = V|P| + 1 with $n \in \{1, ..., N\}$ due to the cyclic voyage setting. Therefore, it implies that the first port call turns to be the last port call as well. The route cost (bunker cost and fleet cost) incurs during sailing time at sea leg between ports p[n] and p[n + 1] is denoted by $c_{p[n],p[n+1]}^{v}(s)$ with a ship size *s* TEU. Let $c_{p[n]s}^{p}(s)$ be the port cost (port tariff, transshipment cost, and handling cost) charged to ship *s*. Thus, the long run average cost is

$$c^{*}(s) \coloneqq \lim_{V \to \infty} \frac{c_{p[n], p[n+1]}^{v}(s) + c_{p[n]s}^{p}(s)}{v}, \forall s \in S$$
(5.1)

where $s = \left\{ S \in V_{\geq 0}^{|P|} | \sum_{p \in P} S_p = \overline{S} \right\}$ is the set of feasible ship size.

5.2. Proofs of Cost

Lemma 5.1. The route cost function $c_{p[n],p[n+1]}^{\nu}(s)$ is convex in the ship size of *s* for $1 \le n < N$ and $T \in \tau$.

Definition 5.1. A function $f: M \to \mathbb{R}$ is convex if it has a convex domain *M* for any $x, y \in M$ and every $\lambda \in [0,1]$ it holds that $\lambda f(x) + (1 - \lambda)f(y) \ge f(\lambda x + (1 - \lambda)y)$.
Proof 5.1. $c_{p[n],p[n+1]}^{\nu}(s)$ is convex if and only if sub-additivity property holds where $\lambda c_{p[n],p[n+1]}^{\nu}(s) + (1-\lambda)c_{p[n],p[n+1]}^{\nu}(s') \ge c_{p[n],p[n+1]}^{\nu}(\lambda s + (1-\lambda)s').$

Lemma 5.2. The port cost function $c_{p[n]s}^{p}(s)$ is convex in the ship size of *s* for $1 \le n < N$ and $T \in \tau$.

Proof 5.2. $c_{p[n]s}^{p}(s)$ is convex if and only if sub-additivity property holds where $\lambda c_{p[n]s}^{p}(s) + (1-\lambda)c_{p[n]s}^{p}(s') \ge f(\lambda c_{p[n]s}^{p}(s) + (1-\lambda)c_{p[n]s}^{p}(s')).$

Theorem 5.1. The optimal long-term average cost per TEU $c^*(s)$ is joint convex in $s \in S$ given that $c^*(s)$ exists in \mathbb{R} for $s \in S$.

Definition 5.3. The composition of $h \cdot g$ is convex if function $h: \mathbb{R} \to \mathbb{R}$ is convex and function $g: \mathbb{R}^n \to \mathbb{R}$ is linear.

Proof 5.3. The existence of $\lim_{V\to\infty} \frac{c_{1,V|P|+1}^{\nu}(s)+c_{1,V|P|+1}^{p}(s)}{v}$ holds by assumption. As convexity in $c_{p[n]s}^{p}(s)$ is proved by Lemma 5.2 so does convexity in $c_{p[n],p[n+1]}^{\nu}(s)$ is preserved by Lemma 5.1, joint convex in *s* holds in this limit.

ULCV is expected to call at less port since the availability of ports that are suitable for larger vessels is lower in number. As slow steaming persists, low bunker cost is expected after counting on high vehicle efficiency of the recent technology installed in the latest generation of ULCV.

5.3. Proofs of Economies of Scale

Corollary 5.1. Revenue per TEU increase with increment of vessel size.

Corollary 5.2. Profit per TEU rises linearly with increment of vessel size.

Corollary 5.3. Marginal saving in cost per TEU reduces progressively with increment of vessel size.

Jannson and Shneerson (1987) indicates the tradeoff between economies of scale achieve during voyage at sea (line-haul operation) and diseconomies of scale in port (handling operation) given the varying size of ship. Cullinane and Khanna (1999) conform the diseconomies of scale in port for large container. Therefore, as proposed in this thesis, diseconomies of scale in port is outweighed by economies of scale at sea at large distance, making larger vessel still possible to exploit the economies of scale in general.

Chapter 6 Cascading Effects on Existing Maersk Network

This chapter delivers two scopes of discussion related to the cascading phenomena in Maersk Asia-Europe Network between two periods of observation: 2010 and 2018. At first the structure of network in both years are examined using network properties such as degree centrality and betweenness centrality. Changes in network structure between 2010 and 2018 lay a foundation for further investigation on the presence of cascading effects in respected network. Moreover, as highly centralized and connected ports are identified, these ports can be regarded as candidates of additional port to be called on route after measuring weighted factors of the annual throughput and technical restrictions. It aims to improve service profitability as examined further in Chapter 9 on network configuration design.

6.1. Original Route Network

This section reports an observation on the structure of Maersk route network serving trade between Asia and Europe. Ports called along the route are structured as a paired and directed network since a port is visited before and after another. Moreover, it implies that that the calling order and frequency of such pair are important to be investigated. The first part of this section is illustrated based on the non-weighted port call pairs using the original network of Maersk in 2010 (Section 5.1.2) and 2018 (Section 5.2.2) to examine whether structural change as indicated by cascading phenomena occur given the fact that ULCVs are extensively deployed within the period. The discussion is later followed by the weighted port call pairs with respect to origin and destination demand flows in the second part of this section based on demand for container transportation in 2010 from Lachner and Boskamp (2011). A weighted network analysis in 2018 is not specified because demand is assumed to be analogous to 2010 in term of flow between ports with scale growth in demand size by 34%.

6.1.1. Maersk Asia-Europe Network in 2010

In 2010, there were 58 port calls across 8 routes in Maersk Asia-Europe network. It made 24 multi-edge node pairs. Aggregating all available paths, 27 ports were visited after another, creating a category of ports with 1 in-degree connectivity and outdegree connectivity. It can be seen that by far in Appendix C in Table C.1, less ports have higher in-degree connectivity: 10 ports with 2 in-degree connectivity, 5 ports with 3 in-degree connectivity, 7 ports with 4 in-degree connectivity, 3 ports with 7 in-degree connectivity, and 1 port each with 8 and 9 in-degree connectivity.

Source: Author's illustration based on Maersk Network in 2010 in Mulder (2011) Note: Network structure is designed and illustrated by Cytoscape.

Figure 6.1 provides the structure of Maersk Asia-Europe Network in 2010. A bigger size and darker color node represent a higher betweenness centrality attached to that port. It is apparent from the figure that 5 ports could be proposed as candidates for additional port calls: Tanjung Pelepas (0.41), Port Said (0.36), Damietta (0.31), Port Klang (0.24), Shanghai (0.22), Tangier (0.20), Bremerhaven (0.18), Salalah (0.15), Hongkong (0.14), and Pusan (0.13).

6.1.2. Maersk Asia-Europe Network in 2018

In 2018, there were 39 port calls across 6 routes in Maersk Asia-Europe network. It made 17 multi-edge node pairs. Aggregating all available paths, 24 ports were visited after another, creating a category of ports with 1 in-degree connectivity and outdegree connectivity. It can be seen in Appendix C in Table C.2 that by far, less ports have higher in-degree connectivity: 9 ports with 2 in-degree connectivity, 3 ports with 3 in-degree connectivity, 2 ports with 4 in-degree connectivity, 4 ports with 6 in-degree connectivity, and 1 port each with 5, 7, and 8 in-degree connectivity.

Source: Author's illustration based on Maersk Network in 2010 in Maersk (2018) Note: Network structure is designed and illustrated by Cytoscape.

Figure 6.2 provides the structure of Maersk Asia-Europe Network in 2018. A bigger size and darker color node represent a higher betweenness centrality attached to that port ranging from 0 to 1. It is apparent from the figure that the top 10 ports could be proposed as candidates for additional port calls are: Shanghai (0.46), Tanjung Pelepas (0.36), Felixtowe (0.23), Rotterdam (0.20), and Ningbo (0.19), Bremerhaven (0.16), Singapore (0.15), Pusan (0.14), Yantian (0.13), and Tangier (0.11).

6.2. Weighted Demand Network

A decision to call at particular port is not solely driven by the factor related to connectivity as illustrated in Section 6.1 but is also motivated by the volume of demand represented by cargo flow from and to that port. In this respect, network analysis fits to the particular feature of connectivity as it is mainly extracted from graph theory. Tran and Hassis (2014) employ network analysis in container shipping case to seek for transshipment option. Ports with higher betweenness centrality and more intensive cargo handling activities are more likely to facilitate interlining demand paths through transshipment.

Figure 6.3. Maersk Weighted Demand Network, 2010

Source: Author's illustration based on Maersk OD Matrix in 2010 in Lachner and Boskamp(2011) Note: Network structure is designed and illustrated by Cytoscape

Figure 6.3 depicts the port positioning in the Maersk Asia-Europe Network in 2010. Using group attribute layout algorithm executed in Cytoscape, ports with the same degree are clustered into a circle based on two network properties namely closeness centrality and degree centrality. These attributes are computed to categorize the role of port in the network structure. Taking demand flows across ports into account, three circles are positioned into a grid in the network: Asia, East Mediterranean /Middle East, and Europe.

It shows that the East Mediterranean and the Middle East ports namely Port Said, Damietta, Jebel Ali, Salalah, and Jeddah serve as a gateway of container flows from Asia to Europe and vice versa as signified by the highest closeness centrality at 0.93 and degree centrality of 53 indegree and outdegree each (Appendix C.3). This finding is in line with Tran and Hassis (2014) stating that the five aforementioned ports are large in transshipment incidence, led by Port Said at 92.5% in 2011. In addition, as the containers on the westbound exceed the eastbound, closeness centrality of Asian ports (0.70) are higher than the European Port (0.60). Meanwhile, degree centrality does not strictly imbalance where Asian ports are connected to 32 ports in the network and European ports are entitled to the rest 31 ports.

6.3. Cascading Phenomena

Continuous newbuilding deliveries in container shipping sustain in 2018. Knowler (2018) presents HIS Markit data showing that the additional capacities driven by newbuilding deliveries in 2018 will be around 1.3 million TEU. This figure is lower than 2017 notably at 1.7 million TEU but is higher still comparing to 2016 at 0.8 million TEU. Fluctuated figures are driven by the pick-up stage in the global economy amidst recovery at 3.1% annual growth for the last three years. Apart from that, ULCV segment prevails as vessels larger than 18,000 TEU comprises 30% of the orders due. Doubling figures of that ULCV is predicted to come by the end of 2021 considering the existing orderbooks for 57 ULCV. There are 24 vessels will be on the market no later than 2018 while the rest 32 will join the operations in 2019 and 2020.

A stiff competition among container liners still presents. The latest generations of ULCV are being pushed into Asia-Europe trade lane. In January 2018, OOCL received the last of 6 vessels in 21,413 TEU series: OOCL Hongkong, OOCL

Germany, OOCL Japan, OOCL United Kingdom, OOCL Scandinavia, and OOCL Indonesia. These ships are deployed to Asia-Europe trade lane as part of LL1 service sailing a 77 days round trip with port rotation: Shanghai – Ningbo – Xiamen – Yantian – Singapore - via Suez Canal – Felixstowe – Rotterdam – Gdansk – Wilhelmshaven – Felixstowe - via Suez Canal – Singapore – Yantian - Shanghai.

Similar decision is taken by Maersk concerning on the route selection of its ULCV. Taking the Maersk newbuilding deliveries for ULCV class in 2017 and 2018, there are 8 vessels with capacity 20,568 TEU received of which all are destined to strengthen Asia-Europe network: Madrid Maersk, Munich Maersk, Moscow Maersk, Milan Maersk, Monaco Maersk, Marseille Maersk, Manchester Maersk, and Murcia Maersk. Looking at this pattern, the prediction stating that Asia-Europe trade lane will be capacitated with vessels larger than 14,000 TEU by the end of 2020 is without reservation.

6.3.1. Routes

Table 6.1 shows the reallocation of previously deployed ships on Asia-Europe route to other regions due to the emergence of ULCV. Sofie Maersk, for example, used to serve A1 route connecting Asia and Europe via Hamburg now is assigned to Asia-South America Route via Lazaro Cardenas in Mexico. Some other vessels provide intercontinental service from Asia to Mediterranean and intracontinental service cross America and Mediterranean.

Route	Vessel	Vessel Capacity (TEU)	2010	2018	Cascading Region
A1	Sofie Maersk	8,160	JPYOK- DEHAM- JPYOK	CNNGB- MXLZC- CNNGB	Asia-South America
A2	Maersk Seville	8,478	KRPUS- DEHAM- KRPUS	PAPCN- USMIA- PAPCN	Intra- America
A3	Maersk Kinloss	6,500	CNDLC- EGDAM- CNDLC	USCHS- MXVER- USCHS	Intra- America
A6	Gudrun Maersk	9,074	JPYOK- ESALG- JPYOK	EGPSD- CNTAO- EGPSD	Asia- Mediterrane an
A7	Gjertrud Maersk	9,074	CNSHA- DEBRV- CNSHA	USEWR- TWKHH- USEWR	Asia-South America
A9	Maersk Sebarok	6,478	THLCH- NLRTM- THLCH	EGPSD- AEJEA- EGPSD	Intra- Mediterrane an
A10	Sally Maersk	8,160	CNYTN- DKAHS- CNYTN	MXZLO- PECLL- MXZLO	Asia-South America
A11	Maersk Surabaya	8,400	CNTAO- ITGOA- CNTAO	EGSUZ- CNSHA- EGSUZ	Asia- Mediterrane an

 Table 6.1. Cascading Ship on Route between 2010 and 2018

A12	Maersk	6,978	CNSHA-	AEJEA-	Intra-
	Kyrenia		HRRJK-	TRIZM-AEJEA	Mediterrane
			CBSHA		an

Source: Mulder (2011) and Maersk (2018)

As previously discussed in Section 2.1.3 on the implication of cascading phenomena on cargo routing and vessel assignment, Maersk should adjust the deployment of the prior vessels serving between Asia and Europe. Earlier this year in January 2018, Maersk introduced supplementary Asia – Latin America/West Coast South America services that was effectively on operation starting from April 2018 (Maersk, 2018). This fourth loops is AC5 connecting Asia to Colombia, the Caribbean and Pecem. The expanded trade lane within this network provides weekly services by using vessels that in the past were sailing from Asia to Europe such as Charlotte Maersk, Sine Maersk, and Susan Maersk.

6.3.2. Ships

Upon the deployment of ULCV, the average vessel capacity serving Asia-Europe route increases by 104% from 8,690 TEU in 2010 to 17,804 TEU in 2018. The largest vessel size with capacity 13,000 TEU in 2010 served AE7 route sailing from Dalian to Europe via Damietta. At the moment, it is replaced by a vessel with 40% larger space with capacity up to 19,130 TEU.

		2010		2018			
		Average		Average			
	Route	(TEU)	Route	(TEU)			
	AE1	8,365	AE1	19,029			
	AE2	8,444	AE2	17,583			
	AE3	6,504					
			AE5	19,083			
	AE6	9,086	AE6	13,430			
	AE7	13,643	AE7	19,130			
	AE9	6,474					
	AE10	8,316	AE10	18,568			
	AE12	6,621					
	AE11	8,231					
	Average	8,690	Average	17,804			
;	Source: Mulder (2011) and Maersk (2018)						

Table 6.2. Route Capacities in 2010 and 2018

6.4. Conclusion

This chapter highlights two salient points regarding to the relevance of network analysis prominently derived from graph theory on the optimal network design of container shipping. Firstly, the non-weighted port call pairs represent ports with relatively high betweenness centrality. Secondly, the weighted port call pairs with respect to origin and destination demand flows exhibit considerably high closeness centrality and degree centrality. Therefore, it provides useful insights for the optimal network design in Chapter 9 by considering hub-and-spoke setting network design that consists of hub routes and feeder network.

Chapter 7 Estimated Profitability of the ULCV Deployment

Chapter 6 delivers the estimation of profitability regarding to the deployment of ULCV. As specified in the previous chapters, the scope of ULCV in this chapter includes a range of container ships: 14,000 TEU; 16,000 TEU; 18,000 TEU; 20,000 TEU; and 22,000 TEU. In furtherance of detail figures, numbers of cost structure are introduced namely capital cost, operating cost, and fuel cost. These three categories make total cost that has been envisaged in Chapter 4. Profit is obtained subsequently after deducting total cost from revenue.

7.1. Capital Cost

Table 7.1. Capital Cost of ULCV							
Capacity (in TEU)	14,000	16,000	18,000	20,000	22,000		
Estimated newbuilding price (in million USD)	124	137	148	158	162		
Capital cost (in USD per day) *	31,000	34,250	37,000	39,500	40,500		
Capital cost (in million USD per year)	11.16	12.33	13.32	14.22	14.58		
Capital cost per transported TEU (in USD)	83.04	80.27	77.08	74.06	69.03		

Source: Author estimation based on OECD (2015) Note: *5% depreciation rate and 4% interest rate

Table 7.1 recaps the capital cost components of ULCV. OECD (2015) releases estimated newbuilding price for container ship sizes ranging from 4,000 TEU to 20,000 TEU. Extrapolation is considered to appraise larger vessels, so does interpolation for the size in between categories. Assuming depreciation rate at factor of 5% and interest rate at 4%, yearly capital cost by vessel size is varied from USD 11 million to USD 15 million. Considering 80% of utilization rate for 60 days round tour for each of 12 voyages annually, capital cost per TEU decreases by 17% from USD 83 for 14,000 TEU ship to USD 69 for 22,000 TEU ship.

7.2. Operating Cost

Table 7.2. Operating Cost of ULCV

Capacity (TEU)	14,000	16,000	18,000	20,000	22,000
Crew cost (in million USD per year)	1.15	1.15	1.20	1.20	1.25
Overhead and maintenance cost (in million USD per year)	6.78	7.43	8.00	8.50	8.73
Operating cost (in million USD per year)	7.93	8.58	9.20	9.70	9.98
Operating cost (in USD per day)	22,014	23,819	25,556	26,944	27,708
Operating cost per transported TEU (in USD)	58.97	55.83	53.24	50.52	47.23

Source: Author estimation based on Linerlib (2012) and OECD (2015)

Operating cost in Table 7.2 consists of two main parts: i) crew cost; and ii) overhead and maintenance cost. In details, overhead and maintenance cost can be disaggregated into: insurance; stores; spare parts; lubricating oils; repairs and maintenance; dry docking; and management and administration. A vessel in 18,000 TEU class such as Maersk McKinney Moller is commonly manned by 13 to 21 crew.

