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Abstract

We analyze a procedure how to build a high quality linear regression model. We start

with an overview of the desirable properties, for example robustness and limited pairwise

multicollinearity, of the linear regression model. We discuss the problem that the current

approaches are not capable to find a linear regression model with the desirable properties.

Therefore, our goal is to find a procedure that produces a linear regression model which

achieves the desirable properties in a reasonable amount of time. We present an algorithmic

approach in which the desirable properties are modeled as constraints and through penalties

in the objective function of a Mixed Integer Quadratic Optimization (MIQO) model. The

performance of the algorithm is shown on both real and synthetic data sets, and is compared

with the widely used Lasso approach from Tibshirani (1996). Lastly, we extent the MIQO

model with a heuristically chosen subset of interaction terms and compare the performance

of the heuristic with Lasso on a synthetic data set.

Keywords: Linear Regression Model, Mixed Integer Quadratic Optimization,

Interaction Terms
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1 Introduction

The linear regression model considers the relationship between a dependent variable y 2 Rn and

a matrix of explanatory variables X 2 Mn⇥p. The associated parameter � 2 Rp⇥1 estimates the

e↵ect of X on y. Lastly, the error terms ✏ 2 Rn⇥1 represent the part of y that is not explained

by the explanatory variables. The linear regression model is given by

y = X� + ✏.

The linear regression model is often used by data scientists. The power of this model lies in

its simplicity and interpretability. Thereby, the desirable properties, for example robustness

and limited pairwise multicollinearity, of the linear regression model are widely studied in the

literature. Common textbooks provide numerous variable selection procedures to find a linear

regression model which has the desirable properties built in.

However, these textbooks primarily focus on building in the desirable properties one at time,

instead of jointly. This naturally leads to iterative approaches in which the modeler selects

explanatory variables according to a specified criterion and performs a series of checks to see

if the linear regression model has the desirable properties. Especially when the number of

explanatory variables is large, these iterative approaches are not capable to produce a high

quality linear regression model in a reasonable amount of time. Finally, the modelers approach

is decisive for the resulting linear regression model, and hence there is no guarantee that the

resulting linear has the desirable properties of a linear regression model.

1.1 Contribution and Structure of this Thesis

In this thesis we will elaborate on the paper Bertsimas and King (2015), in which the authors

proposed an algorithmic approach to find a linear regression model that balances the desirable

properties of a linear regression model simultaneously. To ensure that the resulting linear re-

gression model has the desirable properties, we formulate the desirable properties of a linear

regression model as constraints and through penalties in the objective function of a Mixed Inte-

ger Quadratic Optimization (MIQO) problem. To measure the quality of the resulting model we

use out-of-sample R2 and to what extent the model reaches interpretability, significance, robust-

ness to error in data, and sparsity. Furthermore, we compare the performance of the algorithm

with the Lasso approach from Tibshirani (1996), which is a robust variable shrinkage method to

find a linear regression model. In the last part of this thesis we extent the algorithmic approach

by including a heuristically chosen subset of interaction terms.

This thesis is structured as follows. In §2 we describe the desirable properties of a linear regres-

sion model in detail and give the problem description. The corresponding literature is reviewed

in §3. We outline the MIQO based algorithm in detail in §4. In §5 we show computational

results of the algorithm and compare the algorithm with Lasso. The methodology and results

of the interaction terms are described in §6. We conclude in §7.
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2 Problem Description

In this section, we review the desirable properties of a linear regression model which are: gen-

eral sparsity, group sparsity, limited pairwise multicollinearity, nonlinear transformations, ro-

bustness, stability to outliers, modeler expertise, statistical significance and low global mul-

ticollinearity. Thereby, we consider how each property is currently taken into account by a

modeler and how we can take each property into account in our approach. Lastly, we define

the problem of finding a high quality linear regression model, which has the desirable properties

balanced, in a reasonable amount of time.

2.1 Desirable Properties of a Linear Regression Model

General Sparsity

When the number of explanatory variables is high, a modeler would like to construct a linear

regression model in which only the most relevant explanatory variables for the response are in-

cluded. In the literature, this is known as identifying a critical subset of the response (see Miller

(2002)). A linear regression model with only the most relevant explanatory variables is more

interpretable and the prediction error decreases because of the elimination of noise variables.

Therefore, we want to construct linear regression models with a specific number k of nonzero

regression coe�cient �. We call the number k the general sparsity of the model. To model this

in our approach, we restrict the maximum number of nonzero regression coe�cients � by k and

solve our model for all possible values of k.

Group Sparsity

In some linear regression models there are explanatory variables that have a group structure,

which is a set of explanatory variables that are coherent to each other. Categorical variables that

are expanded to a set of dummy variables naturally form a group structure. To make sure that

the variables in a group structure interpretable, a modeler naturally includes either all or none

of the variables from the group structure. A common approach to preserve a group structure is

group Lasso (see Yuan and Lin (2006)). Therefore, in our approach we focus on preserving the

group sparsity property by restricting that the explanatory variables in a group structure have

either all zero coe�cients or none.

Limited Pairwise Multicollinearity

Instable parameter estimates can be caused by including a pair of variables that is highly cor-

related (see Tabachnick and Fidell (2001)). This means that if a pair of variables is highly

correlated, the resulting linear regression model could indicate an inaccurately estimated e↵ect

of an explanatory variable with the the dependent variable. Normally a modeler would check the

correlation matrix to see if the linear regression model has pairs of highly correlated variables.

