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Abstract

Japan’s spot LNG prices may affect Japanese power utilities’ profitability. This study
proposes better models to forecast Japan’s spot LNG prices in the short run and in
the long run by applying Bayesian Structural Time Series (BSTS) model.

For the short-term forecasting, BSTS model performs better than a classical model,
Autoregressive Integrated Moving Average (ARIMA) model. BSTS model captures
dynamically changing patterns under the limited historical data (51 observations).
The results show that Japan’s spot LNG price of June 2018 is estimated to be
$9.0/MMBtu.

For the long-term forecasting, BSTS model with a regression component performs
better than Single BSTS model. To select the important variables, Spike and Slab
prior is derived from Google search data. We consider the 11 potential variables
influencing Japan’s spot LNG prices: oil price, coal price, natural gas price,
upstream investment in oil and gas, investment in LNG liquefaction plant, Japan’s
LNG spot market utilisation rate, global LNG spot market utilisation rate, natural gas
production, natural gas consumption, global LNG trade, Japan’s LNG import. The
best-performing BSTS model includes Japan’s LNG import in volume as the highest
inclusion probability. The results show that Japan’s spot LNG price is estimated to
be $7.9/MMBtu in 2030.
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Chapter 1 Introduction

1.1 Background

Natural gas plays a crucial role as an energy supply, an electricity generator and a
feed stock for industry. Global natural gas demand is expected to increase, because
it has an environmental advantage compared to the other fossil fuels. It produces
relatively low greenhouse gas emissions and contributes to higher air quality.
Recent natural gas trade is more dynamic and globalised due to the shale gas
revolution and the expansion of liquified natural gas (LNG). The shale gas revolution
produces new natural gas supply locations in the world. LNG shipping allows flexible
deliveries to meet demand and supply in the global basis.

Japan is the world largest LNG importer and Japanese companies have participated
in the LNG export projects for 50 years. They are not only traditional LNG buyers but
also important participants in the LNG supply chain. Japan’s demand for LNG
soared after the nuclear plant accident caused by the earthquake and tsunami in
2011. Before 2011, there were 54 nuclear reactors producing 30 % of Japanese
power. In 2014, all nuclear reactors became offline. Japanese utilities increased
rapidly the short-term LNG procurements. It prompted the surge in East Asian LNG
spot prices and contributed to the shape of the dynamic spot LNG trades.

1.2 Problem Statements

Power utilities industry in Japan is undergoing dramatic changes and faces huge
risks. It is difficult to reach the equilibrium of supply and demand for LNG, because
the domestic LNG demand is fulfilled with uncertainty and LNG supply based on the
long-term contracts is inflexible.

The LNG domestic demand as a fuel would be influenced by three factors such as:
decreasing the domestic power demand in the long run, growing the solar capacity
in the medium run and nuclear returning in the short run. On the other hand, the
LNG supply market has inflexible characteristics which include long-term contracts
and destination restrictions. However, developing liquidity in the LNG market has
been seen. LNG spot trades boost and the U.S. became a LNG exporter due to the
shale gas revolution. The LNG from the U.S. is flexible to destination. It means that
it is possible to resell LNG from the U.S. to another destination.

Japanese power utilities face a problem to optimise their LNG procurement,
because it is difficult to anticipate the domestic demand exactly. Moreover, it is
anticipated that the LNG supply will have shortage because the increase in global
LNG demand and the decrease in the final investment decision for the LNG
upstream facilities.

In order to meet domestic demand and supply, there are three options. The first
option is to buy the exact amount of LNG to meet the domestic demand by utilising
the spot market. The second option is to resell the LNG which does not have
destination restrictions in the long-term contract in case of excess supply in Japan.
The third option is to trade LNG to make a profit and adjust the domestic
procurement. Japanese power utilities choose the best combination of the LNG



procurements in the long-term contracts, in the short-term contracts and from the
spot market.

In this thesis, we limit the scope of the first option. Because the LNG trading is not a
straight forward strategy to minimize the procurement costs but also more
aggressive strategy to make profits. Moreover, the reselling the LNG is not
necessarily if they can adjust the LNG supply from the short and the spot market.
However, it is always better to have a back-up plan.

Therefore, to optimise the procurement costs, Japan’s spot LNG prices are
important. Although the volume of the LNG procurement could be adjusted from the
spot market, the spot price is fluctuated. The spot LNG price forecasting could be
useful for the power utilities to determine a budget for the cost in the near future.

1.3 Research Questions

With regards to the problem statements, this study answers the following main
research question:

“How can we forecast Japan’s spot LNG prices?”

This main research question comes from the situation that Japanese power utilities
would increase the volume of LNG procurement from the spot market up to around
50% of the total by 2030. The LNG procurement from the spot market has increased
due to the combination of the urgent LNG procurement in 2011 and the uncertainty
of the future LNG demand. The LNG spot price could influence their procurement
costs.

To answer the main research question, the following sub-research questions are
formulated.

. Who are LNG exporters and importers in the world (Chapter 2)?

. What is the characteristic of LNG trade agreements (Chapter 2)?

. How has the LNG market changed recently (Chapter 2)?

. What is the characteristic of the global LNG spot market (Chapter 2)?

. What determines the LNG demand in Japan (Chapter 3)?

. What determines the LNG supply in Japan (Chapter 3)?

. How do Japanese power utilities make use of the spot market (Chapter 3)?
. What method is available to forecast Japan’s spot LNG prices (Chapter 4)?

ONO O WN =

1.4 Research Methodology and Structure

This study uses both qualitative and quantitative methods to forecast Japan’s spot
LNG prices in the short run and in the long run.

In the qualitative part, we analyse global and Japan’s LNG market to determine the
potential variables which might influence Japan’s spot LNG prices. The focal point is
the LNG spot market. In the quantitative part, we use Autoregressive Integrated
Moving Average (ARIMA) model and Bayesian Structural Time Series (BSTS)
model for the short-term forecasting. we use BSTS without a regression component
and BSTS with a regression component for the long-term forecasting.



This study is structured as follows.

Firstly, Chapter 2 analyses global LNG market focusing on the development of
global LNG spot market. Chapter 3 analyses Japan’s LNG market focusing on the
development of Japan’s LNG spot market. The results from Chapter 2 and 3 are
used as variables of BSTS with a regression component for the long-term
forecasting.

Secondly, Chapter 4 describes literature review to have ideas about the choices of
this study methods. Chapter 5 analyses the characteristics of this study combined
with the literature review and verifies the choices of this study methods. Chapter 6
describes notations of ARIMA and BSTS, the data set and the process of the
implementations in the statistic software, R, for the short-term forecasting and long-
term forecasting.

Thirdly, Chapter 7 describes results and analysis for forecasting Japan’s spot LNG
prices. we use errors as a guidance to determine a model performance. Then, we
compare the short-term results to the data published by Japan’s Ministry of
Economy, Trade and Industry (METI) and long-term results to the data published by
the World Bank.

Finally, Chapter 8 describes the key findings in terms of model performance and the
forecast accuracy. We recommend BSTS to commercial people in their dairy work
based on the overall results. In addition, limitations of this study and suggestions for
further research are stated.



Chapter 2 Global LNG market

2.1 Introduction

Japan’s spot LNG prices would be influenced by various factors. Most of commodity
prices are affected by their demand and supply. In this chapter, we focus on the
global LNG market. Because the Japanese LNG price is affected by the global LNG
market. Firstly, we analyse demand for natural gas and LNG in 2.2 and LNG
exporters and importers in 2.3. Secondly, we describe the characteristic of
traditional LNG trade agreements to analyse how the LNG contracts were inflexible
in 2.4. Finally, we analyse the LNG market development and a possible future
opportunity about the spot market in 2.5.

2.2 Demand for natural gas and LNG

Global natural gas consumption has increased, and it would be a part of main
energy sources due to its technical and economic advantages (Kumar, et al., 2011).
The natural gas share accounts for 21 % of the worlds’ total primary energy demand
in 2014 right behind oil and coal with 31% and 29% respectively (IEA, 2017b).
Global demand for natural gas is anticipated to rise by 2 % per year between 2017
and 2035, with demand for LNG expected to increase at 4 % per year (Royal Dutch
Shell PLC, 2017). LNG expected demand is higher than natural gas demand, as
LNG is more flexible and transported by LNG vessels to the locations, where
pipeline facilities are not provided. Therefore, the LNG market is more globalised
and increasing in volume.

Figure 1 shows Global LNG trade from 2007 to 2018. The LNG trade in volume
increased sharply from 2009 to 2011. Although the volume decreased slightly from
2011 to 2012, the volume increased gradually from 2012 to 2014. Then, the LNG
trade increased sharply again from 2015 to 2017.
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2.3 LNG exporters and importers

LNG global trade accounts for almost one third of total natural gas trade. According
to BP (2018), global natural gas trade movements by pipeline in 2016 were 737.5
billion cubic metres (bcm) and LNG trade movements in 2016 were 346.6 bcm.
There are specific LNG exporters and importers in a similar way to the other fossil
fuels.

Regarding exporters, there are three types of LNG exporters. The first one is a
natural gas producer which has excess supply in their countries after exports by
pipeline. The second one is a producer surrounded by oceans such as Australia.
The last one is a producer which has no or few pipelines towards neighbour
countries because the neighbour countries do not consume much natural gas.

Meanwhile, three different conditions are applicable to LNG importers. The first
condition is that there is LNG shortage within the country after imports by pipeline
such as China. The second condition is a country has LNG shortage surrounded by
oceans such as Japan. The third condition is a consumer which has no or few
pipelines across the border.

Figure 2 shows World LNG exporters in 2016 and 2017. According to the BP (2018),
the total LNG trade in 2017 was 393.4 bcm. The LNG exports by top 5 countries,
Qatar, Australia, Malaysia, Nigeria and Indonesia were 264.9 bcm accounting for

67 % of the market share. The U.S. increased the LNG export from 4.4 bcm in 2016
to 17.4 bcm in 2017. Figure 3 shows LNG importers in 2016 and 2017. Top 5
importers, Japan, China, South Korea, India and Taiwan handled 266 bcm which
shared 67 % of the market. China replaced South Korea and became the second



largest LNG importer in 2017. They increased the LNG import from 34.3 bcm in
2016 to 52.6 bcm in 2017.
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2.4 Characteristics of traditional LNG trade agreements

Traditional LNG sales and purchase agreements have long-term contracts, oil-price
indexations and inflexible clauses. It is because there were specialised supply
conditions and different types of demand in the specific regional LNG markets.

Traditionally, LNG trades were mainly dominated by the three markets: the first
market was Japan and South Korea whose suppliers were mainly Indonesia,
Australia, Malaysia and the Middle East, the second market was OECD Europe
whose suppliers were mainly Norway, Russia and Algeria, and the third market was
North America whose suppliers were mainly Canada and Mexico [Siliverstovs, et al.,
2005].

Firstly, long-term contracts dominated traditional LNG trade agreements between
importers in resource scarce areas and exporters [Olive, 2016]. The long-term
contracts played key roles for covering large capital costs to extract and liquefy
natural gas. The long-term contract allowed lenders to expect the future cash flows
from the LNG project and worked as a security for financial contracts [Wolter, 2016].
Neumann et all (2015) investigated 426 LNG contracts from 1965 to 2014. They
found that typical contract durations were 20 to 25 years from start dates of
deliveries though the number of shorter contracts, 5 to 10 years, increased from
2000 or later. At the same time, deal tenors about LNG project finance transactions
were in the range from 10 years to 20 years [De saint Gerand, 2013]. Thus, the
long-term contract could cover the duration of repayments.

Secondly, the oil-price indexations influenced traditional price determinations. LNG
price is highly correlated to crude oil price and crude oil products. LNG price is
determined by the base price and the index which is mainly linked to crude oil price
[Stern, 2014]. In Japan, LNG prices were determined by the Japanese Crude
Cocktail, which is a basket of imported crude oils and adjusted monthly [Cornot-
Gandolphe, 2005]. In Europe, LNG prices were connected to prices of gasoil and
heavy fuel oil, with adjustment from six months to one year [Cornot-Gandolphe,
2005].

Thirdly, in the contracts, there were other inflexible clauses such as Renegotiation
clause, Take-or-pay clause, and Destination clause. Renegotiation clause exists as
the market would have significant economic changes during the long-term contract
periods. Buyers and sellers normally agree to do price reviews within the contract
periods. However, Asian buyers more focus on the negotiation to obtain lower gas
prices at the beginning of the contract and sometime do not review the prices
because the contracts are under English or American law, therefore, the
renegotiation would take place in London or New York [Braaksma, et al., 2014].
Take-or-pay clause means there are minimum volumes for buyers to take in the
certain period, if they do not meet the volume, the buyers shall pay for the volume
deficiency. The take-or-pay clause sometime becomes by following provisions,
where a specific percentage of the minimum volumes and the extension of the
certain period are mentioned as well as a Make-Up clause and a Carry-Forward
clause [Namikawa, 2003]. Destination clause is that buyers are restricted to deliver
LNG at the specific port and are not allowed to sell the LNG outside of the specific
geographical area.



2.5 LNG market development

The current LNG markets became more diversified and fragmentated due to the
liquidity [Carriere, 2018]. The trade contracts have become more flexible. The short-
term trade agreements and the development of the spot market contribute to the
liquidity.

New LNG importers and the new LNG exporter, the U.S., support the diversification
and fragmentation. New liquification facilities, mainly in the U.S. and Australia, will
add 200 billion cubic metres (bcm) by 2022 and new 9 countries and territories are
anticipated to import LNG by 2022 (IEA, 2017a). Especially, China increased their
LNG imports by 42 % from the year 2016 because the Chinese government
changed the policy about energy mix to change coal to gas in order to decrease air
pollution (GIIGNL, 2018).

2.5.1 The development of the LNG trade agreement

The LNG trade agreements have become more flexible. The current LNG contract
has smaller size of volume, shorter contract length, and more flexible destination
[IEA, 2016]. It also has the other characteristics such as less oil-linked indexation
and more FOB shipping modes.

The Global Gas Security Review (2016) compared the change about the LNG trade
agreement before and after 2010. The contracts singed until 2009 had the following
characteristics. Annual contract quantities were 1.75 bcm. The average lengths
were 18 years. Regarding the price indexation, 76% of the contracts was oil-linked
and 24 % of the contracts had gas to gas index. 33% of the contracts had flexible
destinations and 41 % of the shipping modes were FOB. On the other hand, the
contracts signed after 2010 had the following characteristics. Annual contract
quantities were 1.55 bcm. The average lengths were 13 years. Oil-linked contracts
were 49.5% and Gas to gas contracts were 50.5%. 51% of the contracts had flexible
destinations and 54.0% of the shipping modes were FOB.

The U.S. would be a main contributor for the increase of the flexible contracted
volumes in the world because the contracted LNG from the U.S. is destination
flexible. By 2022, the flexible volume would reach 247 bcm, where 93 becm out of
247 bcm mainly would come from the U.S. [IEA, 2017a].

Figure 4 shows the number of LNG contracts between 2006 and 2011. Figure 5
shows the number of LNG contracts between 2012 and 2017. The number of the
world total contracts increased sharply from the batch of 2006-2011 to the batch of
2012-2017. Both graphs show 20 years contracts were the most popular duration,
however the contracts between 2012 and 2017 indicated more varieties. Especially,
the increased number of contracts with the duration of 5 years in Figure 5 explains
the trend. As a result, these figures show that the LNG contracts have had smaller
volumes and shorter contract lengths.
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Figure 4 The number of LNG contracts between 2006 and 2011

Source: Author via (GIIGNL, 2006, 2007,2008,2009,2010,2011)

The number of LNG contracts between 2012 and 2017
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Figure 5 The number of LNG contracts between 2012 and 2017
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2.5.2 The development of the LNG spot market

The LNG spot and short-term contracts have increased strongly during the last
decade. The development of the market was not only in favour of buyers but also
allowed the new participants to enter the market. Oil companies and investment



banks joined the market and East Africa (Mozambique and Tanzania) started to
participate in the market in addition to the traditional LNG buyers and suppliers
[Norton Rose Fulbright, 2012].

Figure 6 shows comparison between LNG total trade and the quantity traded in the
spot and short market. The LNG purchased from the spot and short market was
77.55 MT accounting for 27 % of the total imported LNG in 2017. In 2005, 13 % of
LNG was purchased from the spot and short market. The growth rate in the short
and spot market from 2005 to 2017 was higher than the growth rate in the total
imported LNG. It means that the LNG spot and short market has a stage of great
promise.

LNG Total trade and Spot and Short-term quantities (in MT) from 2005 to 2017
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Figure 6 LNG total trade and Spot and Short-term quantities
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Source: Author via (GIIGNL, 2006-2018)

2.6 Conclusion

The global LNG market used to have the limited number of players and inflexible
characteristics. However, the emerging players in the LNG market and the more
flexible LNG trade agreements contribute to the increase of liquidity of the world
LNG market. Although the LNG spot market has developed gradually, the increase
of the liquidity would cause more utilisation of the LNG spot market.
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Chapter 3 Japan’s LNG market

3.1 Introduction

Japan has played a role in the LNG Industry since 1969. In 1964, the first
commercial LNG trade began from Algeria to the UK. In 1969, Japan started to
import LNG from Alaska. Since then, LNG has been one of the most important
energy sources in Japan. Especially, the LNG has played a pivotal role for Japanese
energy mix after the nuclear plant accident in 2011.

In this chapter, we explain the recent trend in Japan’s LNG market and the
importance of the LNG spot price forecasting. Firstly, we introduce the recent LNG
demand and supply and analyse Japan’s LNG prices in 3.2. Secondly, we analyse
the difficulty of the LNG demand forecasting in 3.3 and the future LNG demand and
supply towards 2030 in 3.4. It includes the uncertainty about LNG demand based on
the government energy mix outlook. Finally, we propose a strategy to meet the
future LNG demand analysing the characteristics of Japanese LNG trade
agreements and the developing LNG spot market in 3.5.

3.2 The LNG demand and supply

The LNG demand in Japan would be influenced by the reactivate nuclear plants in
the short run. The majority of LNG is used to generate electricity. Hence, it became
hard to anticipate the demand for domestic LNG after the nuclear plant accident in
2011. After the accident, all nuclear plants became offline to meet more stringent
regulatory requirements. They need to obtain the government approvals and local
consents for the restarts.

3.2.1 LNG Demand in volume and in value

Commodity prices are fluctuating due to the change in demand and supply. The
price of LNG is also volatile. However, Japan’s LNG price would be affected by
another factor, the price of oil because the majority of their long-term LNG trade
agreements have oil price indexations.

Figure 7 shows the total LNG import in million ton and in billion USD from 2008 to
2017. The amount of LNG rose by more than 10 % each year from 2010 to 2012. It
reached a peak of 88 million ton in 2014 and fell to 83 million ton in 2017. Japan still
imported 13 million ton more than the LNG imported in 2010. Although the
procurement cost for LNG also reached a peak of 71 billion USD in 2014, the cost
fluctuated largely. It more than doubled from 2010 to 2014. Then the cost halved to
30 billion USD from 2014 to 2016.

As we mentioned in Chapter 2, one of characteristics of LNG trade agreements is oil
indexation pricing. Japanese LNG prices are highly correlated to crude oil price with
a time-lag of a few months. Figure 8 shows crude oil, natural gas and LNG prices
from 2008 to 2017. Japanese LNG price decreased from 14.81 $/mmbtu to 7.33
$/mmbtu from 2014 to 2016. In the same time, the average crude oil price
decreased from 88.9 $/bbl to 45.53 $/bbl. The decrease rates were 51% and 41 %
respectively. On the other hand, US natural gas decreased by 35% from 4.04
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$/mmbtu to 2.65 $/mmbtu from 2014 to 2016. Thus, Japanese LNG still keeps oil
indexation pricing.

Total LNG imported to Japan in MT and in Value
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Figure 7 Total LNG imported to Japan
Source: Author via [Trade Statistics of Japan, 2017]
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Figure 8 Crude oil, Natural Gas and LNG prices

Source: Author via [World Bank, 2018]

Meanwhile, there are some related prices in the LNG industry such as vessel
charter rate and new building prices. The charter rates could be related to Japanese
LNG prices, because LNG is delivered to Japan by LNG vessels. The new building
price could also be related to Japanese LNG prices, because transportation costs
might be reduced by more LNG carriers. Figure 9 shows very large gas carrier
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(VLGC) s’ time charter rates and LNG carrier newbuilding prices from 2008 to 2018.
VLGC time charter rate increased from 2011 and peaked at close to 74,000 USD
per day in 2015. It decreased sharply to less than 16,000 USD per day in 2016. The
increase of the charter rate from 2011 to 2015 was in line with the increase of the
global LNG trade. However, the decline of the rate from 2015 to 2016 was the
opposite movement of the global LNG trade. This implies that the time charter rate
could be influenced by the LNG market and LNG shipping market, however the
Japanese LNG price would not be affected by the charter rate. Regarding new
building price, it was stable at about 185 million USD from 2010 to 2013 then soared
up to 200 million USD in 2014. LNG carriers are so expensive that ship owners need
to prove the secure repayments by showing a long-term charter contract when they
borrow money from banks. So, the new building LNG carrier requires a huge capital
investment. The new building price would be affected by the shipping market. The
LNG market, especially demand would affect the shipping market. However,
Japanese LNG price is irrelevant to the LNG carrier Newbuilding price.

VLGC Time charter Rates and LNG Carrier Newbuilding Prices
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Figure 9 VLGC time charter rates and LNG carrier newbuilding prices

Source: Author via [Clarkson Research Services Limited, 2018]

In conclusion, Japanese LNG in value is more fluctuated than LNG in volume.
Japanese LNG price is more correlated to the crude oil price than the natural gas
price in U.S.

3.2.2 LNG supply by country

Japan has tried to diversify its energy resources since the oil crisis in 1970s. The
offline of the nuclear plants led Japan to rely on more fossil fuels. The resource-poor
country was forced to realise the importance of energy security with the limited fossil
fuels. So, Japan needs to diversify not only energy mix but also countries of the
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LNG suppliers. In this section, we analyse the Japanese LNG import in MT and in
value by country and the diversification of the LNG suppliers.

Figure 10 shows Japanese LNG import amount by country from 2008 to 2017.
Australia, Malaysia and Qatar have been the LNG stable suppliers. Within the top 5
countries, the import from Indonesia in 2017 was lower than the amount in 2010.
Figure 11 shows Japanese LNG import in value by country from 2008 to 2017. As
we concluded the LNG import in value is more volatile than the LNG import in
volume in 3.2.1, the LNG import in value by country is also fluctuated.

LNG imported to Japan in MT from 2008 to 2017

Million ton

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Year

Figure 10 LNG imported to Japan in MT by country
Source: Author via [Trade Statistics of Japan, 2017]
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LNG imported to Japan in Value from 2008 to 2017

Billion USD
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Figure 11 LNG imported to Japan in value by country
Source: Author via [Trade Statistics of Japan, 2017], 1TUSD=110JPY

Figure 12 shows LNG sources by country in 2008, 2014 and 2017. In the number of
countries wise, although Australia, Malaysia and Qatar dominated the market,
Japanese gas and utilities diversified the importing countries from 13 countries in
2008 to 20 counties in 2017. Meanwhile, in the volume wise, Japan still highly relies
on the top 3 countries. In 2008, the share of the top 3 countries, Indonesia, Malaysia
and Australia was 57%. In 2017, the top 3 countries Australia, Malaysia and Qatar
accounted for 61 %. The reliance rate on the top 3 LNG suppliers in 2017 was
higher than in 2008 due to the increase LNG import from Australia. In terms of the
energy security, it was not a preferable situation.
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3.2.3 LNG usage in Japan

Japanese LNG demand would be affected by the domestic energy consumption. In
this section, firstly, we analyse the energy demand and supply from LNG. Secondly,
we focus on the energy from power generation and analyse the different types of
electrical energy generation. Finally, we focus on thermal power plants and analyse
the types of fuels to be used to generate electricity.