As explained in Chapter 4, the estimation of operating cost follows Linerlib (2012). It is the summation of depreciation value and 1.5 times of crew cost. The first is estimated based on 360 voyage days. The figure does not differ much from one size to another because the number of crew required to operate the vessel are about the same. The proportion of overhead and maintenance cost, therefore, is the difference between operating cost and crew cost. Operating per TEU cost is lower as ship capacity becomes bigger as indicated by reduce in operating cost per TEU.

7.3. Fuel Cost

			•		
Capacity (in TEU)	14,000	16,000	18,000	20,000	22,000
Estimated fuel consumption (in ton per day)	98	110	122	135	148
Fuel cost (in USD per day)	81,993	92,033	102,073	112,950	123,827
Fuel cost (in million USD per year)	29.52	33.13	36.75	40.66	44.58
Fuel cost per transported TEU (in USD)	219.63	215.70	212.65	211.78	211.07

Table 7.3. Fuel Cost of ULCV

Source: Author estimation based on Notteboom and Carriou (2009) and OECD (2015)

Fuel cost estimated in Table 7.3 is based on constant speed at 15 knots and bunker price USD 500 per ton. Recalling that a round tour our takes 60 days in which 46 days are spent on sea leg while 14 days are allocated to port related activities such as loading and unloading, fuel consumption at port is assumed at 30% of estimated fuel consumption. Under slow steaming practice, increase in capacity by 57% from 14,000 TEU to 22,000 TEU results in higher fuel cost by 51%. New generation vessel most prominently ULCV, is equipped by more efficient machine and propeller so that marginal fuel cost growth is lower than marginal capacity growth.

7.4. Movement Cost

Capacity (in TEU)	14,000	16,000	18,000	20,000	22,000
Handling cost (in million USD per year)	22.85	26.11	29.38	32.64	35.90
Port charge (in million USD per year)	2.10	2.10	2.10	2.10	2.10
Movement cost (in million USD per year)	24.95	28.21	31.48	34.74	38.00
Movement cost per transported TEU (in	185.63	183.67	182.15	180.94	179.94
USD)					

Table 7.4. Movement Cost of ULCV

Source: Author estimation based on K-Line (2017)

Table 7.4 specifies movement cost by taking two allocations into account namely handling cost and port charge. The first depends on TEU size at USD 170 per TEU, while the second is imposed per port visit at USD 25,000. In this scenario several assumptions imposed as follows: i) utility rate is at 80%; ii) 12 round tour voyages between Shanghai and Rotterdam are made a year (20,756 nmi for each round tour), and iii) 14 ports are called on average on a round tour. It is found that handling cost varies from USD 22.85 million (14,000 TEU) to USD 35.90 million (22,000 TEU). Even though, the movement cost both expressed in aggregate annual value and per TEU incrementally increase as vessel becomes larger, the movement cost per TEU shrinks in as more cargo capacity available in larger vessel.

7.5. Total Cost

			-		
Capacity (in TEU)	14,000	16,000	18,000	20,000	22,000
Capital cost (in million USD per year)	11.16	12.33	13.32	14.22	14.58
Operating cost (in million USD per year)	7.93	8.58	9.20	9.70	9.98
Fuel cost (in million USD per year)	29.52	33.13	36.75	40.66	44.58
Movement cost (in million USD)	24.95	28.21	31.48	34.74	38.00
Total cost (in million USD per year)	73.55	82.25	90.74	99.32	107.14
Cost per transported TEU (in USD)	547.25	535.48	525.13	517.30	507.28
Cost per nmi (in USD)	590.60	660.44	728.64	797.54	860.29

Table 7.5. Total Cost of ULCV

Source: Author estimation based on Notteboom and Carriou (2009) and OECD (2015)

The aggregation over four aforementioned costs presented in Table 7.1 to Table 7.4 can be retrieved in Table 7.5. The two most cost intensive are movement cost and fuel cost. Fuel cost is slightly lower than movement cost in this regard due to slow steaming at constant speed of 15 knots. On top of the rest, fuel cost comprises 40% (14,000 TEU) to 42% (22,000 TEU) of total cost. Meanwhile, movement cost makes up for 34% (14,000 TEU) to 35% (22,000 TEU) of total cost. Moreover, it also indicates that cost incurs at sea leg outweighs port cost. Economies of scale on ULCV case is still relevant to this stage as cost per transported TEU is lower for larger vessel deployment. This is the turning point for the argument of economies of scale as presented in Figure 2.3.

7.6. Revenue and Profit

Capacity (in TEU)	14,000	16,000	18,000	20,000	22,000
Revenue (in USD million per year)	94.08	107.52	120.96	134.40	147.84
Total cost (in USD million per year)	73.55	82.25	90.74	99.32	107.14
Profit (in USD million per year)	20.53	25.27	30.22	35.08	40.70
Profit per transported TEU (in USD)	152.75	164.52	174.87	182.70	192.72

 Table 7.6. Revenue and Profit of ULCV

Source: Author estimation based on Notteboom and Carriou (2009) and OECD (2015)

Table 7.6 shows the revenue and profit that Maersk could potentially generate by assigning a larger vessel in the ULCV class. Load factor is assumed at 80% with constant ship speed at 15 knots. As cyclic voyage spends 60 days, there are 12 voyages in a year. Profit grows up to 12% (USD 72.74 million to USD 85.30 million) when the size of ship is upgraded from 14,000 TEU to 16,000 TEU. However, further deployment of upgraded size from 20,000 TEU to 22,000 TEU generates lower profit growth respectively at 9% (USD 110.54 million to USD 123.34 million). It shows that the operation of ULCV may generate higher profit under a considerably high load factor in order to exploit the economies of scale. This preliminary estimation will be compared to the performance of optimal network design in Chapter 9.

7.7. Conclusion

This chapter shows that economies of scale holds for larger vessel deployment in general because the bigger cargo size as denominator contributes to less cost per TEU. Nonetheless, an interesting observation is found. Marginal cost per transported TEU is flattening as the ship size reaches 20,000 TEU. Cost saving per TEU from 16,000 TEU to 18,000 is USD 10.35 while further size increment to 20,000 TEU only retains USD 7.83. It affects the profitability at equitable level. It could be the case that high operational cost incurs in operating larger vessels so that higher utilization rate should be attained to compensate that.

Chapter 8 PAM and DBSCAN Clustering Algorithm

This part of the thesis examines results of clustering algorithms namely PAM and DBSCAN that theoretically has been explained in Chapter 3. The adequate port cluster is constructed based on minimum distance between ports in a cluster and maximize demand at a selected hub port in a cluster. The output of this chapter is used as input for route construction in the case of Maersk container shipping for Asia-Europe route. Later in the discussion of optimal network with the presence of ULCC, the results are discussed in term of which hub port should be called on the eastbound and westbound voyage to generate a hub-and-spoke design. The comprehensive enumeration of hub network in this chapter is constructed based on Euclidean distance.

8.1. PAM Clustering Algorithm

In this setting, clustering of maximum spacing is applied in order to obtain minimum spanning trees. Given a *P* set of *n* ports labeled $p_1, ..., p_n$, each pair of p_i and p_j have a numerical distance $d(p_i, p_j)$. The distance is symmetric for $d(p_i, p_j) > 0$ where $d(p_i, p_j) = d(p_j, p_i)$. Therefore, k - clustering of P is a partition of P into k non-empty sets $C_1, ..., C_k$. A simple swap neighborhood operation drives this continuous process. Experiments from combination of $k = \{10, 13, 15\}$ are reported below using *fpc* and *cluster* package with visualization generated by *RgoogleMaps* in R environment. Hub ports are selected according to criteria postulated on Equation 3.1 and Equation 3.2.

PAM Clustering is considered in this thesis due to the fact that in shipping liner, distance travelled is positively correlated with bunker cost. Notteboom and Vernimmen (2009) simulate a cost model to capture the impact of bunker cost on operational cost in the case of North Europe–East Asia loop and find the presence of higher cost per TEU even for larger and more efficient vessel such as Post-Panamax class. In order to minimize distance travel such that reasonable cost structure and timely arrival window hold, decision on which port to call should be made. Classification is made over ports: hub and feeder. Hub in each cluster, known as medoid in PAM, is selected at first out of an empty set of medoids based on the objective function of distance minimization to other objects. Search phase take places by adding ports serving as hub to the set until the optimal distance is achieved.

	Table 8.1. I	PAM Clustering	g for 10 Clusters	
Pusan	Shanghai	Hong Kong	Singapore	Colombo
Kwangyang	Ningbo	Chiwan	Laem Cha Bang	
Nagoya	Qingdao	Da Chan Bay	Vung Tau	
Shimizu	Dalian	Kaohsiung	Port Klang	
Kobe	Tianjin	Yantian	Tanjung Pelepas	
Yokohama	Lianyungang	Xiamen		
		Fuzhou		
		Taipei		
Jebel Ali	Port Said	Valencia	Rotterdam	Hamburg
Salalah	Damietta	Genoa	Felixtowe	Bremerhaven
	Jeddah	Fos Sur Mer	Antwerp	Goteborg
	Ambarli	Tangier	Zeebrugge	Gdansk
	Izmir	Algeciras	Le Havre	Aarhus
	Chornomorsk	Barcelona		
	Odessa	Malaga		
	Piraeus	Gioia Tauro		
	Constanta	Trieste		
		Koper		
		Rijeka		

Note: Hub ports are printed in bold red.

Note: Hub ports are indicated by the red spots.

Table 8.1 and Figure 8.1 present clustering result based on PAM algorithm for 10 hub ports. The shortest within cluster distance of 142 nmi is found in Cluster 9 with

Rotterdam serving as hub, while the farthest distance of 894 nmi is in Cluster 6 where distance from port in this cluster to Jebel Ali is measured. Number of ports connected to hub are varied from a single standing port of Colombo to 11 ports in Mediterranean area feeding cargo to Valencia. On average, 6 ports in each cluster are 491 nmi apart to the respected hub.

				•	labal
Qingdao	Shanghai	Hong Kong	Singapore	Colombo	Ali
Dalian	Ningbo	Chiwan	Laem Cha		Salala
		5 0	Bang		h
lianjin		Da Chan Bay	Vung Lau		
Lianyungan a		Kaohsiung	Port Klang		
5		Yantian	Tanjung Pelepas		
		Xiamen			
		Fuzhou			
		Taipei			
Ambarli	Valencia	Antwerp	Rotterdam	Hamburg	
Izmir	Genoa	Zeebrugge	Felixtowe	Bremerhave n	- -
Chornomors k	Fos Sur Mer	Le Havre		Goteborg	
Odessa	Tangier			Gdansk	
Piraeus	Algeciras			Aarhus	
Constanta	Barcelona				
	Malaga				
	Gioia Tauro Trieste				
	Koper				
	Rijeka				
	Qingdao Dalian Tianjin Lianyungan g Ambarli Izmir Chornomors k Odessa Piraeus Constanta	QingdaoShanghaiDalianNingboTianjinILianyungan gIgValenciaAmbarliValenciaIzmirGenoaIzmirGenoaChornomors kFos Sur Mer TangierPiraeusAlgecirasConstantaBarcelona MalagaGioia Tauro Trieste Koper Rijeka	QingdaoShanghaiHong KongDalianNingboChiwanTianjinDa Chan Bay KaohsiungLianyunganYantiangYantiangYantianJamenFuzhou TaipeiAmbarliValenciaAntwerpIzmirGenoaZeebruggeChornomors kFos Sur Mer TangierLe HavrePiraeusAlgecirasLe HavreGioia Tauro TriesteMalagaGioia Tauro TriesteKoper Rijeka	QingdaoShanghaiHong KongSingaporeDalianNingboChiwanLaem Cha BangBang Vung TauTianjinDa Chan Bay KaohsiungPort KlanggYantianTanjung PelepasgYantianTanjung PelepasMbarliValenciaAntwerpIzmirGenoaZeebruggeFos Sur NodessaFos Sur TangierLe HavrePiraeusAlgecirasLe HavreGoia Tauro TriesteGioia Tauro TriesteKoper Rijeka	QingdaoShanghaiHong KongSingaporeColomboDalianNingboChiwanLaem Cha BangBangVung TauTianjinDa Chan Bay KaohsiungVung Tau Bay Port KlangBay Port KlanggYantianTanjung PelepasgYantianTanjung PelepasAmbarliValenciaAntwerpRotterdamHamburgIzmirGenoaZeebruggeFelixtoweBremerhave n GoteborgkMer MerLe HavreGotansk AarhusPiraeusAlgecirasAathusConstantaBarcelonaMalaga Gioia Tauro TriesteKoper Rijeka

Table 8.2. PAM Clusterin	g for 13 Clusters
--------------------------	-------------------

Note: Hub ports are printed in bold red.

Figure 8.2. PAM Cluster Map for 13 Clusters

Note: Hub ports are indicated by the red spots.

Table 8.2 and Figure 8.2 provide clustering result based on PAM algorithm for 13 hub ports. The shortest within cluster distance of 101 nmi is found in Cluster 3 with Shanghai serving as hub, while the farthest distance of 894 nmi is in Cluster 7 where distance from port in this cluster to Jebel Ali is measured. Number of ports connected to hub are varied from a single standing port of Colombo to 11 ports in Mediterranean area feeding cargo to Valencia. On average, 4 ports in each cluster are 369 nmi apart to the respected hub.

Pusan	Qingdao	Shanghai	Yantian	Hong Kong	Singapore	Colombo	Jebel Ali
Kwangyang	Dalian	Ningho	Xiamen	Chiwan	Laem Cha Bang		Salalah
Nagoya	Dallan	Niigbo	Alamon	Onwarr	Lacin Ona Dang		Galalan
Shimizu	Tianjin		Fuzhou	Da Chan Bay	Vung Tau		
Kaba	Lianyungang			Kaohsiung	Port Klang		
KODe				Taipei	Tanjung Pelepas		
Yokohama							
Port Said	Ambarli	Gioia Tauro	Valencia	Antwerp	Rotterdam	Hamburg	g
Damietta	Izmir	Trieste	Genoa	Zeebrugge	Felixtowe	Bremerhav	ren
Lulut	0	K	E O M	Zoobiuggo	1 Olixtowo	Goteborg	9
Jeddan	Chornomorsk	Koper	Fos Sur Mer	Le Havre		Gdansk	
	Odessa	Rijeka	Tangier			Aarhus	
	Constanta		Algeciras			/ tarrido	
	Piraeus		Barcelona				
			Malaga				

Table 8.3. PAM Clustering for 15 Clusters

Note: Hub ports are printed in bold red.

Note: Hub ports are indicated by the red spots.

Table 8.3 and Figure 8.3 provide clustering result based on PAM algorithm for 13 hub ports. The shortest within cluster distance of 101 nmi is found in Cluster 3 with Shanghai serving as hub, while the farthest distance of 894 nmi is in Cluster 8 where distance from port in this cluster to Jebel Ali is measured. Number of ports connected to hub are varied from a single standing port of Colombo to 11 ports in Mediterranean area feeding cargo to Valencia. On average, 4 ports in each cluster are 358 nmi apart to the respected hub.

8.2. DBSCAN Clustering Algorithm

Evolving from the density-based perspective, DBSCAN assigns points a cluster if the condition of 'density reachable from each other' is fulfilled (Ester et al, 1996). A cluster C can be defined as a non-empty subset of D satisfying maximality and connectivity condition. The first condition holds if $p \in C$ and q is density-reachable from p, then $q \in C$. The second conditions refer to $\forall p, q \in C, p$ is density-connected to q. Given that o is the core point with p and q as neighbors, p and q are density reachable from o such that p and q are density connected.

Starting with an arbitrary point p, the DBSCAN algorithm retrieves its ϵ -neighborhood. All clusters are identified by determining all core points and extending each core point to density reachable points. The cluster is complete if no more core points are found. Cluster map is provided in R using *ggmap* library. Parameters used in running DBSCAN clustering algorithm is $Eps = \{0.25\}$ and $MinPts = \{3\}$ that generates 7 clusters at first. Unlike PAM Clustering, DBSCAN clustering does not require a trivial number of initial clusters. Herein, the optimal parameter Eps and MinPts are obtained by running Algorithm 3 as asserted in Chapter 3. The result below reports DBSCAN clustering for 10 Clusters executed in R with *dbscan* package supported with script for mapping in *RgoogleMaps*. Clustering by means of density as is applied in the case of port calls for container liner. Owing to the idea that ports located next to each other in a dense geographical neighbor should be allocated into a cluster in order to maintain robust scheduling and cost-efficient operation. Moreover, argument on economies of scale becomes an important point to make. As larger vessel including ULCV requires higher demand to reach higher utilization, cargo is likely to be concentrated on hub ports so that the cargo originally comes from smaller ports in the surrounding is transported to the most reachable hub in the region using feeder network. Therefore, density-based approach is relevant with the idea of hub-and-spoke design.

Pusan	Shanghai	Hong Kong	Singapore	Jebel Ali
Kwangyang	Ningbo	Chiwan	Laem Cha Bang	Salalah
Nagoya	Qingdao	Da Chan Bay	Vung Tau	Jeddah
Shimizu	Dalian	Kaohsiung	Port Klang	
Kobe	Tianjin	Yantian	Tanjung Pelepas	
Yokohama	Lianyungang	Xiamen	Colombo	
		Fuzhou		
		Taipei		
Constanta	Gioia Tauro	Valencia	Rotterdam	Goteborg
Constanta Chornomorsk	Gioia Tauro Port Said	Valencia Genoa	Rotterdam Felixtowe	Goteborg Gdansk
Constanta Chornomorsk Odessa	Gioia Tauro Port Said Damietta	Valencia Genoa Fos Sur Mer	Rotterdam Felixtowe Antwerp	Goteborg Gdansk Aarhus
Constanta Chornomorsk Odessa Koper	Gioia Tauro Port Said Damietta Piraeus	Valencia Genoa Fos Sur Mer Tangier	Rotterdam Felixtowe Antwerp Zeebrugge	Goteborg Gdansk Aarhus
Constanta Chornomorsk Odessa Koper	Gioia Tauro Port Said Damietta Piraeus Ambarli	Valencia Genoa Fos Sur Mer Tangier Algeciras	Rotterdam Felixtowe Antwerp Zeebrugge Le Havre	Goteborg Gdansk Aarhus
Constanta Chornomorsk Odessa Koper	Gioia Tauro Port Said Damietta Piraeus Ambarli Izmir	Valencia Genoa Fos Sur Mer Tangier Algeciras Barcelona	Rotterdam Felixtowe Antwerp Zeebrugge Le Havre Hamburg	Goteborg Gdansk Aarhus
Constanta Chornomorsk Odessa Koper	Gioia Tauro Port Said Damietta Piraeus Ambarli Izmir Rijeka	Valencia Genoa Fos Sur Mer Tangier Algeciras Barcelona Malaga	Rotterdam Felixtowe Antwerp Zeebrugge Le Havre Hamburg Bremerhaven	Goteborg Gdansk Aarhus

Table 8.4. DBSCAN Clustering for 10 Clusters

Note: Hub ports are printed in bold red.