From a modelers perspective checking all pairwise correlation is practically impossible when the

number of explanatory variables is high. To avoid instable parameter estimates in our approach,

we restrict the maximum pairwise correlation of each pair of variables with nonzero regression

coe�cients �.
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Nonlinear Transformations

In some applications the dependent variable has a nonlinear relationship with an indepen-

dent variable. Commonly used nonlinear transformations of an explanatory variable x are

log(x), x

2

,

p
x. Normally a modeler would search for such relationships by checking pairwise

plots of the dependent and independent variables. When the number of independent variables is

high, checking all pairwise plots is practically impossible for a modeler. To model the nonlinear

relationship in our approach, we add nonlinear transformations of the explanatory variables. To

ensure that the resulting model is sparse, we require that the final model has at most one of the

nonlinear transformations or the original explanatory variable itself with a nonzero regression

coe�cient � incorporated.

Robustness

Collected data is often inaccurate. For example, the explanatory variable could be measured

with an error. A commonly used approach to take this problem into account is robust opti-

mization. That is, a modeler formulates uncertainty sets to make the resulting model robust

to worst-case uncertainty (see Ben-Tal et al. (2009) and Bertsimas et al. (2011)). To make our

model immune to worst-case uncertainty, we regularize the objective of our model as in Bertsi-

mas and King (2015).

Stability to Outliers

The collected data may contain outliers which could lead to an incorrect generalization of the

model. The linear regression model penalizes the errors quadratically and, therefore, this model

is known for its sensitivity against outliers. In the literature one of the proposed solutions is to

change the quadratic objective to the least median of squares (LMS) objective. This objective

is introduced in Rousseeuw (1984) and it minimizes the median of the l

2

-norm of the residuals.

The result is that outliers have less e↵ect on the estimated parameter. In our approach, the

LMS objective can be used instead of the regular least squares objective if the modeler suspects

outliers in the data.

Modeler Expertise

When a modeler has expertise in the field of research where the data comes from, he might want

to specify explanatory variables that have to be included in the linear regression model. The

reason that a modeler includes a set of explanatory variables is based on the intuition from the

modeler that this set has a known correlation with the dependent variable. We take modeler

expertise into account in our approach by ensuring that the specified set of explanatory variables

has to be included in the final linear regression model.

Statistical Significance

Good linear regression models truly detect the relationship between the explanatory variables

and the response. A commonly used approach in the literature is to use the concept of statis-

tical significance. An explanatory variable x is considered to be statistically significant if the
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probability that the observed e↵ect happens by chance is less than the significance level ↵, in

presence of the other explanatory variables (a typical value for ↵ is 5%). A modeler naturally

removes insignificant explanatory variables from the final linear regression model because the

interpretation of the e↵ect of insignificant variables is obscure. In our approach we take sta-

tistical significance into account by ensuring that our final only contains significant variables.

However, we would like our approach to be free of any distributional assumption, so that high

dimensional settings can be handled and the regularization (see Robustness) can be incorpo-

rated. Therefore, we use residual bootstrapping (see Efron (1982)) to estimate the significance

of the regression coe�cients, which is asymptotically more accurate than using the standard

normality assumptions (see DiCiccio and Efron (1996)).

Low Global Multicollinearity

Besides the pairwise multicollinearity problem, modelers also face the problem of global multi-

collinearity (see Ryan (2008) for an example). Global multicollinearity refers to the situation

in which one explanatory variable can be linearly predicted by two or more other explanatory

variables. The result of global multicollinearity is that it leads to instable parameter estimates,

which means that a small change in the data or linear regression model can heavily change the

parameter estimates. In other words, the restriction on pairwise multicollinearity may not be

su�cient to cover the problem of global multicollinearity. Therefore, a modeler normally per-

forms a check on this property. A commonly used check is to calculate the condition number of

the matrix of explanatory variables that appear with a nonzero regression coe�cient � in the

final model. In Chatterjee and Hadi (2015) the authors argue that a condition number greater

than 30 is taken as evidence of multicollinearity. Hence, when there is evidence of multicollinear-

ity a modeler has to resolve this problem by excluding variables from the model to make sure

that the parameter estimates are stable.

2.2 Finding a Linear Regression Model with the Desirable Properties

When building a regression model the modeler has to balance the desirable properties of a high

quality regression model, which are typically built in the model one at a time. Common re-

gression textbooks outline variable selection approaches together with a series of checks how

a good regression model can be found, but provide almost no guidance which approach the

modeler should use in a particular setting. Hence, it can be expected that two modelers with

the same data set give di↵erent models only because they used a di↵erent approach. This is

mainly because the proposed approaches in most textbooks try to find the model iteratively in

which the properties are built in one at time. The result is that one approach may find that

the desired properties cannot be built in the model all together while another approach could

result in a model that does have the desired properties. In other words, the iterative procedure

of refinements applied by the modeler is decisive for the resulting model.

From a modelers perspective the only practically useful approach to built the desirable prop-

erties of a linear regression model into his model is an iterative procedure of refinements. The
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reason for this is, that there is no practically workable approach that results directly in a model

that balances the competing properties at once in a reasonable amount of time.

Although the current approaches from regression textbooks are able to address each property

one at a time, the problem with these approaches remains that this could lead to models that

do not satisfy the desirable properties because the properties are balanced iteratively instead of

simultaneously. Furthermore, when the potential number of explanatory variables is high the

current approaches fail because they are practically unworkable. Hence, we focus in this thesis

on the problem of finding a high quality linear regression model that balances the desirable

properties of the linear regression model jointly in a reasonable amount of time.

5



3 Literature Review

The linear regression model is extensively studied in the literature. Commonly used linear

regression textbooks (see for example Heij et al. (2004), Chatterjee and Hadi (2015)) pay atten-

tion to the assumptions and limitations of this model. These textbooks provide approaches with

variable selection methods, for example the top-down approach from Heij et al. (2004) in which

the modeler starts with a linear regression model with all explanatory variables included and

eliminates variables based on some specific criteria (for example statistical significance). How-

ever, these textbooks provide more approaches than the top-down approach without o↵ering

guidance which approach should be used. Furthermore, most approach are practically useless if

the number of explanatory variables is high. Therefore, building a linear regression model that

addresses the desirable properties in a reasonable amount of time is more of an art than science.