Energy supply from LNG increased along with the increase of Japanese LNG
import. We break down the energy by the usage. Figure 13 shows Energy supply
from LNG from April in 2009 to March in 2016. The shape of the bars is a similar
shape of Japanese LNG import in volume in Figure 7. Figure 14 shows Energy
demand from LNG by use from April in 2009 to March in 2016. A major usage of
LNG was to generate electricity. More than 65 % of LNG was used for power
generation in the fisical year 2016. Gas conversion remained stable between April
2011 and March 2016. On the other hand, demand for power generation in the
fisical year 2011 shot up to 3,119 PJ. The trend of total energy supply in Figure 13
followed the shape of the line of Power generation in Figure 14. Therefore, the total
demand and supply for LNG are influenced by the demand to generate electricity.

Energy Supply from LNG between 2009 and 2016
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Figure 13 Energy supply from LNG

Source: Author via [Agency for Natural Resources and Energy, 2009-2016]
* The Japanese fiscal year is starting in April and ending in May.
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Energy Demand from LNG by Use between 2009 and 2016
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Figure 14 Energy demand from LNG by use

Source: Author via [Agency for Natural Resources and Energy, 2009-2016]
* The Japanese fiscal year is starting in April and ending in May.

According to Figure 13 and 14, we found that a majority of the imported LNG is used
for power generation and the amount of energy soared from 2010 to 2011. Next, we
investigate the electrical power generation which produced electricity. Figure 15
shows the breakdown of generated and received electrical energy from 2009 to
2015. The total electricity generated has decreased steadily to 864 billion kWh from
2010 to 2015. The electricity production from thermal plants in 2015 was greater
than in 2010 by 118 billion kWh. The electricity generation from nuclear plants
became 0 billion kWh in 2014. Figure 16 shows the percentage of electrical
generation by types of power generators. The share of thermal generation peaked at
72.92 % in 2013. These two figures show that after the 2011 accident, thermal
plants took over nuclear plants.
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Figure 15 Breakdown of generated and received electrical energy

Source: Author via [The Federation of Electric Power Companies of Japan, 2009-
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* The Japanese fiscal year is starting in April and ending in May. This collected data
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Figure 16 The percentage of electrical generation by types of power generator

Source: Author via [The Federation of Electric Power Companies of Japan, 2009-
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According to Figure 15 and 16, we found that the thermal plants were the main
electricity generator and the share of thermal plants increased sharply from 2010.
Next, we investigate the fuels to be used for the thermal generation. Figure 17
shows fuels used by thermal power plants. LNG increased from 2010 to 2014. The
LNG used as a fuel in 2015 was still greater than in 2010 by 10.5 million ton.
Compared their volume in 2015 to 2010, the percentage in increase of each fuel,
Coal, LNG and Oil was 15.2%, 25.2% and 15.4% respectively. The amount of these
fuels would be affected by the price of each commodity. But LNG usage showed the
highest increase rate.
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Figure 17 Breakdown of thermal power fuels

Source: Author via [The Federation of Electric Power Companies of Japan, 2009-2015]
* The Japanese fiscal year is starting in April and ending in May. This collected data
is for 10 major electric companies

In conclusion, the absence of nuclear plants increased Japanese LNG demand
because thermal plants replaced the nuclear plants in terms of electricity generation.
Although the more LNG was used as a fuel for the thermal plants in the absence of
nuclear plants, the amount of LNG in need would be influenced by the balance of
the commodity prices and markets of coal, oil and LNG.

3.3 The difficulty to forecast the future LNG demand

Reactivation of nuclear plants would influence the LNG demand. During the
absence of nuclear generation, the coal and oil markets and their commodity prices
affect the LNG demand. These two factors make the LNG demand forecast difficult.
Moreover, the electricity liberalization in Japan made forecasting the future LNG
demand more difficult. In this section, we explain Japanese electricity market before
the electricity liberalization. Then we analyse the electricity demand and supply after
the liberalization.
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Japan deregulated the electricity market in 2016 due to following reasons. Firstly,
the nuclear accident in 2011 exposed monopolistic characteristics of the power
utilities. Figure 18 showed the service areas of 10 power utilities before the
deregulation. There was little electricity transmission beyond areas, little
competition, price control by the regional monopolists, and resisting to increase
renewable energy in their energy mix [Yamazaki , 2015]. Secondly, the reform
achieved public consensus. The offline of the rest of nuclear reactors raised the cost
of fossil fuels for thermal plants. It had negative impacts on the power utilities’
financial results. The electric bills between 2010 and 2014 increased both for
households and for industry, by 25.2% and by 38.2% respectively [Yamazaki ,
2015].Thirdly, CO2 emissions increased along with an increase of fossil fuels usage.
CO2 emissions produced by the sector of general electricity utilities rose by 110
million ton from the fiscal year 2011 to 2013. [Yamazaki , 2015].

Meanwhile, the demand areas for electricity differ from the supply areas. Figure 19
shows demand for electricity per prefecture and Figure 20 shows supply for
electricity by thermal plants per prefecture. Within Japan, the high demand areas for
electricity are different from the electricity generation areas by thermal plants. As a
result of the electricity deregulation, the share of new entrants at the retail sector
increased to 10 % in 2017 [METI, 2018a]. The capacity of renewable energy
increased by average 26% annually from the fiscal year 2012 to 2016 [METI, 2017].

Therefore, the market deregulation made it difficult for each electric utility to forecast
the electricity demand from customers. The electricity demand would affect the
thermal plants’ operations and the demand for LNG as a fuel. The increase of
electricity supply from renewable energy would also affect the thermal plants’
operations. The future LNG demand forecast is difficult due to the above reasons.
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Figure 18 Service Area of Power utilities before the liberalization
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Figure 20 Thermal power generation per prefecture

3

Electricity demand
(Unit: 1,000kWh )

3650020 ~

651577025 ~
| 7899170 ~
[ 9036356 ~
B 2178167 ~
B 1561012625 ~
B oxe73155~
[l 53078505 ~

Electricity supply
(Unit: 1,000kWh )

4773~

687698.25 ~
. 23162175~
[ 71483905 ~
B 10078047 ~
B 137903072 ~
I 22542620 ~
W zere723575~

23



3.4 The LNG demand towards 2030

Japanese LNG demand has much of uncertainty because of the commodity market
and price, the reactivation of nuclear plants and the progress of renewable energy.
At the same time, the government revealed the power source mix towards 2030. In
this section, we analyse the past power sources by comparing with the government

policy.

Japanese utilities will reduce LNG procurements towards 2030 due to falling LNG
demand. Ministry of Economy, Trade and Industry disclosed Long-term Energy
Supply and Demand Outlook in 2015. It estimated that electric power demand and
the power source mix towards FY2030. According to the outlook, electric power
demand in FY2030 will remain almost at the same level as FY2013, even with 1.7 %
annual economic growth, due to the increase of energy efficiency and conversion.
The percentage of the electric power supplied by nuclear plants would decreased
from approx. 30 % in FY2010 to approximately 20% to 22 % in FY2030 [METI,
2015]. They estimated the total power generation would be 1,065 billion kWh and
LNG would account for 27% of the structure. Thus, LNG would produce 287 billion
kWh in FY2030.

Table 1 shows Power source mix from 2010 to 2016. The 287 billion kWh in 2030FY
is smaller than 334 billion kWh in 2010FY. It means Japanese power utilities would
decrease the amount of LNG procurements at least at the level of 2010. Figure 21
shows LNG demand in MT by use between 2009 and 2016. The LNG used as a fuel
to generate electricity in 2010 and 2016 were 45.7 million tons and 57.6 million tons
respectively. Therefore, the LNG procurements for thermal plants would be
decreased by 12 million tons.

Table 1 Power source mix

(billion kwh)
FY 2010 2011 2012 2013 2014 2015 2016

Nuclear Power 288 102 16 9 0 9 18
Coal 320 306 334 357 354 355 337
LNG 334 411 432 443 455 425 441
QOil 98 158 189 158 118 102 97
Hydroelectric Power 84 85 77 79 84 87 79
Solor power 4 5 7 13 23 35 46
Wind power 4 5 5 5 5 6
Geothermal power 3 3 3 3 3 3 2
Biomass power 15 16 17 18 18 19 18
Total power generation 1,149 1,090 1,078 1,085 1,059 1,041 1,044

Source: Author via [Agency for Natural Resources and Energy , 2010-2016]
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LNG Demand by use between 2009 and 2016
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Figure 21 LNG demand by use

Source: Author via [Agency for Natural Resources and Energy, 2009-2016]
* The Japanese fiscal year is starting in April and ending in May.

In conclusion, Japanese LNG demand would decrease by 12 million tons towards
2030 if Japanese power utilities follow the government power mix outlook. It also
includes much of uncertainty.

3.5 Strategy to meet the future LNG demand

So, how would Japanese power utilities reduce the 12 million tons? In this section,
we suggest a possible solution to meet the LNG demand towards 2030. We also
introduce an example about one electric power utility’s plan towards 2030.

3.5.1 LNG procurement contracts

One solution is to utilise flexible contracts. Japanese power utilities have achieved
more flexible LNG procurement contracts than the past. Figure 22 is the list of
contracts signed between suppliers and Japanese power utilities between 2006 and
2017. As we explained the characteristics about the current global LNG contracts in
Chapter 2, the LNG contracts of Japanese power utilities had similar characteristics
such as smaller volume and shorter durations. Some LNG contracts are agreed on
the cargo basis. 3 cargoes are approximately 0.2 MPTA (GIIGNL, 2017).
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year |Export country Exporter | Buyer |ACQ(MTPA) | Duration(Year) |Start date | Delivery Format
2006 Malaysia Chubu Electric 0.54 20 2011 DES
2006 Russia Tohoku Electric 0.42 20 2010 FOB
2006 Oman Tokyo Electric 0.8 15 2006 DES
2007 Russia - Sakhalin 2 Chubu Electric 0.5 15 2011 DES
2007 Australia - NWS Chugoku Electric 14 12 2009

2007 Australia - Pluto Kansai Electric 2 15 2010 FOB/DES
2007 Australia - NWS Kyushu Electric 0.73 8 2009

2007 Malaysia Shikoku Electric 0.42 15 2010

2008 Australia Chubu Electric 0.5 7 2009 DES
2009 Australia Chubu Electric 1.44 25 2014 DES
2009 Australia Kansai Electric 0.4 8 2009 DES
2009 Indonesia Tohoku Electric 0.12 15 2010

2009 Australia Tokyo Electric 03 8 2009 FOB
2009 Papua New Guinea Tokyo Electric 1.8 20 2013

2009 US.A Tokyo Electric 0.34 2 2009 DES
2010 Indonesia (Tangguh LNG) Chubu Electric 0.25 2 2011 DES
2010 Indonesia (Tangguh LNG)* Chubu Electric 0.5 3 2013 DES
2011 Australia & BG Portfolio Chubu Electric 0.41 21 2014 DES
2011 Qatar (QATARGAS) Chubu Electric 0.2 6 2014 DES
2011 Australia (APLNG) Kansai Electric 1 20 2016 DES
2011 Australia (Ichtys) Kansai Electric 0.8 15 2017 FOB
2011 Australia (Gorgon Kyushu Electric 0.3 15 2015 DES
2011 Australia (Wheatstone) Kyushu Electric 0.7 20 2017 FOB
2011 Australia (Ichtys) Kyushu Electric 0.3 15 2017 FOB
2011 Australia (Wheatstone) The Tokyo Electric 3.1 20 2017

2011 Australia (Ichtys) Tokyo Electric 1.05 15 2017 FOB
2012 BP portfolio BP portfolio Chubu Electric 0.5 16 2012 DES
2012 QATAR Qatargas Chubu Electric 1 15 2013 DES
2012 ALGERIA Eni Portfolio Chubu Electric 0.2 5 2013

2012 AUSTRALIA (Ichthys) Chubu Electric 0.5 2017 FOB
2012 QATAR Qatargas Kansai Electric 0.5 15 2013 DES
2012 AUSTRALIA APLNG Kansai Electric 1 2016 FOB
2012 QATAR Qatargas Tokyo Electric 1 10 2012 DES
2012 AUSTRALIA (Wheatstone) Tokyo Electric 0.4 20 2017

2012 AUSTRALIA (Wheatstone) Tokyo Electric 0.7 20 2017

2013 AUSTRALIA/Wheatstone Chevron Chubu Electric 1 20 2017 FOB
2013 INDONESIA Tangguh PSC Kansai Electric 1 22 2014 DES
2013 AUSTRALIA/Wheatstone Chevron Tohoku Electric 0.9 20 2017 DES
2013 BRUNEI Brunei LNG Sendirian Tokyo Electric 2 10 2013 DES
2014 Shell Chubu Electric 12 CARGOES 20 2014 DES
2014 GDF SUEZ Chubu Electric 1.47 2.25 2015 DES
2014 USA Mitsui & Co., Ltd Kansai Electric 0.4 20 2017 DES
2014 MALAYSIA Malaysia LNG Tohoku Electric 0.4 10 2016 DES
2014 QATAR Qatargas 3 Tohoku Electric 0.18 15 2016 DES
2014 GDF SUEZ Tohoku Electric 0.27 2.5 2014 DES
2014 BP Tokyo Electric 12 18 2017 DES
2015 Portfolio ENGIE Chubu Electric 20 CARGOES 2 2016 DES
2015 MALAYSIA MALAYSIA LNG Chugoku Electric 0.24 3 2015 DES
2015 MALAYSIA MALAYSIALNG Chugoku Electric 0.24 3 2015 DES
2015 Portfolio Kansai Electric Hokkaido Electric 0.2 10 2018 DES
2015 MALAYSIA Malaysia LNG Hokuriku Electric 0.38 10 2018 DES
2015 Portfolio BP Kansai Electric 0.56 23 2015 DES
2015 Portfolio Chubu Tohoku Electric 0.3 20 2023 DES
2015 USA ENGIE Tohoku Electric 0.27 20 2018 DES
2016 Portfolio Petronas Hokuriku Electric 6 cargoes 10 2018 DES
2017 potfolio Total Chugoku Electric 0.25 17 2019 DES
2017 Malaysia MLNG/Petronas Hokkaido Electric 0.13 10 2018 DES
2017 potfolio Kansai Electric Hokkaido Electric 0.2 10 2018 DES

Figure 22 List of contracts signed between suppliers and Japanese power
utilities

Source: Author via (GIIGNL, 2006-2018)




3.5.2 The LNG spot market for Japan

The other solution is to utilise the LNG spot market. Japanese LNG buyers utilise
the spot market less than the global standard, although we explained the
development of the global LNG short and spot market in Chapter 2. Figure 23 shows
the total LNG imported to Japan and Spot and Short-term quantities from 2005 to
2017. the short and spot market increased by 20% in 2011 from the year 2010
because of the sudden demand by closing nuclear plants. It contributed to increase
the liquidity of the LNG market. However, the utilization of the short and spot market
for Japan was not as high as the global LNG standard. The LNG purchased from the
short and spot market was 12.27 MT accounting for 14.69 % of the total imported
LNG in Japan in 2017. It was smaller compared to the global percentage of LNG
volume from the short and spot market, 27% as described in Chapter 2. Thus, there
are room to utilise more the short and spot market.

Total LNG imported to Japan and Spot and Short-term quantities (in MT) from 2005 to 2017

2005 2008 2007 2008 2009 2010 2011 2mz 2013 2014 2015 2018 2017

75

Category
Spot

B oa

50

LNG

25

D_Ill-IIII III

SpotTotal SpotTotal SpotTotal SpotTotal SpotTotal SpatTotal SpotTotal SpotTotal SpotTotal SpotTotal SpotTotal SpotTatal  SpotTotal

Figure 23 Total LNG imported to Japan and Spot and Short-term quantities

Source: Author via (GIIGNL, 2006-2018)

Meanwhile, the utilization ratio of the spot and short market in Japan is highly likely
to increases. Because Japanese power utilities revealed their business plan to focus
on more the spot market in response to the change for LNG demand.

For example, under the government outlook towards 2030, the largest LNG
importer, JERA published the business plan in 2030. JERA is a joint-management
company between Tokyo Electric Power Company and Chubu Electric Power
Company. It handles their fuel procurements for power generation. In 2016, the
amount of LNG procurements was 40 MTPA (35 MTPA from long-term offtake
commitments, 5 MTPA from short-term or spot contracts) [JERA, 2016]. It was
almost 70 percent of LNG procurement in power utilities in Japan.

JERA would have 15 MTPA from long-term offtake commitments in 2030 [JERA,

2016]. The long-term contracts will expire by the early 2020s by 10 MTPA and JERA
will make long-term agreements by 5 MTPA to keep 20 MTPA in 2030 [Tsukimori,
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2016]. The business plan in 2030 anticipated the total LNG procurements would be
from 30 MTPA to 40 MTPA. Thus, JERA will optimise LNG portfolio to make the
procurements between 10 MTPA to 20 MTPA by the short-term contracts and from
the spot market. JERA’s LNG procurement will be more flexible as 4.6 MTPA out of
the existing 15 MTPA contracts are the destination flexible LNG, which starts in
2018 and lasts for 20 years, produced in the U.S. However, there is still uncertain
about purchasing LNG through the short-term contracts and from the spot market in
2030 and about the costs of the LNG which would influence power utilities’ profits.

3.6 Conclusion

Japanese LNG market has full of uncertainty. However, the utilization of the LNG
spot market is a key to adjust the change of Japan’s domestic LNG demand.
Moreover, Japan’s utilisation rate of the LNG spot market is less than Global
utilisation of the LNG spot market. Therefore, future development would be
expected.

In addition, based on the global LNG market analysis in Chapter 2 and the Japan’s
LNG market analysis in Chapter 3, we could consider the following 12 variables
which might influence Japan’s spot LNG prices in the long run. The 12 variables are
natural gas price, crude oil price, coal price, natural gas production and natural gas
consumption, LNG trade in volume, Japanese LNG demand, the global LNG spot
market utilisation rate, Japanese LNG spot market utilisation rate, LNG upstream
costs for natural gas, Investment in LNG liquification plants and geographical
events.

Although we analyse the 12 variables in Chapter 5, here we briefly mention why we
choose the variables as the potential regressors. First of all, LNG is a liquid form of
natural gas. As we discussed in 3.2.1, Japan’s LNG price is more correlated to the
crude oil price. Coal is one of the thermal power fuels and the price of coal might
affect LNG demand of Japanese power utilities. Natural gas production and
consumption would affect natural gas prices. LNG trade in volume would affect LNG
prices. Japanese LNG demand might affect Japan’s LNG prices. The global and
Japanese LNG spot market utilisation rates would influence the spot LNG prices.
Natural gas upstream costs might affect natural gas prices. Investment in LNG
liquification plants might affect LNG prices. Finally, geographical events would affect
every commodity price.

In conclusion, Japan’s spot LNG prices might be affected by the various factors. We

analyse them deeply in Chapter 5 and choose the variables to be included into our
model for the long-term forecasting.
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Chapter 4 Literature Review

4.1 Introduction

The research of Japanese LNG market in Chapter 3 concluded that Japanese
power utilities would utilise the LNG spot market to adjust the change of the
domestic LNG demand in a timely manner. In this chapter, we analyse various
methods to be used for price forecasting. Regression models are referred in 4.2 and
Time series regression analysis are introduced in 4.3. Then, we provide a summary
of the literature in 4.4.

4.2 Regression models

Regression models are utilised, as quantitative analytical tools, in order to
understand the relationship between variables, forecast the future and analyse
scenarios (Welc, et al, 2018).

Yoshida (2014) evaluated that how did the joint-purchase of LNG by Japanese
power utility companies reduce costs of LNG procurement by using a fixed variable
regression analysis. The results showed possibility to obtain discount from LNG
suppliers by the increase of the quantities of the LNG purchases. Although the joint-
purchase is an effective approach to tackle LNG procurement optimization, JERA
would need procure LNG between 30 mpta and 40 mpta from short-term contracts
or the spot market in 2030. Forecasting Japan’s spot LNG prices would catch these
power utilities interests. Because the spot LNG prices will affect their profitability.

As we discussed in Chapter 2 and 3, LNG trade agreements have oil price
indexations. It is reasonable that LNG price and crude oil price have correlation. On
the other hand, many studies have been conducted about natural gas price. Brigida
(2014) showed a cointegrating relationship between natural gas and crude oil price
by using Markov-switching cointegrating equation. Ramberg and Parsons (2012)
also found the cointegrating relationship between Henry Hub (HH) natural gas prices
and the West Texas Intermediate (WTI) crude oil price by using Vector Error
Correction model (VECM). There are many studies to show the cointegration
relationship between gas price and oil price. However, Mishra (2016) examined the
linkage of natural gas prices to crude oil prices using the Conditional Error
Correction mechanism in VECM with HH and WTI datasets from January 1999 to
June 2016. He found that the relationship between natural gas price and oil price
became weaker after 2008 and other external factors influenced the price of natural
gas.

4.3 Time series regression analysis

Time series regression analysis plays a key role to describe the past mechanism
and forecast the future (Ostrom, 1990). The commonly used data-driven methods to
forecast commaodity prices are Autoregressive Moving Average (ARMA),
Autoregressive Conditional Heteroscedasticity (ARCH), Artificial Neural Network
(ANN) and Support Vector Regression (Salehnia et al, 2013).

Paul et al, (2015) used the Autoregressive Fractionally Integrated Moving Average
(ARFIMA) model to forecast the spot price of mustard. The reasons they used
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ARFIMA was because time series data of agricultural commodity prices had long
memory and ARIMA was not able to describe the long memory accurately. They
found ARFIMA is applicable to the daily spot market of mustard in Munbai.
Chaabane (2014) used the new hybrid model of ARFIMA and artificial neural
network model (ANN) to forecast electricity prices. The author argued that linear
models were not able to capture non-linear components. Then the author used
AFRIMA to capture linier components of the time series data and ANN to capture
non-linear components of the time series data. The author showed the hybrid model
outperformed.

Jadevicius and Huston (2015) used ARIMA model to forecast Lithuanian house
price. Although the author recognised critics about ARIMA such as inaccuracy for
long term forecast and weakness about turning point predictions, ARIMA was
chosen based on the enormous success records of ARIMA. The author introduced
the reliable assessment of ARIMA, which evaluated that the model was especially
suitable for short term forecasting. As the result of the Lithuanian house price
forecast, ARIMA was evaluated as a useful method to capture the price changes
broadly. Munim and Schramm (2017) used ARIMA and autoregressive conditional
heteroscedasticity model (ARCH) to forecast container shipping freight rates in the
Far East. They included ARCH because of the nature of the freight rates. Freight
rates are highly volatile, fluctuate and have cyclicality. According to the authors,
ARCH is able to reflect recent changes due to the freight market volatility. The
authors conducted short-term shipping freight rates forecasting on weekly and
monthly basis. As a result, two AFRIMA models and two ARIMA models were
selected as four best-performing models. The above ARIMA related studies: Paul et
al, (2015), Chaabane (2014), Jadevicius and Huston (2015), and Munim and
Schramm (2017) used one variables. However, Misha (2012) used not only one
variable but also independent variables to forecast the U.S. natural gas price. The
models used by the author were ARIMA and a nonparametric regression called
Alternating Conditional Estimation (ACE). The reason the author used ACE was
because oil and gold price are not related to the natural gas price as a linear
function. The author obtained Time series data of three models for crude oil price,
gold average price and natural gas price by using ARIMA. Then the author
forecasted Natural gas price from independent variables: crude oil price and gold
price by using the time series data modified by ACE. The result shows reasonable
degree of confidence.