Note: Hub ports are indicated by the red spots.

Table 8.4 and Figure 8.4 provide clustering result based on DBSCAN algorithm for 10 hub ports. The shortest within cluster distance of 181 nmi is found in Cluster 9 with Rotterdam serving as hub, while the farthest distance of 1,523 nmi is in Cluster 5 where distance from ports in this cluster to Jebel Ali is measured. Number of ports connected to hub are varied from 3 ports in Middle East to 8 ports in Mediterranean feeding cargo to Gioia Tauro. On average, 6 ports in each cluster are 527 nmi apart to the respected hub.

8.3. Conclusion

Comparing the results of two clustering algorithms which are PAM and DBSCAN, PAM clustering with 15 hubs gives shortest distance between ports in a cluster at about 359 nmi with respect to demand. On the other hand, DBSCAN clustering results in 47% further distance that leads to significant increase in fuel cost. Moreover, directly calling at ports located in the enclaved region such as Constanta or the isolated area away from the main trade lane, for example Goteborg, could be not profitable for the container liner. Recalling the prior stated objectives of clustering namely minimum distance between ports in a cluster and maximize demand, port aggregation based on PAM clustering can be obtained efficiently. Therefore, the result given by PAM clustering for port strings along Asia-Europe trade lane will serve as inputs to hub route construction and network design in Chapter 9.

Comparing the performance of clustering above to network properties analyzed in Chapter 6, it shows that 4 of 10 ports already serve as hub nodes connecting one cluster to another across Asia and Europe respectively in Maersk Network 2010 (Figure 6.1) and Maersk Network 2018 (Figure 6.2). Those are Port Said, Shanghai, Hongkong, and Pusan in the first figure. In the second figure, Shanghai, Rotterdam, Singapore, Pusan, and Tangier make up the list.

Chapter 9 Network Configuration Design

This chapter is dedicated to report the findings with regards to sub research question 5: "Which proposed network is the best to compare to reference network?" The presence of ULCV in Maersk's Asia-Europe Network affects the profitability of container shipping activity. In order to maximize profit with given vessels, route structure and network design should be simplified such that utilization rate is optimum. Input data such as demand, distance, and cost parameter can be retrieved in Chapter 4. The reference network has been data mined from Mulder (2011) while the optimized figure presented below is based on the mathematical model of Liner Shipping Network Design Problem formulated in Chapter 3. The implementation of such model is executed in the software program developed by Mulder (2016) with some adjustment made by author to fit the model specification in this thesis.

9.1. Reference Network Design

The original Maersk network in 2010 is used as the reference network. It consists of 8 routes namely AE1, AE2, AE3, AE6, AE7, AE9, AE11, and AE12 that are available in Appendix B in Table B.1. On average, there are 17 ports called on route as each varies from 13 to 21 ports. Westbound sails from Yokohama (AE1 and AE6), Pusan (AE2), Dalian (AE3), Shanghai (AE7 and AE12), Laem Cha Bang (AE9), and Qingdao (AE11). On the eastbound, voyage begins in Rotterdam, Hamburg, Bremenhaven, Felixtowe, and Antwerp. The characteristics of this network can be seen in detail in Table 9.1 and Table 9.2.

Profit (in million USD)	1,088.79
Revenue (in million USD)	4,474.44
Total cost (in million USD)	3,385.01
Fleet cost (in million USD)	812.40
Bunker cost (in million USD)	885.47
Handling cost (in million USD)	1,197.58
Transshipment cost (in million USD)	313.13
Port cost (in million USD)	188.25

Table 9.1. Profitability of the Reference Network

In the existing condition, running the network generates annual revenue at USD 4.5 billion in which amount close to USD 3.4 billion is allocated to cover costs incur during operational activities. Handling cost remain the largest among others up to 1.2 billion, followed by bunker cost of USD 885 million, fleet cost of USD 812 million, transshipment cost of USD 313 million and port cost of USD 188 million. In the end, Maersk makes profit around USD 1.1 billion.

Number of routes	8
Average number of port per routes	17
Number of ships	82
Best average utilization (in %)	84.3
Worst average utilization (in %)	56.1
Average utilization (in %)	70.2
Percentage demand delivered (in %)	85.7
Percentage rejections (in %)	14.3

Table 9.2. Operational Performance of the Reference Network

Considering demand schedule in 2010, operational performance of the reference network is assessed. In order to deliver demand, ships are deployed with capacities ranging from 10,000 TEU; 12,000 TEU; to 14,000 TEU. It results in the deployment of 82 vessels with average utilization 70.2% as 85.7% demand delivered within time window.

9.2. Optimal Hub Network Design

Clustering algorithm determined in Chapter 8 provides potential hubs using PAM clustering algorithm with distance and demand function considered. As results, three centroid based partition of ports formulated: 10, 13, and 15. It allows the exchange of ports between routes in the network. As no ports selected other than the one in existing network, feasibility of cargo allocation in the expanded route still hold. As no ports selected other than the one in existing network, feasibility of cargo allocation in the expanded route still hold.

The 10-centroid partition, the ports potentially visited by Maersk on its cyclic voyage from Asia to Europe can be determined by applying 10-centroid partition. The final hubs on a port string from Asia to Europe can be retrieved as follows: Pusan (KRPUS), Shanghai (CNSHA), Hong Kong (CNHKG), Singapore (SGSIN), Colombo (LKCMB), Jebel Ali (AEJEA), Port Said (EGPSD), Valencia (ESVLC), Rotterdam (NLRTM), and Hamburg (DEHAM).

Another alternative in the proposed routes is developed by following 13-centroid partition algorithm. As the westbound sails at first of the voyage, Asian ports are called prior to European ports consisting: Pusan (KRPUS), Qingdao (CNTAO), Shanghai (CNSHA), Hong Kong (CNHKG), Singapore (SGSIN), Colombo (LKCMB), Jebel Ali (AEJEA), Port Said (EGPSD), Ambarli (TRAMR), Valencia (ESVLC), Antwerp (BEANR), Rotterdam (NLRTM), and Hamburg (DEHAM).

In addition, the 15-hubs on a port string from Asia to Europe can be retrieved as follows: Pusan (KRPUS), Qingdao (CNTAO), Shanghai (CNSHA), Yantian (CNYTN), Hong Kong (CNHKG), Singapore (SGSIN), Colombo (LKCMB), Jebel Ali (AEJEA), Port Said (EGPSD), Ambarli (TRAMR), Giuoa Tauro (ITGIT), Valencia (ESVLC),

Antwerp (BEANR), Rotterdam (NLRTM), and Hamburg (DEHAM). This port sequence serves as an initial route in the proposed network. In search of optimal routes, routes crossover method and roulette wheel method inspired by genetic algorithm is employed.

As stated earlier, this thesis aims to investigate the optimality condition under cascading effects triggered by the deployment of ULCV along Asia-Europe trade lane. The blocking treatment is imposed in the second part of experiment to reveal the impact of larger ship assignments. This phase generates 3 current best network (CBS) as comparatively presented below.

9.2.1. Current Best Hub Network A (CBHN A)

CBHN A is composed based on OD demand matrix in 2010 and ships deployed in 2010 (10,000 TEU, 12,000 TEU, and 14,000 TEU with speed closer to design speed at 24 knot). The optimal ship size in this network is 10,000 TEU and 12,000 TEU.

	10 Clusters	13 Clusters	15 Clusters		
Total cost (in million USD)	2,760.85	2,863.69	2,876.69		
Fleet cost (in million USD)	613.67	627.37	638.63		
Bunker cost (in million USD)	811.94	832.72	847.01		
Port cost (in million USD)	83.86	79.75	95.30		
Handling cost (in million USD)	1,251.39	1,324.51	1,293.62		
Transshipment cost (in million USD)	-	-	2.84		

Table 9.3. Cost Structure of CBHN A

	10 clusters	13 clusters	15 clusters
Number of routes	7	6	5
Average number of port per route	10	13	15
Number of ships	65	63	60
Best average utilization (in %)	85.36	88.29	90.58
Worst average utilization (in %)	61.36	64.29	66.58
Average utilization (in %)	73.36	76.29	78.58

Table 9.4. Operational Performance of CBHN A

Table 9.3 presents cost structure of the Best Hub Network A. It shows that handling cost remains the largest spending regardless the size of clusters ranging from USD 1,251 million (10 clusters) to USD 1,324 million (13 clusters). Bunker cost follows afterwards for USD 812 million (10 clusters) to USD 847 million (10 clusters). In total, hub network that is grouped into 15 clusters has the highest cost (USD 2,877 million). Reasonably to this point, expanded number of hubs results in further costs. On the operational aspect, higher average utilization is found in 15 clusters comparing to the rest as more ports included to serve as hub as indicated in Table 9.4.

9.2.2. Current Best Hub Network B (CBHN B)

CBHN B refers to the scenario with OD demand matrix in 2018 and ships deployed in 2010 (10,000 TEU, 12,000 TEU, and 14,000 TEU with speed closer to design speed at 24 knot). The optimal ship size in this network is 12,000 TEU and 14,000 TEU.

	10 Clusters	13 Clusters	15 Clusters		
Total cost (in million USD)	3,699.97	3,838.16	3,855.40		
Fleet cost (in million USD)	822.41	840.85	855.91		
Bunker cost (in million USD)	1,088.12	1,116.09	1,135.17		
Port cost (in million USD)	112.38	106.89	127.72		
Handling cost (in million USD)	1,677.05	1,775.23	1,733.74		
Transshipment cost (in million USD)	-	-	3.81		

Table 9.5. Cost Structure of CBHN B

	10 clusters	13 clusters	15 clusters		
Number of routes	7	6	5		
Average number of port per route	10	13	15		
Number of ships	85	81	79		
Best average utilization (in %)	89.79	92.98	90.94		
Worst average utilization (in %)	69.79	72.98	70.94		
Average utilization (in %)	79.79	82.98	80.94		

Table 0.6 Operational Parformance of CPUN P

Similar to Table 9.3, total cost incurs at the highest for 15 hub clusters network. In order sail in between hub ports, liner meets total cost as specified: USD 3,855.40 million (15 clusters), USD 3,838.16 million (13 clusters), and USD 3,699.97 million (10 cluster). Handling cost is on the top of rest cost allocation for all type of cluster respectively. It is varied from USD 1,677.05 million for 10 clusters to USD 1,775.23 million for 13 clusters. Comparing Table 9.6 to Table 9.4, average utilization for all clusters increases. It shows that more cargo demand flow within the network enhance the delivery on designated routes.

9.2.3. Current Best Hub Network C (CBHN C)

CBHN C is specified with OD demand matrix in 2018 and ships deployed in 2018 (16,000 TEU, 18,000 TEU, 20,000 TEU, and 22,000 TEU with slow steaming at 15 knot). The optimal ship size in this network is 16,000 TEU and 18,000 TEU.

	10 Clusters	13 Clusters	15 Clusters		
Total cost (in million USD)	3,729.57	4,145.22	3,816.85		
Fleet cost (in million USD)	828.99	908.12	847.35		
Bunker cost (in million USD)	1,096.83	1,205.37	1,123.82		
Port cost (in million USD)	113.28	115.44	126.44		

Table 9.7 Cost Structure of CBHN C

Handling cost (in million USD)	1,690.47	1,917.25	1,716.40
Transshipment cost (in million	-	-	3.77

	10 clusters	13 clusters	15 clusters
Number of routes	7	6	5
Average number of port per route	10	13	15
Number of ships	76	71	65
Best average utilization (in %)	86.20	94.30	96.89
Worst average utilization (in %)	70.20	78.30	80.89
Average utilization (in %)	78.20	86.30	88.89

Table 9.8. O	perational	Perfo	ormance	of CBHN C	;

Table 9.7 exhibits similar pattern to Table 9.5 and Table 9.3. Handling cost becomes the most cost intensive spending while bunker cost comes definitely after. Total cost figure in this network is the highest among three respective networks stated above. The cost of running ULCV is more expensive in general. However, those cost incur to meet higher cargo volume by 34%. As the economies of scale persists in Chapter 7, this relatively upper value is compensated by larger demand to serve.

9.3. Optimal Feeder Network Design

9.3.1. Current Best Feeder Network A (CBFN A)

CBFN A is composed based on OD demand matrix in 2010 and feeder ships given as follows: 1,200 TEU; 3,200 TEU; 4,800 TEU; 7,000 TEU; and 9,600 TEU. These ships sail on average at 16 knot. Regional network is developed for three port clustering alternatives that consist of 10 clusters, 13 clusters, and 15 clusters.

	10 Clusters	13 Clusters	15 Clusters	
Total cost (in million USD)	209.02	261.85	191.81	
Fleet cost (in million USD)	42.86	48.10	36.43	
Bunker cost (in million USD)	38.78	39.85	33.02	
Port cost (in million USD)	6.08	6.22	6.29	
Handling cost (in million USD)	121.30	167.68	116.07	
Transshipment cost (in million USD)	-	-	-	

 Table 9.9. Cost Structure of CBFN A

	10 clusters	13 clusters	15 clusters
Number of routes	20	20	16
Average number of port per route	3	3	4
Number of ships	20	20	16
Best average utilization (in %)	73.43	76.70	74.64

Table 9.10. Operational Performance of CBFN A

Worst average utilization (in %)	57.43	60.70	58.64
Average utilization (in %)	65.43	68.70	66.64

Cost structure of CBFN A can be retrieved in Table 9.9. A distinctive observation can be made concerning on the relation between total cost and number of hubs. It shows that handling cost remains the largest proportion on cost structure. In addition, bunker cost topples on the second position, while port cost is still the least cost spending.

9.3.2. Current Best Feeder Network B (CBFN B)

CBFN B is composed based on OD demand matrix in 2010 and feeder ships given as follows: 1,200 TEU; 3,200 TEU; 4,800 TEU; 7,000 TEU; and 9,600 TEU. These ships sail on average at 16 knot. Regional network is developed for three port clustering alternatives that consist of 10 clusters, 13 clusters, and 15 clusters.

	10 Clusters	13 Clusters	15 Clusters
Total cost (in million USD)	280.11	350.95	257.07
Fleet cost (in million USD)	57.43	64.47	48.82
Bunker cost (in million USD)	51.97	53.41	44.26
Port cost (in million USD)	8.15	8.34	8.43
Handling cost (in million USD)	162.56	224.74	155.56
Transshipment cost (in million USD)	-	-	-

Table 9.11. Cost Structure of CBFN B

	10 clusters	13 clusters	15 clusters
Number of routes	20	20	16
Average number of port per route	3	3	4
Number of ships	20	20	16
Best average utilization (in %)	75.36	78.14	76.69
Worst average utilization (in %)	63.36	66.14	64.69
Average utilization (in %)	69.36	72.14	70.69

Table 9.12. Operational Performance of CBFN B

Table 9.11 shows cost related indicators in feeder network CBFN B. Result indicates that handling cost remains the largest proportion on cost structure. In addition, bunker cost topples on the second position, while port cost is still the least cost spending.

9.3.3. Current Best Feeder Network C (CBFN C)

CBFN B is composed based on OD demand matrix in 2010 and feeder ships given as follows: 1,200 TEU; 3,200 TEU; 4,800 TEU; 7,000 TEU; and 9,600 TEU. These ships sail on average at 16 knot. Regional network is developed for three port clustering alternatives that consist of 10 clusters, 13 clusters, and 15 clusters.

	10 Clusters	13 Clusters	15
			Clusters
Total cost (in million USD)	282.35	379.03	254.49
Fleet cost (in million USD)	57.89	69.62	48.34
Bunker cost (in million USD)	52.38	57.68	43.81
Port cost (in million USD)	8.22	9.00	8.34
Handling cost (in million USD)	163.86	242.72	154.00
Transshipment cost (in million USD)	-	-	-

Table 9.13. Cost Structure of CBFN C

Table 9.14. Operational Performance of CBFN C			
	10 clusters	13 clusters	15 clusters
Number of routes	20	20	16
Average number of port per route	3	3	4
Number of ships	20	20	16
Best average utilization (in %)	75.05	77.15	79.32
Worst average utilization (in %)	65.05	67.15	69.32
Average utilization (in %)	70.05	72.15	74.32

Table 9.14. Operational Performance of CBFN C

Table 9.11 shows cost structure in CBFN B. In line with the previous feeder network, handling cost remains the largest proportion on cost structure. In addition, bunker cost topples on the second position, while port cost is still the least cost spending.

9.4. Optimal Hub and Spoke Network Design 9.4.1. Current Best Network A (CBN A)

CBN A is developed by integrating and synchronizing ship-scheduling and cargo routing between hub ports in CBHN A and feeder ports in CBFN A. The performance of CBN A is measured based on profitability and operation as presented below.

	10 Clusters	13 Clusters	15
			Clusters
Profit (in million USD)	1,415.43	1,393.65	1,360.99
Revenue (in million USD)	4,384.95	4,519.18	4,429.70
Total cost (in million USD)	2,969.52	3,125.53	3,068.71
Fleet cost (in million USD)	656.52	675.47	675.06
Bunker cost (in million USD)	850.72	872.57	880.03
Port cost (in million USD)	89.94	85.97	101.58
Handling cost (in million USD)	1,372.69	1,492.20	1,409.69
Transshipment cost (in million USD)	-	-	2.84

Table 9.15. Profitability of CBN A

	10 Clusters	13 Clusters	15 Clusters	
Demand delivered (in %)	89.99	91.78	86.39	
Demand rejected (in %)	10.02	8.22	13.61	

Table 9.16. Operational Performance of CBN A

9.4.2. Current Best Network B (CBN B)

CBN B is developed by integrating and synchronizing ship-scheduling and cargo routing between hub ports in CBHN B and feeder ports in CBFN B. The performance of CBN B is measured based on profitability and operation as presented below.