For example, to achieve general sparsity with a maximum of k nonzero regression coe�cients

(of a total of p possible explanatory variables) a possible approach is to solve for all values of k

the following problem:

min
�

(
1

2

���
���y �X�

���
���
2

2

)
, subject to:

���
����

���
���
0

 k. (1)

This is more generally known as the best subset selection problem (see Miller (2002) for de-

tails). An e�cient way to solve (1) is proposed by Furnival and Wilson (1974), which is MIQO

based. However, the cardinality constraint on � makes the problem NP-hard (Natarajan (1995)).

Therefore, state-of-the-art algorithms, for example leaps in R (RStudio Team (2015)), can only

solve the problem accurately for p  30. Hence, the approach to solve the best subset problem

to find a good linear regression model is considered to be inaccurate for p > 30. Therefore, a

common approach considered in the literature is a surrogate of (1) which is known as Lasso

(Tibshirani (1996), Chen et al. (2001)). Although Lasso can be used in more general models

than the linear regression model, we consider the linear regression form of Lasso, which is to

solve

min
�

(
1

2

���
���y �X�

���
���
2

2

+ �

���
����

���
���
1

)
. (2)

In Bertsimas et al. (2011) the authors compare Lasso with the best subset problem and conclude

that Lasso does not produce sparse models in general, but that the predictive power is compa-

rable. The reason that Lasso predicts well is because it is a robust model against uncertainty in

data (Bertsimas and King (2015)). Although the predictive power of Lasso is reasonably good,

the desirable properties are not guaranteed and mostly not achieved because the regularity con-

ditions (Bühlmann and Van De Geer (2011)) are violated. Therefore, we focus in this thesis on

an approach to find a high quality linear regression model that achieves the desirable properties

in a reasonable amount of time and compare our approach with Lasso in terms of predictive

power and interpretability.
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4 MIQO Based Approach

In this section, we describe the algorithm from Bertsimas and King (2015) to solve the problem

formulated in §2.2, which is to find a high quality linear regression model that balances the

desirable properties of the linear regression model jointly in a reasonable amount of time. This

problem naturally lends itself to be formulated as a Mixed Integer Quadratic Optimization

(MIQO) model. The desirable properties of a linear regression model as described in §2 can be

formulated as integer constraints or can be taken into account in the objective function through

penalties. The algorithm from Bertsimas and King (2015) is decomposed into three stages.

In the first stage of the algorithm, we pre-process the data and compute all the parameters

necessary for our MIQO approach. In the second stage we solve the MIQO model. After we

have solved the MIQO model, we go to the last step of our algorithm and generate additional

constraints if the solution of our MIQO does not satisfy the desirable properties and go back to

step 2.

4.1 Stage 1: Preprocessing and Computing Parameters

In the first stage the data is split randomly (50% / 25% / 25%) into training, validation and

test set. We standardize each data set column wise based on the mean and variance of columns

of the training set, so that each column has zero mean and unit l
2

norm. When the data is stan-

dardized, the modeler may specify the number of robustification parameters � to be tested (the

default is 5) and the maximum pairwise correlation ⇢ that is allowed between the explanatory

variables (the default is 0.80).

The algorithm then proceeds to generate the correlation matrix based on the training set and

generates HC, the set of pairs of variables that have a pairwise correlation in absolute value be-

yond ⇢. At this point, the algorithm requires the modeler to specify which explanatory variables

have a natural group structure. The algorithm then expands categorical variables to dummy

variables and makes sets of group variables. The mth set explanatory variables that require a

group structure is denoted by GS
m

. Furthermore, the modeler also specifies which nonlinear

transformations have to be considered, where we denote themth set of nonlinear transformations

by T
m

(which also includes the non-transformed variable). If the modeler has some subjective

expertise about the variables, the modeler can specify this at this point in a set of explanatory

variables that have to be present in the final linear regression model, where this set is denoted

as J . Lastly, if the modeler suspects outliers he can specify to use the median (LMS) objective

instead of the regular least squares objective.

The algorithm proceeds to calculate k

max

, the maximum number of variables that can be in-

cluded in the final model without violating the constraint on maximum pairwise correlation. We

determine k

max

by solving an independent set problem, in which the explanatory variables are

represented by nodes and the edges by pairs of variables. The binary indicator variable in this

independent set problem is z

i

, where z

i

= 1 indicates that explanatory variable x

i

is included

in the independent set problem and z

i

is zero otherwise. The constraints on maximum pairwise
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correlation are incorporated by excluding edges for which the pairs of variables have a pairwise

correlation beyond ⇢. The independent set problem is given by

k

max

= max
z

(
pX

i=1

z

i

)
, (3)

s.t. z

i

+ z

j

 1, 8 (i, j) 2 HC, (4)

z

i

2 {0, 1}, 8 i = 1, . . . , p. (5)

Thereafter, the algorithm determines the values � to be tested as follows: We denote RB as the

set of logarithmically spaced values of � between 0 and the value of � for which the optimal

solution of the unconstrained problem is � = 0. The value for which � = 0 can be found

by applying a coordinate descent algorithm. The algorithm has now computed all relevant

parameters and proceeds to Stage 2.