However, traditional time series analysis, Bayesian models have been more popular
recently. Bayesian structural time series models are more suitable to forecast values
with good accuracy, when the datasets have less sufficient amount [Larsen, 2016 ].
Spedding and Chan (2000) used Bayesian time series analysis(BATS) to forecast
future manufacturing demand. The forecasted horizons were next 15 weeks and 27
weeks and one variable (demand) is used. The authors made use of the model’s
advantage because the number of historical data was limited (less than 100
observations). The authors compared BATS to ARIMA and found that BATS had
less error than ARIMA. The authors concluded that ARIMA'’s forecasting time frame
is short-medium, however BATS is suitable for any forecasting time frames. Lee and
Huh (2017) used a Bayesian Model with Informative Priors to forecast long-term
crude oil prices. The authors included WTI Spot Price, World oil demand, World oil
supply, Financial factor, and Upstream cost as independent variables. As a result,
the crude oil was predicted to rise to $169.3/Bbl by 2040 and the model captured the
volatility of the oil prices and showed better performances.
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4.4 Conclusion

Table 2 shows the summary of the literature review listing models used, dependent
and independent variables, targets and results. In regression models, natural gas
price is a dependent variable and crude oil price is an independent variable. In order
to forecast Japan’s spot LNG prices, there are mainly two models: such as ARIMA
group and Bayesian group. ARIMA group is suitable for short term forecasting and
Bayesian group is suitable for short-medium-long term forecasting. In the literature,
ARIMA included only one variable. However, Bayesian included one variable when
the forecasting time frame was relatively short. When the forecasting time frame
was relatively long, many independent variables were deployed in the model.

Table 2 Summary of the literature review

Author Year |Model Dependent variable |Independent variable|Target Result
Regression model

Brigida 2014 |Markov-switching Natural Gas Pyy Crude Oil Py Cointegration YES
Ramberg and Parsons |2012|VECM Natural Gas Pyy Crude Oil Py Cointegration YES
Mishra 2016|VECM Natural Gas Pyy Crude Oil Pyy Cointegration YES

Short-term Forecasting

Better Forecasting
Model

ARFIMA could be used for modelling and
forecasting the daily spot market of mastard in

World Oil Demand
World Oil Supply
Financial Factor

Upstream Cost

Geographical Event

Model

Long term Price
Forecasting

Paul et al. 2015|ARFIMA Masturd Price Masturd Price Mumbai market
Better Forecasting New model, a combination of ARFIMA and ANN
Chaabane 2014|ARFIMA and ANN Electlicity Price Electricity Price Model perfomed better than the existing models.
Investigation of Price |ARIMA could used for assessing market price
Jadevicius and Huston [ 2015|ARIMA House Price House Price Changes changes and forecasting prices.
Better Forecasting 4 best-performing forecast models: 2 from
Munim and Schramm | 2017|ARIMA and ARCH Freight Rate Freight Rate Model ARIMARCH model and 2 from ARIMA model
Mishra 2012[ARIMA and ACE Time Series [Natural Gas Price  [Natural Gas Price
ARIMA Crude Oil Price Crude Oil price
. X Better Forecasting  |New model, a combination of ARIMA and ACE
Gold Price Gold Price Model showed reasonable degree of confidence.
Regression |Natural Gas Price  |Crude Oil Price
ACE Gold price
Short-medium-long-term Forecasting
. BATS could be applicable to short-medium-long
Better Forecasting . .
Model term forecasting. It had relatively less error than
Spedding and Chan 2000|Bayesian Time Series Demand Demand ode ARIMA.
Lee and Huh 2017|Bayesian Regression Oil Price WTI Spot Price Better Forecasting The crude oil price was predicted to rise to

$169.3/Bbl by 2040.

The proposed Bayesian model outperformed
and explained the volatility of the Oil price.

This research provided not only short-term
forecasting but also long-term forecasting.

Source: Author via the literature
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Chapter 5 Theoretical Analysis

5.1 Introduction

Chapter 2 gave an overview of the global LNG market and the current development.
In Chapter 3, we described the Japanese LNG market and explore LNG demand
towards 2030. In this chapter, based on the analysis in Chapter 2 and 3 and with the
literature review in Chapter 4, we conduct theoretical analysis to forecast Japan’s
spot LNG prices in the short run in 5.2 and in the long run in 5.3. Regarding the
shot-time frame forecasting, we use one variable. However, regarding the long-time
frame forecasting, we consider various variables which would influence Japan’s spot
LNG prices. We suggest two hypotheses: the hypothesis about model performances
comparing ARIMA to Bayesian model for the short-term forecasting in 5.2 and the
hypothesis about Bayesian model performances with or without the variables for the
long-term forecasting in 5.3.

5.2 Short-term forecasting

Based on the literature review, only one variable, Japan’s spot LNG price would be
used with applications of both ARIMA and Bayesian models, especially, Bayesian
Structural Time Series (BSTS) model. Because the short-term forecasting price
would be influenced strongly by the price of the previous time point. It is supposed to
run the model regularly reflecting the new data in order to obtain more reliable
forecasting price. Japan’s spot LNG price published by METI is monthly basis. It is
not reasonable to obtain other variables each month. METI started the publication of
Spot LNG price statistics in 2014. This data has a limitation as the number of
observations is 51. Therefore, we generate the following hypothesis:

Hypothesis 1
Ho: BSTS model performs better than ARIMA model in Japan’s LNG spot market for
the short-term forecasting.

5.3 Long-term forecasting

Long-term forecasting with accuracy is difficult because of uncertainty in the future.
Present actions or events influence the future. Meanwhile, based on the literature
review, Bayesian model would be applicable for the long-term forecasting. One
advantage of BSTS model is capability to use spike-and-slab priors which reduce
the number of related variables and make the model simple and powerful [Larsen,
2016]. Thus, we use BSTS models with one variable and various variables. One
variable is Japan’s spot LNG price. However, there are various variables which
could influence the spot LNG price. In this section, we analyse the independent
variables.

We consider the 12 variables: natural gas price, crude oil price, coal price, natural
gas production and consumption, LNG trade in volume, Japanese LNG demand, the
global LNG spot market utilization rate, Japanese LNG spot market utilization rate,
natural gas upstream costs, Investment in LNG liquification plants and geographical
events.
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As LNG is liquified natural gas price, natural gas price would influence LNG price.
The literature review show natural gas price and crude oil price are cointegrated.
Plaquet’ cointegration analysis (2015) concluded there are cointegration
relationships among natural gas, crude oil and coal prices. Japanese LNG demand
is affected by LNG usage for thermal plants. The component of fuels are natural
gas, oil and coal. We consider Australian coal prices as an independent variable
because majority of coal imported to Japan comes from Australia. Figure 24 shows
monthly natural gas and LNG prices from 2014 to 2018. The actual-based Japanese
spot LNG price followed the trend of the contract-based Japanese spot LNG price.
These Japanese spot prices seems to be correlated to the prices of US and Europe
at the area of Spike 1, 2 and 3 in Figure 24. The average price of LNG imported to
Japan (plot in green) seems not to be correlated or the correlation is too weak to be
observed. Figure 25 shows monthly crude oil and coal prices from 2014 to 2018.
Comparison of the Figure 24 and 25 shows the gaps of between European gas price
and US gas price are wider than the three oil indexes.
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Figure 24 Monthly natural gas and LNG prices
Source: Auther via (World Bank and MITI, 2018)
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Monthly Crude Oil and Coal Prices
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Figure 25 Monthly crude oil and coal prices

Source: Auther via [World Bank , 2018]

Natural gas production and natural gas consumption, global LNG trade in volume,
and Japanese LNG demand are also considered as factors which would influence
Japan’s spot LNG price. As a basic economic theory, demand and supply affect
price and quantity of the good. Figure 26 show Natural gas production and
consumption have increased over time. Figure 1 in Chapter 2 shows global LNG
trade and Figure 7 in Chapter 3 shows LNG imported to Japan. These factors also
would be considered.

Natural Gas Production and Consumption (Bcm)

Production e Consumption

Figure 26 Natural gas production and consumption

Source: Auther via [BP, 2018]

Based on the analysis about the development of the global LNG spot market in
Chapter 2, the increase of liquidity could influence the price of the global LNG spot
market. Figure 27 shows LNG spot market utilisation rates of the world and Japan.
Although the utilisation rate of Japan reached the peak of 29 % in 2014, it
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decreased from 2014 to 2017. As we discussed the less utilisation of Japanese LNG
spot market and Japanese buyers’ willingness to increase more LNG procurements
from the spot market in Chapter 3, there are room for the Japanese spot market to
be developed. Thus, these utilisation rates could affect Japan’s spot LNG price.

LNG spot market utilisation rates
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Figure 27 LNG spot market utilisation rates

Source: Author via (GIIGNL, 2005-2017)

Upstream costs for LNG and investment in LNG liquification plants would also be
considered. Because large capital is needed for the LNG supply chain. LNG is
delivered by shipping from production areas to consumption areas. The shipping is
one part of the LNG supply chain from upstream to downstream. Before LNG is
used as a fuel for energy generation, there are many steps to go through such as:
exploring and drilling, production and liquefaction, shipping, regasification and
energy generation. Every step requires large capital investments. As we discussed
the LNG trade agreements in Chapter 2, one of the reasons why the long-term
contracts dominated the LNG market was because gas production companies
needed to raise capital and obtain loans from banks to cover the large capital costs
to extract and liquify natural gas. Within the gas project financing process, the long-
term trade agreements are reliable information for gas production companies to be
able to manage their finance in their repayment terms. Moreover, LNG new building
is relatively expensive in comparison to the other type of vessels. Figure 9 in
Chapter 2 shows the cost range of new building was from 180 to 200 million USD
per one vessel for the past 10 years. Regarding LNG shipping in operation, the high
safety and security standard and special care are needed, because of LNG’s
characteristics, where LNG is transformed from the gas into a liquid with one-600™
of its volume in a gaseous by being cooled to a temperature of minus 162 degrees
Celsius.

Figure 28 shows the global investment in upstream oil and gas, and investment in
LNG liquefication plants. Regarding the global investment in upstream oil and gas,
the investment hit the low in 2016 and slightly recovered to 450 billion USD in 2017.
The main driving force was US, reflecting the increase in the shale industry’s capital
spending [IEA, 2018]. Regarding the Investment in LNG liquefication plants, the
investment has decreased reflecting the decline of foreign direct investments for the
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LNG project in Australia and US [IEA, 2018]. Development of exploring and drilling
is the starting point of the LNG supply chain and influences the amount of gas
production. Liquification plants play a role to transform natural gas to LNG, thus the
trend of the investment affects global LNG trade in volume and would influence the
price of global LNG. Therefore, these variables should also be considered.

Investment in Upstream Qil and Gas
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Figure 28 Investment in upstream oil and gas, and LNG liquefication plants

Source: Auther via (IEA, 2017c, 2018)

Finally, geographical events could affect Japan’s spot LNG price. Figure 29 shows
crude oil, natural gas and LNG prices from 1960 to 2017. The oil crises in 1970s
seems to affect European natural gas price and Japanese LNG price. The financial
crisis from 2007-2008 seems to influence every commodity price. Meanwhile, the
strong correlation of Japanese LNG price and crude oil price is also observed in
Figure 29. Japanese LNG price and crude oil price in Dubai had similar shapes from
2008 to 2016. And besides, regional events could also affect Japan’s spot LNG
price. Figure 30 shows US Natural gas, European Natural gas and Japanese LNG
prices from 1977 to 2017. The Great East Japan Earthquake in 2011 seems to
influence Japanese LNG price and partially European Natural Gas price. However,
US Natural gas price seems not be affected by the regional event.
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($/mmbtu) Crude Oil, Natural Gas and LNG Prices from 1960 to 2017 (/bbl)
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Figure 29 Crude oil, natural gas and LNG prices
Source: Auther via (World Bank, 2018)
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To sum up, Japanese LNG spot price would be influenced by the following
variables.

1 Natural Gas Price 7 Global LNG Spot Market Utilisation Rate
2 Crude oil Price \ 4/—//4// 8 Japan's LNG Spot Market Utilisation Rate
3 Coal Price i: |Japan's spot LNG price | <«——— 9 Japan's LNG demand

4 Global Natural Gas Production /'/y vs 10 Upstream costs

5 Global Natural Gas Consumptio/ \ 11 Investment in LNG liquefaction plants

6 Global LNG trade in volume 12 Geographical events

Figure 31 Variables influencing Japan’s spot LNG Prices

Source: Author

Therefore, we generate the following hypothesis.
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Hypothesis 2
Ho: BSTS model with various variables performs better than Single BSTS model in
Japan’s LNG spot market for the long-term forecasting.

5.4 Conclusion

We use ARIMA model and BSTS model to forecast Japan’s spot prices in the short
term. Meanwhile, we use Single BSTS model and BSTS model with the variables,
which would affect Japan’s spot LNG prices, for long-term forecasting.

We set the two hypotheses and conduct this study. Our two hypotheses are as
follows:

Hypothesis 1

Ho: BSTS model performs better than ARIMA model in Japan’'s LNG spot market for
the short-term forecasting.

Hypothesis 2

Ho: BSTS model with various variables performs better than Single BSTS model in
Japan’s LNG spot market for the long-term forecasting.
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Chapter 6 Methodology

6.1 Introduction

We propose ARIMA model and BSTS model for Japan’s spot LNG price forecasting
in the short run. Then, we compare the suggested spot prices to the METI’s
published data. After that, we conduct the long run Japan’s spot LNG price
forecasting by Single BSTS model and BSTS model with a regression component.
We use the various variables as discussed in Chapter 5. Then, we compare the
suggested spot prices to the World Bank’s Japanese LNG price forecast. In this
chapter, we introduce ARIMA model in 6.1, a Bayesian model, especially, Bayesian
Structural Time Series (BSTS) model in 6.2. We propose steps for the analysis to be
implemented in 6.3 and describe the data set to be used for the analysis in 6.4.

6.2 ARIMA model

ARIMA or ARIMA group is one of the most popular methods to forecast commodity
prices in the short run as discussed in Chapter 4. Here, we describe general
notations of ARIMA and a common methodology to apply ARIMA.

Firstly, ARIMA is a combination of Autoregressive model and Moving average model
with differentiation. The mathematical structure of ARIMA models is as follows:

Autoregressive (AR) model

Y; = ap + a;Y,_q + &, where, &, = NID(0,5?)

Y; is a function of its previous value, Y;_, and a stochastic error, ;.

&, is normally distributed with mean 0 and variance o2. This is an autoregressive
model of order 1. It means that the value of the period t is determined by the value
of the previous period (t-1).

Y, = ap+ a1Yoq + ayYep+azY 3 + o+ ap Yy, + &, where, g, = NID(0,02)

If Y; is a function of its previous values, Y;_;, Y;_5, Y;_3....,Y;_,, it is called an
autoregressive model of order p.

Moving Average (MA) model

AR model shows the random error ¢;. MA model is considered that Y; is determined
by the random error.

Y, =DbY 1+ +g&

Yioi =bYi o+t &

Yieqg =bgYiq + -+ &

Y, = & + by&p_q + bagr_y + .+ byer_q Where, e, = NID(0,02)

If Y, is a function of its previous white noise error, it is called a Moving Average
model of order q.

Autoregressive Moving Average(ARMA) model
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ARMA model is combination of AR and MA model. It depends on the past value and
the error term. Therefore, it is represented below:

Ye=ap+a1Vig+ayYi o+ 4 apYi_ptbigq +bygrp+ o+ baerg + &

This is ARMA model of order (p, q)

Autoregressive Integrated Moving Average (ARIMA) model

AR, MA and ARMA are applicable if the data is stationary. In the case of the data is
non-stationary, we need to differentiate the data to eliminate the non-stationarity.
To forecast a time series Y; = (Y3, ..... Y;) in the ARIMA model (p, d, q). p is the
number of order from AR model, d is the number of differences needed to eliminate
the non-stationarity, and q is the number of the errors from MA model.

If d=0, y; = Y;

fd=1,y, =Y, —Y;_4

Ifd=2,y, = (Y = Y1) = (Vo1 — Vi) =V, — 2V 1 + Vi

The general forecasting model is below:

Ve =ao+ a1yi—q + -+ apYi—p — b1&—1 — - — bg&r_g

Secondly, we use partially Box-Jenkins(B-J) methodology: (1) Identification, (2)
Estimation and (3) Diagnostic checking to apply ARIMA. The R software helps to
conduct trials and errors to forecast the prices. The basic B-J methodology is as
follows:

(1) Identification
We observe the dataset and find the characteristics such as: Stationarity and
Seasonality.

(2) Estimation
Based on the identification, we choose an appropriate ARIMA model (p, d, q) with
Akaike information criterion.

(3) Diagnostic checking
Before applying the model, we check the validity of the model.

Diagnostic checking

(a) Akaike information criterion(AIC)
We determine the ARIMA (p, d, q) to choose the lowest AIC because AIC is a
goodness of fit measure.

(b) Ljung-Box test

We conduct Ljung-Box test to research if there is autocorrelation of the residuals
from the proposed ARIMA model. If P-value is more than 0.05, we can assume
there is no autocorrelation, thus we can run the model.
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6.3 A Bayesian Structural Time Series Model

Bayesian group has an advantage to apply for short and long-term forecasting as
discussed in Chapter 4. However, most of models involve complicated mathematics
and it is almost impossible for the author who does not have strong mathematical
background to conduct forecasting. Meanwhile, BSTS allows us to conduct this
study with some lines of R code. Thus, we choose BSTS. In this section, we
introduce basic idea about BSTS which was built by Scott and Varian (2014).

BSTS is Structural time series in Bayesian framework. The basic notation is as
follows:

Structural time series model (State space form)

There are two components of a structural time series model: (1) Observation
equation and (2) Transition equation.

y is the observed data. a, is a vector of latent variables (state variables). Z,and H,
are structural parameters. Observation equation shows y, comes from state

variable, a;. Meanwhile, level of a; is shown previous state variable plus noise
term in Transition equation. T, R; and R;, are structural parameters.

Ve =Z{a,+& &~N(0,Hy) (1)
a1 = Tea + Reme 1 ~N(0,Q¢) (2)
Trend, seasonal and regression could be added into the state vector «;.

Basic Bayesian Statistics

Bayesian theorem is that Posterior distribution = Prior distribution x Likelihood and it
is used to update probabilities.

P(B|A)
P(B)

P(A|B) = P(A) x

A and B are two events. P(A) is the prior probability of A. P(B|A) is the likelihood
function. P(A|B) is the posterior probability.

Combination of Structural Time series and Bayesian frameworks

Bayesian technic simulates the state a from its posterior distribution given the data,
P(a|y). In order to obtain the posterior distribution, the Kalman filter and a Markov
Chain Monte Carlo algorithm are used. In BSTS with a regression component, Spike
and Slab prior is used to specify the prior distribution by selecting regressors and
promoting sparsity.

BSTS
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BSTS uses Google search data to determine the prior distribution using the method
called Spike and Slab prior. Due to the time limitation and the author’s less
mathematical background, it is not able to explain how BSTS works. However, Scott
and Varian (2014) concluded Google Trends and Google Correlate data was useful
to “nowcast” economic time series. Moreover, the R package “bsts” built by Scott
automatically conducts the mathematical computation. Therefore, we use BSTS for
this study.

6.4 Implementation of ARIMA and BSTS in R

We use “forecast” package and “BSTS” package of the statistic software, R to
conduct the analysis. The procedure of the implementation is as follows:

(1) Short-term forecasting

(a) Comparison of ARIMA model and BSTS model with the mean absolute
percentage error (MAPE)

(b) Forecast of Japan’s spot LNG prices for the next three months

(c) Evaluation of the two models and results

(2) Long-term forecasting

(a) Comparison of Single BSTS model and BSTS with multiple regressors model
with cumulative absolute error

(b) Forecast of Japan’s spot LNG price until 2030

(c) Evaluation of the two models and results

6.5 Data set

We describe the data sets to be used for the short-term and long-term forecasting
and their sources.

(1) Short-term forecasting

Spot LNG Price Statistics (March 2014 to May 2018) published by Japan’s Ministry
of Economy, Trade and Industry (METI). The data is monthly and have 51
observations. The number of data is small because METI started to publish the
prices from March 2014 and the LNG spot market is under development.

(2) Long-term forecasting

Main data to be used is the same data of the short-term forecasting plus the data of
June and July in 2018. Although the price of July in 2018 is preliminary, we include it
and use the average price of each year (2014 to 2018).

Regarding the variables, as mentioned in 5.3, there are 12 variables might influence
Japan’s spot LNG prices. However, geographical events happen suddenly thus, we
consider the other variables excluding the geographical events. The data and their
sources are shown in Table 3.
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Table 3 List of variables

Data Period Source
Crude oil price (WTI) 1982-2017 |World Bank Commodity Price Data, Annual prices (Nominal)
Coal price (Australia) 1982-2017 |World Bank Commodity Price Data, Annual prices (Nominal)
Natural gas (HH) 1982-2017 |World Bank Commodity Price Data, Annual prices (Nominal)
Upstream investment for oil and gas 2000-2018 [Author's visual Estimation via IEA, World energy investment 2017-18
linvestment in LNG Liquefaction plant 2014-2018 |[Author's visual Estimation via IEA, World energy investment 2017-18
Japan's LNG spot market utilization rate 2005-2017 [Auther via GIIGNL, annual report 2005-2017
Global LNG spot market utilization rate 2005-2017 [Auther via GIIGNL, annual report 2005-2017
Natural gas production 1982-2017 |BP Statistical Review of World Energy
Natural gas consumption 1982-2017 |BP Statistical Review of World Energy
Global LNG trade in volume 2008-2017 [Auther via GIIGNL, annual report 2008-2017
Japan's LNG import in volume 1988-2017 |Trade Statistics of Japan

Source: Auther

6.6 Conclusion

In summary, we forecast Japan’s spot LNG prices in short-term and long-term with
the following procedure. Our focal point is not to find the best fitting model but to
predict Japan’s spot LNG prices with higher accuracy.

Table 4 Model processing framework

Long-term

Short-term
Step 1 Data observation
Step 2 Model building (ARIMA, BSTS)
Inc. Diagnostic checking
Step 3 Applying the models
Step 4 Comparison with MAPE
Step 5 Forecasting the prices (June-August 2018)
Step 6 Analysis of the results

Data observation

Forecast without a regression component

Inc. Single BSTS model building

Identifying the contribution of regressors
Estimation of the future values of each regressor
Forecasting the prices until 2030

Analysis of the results

Source: Auther
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Chapter 7 Results and Analysis

7.1 Introduction

In this chapter, we segregate the results and analysis into four parts. Firstly, we
describe the results and analysis of the short-term forecasting Japan’s spot LNG
prices in 7.2. Secondly, we mention the steps we made to forecast the prices in 7.3
Thirdly, we describe the results and analysis of the long-term forecasting Japan’s
spot LNG prices in 7.4. Finally, we mention the steps we made to forecast the prices
in7.5.

7.2 Results and Analysis of the short-term forecasting

In this section, we present results of forecasting the LNG price using ARIMA and
BSTS. Table 5 shows the results from the four different proposed models: ARIMA
(0,1,1), ARIMA (2,1,0) with log-transformation, BSTS, and BSTS with log-
transformation. The result of BSTS with log-transformation model is closer to the
price of June 2018 which METI (2018b) published.

Table 5 Short-term Japan’s spot LNG price forecasts

ARIMA BSTS METI
ARIMA (0,1,1) |—-0gTransformation Log Transformation | (Unit: USD/MMBtu)
ARIMA (2,1,0)
Month Value logl0 Value Value logl10 Value Contract-based price
Jun-18 7.1931810| 0.8395433| 6.9110383| 8.4782550| 0.9559786| 9.0360495 9.3*
Jul-18 6.8038290| 0.8110755| 6.4725513| 8.5074530| 0.9859648| 9.6819938 10**
Aug-18 7.2033390| 0.8452865| 7.0030383| 8.8654670| 1.0018175| 10.0419372

METI: Trend of the price of spot-LNG (Preliminary Figures for July 2018), published on August 9, 2018
*Detailed ** Preliminary

However, ARIMA with log-transformation model shows the lowest MAPE value as
the result of the examinations among two different forecasting periods: the next 1
year and 5 months (January 2017- May 2018) and the next 5 months (January 2018
— May 2018). Table 6 shows comparison of MAPE values among four models with
two different durations. These MAPE are not the errors of the results during the
model building periods but the errors of results during the forecasting periods. In the
forecasting period, from January 2018 to May 2018, the lowest MAPE is 8.14% of
the ARIMA with log-transformation model and the second best MAPE is 12.88 % of
the BSTS model.