	10 Clusters	13 Clusters	15 Clusters
Profit (in million USD)	1,896.67	1,867.49	1,823.72
Revenue (in million USD)	5,876.29	6,056.60	5,936.47
Total cost (in million USD)	3,979.62	4,189.11	4,112.74
Fleet cost (in million USD)	879.74	905.12	904.58
Bunker cost (in million USD)	1,139.96	1,169.24	1,179.24
Port cost (in million USD)	120.52	115.20	136.12
Handling cost (in million USD)	1,839.40	1,999.54	1,888.99
Transshipment cost (in million USD)	-	-	3.81

Table 9.17. Profitability of CBN B

Table 9.18. Operational Performance of CBN B			
	10 Clusters	13 Clusters	15 Clusters
Demand delivered (in %)	92.68	93.61	88.98
Demand rejected (in %)	7.32	6.39	11.02

9.4.3. Current Best Network C (CBN C)

CBN C is developed by integrating and synchronizing ship-scheduling and cargo routing between hub ports in CBHN C and feeder ports in CBFN C The performance of CBN C is measured based on profitability and operation as presented below.

Table 9.19. Fromability of CBN C				
	10 Clusters	13 Clusters	15 Clusters	
Profit (in million USD)	1,911.85	2,016.89	1,805.49	
Revenue (in million USD)	5,923.30	6,541.13	5,877.10	
Total cost (in million USD)	4,011.46	4,524.24	4,071.62	
Fleet cost (in million USD)	886.78	977.53	895.54	
Bunker cost (in million USD)	1,149.08	1,262.78	1,167.45	
Port cost (in million USD)	121.49	124.42	134.76	
Handling cost (in million USD)	1,854.11	2,159.51	1,870.10	
Transshipment cost (in million USD)	-	-	3.77	

Table 9.19. Profitability of CBN C

	10 Clusters	13 Clusters	15 Clusters
Demand delivered (in %)	92.68	93.61	88.98
Demand rejected (in %)	7.32	6.39	11.02

Table 9.20. Operational Performance of CBN C

Integrating the hub network with feeder network may increase the operational efficiency as reflected in Section 9.4 especially in Table 9.15, Table 9.17, and Table 9.19. As feeder network grows, cost incurs in hub network can be reduced because it is no longer necessary to visit all port on voyage. Least cost combination that always be the case for 10 clusters, however, does not guarantee the highest profitability. Network design with 10 clusters retains profit at peak for CBN A and CBN B where typical ship size in 2010 used. Preference on larger vessel in response to higher demand in CBN C with 13 clusters improves the profitability by 6%. It is triggered by the strategic decision on route simplification so that liner can focus to tap the main market along the trade lane. Moreover, visiting hub ports within that region may increase the network utilization and demand delivered as seen in Table 9.20.

9.5. Optimal Network

This section is extracted from Section 9.4 aiming to indicate straightforwardly the optimality of best networks proposed in this thesis. As presented before, there are three networks that are considered as current best network namely: CBN A, CBN B, and CBN C. These networks differ in term of demand level and ship size. CBN A utilizes demand volume in 2010, while CBN B and CBN C maintain demand volume in 2018. On vessel class, CBN A and CBN B use the one that commonly deployed by standard size in 2010, meanwhile, CBN C considers larger vessels to exhibit the ULCV.

	CBN A	CBN B	CBN C
Number of clusters	10	10	13
Profit (in million USD)	1,415.43	1,896.67	2,016.89
Revenue (in million USD)	4,384.95	5,876.29	6,541.13
Total cost (in million USD)	2,969.52	3,979.62	4,524.24
Fleet cost (in million USD)	656.52	879.74	977.53
Bunker cost (in million USD)	850.72	1,139.96	1,262.78
Port cost (in million USD)	89.94	120.52	124.42
Handling cost (in million USD)	1,372.69	1,839.40	2,159.51
Transshipment cost (in million USD)	-	-	-

Table 9.21. Profitability of Optimal Network

	10	10	13
	Clusters	Clusters	Clusters
Demand delivered (in %)	89.99	92.68	93.61
Demand rejected (in %)	10.02	7.32	6.39

Table 9.22. Operational Performance of Optimal Network

Table 9.21 points out the CBN C leads to the highest profit comparing to the rest networks available namely CBN A and CBN C. It could be the reason that the demand growth for container liner at 34% between 2010 and 2018. Consequently, the shift from CBN B to CBN C or by holding demand in 2018 and replacing smaller ships such as Panamax and Post-Panamax with ULCV results in 6% increase in profit. Meanwhile, considering both demand growth and ship size upgrade simultaneously, CBN A and CBN C stand next to each other. It brings Maersk to 42% improvement in profitability afterwards. In term of operational performance, number of clusters are expanded from 10 clusters in CBN A and CBN B to 13 clusters in CBN C to meet the current demand. As shown in Table 9.22, percentage of demand delivered increase up to 93.61% in 2018.

9.6. Estimated Profitability and Optimal Profitability

Chapter 7 appraises the expected profit of ULCV deployment by employing financial estimation of cost analysis. Comparative analysis between the prior approach in Chapter 7 (Table 7.6) and the optimality approach in Chapter 9 (Table 9.7) is considered. It is highly motivated with the accuracy check between the two so that the figures presented in this thesis could represent the factual decision making in the container liner industry.

	Estimated Profitability	Optimal Profitability (CBN C)
Ship Size (in TEU)	18,000	16,000 and 18,000
Revenue (in million USD)	6,115.20	6,541.13
Total Cost (in million USD)	4,780.79	4,524.24
Profit (in million USD)	1,334.41	2,016.89

Table 9.23. Estimated and Optimal Profitability of ULCV

Source: Author estimation based on Notteboom and Carriou (2009) and OECD (2015) Note:

The simulation is under slow steaming setting at 15 knots.

CBN C is selected as a comparison to the estimated profitability baseline because both are executed under constant slow steaming scenario at 15 knots. Even so, the two in term of vessel size. On the estimated probability, uniform vessel of 18,000 TEU puts upfront. Estimated profitability in Table 9.9 is assumed for all ships deployed annually is the network which is 71 units while calculation in Table 7.6 stands only stands for a ship in a year. Meanwhile, the optimal profitability provided by CBN C is a result of assigning 2 vessel classes namely 16,000 TEU (35 units) and 18 TEU (36 units). In such circumstance, profit difference is about 38% higher for CBN C due to more efficient cargo routing on specified routes in the network while cost saving is about 13%. Furthermore, diversifying the available ship type on the pools may improve profitability and network performance because ship capacity closer to respected cargo volume is chosen.

9.7. Reference Network and Optimal Network

In this section, reference network in Section 9.1 is compared to optimal network that has been presented in Section 9.5. One out of three optimal network is selected based on similar setting shared with reference network. Recalling that calculation presented in reference network is based on demand and ship size used in 2010, the optimal network is found to be CBN A with 10 clusters.

	Reference	CBN A with 10	Difference
	INELWOIK	Clusiers	(111 70)
Profit (in million USD)	1,088.79	1,415.43	30
Revenue (in million USD)	4,474.44	4,384.95	-2
Total cost (in million USD)	3,385.01	2,969.52	-12.27

Table 9.24. Comparative Financial Performance

Table 9.24 shows that the shift from reference network to CBN A with 10 clusters allows Maersk to improve its profitability by 30 with cost efficiency of 12%. This finding indicates that properly adjusted network design with combination of maximized cargo flow between ports given minimized distance may encourage more competitive financial performance. The implementation of clustering algorithm, for instance, gives a credit to the combination of shorter path for port visited on hub route. Therefore, selecting main hub ports to call at on route and allocate the rest smaller cargo volumes on an integrated feeder network restricts less cost and generates higher profit especially in the case of ULCV. In general, developing hub and spoke network with thirteen ports in the hub service network is found to be optimal as it allows the highest profitability.

9.8. Conclusion

This chapter presents the empirical result obtained from testing the model performance that has been specified in Chapter 3. The main changes made are two folds. Firstly, it differs from the original Maersk network in term of port rotation. It shows that calling at larger port twice may improve the profitability. Secondly, this thesis suggests ship size and number of ship required as solutions to both RRND and RSCA problem. Although this preference over individual ship registration limits certain degree of approximation to actual case, the purpose of this thesis is served still as discussed beforehand in Section 3.5.

Chapter 10 Discussion

In this chapter, the methodological approach used in this thesis is critically evaluated. It is expected that by doing so the reliability and optimality of the result can be enhanced. The scope of discussion can be specified into two aspects: methodology and data.

On the methodology, this thesis comes up with set of instruments and models. As the proposed network is developed from scratch, assumptions constructed are quite critical. Section 3.5 previously addresses this issue. Initial fleets are categorized by ship class ranging from 10,000 TEU to 22,000 TEU for hub service and from and 1,200 TEU to 9,600 TEU for feeder service in which those are given for an infinite unit. Although it could be the case where empirical gap exists between proposed network and actual condition faced by liner shipping in term of availability of ship, this method is still relevant to solve combined ship-scheduling and cargo-routing with given ship-design.

This thesis carefully observes the clustering phase before constructing two-fold problems which are RRND and RSCA. Clustering provides foundation for the shortest distance and the largest demand, therefore, conducting at least two clustering techniques simultaneously such as PAM and DBSCAN may serve that particular purposes better.

On the data, limited access to AIS database with regards to ship availability implies on several assumptions to hold. Ships are allocated to certain route based on cargo demand since the beginning of planning period and remain on operation within time horizon. However, it still fits to the objective of this thesis in examining the impact of vessel size on optimal profit level. Afterwards, it results in a prescriptive analysis to the extent that preference over ship size should be made to reach optimal profitability.

Moreover, this thesis assumes a limitation of constant demand level across planning timeline to simplify the model. In fact, container liner faces volatility across the period due to higher demand in Christmas and Chinese New Year. This issue is not adequately addressed in this thesis to prevent further complexity of the model. As the model gets more complex, feasible solution could be even more difficult to obtain.

This thesis imposes port restrictions based of the ship class, port draft, and ship draught. Port restrictions in term of draft is considered for the feasibility of ULCV deployment on hub routes. Meanwhile, weekly service window is necessary to maintain regularity of service. Multiple port visits respond high demand in larger ports such that high demand delivered and high profitability could be obtained. Last assumption is taken into account to guarantee the synchronized pickup and delivery between hub and feeder ports.

Chapter 11 Conclusion

Competition among container liner has been tightening inevitably over the last decades. Deployment of larger vessel known as ULCV class marks the contestable market share. It seems to be a logical move for prominent player in the market such as Maersk as it has sufficient capital to deploy and operate larger vessel with higher level of efficiency. Consequently, smaller container liners are prone to bow out after a tense competition with the entrance of ULCV on the main trade lane such as Asia-Europe routes. Furthermore, the previously deployed ships on this service are rerouted to second layer lane such as Asia-South America.

Concerning on that particular issue on container shipping, this thesis stands on an objective: to construct a model representing the situation where cascading phenomena driven by the deployment of ULCV exist in container liner shipping. In order to achieve the aforementioned goal, a network design is proposed as a strategic response to the current situation such that profit is maximized. Therefore, this thesis focuses on the main research question: "To what extent the optimality of network configuration design can be guaranteed under cascading phenomena driven by the deployment of ULCV?".

An established approach on network design and decision making in container liner shipping promoted by Agarwal and Ergun (2008) is applied where the three levels namely strategic planning level, tactical planning level and operational planning level are discussed separately in Chapter 2. Chapter 3 lays a foundation for sub-question 3 on model for container liner shipping network design by showing the construction of combined model of ship-scheduling and cargo-routing problem. Later, it is translated into 2-phases execution comprising Regional Route Network Design (RRND) and Route Construction and Ship Allocation (RSCA) as previously preferred by Mulder and Dekker (2016). These problems are constructed as a mixed integer programming (MIP) aiming to oversee the optimality of solution as envisaged in sub-question 4 on mathematical programming technique. Clustering algorithms of PAM and DBSCAN for ports are tested to simplify the complexity of models where Chapter 8 presents the upper performance of PAM in this case as shorter average distance is obtained for 10, 13, and 15 clusters.

Regarding to the scope of analysis, this thesis highlights the implication of ULCV deployment on profitability of liner shipping in which Maersk is used as a case study. To capture the cascading phenomena, two consecutive periods are selected based on the development of ULCV namely 2010 and 2018. Maersk original routes in Asia-Europe service network are used as a reference network. There are 1,935 OD pair demand observed between 58 ports for both year, while demand in 2018 is projected by 34% growth from the initial period in 2010. These data are available in Chapter 4.

Sub-research question 1 on the driving factor of the ULCV deployment is approximated by two folds approach comprising theoretical proof in Chapter 5 and empirical analysis in Chapter 7. Both suggests that economies of scale motivate liner decision on ULCV deployment because of lower cost per TEU that leads to higher profitability. Profit grows up to 12% (USD 72.74 million to USD 85.30 million) when the size of ship is upgraded from 14,000 TEU to 16,000 TEU. However, further size

upgrade only retains smaller profit growth as the scale power is flattening asymptotically.

In response to the second sub-questions on the shifting in structure of container liner shipping network between 2010 and 2018, network analysis is employed using several properties such as degree centrality and betweenness centrality. This part shows highly centralized and connected ports can be regarded as candidates of additional port to be called on route, among others are Shanghai, Hong Kong, Rotterdam, and Singapore.

Overall, the proposed network CBN A with 10 clusters is the best to compare to reference network because both are performed under slow steaming practice at 15 knots with demand volume in 2010. It allows higher profit by 30 with cost efficiency of 12%. This finding indicates that more competitive financial performance can be induced by properly adjusted network design with combination of maximized cargo flow between ports given minimized distance.

Bibliography

Agarwal, R., and Ergun, O. (2008). Ship scheduling and network design for cargo routing in liner shipping. *Transportation Science*, 42, 175–196.

Álvarez, J. (2009). Joint routing and deployment of a fleet of container vessels. *Maritime Economics & Logistics*, 11, 186–208.

Baird, A.J., 1996. Containerisation and the decline of the upstream urban port in Europe. *Maritime Policy Management*, 23, 145–156.

Baird, A.J., 1997. Extending the lifecycle of container mainports in upstream urban locations. *Maritime Policy Management*, 24, 299–301.

Boffey, S. A., Ellis, J.R., Sellden, G., and Leech, R.M. (1979). Chloroplast division and DNA synthesis in light-grown wheat leaves. *Plant Physiology*, 64, 502–505.

Lachner, S.A. and Boskamp, V. A. G. (2011). *Routing and scheduling in liner shipping with multi-start local search heuristics*. [Thesis] Master Thesis. Erasmus University Rotterdam.

Carriou, P. and Cheaitou, A. (2014). Cascading effects, network configurations, and optimal transshipment volumes in liner shipping. *Maritime Economics and Logistics*, 16, 321-342.

Chen, F., and Zhang, R. (2008), Economic Viability of Mega-size Containership in Different Service Networks. *Journal Shanghai Jiaotong University*, 13(2), 221-225.

Christiansen, M., Fagerholt, K., and Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. *Transportation Science*, 38, 1–18.

Chuang, T.N., Lin, C.T., Kung, J. Y., and Lin, M.D. (2010) Planning the route of container ships: A fuzzy genetic approach. *Expert Systems with Applications*, 37(4), 2948-2956.

Drewry (2018) Container ports, liner shipping, and Drewry. *MEL Distinguished Lecture Series*. Presented by Neil Davidson on 10 January 2018 at MEL Erasmus University Rotterdam.

De Benedictis, L., Nenci, S., Santoni, G., Tajoli, L., and Vicarelli, C. (2013). Network analysis of world trade using BACI-CEPII dataset. *CEPII Working Paper No. 2013-24 August*.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. *Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining*. Portland, OR, 226–231.

Everitt, B. (1980). Cluster Analysis. Halsted Press, New York.

Fagerholt, K. (1999). Optimal fleet design in a ship routing problem. *International Transactions in Operational Research*, 6, 453–464.

Fagerholt, K. (2004). Designing optimal routes in a liner shipping problem. *Maritime Policy & Management*, 31, 259–268.

Freeman, L.C. (1977). A set of measures of centrality based on betweenness. *Sociometry*, 40, pp. 35–41.

Gelareh, S., and Pisinger, D. (2011). Fleet deployment, network design and hub location of liner shipping companies. *Transportation Research*, 47(6), 947–964.

Gordon, A. (1999). Classification. Chapman and Hall/CRC Press, London.

Hand, M. (2017). *Total signs agreement to fuel CMA CGM's 22,000 teu LNG-powered containerships*. Seatrade Maritime News. [Online] Retrieved on 14 March 2018 from <u>http://www.seatrade-maritime.com/news/europe/total-signs-agreement-to-fuel-cma-cgm-s-22-000-teu-Ing-powered-containerships.html</u>

Haralambides, H., Thanopoulou, H., 2014. The Economic Crisis of 2008 and World Shipping: Unheeded Warnings. *SPOUDAI-Journal Economics and Business*, 64 (2), 5-13.

Hathaway, R.J. and Bezdek, J.C. (2002). Clustering incomplete relational data using the non-Euclidean fuzzy c-means algorithm. *Pattern Recognition Letter*, 23, 151–160.

Heaver, T. (2002). The Evolving Roles of Shipping Lines in International Logistics. International Journal of Maritime Economics, 4, 210–230.

Hopkins, B. and Skellam, J.G. (1954). A New Method for determining the Type of Distribution of Plant Individuals. Annals of Botany, 18(2), 213–227.

Imai, A., Shintani, K., and Papadimitriou, S. (2009). Multi-port vs. Hub-and-Spoke port calls by containerships. *Transportation Research*, 45(5), 740-757.

Kaufman, L. and Rousseeuw, P.J. (1990). *Finding Groups in Data*. John Wiley & Sons, New York.