4.2 Stage 2: The MIQO Model

In the second stage of the algorithm we solve the MIQO model for all combinations (k, �), where

k 2 {1, . . . , k
max

} and � 2 RB, using the training data (y, X). The MIQO model is as follows:

min
�,z

(
1

2

���
���y �X�

���
���
2

2

+ �
���
����

���
���
1

)
, (6)

s.t. �Mz

l

 �

l

 Mz

l

, 8 l = 1, . . . , p, (7)
pX

l=1

z

l

 k, (8)

z

i

+ z

j

 1, 8 (i, j) 2 HC, (9)

z

1

= . . . = z

l

, (1, . . . , l) 2 GS
m

, 8m, (10)
X

i2T
m

z

i

 1, 8m, (11)

z

l

= 1, 8 l 2 J , (12)
X

l2S
i

z

l

 |S
i

|� 1, 8S
1

, . . . ,S
j

(13)

z

l

2 {0, 1}, 8 l = 1, . . . , p, (14)

In the objective (6), the first term minimizes the residual sum of squares and the second term

is the robustification penalty on the parameter �. The robustification parameter makes the

resulting model robust against uncertainty in the data. In constraints (14) a binary variable z

l

is introduced. This binary indicator is used in constraints (7) to ensure that the parameter �
l

is

only non-zero if z
l

= 1. Furthermore, in constraints (7) the constant M denotes the maximum

value the parameter �
l

can take in absolute value.

The constraints (8)�(13) are used to guarantee the desirable properties of the linear regression

model. To ensure general sparsity, we restrict the number of nonzero regression coe�cients
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in by k in constraint (8). To avoid the issue of high pairwise multicollinearity we restrict the

pairwise correlation of each pair of explanatory variables in the final model by including the set

of constraints (9). To ensure that the parameters for a group structure are either all zero or

not, we require in (10) that all indicator variables z
l

in the mth group structure 8 l 2 GS
m

are

equal. Constraints (11) ensure that for each set of transformed explanatory variables there may

only appear one of the transformed variables or the original variables itself in the final linear

regression model. If the modeler specified a set of variables that should always appear in the

resulting model, we generate the constraints (12) which ensures that the indicator variables z

l

with indices l 2 J are equal to 1. The last set of constraints (13) is initially not present in the

model, but might be generated in Stage 3 if the regression model corresponding with solution

S
i

has condition number greater than 30 or if the parameters are insignificant. Note that both

the condition number and significance can not be incorporated directly as constraints, because

both the calculation of the condition number as well as bootstrapping the parameters involve

highly nonlinear calculations.

For each combination of k and � the output of the MIQO model is a set of regression parameters

�

⇤ and a set of indicator variables z⇤. The algorithm then calculates for each combination of k

and � the out-of-sample R2 based on the validation set, which is based on the following definition

Definition 1 Let y
in

denote the vector of in-sample response data and let y
out

denote vector

of out-of-sample response data. Furthermore, let ŷ
i

denote the prediction of y
i

2 y

out

and let ȳ

be the mean y

in

. Then the out-of-sample R

2 is defined by

R

2 = 1�
P

y

i

2y
out

(y
i

� ŷ

i

)2
P

y

i

2y
out

(y
i

� ȳ)2
(15)

The importance of measuring predictive power based on out-of-sample R2 is shown in Campbell

and Thompson (2007), in which the authors predict excess stock returns. As the authors predict

time series, we alter their definition of out-of-sample R

2 so that we can use it on regular linear

regression data.

Finally, when all combinations of k and � are considered, the algorithm chooses the three best

regression models (denoted by S
1

,S
2

and S
3

) based on the three highest out-of-sample R2 values

and proceeds to Stage 3, where additional constraints might be generated.

4.3 Stage 3: Generating Additional Constraints

For each of the solutions S
1

,S
2

and S
3

, the final step is to check if all the regression coe�cients

are statistically significant based on bootstrapping and if there is evidence of global multi-

collinearity. We adopt the residual bootstrap method from Efron (1982), in which the residuals

from the final regression model are used to bootstrap the regression coe�cients. For each regres-

sion coe�cient we use as significance level ↵ = 5%. Evidence of multicollinearity is indicated

by a condition number greater than 30. Each solution S
i

for which these two properties are not

satisfactorily addressed is excluded from the set of possible linear regression models by including

constraint (13). Constraint (13) cuts solution S
i

of the binary hypercube by requiring that the

9



corresponding solution to S
i

of indicator variables z is infeasible in next iterations. The algo-

rithm returns back to Stage 2 as long as the algorithm has not found a top three of best linear

regression models, and the number of iterations allowed between Stage 2 and 3 (default is 3) is

not reached. The algorithm terminates when it finds a top three of solutions in which the last

two properties are satisfactorily addressed or when the number of iterations allowed between

Stage 2 and 3 is reached. The output of this algorithm is thus a top three of linear regression

models, in which the desirable properties of the linear regression model are jointly balanced.
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5 Computational Experiments

In this section, we illustrate the performance of our algorithm on both synthetic and real data

sets. We consider synthetic data sets with no special structure to demonstrate that our algo-

rithm achieves interpretability and robustness. Thereby, we also show the performance of our

algorithm on basic real data sets with no special structure. Furthermore, we consider a real

data set in which it is known that the explanatory variables have a nonlinear relationship with

the response. We also consider a real data set in which there are explanatory variables that are

categorical to show the performance of the algorithm on the group sparsity property. Lastly,

we compare our algorithm with Lasso to show that our algorithm achieves, in general, more

interpretable models than Lasso and results in a linear regression model that has the desirable

properties with predictive power comparable Lasso.

Synthetic Data

We generated synthetic data where each observation i = 1, . . . , 2n is an independent realization

from an p-dimensional multivariate normal distribution with zero mean and covariance matrix

⌃ := �

ij

. That is, we generated x

i

i.i.d⇠ N (0,⌃). We took �

ij

= ⇢

|i�j| and varied ⇢ in the experi-

ments as ⇢ 2 {0, 0.8, 0.9}. For each experiment we generated the error term as ✏

i

i.i.d⇠ N (0,�2),

for a �

2 that varies as �2 2 {0.5, 1, 2}. The vector of response y is generated as y = X� + ✏,

where we equally spaced the k (we consider k = 10) nonzero �

i

’s and thus take �

i

= 1 if i mod

p/k = 0 and zero otherwise. Lastly, to show the algorithms performance on robustness we add

a measurement error �X to X. In each experiment we report how the measurement error is

generated.