Table 6 Comparison of MAPE values

Period
Models Building model 17months Forecasting |Building model S5months Forecasting

Mar2014- Dec2016 [Jan2017-May2018 Mar2014-Dec2017 ([Jan2018-May2018

MAPE (Unit: %) MAPE (Unit: %)
ARIMA 24.09 25.01
ARIMA Log Transformation 16.66 8.14
BSTS 17.53 12.88
BSTS Log Transformation 23.45 25.8
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In summary, although MAPE of BSTS with log-transformation model for the next 5
months forecast shows the worst value, the real forecasted value from the model is
closer to the real value (June 2018). Therefore, in this case, BSTS with log-
transformation model outperforms.

7.3 Model building process for the short-term forecasting

We represented the results and analysis in 7.2. In this section, we describe how we
reached the results by following steps discussed in Chapter 6.

Step 1 Data Observation

Missing values

The data of 51 observations has 5 missing values of May 2015, March 2016, June
2016, August 2016 and June 2017. Due to limitation of time, we used the linear
interpolation, which is the mean of the values of the closest months to the target
month, although there are other ways to interpolate values such as: the spline
interpolation and the Stineman interpolation.

Distribution of NAs

Value
& 8 10 12 14 16 18
|
E
T ——————

Time

Figure 32 Missing values of the data set
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Stationarity
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Figure 33 Original data set

The original data plot looks non-stationary and Dickey-Fuller Test also shows p-
value is 0.5872. Thus, the original data is non-stationary.

Ing_diff1

2015 2016 2017 2018

Time
Figure 34 The first difference of the original data

The first difference of the original data set looks stationary and Dickey-Fuller Test
also shows P-value is 0.01. Thus, the first difference of the original data set is
stationary. We can assume d=1 for ARIMA (p, d, q) models.

Autocorrelation
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In order to forecast the future values, the data should have some kind of
relationships between one value and one value behind in time.

Series Ing_diff1

04

02
|

ACF
0.0

-02

-04

Lag
Figure 35 ACF plots of the first difference of the original data
There is autocorrelation because the value of 0.433 at the lag1 is out of the bound.
We can assume =1 for ARIMA (p, d, q) models.
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Figure 36 PACF plots of the first difference of the original data

There is partial autocorrelation because the value of 0.433 at the lag1 is out of the
bound. It shows correlation between a variable and its lags, which is not captured by
ACF. We can assume p=1 for ARIMA (p, d, q) models.

Seasonality
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Seasonal component, trend component and cycle component would affect the
results. Both the original data and the first difference of the original data have
seasonal and trend components. Since this is the monthly data, we assume
seasonal peaks at lag 12.
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Figure 37 Decomposition of the original data
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Figure 38 Decomposition of the first difference data

In conclusion, the original data is applicable for both ARIMA model and BSTS
model. The data has autocorrelation to predict the future values. The original data is
non-stationary. However, ARIMA and BSTS are able to handle the non-stationary
data because ARIMA has a differencing process and BSTS assumes a structural
change in time series, where the mean and variance of the time series could
change. We also consider seasonal components at lag 12 and trend components.
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Step 2 Model building

ARIMA
The following model includes seasonal component, period=12.
ARIMA for the next 17 months forecasting:

Auto.arima suggested ARIMA (0,1,2). We added ARIMA (0,1,1) for reference. We
conducted AIC and Ljung-Box test and selected ARIMA (0,1,1) model.

AIC P-value (Ljung-Box)
ARIMA (0,1,2) 78.83439 0.816400
ARIMA (0,1,1) 75.81740 0.816400

ARIMA for the next 5 months forecasting:
Auto.arima suggested ARIMA (1,2,1). We added ARIMA (0,1,1) for reference. We
conducted AIC and Ljung-Box test and selected ARIMA (1,2,1) model.

AIC P-value (Ljung-Box)
ARIMA (1,2,1)  83.57223 0.321400
ARIMA (0,1,1)  104.66220 0.615100

ARIMA for the real forecasting (June-August 2018):
Auto.arima suggested ARIMA (0,1,1) and ARIMA (0,0,1). We conducted AIC and
Ljung-Box test and selected ARIMA (0,1,1) model.

AIC P-value (Ljung-Box)
ARIMA (0,1,1) 116.10650 0.477800
ARIMA (0,0,1) 213.95380 0.000000

ARIMA with log-transformation for the next 17 months forecasting:
Auto.arima suggested ARIMA (0,1,1) and ARIMA (1,1,0). We conducted AIC and
Ljung-Box test and selected ARIMA (0,1,1) model.

AIC P-value (Ljung-Box)
ARIMA (0,1,1) -105.09880 0.47100
ARIMA (0,1,0) -99.19313 0.03244

ARIMA with log-transformation for the next 5 months forecasting:
Auto.arima suggested ARIMA (2,1,0) and ARIMA (0,1,0). We conducted AIC and
Ljung-Box test and selected ARIMA (2,1,0) model.

AIC P-value (Ljung-Box)
ARIMA (2,1,0)  -144.62410 0.90630
ARIMA (0,1,0)  -135.00680 0.01893

ARIMA with log-transformation for the real forecasting (June-August 2018):
Auto.arima suggested ARIMA (0,1,1) and ARIMA (0,1,0). However, we added
ARIMA (2,1,0) based on the results of 5 months forecasting model. We conducted
AIC and Ljung-Box test and selected ARIMA (2,1,0) model.
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AIC P-value (Ljung-Box)

ARIMA (0,1,1) -109.56190 0.100900

ARIMA (0,1,0) -108.76220 0.004826

ARIMA (2,1,0)  -112.2445 0.815100
BSTS

Although ARIMA needed to specify ARIMA (p, d, q) and conduct diagnostic
checking, BSTS offered a good fit model with Markov chain Monte Carlo methods
(MCMC). According to Scott (2017), the BSTS package finds the best fit model to
estimate parameters using a MCMC algorism.

To build a model, firstly, we chose a state specification from the BSTS package to
specify a vector of latent state variable a;. Then, we added a local linear trend
component and a seasonal state component with 12 seasons into the state
specification. We set the number of MCMC iterations 500.

As with the ARIMA models, we built 6 BSTS models such as: BSTS for the next 17
months forecasting, BSTS for the next 5 months forecasting, BSTS for the real
forecasting (June-August 2018), BSTS with log-transformation for the next 17
months forecasting, BSTS with log-transformation for the next 5 months forecasting
and BSTS with log-transformation for the real forecasting (June-August 2018).

We can see the contents of the fit model. For example, our BSTS with log-
transformation for the real forecasting has the following contents:

[1] "sigma.obs" "sigma.trend.level" "sigma.trend.slope"
[4] "sigma.seasonal.l2" "final.state" "state.contributions"
[7] "one.step.prediction.errors" "log.likelihood" "has.regression"

[10] "state.specification" "prior" "timestamp.info"

[13] "model.options" "family" "niter"

[16] "original.series"

Meanwhile, Figure 39 shows posterior distribution of the model state and Figure 40
shows individual state components of the model. Actual data points are showed as
blue circles. The unclear lines include the marginal posterior distribution of each
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Figure 40 Individual state components

Step 3 Applying the models

We run the models in R studio and analyse them in the Step 4, Comparison with
MAPE.

Step 4 Comparison with MAPE

We compared the proposed models by using Mean Absolute Percentage Error
(MAPE) between model fitted data and actual data, because it is commonly used to
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analyse a model performance. We used the MAPEs of the forecasting parts for the
comparison.

Model comparison for the next 17 months forecasting (Jan 2017- May 2018)

ARIMA with log-transformation showed the lowest MAPE, 16.66 % in Figure 42.
However, ARIMA showed the worst MAPE, 24.09 % in Figure 41. These ARIMA
models could capture the movements with high accuracy from 2014 to 2015 but the
differences of the model were observed from 2015 to 2017. Especially, the ARIMA
model failed to forecast in Figure 41, because it just showed a straight line from
2017 to 2018. On the other hand, BSTS models captured the flow of the data.
Although there were no exactly fitted periods, BSTS plotted the overall flow from
2017 to 2018. In this comparison, the ARIMA failed the forecast and the ARIMA
with log-transformation outperformed.

ARIMA -- Holdout MAPE = 24.09% 17months, No logtransformation, ARIMA(0,1,1)[12]

' ~= Actual
\ H D ~—Fitted

— e - - - )

G102
}

Figure 41 MAPE of ARIMA for the next 17 months forecasting

52



ARIMA -- Holdout MAPE = 16.66% 17 months Forecast log-transformation, ARIMA(0,1,1)[12]
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Figure 42 MAPE of ARIMA with log-transformation for the next 17 months
forecasting

BSTS -- Holdout MAPE = 17.53% 17 months No logtransformation
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Figure 43 MAPE of BSTS for the next 17 months forecasting
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BSTS -- Holdout MAPE = 23.45% 17 months Forecast log-transformation
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Figure 44 MAPE of BSTS with log-transformation for the next 17 months
forecasting

Model comparison for the next 5 months forecasting (Jan 2018- May 2018)

Generally, the ARIMA models fitted well the first part of the time series. The ARIMA
model failed the forecast because the fitted line went up, the opposite direction of
the actual line in Figure 45. However, at least, the ARIMA model forecasted
something not showing the straight line which we observed in Figure 41. As a result,
we could support the idea from previous studies that ARIMA is a good model for the
short-term forecasting. The ARIMA with log-transformation had the best MAPE,
8.14 % and looked to forecast the next 5 months well. Meanwhile, generally, the
BSTS models followed the actual lines. The BSTS model captured the flow of the
forecasting period in Figure 47. However, the BSTS with log-transformation failed to
forecast because the fitted line went up, the opposite direction of the actual line in
Figure 48. In this comparison, the ARIMA and the BSTS with log-transformation
failed the forecast. The ARIMA with log-transformation outperformed.
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ARIMA -- Holdout MAPE = 25.01% 5months, No logtransformation, ARIMA(1,2,1)[12]
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Figure 45 MAPE of ARIMA for the next 5 months forecasting

ARIMA -- Holdout MAPE = 8.14% 5 months Forecast log-transformation, ARIMA(2,1,0)[12]

16

12
= pctual

=== Fitted

¥ L0z
sio0z
910z |
110z
gi0z

Figure 46 MAPE of ARIMA with log-transformation for the next 5 months
forecasting
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BSTS -- Holdout MAPE = 12.88% 5 months No logtransformation
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Figure 47 MAPE of BSTS for the next 5 months forecasting
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Figure 48 MAPE of BSTS with log-transformation for the next 5 months

forecasting

Step 5 Forecasting the prices (June -Auqust 2018)

groz [
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=—Fitted

Generally, the following models captured the upward trend. However, there were
time lags to capture the trend among the models. The ARIMA models predicted the
prices with downward trend for lag 2 and then predicted the price of August with
upward trend. Meanwhile, the BSTS models predicted the prices with upward trend

at the beginning of the forecasting.
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Figure 49 Forecasts (June — August 2018) from ARIMA
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Figure 50 Forecasts (June — August 2018) from ARIMA with log-transformation
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Figure 51 Forecasts (June — August 2018) from BSTS
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Figure 52 Forecasts (June — August 2018) from BSTS with log-transformation

Step 6 Analysis of the results

Analysis of the results was discussed in 7.2.
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7.4 Results and Analysis of the long-term forecasting

In this section, we present results of forecasting the LNG price using BSTS and
BSTS with multiple regressors. Table 7 shows the results from single BSTS and
BSTS with multiple regressors, more specifically, the estimated model size of 8. The
values are estimated means for the posterior distribution. We explain why we chose
the estimated model size in 7.5.

The single BSTS model forecasted that the price would decrease up to 3.22
USD/MMBtu. However, the values are too small to take account for the
transportation costs which are necessary for Japan to import LNG by vessel.
The results from BSTS with multiple regressors are closer to the World Bank
forecasts. Please note the World Bank forecasts show the average Japan’s LNG
prices.

Table 7 Long-term Japan’s spot LNG price Forecasts

BSTS BSTS World Bank
Single Multiple regressors Natural gas LNG, Japan
Year Spot Spot Average
2019 8.44 9.81 8.9
2020 8.31 10.18 9.1
2021 7.61 10.06 9.3
2022 7.08 10.10 9.4
2023 6.41 10.10 9.6
2024 5.85 10.01 9.7
2025 5.35 9.82 9.9
2026 4.84 9.50
2027 4.39 9.17
2028 3.94 8.79
2029 3.51 8.45
2030 3.22 7.90 10

World Bank : Commodities Price Forecast (nominal US dollars), released on April 24, 2018
Unit: USD/MMBtu

Furthermore, the BSTS with multiple regressors had less cumulative absolute error
shown in Figure 53. The BSTS model included Japan’s LNG import in volume as the
highest inclusion probability.
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Figure 53 Comparison of cumulative absolute error between single BSTS and
BSTS with regressors

In summary, based on the cumulative absolute errors, the BSTS model with multiple
regressors would perform better than the single BSTS model. However, the long-
term forecast predicts the future values and we do not know what happens in the
future. Therefore, we could conclude that the BSTS model would outperform with
uncertainty.

7.5 Model building process for the long-term forecasting

Step 1 Data Observation

Our original data was very poor, because only 5 observations were available.
However, Bayesian statistics could apply the case that the number of observations
is less than the number of estimations. Due to the poor number of data set, we used
the annual mean of the recent Japan’s spot LNG prices, including the preliminary
price of July 2018, published by METI on 9" August 2018.
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Figure 54 Original data set for long-term forecasting

Step 2 Forecast without a regression component

As conducted in 7.2 and 7.3, we chose a state specification. We compared a local
linear trend or a semilocal linear trend component to select the state specification.
Our observed data was annual, thus there was no seasonality. According to Scott
(2017), the forecast errors from a local linear trend model are wider than a semilocal
linear trend model for long-term forecasting. He explained that the variance of a
local linear trend model continuously grew with time and he built the hybrid model,
the semilocal linear trend model, which replaces the random walk with a stationary
AR process. Thus, we tried both models with and without log-transformation. We set
the number of MCMC iterations 1000.
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Figure 55 Model1: a local linear trend model
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Figure 56 Model2: a semilocal linear trend model
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Figure 57 Model3: a local linear trend model with log transformation
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Figure 58 Model4: a semilocal linear trend model with log transformation
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Table 8 Mean values of the forecasting period

Model 1

Model 2

Model 3

Model 4

2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

The above plots (Figure 55 — Figure 58) show semilocal linear trend models had

10.019852
11.165128
12.403347
13.886882
14.910548

16.12626
17.206206
18.462956
19.458763
20.630173
21.660474

22.60162

7.9694263

7.504902
6.5190757
5.4752395
4.1588401

3.105834
1.7651665

0.628017
-0.724578
-1.944258
-3.564338
-4.798711

9.260309358
10.09727044
11.08593049
12.40804413
13.14644037
14.42436271
15.32798348
16.65137286
17.77951834
19.81870317
21.14111195
22.69905402

8.440421882
7.942654701
7.421254354
6.874644437
6.187183897
5.743528144
5.200214027
4.741064602
4.248429844
3.853861164
3.450712088
3.153981183

less error for the next 12 times. Comparison of cumulative absolute error among the

4 models shows Model 3 and Model 4 have less error than Model 1 and Model 2.

Table 8 shows mean values of the forecasting period. Model 1 and 3 shows upward
trend. Model 2 is unrealistic because the price would not be negative. In summary,

we chose the value form Model 4 as the forecasting prices until 2030. However, it
might not be realistic because Japan’s LNG is delivered by vessels. The value
forecasted for 2030 is too small. Next, we consider the contribution of regressors.

Step 3 Identifying the contribution of regressors

We considered to add a regression component to a semilocal linear trend model to
improve the forecast with help of Google search data. The BSTS package includes

64



a spike and slab prior. It helps to handle large number of potential variables to make
a prior distribution sparsity.

As discussed in Chapter 2, 3 and 5, various factors could influence Japan’s spot
LNG price. Here, we considered 11 variables: Crude Qil Price (WTI), Coal Price
(Australia), Natural Gas (HH), Upstream investments for Oil and Gas, Liquefaction
plant investments, Japanese LNG spot market utilization rate, the global spot market
utilization rate, Natural gas production, Natural gas consumption, Global LNG trade
in volume, LNG imported to Japan in volume. We used each value with log
transformation because each unit was different. Here, we only used 4 observations
(2014-2017) of Japan’s spot LNG prices to match the time dimension of the other
variables.

However, before considering various factors into our models, we roughly confirmed
if BSTS with a regression component would perform better. We built 9 models, from
0 regression component to 11 regression components. We checked the components
of each model. Then, we compared the 9 models in terms of cumulative absolute
error. The models with a regression component had smaller cumulative absolute
error than the single BSTS. Therefore, the result showed the semilocal linear trend
model with a regression component could perform better to forecast Japan’s spot
LNG prices. This confirmation results (Model descriptions, Components of each
model, Regression coefficients of each model, Comparison of cumulative absolute
error) are in Appendix 6.

Step 4 Estimation of the future values of each regressor

When we use a regression component, new data set with values of each regressor
for the forecasting period is required. We conducted to predict the future values of
the 11 variables by BSTS and made the new data set. As some potential regressors
had large historical data, we assumed that the new data set is acceptable to use for
the forecasting. We used a semilocal linear trend model with 1000 MCMC iterations.
Table 9 shows model specification for each regressor. Figure 60 shows the original
plots of each model and forecasted plots towards 2030. We collected each mean of
the forecasted values and the means are highlighted in grey in Table 11. Table 11
shows the data set to be used for the long-term forecasting.

Table 9 Model specification for each regressor

The semilocal linear trend models

Variales Modeling period Number Forecasting period Time
Model 1  Crude_oil_WTI 1982-2017 36 2018-2030 13
Model 2 Coal_Australia_price 1982-2017 36 2018-2030 13
Model 3  Natural_gas_US_price 1982-2017 36 2018-2030 13
Model 4 Upstream_investment_oil_gas 2000-2018 19 2019-2030 12
Model 5 Liquefaction_plant_investment 2014-2018 5 2019-2030 12
Model 6 Japan_LNG_spot_market_utilization 2005-2017 13 2018-2030 13
Model 7 World_LNG_spot_market_utilization 2005-2017 13 2018-2030 13
Model 8 Natural_gas_production 1982-2017 36 2018-2030 13
Model 9 Natural_gas_consumption 1982-2017 36 2018-2030 13
Model 10 Global_LNG_trade_volume 2008-2017 10 2018-2030 13
Model 11 Japan_LNG_import_volume 1988-2017 30 2018-2030 13
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Table 10 Data set to be used for the long-term forecasting

Spot_Ing Crude_oil Coal_Aus Natural_g Upstream Liquefacti Japan_LN World_L Natural_g Natural_g Global_L Japan_LN

_JP _WTI tralia_pri as_US_pri _investm on_plant G_spot_ NG_spot_ as_produ as_consu NG_trade G_import

year ce ce ent_oil_g _investm market_u market_u ction mption  _volume _volume
as ent tilization tilization

2014 1.14799 1.969008 1.845904 0.640431 2.892095 1.556303 -0.53858 -0.5363 3.537424 3.531311 2.378725 1.946971
2015 0.89579 1.687611 1.759749 0.417257 2.767156 1.544068 -0.61792 -0.55451 3.546472 3.540853 2.389503 1.929645
2016 0.76932 1.635358 1.818631 0.396586 2.636388 1.414973 -0.74303 -0.54847 3.550206 3.553177 2.420978 1.920853
2017 0.85506 1.706775 1.946527 0.471234 2.653421 1.30103 -0.83295 -0.57253 3.565892 3.564713 2.462113 1.922372
2018 0.98098 1.685735 1.935152 0.454176 2.673942 1.176091 -0.77971 -0.54694 3.576855 3.57661 2.489939 1.935714
2019 1.676856 1.948373 0.454723 2.698488 1.101581 -0.73321 -0.52483 3.588824 3.587441 2.517191 1.947637
2020 1.674335 1.957569 0.460462 2.72931 1.013256 -0.65903 -0.50475 3.599886 3.59948 2.54491 1.960781
2021 1.672468 1.967993 0.458851 2.762059 0.929626 -0.58468 -0.48454 3.610881 3.611037 2.572154 1.974008
2022 1.673404 1.969861 0.460816 2.798278 0.843858 -0.4974 -0.45888 3.622921 3.622548 2.598597 1.987087
2023 1.66766 1.979896 0.466429 2.836373 0.757721 -0.41836 -0.432 3.634697 3.634683 2.625235 2.002083
2024 1.665968 1.986618 0.470888 2.870437 0.671962 -0.33988 -0.40044 3.646515 3.646446 2.649422 2.016389
2025 1.666782 1.995162 0.468964 2.904705 0.585422 -0.2484 -0.37349 3.657997 3.657943 2.674653 2.032754
2026 1.654492 1.996822 0.472929 2.940027 0.507732 -0.17246 -0.34648 3.669717 3.669867 2.699656 2.045932
2027 1.651163 2.006173 0.472578 2.97425 0.424779 -0.09227 -0.32056 3.681612 3.681512 2.726522 2.061383
2028 1.650581 2.000966 0.478621 3.006853 0.350465 -0.01949 -0.29112 3.693278 3.692729 2.750531 2.076834
2029 1.647673 2.00146 0.488082 3.050108 0.262175 0.068698 -0.2596 3.705114 3.704934 2.776839 2.091493
2030 1.649442 2.003987 0.486999 3.091491 0.181208 0.166488 -0.23358 3.716947 3.71661 2.803464 2.106288

Forecasted values by BSTS
To be forecasted by BSTS with regressors
* All values were log-transformed

Step 5 Forecasting the prices until 2030

Finally, we could apply the BSTS with multiple regressors. We estimated the future
values of each regression component in Step 5. Based on the result of Step 3, the
BSTS with estimated size 9 had the least error. However, now we have the values
of the other variables in 2018. Therefore, we conducted the long-term forecasting
through the following steps: Model building with the 5 values (2014-2018), Checking
cumulative absolute errors of each model, and Forecasting Japan’s spot LNG prices
towards 2030.

Model building with the 5 values (2014-2018)

We built 12 models, whose specifications are in Table 12. The regression
coefficients of each model are in Figure 61.
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Table 11 Model specification

Semilocal linear trend model with regressiors (modeling period, T=5)

Model 0 Expected model size 0
Model 1 Expected model size 1
Model 2 Expected model size 2
Model 3 Expected model size 3
Model 4 Expected model size 4
Model 5 Expected model size 5
Model 6 Expected model size 6
Model 7 Expected model size 7
Model 8 Expected model size 8
Model 9 Expected model size 9
Model 10 Expected model size 10
Model 11 Expected model size 11
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Checking cumulative absolute error with each model

Figure 62 and Figure 63 show the cumulative absolute errors of the 12 models. As
we assumed, model with regressors performed better than Model 0. The cumulative
absolute errors decreased gradually from Model 0 to Model 8, although the
performances of some models showed the opposite order against the number of
regressors. Meanwhile, Model 9 had the least cumulative absolute error. The error
of Model 11 was larger than Model 9 and the error of Model 10 was larger than
Model 11. The three models (Model 9 to 11) behaved strangely. We could estimate
that the number of regressors was too many to produce real results. Thus, the good
performance of Model 9 might be fake.
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Forecasting Japan’s spot LNG prices towards 2030

Table 12 shows the results of the long-term forecasting. As mentioned in the
previous part, the values of Model 9 are unrealistic. A cumulative absolute error is
one of criteria to determine a model performance. However, the less error model
does not always perform well as we analysed the ARIMA models for the short-term
forecasting. Thus, combined with analysis of the cumulative absolute error, we
selected Model 8 as our suggested model. The results of the long-term forecast
would be the values from Model 8. Meanwhile, BSTS uses probability, therefore,
results slightly change once we run the models. Although we already forecasted the
future values from BSTS without regressors for the long-term forecasting in the
previous section, we chose the values from Model 0 as our results of BSTS without
regressors.