Knowler, G. (2018). *Mega-ship delivery keeps Asia-Europe capacity on the rise*. [Online] Retrieved on 20 April 2018 from <u>https://www.joc.com/maritime-news/container-lines/cma-cgm/mega-ship-delivery-keeps-asia-europe-capacity-rise_20180126.html</u>

Koning, E. D. (2018). *Optimizing Europe-Asia container routing with transshipment*. [Thesis] Master Thesis. Erasmus University Rotterdam.

K-Line (2017). *Freight Rate*. [Online] Retrieved on 2 April 2018 from http://www.klineurope.com/Common/attachments_view.aspx?id=926

Lachner, S. A. and Boskamp, V. A. G. (2011). *Routing and scheduling in liner shipping with multi-start local search heuristics*. [Thesis] Master Thesis. Erasmus University Rotterdam.

Lawrence, S. (1972). *International sea transport: The years ahead*. Lexington, Mass: Lexington Books.

Lim, S-M. (1998). Economies of scale in container shipping. *Maritime Policy and Management*, 25(4), pp.361-373.

Linerlib (2012). A benchmark data set for operations research in liner shipping network design. <u>http://www.linerlib.org/</u>

McKinsey (2017). *Container shipping: The next 50 years*. Travel, Transport & Logistics October 2017. NY: McKinsey&Company.

Maersk (2018). *Global presence*. [Online] Retrieved on 15 April 2018 from <u>https://www.maersk.com/en/global-presence</u>

Marine Traffic. (2018). *Voyage Planner*. [Online] Retrieved on 5 May 2018 from <u>https://www.marinetraffic.com/en/voyage-planner</u>

Mulder, J. (2016). *Network Design and Robust Scheduling in Liner Shipping.* [Thesis] Doctoral Thesis. Erasmus University Rotterdam.

Mulder, J. (2011). *Constructing Service Networks in Liner Shipping*. [Thesis] Master Thesis. Erasmus University Rotterdam.

Mulder, J. and Dekker, R. *Will liner ships make fewer port calls per route?* (No. El2016-04). *Econometric Institute Research Papers*.

Notteboom, T. and Carriou, P. (2009). Fuel surcharge practices of container shipping lines: Is it about cost recovery or revenue-making. Presented in IAME 2009 Conference in Copenhagen, 24-26 June, 2009.

Notteboom, T., Coeck, C., Verbeke, A., and Winkelmans, W. (1997). Containerisation and the competitive potential of upstream urban ports in Europe. *Maritime Policy Management*, 24, 285–289.

OECD. (2015). The Impact of Mega-Ships. OECD/ITF. France.

Powell, B., and Perakis, A. (1997). Fleet deployment optimization for liner shipping: An integer programming model. *Maritime Policy Management*, 24, 183–192.

Prokopowicz, A.K. and Berg-Andreassen, J. (2016). An evaluation of current trends in container shipping industry, very large container ships (VLCSs), and port capacities to accommodate TTIP increased trade. *Transportation Research Procedia*, 14, 2910 – 2919.

Rana, K., and Vickson, R. (1991). Routing container ships using Lagrangean relaxation and decomposition. *Transportation Science*, 25, 201–214.

Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. Theory and Method, 66(336), 846-850.

Reinhardt, L. B., Kallehauge, B., Nørrelund, A., and Olsen, A. (2007). Network design models for container shipping. *Technical report*, Centre for Traffic and Transport, Technical University of Denmark.

Rodrigue, J-P., Notteboom, T., and Slack, B. (2017). *The Geography of Transport Systems*. New York: Routledge.

Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems. *European Journal of Operational Research*, 12, 119–126.

Ronen, D. (1993). Ship scheduling: The last decade. *European Journal of Operational Research*, 71, 325–333.

Ship and Bunker (2018). World Bunker Prices. [Online] Retrieved on 2 April 2018 from https://shipandbunker.com/prices

Song, D., Zhang, J., Carter, J., Field, T., Marshall, J., and Polak, J. (2007). On cost efficiency of the global container shipping network. *Maritime Policy Management*, 32, 15–30.

Sys, C. et al (2008). In Search of the Link between Ship Size and Operations, *Transportation Planning and Technology*, Vol. 31, No. 4, 435-463.

Tran, N., and Haasis, H. (2014). An empirical study of fleet expansion and growth of ship size in container liner shipping. *Netnomics*, 15, 121-153.

Ting, S. C. and Tzeng, G. H. (2003). Ship Scheduling and cost analysis for route planning in liner shipping. *Maritime Economics and Logistics*, 5, 378-392.

UNCTAD (2017). Review of Maritime Transport 2017. UNCTAD: Switzerland.

Veldman, S. (2011). On the ongoing increase of containership size', in: Chew, E., Lee, L., Tang, L. (eds), *Advances in Maritime logistics and Supply Chain Systems*, World Scientific Publishing, Singapore.

Wang, S. and Meng, Q. (2011). International maritime-port technology and development conference (MTEC 2011). Chapter *Liner Ship Routing and Scheduling: State of the Art*, 69–74.

World Bank (2017). *World Development Indicators 2017*. World Bank Group: Washington.

World Maritime News. (2017). *Alphaliner: Global Container Trade Growth Bounces Back.* [Online] Retrieved on 10 April 2018 from <u>https://worldmaritimenews.com/archives/233228/alphaliner-global-container-trade-</u> growth-bounces-back/

Xu, R. and Wunsch, D. C. (2009). Clustering. IEEE, Washington DC.
Appendix A: Data

Port Code	Port Name	Country	Region	2010	2018
AEJEA	Jebel Ali	Dubai	Middle East	Х	Х
BEANR	Antwerp	Belgium	Europe	Х	Х
BEZEE	Zeebrugge	Belgium	Europe	Х	
CNCWN	Chiwan	China	Asia	Х	
CNDCB	Da Chan Bay	China	Asia	Х	
CNDLC	Dalian	China	Asia	Х	Х
CNFOC	Fuzhou	China	Asia	Х	
CNHKG	Hong Kong	China	Asia	Х	Х
CNLYG	Lian Yun Gang	China	Asia	Х	
CNNGB	Ningbo	China	Asia	Х	Х
CNSHA	Shanghai	China	Asia	Х	Х
CNTAO	Qingdao	China	Asia	Х	Х
CNTXG	Tianjin	China	Asia	Х	Х
CNXMN	Xiamen	China	Asia	Х	Х
CNYTN	Yan Tian	China	Asia	Х	Х
DEBRV	Bremerhaven	Germany	Europe	Х	Х
DEHAM	Hamburg	Germany	Europe	Х	Х
DEWIL	Wilhelmshaven	Germany	Europe		Х
DKAAR	Aarhus	Denmark	Europe	Х	Х
EGDAM	Damietta	Egypt	Middle East	Х	
EGPSD	Port Said East	Egypt	Middle East	Х	Х
EGSUZ	Suez Canal	Egypt	Middle East		Х
ESAGP	Malaga	Spain	Europe	Х	
ESALG	Algeciras	Spain	Europe	Х	Х
ESBCN	Barcelona	Spain	Europe	Х	
ESVLC	Valencia	Spain	Europe	Х	
FRFOS	Fos Sur Mer	France	Europe	Х	
FRLEH	Le Havre	France	Europe	Х	Х
GBFTX	Felixtowe	UK	Europe	Х	Х
GRPIR	Piraeus	Greece	Europe	Х	
HRRJK	Rijeka	Croatia	Europe	Х	Х
ITGIT	Gioia Tauro	Italy	Europe	Х	Х
ITGOA	Genoa	Italy	Europe	Х	
ITTRS	Trieste	Italy	Europe	Х	Х
JPNGO	Nagoya	Japan	Asia	Х	
JPSMZ	Shimizu	Japan	Asia	Х	
JPUKB	Kobe	Japan	Asia	Х	
JPYOK	Yokohama	Japan	Asia	Х	Х
KRKAN	Kwangyang	South Korea	Asia	Х	Х

Table A.1. List of Hub Ports

KRPUS	Pusan	South Korea	Asia	Х	Х
KRUSN	Ulsan	South Korea	Asia		Х
LKCMB	Colombo	Srilanka	Asia	Х	Х
MAPTM	Tanger	Morocco	Europe	Х	Х
MYPKG	Port Klang	Malaysia	Asia	Х	
MYTPP	Tanjung Pelepas	Malaysia	Asia	Х	Х
NLRTM	Rotterdam	Netherlands	Europe	Х	Х
OMSLL	Salalah	Oman	Middle East	Х	Х
PLGDN	Gdansk	Poland	Europe	Х	Х
PTSIE	Port of Sines	Portugal	Europe		Х
ROCND	Constanta	Romania	Europe	Х	
RUBLT	Baltiysk	Russia	Europe		Х
SAJED	Jeddah	Saudi Arabia	Middle East	Х	
SAKAC	King Abdullah	Saudi Arabia	Middle East		Х
SEGOT	Goteborg	Sweden	Europe	Х	Х
SGSIN	Singapore	Singapore	Asia	Х	Х
SIKOP	Slovenia	Koper	Europe	Х	Х
THLCH	Laem Chabang	Thailand	Asia	Х	
TRAMR	Ambarli Port Istanbul	Turkey	Europe	Х	
TRIZM	Izmir	Turkey	Europe	Х	
TWKHH	Kaohsiung	Taiwan	Asia	Х	
TWTPE	Taipei	Taiwan	Asia	Х	
UAILK	Chornomorsk	Ukraine	Europe	Х	
UAODS	Odessa	Ukraine	Europe	Х	
VNVUT	Vung Tau	Vietnam	Asia	Х	Х
Number of Port of	of Call			58	39

Number of Port of Call Source: Mulder (2011) and Maersk (2018)

Table A.2. Distance between Ports

	JPY OK	JPS MZ	JPN GO	JPU KB	KRP US	KRK AN	CND LC	CNT XG	CNT AO	CNL YG	CNS HA	CNN GB	CNF OC	TWT PE	CNX MN	TWK HH	CNY TN	CNH KG	CNC WN	CND CB	VNV UT	THL CH	SG SIN	MYT PP	MYP KG	LKC MB	AEJ EA	OM SLL	SAJ ED
JPY OK	0	96	188	333	626	679	109 5	1246	1060	108 6	1008	1020	1211	1134	1316	1319	156 5	1582	1592	1597	241 8	297 2	287 9	289 9	3072	443 1	630 3	604 5	719 0
JPS MZ	96	0	119	268	560	614	103 0	1181	994	102 0	942	954	1146	1064	1250	1254	150 0	1516	1526	1531	235 5	290 7	281 8	283 8	3011	437 0	624 2	598 4	712 9
JPN GO	188	119	0	219	511	565	980	1132	945	971	893	905	1097	1028	1201	1205	145 1	1467	1477	1482	232 2	285 8	277 1	279 1	2964	432 3	619 5	593 7	708 2
JPU KB	333	268	219	0	341	394	810	961	775	801	729	761	999	917	1103	1107	135 3	1369	1379	1384	221 3	276 0	267 9	269 9	2872	423 1	610 3	584 5	699 0
KRP	626	560	511	341	0	72	503	654	467	493	445	495	752	688	869	898	112	1137	1147	1152	197 7	255 1	248	250	2676	403	590 7	564	679 4
KRK	679	614	565	394	72	0	437	588	401	427	382	436	699	616	817	840	106 2	1084	1094	1099	190	249 3	242	244	2621	398	585 2	559 4	673 9
CND	109	103	080	910	502	427	-01	100	251	224	477	400 660	000	951	061	1006	121	1220	1240	1000	211	265	257	259	2760	412	600	574	688
CNT	124	118	113	001	505	437	100	100	201	324	477	550	043	000	1405	1150	135	1229	1249	1244	224	277	272	274	2709	427	614	588	703
CNT	106	1	2	901	654	000	100	0	394	400	021	699	967	990	700	1150	104	1372	1362	1307	195	252	240	242	2913	396	4 583	557	671
	108	994 102	945	004	407	401	251	394	0	09	307	300	675	097	793	030	4	1001	1071	1076	187	240	236	238	2001	391	578	552	667
CNS	100	0	971	801	493	427	324	468	89	U	258	337	626	641	745	790	996	1012	1022	1027	6 167	224	212	214	2553	367	4 554	529	643
HA CNN	8 102	942	893	729	445	382	477	621	307	258	0	101	390	421	509	554	760	776	786	791	5 157	2 210	4 205	4 207	2317	6 360	8 547	0 521	5 636
GB CNF	0 121	954 114	905 109	761	495	436	556	699	386	337	101	0	318	355	436	481	687	704	714	719	2 131	3 188	1 178	1 180	2244	3 333	5 520	7 495	2 609
OC TWT	1 113	6 106	7 102	999	752	699	843	987	675	626	390	318	0	150	168	235	420	436	456	451	8 131	8 187	4 181	4 183	1977	6 336	8 523	0 497	5 612
PE CNX	4	4	8	917 110	688	616	851	996	697	641	421	355	150	0	222	224	446	471	481	486	2	7	2 163	2	2005	4 319	6 506	0	4 594
MN	6	0	1	3	869	817	961 100	1105	793	745	509	436	168	222	0	166	270	287	297	302	0	4	8	8	1831	0	2	4	9
HH	9	4	5	7	898	840	6	1150	838	790	554	481	235	224	166	0	337	354	364	369	1	3	1	1	1804	3	5	7	2
TN	5	0	145	3	0	2	2	1356	1044	996	760	687	420	446	270	337	0	46	56	61	947	146	6	6	1629	296	486	460	574
CNH KG	158 2	151 6	146 7	136 9	113 7	108 4	122 9	1372	1061	101 2	776	704	436	471	287	354	46	0	10	15	927	148 9	141 0	143 0	1603	296 2	483 4	457 6	572 1
CNC WN	159 2	152 6	147 7	137 9	114 7	109 4	124 9	1382	1071	102 2	786	714	456	481	297	364	56	10	0	5	937	149 9	142 0	144 0	1613	298 3	484 4	458 6	573 1
CND CB	159 7	153 1	148 2	138 4	115 2	109 9	124 4	1387	1076	102 7	791	719	451	486	302	369	61	15	5	0	942	150 4	142 5	144 5	1618	298 8	484 9	459 1	573 6
VNV UT	241 8	235 5	232 2	221 3	197 7	190 5	211 1	2242	1959	187 6	1675	1572	1318	1312	1150	1121	947	927	937	942	0	681	646	666	839	219 8	407 0	379 6	495 8
THL CH	297 2	290 7	285 8	276 0	255 1	249 3	265 9	2773	2526	240 7	2242	2103	1888	1877	1714	1653	148 2	1489	1499	1504	681	0	831	836	1009	236 8	424 0	398 2	512 7
SGSI N	287 9	281 8	277 1	267 9	248 3	242 8	257 6	2720	2408	236 0	2124	2051	1784	1812	1638	1611	143 6	1410	1420	1425	646	831	0	20	193	155 2	342 4	316 6	431 1
MYT PP	289 9	283 8	279 1	269 9	250 3	244 8	259 6	2740	2428	238 0	2144	2071	1804	1832	1658	1631	145 6	1430	1440	1445	666	836	20	0	173	153 2	340 4	314 6	429 1