Real Data

We tested the algorithm on eleven publicly available data sets. We obtained the data sets CPU,

Yacht Hydrodynamics, White Wine Quality and Red Wine Quality from the UCI Machine

Learning repository (Dheeru and Karra Taniskidou (2017)). The wine quality data sets origi-

nally come from Cortez et al. (2009). The data sets Compact, Elevator and Pyrimidines were

obtained from the University of Porto (Torgo (2014)). The data sets LPGA 2008, LPGA 2009

and Airline Costs were obtained from the University of Florida (Winner (2014)). The Diabetes

data is obtained from the Lars package in R (RStudio Team (2015)).

Computational Specifications

All computations were performed on a MacBook Air computer with an Intel Core i7 3667U (2.0

GHz) processor and 8 GB of RAM. We used Gurobi 8.0.0 (Gurobi Optimization (2016))

to optimize the MIQO problems and implemented the algorithm in Java. We used MATLAB

(MATLAB (2017)) to compute Lasso solutions. To compute group Lasso solutions we used the

grplasso package in R (RStudio Team (2015)).
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5.1 Basic Structure Data

In this section we show the performance of the algorithm on real and synthetic data sets. Al-

though the algorithm generates the top three solutions, we only report the linear regression

model with the highest out-of-sample R

2 on the validation set. Note that for each data set our

algorithm requires the modeler to specify the number of iterations allowed between Stage 2 and

3. The result is that the number of MIQO problems to be solved is k
max

⇥ # of regularization

parameters to be tested ⇥ # of iterations allowed between Stage 2 and 3 MIQO problems.

However, in our experiments on the synthetic data sets we altered the algorithm because the

computation time was unreasonably high if we would allow iterations between Stage 2 and 3.

In the experiments on real data sets we use the algorithm as described in §4.

We altered the algorithm to merge Stage 2 and 3 as follows: For each MIQO problem with input

variables (k, �) and output variables (�⇤
, z

⇤) we calculate the out-of-sample R

2 based on the

validation set. If this R

2 is higher than at least one of the top three solutions S
1

,S
2

,S
3

that

the algorithm has found so far, we calculate the condition number and bootstrap the regression

coe�cients. When there is no evidence of multicollinearity and all regression coe�cients are

statically significant, we update the solution S
i

with the lowest value of R2 based on the valida-

tion set with the found solution.

This results in less computation time because the calculation of the condition number and boot-

strapping method are relatively fast. Also note that the calculation of both the condition number

and bootstrapping is only necessary for improvements of the R

2 value in comparison with the

best solution obtained at that specific moment. The altered algorithm produces linear regression

models that achieve the desirable properties in a reasonable amount of time and which are still

selected based on the highest values of out-of-sample R

2 on the validation set. Although, the

altered algorithm results in less computation time we also see the disadvantage of merging Stage

2 and 3. In the worst-case scenario this could lead to models with less predictive power. More

specifically, for some k we could obtain in the worst-case scenario that for all robustification

parameters the underlying pattern of k nonzero regression coe�cients is not identified because

the corresponding model has a too high condition number of statistically insignificant regression

coe�cients, which would only have been possible if the corresponding solutions were excluded.

In Tables 1 - 6 we present the results on the synthetic data sets. Each row in each table

corresponds with one experiment on one synthetic data set. For each experiment we report:

the variance of the error terms (�2), the robustification parameter selected by our algorithm

(MIQO �⇤), number of nonzero regression coe�cients selected by the algorithm (MIQO K

⇤),

the number of true nonzero regression coe�cients identified by the algorithm (TP), the out-of-

sample R2 based on the test set, the maximum pairwise correlation of two explanatory variables

with nonzero regression coe�cients (MaxCor), the condition number (Cond). We also report for

each experiment the corresponding results for the Lasso approach except for the robustication

parameter, which is selected according to the highest value of the out-of-sample R

2 based on

the validation set. Lastly, we present the computation time in hours for each experiment, which
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serve to show that the algorithm can be used in practice in a reasonable amount of time.

In Tables 1 and 2 we present the performance of the algorithm on the general sparsity property

for both the regular case n < p as well as the over-identified case n > p. Both the algorithm

as the Lasso approach identify all true nonzero regression coe�cients. The algorithm has com-

parable predictive power with Lasso based on the out-of-sample R

2 on the test set. However,

Lasso brings in additional noise variables whereas our algorithm achieves to identify the exact

pattern.

Tables 3 and 4 illustrate the performance of the algorithm on the limited pairwise multicollinear-

ity property, for n < p and n > p. Again, both the algorithm as well as the Lasso approach

identify all true nonzero regression coe�cients, with a comparable predictive power, and where

Lasso brings in additional noise variables. Note that also the algorithm brings in two noise

variables for the specific case n < p and �

2 = 2, which might be the result of random e↵ects.

However, the advantage of the algorithm over the Lasso approach becomes more clear when we

compare the maximum pairwise correlation and condition number of both approaches. Here, we

see that the Lasso approach produces linear regression models with both a high pairwise corre-

lation and a high condition number, which is the result of bringing in additional noise variables.

In contrast, the algorithm produces linear regression models without violating these desirable

properties, so that we we avoid instable parameter estimates. Lastly, we note that in Table 3

the computation time is relatively low compared to the other tables, which is the result of less

MIQO problems to be solved. Review that the number of MIQO problems is a linear function

of k
max

for a fixed number of robustification parameters to be tested. The maximum pairwise

correlation allowed is by default 0.80, which means that the algorithm finds a much lower value

of k
max

in Stage 1 of the algorithm compared to the other tables.