Table 12 Values produced through models

Year Model0 | Modell | Model2 | Model3 | Model4 | Model5 | Model6 | Model7 | Model8 | Model9 | Model10 | Model1l
2019 8.440302| 8.560052| 8.853938| 8.776091| 9.525948| 9.422593| 9.116566| 9.653628| 9.807223| 10.35975| 9.823792( 10.56209
2020 8.306721| 8.24907| 8.595083| 8.538375| 9.723737| 9.62458| 9.240774| 9.755027| 10.18179| 12.17818| 10.84327| 12.35313
2021 7.60951| 7.614398| 8.007281| 8.022027| 9.523381| 9.536327| 8.924527| 9.703184| 10.06208| 13.39796| 11.69867| 13.71921
2022 7.076937| 6.935679| 7.449113| 7.636708| 9.186399| 9.350153| 8.78618| 9.597891| 10.10179| 15.45918| 12.45462| 15.45343
2023 6.408276| 6.459573| 6.785506| 7.175664| 8.807179| 9.173404| 8.331032| 9.400001| 10.10019| 17.44887| 13.35171| 17.22962
2024 5.852863| 5.855878| 6.111112| 6.679089| 8.55806| 8.640745| 8.135394( 9.044177| 10.00844| 19.89983| 14.16513| 19.25738
2025 5.35479| 5.241855| 5.596039| 6.236853| 8.047148| 8.32192| 7.708531| 8.944711| 9.818568| 22.6394| 14.67821| 21.00708
2026 4.840113| 4.837728| 5.056364| 5.726506| 7.466743| 8.016867| 7.55468| 8.65705| 9.497105| 25.51978| 15.43066| 23.17487
2027 4.385081| 4.468083| 4.520316| 5.357817| 6.916012| 7.63907| 7.142297| 8.170497| 9.167675| 28.78427| 15.89082| 25.07778
2028 3.939321| 4.06526| 4.149404| 4.884035| 6.550688| 7.270437| 6.826435| 7.772437| 8.786253| 31.99626| 16.16467| 27.66945
2029 3.514761| 3.597051| 3.814907| 4.590583| 5.953148| 6.883037| 6.509525| 7.30621| 8.454537| 36.99581| 17.10606| 30.90044
2030 3.223282| 3.213498| 3.442257| 4.105913| 5.579817| 6.622307| 6.14746| 6.786078| 7.90126| 41.8803| 17.99666| 34.23956

Step7 Analysis of the results

Analysis of the results was discussed in 7.3.

7.6 Conclusion

Based on our theoretical analysis in Chapter 5, we set two hypotheses:

Hypothesis 1

Ho: BSTS model performs better than ARIMA model in Japan’s LNG spot market for
the short-term forecasting.

Hypothesis 2

Ho: BSTS model with various variables performs better than Single BSTS model in
Japan’s LNG spot market for the long-term forecasting.

After our study, we accept these two hypotheses. For the short-term forecasting,
ARIMA model had the smallest error. However, we considered it as a guidance
because it did not account for the forecasting results. Based on the comparison of
the results from two models with the price of June 2018 and the capability of
capturing patterns in the data, we conclude BSTS model outperforms. Moreover, for
the long-term forecasting, BSTS model with a regression component had smaller
error than Single BSTS model. We do not know what the future holds, however, we
can conclude BSTS model with a regression component would be useful for
extrapolating.
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Chapter 8 Conclusion

8.1 Conclusion and Recommendation

The purpose of this study was to find a better method to forecast Japan’s spot LNG
prices and to predict the future values. This question came from the situation that
the utilisation of the LNG spot market is useful for Japanese utilities to adjust their
customers’ LNG demand with uncertainty. In the situation, forecasting Japan’s spot
LNG prices would contribute to minimize their LNG procurement costs. Originally,
the cause of the situation was the nuclear accident caused by the earthquake and
tsunami in 2011. As the result, all nuclear power plants in Japan became offline
gradually. Although some of the nuclear power plants are in the process of
reactivation, the LNG demand as a fuel of thermal plants has uncertainty.

To answer the main research question, “How can we forecast Japan’s spot LNG
prices?”, we analysed the global LNG market and Japan’s LNG market. Based on
the literature review and the theoretical analysis, we chose ARIMA model and BSTS
model for the short-term forecasting and Single BSTS model and BSTS model with
a regression component for the long-term forecasting. Since the number of our
observation data is limited, we made use of the power of BSTS model.

The findings of this study suggested that BSTS model outperformed under the poor
number of observations in Japan’s LNG spot market. For the short-term forecasting,
although ARIMA model had the smallest error, the smallest error did not account for
forecasting. Since our goal was to maximize forecasting accuracy rather than to find
the best model, as the overall result, BSTS captured the patterns much better in our
data series. For the long-term forecasting, based on the errors, the overall results
showed that BSTS improved the performance with a regression component.

We would recommend BSTS package in R studio to people who work for the
estimation of LNG procurement costs in the near future as their second or third
options. Because the BSTS package is a user-friendly tool and having another
analytical tool would always be good.

8.2 Limitations and Further Research

Although this study showed the clear results, several limitations should be
mentioned. Firstly, we chose the state specification, a; of each model, based on our
analysis such as short or long-term forecasting, seasonal effects and a regression
component. However, the structure of the state could vary among analysts. Thus,
there might be another choice of the state structure to produce better results.
Secondly, for the long-term forecasting, we chose 11 potential regressors based on
the theoretical analysis. However, any of the regressors were not shown with high
probability in the figure of the regression coefficients. Thus, there might be another
variable which strongly influences Japan’s spot LNG prices. Thirdly, for the long-
term forecasting, we chose Spike and Slab prior to select regressors with the help of
Google search data. And we conducted a single BSTS analysis for each potential
variable to make new data from 2018 to 2030. However, an analysist with good
market knowledge could impose prior beliefs and specify a prior for a certain
variable. In addition, forecasting the values of the potential variables could be
predicted in another way.
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As a recommendation of the future research, we suggest the following three things.
Firstly, more potential variables could be chosen. Because BSTS could select useful
variables even if we are not sure which variables are useful to build a better model.
Secondly, prior beliefs could be set manually based on previous studies or market
researches. Because Google searches reflect people’s interests timely and we are
not sure how it is related to the variables to forecast Japan’s spot LNG prices.
Thirdly, the prediction of the potential variables could be conducted in another way.
However, building a better model and maximising forecasting accuracy are trials and
errors. Therefore, there could be multiple ways to improve model performance.
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Appendices

1 Original data about spot LNG prices

Spot LNG Price Statistics Office of Director for Commodity Market, Commerce and Service Industry Policy Group,METI
Year Month Contract-based  Arrival-based  (Unit : USD/MMBtu)
2014 3 Detailed 18.3 -

4 Detailed 16.0 18.3
5 Detailed 14.8 16.3
6 Detailed 13.8 15.0
7 Detailed 11.8 13.8
8 Detailed 11.4 12.5
9 Detailed 13.2 11.3
10 Detailed 15.3 12.4
11 Detailed 14.4 14.3
12 Detailed 11.6 15.1
2015 1 Detailed 10.2 139
2 Detailed 7.6 10.7
3 Detailed 8.0 7.6
4 Detailed 7.6 7.9
5 Detailed X x
6 Detailed 7.6 7.6
7 Detailed 7.9 X
8 Detailed 8.1 7.7
9 Detailed 7.4 7.7
10 Detailed 7.6 7.9
11 Detailed 7.4 7.5
12 Detailed 7.4 7.5
2016 1 Detailed 7.1 7.9
2 Detailed 6.5 6.9
3 Detailed x 6.8
4 Detailed 4.2 5.8
5 Detailed 4.1 43
6 Detailed x 4.5
7 Detailed 5.8 6.0
8 Detailed x 5.4
9 Detailed 5.7 X
10 Detailed 6.1 5.7
11 Detailed 7.0 5.9
12 Detailed 8.0 6.8
2017 1 Detailed 8.4 7.3
2 Detailed 8.5 8.8
3 Detailed 6.3 7.5
4 Detailed 5.7 5.9
5 Detailed 5.7 5.7
6 Detailed x 5.6
7 Detailed 5.6 5.6
8 Detailed 5.8 5.6
9 Detailed 6.9 5.8
10 Detailed 8.2 6.1
11 Detailed 9.0 7.1
12 Detailed 10.2 8.1
2018 1 Detailed 11.0 10.1
2 Detailed 10.6 10.9
3 Detailed 8.8 10.2
4 Detailed 9.1 8.8
5 Detailed 8.2 7.9
6 Detailed 9.3 8.9
7 Preliminary 10.0 10.3

Source: http://www.meti.go.jp/english/statistics/sho/sIng/index.html, 14, 8 ,2018 accessed



2 Handling missing data

Handling missing data Impute.TS package
Original linear_intery spline_inter| stine_interpolatic Date

18.3 18.3 18.3 18.3 Mar-14

16 16 16 16 Apr-14

14.8 14.8 14.8 14.8 May-14

13.8 13.8 13.8 13.8 Jun-14

11.8 11.8 11.8 11.8 Jul-14

11.4 11.4 11.4 11.4 Aug-14

13.2 13.2 13.2 13.2 Sep-14

15.3 15.3 15.3 15.3 Oct-14

14.4 14.4 14.4 14.4 Nov-14

11.6 11.6 11.6 11.6 Dec-14

10.2 10.2 10.2 10.2 Jan-15

7.6 7.6 7.6 7.6 Feb-15

8 8 8 8 Mar-15

7.6 7.6 7.6 7.6 Apr-15

NA 7.6 7.3858246 7.524612106 May-15

7.6 7.6 7.6 7.6 Jun-15

7.9 7.9 7.9 7.9 Jul-15

8.1 8.1 8.1 8.1 Aug-15

7.4 7.4 7.4 7.4 Sep-15

7.6 7.6 7.6 7.6 Oct-15

7.4 7.4 7.4 7.4 Nov-15

7.4 7.4 7.4 7.4 Dec-15

7.1 7.1 7.1 7.1 Jan-16

6.5 6.5 6.5 6.5 Feb-16

NA 5.35 5.2899538 5.35 Mar-16

4.2 4.2 4.2 4.2 Apr-16

4.1 4.1 4.1 4.1 May-16

NA 4.95 4.9525452 4.95 Jun-16

5.8 5.8 5.8 5.8 Jul-16

NA 5.75 5.8486372 5.75 Aug-16

5.7 5.7 5.7 5.7 Sep-16

6.1 6.1 6.1 6.1 Oct-16

7 7 7 7 Nov-16

8 8 8 8 Dec-16

8.4 8.4 8.4 8.4 Jan-17

8.5 8.5 8.5 8.5 Feb-17

6.3 6.3 6.3 6.3 Mar-17

5.7 5.7 5.7 5.7 Apr-17

5.7 5.7 5.7 5.7 May-17

NA 5.65 5.6533298 5.65 Jun-17

5.6 5.6 5.6 5.6 Jul-17

5.8 5.8 5.8 5.8 Aug-17

6.9 6.9 6.9 6.9 Sep-17

8.2 8.2 8.2 8.2 Oct-17

9 9 9 9 Nov-17

10.2 10.2 10.2 10.2 Dec-17

11 11 11 11 Jan-18

10.6 10.6 10.6 10.6 Feb-18

8.8 8.8 8.8 8.8 Mar-18

9.1 9.1 9.1 9.1 Apr-18

8.2 8.2 8.2 8.2 May-18




3 Data observation (ARIMA short-term forecasting)

Augmented Dickey-Fuller Test

data: original
Dickey-Fuller =-1.9681, Lag order = 3, p-value = 0.5872
alternative hypothesis: stationary

Augmented Dickey-Fuller Test

data: Ing_diffl
Dickey-Fuller = -4.4548, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary

Autocorrelations of series ‘Ing_diff1’, by lag

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.000 0.433 0.063-0.181-0.206 -0.152 -0.080 0.087 0.008 0.020 0.089 0.106 0.176 0.108 0.164 0.071
16 17 18 19 20

0.018 -0.102 -0.147 -0.126 -0.062

Partial autocorrelations of series ‘Ing_diff1’, by lag

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.433-0.153-0.184 -0.048 -0.049 -0.042 0.122-0.153 0.045 0.127 0.011 0.160 0.018 0.166 0.048 0.047
17 18 19 20

-0.084 -0.007 -0.065 0.011
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4 Model building (ARIMA short-term forecasting)

ARIMA 17months

Best model: ARIMA(0,1,2)

> ## Check auto.arima

> Ing_arima.model.estimated<-arima(A,order=c(0,1,2),seasonal=1list(order=c(0,1,2), period=12))
> AIC(Tng_arima.model.estimated)

[1] 78.83439

> Ing_arima.model.estimated2<-arima(A,order=c(0,1,1),seasonal=Tist(order=c(0,1,1), period=12))
> AIC(Tng_arima.model.estimated2)

[1] 75.8174

> Box.test(Ing_arima.model.estimated$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: Tng_arima.model.estimated$residuals
X-squared = 14.272, df = 20, p-value = 0.8164

> Box.test(Ing_arima.model.estimated2$residuals, lag = 20, type = "Ljung-Box™)
Box-Ljung test

data: Tng_arima.model.estimated2$residuals
X-squared = 14.272, df = 20, p-value = 0.8164

> summary(arima2)

call:
arima(x = A, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))

coefficients:
mal smal
0.4247 0.0646
s.e. 0.1687 0.4046

sigmaA2 estimated as 1.608: Tlog Tikelihood = -34.91, aic = 75.82
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.2141781 0.996648 0.6053146 2.802475 9.017475 0.7058439 9.499767e-05




ARIMA 5 months

Best model: ARIMA(1,2,1)

> ## Check auto.arima

> Ing_arima.model.estimated<-arima(A,order=c(1,2,1),seasonal=list(order=c(1,2,1), period=12))

warning message:

In log(s2) : NaNs produced

> AIC(Ing_arima.model.estimated)
[1] 83.57223

> TIng_arima.model.estimated2<-arima(A,order=c(0,1,1), seasonal=list(order=c(0,1,1), period=12))

> AIC(Ing_arima.model.estimated2)

[1] 104.6622

>

> Box.test(Ing_arima.model.estimated$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: Tng_arima.model.estimated$residuals
X-squared = 22.358, df = 20, p-value = 0.3214

> Box.test(Ing_arima.model.estimated2$residuals, lag = 20, type = "Ljung-Box")
Box-Ljung test

data: Tng_arima.model.estimated2$residuals
X-squared = 17.579, df = 20, p-value = 0.6151

> summary(arima2)

call:
arima(x = A, order = c(1, 2, 1), seasonal = list(order = c(1, 2, 1), period = 12))

coefficients:
arl mal sarl smal
0.4068 -0.9890 0.0177 0.0183
s.e. 0.2375 0.1541 NaN NaN

sigmaA2 estimated as 1.837: TJog Tikelihood = -36.79, aic = 83.57

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.136373 0.8936741 0.4786376 2.787119 7.93386 0.5933524 0.1348707
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ARIMA forecast

Best model: ARIMA(0,1,1)(0,0,1)[12]

> cl <- arima(lng.ts, order = c(0,1,1), seasonal=Tlist(order=c(0,1,1), period=12))
> AIC(cl)
[1] 116.1065

> c2 <- arima(lng.ts, order = c(0,0,1), seasonal=list(order=c(0,0,1), period=12))
> AIC(c2)

[1] 213.9538

>

> Box.test(cl$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: cl$residuals
X-squared = 19.685, df = 20, p-value = 0.4778

> Box.test(c2%residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: c2$residuals
X-squared = 69.628, df = 20, p-value = 2.095e-07

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jun 2018 7.193181 5.920227 8.466134 5.246366 9.139995
Jul 2018 6.803829 4.571606 9.036052 3.389938 10.217720
Aug 2018 7.203339 4.314527 10.092150 2.785283 11.621394

> summary(cl)

call:
arima(x = Ing.ts, order = c(0, 1, 1), seasonal = list(order

c(0, 1, 1), period = 12))

Coefficients:
mal smal
0.4405 0.4433
s.e. 0.1380 0.2900

sigmaA2 estimated as 0.9854: Tog likelihood = -55.05, aic = 116.11
Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.1001928 0.8569591 0.5683499 1.171555 8.454805 0.7016666 -0.00711699
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ARIMA 17months log-transformation

Best model: ARIMA(0,1,1)(0,1,0)[12]

Series: a
ARIMA(0,1,1)(0,1,0)[12]

coefficients:
mal

0.3603
s.e. 0.1731

sigmaA2 estimated as 0.003504: 1log likelihood=30.01
AIC=-56.03 AICc=-55.36 BIC=-53.94
warning message:
In value[[3L]](cond) :
The chosen test encountered an error, so no seasonal differencing is selected. Check the time series data.
> b <- arima(a, order = c(0,1,1))
> AIC(b)
[1] -105.0988
> b2 <- arima(a, order=c(0,1,0))
> AIC(b2)
[1] -99.19313
> Box.test(arima3$residuals, Tag = 20, type = "Ljung-Box")

Box-Ljung test

data: arima3$residuals
X-squared = 33.155, df = 20, p-value = 0.03244 (0,1,0)

> ### Fit the ARIMA model
> arima3 <- arima(a, order=c(0,1,1), seasonal=list(order=c(0,1,1), period=12))
> Box.test(arima3$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: arima3$residuals
X-squared = 19.792, df = 20, p-value = 0.471

> summary(arima3)

call:
arima(x = a, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12))

coefficients:
mal smal
0.3543 0.0636
s.e. 0.1790 0.4430

sigmaA2 estimated as 0.003326: 1log likelihood = 30.02, aic = -54.05

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.008332449 0.04533354 0.02733488 0.924782 3.407316 0.6763462 0.004033271
> accuracy(arima3)

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.008332449 0.04533354 0.02733488 0.924782 3.407316 0.6763462 0.004033271




ARIMA 5months log-transformation

Best model: ARIMA(2,1,0)(0,1,0)[12]

Series: a
ARIMA(2,1,0)(0,1,0)[12]

Coefficients:
arl ar2
0.3946 -0.3296
s.e. 0.1622 0.1592

sigmaA2 estimated as 0.002897: Tlog 1ikelihood=50.48
AIC=-94.96 AICc=-94.13 BIC=-90.47

> b <- arima(a, order = c(2,1,0))
> AIC(b)

[1] -144.6241

> b2 <- arima(a, order=c(0,1,0))
> AIC(b2)

[1] -135.0068

> Box.test(arima3$residuals, lag = 20, type = "Ljung-Box")
Box-Ljung test

data: arima3$residuals
X-squared = 35.227, df = 20, p-value = 0.01893

> ### Fit the ARIMA model
> arima3 <- arima(a, order=c(2,1,0), seasonal=list(order=c(2,1,0), period=12))
> Box.test(arima3$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: arima3$residuals
X-squared = 12.274, df = 20, p-value = 0.9063

> summary(arima3)

call:
arima(x = a, order = c(2, 1, 0), seasonal = list(order = c(2, 1, 0), period = 12))

Coefficients:
arl ar2 sarl sar2
0.3388 -0.2846 -0.0309 -0.5239
s.e. 0.1737 0.1852 0.3287 0.3155

sigmaA2 estimated as 0.002062: Tog likelihood = 51.24, aic = -92.47

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.01006658 0.03847195 0.02510692 1.123033 3.080784 0.6270862 -0.1361554
> accuracy(arima3)

ME RMSE MAE MPE MAPE MASE ACFl
Training set 0.01006658 0.03847195 0.02510692 1.123033 3.080784 0.6270862 -0.1361554
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ARIMA forecast log-transformation

Best model: ARIMA(0,1,1)(0,1,0)[12]

> cl <- arima(ab, order
> AIC(cl)

[1] -109.5619

> c2 <- arima(ab, order
> AIC(c2)

[1] -108.7622

> c3 <- arima(ab, order

> AIC(c3)
[1] -112.2445
>

c(0,1,1), seasonal=list(order=c(0,1,1), period=12))

c(0,1,0), seasonal=Tlist(order=c(0,1,0), period=12))

c(2,1,0), seasonal = list(order=c(2,1,0), period=12))

> Box.test(cl$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: cl$residuals
X-squared = 28.371, df = 20, p-value = 0.1009

> Box.test(c2$residuals, lag = 20, type = "Ljung-Box")

Box-Ljung test

data: c2%residuals

X-squared = 40.118, df = 20, p-value = 0.004826

> Box.test(c3$residuals, lag=20, type="Ljung-Box")

Box-Ljung test

data: c3%$residuals
X-squared = 14.298, df = 20, p-value = 0.8151

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jun 2018 0.8395433 0.7826191 0.8964674 0.7524853 0.9266012
Jul 2018 0.8110755 0.7160191 0.9061319 0.6656993 0.9564518
Aug 2018 0.8452865 0.7303044 0.9602686 0.6694366 1.0211365
>

> plot(fore)
> accuracy(c3)
ME RMSE MAE

MPE MAPE MASE ACF1

Training set 0.008416846 0.03834863 0.02483247 0.927273 3.022435 0.6235638 -0.1261651

> summary(c3)

call:

arima(x = ab, order = c(2, 1, 0), seasonal = list(order = c(2, 1, 0), period = 12))

Coefficients:

arl ar2 sarl sar2
0.3373 -0.3147 0.1230 -0.4781
s.e. 0.1605 0.1747 0.2277 0.2045

sigmaA2 estimated as 0.001973:

Training set error measures:
ME RMSE MAE

log 1ikelihood = 61.12,

aic = -112.24

MPE MAPE MASE ACF1l

Training set 0.008416846 0.03834863 0.02483247 0.927273 3.022435 0.6235638 -0.1261651
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5 Model building (BSTS short-term forecasting)

BSTS 17months

> summary(bsts.model, burn = 216)
$ residual.sd”
[1] 0.4179634

$prediction.sd
[1] 1.86351

$rsquare
[1] 0.9872653

$relative.gof
[1] -1.869889

> p <- predict.bsts(bsts.model, horizon = 17, burn = 216, quantiles
>p

$ mean”

[1] 7.018480 6.134232 6.100676 5.395860 5.418603 5.538103 5.765362
[13] 7.223390 6.106932 6.108074 5.172053 5.170673

$median
[1] 7.116629 6.245789 6.090601 5.415592 5.194793 4.945197 4.866505
[13] 5.292653 4.433113 3.828846 3.071635 2.827549

$interval
[,11 [,21 [,31 [,4] [,5] [,6]
2.5% 3.269765 1.407391 0.6413737 -0.6675079 -2.207368 -2.036606

[,11] [,12] [,13] [,14] [,15] [,16]

5

5

c(.025, .975))

.899632 6.514357 7.744861 7.995478 7.764620

.401149 5.608763 6.704595 6.407900 5.768899

[,7 [.8] [,9] [,10]

-2.807205 -3.075108 -3.508825 -3.362029
97.5% 10.255588 10.766774 11.9847455 13.0128434 15.103472 16.117844 19.342304 21.092442 22.880057 25.943339

[,171

2.5% -3.018249 -4.864642 -7.300738 -9.032895 -10.51540 -13.51832 -14.51994
97.5% 28.302967 30.171412 33.214688 34.894472 37.28785 38.40960 40.98630