MYP KG	307 2	301 1	296 4	287 2	267 6	262 1	276 9	2913	2601	255 3	2317	2244	1977	2005	1831	1804	162 9	1603	1613	1618	839	100 9	193	173	0	137 0	324 3	298 5	413 0
LKC MB	443 1	437 0	432 3	423 1	403 5	398 0	412 8	4272	3960	391 2	3676	3603	3336	3364	3190	3163	298 8	2962	2983	2988	219 8	236 8	155 2	153 2	1370	0	188 7	163 3	278 8
AEJ EA	630 3	624 2	619 5	610 3	590 7	585 2	600 0	6144	5832	578 4	5548	5475	5208	5236	5062	5035	486 0	4834	4844	4849	407 0	424 0	342 4	340 4	3243	188 7	0	894	215 2
OMS LL	604 5	598 4	593 7	584 5	564 9	559 4	574 2	5886	5574	552 6	5290	5217	4950	4970	4804	4777	460 2	4576	4586	4591	379 6	398 2	316 6	314 6	2985	163 3	894	0	127 0
SAJ ED	719 0	712 9	708 2	699 0	679 4	673 9	688 7	7031	6719	667 1	6435	6362	6095	6123	5949	5922	574 7	5721	5731	5736	495 7	512 7	431 1	429 1	4130	278 8	215 2	127 0	0
EGP SD	789 4	783 3	778 6	769 4	749 8	744 3	759 1	7735	7423	737 5	7139	7066	6799	6822	6653	6626	645 1	6425	6435	6440	565 6	583 7	501 5	499 5	4834	349 2	285 7	197 5	715
EGD AM	792 5	786 4	781 7	772 5	751 9	742 6	762 2	7766	7454	740 6	7170	7097	6830	6842	6674	6657	648 2	6456	6466	6471	566 8	580 6	503 6	502 5	4854	350 8	288 8	200 6	746
TRIZ M	871 8	865 0	861 7	851 8	832 9	827 8	842 2	8566	8254	820 6	7970	7898	7630	7644	7484	7450	727 5	7256	7266	7271	647 8	665 4	583 2	582 5	5639	430 3	368 7	280 5	153 9
TRA MR	866 9	860 8	856 1	846 9	827 3	821 9	836 6	8510	8198	815 0	7914	7841	7574	7591	7428	7401	722 6	7200	7210	7215	642 5	659 9	579 0	577 0	5609	426 7	363 2	275 0	149 0
UAO DS	901 6	895 5	890 8	881 6	862 0	853 9	871 3	8857	8545	849 7	8261	8188	7921	7938	7775	7748	757 3	7547	7557	7562	677 2	695 6	613 7	611 7	5943	460 7	397 9	309 7	183 7
UAIL K	901 3	894 1	890 5	880 9	861 7	852 6	873 1	8870	8563	849 4	8279	8185	7939	7935	7772	7741	759 2	7565	7570	7575	676 9	694 3	612 3	611 4	5930	459 4	399 6	309 4	183 4
ROC ND	887 2	881 1	876 4	867 2	847 6	842 2	856 9	8713	8401	835 3	8117	8044	7777	7794	7631	7604	742 9	7403	7413	7418	662 8	680 2	599 3	597 3	5812	447 0	383 5	295 3	169 3
GRPI R	848 1	842 0	837 3	828 1	808 5	803 3	817 8	8322	8010	796 2	7726	7653	7386	7412	7240	7213	703 8	7012	7022	7027	624 6	641 3	560 2	558 2	5421	407 9	344 4	256 2	130 2
HRR JK	913 9	907 8	903 1	893 9	874 3	869 1	883 6	8980	8668	862 0	8384	8311	8044	8070	7898	7871	769 6	7670	7680	7685	690 4	707 1	626 0	624 0	6079	473 7	410 2	322 0	196 0
SIKO P	917 8	911 7	907 0	897 8	878 2	872 7	887 5	9019	8707	865 9	8423	8350	8083	8109	7937	7910	773 5	7709	7719	7724	694 3	712 4	629 9	627 9	6117	477 6	414 1	325 9	199 9
ITTR S	918 6	912 0	907 8	898 6	879 0	873 5	888 3	9027	8715	866 7	8431	8358	8091	8114	7945	7918	773 8	7717	7727	7732	694 8	711 6	630 2	628 2	6109	477 3	414 9	326 7	200 7
ITGI T	882 2	876 1	871 4	862 2	842 6	837 1	851 9	8663	8351	830 3	8067	7994	7727	7753	7581	7554	737 9	7353	7363	7368	658 7	676 8	594 3	592 3	5762	442 0	378 5	290 3	164 3
ITGO A	930 5	924 4	919 7	910 5	890 9	885 4	900 2	9146	8834	878 6	8550	8477	8210	8237	8064	8037	786 2	7836	7847	7852	707 1	725 2	642 6	640 6	6245	490 3	426 8	338 6	212 6
FRF OS	940 5	934 4	929 7	920 5	900 9	895 4	910 2	9246	8934	888 6	8650	8577	8310	8332	8164	8137	796 2	7936	7946	7951	716 6	734 0	652 6	650 6	6345	500 3	436 8	348 6	222 6
ESB CN	947 6	941 5	936 8	927 6	908 0	902 9	917 3	9317	9005	895 7	8721	8648	8381	8407	8235	8208	803 3	8007	8034	8039	724 1	740 9	659 7	657 7	6416	507 4	443 9	355 7	229 7
ESV LC	955 6	949 5	944 8	935 6	916 0	910 9	925 3	9397	9085	903 7	8801	8728	8461	8487	8315	8288	811 3	8087	8097	8102	732 1	748 9	667 7	665 7	6496	515 4	451 9	363 7	237 7
ESA GP	975 8	969 0	965 0	955 8	936 2	927 5	945 5	9599	9324	923 9	9040	8930	8663	8684	8517	8490	831 5	8326	8336	8341	751 8	768 3	687 2	685 9	6679	534 3	475 8	383 9	257 9
ESA LG	980 4	974 3	969 6	960 4	940 8	934 0	950 1	9645	9333	928 5	9049	8976	8709	8735	8563	8536	836 1	8335	8385	8390	756 9	773 6	692 5	690 5	6744	540 2	476 7	388 5	262 5
MAP TM	983 5	976 3	972 8	962 4	944 0	934 8	953 3	9677	9365	930 5	9081	9008	8741	8757	8595	8556	839 3	8367	8410	8415	759 1	775 7	694 5	693 7	6752	541 6	479 9	391 5	265 7
FRL EH	109 33	108 72	108 25	107 36	105 40	104 85	106 33	1077 4	1046 2	104 14	1017 8	1010 5	9841	9864	9692	9668	949 0	9467	9477	9482	869 8	887 9	805 4	803 4	7873	653 4	589 9	501 4	375 7
GBF TX	110 56	109 95	109 48	108 56	106 63	106 05	107 56	1089 7	1058 5	105 37	1030 1	1022 8	9961	1001 3	9815	9788	961 3	9587	9640	9645	884 7	901 4	817 7	815 7	7996	665 7	601 9	513 7	387 7
BEZ EE	110 83	110 22	109 75	108 83	106 87	106 24	107 80	1092 4	1061 2	105 64	1032 8	1025 5	9988	1001 7	9842	9815	964 0	9614	9624	9629	885 1	901 8	820 4	818 4	8023	668 1	604 6	516 4	390 4

BEA NR NI R тм DEB RV DEH AM Ω SEG OT a DKA AR PLG DN 31 84 92 93 49 EGP EGD TRA ITT ITG ITG FRF ESB MAP TRI UAO UAI ROC GR HRR SIK ESV ESA ESA FRL GBF BEZ BEA NLR DEB DEH SEG DKA PLG AM ZM MR DS LK ND PIR OP RS IT OA OS CN LC GP LG TM TX EE NR TM RV AM OT AR SD JK EH DN IPY OK JPS MZ -4 JPN GO - 3 JPU KB KRP US KRK AN CND LC CNT XG CNT AO CNL YG CNS HA -3 CNN GB - 3 7 CNF OC - 3 - 6 TWT PE CNX MN 5 7 TWK HH CNY ΤN 3 CNH KG

CNC WN	6435	6466	726 6	7210	7556	757 3	7413	702 2	768 0	771 9	772 7	736 3	784 7	7946	8034	809 7	8336	838 5	8410	947 7	964 0	962 4	9711	9674	9889	9979	1014 1	1025 8	1050 9
CND CB	6440	6471	727 1	7215	7561	757 8	7418	702 7	768 5	772 4	773 2	736 8	785 2	7951	8039	810 2	8341	839 0	8415	948 2	964 5	962 9	9716	9679	9894	9984	1014 6	1026 3	1051 4
VNV UT	5656	5668	647 8	6425	6772	676 9	6628	624 6	690 4	694 3	694 8	658 7	707 1	7166	7241	732 1	7518	756 9	7591	869 8	884 7	885 1	8912	8915	9120	9168	9358	9369	9726
THL CH	5837	5806	665 4	6599	6964	695 1	6818	641 3	707 1	712 4	711 6	675 9	724 3	7340	7409	748 9	7683	773 6	7757	888 2	901 4	901 8	9077	9082	9287	9332	9525	9507	9893
SGSI N	5015	5036	583 2	5790	6136	612 3	5993	560 2	626 0	629 9	630 2	594 3	642 6	6526	6597	667 7	6872	692 5	6945	805 4	817 7	820 4	8291	8254	8449	8537	8689	8783	8903
MYT PP	4995	5025	582 5	5770	6116	611 4	5973	558 2	624 0	627 9	628 2	592 3	640 6	6506	6577	665 7	6859	690 5	6937	803 4	815 7	818 4	8246	8234	8429	8502	8669	8763	8892
MYP KG	4834	4854	563 9	5609	5943	593 0	5812	542 1	607 9	611 7	610 9	576 2	624 5	6345	6416	649 6	6679	674 4	6752	787 3	799 6	802 3	8094	8084	8268	8342	8508	8602	8721
LKC MB	3492	3508	430 3	4267	4607	459 4	4470	407 9	473 7	477 6	477 3	442 0	490 3	5003	5074	515 4	5343	540 2	5416	653 4	665 7	668 1	6758	6742	6926	7006	7169	7263	7375
AEJE A	2857	2888	368 7	3632	3979	399 6	3835	344 4	410 2	414 1	414 9	378 5	426 8	4368	4439	451 9	4758	476 7	4799	589 9	601 9	604 6	6133	6107	6291	6408	6531	6682	6755
OMS LL	1975	2006	280 5	2750	3097	309 4	2953	256 2	322 0	325 9	326 7	290 3	338 6	3486	3557	363 7	3839	388 5	3915	501 4	513 7	516 4	5234	5214	5409	5490	5649	5626	5873
SAJE D	715	746	153 9	1490	1837	183 4	1693	130 2	196 0	199 9	200 7	164 3	212 6	2226	2297	237 7	2579	262 5	2657	375 7	387 7	390 4	3991	3965	4149	4237	4389	4483	4613
EGP SD	0	31	824	779	1126	111 5	982	590	124 8	128 7	129 4	931	141 3	1513	1585	166 5	1864	191 3	1941	304 2	316 5	319 5	3279	3256	3437	3525	3677	3771	3898
EGD AM	31	0	848	793	1150	113 7	996	607	126 5	130 7	131 0	962	143 4	1536	1603	168 3	1877	193 0	1951	307 3	319 6	321 2	3271	3276	3468	3526	3707	3701	3867
TRIZ M	824	848	0	55	397	384	251	390	115 0	118 6	119 0	837	132 1	1420	1504	158 8	1762	164 3	1675	279 8	312 1	306 2	3147	3126	3378	3261	3432	3535	3800
TRA MR	779	793	55	0	347	344	203	349	109 7	113 7	114 5	790	127 3	1373	1460	154 2	1731	169 8	1730	285 3	297 6	299 2	3079	3053	3248	3336	3487	3582	3829
UAO DS	1126	1150	397	347	0	13	170	694	144 4	148 4	149 2	113 7	162 0	1720	1807	188 9	2078	204 0	2156	319 5	339 1	333 4	3421	3395	3663	3751	3903	3997	4244
UAIL K	1115	1137	384	344	13	0	160	681	144 1	147 7	148 1	112 8	161 2	1707	1798	187 9	2075	202 7	2059	328 0	330 5	341 8	3397	3482	3687	3645	3816	3911	4184
ROC ND	982	996	251	203	170	160	0	552	130 0	134 0	134 8	993	147 6	1576	1663	174 5	1934	189 4	2012	304 9	324 7	318 8	3359	3249	3519	3607	3759	3853	4100
GRPI R	590	607	390	349	694	681	552	0	790	829	837	483	966	1066	1153	123 5	1432	148 4	1505	261 4	273 7	277 3	2847	2834	3009	3095	3249	3343	3590
HRR JK	1248	1265	115 0	1097	1444	144 1	1300	790	0	103	110	581	106 4	1164	1251	133 8	1554	160 3	1628	273 2	285 5	289 2	2973	2953	3127	3215	3367	3461	3708
SIKO P	1287	1307	118 6	1137	1484	147 7	1340	829	103	0	8	620	110 3	1202	1290	137 7	1593	164 2	1667	277 2	289 4	293 1	3009	2992	3166	3254	3406	3500	3747
ITTR S	1294	1310	119 0	1145	1492	148 1	1348	837	110	8	0	625	110 9	1208	1296	138 3	1598	164 7	1672	277 7	292 5	293 6	3014	3000	3205	3260	3436	3531	3804
ITGI T	931	962	837	790	1137	112 8	993	483	581	620	625	0	484	583	671	758	973	102 2	1047	215 2	227 5	231 1	2389	2372	2547	2635	2787	2881	3128
ITGO A	1413	1434	132 1	1273	1620	161 2	1476	966	106 4	110 3	110 9	484	0	208	350	508	798	847	871	199 7	210 0	213 6	2213	2197	2372	2460	2630	2706	2953
FRF	1513	1536	142 0	1373	1720	170 7	1576	106 6	116 4	120 2	120 8	583	208	0	172	331	641	680	712	183 0	193 2	196 9	2029	2030	2204	2285	2462	2538	2804
ESB CN	1585	1603	- 150 4	1460	1807	179 8	1663	115 3	125 1	129 0	- 129 6	671	350	172	0	161	499	513	545	166 3	178 6	180 2	1881	1863	2058	2129	2297	2392	2639
ESV	1665	1683	158 8	1542	1889	- 187 9	1745	123 5	133 8	137 7	- 138 3	758	508	331	- 161	0	338	382	411	- 151 2	- 163 5	- 167 2	1752	1712	1907	1995	2147	2241	2488
			•						-								000	001		-		-							2.50

ESA GP	1864	1877	176 2	1731	2078	207 5	1934	143 2	155 4	159 3	159 8	973	798	641	499	338	0	65	87	121 9	134 3	135 8	1429	1422	1627	1677	1854	1949	2222
ESA LG	1913	1930	164 3	1698	2064	205 4	1894	148 4	160 3	164 2	164 7	102 2	847	680	513	382	65	0	32	115 5	127 8	129 4	1370	1355	1550	1618	1789	1884	2131
MAP TM	1941	1951	167 5	1730	2077	205 9	1933	150 5	162 8	166 7	167 2	104 7	871	712	545	411	87	32	0	113 7	127 3	127 6	1347	1340	1545	1595	1786	1869	2154
FRL EH	3042	3073	279 8	2853	3195	328 0	3049	261 4	273 2	277 2	277 7	215 2	199 7	1830	1663	151 2	1219	115 5	1137	0	163	171	252	232	431	500	674	769	1015
GBF TX	3165	3196	312 1	2976	3323	333 2	3179	273 7	285 5	289 4	292 5	227 5	210 0	1932	1786	163 5	1343	127 8	1273	163	0	83	141	123	303	360	530	606	872
BEZ EE	3195	3212	306 2	2992	3334	333 6	3188	277 3	289 2	293 1	293 6	231 1	213 6	1969	1802	167 2	1358	129 4	1276	171	83	0	87	64	269	347	519	627	861
BEA NR	3279	3271	314 7	3079	3421	339 7	3280	284 7	297 3	300 9	301 4	238 9	221 3	2029	1881	175 2	1429	137 0	1347	252	141	87	0	149	356	405	597	680	965
NLR TM	3256	3276	312 6	3053	3395	340 0	3249	283 4	295 3	299 2	300 0	237 2	219 7	2030	1863	171 2	1422	135 5	1340	232	123	64	149	0	215	305	467	584	809
DEB RV	3437	3468	333 1	3248	3595	360 5	3451	300 9	312 7	316 6	320 5	254 7	237 2	2204	2058	190 7	1627	155 0	1545	431	303	269	356	215	0	117	344	456	686
DEH AM	3525	3526	326 1	3336	3683	364 5	3539	309 5	321 5	325 4	326 0	263 5	246 0	2285	2129	199 5	1677	161 8	1595	500	360	347	405	305	117	0	402	485	770
SEG OT	3677	3707	343 2	3487	3834	384 3	3690	324 9	336 7	340 6	343 6	278 7	263 0	2462	2297	214 7	1854	178 9	1786	674	530	519	597	467	344	402	0	151	368
DKA AR	3771	3701	352 7	3582	3929	393 8	3785	334 3	346 1	350 0	353 1	288 1	270 6	2538	2392	224 1	1949	188 4	1869	769	606	627	680	584	456	485	151	0	379
PLG DN	3898	3867	380 0	3829	4176	421 1	4032	359 0	370 8	374 7	380 4	312 8	295 3	2804	2639	248 8	2222	213 1	2154	101 5	872	861	965	809	686	770	368	379	0
Sourc	e: La	acrine	ranc	1 BOS	катр	5 (20	11)																						

Table A.3. Demand between Ports

	JPY OK	JPS MZ	JPN GO	JPU KB	KRP US	KRK AN	CND LC	CNT XG	CNT AO	CNL YG	CNS HA	CNN GB	CNF OC	TWT PE	CNX MN	TWK HH	CNY TN	CNH KG	CNC WN	CND CB	VNV UT	THL CH	SG SIN	MYT PP	MYP KG	LKC MB	AEJ EA	OM SLL	SAJ ED
JPY OK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	982 6	308 3	273 1
JPS MZ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	175 6	551	488
JPN GO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	741 9	232 8	206 2
JPU KB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	789 1	247 6	219 3
KRP US	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	419 83	131 71	116 67
KRK AN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	635 8	199 5	176 7
CND LC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	159 86	501 5	444 2
CNT XG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	305 52	958 5	849 0
CNT AO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	360 31	113 04	100 13
CNL YG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	106 08	332 8	294 8
CNS HA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	878 01	275 46	243 99
CNN GB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	368 84	115 72	102 50
CNF OC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	413 2	129 6	114 8
TWT PE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	351 2	110 2	976
CNX MN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	164 36	515 7	456 8
TWK HH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	301 36	945 5	837 4
CNY TN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	427 27	134 05	118 74
CNH KG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	736 88	231 18	204 77
CNC WN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160 23	502 7	445 3
CND CB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	534 1	167 6	148 4
VNV UT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	649 6	203 8	180 5
THL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	162 30	509 2	451 0
SGSI N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	908 37	284 99	252 43
MYT PP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	210 71	661 1	585 5
															-										-	-			-