Tables 5 and 6 are designed to show the performance of the algorithm on the robustness prop-

erty. Again we consider both n < p and n > p. The algorithm and Lasso perform equal in

identifying the true nonzero parameters and we see again that Lasso brings in additional noise

variables in contrast with the algorithm. We note that the algorithm achieves a higher R

2 in

all the six experiments in Tables 5 and 6. However, we cannot conclude from this that the

algorithm performs better in terms of predictive power, because we see that the R2 values di↵er

not significantly and we are aware of the fact that we only used one experiment per R2 value.

In general we clearly see the advantage of the algorithm over MIQO in Tables 1 - 6 because the

algorithm performs better to achieve general sparsity, limited pairwise multicollinearity, statis-

tically significant regression coe�cients and low global multicollinearity. Lastly, note that the

experiments where n < p have relatively high computation times compared to the experiments

where n > p, which is due to the increase in dimensionality of the MIQO problem but also

because in Stage 1 the algorithm finds higher values of k
max

, and hence more MIQO problems

have to be solved.
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Table 1: Sparsity
n = 500, p = 100, ⇢ = 0, �X = 0.

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.091 10 10 0.947 0.138 1.564 4.535 27 10 0.945 0.157 2.432
1 0.004 10 10 0.922 0.127 1.570 4.601 37 10 0.918 0.153 2.811
2 0.004 10 10 0.847 0.107 1.643 4.483 46 10 0.848 0.134 3.092

Table 2: Sparsity
n = 100, p = 500, ⇢ = 0, �X = 0.

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.094 10 10 0.958 0.231 3.031 5.475 61 10 0.918 0.378 44.167
1 0.021 10 10 0.904 0.237 2.349 5.543 75 10 0.811 0.306 152.400
2 0.077 10 10 0.882 0.285 2.945 5.482 52 10 0.729 0.328 32.253

Table 3: Pairwise multicollinearity
n = 500, p = 100, ⇢ = 0.9, �X = 0.

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.106 10 10 0.976 0.380 4.020 1.664 30 10 0.976 0.907 113.139
1 0.023 10 10 0.952 0.403 4.710 1.877 35 10 0.951 0.910 132.533
2 0.107 10 10 0.891 0.465 4.716 2.064 28 10 0.885 0.916 128.336

Table 4: Pairwise multicollinearity
n = 100, p = 500, ⇢ = 0.8, �X = 0.

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.095 10 10 0.931 0.213 2.840 7.412 40 10 0.870 0.829 66.679
1 0.091 10 10 0.910 0.238 3.129 7.432 32 10 0.895 0.815 36.677
2 0.020 12 10 0.701 0.729 8.255 7.749 45 10 0.633 0.862 83.967

Table 5: Robustness
n = 500, p = 100, ⇢ = 0, �X ⇠ Uniform(0, 2).

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.019 10 10 0.740 0.142 2.541 3.543 31 10 0.713 0.146 2.464
1 0.018 10 10 0.598 0.097 1.604 3.551 40 10 0.577 0.149 3.071
2 0.005 10 10 0.634 0.131 1.724 3.410 52 10 0.613 0.160 3.490

Table 6: Robustness
n = 100, p = 500, ⇢ = 0, �X ⇠ Uniform(0, 1).

�

2 MIQO �⇤
K

⇤ TP R

2 MaxCor Cond Time Lasso K

⇤ TP R

2 MaxCor Cond
0.5 0.095 10 10 0.857 0.237 3.290 6.728 49 10 0.771 0.302 25.153
1 0.021 10 10 0.905 0.238 2.736 6.419 82 10 0.802 0.317 213.611
2 0.020 10 10 0.796 0.217 2.722 6.544 78 10 0.604 0.340 198.538
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In Table 7 we illustrate the performance of the algorithm on real data sets. We report the size

of the training data (n), the number of independent variables in the data set (p), the number of

explanatory variables in the resulting regression model (K⇤) and the maximum pairwise correla-

tion (MaxCor) present in the resulting linear regression model. From this table we see that the

algorithm produces linear regression models with less explanatory variables than Lasso, resulting

in more interpretable models. Thereby, the algorithm produces linear regression models with

a lower maximum pairwise correlation than Lasso, which means that the algorithm avoids the

issue of instable parameters estimates. We note that the algorithm performs similar in terms

of predictive power to Lasso, which is in line with the results in Tables 1 - 6 on synthetic ex-

periments. Lastly, we note that the reported values of MIQO K

⇤ is lower in each data set than

the reported values in Bertsimas and King (2015). A possible explanation for this di↵erence

might be the random e↵ects, as both we as well as Bertsimas and King (2015) only use one

experiment. Also, we used di↵erent programmes to implement the algorithm which might give

a di↵erent result. However, the overall contrast that the algorithm produces more interpretable

models and achieves the desirable properties in comparison with the Lasso approach, is in both

our results as well as in Bertsimas and King (2015) clearly visible.

Table 7: Results for basic structure real data sets

Data set n p MIQO K

⇤
R

2 MaxCor Lasso K

⇤
R

2 MaxCor
CPU 105 6 3 0.788 0.682 6 0.847 0.693
Yacht 154 6 1 0.654 NA⇤ 1 0.637 NA⇤

White 2,449 11 3 0.278 0.450 11 0.290 0.843
Red 800 11 5 0.345 0.432 10 0.347 0.673
Compact 4,096 21 5 0.703 0.574 18 0.729 0.939
Elevator 8,300 18 6 0.812 0.680 15 0.815 0.999
Pyrimidines 37 26 7 0.657 0.782 18 0.635 0.886
LPGA 2008 77 6 2 0.842 0.025 4 0.852 0.224
LPGA 2009 73 11 2 0.911 0.769 10 0.910 0.941
Airline Costs 15 9 1 0.646 NA⇤ 9 0.688 0.972
Diabetes 221 64 6 0.436 0.450 16 0.495 0.612

*Note that in the Yacht data set both the algorithm as the Lasso approach selected only one covariate so that
the maximum pairwise correlation is undefined. The same applies for the Airline Costs data set in which the
algorithm chose only one covariate.
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5.2 Special Structure Data

In this section we compare the algorithm with Lasso on a real data set where nonlinear trans-

formations are included and also on a real data set with a natural group structure.