$distribution
[,1] [,2] [,31 [,4] [,5]
[1,] 6.5231497 4.1898895 2.1305019 3.514143486 5.3466644787
[2,] 7.8010657 5.8867711 3.5316503 3.407004395 2.7125614020
[3,] 6.5997454 5.6509169 5.4574279 6.118624022 7.2165069323
[4,]1 8.0392255 8.4125238 5.4661672 5.236555039 6.3093338473
[5,] 6.8808805 6.9007586 6.4055963 4.151304681 5.8528925573
[6,] 6.5396778 3.4278939 8.5801251 5.697288876 3.2173031213
[7,]1 5.6863374 4.6344430 1.9181046 1.679336000 4.3369977158
[8,] 7.9991825 8.9706718 4.2684383 2.794104970 2.5818161989
[9,1 3.3555726 3.2293415 2.7743159 1.839252196 2.3524478127
[10,] 7.0855235 5.0485893 2.2149224 2.321731262 6.6107026199
[11,]1 9.7982968 8.9066855 7.2962429 5.489401823 2.1601259238
[12,] 9.0495104 9.8041999 7.2993265 7.636220411 5.9808558151
[13,] 7.2443884 3.7925283 2.5865106 1.061100094 0.1811368514
[14,] 8.1429768 5.3943079 7.6989161 7.326588590 7.0717674713
[15,1 7.4373408 7.6605537 6.3405472 6.782893905 6.7814629594
[16,] 6.1268348 4.6705525 5.3235706 4.111671120 3.9646806790
[17,] 8.2167801 7.3644807 4.9431274 5.719895391 5.8307227193
[18,] 8.5742756 6.6653464 6.1448779 5.839982811 6.1275225839
[19,] 6.8081644 7.3398052 6.0986279 3.046317703 3.9088582484
[20,] 6.2362284 2.3682868 3.6278235 2.974192107 1.7386423388
[21,] 6.3726753 5.0313027 2.6260680 2.703234840 1.8853942732
[22,] 6.1255975 4.3753810 3.4221475 -0.535060963 -2.5269074443
[23,] 7.6909931 6.2545822 2.6154482 -0.515246054 2.0897345253
[24,] 8.6962012 7.5168336 5.3383627 6.716925433 7.9700972246
[25,]1 7.2340841 9.4056746 7.1525790 6.899203355 6.1857300487
[26,] 6.1935746 6.0136448 6.5547297 2.883583341 1.5435312003
[27,] 4.6357588 -0.4965881 2.8394666 -0.672365916 -0.7301607589
[28,] 9.7857876 8.5073240 9.4058054 7.426984542 5.4578213444
[29,] 6.2391782 9.2488267 12.0598316 11.188010827 7.8826282146
[30,] 6.2508928 2.5020317 4.4058541 3.921793493 2.9722300613
[31,]1 7.3799069 7.1843092 7.7158411 8.594916778 9.8176900129
[32,] 9.2768520 7.6548382 9.4773174 8.908057787 8.0663024590
[33,] 8.2233100 5.0181955 3.0591473 2.120609619 1.9269638651
[34,] 10.3158688 8.6933863 9.4843904 9.642516547 9.1098602033
[35,] 3.2521835 2.3716150 1.5432580 1.663282403 3.1449519734
[36,] 4.5925803 5.6083657 4.2097600 2.690003304 2.1166828153
[37,] 8.1192235 4.6635882 3.4926159 3.291674014 3.1629665021
[38,] 7.2670838 8.5491267 9.2703931 9.887223136 10.9288950515
[39,] 7.4803513 7.4162095 7.2805287 8.496307828 9.2699061307
[40,] 6.3987867 6.2131294 6.5267792 6.562348082 3.5570797865
[41,] 4.1765550 2.4249277 -0.2951430 -0.147331971 -1.5595643697
[42,] 5.1559357 5.3793727 2.9536972 2.050884378 1.7316876696
[43,] 4.1200440 3.0112995 3.4385751 3.729425107 5.1019663767
[44,] 3.8578662 2.4490498 3.8584712 1.357334548 1.1227936661
[45,] 11.0464722 10.1358182 10.2510610 11.913933812 14.2339699210
[46,] 2.6493029 2.7838123 3.1165939 -1.236232788 -2.3378313330
[47,] 9.1809339 7.5099323 9.0973975 5.507340046 5.2963201443
[48,] 4.9344063 1.8273507 4.5060854 6.890748172 4.8588484472
[49,] 7.3148288 7.1655207 4.1740257 3.991578672 4.8461956880
[50,] 5.3798675 5.0789885 5.8270743 4.127311475 3.0450167193
[51,] 5.2672945 7.2310144 5.5554175 8.390625192 6.4391571254
[52,] 7.2581031 3.5143628 4.9385363 4.344328430 5.4840428114
[53,] 4.0524766 3.0653296 2.7971403 0.575541703 0.0009491829
[54,] 5.6337072 4.9565326 2.2931155 3.080283229 6.8814257895
[55,] 7.4525026 3.1578601 3.1068055 3.065126418 1.5233794103
[56,]1 4.5432290 5.4936164 4.1513374 6.022973320 6.5211535446
[57,] 7.5580151 5.7030732 6.1247758 7.964481493 8.3704485200
[58,] 5.8017005 11.1641022 6.5646238 8.101442829 8.4094916863
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[,6] [71 [,8]
002796735 6.06644860 6.78053284
461508490 0.69283065 0.06453015
308907516 7.02790417 6.14489115
614945307 7.72601332 8.92371358
654615477 4.81442985 8.41867478
306545246 3.80773925 2.90515212
418566338 7.45291905 6.25938407
833157457 0.49196318 0.71638913
361411701 -1.71243324 -0.98721896
096659118 7.28512230 8.66413395
485287028 1.42639908 2.88720738
680617689 7.06552017 6.10436920
056559417 -1.65560822 -2.99260044
584216263 6.47642053 5.55832610
162736066 5.59113003 7.98617122
735391754 2.73168129 1.34110312
251748692 1.29758577 2.50510014
192990718 4.68252648 5.97694235
445077289 1.16967609 -0.36466628
634021525 0.66494985 -0.75069416
996140889 -1.01301493 -0.93276144
676570085 -1.60549567 -4.60630764
285310034 1.11637458 1.00184089
.793016661 8.67634875 6.36304013
.469004050 4.86876037 2.69242110
.009568015 1.37376483 0.68285629
221082050 -0.69399512 -2.67264949
062991598 4.88720323 4.66234625
341115381 7.72836818 9.27796882
586437934 3.50027251 2.70446222
261791400 10.40925379 10.15357838
229569545 7.76601189 9.14841861
819447583 2.51612293 2.08543991
379495301 8.16107398 7.71966920
885487961 3.69855609 3.50463641
275388604 4.52726757 3.81632101
740492262 2.55051110 2.90720313
.215271787 11.08913588 12.20741651
.507836666 9.97792824 8.19296363
.841726420 3.09632907 0.12017917
.937942096 0.03659853 -0.23035112
.930530164 0.07815970 -0.34634340
.663977353 4.43287789 5.11207128
911531254 -0.42225072 -1.21932899
300374928 19.26031763 19.55607292
234971749 -0.34268976 0.44719965
456493415 3.80064277 5.03731225
251990537 0.64163680 -1.78399851
836576685 0.52346249 -0.72703705
063766702 3.23559588 -2.03165198
975734935  8.24660040 11.29094313
561051994 4.71863565 3.33626773
101930046 -0.38890742 -2.26191555
350139617 5.35013170 7.49408154
182660595 2.16367615 -2.95302655
541197123 8.24631375 6.52502830
756209857 8.18681406 8.28289253
690034996 10.36053502 9.52381458
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1,1
[2,]
[3,1]
[4,]
[s5,1]
[e,]
[7,1]
[8,]
9,1
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
(17,1
[18,]
[19,1]
[20,]

21,1 -

[22,]
[23,]
[24,]
[25,]

[26,] -

[27,]
[28,]
[29,]
[30,1]
[31,]
[32,]
[33,1
[34,]
[35,1
[36,]
[37,1]
[38,1]
[39,1]
[40,1]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
[47,1]
[48,]
[49,1]
[50,1]
[51,]
[52,]
[53,1
[54,]
[55,1
[56,1
[57,1]
[58,1]
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[,9]

.430361013
.389638937
.369937018
.876756728
10.
.387346508
.699482052
-0.
-3.
.899486740
.218178466
10.
.990770688
.191249804
.939870224
.272312877
.899741733
.378672728
.580911858
.295163914
.063309517
.133204394
.329420644
.534238072
.986542526
.038292393
.569396772
.897221933
.061578907

234324947

143569480
458117584

328264902

2.193750531

10.
10.
.908296512
.845467693
.007560676
.281038166
.473326934
.185419257
.553641520
.790279541
.011100741
.671505489
.415669814
.438402732
.098883421
.579026878
.402277021
.884043533
.475996450
.506256262
.004221828
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12

860613641
923324956

713852369

.243722256
.321918243
.606830282
10.
.720482304
.209757260

073239108

25
-3

[,10]

.2306939
.4416627
.5140117
.0305696
.7291631
.4524025
.4749212
.0985914
.0751517
.3285523
.8237006
.3648112
.8699040
.5790925
.2870160
.9273361
.0614912
.4563728
.0000454
.3468015
.6331306
.3275880
.6240613
.8532719
.5017289
.7212982
.3852898
.2660306
.2103281
.0493079
.1556770
.8971804
.0231238
.9658160
.5676070
.1984790
.4405035
.9074674
.2090157
.5783892
.4732574
.7680391
.8567671
.0758449
.1988523
.8176530
.3860078
.6523057
.1061587
.0604701
.2642454
.1081003
.1531600
.5983345
.4697154
.9504078
.4373432
.5485188

10.
.73860627
.34124459
10.
.43179009
.95064089
.69919017
.81478733
.13421189
.57195189
.81895800
.32003850
.50460262
.69498957
10.
.67511793
.94340663
.12572731
.73465834
.71544804
.32687046
-3.
.01071691
.43419322
.71000656
.19937363
.49280190
.26807272
12.
.20419576
14.
11.
.92093725
13.
.51401365
.05214111
.92653701
.08820132
.06727673
.09411602
.50295427
.87510392
.66309633
.76780975
.12175500
.30501584
.18448992
.42170765
.63345636
.84075560
.00262795
.80729840
.48881381
.54095284
.56004363
.20042004
.31772731
.40957651
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[,11]
78205906

05419723

12452040

00044622

56579629

24213115
66851071

71778180

[,12]

.88703827
.75302725
.87923583
.88908387
.10209433
.57050793
.89483110
.07807784
.46813423
.99474358
.54171717
.04893521
.87958305
.46660249
.89497623
.25415253

88913316
04401661
48381608
64943699

.78101398
.10321896
.47195836
.14388072
.45139035
.16818092
34490302
.16891888
.38376599
.90388526
.56374402
.15120089
.69180115
.93705190
.42556829
.32425284
.72933354
.96678394
.01065457
.59985421
.40084849
.58448231
.81093647
.57153637
.91316319
.27909326
.93119855
.75471066
.82236935
.65397537
.43241753
.63349234
.99198663
.68094697
.47226761
.56950600
.59885837
.11154656
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15

15

-3.
7.
1.

12.

.75564128

-3.

.68717655

-8.
9.

.40982965

.29968388
-7.

1.
-4,

-10.

.93624533

.48294032
1.

-4.

16.

.77609190

10.
9.

.63712577

12

2

-5

33

2
15

2

12

[,13]

.28129872
.79207520
.70697149
.80225435
.07303574
6.
11.
2.18402693
2.61974829
7.38229726
0.32717545
2.78002920
-5.94076159
7.
7
0
2
7
-5
3

74860766
61762883

90193593

.93951115
.33417315
.67451471
.75440858
.72104841
.34513848
-0.
-4.

1.
11.
.22689521
.04639025
.19855716
.79420345
11.

4.
.18554188
14.

4.
.29604199

56909339
95094904
64495514
98077827

59836606
39374129

06137992
80236173

52278446
30686045
97507322
33454630

35980403

85904561 -
75422768

89407059 -
23375765
56509902
12298070 -

67528293
72436757
19504628

44484337
95823650
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[,14]

.62815967
.36695444
.18263089
.00820878
.21122985
.25442139
.04632859
.16219354
.64325342
.14704167
.71568518
.41000061
.62073426
.04267009
.16227783
.93171439

44914766
69003199
68844704
68406188

.11969725
.86753625
.41407010
.01246351
.70069265
-0.
-8.
.71808695
11.
.36617251
.47575545
14.
.51872573
.47378747
.96176174
.85953279
-1.
13.
11.
-5.
.54466471
11.
.95816137
-7.
.48324694
11.
-0.
.08315882
12.
.65554058
.09800910
.96683670
-7.
.12044898
.87271089
.70373881
.75785489
.32249354

68103274
01115467

52913121

30568169

95132539
42336030
27042376
51924755
39365451 -
71305445

09017127
32897289

54642454 -

31190629
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[,15]

34221360
-1.
-1.
.89129736

.12048445

.04177552

.25139409

.94430599

.70045703

.40105877

.59718082

.70426731

.10799465 -
.95254146

.59738210

-3.
.65615816
.78561186
-6.
.08877068
-1.
-5.
.35913627
11.
.92296449
-1.
-7.
.18012849
12.
.06813380
.61412536
16.
.90554565
13.
-8.
.29344422
-3.
14.
11.
-6.
.94145126

.48636099 -
10.
.12036525 -
37.
-8.
-0.
.33065980 -
14.
.50978646
16.
-2.
-8.
.18236605

55625334
18237695

80781843

40109816 -

72361763
20843979

63884617

48368250
48109099

57464343

44976484

73592445
52530823 -

70016058
15302933
76413676
15898055

75976595
29843329
68520706 -
15442275
71460231 -
54801097
29905535

44328019 -

76553238
57568254

.66089369
13.

55715707
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[,16]

.14938526
.25150325
.36705952
33550559
.32978928
.94091772
.87347850
.98010324
.66850486
.13627695
.26138703
0.
.00471611
.21197228
.62361555
.22154971

45897646

39267968

.27120976
.30517346
.48102342
.98183926
.19089597
.18713210
.89172760
.80532449
.09076362
.92272309
.51205659
.08089005
.31253714
.50061412
.76506995
.72251973
.52543631
.97430410
.71252064
-6.
. 84168177
.67912576
.86423512
.00859016
.83931633
.13041253
.90288215
.14356378
.36564915
.60962579
.25670606
.97285630
38098280
.29654090
.16108100
.53070189
.23397636
.42556519
.69243273
.61264836
.60565309

05463017
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[,17]

[1,] 5.15673563
[2,] -1.19529492
[3,] -6.80087135
[4,1 7.07144273
[5,1 12.74243007
[6,] 3.10778583
[7,] 3.85035531
[8,] -4.16699048
[9,] 4.03885191
[10,] 5.54947127
[11,] -2.07245694
[12,] 0.95078588
[13,] -11.22956021
[14,1 4.83026326
[15,1 7.62475971
[16,] -5.88070972
[17,] 1.08665293
[18,] 3.56847661
[19,] -10.57224917
[20,] 1.51240010
[21,] -4.21757796
[22,] -7.58402431
[23,] -3.18395740
[24,] 12.42982784
[25,] 1.73505871
[26,] -3.87309552
[27,] -9.05811494
[28,] -1.32351928
[29,] 9.88735098
[30,] -1.79126094
[31,] 15.75344927
[32,] 17.48053156
[33,] 3.29465793
[34,] 15.70268179
[35,] -14.53446516
[36,] 3.92857584
[37,] -6.08447005
[38,] 16.16842176
[39,] 11.58283316
[40,] -12.19595166
[41,] -0.36403370
[42,] -18.75339267
[43,] 11.97798245
[44,] -10.69356754
[45,] 42.03143708
[46,] -11.77599100
[47,] -3.75565017
[48,] -13.41268738
[49,] -20.30877025
[50,1 -0.74472476
[51,] 15.51113996
[52,]1 -4.37443902
[53,]1 -12.87732889
[54,] 20.18741729
[55,]1 -0.84145534
[56,1 9.49771027
[57,] 11.31632698
[58,] 16.91998823
[ reached

getoption("max.print") -- omitted 226 rows ]

$original.series

1

2

18.30 16.00

19

20

7.40 7.60

3
14.80 1
21
7.40

4
3.80

22
7.40

5
11.80
23
7.10

7
13.20
25
5.35

8
15.30
26
4.20

9
14.40
27
4.10

10

11

11.60 10.20

28
4.95

29
5.80

12
7.60

5.75

13
8.00
31

14
7.60
32
6.10

15
7.60
33
7.00

16
7.60
34
8.00

17 18
7.90 8.10
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BSTS 5months

> summary(bsts.model, burn = 488)
$ residual.sd’

[1] 0.8666338

$prediction.sd
[1] 1.863066

$rsquare
[1] 0.9338453

$relative.gof
[1] -1.958937

> p <- predict.bsts(bsts.model, horizon

> p
$ "'mean”

[1] 8.849057 8.615013 8.341591 7.344686

$median

[1] 8.417941 8.861560 8.705780 8.807129

$interval
[,1] [,2] [,3]
2.5% 7.545841 6.101125

o

= 5, burn = 488, quantiles

8.06895

7.68955

[,4]

2

9

[,5]

.99997 2.486697 4.62201

97.5% 10.820995 11.255483 11.83984 10.669117 13.28231

$distribution

[,1] [,2] [,3]
[1,] 10.309461 9.555350 6.296639
[2,] 8.163712 9.159095 6.888392
[3,]1 7.712424 7.912448 8.114102
[4,] 8.771021 6.862848 6.414316
[5,] 10.868971 9.299424 12.165021
[6,] 8.473583 8.469936 9.302698
[7,] 8.231103 9.477180 9.297458
[8,] 8.362300 8.564026 9.513325
[9,] 7.965837 6.273654 5.520201
[10,]1 7.482655 6.035683 4.802642
[11,]7 9.153111 11.707985 10.982551

[12,] 10.694513 10.062525 10.801742

$original.series
1 2 3 4 5 6
18.30 16.00 14.80 13.80 11.80 11.40
19 20 21 22 23 24
7.40 7.60 7.40 7.40 7.10 6.50
37 38 39 40 41 42
6.30 5.70 5.70 5.65 5.60 5.80

11.

13

[v]

(=)}

(S IRV, I |

© O A~ = © Y

[,4]

.392195
.645859

726503
035016
088707 1.
562925
972991
968400 1
663113
657964
333263
089297

7 8

.20 15.30

25 26

.35 4.20

43 44

.90 8.20

[,51
313707
075422
215665
333828
.380912
596611
.972713
385997
396831
639491
303696
212548

9 10 11
14.40 11.60 10.20
27 28 29
4.10 4.95 5.80
45 46
9.00 10.20

= c(.025,

12
7.60

5.75

13
8.00
31
5.70

.975))

14
7.60
32
6.10

15
7.60
33
7.00

16
7.60

8.00

17
7.90
35
8.40

18
8.10
36
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BSTS Forecast
$ residual.sd”
[1] 0.3149379

$prediction.sd
[1] 1.601292

$rsquare
[1] 0.9904895

$relative.gof
[1] -1.289451

> pred
$ mean”

[1] 8.478255 8.507453 8.865467

$median

[1] 8.478190 8.669334 8.890329

$interval

[,1]

[,2]

[,3]

2.5% 5.935124 4.626469 4.686566
97.5% 10.864833 12.308254 13.065951

$distribution

[,1]
[1,] 7.162639
[2,] 9.123210
[3,] 8.774292
[4,] 8.006478
[5,] 7.490872
[6,] 12.790783
[7,] 8.443833
[8,] 6.377104
[9,] 8.186579
[10,] 9.360448
[11,] 8.047524
[12,] 7.214319
[13,] 10.485083
[14,] 8.740639
[15,] 9.485570
[16,] 9.752073
[17,] 9.794075
[18,] 8.434932
[19,] 8.027874
[20,] 8.326692
[21,] 9.887866
[22,] 9.951796
[23,] 9.828379
[24,] 10.478417
[25,] 7.758197
[26,] 10.704829
[27,] 8.738113
[28,] 10.910300
[29,]1 7.309529
[30,]1 7.099912
[31,] 9.125769
[32,] 8.798595
[33,] 9.214821
[34,]1 9.256294
[35,] 8.192886
[36,] 7.606190
[37,] 8.932650
[38,] 8.919098
[39,] 9.365483
[40,] 8.090587
[41,] 8.705944
[42,] 10.085058
[43,] 7.340497
[44,] 6.937341
[45,] 7.458680
[46,] 7.781126
[47,] 9.767061
[48,] 7.705191
[49,] 9.630593
[50,] 8.878699
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.156092
.539551
.699792

422321

.297327

529330

.407284
.183347

534259

.849127

146951

.020292
.847776
.175696
.111552
.164938
11.
10.
10.
.227570
.382823
10.
.290647
13.
.239262

875256

687737

092030

586542

021928

551615

.510547
.142405

031944

.692646

310115

.729079
.264339
.676915
.280443
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.765978
11.
.661753
.129002
.464004
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11.
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214335

773372
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673485
399635
629053

.107670
.366099
.498516
.984127
.824098
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.684720
.348117
.277393
.119392
.624019
.851185
.518674
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.490178
.971621
.267693
.043034
.536545
.857012
.659423
.383047
.758485
.126185
.683322
.213129

745158
979904
122280
409313
262730
020590
077559

.159618
.135042
927978
.484077
.418920
.154996
.664153
.781422

058332
388751
255402
340546
911679
781497

[51,]
[52,]
[53,1]
[54,1]
[55,1]
[56,1]
[57,1]
[58,1]
[59,1]
[60,1]
[61,]
[62,]
[63,1]
[64,]
[65,1]
[66,]
[67,1]
[68,]
[69,1]
[70,1]
[71,1]
[72,]
73,1
[74,]
[75,1]
[76,1]
[77,1]
[78,1]
79,1
[80,1]
[81,]
[82,1]
[83,1]
[84,]
[85,1]
[86,1]
[87,1
[88,1]
[89,1]
[90,1]
[91,]
[92,1]
[93,1]
[94,]
[95,1]
[96,1]
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.525219
.411807
.562595
.373637
.802545
.071789
.075521
.202618
.043396
.496462

423597

.966187
.798791
.512729
.054825
.182819
.210625
.635175

297451

. 444944

856719

.517050
.282527
.546258
.194836
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[111,]
[112,]
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[120,]
[121,]
[122,]
[123,]
[124,]
[125,]
[126,]
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[128,]
[129,]
[130,]
[131,]
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[133,]
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[136,]
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.778459
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.350673
.087842
.629979
.629360
.696102

955504
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738038

.264309
.458610
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.814900

489132

.715389
.436424

538610

.011973
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.535290
.722671

453041

.362987

462433

.751146
.938697
.490288
.258659

227761
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.570969
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.315693
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673583
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.014844
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[151,]
[152,]
[153,]
[154,]
[155,]
[156,]
[157,]
[158,]
[159,]
[160,]
[161,]
[162,]
[163,]
[164,]
[165,]
[166,]
[167,]
[168,]
[169,]
[170,]
[171,]
[172,]
[173,]
[174,]
[175,]
[176,]
[177,1
[178,]
[179,]
[180,]
[181,]
[182,]
[183,]
[184,]
[185,]
[186,]
[187,]
[188,]
[189,]
[190,]
[191,]
[192,]
[193,]
[194,]
[195,]
[196,]
[197,1
[198,]
[199,]
[200,]

$origi
1
18.30
19
7.40
37
6.30

o

.612321
10.308528
.620922
.898315
732827
.326077
.810809
.927988
.933562
.008037
.908228
.515578
.683142
.358847
.086843
.571362
.543823
.486101
.875988
.657018
.697606
.745222
.946916
.362035
.303924
.423923
.765488
.516118
.180974
.243785
.814093
.665008
.444230
.328515
.720356
.795388
.838256
.298953
416137
.600511
.970262
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BSTS 17 months log-transformation