MYP KG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	256 70	805 4	713 4
LKC MB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	121 66	381 7	338 1
AEJ EA	321 5	575	242 8	258 2	137 37	208 0	523 1	9997	1179 0	347 1	2873 0	1206 9	1352	1149	5378	9861	139 81	2411 2	5243	1748	212 6	531 1	297 23	689 5	8400	398 1	0	0	0
OMS LL	100 9	180	762	810	431 0	653	164 1	3136	3699	108 9	9014	3786	424	361	1687	3094	438 6	7565	1645	548	667	166 6	932 5	216 3	2635	124 9	0	0	0
SAJ ED	893	160	675	718	381 8	578	145 4	2778	3276	965	7984	3354	376	319	1495	2740	388 5	6700	1457	486	591	147 6	826 0	191 6	2334	110 6	0	0	0
EGP SD	100 3	179	757	805	428 5	649	163 2	3118	3678	108 3	8962	3765	422	358	1678	3076	436 1	7521	1635	545	663	165 7	927 2	215 1	2620	124 2	0	0	0
EGD AM	321	57	242	257	137 0	207	522	997	1176	346	2865	1203	135	115	536	983	139 4	2404	523	174	212	530	296 4	687	838	397	0	0	0
TRIZ M	53	9	40	42	226	34	86	164	194	57	472	198	22	19	88	162	230	396	86	29	35	87	489	113	138	65	210	66	58
TRA MR	621	111	469	499	265 3	402	101 0	1931	2277	670	5549	2331	261	222	1039	1904	270 0	4657	1013	338	411	102 6	574 1	133 2	1622	769	210	66	58
UAO DS	42	7	31	33	178	27	68	130	153	45	373	156	18	15	70	128	181	313	68	23	28	69	385	89	109	52	166	52	46
UAIL K	32	6	24	26	137	21	52	100	118	35	287	121	14	11	54	99	140	241	52	17	21	53	297	69	84	40	128	40	36
ROC ND	201	36	152	161	859	130	327	625	737	217	1796	754	85	72	336	616	874	1507	328	109	133	332	185 8	431	525	249	799	251	222
GRPI R	475	85	358	381	202 8	307	772	1476	1741	512	4241	1782	200	170	794	1456	206 4	3560	774	258	314	784	438 8	101 8	1240	588	188 7	592	524
HRR JK	49	9	37	39	210	32	80	153	180	53	438	184	21	18	82	150	213	368	80	27	32	81	453	105	128	61	195	61	54
SIKO P	116	21	88	93	496	75	189	361	426	125	1037	436	49	41	194	356	505	870	189	63	77	192	107 3	249	303	144	461	145	128
ITTR S	94	17	71	75	400	61	152	291	344	101	837	352	39	33	157	287	407	703	153	51	62	155	866	201	245	116	372	117	103
ITGI T	947	169	715	761	404 6	613	154 1	2945	3473	102 2	8462	3555	398	338	1584	2904	411 8	7102	1544	515	626	156 4	875 5	203 1	2474	117 3	37	118 1	104 6
ITGO A	519	93	392	417	221 6	336	844	1613	1902	560	4635	1947	218	185	868	1591	225 6	3890	846	282	343	857	479 5	111 2	1355	642	206 2	647	573
FRF OS	299	53	225	240	127 5	193	486	928	1095	322	2667	1121	126	107	499	916	129 8	2239	487	162	197	493	276 0	640	780	370	118 7	372	330
ESB CN	609	109	460	489	260 1	394	991	1893	2233	657	5441	2285	256	218	1018	1867	264 8	4566	993	331	403	100 6	562 9	130 6	1591	754	242 1	759	673
ESV LC	123 6	221	933	992	528 0	800	201 1	3843	4532	133 4	1104 3	4639	520	442	2067	3790	537 4	9268	2015	672	817	204 1	114 25	265 0	3229	153 0	49	154 1	136 5
ESA GP	98	18	74	79	419	63	160	305	360	106	876	368	41	35	164	301	426	735	160	53	65	162	906	210	256	121	390	122	108
ESA LG	102 9	184	777	826	439 7	666	167 4	3200	3774	111 1	9196	3863	433	368	1721	3156	447 5	7718	1678	559	680	170 0	951 4	220 7	2689	127 4	409	128 4	113 7
MAP TM	338	60	255	272	144 5	219	550	1052	1240	365	3022	1270	142	121	566	1037	147 1	2536	552	184	224	559	312 7	725	884	419	134 5	422	374
FRL EH	744	133	562	598	317 9	481	121 1	2314	2728	803	6649	2793	313	266	1245	2282	323 6	5580	1213	404	492	122 9	687 9	159 6	1944	921	295 8	928	822
GBF TX	104 8	187	792	842	448 0	678	170 6	3260	3845	113 2	9369	3936	441	375	1754	3216	455 9	7863	1710	570	693	173 2	969 3	224 8	2739	129 8	41	130 8	115 8
BEZ EE	787	141	595	632	336 4	510	128 1	2448	2887	850	7036	2956	331	281	1317	2415	342 4	5905	1284	428	521	130 1	728 0	168 9	2057	975	313 1	982	870

BEA NR	247 2	442	186 7	198 5	105 63	160 0	402 2	7687	9066	266 9	2209 1	9280	1040	884	4135	7582	107 50	1854 0	4031	1344	163 4	408 4	228 55	530 2	6459	306 1	982 9	308 4	273 1
NLR TM	329 5	589	248 8	264 6	140 80	213 2	536 1	1024 7	1208 4	355 8	2944 6	1237 0	1386	1178	5512	1010 7	143 30	2471 3	5374	1791	217 9	544 3	304 65	706 7	8609	408 0	131 02	411 0	364 1
DEB RV	153 4	274	115 8	123 2	655 5	993	249 6	4770	5625	165 6	1370 8	5759	645	548	2566	4705	667 1	1150 5	2502	834	101 4	253 4	141 82	329 0	4008	189 9	609 9	191 4	169 5
DEH AM	237 1	424	179 0	190 4	101 30	153 4	385 7	7372	8694	256 0	2118 6	8900	997	847	3966	7271	103 10	1778 0	3866	1289	156 7	391 6	219 18	508 4	6194	293 6	942 6	295 7	261 9
SEG OT	277	49	209	222	118 2	179	450	860	1014	299	2471	1038	116	99	463	848	120 2	2074	451	150	183	457	255 6	593	722	342	109 9	345	306
DKA AR	231	41	174	186	987	149	376	718	847	249	2064	867	97	83	386	708	100 5	1732	377	126	153	382	213 6	495	604	286	918	288	255
PLG DN	81	15	61	65	348	53	132	253	298	88	727	305	34	29	136	250	354	610	133	44	54	134	752	175	213	101	324	102	90
	EGP SD	EGD AM	TRI ZM	TRA MR	UAO DS	UAI LK	ROC ND	GR PIR	HRR JK	SIK OP	ITT RS	ITG IT	ITG OA	FRF OS	ESB CN	ESV LC	ESA GP	ESA LG	MAP TM	FRL EH	GBF TX	BEZ EE	BEA NR	NLR TM	DEB RV	DEH AM	SEG OT	DKA AR	PLG DN
JPY OK	3065	980	138	1622	109	84	525	124 0	128	303	245	247 3	135 5	780	1590	322 8	256	268 8	883	194 3	273 8	205 7	6457	8606	4007	6192	722	603	213
JPS MZ	548	175	25	290	19	15	94	222	23	54	44	442	242	139	284	577	46	480	158	347	489	368	1154	1538	716	1107	129	108	38
JPN GO	2314	740	104	1225	82	63	396	936	97	229	185	186 8	102 3	589	1201	243 7	193	202 9	667	146 7	206 8	155 3	4875	6499	3025	4676	545	456	160
JPU KB	2462	787	111	1302	87	67	422	996	103	243	196	198 6	108 8	626	1277	259 2	206	215 8	709	156 1	219 9	165 2	5185	6912	3218	4973	580	484	171
KRP US	1309 6	4186	590	6929	465	359	2243	529 7	547	129 5	104 5	105 67	578 8	3331	6794	137 90	1094	114 84	3774	830 3	117 00	878 7	2758 7	3677 2	1711 8	2645 6	3086	2578	908
KRK AN	1983	634	89	1049	70	54	340	802	83	196	158	160 0	877	504	1029	208 8	166	173 9	572	125 7	177 2	133 1	4178	5569	2592	4006	467	390	138
CND LC	4986	1594	225	2638	177	137	854	201	208	493	398	402 4	220 4	1268	2587	525 1	417	437 3	1437	316 1	445 5	334 6	1050 4	1400 1	6518	1007 4	1175	981	346
CNT XG	9530	3047	429	5043	339	261	1632	385 4	398	943	761	769 0	421 2	2424	4944	100 35	796	835 7	2747	604 2	851 4	639 4	2007 6	2676 0	1245 8	1925 3	2246	1876	661
CNT AO	1123 9	3593	506	5947	399	308	1925	454 6	470	111 2	897	906 9	496 7	2859	5831	118 35	939	985 5	3239	712 6	100 41	754 1	2367 6	3155 8	1469 2	2270 5	2648	2212	779
CNL YG	3309	1058	149	1751	118	91	567	133	138	327	264	267 0	146 3	842	1717	348 5	276	290 2	954	209	295 6	222	6971	9292	4326	6685	780	651	229
CNS	2738	8755	123	1449	973	751	4691	110	114	270	218	221	121	6966	1420	288	2288	240	7893	173	244	183	5769	7690	3580 1	5532	6453	5391	1899
CNN	1150 5	3678	518	6087	409	315	1970	465	481	113 8	918	928 4	508	2926	5969	121 15	961	100	3316	729 4	102 79	771	2423 6	3230 5	1503 9	2324 3	2711	2265	798
CNF	1289	412	58	682	46	35	221	521	54	127	103	104 0	570	328	669	135 7	108	113 0	371	817	115 1	865	2715	3619	1685	2604	304	254	89
TWT	1095	350	49	580	39	30	188	443	46	108	87	884	484	279	568	115 4	92	961	316	695	979	735	2308	3076	1432	2213	258	216	76
CNX	5127	1639	231	2713	182	141	878	207	214	507	409	413	226	1304	2660	539	428	449	1478	325 1	458	344	1080	1439	6702	1035	1208	1009	356
TWK	9400	3005	423	4974	334	258	1610	380 2	393	930	750	758	415	2391	4877	989	785	824 3	2709	596	839	630 7	1980 2	2639	1228	1899	2215	1850	652
CNY	1332	4260	420	7052	472	200	2282	539	557	131	106	107	589	2300	601/	140 34	1113	116 87	2103	845	119	894 2	2807	3742	1742	2692	3140	2623	032
CNH	2298	4200	103	1216	4/3	000	2203	929	001	227	183	185	101	5390	1192	242	1000	201	3041	145	205	154	4842	6454	2 3004	4643	5140	2023	924
ĸG	6	1348	5	2	816	630	393/	6	961	3	5	48	59	5846	5	04	1920	50	6624	13	35	22	U	1	ю	5	5410	4524	1594

CNC WN	4998	1598	225	2644	178	137	856	202 1	209	494	399	403 3	220 9	1271	2593	526 3	418	438 3	1440	316 9	446 5	335 3	1052 8	1403 4	6533	1009 7	1178	984	347
CND CB	1666	533	75	881	59	46	285	674	70	165	133	134 4	736	424	864	175 4	139	146 1	480	105 6	148 8	111 8	3509	4678	2178	3366	393	328	116
VNV UT	2026	648	91	1072	72	56	347	820	85	200	162	163 5	896	515	1051	213 4	169	177 7	584	128 5	181 0	136 0	4268	5690	2649	4093	477	399	141
THL CH	5063	1618	228	2679	180	139	867	204 8	212	501	404	408 5	223 8	1288	2627	533 1	423	443 9	1459	321 0	452 3	339 7	1066 5	1421 6	6618	1022 8	1193	997	351
SGSI N	2833 5	9058	127 6	1499 2	1007	777	4853	114 60	118 4	280 2	226 2	228 64	125 23	7207	1470 0	298 37	2367	248 47	8166	179 65	253 14	190 12	5968 9	7956 2	3703 9	5724 2	6676	5577	1965
MYT PP	6573	2101	296	3478	233	180	1126	265 8	275	650	525	530 4	290 5	1672	3410	692 1	549	576 3	1894	416 7	587 2	441 0	1384 6	1845 5	8592	1327 8	1549	1294	456
MYP KG	8007	2560	361	4237	284	220	1371	323 9	335	792	639	646 1	353 9	2037	4154	843 2	669	702 2	2308	507 7	715 4	537 3	1686 8	2248 4	1046 7	1617 7	1887	1576	555
LKC MB	3795	1213	171	2008	135	104	650	153 5	159	375	303	306 2	167 7	965	1969	399 6	317	332 8	1094	240 6	339 0	254 6	7994	1065 6	4961	7667	894	747	263
AEJE A	0	0	180	2110	142	109	683	161 3	167	394	318	321 7	176 2	1014	2069	419 9	333	349 6	1149	252 8	356 2	267 5	8400	1119 6	5212	8055	940	785	277
OMS LL	0	0	56	662	44	34	214	506	52	124	100	100 9	553	318	649	131 7	105	109 7	361	793	111 8	839	2635	3513	1635	2527	295	246	87
SAJE D	0	0	50	586	39	30	190	448	46	110	88	894	490	282	575	116 7	93	972	319	703	990	743	2334	3111	1448	2239	261	218	77
EGP SD	0	0	56	658	44	34	213	503	52	123	99	100 4	550	316	645	131 0	104	109 1	358	789	111 1	835	2620	3492	1626	2513	293	245	86
EGD AM	0	0	18	210	14	11	68	161	17	39	32	321	176	101	206	419	33	349	115	252	355	267	838	1116	520	803	94	78	28
TRIZ M	66	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRA MR	770	246	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UAO DS	52	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UAIL K	40	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROC ND	249	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRPI R	589	188	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HRR JK	61	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SIKO P	144	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ITTR S	116	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ITGI T	1174	375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ITGO A	643	206	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FRF OS	370	118	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESB CN	755	241	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESV LC	1533	490	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ESA GP	122	39	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ESA LG	1276	408	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MAP TM	419	134	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FRL EH	923	295	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GBF TX	1300	416	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BEZ EE	977	312	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BEA NR	3066	980	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NLR TM	4087	1306	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEB RV	1903	608	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DEH AM	2940	940	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SEG OT	343	110	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DKA AR	286	92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PLG DN	101	32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sourc	ce: La	chner	and	Bosk	amp	(201	1)																						

Appendix B: Maersk Route, Ship, and Routes

Α	E1	Α	E2	AE3			AE5	A	E6
2010	2018	2010	2018	2010	2018	2010	2018	2010	2018
JPYOK	CNSHA	KRPUS	CNTXG	CNDLC			CNTXG	JPYOK	JPYOK
CNHKG	CNNGB	CNTXG	CNTAO	CNTXG			CNTAO	JPNGO	CNNGB
CNYTN	CNHKG	CNDLC	KRPUS	KRPUS			KRPUS	CNSHA	CNSHA
MYTPP	CNYTN	CNTAO	CNNGB	CNSHA			CNNGB	CNNGB	CNYTN
GBFTX	MYTPP	KRKAN	CNYTN	CNNGB			CNSHA	CNXMN	MYTPP
NLRTM	LKCMB	CNSHA	MYTPP	TWTPE			CNYTN	CNHKG	PTSIE
DEHAM	GBFTX	DEBRV	ESALG	CNCWN			MYTPP	CNYTN	BEANR
DEBRV	NLRTM	DEHAM	GBFTX	CNYTN			MAPTM	MYTPP	GBFTX
MAPTM	DEBRV	NLRTM	BEANR	MYTPP			DEBRV	SAJED	FRLEH
SAJED	NLRTM	GBFTX	NLRTM	MYPKG			DEHAM	ESBCN	EGPSD
AEJEA	MAPTM	BEANR	ESALG	EGPSD			SEGOT	ESVLC	SGSIN
CNDCB	OMSLL	MYTPP	SGSIN	EGDAM			DKAHS	ESALG	CNSHA
CNNGB	LKCMB	KRPUS	CNHKG	TRIZM			DEWIL	MAPTM	CNHKG
CNSHA	SGSIN		CNYTN	TRAMR			DEBRV	MYTPP	CNYTN
TWKHH	CNNGB		CNTXG	ROCND			BEANR	VNVUT	CNXMN
JPYOK	CNSHA			UAILK			NLRTM	CNYTN	JPYOK
				UAODS			EGSUZ	CNHKG	
				EGDAM			SGSIN	JPYOK	
				EGPSD			CNSHA		

Table B.1. Maersk Routes in 2010 and 2018 (Asia-Europe-Asia)

MYTPP MYPKG CNDLC CNTXG

A	Ξ7	AE9		AE	10	AE1 1		AE'	12
2010	2018	2010	2018	2010	2018	2010	2018	2010	2018
CNSHA	CNNGB	THLCH			CNDLC	CNTAO		CNSHA	
CNNGB	CNSHA	MYTPP			KRPUS	CNSHA		KRPUS	
CNXMN	MYTPP	MYPKG			KRKAN	CNFOC		CNHKG	
CNHKG	NLRTM	LKCMB			CNNGB	CNHKG		CNCWN	
CNYTN	DEHAM	BEZEE			CNSHA	CNCWN		MYTPP	
ESALG	DEBRV	GBFTX			CNXMN	CNYTN		MYPKG	
MAPTM	DEWIL	DEBRV			CNYTN	MYTPP		EGPSD	
NLRTM	GBFTX	NLRTM			MYTPP	MYPKG		GRPIR	
GBFTX	BEANR	FRLEH			NLRTM	OMSLL		SIKOP	
DEBRV	FRLEH	MAPTM			DEBRV	EGPSD		HRRJK	
ESAGP	MAPTM	OMSLL			PLGDN	ITGIT		ITTRS	
CNYTN	OMSLL	LKCMB			DEBRV	ITGOA		EGDAM	
CNHKG	AEJEA	MYPKG			GBFTX	FRFOS		ESPSD	
CNSHA	CNNGB	SGSIN			MYTPP	ITGOA		SAJED	
		THLCH			CNSHA	EGDAM		MYPKG	
					CNDLC	ESPSD		SGSIN	
						OMSLL		CNSHA	
						MYPKG			
						SGSIN			

CNLYG

CNTAO

Source: Mulder (2011) and Maersk (2018)

AE1		AE	2	AE3	
Ship	Capacity (TEU)	Ship	Capacity (TEU)	Ship	Capacity (TEU)
Sofie Maersk	8160	Maersk Seville	8478	Maersk Kinloss	6500
Albert Maersk	8272	Maersk Saigon	8450	CMA CGM Debussy	6627
Carsten Maersk	8160	Adrian Maersk	8272	Maersk Kuantan	6500
Maersk Singapore	8478	Maersk Salina	8600	Maersk Kowloon	6500
Clementine Maersk	8648	Maersk Savannah	8600	CMA CGM Corneille	6500
Maersk Seoul	8450	Anna Maersk	8272	Maersk Kelso	6500
Maersk Taurus	8400	Arthur Maersk	8272	CMA CGM Musset	6540
Sine Maersk	8160	Maersk Stepnica	8600	Maersk Kwangyang	6500
Axel Maersk	8272	Maersk Semarang	8400	CMA CGM Bizet	6627
Cornelia Maersk	8650	Maersk Stralsund	8500	Maersk Kensington	6500
Average	8365	Average	8444	CMA CGM Baudelaire	6251
				Average	6504

Table B.2.
Maersk Ships and Capacities in 2010 (Asia-Europe-Asia)

AE6		Α	E7	AE9	
Ship	Capacity (TEU)	Ship	Capacity (TEU)	Ship	Capacity (TEU)
Mathilde Maersk	9038	Eugen Maersk	14770	Maersk Sembawang	6478
Maersk Antares	9200	Elly Maersk	14770	Maersk Sebarok	6478
Gunvor Maersk	9074	Evelyn Maersk	14770	Maersk Serangoon	6478
Mette Maersk	9038	Edith Maersk	14770	SL New York	6420
Marit Maersk	9038	Estelle Maersk	14770	Maersk Seletar	6478
Gerd Maersk	9074	Maersk Algol	9200	Maersk Kendal	6500
Maersk Altair	9200	Ebba Maersk	14770	Maersk Sentosa	6478

Gudrun Maersk	9074
Marchen Maersk	9038
Maren Maersk	9038
Georg Maersk	9074
Grete Maersk	9074
Maersk Alfirk	9200
Margrethe Maersk	9038
Average	9086

Eleonora Maersk Emma Maersk Gjertrud Maersk Average

14770	
14770	
9074	
13643	

Maersk Semakau	6478
Maersk Senang	6478
Average	6474

.