Nonlinear Transformations

The real data set we consider for nonlinear transformations is the Concrete Strength data set

which we obtained from the UCI Learning Repository (Dheeru and Karra Taniskidou (2017)).

The dependent variable is the comprehensive strength of concrete and the independent variables

are the age of the concrete in days and the ingredients of concrete which are: Cement, Blast

furnace slag, Fly ash, Water, Superplasticizer, Coarse aggregate and Fine aggregate.

First, we tested the performance of the algorithm and Lasso without considering nonlinear trans-

formations. The first row of Table 8 gives the results of this experiment. The algorithm selected

the covariates Cement, Blast furnace slag, Fly ash and Age. In contrast, Lasso selected all

covariates but achieves similar predictive power in terms of out-of-sample R

2, resulting in a less

interpretable model. Thereafter, we considered the extended data set in which we included for

each independent variable x the nonlinear transformations x

2

, log(x) and
p
x, where log(x) is

changed to log(x+0.0001) for the independent variables that can have the value 0. The results

of the algorithm and Lasso are given by the second row of Table 8. Our algorithm selected the

three linear covariates: Blast furnace slag, Fly ash and Coarse aggregate, and the four nonlinear

covariates:
p
Cement, log(Superplasticizer), log(Fine aggregate) and log(Age). Lasso selected

the three linear covariates: Cement, Blast furnace slag and Water, but brings in ten nonlinear

covariates (Cement2, Superplasticizer2, Fine aggregate2, Age2,
p
Cement,

p
Blast furnace slag,p

Water, log(Fly ash), log(Superplasticizer) and log(Age)), which results in a less interpretable

model and has the issue of high pairwise multicollinearity. From this we see that although Lasso

selected more explanatory variables, the predictive power is comparable while the algorithm

results in a more interpretable model and avoids instable parameter estimates due to pairwise

multicollinearity.

Table 8: Nonlinear transformations

Transformation n p MIQO K

⇤
R

2 MaxCor Lasso K

⇤
R

2 MaxCor
Linear 515 8 5 0.632 0.397 8 0.625 0.338
Nonlinear 515 32 7 0.796 0.597 13 0.816 0.999

Group Sparsity

The real data set we consider is the Energy E�ciency data set obtained from the UCI Learning

Repository (Dheeru and Karra Taniskidou (2017)), in which we have the two dependent variables

that describe building properties: heating load and cooling load. Both dependent variables are

considered to be a function of the continuous covariates: Relative compactness, Surface area,

Wall area, Roof area, Overall height and Glazing area. Furthermore, the data set also comes with

two categorical variables: Orientation (4 categories) and Glazing area distribution (6 categories).
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After the algorithm expanded the categorical variables to dummy variables, we compared the

performance of the algorithm with group Lasso (Yuan and Lin (2006)). In Table 9 we present

results for both dependent variables Heating and Cooling Load. Our algorithm chose to exclude

the explanatory variables that have a group structure from the final linear regression model.

Group Lasso selected for both dependent variables all covariates, including the group structure,

except wall area. Although it is notable that our algorithm excluded the explanatory variables

with a group structure, the predictive power is still comparable to group Lasso but results in a

more sparse model with a lower pairwise correlation.

Table 9: Group structure

Dependent Variable n p MIQO K

⇤
R

2 MaxCor Lasso K

⇤
R

2 MaxCor
Heating Load 384 14 3 0.901 0.304 13 0.914 0.875
Cooling Load 384 14 3 0.858 0.276 13 0.868 0.880

17



6 Incorporation of Cross Terms

In some applications the e↵ect of the explanatory variables on the response is based on two or

more explanatory variables that interact. See for example Friedrich (1982), in which the authors

argue why interaction terms should be considered. In this section we describe the problems that

arise when we consider all cross terms of two explanatory variables. Although, cross terms could

also be formed with three or more explanatory variables (multi-cross terms), we only consider

cross terms of two explanatory variables because of the di�cult interpretation that is associated

with multi-cross terms. We propose a heuristic to make a subset of cross terms and illustrate

the performance of this heuristic based on a synthetic data set.

6.1 Problems with Cross Terms

The results on synthetic data sets in §5.1 show that increasing the number of explanatory

variables increases computational time drastically. For a dataset with originally p explanatory

variables, including all cross terms would increase the number explanatory variables from p to
�
p

1

�
+
�
p

2

�
= 1

2

p

2+ 1

2

p. Hence, including all cross terms is from a practical point of view impossible,

so that we have to consider a subset of all cross terms. Also, including a cross term based on two

explanatory variables x

i

and x

j

is di�cult to interpret if at least one of these two explanatory

variables has a regression coe�cient that is statistically insignificant when including cross term

x

i

x

j

.

6.2 Heuristic Selection of Cross Terms

In §6.1 we argued that cross term x

i

x

j

should only be included if both explanatory variables x
i

and x

j

have a nonzero regression coe�cient. Therefore, in our heuristic we take advantage of

this argument. We propose the following heuristic:

1. In the first step the algorithm from §4 is used to find a linear regression model with the

desirable properties for a given data set (y, X) where cross terms are not included in

X. The output of the algorithm consists of the top three best linear regression models

S
1

, S
2

and S
3

, with corresponding vectors of regression coe�cients �

1

, �

2

,�

3. Let I be

the set of indices for which at least one of �1

, �

2

,�

3 has a nonzero regression coe�cient.

More specific, i 2 I , 9�k

i

6= 0 for some k = 1, 2, 3.

2. In the second step we include all cross terms x

i

x

j

of explanatory variables x

i

and x

j

8i, j 2 I, i 6= j by expanding the matrix of explanatory variables with cross term x

i

x

j

.