> summary(bsts.model, burn = 217)
$ residual.sd’
[1] 0.01958747

$prediction.sd
[1] 0.07259385

$rsquare
[1] 0.9866766

$relative.gof
[1] -1.069057

> p <- predict.bsts(bsts.model, horizon = 17, burn = 217, quantiles = c(.025, .975))
> p
$ 'mean”
[1] 0.8565208 0.7931166 0.7749643 0.7233582 0.7185368 0.7458953 0.7620014 0.7625439 0.7761003 0.8136653
[11] 0.8275958 0.8163034 0.7854575 0.7160341 0.6989516 0.6455063 0.6432265

$median
[1] 0.8605693 0.7963961 0.7795168 0.7144716 0.7113167 0.7318873 0.7571226 0.7464824 0.7744123 0.8031570
[11] 0.8185485 0.7972344 0.7648537 0.6882643 0.6730751 0.6091926 0.6155655

$interval
[,1] [,2] [,3]1 [,4] [,5] [,6] [,71 [,8] [,9] [,10]
2.5% 0.7038076 0.6238465 0.5657217 0.5016051 0.4509587 0.4184026 0.4156275 0.421393 0.4048312 0.4010841
97.5% 0.9950041 0.9629098 0.9802624 1.0001869 1.0285565 1.1130234 1.1625195 1.270880 1.2590857 1.4034470
[,11] [,12] [,13] [,14] [,15] [,16] [,17]
2.5% 0.4665564 0.4139842 0.3012992 0.2421545 0.1460449 0.03430311 -0.0309488
97.5% 1.3340296 1.4217570 1.4690751 1.4570196 1.4960115 1.46859833 1.5399550

$distribution

[,11 [,2] [,31 [,4] [,51 [,6] [,71 [,8] [,9] [,10]
[1,] 0.8727581 0.7867628 0.6669040 0.6354745 0.6092384 0.6477613 0.7070521 0.7005202 0.7530252 0.8458700
[2,] 0.8473707 0.8753137 0.7794762 0.6912264 0.6339374 0.5967211 0.5410554 0.4587222 0.5296795 0.5082464
[3,] 0.8710708 0.8175859 0.7797200 0.6606838 0.6794184 0.8059560 0.8351370 0.7238131 0.7451347 0.7555919
[4,] 0.8735434 0.7531386 0.7164696 0.6076895 0.6441556 0.6982931 0.6135042 0.6316017 0.7008727 0.7214939
[5,] 0.7803023 0.8275224 0.8489278 0.6684602 0.6738860 0.7710069 0.8813768 0.8417842 0.9652595 0.9457753
[6,] 1.0023248 1.1102694 1.2506454 1.1921810 1.2774860 1.2417368 1.3419546 1.4120891 1.4412401 1.5692147
[7,] 0.9094568 0.8626664 0.7096458 0.6950929 0.4779291 0.4164150 0.3069250 0.2987121 0.4561587 0.5178467
[8,] 0.8254102 0.8092250 0.8406352 0.7690618 0.9076522 0.8845070 0.7875369 0.7285616 0.8166969 0.9646249
[9,]1 0.7930041 0.6465372 0.6686947 0.6786069 0.6239111 0.5279522 0.6672469 0.6590018 0.6360361 0.6572037
[10,] 0.8970675 0.9593143 0.9417588 0.9160214 0.9793812 0.9471336 0.8775789 0.9309533 0.9096808 1.0427427
[11,] 0.9274609 1.0022477 0.9692020 0.9111531 0.9339072 0.9973627 1.0200687 1.0199673 1.0594482 0.9517739
[12,] 0.9574875 0.8756221 0.7337307 0.6961882 0.5767921 0.6290357 0.7361995 0.6743846 0.7003189 0.7096273
[13,] 0.7358255 0.7900711 0.8208561 0.7441790 0.8411958 0.7825809 0.7555792 0.7535423 0.7553534 0.9211269
[14,] 0.8423002 0.9471050 0.8072809 1.0073446 0.9589733 1.0177854 1.0389406 1.0999225 1.1036751 1.0979552
[15,] 0.8956258 0.8164893 0.8609142 0.7685739 0.7160747 0.7564030 0.8447777 0.8411475 0.8520039 0.7920102
[16,] 0.9310305 0.8726068 0.9345558 0.8161344 0.8519599 0.8584837 0.8958750 0.9259626 0.9554280 1.0461061
[17,] 0.9306787 0.9277615 0.8975665 0.8173830 0.7740807 0.7561810 0.7736813 0.7768992 0.6791692 0.8225182
[18,] 0.9310039 0.8210701 0.7170671 0.6571053 0.6089418 0.7885914 0.7038035 0.6995768 0.7785549 0.6900441
[19,] 0.9278575 0.7571197 0.7514193 0.6753158 0.6025301 0.6256366 0.5096829 0.4450358 0.4320837 0.4627081
[20,] 0.9082000 0.8860737 0.8591036 0.7881677 0.7961225 0.7466533 0.6521797 0.6890341 0.6484065 0.6352729
[21,] 0.8605388 0.8728384 0.7356954 0.6629629 0.5557456 0.6340172 0.5793516 0.6049589 0.6000570 0.6651101
[22,] 0.8295625 0.7092392 0.6868830 0.5576304 0.5090591 0.5224170 0.5167517 0.6003328 0.6409078 0.7167920
[23,] 0.8686403 0.7795715 0.7284191 0.6545585 0.6935949 0.8086674 0.8051952 0.8452859 0.8332767 0.8986741
[24,] 0.6795805 0.6270455 0.5857936 0.4996669 0.4098310 0.2675750 0.2724625 0.2955348 0.3025190 0.3034145
[25,] 0.8630040 0.8567529 0.8055074 0.6858897 0.6944320 0.7269851 0.6806222 0.7019609 0.7597423 0.8291498
[26,] 0.7689785 0.6518471 0.6296304 0.5679138 0.5678566 0.4884468 0.5196614 0.4478066 0.4276965 0.3586800
[27,] 0.8644502 0.7758442 0.7671754 0.8467233 0.9095208 0.9444794 0.9129289 0.9316532 0.9336351 1.0829000
[28,] 0.8691862 0.8820825 0.8592662 0.7143627 0.6672057 0.6899830 0.7893146 0.8571678 0.8948671 0.9080848
[29,] 0.8530647 0.8137790 0.7676445 0.6904147 0.6266113 0.7551255 0.7783059 0.6814927 0.7359674 0.8434834
[30,] 0.8937633 0.8945738 0.8796698 0.8555613 0.9153600 0.9714796 0.9209560 0.8863997 0.9694767 1.0192688
[31,] 0.8372332 0.7264445 0.8274753 0.7668862 0.8449384 0.8623903 0.8483675 0.7783289 0.8393588 0.8168591
[32,] 0.8591395 0.7528921 0.8276787 0.6836004 0.7083914 0.7433343 0.7353769 0.7971502 0.8138841 0.9981318
[33,]1 0.9279048 0.8476923 0.8428726 0.8413433 0.8856992 0.9017837 1.0249709 1.0257773 1.0829594 1.0858515
[34,] 0.7283813 0.6525313 0.5491507 0.5445129 0.5559071 0.5250293 0.5837148 0.5107868 0.4747329 0.3806950
[35,] 0.7961701 0.6937206 0.6325142 0.5152365 0.5198403 0.5281761 0.6326556 0.7701913 0.7027236 0.6745864
[36,] 0.8202761 0.6973980 0.5885879 0.6390118 0.6891126 0.8108293 0.8408688 0.9200828 0.9685008 1.0109871
[37,]1 0.8738097 0.8311528 0.8176931 0.8431821 0.8292843 0.8387836 0.9382570 1.1164830 1.2432995 1.1636222
[38,] 0.8549208 0.8157072 0.8536469 0.8443227 0.8734211 0.8790812 0.9217840 0.9431817 0.9654328 1.1157334
[39,] 0.8444336 0.7855154 0.7814987 0.7821774 0.7209857 0.7481671 0.7395540 0.7186189 0.7821046 0.6975390
[40,] 0.8359692 0.7184038 0.6539516 0.6508497 0.6587398 0.6755561 0.5690833 0.5504463 0.4976858 0.5388117
[41,] 0.8659095 0.8475632 0.7965903 0.6699167 0.7614171 0.7067924 0.7650055 0.7818941 0.7295724 0.8539055
[42,] 0.7969115 0.7330178 0.7386554 0.5937513 0.7731193 0.7679415 0.7799598 0.8534681 0.8339101 0.9067026
[43,] 0.7281783 0.5900850 0.5989201 0.4975066 0.6004205 0.6154065 0.6212465 0.6658208 0.6758923 0.7061928
[44,] 0.9681932 0.7651760 0.9055327 0.8334774 0.8789868 0.8852885 1.0083137 0.9720258 0.9451344 1.0185429
[45,] 0.6902333 0.6707243 0.7633957 0.6081482 0.5478915 0.6381422 0.5819171 0.6336058 0.5958317 0.5642938
[46,] 0.8381047 0.8012689 0.8604560 0.8126750 0.7437768 0.9189277 0.9386503 0.8674551 1.0402003 0.9150401
[47,] 0.7362510 0.6641983 0.5499419 0.5873519 0.4355590 0.4680945 0.5701219 0.4921302 0.4726376 0.5975006
[48,] 0.8208299 0.8423430 0.8502831 0.7660125 0.7853044 0.7788257 0.7990725 0.7486432 0.8491716 0.8168001
[49,] 0.7932185 0.7352660 0.7713605 0.6830976 0.6569096 0.5979463 0.7703433 0.6700202 0.7276210 0.7733747
[50,]1 0.8914593 0.7413627 0.7402712 0.9630603 0.7917261 0.7474396 0.9646165 1.0903701 1.0555690 1.0546249
[51,] 0.9193497 0.6442979 0.6846908 0.5799727 0.7585845 0.6714016 0.8307467 0.8660146 0.6146449 0.7395531
[52,] 0.7585248 0.7509854 0.7800447 0.6821253 0.5932582 0.6347744 0.6973684 0.6286251 0.5840682 0.6336656
[53,]1 0.7457533 0.6286177 0.6063164 0.6295146 0.6966262 0.8401623 0.6262093 0.4943573 0.6059514 0.8008540
[54,] 0.8572801 0.6506665 0.6219171 0.6952373 0.5869677 0.6248807 0.6771434 0.5426914 0.6409776 0.6695229
[55,] 0.8491260 0.7817534 0.7290244 0.6978624 0.7113167 0.7910211 0.7644345 0.7963035 0.7320894 0.8568359
[56,] 0.8472086 0.8671517 0.8678249 0.7539763 0.7092250 0.7027725 0.7849419 0.6967982 0.7772037 0.7692207
[57,]1 0.7444516 0.8915467 0.8023096 0.7748552 0.7658579 0.9167618 1.0014132 0.8812264 1.0109234 1.0019308
[58,] 0.6914898 0.6904899 0.7088446 0.5262354 0.6200204 0.4819594 0.4623351 0.5280065 0.6147143 0.5722775



[,11] [,12] [,13] [,14] [,15] [,16] [,17]

[1,]1 0.8506913 0.7972344 0.913665305 0.908591347 0.89332541 0.844979803 0.80167026
[2,] 0.4968628 0.4080268 0.372104177 0.352385279 0.36313034 0.241385556 0.16815248
[3,] 0.8317899 0.8544412 0.806948716 0.865168818 0.78910889 0.880365873 0.93084810
[4,] 0.6848209 0.5361961 0.501209758 0.408419838 0.32621121 0.218215059 0.16815402
[5,] 0.9643050 0.8973928 0.889220586 0.834117987 0.81865041 0.723540322 0.58027214
[6,] 1.5728104 1.4521257 1.542094871 1.393669619 1.39317393 1.225240183 1.15401382
[7,] 0.5019153 0.5091949 0.500593612 0.345144023 0.12376178 0.067745075 0.15381727
[8,] 1.1084972 0.9724712 0.867218887 0.776088341 0.70906413 0.597741025 0.64853072
[9,1 0.7089593 0.8070302 0.815539330 0.676639599 0.59286888 0.524747166 0.51031633
[10,] 0.9909983 0.9556116 0.980263016 0.963581943 0.84583095 0.863210542 0.72847139
[11,] 0.9128042 0.8834386 0.991042145 1.093005426 0.84337513 0.763854890 0.93090819
[12,] 0.6333335 0.4797460 0.486267573 0.317147361 0.37763067 0.261567198 0.17639098
[13,] 0.8435856 0.7170028 0.617532773 0.565923749 0.68349389 0.608625781 0.70146337
[14,] 1.1346010 1.0398744 0.972179834 0.915111429 0.86780420 0.795477304 0.75926193
[15,] 0.8211552 0.8116077 0.843096043 0.685993700 0.59933625 0.596858475 0.61799451
[16,] 1.0778356 1.0100637 1.041542809 0.893011170 0.93487955 0.901862125 0.76701660
[17,] 0.6992051 0.7389155 0.627624869 0.653876791 0.58524507 0.524445797 0.54380737
[18,] 0.6383489 0.5511557 0.547750268 0.398293338 0.29945297 0.236425167 0.20472576
[19,] 0.4993587 0.4993332 0.507978939 0.250213523 0.26002072 0.180817235 0.15728180
[20,] 0.6275397 0.6185689 0.613888243 0.542779642 0.44261379 0.435177866 0.36240021
[21,] 0.6641403 0.6256152 0.596598281 0.475689106 0.48778048 0.271101946 0.19609020
[22,] 0.6170559 0.4803083 0.550348003 0.465758413 0.39181486 0.269060599 0.33939022
[23,] 0.9814853 1.0312022 1.016689762 0.936219540 0.88069025 0.787152484 0.87509959
[24,] 0.1851126 0.1356974 -0.003095961 -0.034365950 -0.02047862 -0.119316531 -0.24657410
[25,] 0.8729943 0.9117238 0.851889461 0.849065844 0.83777794 0.758069951 0.72440706
[26,] 0.3173436 0.1939035 0.278802644 0.129059790 0.14532462 0.166277710 0.15789774
[27,] 1.0401314 0.9605911 1.110293760 1.110962302 1.19124709 1.067920222 1.02897411
[28,] 1.0846709 1.0884230 1.051022845 1.047877757 1.10414941 1.067947945 1.01415684
[29,]1 0.8527220 0.9178072 0.833202112 0.698323127 0.80495030 0.787353738 0.60726076
[30,] 0.9495842 1.0391691 0.989782635 0.956449826 0.96779923 0.964348057 1.00065297
[31,] 0.8657821 0.9262278 0.895005156 0.708694891 0.77399609 0.675450633 0.74484308
[32,] 1.0408826 1.0277791 1.097260830 0.968616286 1.02185306 0.880399545 0.88983918
[33,] 1.0445436 0.9776453 0.965030355 0.816532179 0.81522133 0.711571241 0.76824223
[34,] 0.3679266 0.4443247 0.312921566 0.184049947 0.11802424 0.038333819 -0.04739784
[35,] 0.7032411 0.6266053 0.429726545 0.242100108 0.17239735 -0.019473144 -0.03137868
[36,] 1.0355335 1.0428562 0.963729854 0.898682855 0.92815217 0.888092277 0.96399727
[37,] 1.1735074 1.2252984 1.273196586 1.238325257 1.22789107 1.251095997 1.31088414
[38,] 1.1057571 1.1710240 1.308458000 1.329570340 1.34522920 1.408776490 1.41577312
[39,] 0.6993797 0.7084792 0.664367104 0.623410396 0.54431253 0.584727100 0.49238080
[40,] 0.5815185 0.4880550 0.439637725 0.243187041 0.17348908 0.085546153 -0.02278095
[41,] 0.8815745 0.8464620 0.853810076 0.827007126 0.68449170 0.771810656 0.73604001
[42,] 1.0159459 0.9710210 0.924128120 0.856286050 0.91362638 0.774949985 0.78527192
[43,] 0.7432275 0.7579605 0.664807197 0.524718695 0.59512908 0.449804203 0.50039361
[44,] 0.9692169 0.9627048 0.942492094 0.892624249 0.91849806 0.846708762 0.90732187
[45,] 0.5134765 0.5566298 0.300687480 0.331337700 0.22074800 0.017505924 0.01069378
[46,] 1.0200876 1.0382393 1.014819891 0.870425625 0.90114266 0.883893305 0.85318526
[47,] 0.5171981 0.6353381 0.453750291 0.430849618 0.38112109 0.325790444 0.20236872
[48,] 0.8733140 0.7888032 0.800875226 0.757533360 0.67278191 0.558069859 0.61570043
[49,] 0.7652862 0.7029873 0.633253837 0.569043433 0.58564878 0.366379168 0.45856568
[50,] 1.1322428 1.0988190 1.127177761 0.985222254 1.07930788 1.180686709 1.17236921
[51,] 0.8424688 0.9046284 0.868960762 0.646613350 0.74040653 0.600268667 0.80299888
[52,] 0.6602835 0.5981298 0.424001274 0.569454274 0.42134248 0.266547633 0.23603661
[53,] 0.6170236 0.6518271 0.525406102 0.422564977 0.36155613 0.282444391 0.24684215
[54,] 0.5667549 0.6413091 0.527863402 0.392824512 0.42495471 0.379570525 0.34562619
[55,] 0.9351023 0.9474070 0.931072208 0.848209018 0.76904934 0.757286117 0.79954687
[56,] 0.8780068 0.7680673 0.669951932 0.714677430 0.64208273 0.615948079 0.73541486
[57,] 0.9555325 1.0357860 0.844665986 0.943870505 1.03809110 0.860470630 0.97665784
[58,] 0.7269675 0.6769086 0.647564545 0.611331736 0.71735035 0.740229124 0.73128233
[ reached getoption("max.print") -- omitted 225 rows ]
$original.series
1 2 3 4 5 6 7 8 9
1.2624511 1.2041200 1.1702617 1.1398791 1.0718820 1.0569049 1.1205739 1.1846914 1.1583625
12 13 14 15 16 17 18 19 20
0.8808136 0.9030900 0.8808136 0.8808136 0.8808136 0.8976271 0.9084850 0.8692317 0.8808136
23 24 25 26 27 28 29 30 31
0.8512583 0.8129134 0.7283538 0.6232493 0.6127839 0.6946052 0.7634280 0.7596678 0.7558749
34
0.90309

10 11
1.0644580 1.0086002
21 22
0.8692317 0.8692317
32 33
0.7853298 0.8450980
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BSTS 5 mnths log-transformation

> summary(bsts.model, burn

$ residual.sd”
[1] 0.01843959

$prediction.sd
[1] 0.07163837

$rsquare
[1] 0.9860901

$relative.gof
[1] -0.8625865

101

> p <- predict.bsts(bsts.model, horizon

>p
$ mean”

[1] 1.053037 1.061196 1.059181 1.067384

$median

[1] 1.051348 1.055860 1.045142 1.050854

$interval

[,1]

2.5% 0.9280929 0.8351111 0.7312337 0.
97.5% 1.1915073 1.3066510 1.4857276 1.

$distribution

[,1]
[1,] 1.0513789
[2,] 0.9868883
[3,] 1.1312069
[4,] 1.0753678
[5,] 1.0489705
[6,] 1.1125484
[7,1 1.0125062
[8,] 0.9412391
[9,] 1.0019644
[10,] 1.2204292
[11,] 1.1143037
[12,] 0.9568040
[13,] 1.1112833
[14,] 1.0372035
[15,] 1.1128103
[16,] 1.0537358
[17,] 1.0890258
[18,] 1.0349925
[19,] 1.1385908
[20,] 0.9503761
[21,] 1.1354517
[22,] 0.9897040
[23,] 0.9694743
[24,] 1.0140678
[25,] 1.0322175
[26,] 1.1112292
[27,] 1.0433446
[28,] 1.0537604
[29,] 1.0142722
[30,]1 0.9787844
[31,]1 1.1242321
[32,] 1.0658398
[33,] 1.1420809
[34,]1 1.1224826
[35,] 0.9653892
[36,] 1.0247576
[37,]1 1.0514449
[38,] 1.1065406
[39,] 0.9780617
[40,] 1.0344151
[41,] 1.0090824
[42,] 0.9831371
[43,] 1.0380629
[44,] 0.9625341
[45,]1 0.9654619
[46,] 1.0669496
[47,] 1.0068554
[48,] 1.0337391
[49,] 0.9720262
[50,] 1.1031867

HEFHRFRPOOOFROROORKHRHOKRKHHOHOFRHOOOORORORKKKHRKHROKRKHRREROORRRERREREO

[,2]

[,2]
9670437
0062428
1194708
1032514
0055373
1194382
9793929
8773987
0196049
3588521
1061707
8969348
1132852
0772499
1860042
0548135
1422150
9759043
1868547
8619430
0929620
9577392
8990591
9640043
9556345
3348821
0992844
8679831
0597425
9410436
2031587
1258829
2831495
1612233
8589490
0138165
1823824
1148552
9420821
9992105
0480718
9426813
0770642
8814982
9113435
9631427
0124286
0768878
0235427
2138824

[,31

[,31
8497937
0541698
1485752
0195501
9865404
0428965
8523842
8110203
0260740
4211296
0968997
7944549
2186270
0277409
2347764
9790936
2203286
9833958
3088662
8226874
0072002

.9552162

8729927
8829828
8968329
4939977
2049022
7412608
0229914
9719243
2679099
1934393
4906955
2064672
8283101
0085261
1706612
0829706
8880816
0227181
0962804
8736456
1218584

.8119070

8809123

.7463464

9691778
1812371
9977388
2543326

=5, burn

1.115474

1.093378

[,4]

101, quantiles

[,5]

5883828 0.4816109
6474210 1.8999329

HOHRHROOOFRORRFRORHOOKRKHHKHHOOKFRHOOOOOORKKRHKOHROKRHKHKEROOOORORO

[,4]
74134519
18446932
95820284
02521062
95363384
96061845
69994401
72225378
04970682
37349742
11526299
73559905
33164394
93617476
33956870
08089337
23771620
06768093
34689942
82054308
94105807
94771237
75435038
93451541
90989611
71703379
36679200
63230467
96608839
00955712
39719226
30812091
59863664
31997542
74968253
97519844
28558141
11685980
82237870
13262477
02481925
85159999
16462077
72595167
94173998
69927399
02220353
24537786
99112053
38015366

HOHRHROOOKROHRHORHKHHOKRHKHRKRKHRHOOKRKHHRFLOOOORHKHRKHRKRHOROKRHKHRLOORORORO

[,5]
6345983
4443297
7846899
1110965
8829554
0316047
4855762
5764014
2165708
3779818
2242538
8988088
3454076
8749946
4333570
0505814
3784510
2682214
5323218
7668976
9550925
9701110
6547431
0939769
0784681
9630579
5098260
5955803
9483772
0933776
6462665
4210784
7892345
5627750
6298562
0629823
3990819
3375803
8679706
2439633
0364658
8089077
2174839
6680723
9749910
7088268
1227330
3715760
9747605
5255596

c(.025,

.975))
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[51,]
[52,]
[53,1
[54,]
[55,1
[56,1
[57,1
[58,1
[59,1
[60,]
[61,1
[62,]
[63,1
64,1
[65,1
[66,1
[67,1
[68,1
[69,1
[70,1
[71,1
[72,1
[73,1
[74,1
[75,1
[76,1
[77,1
[78,1
[79,1
[80,1
[81,1
[82,]
[83,1
[84,1
[85,1
[86,1
[87,1
[88,]
[89,1
[90,1
[91,1
[92,]
[93,1
[94,1
[95,1
[9%,1
[97,1
[98,1
[99,1
[100,]