AE1	0	AE	11	AE12	
Ship	Capacity (TEU)	Ship	Capacity (TEU)	Ship	Capacity (TEU)
A.P. Moller	8160	Charlotte Maersk	8194	Maersk Kyrenia	6978
Skagen Maersk	8160	Maersk Surabaya	8400	Safmarine Komati	6500
Sally Maersk	8160	Maersk Santana	8478	CMA CGM Belioz	6627
Arnold Maersk	8272	CMA CGM Faust	8204	Safmarine Kariba	6500
Svendborg Maersk	8160	Soroe Maersk	8160	CMA CGM Balzac	6251
Svend Maersk	8160	Susan Maersk	8160	Maersk Karachi	6930
Columbine Maersk	8648	Caroline Maersk	8160	CMA CGM Ravel	6712
Maersk Tukang	8400	Cornelius Maersk	8160	CMA CGM Flaubert	6638
Clifford Maersk	8160	Chastine Maersk	8160	CMA CGM Voltaire	6456
Maersk Salalah	8600	Average	8231	Average	6621
Maersk Stockholm	8600	-			

Source: Mulder (2011)

8316

Average

AE1	1	AE2		AE5	AE5		
Ship	Capacity (TEU)	Ship	Capacity (TEU)	Ship	Capacity (TEU)		
MAYVIEW MAERSK	18270	MSC BETTINA	14000	MARY MAERSK	18270		
METTE MAERSK	18270	ELLY MAERSK	15500	METTE MAERSK	18270		
MARCHEN MAERSK	18270	EDITH MAERSK	15500	MSC OLIVER	19224		
MAJESTIC MAERSK	18270	ELEONORA MAERSK	15500	MILAN MAERSK	20568		
MARSTAL MAERSK	18270	MSC VENICE	15908	MSC ERICA	19437		
MAGLEBY MAERSK	18270	MSC LONDON	16652	MUNICH MAERSK	20568		
MUNKEBO MAERSK	18270	MSC INGY	17590	MONACO MAERSK	20568		
MARIBO MAERSK	18270	METTE MAERSK	18270	Average	19083		
MAERSK M. MOLLER	18270	MARCHEN MAERSK	18270				
MERETE MAERSK	18270	MARIBO MAERSK	18270				
MORTEN MAERSK	18340	MSC ERICA	19437				
MSC OLIVER	19224	MILAN MAERSK	20568				
MSC ERICA	19437	MANILA MAERSK	20568				
MONACO MAERSK	20568	Average	15510				
MILAN MAERSK	20568						
MANILA MAERSK	20568						
MADRID MAERSK	20568						
MUNICH MAERSK	20568						
Average	19029						

Table B.3. Maersk Ships and Capacities in 2018 (Asia-Europe-Asia)

AE6		AE7		AE10		
Ship	Capacity (TEU)	Ship	Capacity (TEU)	Ship	Capacity (TEU)	
MAERSK SINGAPORE	8452	MARSTAL MAERSK	18270	MARSTAL MAERSK	18270	
MAERSK SEVILLE	8466	MAGLEBY MAERSK	18270	MAGLEBY MAERSK	18270	
SEROJA LIMA	8540	MORTEN MAERSK	18340	MAERSK M. MOLLER	18270	
GUSTAV MAERSK	9038	MSC ZOE	19224	MSC ELOANE	19462	
GUNVOR MAERSK	9930	MSC MIRJA	19437	Average	18270	
GUDRUN MAERSK	9930	MSC ELOANE	19462			
GUNDE MAERSK	9700	MSC RIFAYA	19472			
GUTHORM MAERSK	11008	MOSCOW MAERSK	20568			
MAERSK ANTARES	11294	Average	18293			
MAERSK EDMONTON	13092					
MAERSK ESSEX	13092					
MAERSK EINDHOVEN	13092					
MSC SAVONA	14000					
MAERSK HANOI	15226					
MAERSK HANGZHOU	15226					
ELEONORA MAERSK	15500					
EVELYN MAERSK	15500					
ELLY MAERSK	15500					
MURCIA MAERSK	20568					
MARSEILLE MAERSK	20568					
MANCHESTER MAERSK	20568					
Average	13430					

Source: Mulder (2011)

2	2010	2018		
	Average	Average		
Route	(TEU)	Route	(TEU)	
AE1	8365	AE1	19029	
AE2	8444	AE2	17583	
AE3	6504			
		AE5	19083	
AE6	9086	AE6	13430	
AE7	13643	AE7	19130	
AE9	6474			
AE10	8316	AE10	18568	
AE12	6621			
AE11	8231			
Average	8690	Average	17804	

Table B.4.	
Maersk Route Capacities in 2010 and 2018	8 (Asia-Europe-Asia)

Source: Mulder (2011) and Maersk (2018)

Α	E1	A	E2	AE3		
Ship	Design Speed (knot)	Ship	Design Speed (knot)	Ship	Design Speed (knot)	
Sofie Maersk	25	Maersk Seville	25.3	Maersk Kinloss	24.3	
Albert Maersk	24.1	Maersk Saigon	24.6	CMA CGM Debussy	24.5	
Carsten Maersk Maersk	23.2	Adrian Maersk	24.8	Maersk Kuantan	25.1	
Singapore Clementine	24.8	Maersk Salina Maersk	24.2	Maersk Kowloon	23.9	
Maersk	25.6	Savannah	24.9	CMA CGM Corneille	23.3	
Maersk Seoul	23.3	Anna Maersk	24.7	Maersk Kelso	26.3	
Maersk Taurus	25.1	Arthur Maersk	25.9	CMA CGM Musset	23.8	
Sine Maersk	23.6	Maersk Stepnica Maersk	24.9	Maersk Kwangyang	25.4	
Axel Maersk	25.8	Semarang Maersk	23.9	CMA CGM Bizet	23.3	
Cornelia Maersk	24.7	Stralsund	23.7	Maersk Kensington CMA CGM	24.7	
Average	25	Average	25	Baudelaire	22.7	
				Average	24	

Table B.5. Maersk Vessel Speed in 2010 (Asia-Europe-Asia)

AE6		A	E7	AE9		
Ship	Design Speed (knot)	Ship	Design Speed (knot)	Ship	Design Speed (knot)	
Mathilde Maersk	23.6	Eugen Maersk	25.2	Maersk Sembawang	23	
Maersk Antares	24.2	Elly Maersk	25.2	Maersk Sebarok	20.8	
Gunvor Maersk	24.2	Evelyn Maersk	25.5	Maersk Serangoon	22.7	
Mette Maersk	24.2	Edith Maersk	24.4	SL New York	24.4	
Marit Maersk	24.6	Estelle Maersk	25.3	Maersk Seletar	23.7	
Gerd Maersk	24.8	Maersk Algol	26.1	Maersk Kendal	24	
Maersk Altair	24.1	Ebba Maersk	25	Maersk Sentosa	22.6	
Gudrun Maersk	26.2	Eleonora Maersk	24.9	Maersk Semakau	22.6	
Marchen Maersk	24.6	Emma Maersk	26	Maersk Senang	23.2	
Maren Maersk	24.6	Gjertrud Maersk	24.9	Average	23	
Georg Maersk	24.8	Average	25			
Grete Maersk	26.5					
Maersk Alfirk Margrethe	24.2					
Maersk	24.2					
Average	25					

Source: Mulder (2011)

А	E10	Α	E11	AE12		
Ship	Design Speed (knot)	Ship	Design Speed (knot)	Ship	Design Speed (knot)	
A.P. Moller	23	Charlotte Maersk Maersk	24.1	Maersk Kyrenia	23.1	
Skagen Maersk	25.7	Surabaya	26	Safmarine Komati	24	
Sally Maersk	23.8	Maersk Santana CMA CGM	25	CMA CGM Belioz	22.4	
Arnold Maersk Svendborg	24.8	Faust	25.3	Safmarine Kariba	24	
Maersk	23.4	Soroe Maersk	24.5	CMA CGM Balzac	26.3	
Svend Maersk Columbine	25	Susan Maersk	25.7	Maersk Karachi	23.6	
Maersk	11.6	Caroline Maersk Cornelius	24.1	CMA CGM Ravel CMA CGM	26	
Maersk Tukang	24.3	Maersk	24.6	Flaubert CMA CGM	25.6	
Clifford Maersk	25.2	Chastine Maersk	25.1	Voltaire	27	
Maersk Salalah Maersk	23.7	Average	25	Average	25	
Stockholm	24.8					
Average	23					

AE1				AE2			
	Design Speed	Average	Speed Optimization		Design Speed	Average	Speed Optimization
Ship	(knot)	Speed (knot)	(%)	Ship	(knot)	Speed (knot)	(%)
MAYVIEW				MSC			
MAERSK	23.8	15.3	64	BETTINA	22.2	13.2	59
METTE				ELLY			
MAERSK	24.2	15.4	64	MAERSK	25.5	14.3	56
MARCHEN				EDITH			
MAERSK	24.6	15.2	62	MAERSK	24.4	14.6	60
MAJESTIC				ELEONORA			
MAERSK	24.4	15.4	63	MAERSK	24.9	14.2	57
MARSTAL							
MAERSK	23.9	15.3	64	MSC VENICE	24.9	15.5	62
MAGLEBY				MSC			
MAERSK	20.7	16.6	80	LONDON	24.1	15.1	63
MUNKEBO							
MAERSK	23.9	15.5	65	MSC INGY	25.4	15.1	59
MARIBO				METTE			
MAERSK	23.2	15	65	MAERSK	24.2	15.4	64
MAERSK M.				MARCHEN			
MOLLER	25.6	15.5	61	MAERSK	24.6	15.2	62
MERETE				MARIBO			
MAERSK	23.7	14.5	61	MAERSK	23.2	15	65
MORTEN							
MAERSK	24.1	15.3	63	MSC ERICA	25	15.1	60
				MILAN			
MSC OLIVER	25.6	15.4	60	MAERSK	24.7	13.9	56

Table B.6. Maersk Vessel Speed in 2018 (Asia-Europe-Asia)

				MANILA			
MSC ERICA	25	15.1	60	MAERSK	24.5	12.7	52
MONACO							
MAERSK	24.8	13.7	55	Average	24	15	60
MILAN							
MAERSK	24.7	13.9	56				
MANILA							
MAERSK	24.5	12.7	52				
MADRID							
MAERSK	25.3	14.7	58				
MUNICH							
MAERSK	25.5	15.1	59				
Average	24	15	62				

	1	AE5		AE6			
Ship	Design Speed (knot)	Average Speed (knot)	Speed Optimization (%)	Ship	Design Speed (knot)	Average Speed (knot)	Speed Optimization (%)
MARY	0.5			MAERSK		10.1	- 4
MAERSK METTE	25	15.5	62	MAERSK	24.8	13.4	54
MAERSK MSC	24.2	15.4	64	SEVILLE	25.3	13.3	53
OLIVER MILAN	25.6	15.4	60	SEROJA LIMA GUSTAV	23.2	12.7	55
MAERSK MSC	24.7	13.9	56	MAERSK GUNVOR	26.1	13.1	50
ERICA MUNICH	25	15.1	60	MAERSK GUDRUN	24.2	13.2	55
MAERSK	25.5	15.1	59	MAERSK	26.2	13.2	50

MONACO MAERSK

24.8	
25	

Average

13.7

	255	14/	<u></u>
	05 5	44.0	
	24.9	14.2	57
MAERSK HANGZHOU	22.0	12.7	58
MAERSK HANOI	21.6	12.7	59
MSC SAVONA	24.5	13.3	54
MAERSK EINDHOVEN	25.3	13.4	53
MAERSK	23.6	14.4	57
MAERSK	23.0	14.4	50
MAERSK	20.2	13.0	55
GUTHORM	25.1	12.6	54
	25.1	10.1	50

AE7				AE10			
	Design Speed	Average	Speed Optimization		Design Speed	Average	Speed Optimization
Ship	(knot)	Speed (knot)	(%)	Ship	(knot)	Speed (knot)	(%)
MARSTAL				MARSTAL			
MAERSK	23.9	15.3	64	MAERSK	23.9	15.3	64
MAGLEBY				MAGLEBY			
MAERSK	20.7	16.6	80	MAERSK	20.7	16.6	80
MORTEN				MAERSK M.			
MAERSK	24.1	15.3	63	MOLLER	25.6	15.5	61
				MSC			
MSC ZOE	25	14.9	60	ELOANE	21.2	12.5	59
MSC MIRJA MSC	24.5	15.3	62	Average	23	15	66
ELOANE MSC	21.2	12.5	59				
RIFAYA MOSCOW	24.5	15.1	62				
MAERSK	24.8	15	60				
Average	24	15	64				

Source: Maersk (2018)

Table B.7.	
Maersk Average Vessel Speed in 2010 and 2018 (Asia-Europe	e-Asia)

Route	Average Speed		
	2010	2018	
AE1	24.5	15.0	
AE2	24.7	14.6	
AE3	24.3	NA	
AE5	NA	14.9	
AE6	24.6	13.6	
AE7	25.3	15.0	
AE9	23.0	NA	
AE10	23.2	15.0	
AE11	24.9	NA	
AE12	24.7	NA	
Average	24	15	

Source: Author estimation based on Mulder (2011) and Maersk (2018)

Appendix C: Maersk Network Properties

Maersk Network Properties in 2010							
	In-degree	Out-degree	Betweenness				
Port	Centrality	Centrality	Centrality				
MYTPP	9	9	0.41				
EGPSD	4	4	0.36				
EGDAM	4	4	0.31				
MYPKG	8	8	0.24				
CNSHA	7	7	0.22				
MAPTM	4	4	0.20				
DEBRV	4	4	0.18				
OMSLL	3	3	0.15				
CNHKG	7	7	0.14				
KRPUS	3	3	0.13				
SAJED	3	3	0.11				
CNYTN	7	7	0.10				
GBFTX	4	4	0.09				
CNCWN	3	3	0.08				
CNNGB	4	4	0.08				
TRIZM	1	1	0.07				
TRAMR	1	1	0.07				
ROCND	1	1	0.07				
UAILK	1	1	0.07				
UAODS	1	1	0.07				
ESPSD	2	2	0.07				
ITGOA	2	2	0.06				
GRPIR	1	1	0.06				
SIKOP	1	1	0.06				
HRRJK	1	1	0.06				
ITTRS	1	1	0.06				
SGSIN	3	3	0.05				
CNTAO	2	2	0.05				
ESALG	2	2	0.04				
CNDLC	2	2	0.04				
JPYOK	2	2	0.04				
NLRTM	4	4	0.04				
ITGIT	1	1	0.04				

Table C.1.Maersk Network Properties in 2010

	1		·
AEJEA	1	1	0.03
CNDCB	1	1	0.03
BEANR	1	1	0.02
ESBCN	1	1	0.02
ESVLC	1	1	0.02
TWTPE	1	1	0.02
LKCMB	2	2	0.02
VNVUT	1	1	0.01
CNTXG	2	2	0.01
FRLEH	1	1	0.01
ESAGP	1	1	0.01
THLCH	1	1	0.01
TWKHH	1	1	0.01
BEZEE	1	1	0.01
JPNGO	1	1	0.01
CNFOC	1	1	0.00
CNXMN	2	2	0.00
DEHAM	2	2	0.00
CNLYG	1	1	0.00
KRKAN	1	1	0.00
FRFOS	1	1	0.00

	In-degree	Out-degree	Betweenness
Port	Centrality	Centrality	Centrality
CNSHA	8	8	0.46
MYTPP	6	6	0.36
GBFTX	5	5	0.23
NLRTM	6	6	0.20
CNNGB	6	6	0.19
DEBRV	6	6	0.16
SGSIN	4	4	0.15
KRPUS	3	3	0.14
CNYTN	7	7	0.13
MAPTM	3	3	0.11
CNDLC	1	1	0.08
LKCMB	2	2	0.07
DEHAM	2	2	0.06
DEWIL	2	2	0.06
ESALG	2	2	0.06
OMSLL	2	2	0.05
BEANR	4	4	0.05
FRLEH	2	2	0.05
CNTAO	2	2	0.04
CNTXG	2	2	0.04
CNXMN	2	2	0.03
DKAHS	1	1	0.03
KRKAN	1	1	0.03
SEGOT	1	1	0.03
PTSIE	1	1	0.03
EGPSD	1	1	0.02
AEJEA	1	1	0.02
EGSUZ	1	1	0.01
JPYOK	1	1	0.01
CNHKG	3	3	0.00
PLGDN	1	1	0.00

Table C.2.Maersk Network Properties in 2018

Maersk Weighted Demand Network Properties, 2010					
	Closeness		Closeness		
Port	Centrality	Port	Centrality		
AEJEA	0.93	TWTPE	0.70		
EGDAM	0.93	VNVUT	0.70		
EGPSD	0.93	BEANR	0.69		
OMSLL	0.93	BEZEE	0.69		
SAJED	0.93	DEBRV	0.69		
CNCWN	0.70	DEHAM	0.69		
CNDCB	0.70	DKAAR	0.69		
CNDLC	0.70	ESAGP	0.69		
CNFOC	0.70	ESALG	0.69		
CNHKG	0.70	ESBCN	0.69		
CNLYG	0.70	ESVLC	0.69		
CNNGB	0.70	FRFOS	0.69		
CNSHA	0.70	FRLEH	0.69		
CNTAO	0.70	GBFTX	0.69		
CNTXG	0.70	GRPIR	0.69		
CNXMN	0.70	HRRJK	0.69		
CNYTN	0.70	ITGIT	0.69		
JPNGO	0.70	ITGOA	0.69		
JPSMZ	0.70	ITTRS	0.69		
JPUKB	0.70	MAPTM	0.69		
JPYOK	0.70	NLRTM	0.69		
KRKAN	0.70	PLGDN	0.69		
KRPUS	0.70	ROCND	0.69		
LKCMB	0.70	SEGOT	0.69		
MYPKG	0.70	SIKOP	0.69		
MYTPP	0.70	TRAMR	0.69		
SGSIN	0.70	TRIZM	0.69		
THLCH	0.70	UAILK	0.69		
TWKHH	0.70	UAODS	0.69		

Table C.3.