Let g =
���I
��� denote the cardinality of I, and let h =

�
g

2

�
denote the number of combinations

i, j, then the output of this step is the expanded matrix of explanatory variables X

⇤ 2
Mn⇥(p+h).

3. In the last step we again use the algorithm from §4 to find a linear regression model with

the desirable properties for the data set (y, X⇤).

The output of this heuristic is the top three best linear regression models with cross terms

included.
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6.3 Computational Experiments

Data set

In this section we illustrate the performance of our heuristic based on a synthetic data set. We

generated a synthetic data set using a similar procedure as in §5, for which we used the param-

eter settings as n = 500, p = 100, ⇢ = 0, �X = 0. Also, we consider again k = 10, so that

�

i

= 1 if i mod p/k = 0 and zero otherwise. Furthermore, we include one cross term x

i

x

j

with

regression coe�cient � = 1 for i 6= j and for which i mod p/k = 0 and j mod p/k = 0. That is,

we include that one cross term x

i

x

j

, for some random i and j, that e↵ects the response linearly

with coe�cient � = 1.

Results

In Table 10 we show the performance of our heuristic. We use the same structure in the table as

in §5.1. We refer to p as the number of explanatory variables in the data without cross terms,

because data naturally comes in the format without cross terms rather than with cross terms.

We report the number of true nonzero regression coe�cients as in §5.1, but note that we have,

in contrast to §5.1, one extra nonzero regression coe�cient, namely the cross term.

As in §5.1 we compare our approach with Lasso. For the Lasso computations we selected the

cross terms to be considered similar as the heuristic. That is, we consider for Lasso the cross

terms that may be selected by Lasso based on the nonzero regression coe�cients in the first

step. Both the heuristic and Lasso identify the true nonzero regression coe�cients including the

added cross term. Furthermore, Lasso brings in additional noise variables which is in line with

the results found in §5.1. However, note that the number of additional noise variables brought

in by Lasso is significantly larger than in §5.1. In contrast with our algorithm, Lasso produces

models that are not interpretable because of the large number of additional noise variables. We

find it notable that our heuristic truly identifies the nonzero cross term and does not bring in

additional cross terms although the cross terms with zero coe�cient have individual explanatory

variables that have nonzero regression coe�cient. Lastly, we note that the computational time

is more than twice as large as in §5.1, which is because the heuristic uses the algorithm of §4 in

the first step to find the relevant cross terms and in the last step uses the algorithm again with

cross terms included. Therefore, it is expected that the computational time is approximately a

factor two of the results in §5.1. We conclude that our heuristic produces significantly better

models than Lasso, in the case where cross terms are included, because it results in more sparse

linear regression models.

Table 10: Cross terms
n = 500, p = 100, ⇢ = 0, �X = 0.

�2 MIQO � K⇤ TP R2 MaxCor Cond Time Lasso K⇤ TP R2 MaxCor Cond

0.5 0.107 11 11 0.941 0.130 1.579 9.478 124 11 0.940 0.203 11.601
1 0.094 11 11 0.888 0.124 1.594 9.512 130 11 0.893 0.276 9.657
2 0.091 11 11 0.802 0.128 1.645 9.455 147 11 0.814 0.280 9.184
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7 Conclusion

We considered the linear regression model and defined the problem of finding a high quality

linear regression model with the desirable properties of a linear regression model in a reasonable

amount of time. The MIQO approach from Bertsimas and King (2015) is compared with the

Lasso approach on both synthetic and real data sets to illustrate the performance of the MIQO

approach on basic structure data set. Furthermore, we illustrated performance of the MIQO

approach on a real data set with nonlinear transformations included and on a real data set with

categorical variables. Lastly, we designed a synthetic data set in which we incorporated cross

terms.

In §5.1 the performance of the algorithm is compared to the commonly used Lasso approach

(Tibshirani (1996)) on basic structure data sets. Both the real as well as the synthetic data sets

show that the algorithm produces linear regression models that achieve the desirable proper-

ties and are in general more sparse than the linear regression models resulting from the Lasso

approach. The predictive power in terms of out-of-sample R

2 is comparable with Lasso. How-

ever, the algorithm produces linear regression models that are more interpretable than Lasso,

because Lasso brings in additional noise variables compared to the algorithm. Furthermore, the

algorithm avoids the issue of multicollinearity in contrast to the Lasso approach. Therefore, we

conclude that the algorithm outperforms Lasso in terms of the desirable properties.

In §5.2 the performance of the algorithm is illustrated on two data sets with a special struc-

ture. For the data set with nonlinear transformations, we see that the algorithm choses nonlinear

transformations of explanatory variables and has again comparable predictive power with Lasso.

However, Lasso produces linear regression models with high pairwise multicollinearity, resulting

in instable parameter estimates whereas the algorithm has low pairwise multicollinearity. For

the data set with a group structure, we find that, although the algorithm chose to not include the

grouped variables, the performance in terms of predictive power is comparable to group Lasso

(Yuan and Lin (2006)). However, group Lasso produces linear regression models that are not

particularly sparse in contrast to the algorithm. We conclude that the algorithm performs better

on both special structure data sets in terms of interpretability and limited multicollinearity.

In §6 we incorporated cross terms and introduced a heuristic selection of cross terms. The per-

formance of the heuristic is compared with Lasso in §6.3. Both the heuristic and Lasso selected

the true nonzero regression coe�cients including the cross term and have comparable predictive

power in terms of out-of-sample R

2. However, Lasso again brings in additional noise variables

in contrast to the heuristic, and therefore Lasso results in less interpretable models. The com-

putation time of the heuristic is approximately doubled because of the incorporation of cross

terms. We conclude that the heuristic performs better than Lasso in terms of interpretability

when cross terms are incorporated.

In general we find that the algorithm produces high quality linear regression models that achieve

the desirable properties of a linear regression model in a reasonable amount of time.
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