1.0299780
0.9799334
1.0214414
1.0018245
1.1313225
1.0786587
1.2172351
0.9891415
0.9799887
0.9516979
0.9538784
1.0667892
1.0915181
1.0224815
1.0978544
1.0540336
0.9401918
1.1229044
1.0916580
0.9902459
1.0017364
1.0017448
0.9964884
1.1485243
1.0079194
1.1327988
1.1119140
1.0685332
1.0298075
1.0497371
1.0880011
1.0231915
1.0753988
1.0412540
1.0558228
1.1352885
1.0336386
0.9476795
1.0928731
0.8960377
1.1663007
1.0623921
1.0430909
1.2216756
1.0844306
1.1241639
1.1793643
0.9903929
1.1384067
1.0754077

Soriginal.series

1

1.0275125 1.0468388
0.9175354 0.8111199
1.0054505 1.1072421
0.8882051 0.7566895
1.2249160 1.3444654
1.0514227 0.9831248
1.4059216 1.5891579
1.1333440 0.8864915
0.9522580 0.8772875
0.8169334 0.8139986
0.9213515 0.7771392
1.0622390 0.9143162
1.0518928 0.9889289
1.0101869 0.9666468
1.1578253 1.2198053
1.0075220 0.8088259
0.9620611 0.7934649
1.2222975 1.3817318
1.2122961 1.2690590
0.9810298 0.8932722
0.9602115 0.8117397
0.8670209 0.7312676
0.9199489 0.9602624
1.2473961 1.3764148
1.0623932 1.1345334
1.2618556 1.4025094
1.1764129 1.2147808
1.0157714 0.9723699
0.9750905 0.9373431
1.0682665 1.0130269
1.1069302 1.2259656
1.0841412 1.1659589
1.1155052 1.1676382
0.9985227 1.0192206
1.1235123 1.0639380
1.2314896 1.3110415
1.1326942 1.2534590
1.0089062 0.8753950
1.2691780 1.3663170
0.8099581 0.8365523
1.3034859 1.2522387
1.0423439 0.9141876
1.0863468 1.1432768
1.2255095 1.1926540
1.1123990 1.1236799
1.0072744 1.0552354
1.0901185 1.1377604
0.9550181 0.8444368
1.1645828 1.2145944
1.0271551 0.9233018

2 3
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1.2624511 1.2041200 1.1702617 1.1398791
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0.9030900 0.8808136 0.8808136 0.8808136
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26345875
29053085
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00339901
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0.8976271
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4956255
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1412348
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5666064
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8346120
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8725730
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2004070
8022204
1390479

9488252

6
0569049

9084850

7596678

7634280

[101,] 0.9276934
[102,] 0.9652061
[103,] 1.0426827
[104,] 1.0946200
[105,] 0.9895960
[106,] 1.0498302
[107,] 0.9858408
[108,] 0.8993611
[109,] 0.9401860
[110,] 1.0747036
[111,] 1.2228187
[112,] 1.0543153
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[114,] 1.0669451
[115,] 1.1001404
[116,] 1.0602148
[117,] 1.0384342
[118,] 1.0587788
[119,] 1.0906179
[120,] 1.0442910
[121,] 1.0505032
[122,] 1.0032617
[123,] 1.0929916
[124,] 1.0711087
[125,] 1.0089725
[126,] 1.0389310
[127,] 0.9456582
[128,] 1.1013131
[129,] 0.9270970
[130,] 0.9742141
[131,] 0.9777255
[132,] 0.9837849
[133,] 1.1007443
[134,] 1.0664087
[135,] 1.0533575
[136,] 0.9882534
[137,] 1.0206333
[138,] 0.9296112
[139,] 1.1284923
[140,] 0.9694811
[141,] 0.9615677
[142,] 1.0351424
[143,] 1.0749789
[144,] 1.1019580
[145,] 1.0758640
[146,] 0.9874874
[147,] 0.9780794
[148,] 1.0555335
[149,] 0.9880657
[150,] 0.9716816
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45
9542425 1.

8337821

8521480

10
0644580 1.

22
8692317 0.

9030900 0.
46
0086002
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0
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0
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0
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0

88244180 0.9084463
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.16039289  1.3940483
09143872 1.2063729
85558060 0.8587707
11446876 1.1773761
.76425110 0.7474491
32138777 1.4723851
195760647 1.0432302
95728752 0.9740279
108331332 1.1930320
.00319993  1.0454834
02880187 0.8100371
31224229 1.3670209
00530873 0.9296995
.80945022  0.8309532
21492568 1.1805752
.14079081 1.1351582
79819039 0.7759225
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Y
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1 12
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36

9242793 0.9294189

177,
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[179,]
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[185,]
[186,]
[187,]
[188,]
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[192,]
[193,]
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[19,]
[197,]
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[200,]

N
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0742817

0695488

-

1
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
1
0
0
1
1
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
1
0
1
0
1
0

1859946

.0304421
2679524
2467410
.1185955
8866763
.1331661
.9031443
1645921

0160715

1

1
1
0
0
1
1
1
0
0
1
0
0
1
1
1
0
1
0
0
1
1
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
0
1
0
1
0

3170398

3172668
1754684
.8143300
5891985
.1913816
.9273930
7625833
.6605498
2663092
.2902222
.9251143
1697913

0445268

[ reached getoption("max.print") --

1.64734447
1.26634975
0.73217617
0.63017283
1.03444720
1.46286586
1.23906530
0.69376091
0.42211218
1.20517058
0.95143307
0.61044510
1.90195705
1.34216960
1.33068668
0.96106434
1.23811349
0.96671957
0.95315751
0.99510725
1.11267545
0.76841972
1.23796818
1.22900980
1.64887559
1.11341026
1.05230088
1.32531229
1.13690229
0.84012836
0.38274497
0.95491234
0
0
0
0
1
1
1
0
1
0
1
0
0
1
0
1
1

90846281
50756043
35549035
16824026
86091122
36743447
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23377755
92805531
78582146
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74125486
01435794
03669137
1.07726897
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9284636
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1
1
0
0
1
1
1
0
0
1
1
0
2.
1
1
1
1
1
0
0
1
0
1
1
1.8709826
0
1
1
1
0
0
0
1
0
0
0
1
1
1
0
1
0
1
0
0
1
0
0
1

1.1110306
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BSTS forecast log-transformation

> summary(model, burn = 362)
$ residual.sd”
[1] 0.01733133

$prediction.sd
[1] 0.06599464

$rsquare
[1] 0.9868003

$relative.gof
[1] -0.6608139

> pred$mean

[1] 0.9559786 0.9859648 1.0018175
> pred

$ mean”

[1] 0.9559786 0.9859648 1.0018175

$median
[1] 0.9508892 0.9920354 0.9985607

$interval

[,1] [,2] [,3]
2.5% 0.8486716 0.8230763 0.7870669
97.5% 1.0880639 1.1429420 1.1857413

$distribution

[,1] [,2] [,3]
[1,] 0.9536433 1.1243903 1.1580102
[2,] 0.9592675 0.9455902 0.9423856
[3,] 0.9238638 0.8882677 0.7500590
[4,] 0.9115179 0.9229924 0.9764712
[5,] 1.0077546 1.0367242 1.0510596
[6,] 0.9843548 1.0605475 1.0810863
[7,] 0.9463621 1.0601038 1.0132904
[8,] 0.8949822 0.9570850 0.9486964
[9,] 0.9305817 1.0134983 0.9387491
[10,] 1.0094718 1.1421924 1.1077329
[11,] 1.0319087 0.8880188 1.0181953
[12,] 0.8408361 0.9049913 0.9350481
[13,] 1.0062700 1.0157784 1.0521101
[14,] 0.9366596 0.9606412 0.9596665
[15,] 1.0048881 1.0296130 1.0491352
[16,] 1.0442812 1.0798916 1.1505998
[17,] 0.8850644 0.8303279 0.7884926
[18,]1 0.8366776 0.8177164 0.8229204
[19,] 1.0525374 1.0544320 1.1465475
[20,] 1.0941225 1.0463892 1.1096234
[21,] 0.9155983 0.9996687 1.0713274
[22,] 0.9494465 0.9350879 0.9861029
[23,] 1.0641619 1.1838352 1.1536835
[24,] 0.8781580 1.0541575 0.9622473
[25,] 0.9269959 0.9927233 0.8884772
[26,] 0.9114287 0.8754764 0.9233583
[27,] 0.9890797 1.0754552 1.1028722
[28,] 0.8886524 0.9231357 1.0501888
[29,] 0.9733921 1.0152970 0.9853116
[30,] 0.9829330 1.0636296 1.1400618
[31,] 0.9731080 0.9646830 0.9986867
[32,] 0.9271865 0.8818138 0.9521289
[33,] 0.9839497 1.0140099 1.0842686
[34,] 0.8788104 0.8721599 0.8675445
[35,] 0.9065508 0.8878972 0.8671539
[36,] 0.9781534 1.0738093 1.1087388
[37,] 1.0183835 1.0072249 0.9783824
[38,] 1.0847144 1.1918579 1.2367824
[39,] 0.9392803 0.9665113 0.9783804
[40,] 0.9322044 1.0005468 0.9851251

$original.series
1 2 3

4

1.2624511 1.2041200 1.1702617 1.1398791

12 13 14

15

0.8808136 0.9030900 0.8808136 0.8808136

23 24 25

26

0.8512583 0.8129134 0.7283538 0.6232493

34 35 36

37

0.9030900 0.9242793 0.9294189 0.7993405

45 46 47

48

0.9542425 1.0086002 1.0413927 1.0253059

[41,]
[42,1]
[43,1]
[44,]
[45,1]
[46,1]
[47,1]
[48,1]
[49,]
[50,1]
[51,1]
[52,1]
[53,1]
[54,1]
[55,1]
[56,1]
57,1
[58,1]
[59,1]
[60,1]
[61,]
[62,]
[63,1]
[64,]
[65,1]
[66,1]
[67,1]
[68,1]
[69,1]
[70,1]
[71,]
[72,]
[73,1]
[74,1]
[75,1]
[76,1]
[77,1]
[78,1]
79,1
[80,1]

OO OO0 O0OO0OO0CODO0OOHOOODODOOOOOHHOOKFOOHMHOOOOOOOOOOOO

5

.0135225
.9954170
.9693646
.9531579
.8717591
.9599085
.9691536
.0848722
.0140007
.8987437
.0758149
.9844417
.0852528
.0387443
.9544678
9329224
.1473612
.9481088
9282406
.0540034

1248931

.0435478
.0366713
.8786064
.7948669
0655057
.9018076
.8232626
.1804747
.9905254
.0408511
.9984347
.8668398
7730122
.8397198
.9382014
.9265957
.9062124
9638838
.0400351

8

1.0718820 1.0569049 1.1205739 1.1846914

16
0.8808136
27
0.6127839
38
0.7558749
49
0.9444827

19

0.9084850 0.8692317

30

0.7634280 0.7596678

41

0.7520484 0.7481880

.9441473 1.0363165 1
9374896 0.9511692 0
.9961376 1.0195938 0
.8954380 0.9119150 0
.9153007 0.8820707 0
.8985624 0.8725190 0
9088687 0.9919460 0
.9136844 1.0948042 1
.9549228 1.0687530 1
.8922169 0.9552136 0
9605696 1.0201983 1
9576600 0.9094277 0
0747598 1.0038144 1
0570239 1.0717464 1
9807670 0.9538009 0
9196770 0.9222250 0
0178417 1.1434960 1
9018028 0.9140690 0
9191535 0.9418910 0
0069309 1.0200742 1
0068289 1.0983953 1.
9080662 0.9063245 1
.9847567 1.0506702 1
9248580 0.8704766 0
.8766219 0.8772269 0
.9596025 0.9895202 1
.9546230 0.8990075 0
.9079070 0.9361352 0
9959652 1.0996068 1
.9276720 1.0197190 0
.0240159 1.0315965 1
.9409945 0.9195113 0
.8970728 0.8944067 0
8794970 0.7728597 0
.8482460 0.8155911 0
.9088767 0.8551203 0
.9308883 0.9593995 0
.8876318 0.9159048 0
.9802132 1.0262280 0
.9265299 1.0049905 1
6 7
17 18
0.8976271
28 29
0.6946052
39 40
0.7558749
50 51
0.9590414 0.9138139

[81,]
[82,]
[83,]
[84,]
[85,]
[86,1
[87,1
[88,]
[89,]
[90,]
[91,]
[92,1
[93,1
[94,]
[95,1
[96,]
[97,1
[98,1
[99,1
[100,]
[101,]
[102,]
[103,]
[104,]
[105,]
[106,]
[107,]
[108,]
[109,]
[110,]
[111,]
[112,]
[113,]
[114,]
[115,]
[116,]
[117,]
[118,]
[119,]
[120,]
[121,]
[122,]
[123,]
[124,]
[125,]
[126,]
[127,]
[128,]
[129,]
[130,]
[131,]
[132,]
[133,]
[134,]
[135,]
[136,]
[137,]
[138,]

OO O0OO0OOKFHRHFHROOOHOOODOOOOOHOHOOOKFHROOOHOKFFKFHFHFHROOHROOHFHOOOOHHFFOOOOOOOOOHRO

9

.8798620
.0061050

9331892

.9369314
.8613157
.9430063
.9066337
.9271070
.9051443

9735258

.9606389
.0905397
.0615228
.0062613

9537152

.9773881
.9172343
.9864387
.0007420

9277015

.9783017
.0029030
.9311133
.9523318

1051571

.0708397
.0002744
.9423381
.0618366

9087292

.9248887
.9453194
.0353521
.8961645
.8711859
.9764357

0172363

.9807440
.1003154
.9820167
.9709194

9724032

.9588083
.9130030
.8324161
.8492474

9288191

.0260813
.8695181
.9658073
.9736400

0217266

.0508601
.8520480
.9303587
.9352197
.9949082
.9597213

1.1583625 1.0644580

20

21

0.8808136 0.8692317

31

32

0.7558749 0.7853298

42

43

0.7634280 0.8388491

9786890
9604527
9926692
9226022
8345952
9544713
0024171
8951841
9564297
0276293
9868337
1938933
0247151
0120333
9690365
9940347
8853010
9799188
0485882
0046002
0170056
1340530
9670417
9848800
0106029
0424053
0011088
9766380
1264851
9307442
9921248
0099873
0361291
9665860
8528464
0623404
0104987
1209610
0571247
0362680
1221289
9564734
9241248
9447653
0292432
8032512
9856215
9868553
0018388
9397055
0003431
0992719
0726736
9046730
9747406
9523348
9696544
0496084

1
1
0
0
0
0
1
0
1
0
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
1
1
0.
0
0
1
0
0
1
1
1
1
0
1
0
0
0
1
0
1
1
1
0
1
1
1
0
0
0
0
1

11

1.0086002

22

0.8692317

33

0.8450980

44

0.9138139

.0188224
.0676143
.9513947
.9671651
.8689198
.9366611
.0080612
.8553104
.0978273
9588091
.1433404
.1522917
.0922708
.9482103
.9815167
.0722451
.0109067
.9042630
.1025449
.0041572
.0271249
.1896340
.9441529
.0709074
.1397139
.1136192
.2002751
.0575832
.1480992

9055363

9503500
.9794597
.0341801
9408472
.8626733
.0599276
.0659227
.2136896
.0200240
.9654891
.1171017
.8903305
.7356758
.8605473
.0616219
.7860131
.0768416
.0206116
.0892776
.8857763
.0344475
.1659058
.1370900
.9374756
.9994264
19978171
.9953475
.0940564



6 Confirmation results (BSTS long-term forecasting)

6.1 Model descriptions

A semilocal linear trend model without a regresson conponent

Model 4-2

Semilocal linear trend models with a regresson conponent
Model 5 Expected model size : 1

Model 6 Expected model size : 5

Model 7 Expected model size : 6

Model 8 Expected model size : 7

Model 9 Expected model size : 8

Model 10 Expected model size : 9

Model 11 Expected model size : 10
Model 12 Expected model size : 11

Original data
Year Spot_JP Crude oil, WTI  Coal, Australian  Natural gas, US Upstream_inv Liquefaction_inv Uti_rate_JP Uti_rate_ W NG_prod NG_cons LNG_trade LNG_im_JP
(S/mmbtu)  (S/bbl) (S/mt) (S/mmbtu) (bilion USD) __ (billion USD) (Bcm) (Bcm) (1076 1) (Million ton)
2014 14.06 93.1125 70.13 4.369491667 780 36 0.28934978 0.290868802 3446.865 3398.685 239.18 88.505727
2015 7.866666667 48.70916667 57.51070979 2613708333 585 35 0.24103469 0.278926547 3519.423 3474.188 245.19 85.044303
2016 5.879166667 43.1875 65.86141984 2.492216667 4323 26 0.18070554 0.282831348 3543.817 3574.183 263.62 83.33983
2017 7.1625 50.90666667 8841521332 2359608333 450.216 20 0.14691092 0.26758911 3680.378 3670.397 289.81 83.631844
2018 9571428571 472 15
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6.2 Components of each model

Model 4-2
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6.3 Regression coefficients of each model

Model 5 Model 6
Natural_gas._production [I] Japan_LNG_import_volume [ RN
Coal_ Australia_price [ Natural_gas_consumption [ NN
Natural_gas_consumption [ Global_LNG_trade_volume [ RN
Japan_LNG_import_votume ] Natural_gas_production [ NN
World_LNG_spot_market_utiization World_LNG_spot_market_utiization (I NRR|
Upstream_investment_oil_gas ] Upstream_investment_oil_gas IR
Japan_LNG_spot_market_utiization [ Coal_Australia_price [N
Ueosconpresn | Cuce oo )
Global_LNG_trade vokume ] Liquefaction_piant_investment | N
Crude_oi wri | Natural gas US price [ ]
Natural_gas_US price | Japan_LNG_spot_market_utiization [N
(ntercept) | (ntercept) |
r T T T T v r T T T T 1
2 02 o £ o i 00 02 04 06 08 1
Wcision Prcoabity Inclusion Probability
Model 7 Model 8
Natural_gas_consumption N Upstream_investment_oil_gas (NN
Natural_gas_production [ Natural_gas_consumption [
Japan_LNG_import_voume Japan_LNG_import vokume [ RN
Giobal_LNG_trade_voume NN Natural_gas_production [
World_LNG_spot_market_utiization (IR Global_LNG_trade_voume [N
Upstream_imvesiment_oi_gzs - [ Workd_LNG_spot_market_utization
Coal Austraia_price [ ] Coal Austraia_price [ ]
cndeoiwn [ ] Crude_oiwn [
Liauefaction_plant_investment Liquefaction_plant_investment [
Neral s, U5 orice [ "] [T —
Japan_LNG_spot_market_utization ] Japan_LNG_spot_market_utiization [N
(ntercept) | (ntercept) |
r T T T T 1 T . - T T 1
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6.4 Comparison of cumulative absolute error
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7 Original data for BSTS long-term forecasting

Original data
Year Spot_JP Crude oil, WTI _Coal, Australian _ Natural gas, US Upstream_inv_Liquefaction_inv_Uti_rate_JP Uti_rate_W NG_prod NG_cons LNG_trade LNG_im_JP
($/mmbtu)  ($/bbl) ($/mt) ($/mmbtu) (billion USD) _ (billion USD) (Bcm) (Bcm) (1076 t) (Million ton)
2014 14.06 93.1125 70.13 4.369491667 780 36 0.28934978 0.290868802 3446.865 3398.685 239.18 88.505727
2015 7.866666667  48.70916667 57.51070979 2.613708333 585 35 0.24103469 0.278926547 3519.429 3474.188 245.19 85.044303
2016 5.879166667 43.1875 65.86141984 2.492216667 432.9 26 0.18070554 0.282831348 3549.817 3574.183 263.62  83.33983
2017 7.1625  50.90666667 88.41521332 2.959608333 450.216 20 0.14691092 0.26758911 3680.378 3670.397 289.81 83.631844
2018 9.571428571 472 15
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Data set for the estimation of the future variables

Year Crude oil, WTI Coal, Australian Natural gas, US Upstream_inv Liquefaction_inv Uti_rate_JP Uti_rate_W NG_prod NG_cons LNG_trade LNG_im_JP
($/bbl) ($/mt) ($/mmbtu) (billion USD)  (billion USD) (Bcm) (Bcm) (1076 1) (Million ton)

1982 32.76666667 54.7675 2.465 1457.759711 1447.322634

1983 30.4149998 38.1875 2.5925 1469.878328 1470.611331

1984 29.37750006 30.95833333 2.655 1597.005214 1591.238739

1985 27.7625 33.75 2.510833333 1639.449801 1626.314014

1986 15.08333333 31.125 1.935 1682.964104 1642.136448

1987 19.15833333 27.5 1.6625 1768.219678 1728.917958

1988 15.96666667 34.875 1.681666667 1846.320838 1808.352241 31.032076
1989 19.59583333 38 1.696666667 1909.159154 1890.285595 32.358002
1990 24.49166667 39.66666667 1.698333333 1976.277409 1948.664542 35.465422
1991 21.48333333 39.66666667 1.486666667 2003.751152 1998.458677 37.515432
1992 20.5625 38.5625 1.771666667 2012.538729 2007.692098 39.047033
1993 18.5625 31.33333333 2.120833333 2031.47281 2027.509431 39.290106
1994 17.16333333 323 1.92 2056.950838 2040.536342 42.078069
1995 18.36916667 39.37166667 1.7225 2093.589993 2112.178818 42.906301
1996 22.07 38.07416667 2.734166667 2191.935703 2214.341796 45.877492
1997 20.32583651 35.09916667 2.48175 2192.749234 2208.205319 47.656138
1998 14.3492 29.23083333 2.086916667 2249.683017 2248.593806 49.133038
1999 19.24083333 25.89166667 2.266666667 2314.303907 2310.757158 51.723937
2000 30.332125 26.25 4.308333333 120 2405.523898 2401.989227 53.689778
2001 25.91908289 32.3125 3.955833333 150 2464.455142 2436.711133 55.149302
2002 26.0931675 25.309375 3.355 160 2520.065774 2510.812839 53.877618
2003 31.1071782 26.090625 5.491982667 180 2613.28735 2576.917552 59.129097
2004 41.44361734 52.94791667 5.894867134 200 2699.547449 2675.216794 56.970663
2005 56.44478447 47.62090278 8.915672827 260 0.02160558 0.12760531 2764.900362 2753.709099 58.01377
2006 66.0425842 49.08958333 6.719543094 340 0.08010057 0.15807903 2866.538617 2834.757835 62.189252
2007 72.28445261 65.733125 6.981950687 390 0.11523817 0.19539786 2941.323294 2958.025097 66.816304
2008 99.55774363 127.1041667 8.857202411 450 0.14748337 0.17601987 3045.439686 3032.137836 172.086 69.262732
2009 61.65364 71.84416667 3.950291667 420 0.08010057 0.15807903 2952.762996 2947.79263 181.739 64.552348
2010 79.42553055 98.96604167 4.38525377 450 0.1009595 0.18661278 3169.316116 3175.912422 220.21 70.00781
2011 95.05432893 121.4483333 3.998578553 590 0.20164349  0.25415282 3269.017768 3241.044868 240.8 78.531629
2012 94.15887843 96.36416667 2.752041667 700 0.22014078  0.25047607 3337.132959 3327.053388 236.31 87.314285
2013 97.94276561 84.56216919 3.723983333 740 0.2465333  0.27428137 3376.188647 3371.494785 236.91 87.4911
2014 93.1125 70.13 4.369491667 780 36 0.28934978  0.2908688 3446.864552 3398.684723 239.18 88.505727
2015 48.70916667 57.51070979 2.613708333 585 35 0.24103469 0.27892655 3519.428561 3474.188349 245.19 85.044303
2016 43.1875 65.86141984 2.492216667 432.9 26 0.18070554 0.28283135 3549.817407 3574.182987 263.62 83.33983
2017 50.90666667 88.41521332 2.959608333 450.216 20 0.14691092 0.26758911 3680.377622 3670.396587 289.81 83.631844
2018 472 15
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