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Abstract

This paper considers a class of deterministic cargo ship routing and scheduling problems with time
windows, for several shipping types. To solve these problems, this paper provides an Adaptive Large
Neighborhood Search heuristic. This heuristic is evaluated against the CPLEX method that uses a
marginal integer program provided in this paper. The heuristic provides high quality solutions on
the field of efficiency for all the instances used, with some optimal solution for smaller instances.

Furthermore, this paper discusses several methods in cost assignment among customers. Afterwards
we compares these methods for several characteristics with each other and give our findings on every

methods performances per characteristic.
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1 Introduction

With a current worldwide fleet capacity of about 1.8 billion dead weight tons that carry more than
ten billion tons of goods at sea annually (Hoffman, 2017), it can be stated that the maritime trans-
portation is a common transportation way in international trade.

Maritime transportation can be distinguished in three parts: liner, industrial and tramp shipping. In
this paper we will only focus on industrial and tramp shipping. Industrial shipping is shipping with
cargoes and a fleet that are owned by the operator and it tries to minimize the costs of transporting
its own cargoes. Tramp shipping consists of the transportation of some optional and some mandatory
cargoes by a fleet, where the main aim is to maximize profits. Bulk goods and oil transport, that
contribute for about 60 % of the total transported goods, are almost completely transported via these
two ways and therefore these two ways already make up for a significant part of the total maritime
transportation.

One of this paper’s main focuses lies on cargo routing, which involves the routing of a fleet of ships to
service an amount of cargoes that are given as input. In these routing problems, a shipping company
has to deal with a set of mandatory cargoes that it has to carry. These cargoes can be a company’s
own cargoes, but some cargoes that have to be carried because of a contract as well. There are time
windows given, within which the loading of the cargoes has to start. There may be time windows for
the unloading of the cargoes as well.
The fleet is heterogeneous: each ship has an initial position, time when it becomes available and some
ships can not enter some ports due to draft limitations. The aim is to construct a set of routes and
schedules such as to minimize costs or maximize profits. Tramp shipping companies may also try to
gain revenue by transporting optional cargoes.

Besides cargo routing we also look into the costs allocation of the routes, which involves allocat-
ing costs made by the company in a reasonable way for the customers. This problem is among others,
researched by Dror (1990) and Potters et al. (1992), who look into cost allocation methods of out-
comes from several traveling salesman problems. Frisk et al. (2010) looks into multiple clear methods
in costs allocation on a route, while Naber et al. (2015) proposes some methods to implement CO2

emission allocation for different routes.

It is commonly used to separate deep sea and short sea shipping, where deep sea shipping usu-
ally means transatlantic shipping. Furthermore it is common to distinguish between full and mixed
load problems as well. In a mixed load problem, ships may carry several cargoes simultaneously while
full load problems use the condition that only one load may be carried at once.

There is not much research done on the topic of cargo routing in general, however Dumas et al.
(1991) provides a survey from which we can conclude that research in this topic is expanding, with
a volume which has doubled in the decade before. A large part of this research in cargo routing is
done in the field of industrial and tramp shipping. See for example publications from, Brønmo et al.
(2007); Korsvik et al. (2010); Malliappi et al. (2011) that all present a different sort of method to
solve this cargo/ship routing problem.
However, there is still not too much information available due to confidentiality issues and a lack of
standard benchmark instances that can be used. This is also pointed out by Malliappi et al. (2011).
These instances have been developed for several other vehicle routing problems, for say Solomon
(1987) for the vehicle routing problem with time windows, and have without a doubt resulted in an
increased research interest and several contributions.
Since this survey, among others, Brouer et al. (2013) provided a benchmark suite from real life data
from a global liner-shipping company, supplemented by data from other industry and public stake-
holders. This benchmark suite is made to reflect the business structure of the global shipping network.
This benchmark is presented in relation to business rules and industry standard. They also provide
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a mathematical program which is used in this paper.

As it is common to divide the costs made in a route over all the customers in this route, not much
research for costs allocation in vehicle routing problem has been done. However, the methods provided
for traveling salesman problems give a good basis to work from. We will use these methods to receive
some cost allocation results for the instances we solve using a Heuristic.

2 Problem Description

2.1 Cargo Routing Problem with Time Windows

The problem that is dealt with has similarities with the the vehicle routing problem with time windows
from Desrosiers et al. (1995). The formulation we used is a bit more detailed. First of all we take the
option into consideration that a cargo is transported externally/not transported. Furthermore, we
assume that the fleet is heterogeneous, which results in the constraint description used by Hemmati
et al. (2014). We will provide you their formulation to gain clarity. A set V consisting all ships is
introduced, where ship v ∈ V has capacity Kv. We let i denote a cargo, there is a node i corresponding
to the loading port and a node i+n corresponding to the unloading port. The set of nodes is denoted
by N which consists of NP , the set of loading nodes and ND, the set of unloading nodes. The set
of nodes that can be visited by ship v is Nv, this set includes an origin and a destination node

(
o(v)

and d(v))
)
. The set of arcs that ship v can cross is Av. NP

v = NP
⋂
Nv are all the loading nodes

that can possibly be visited by ship v, and ND
v = ND

⋂
Nv are all the unloading nodes that can be

visited by ship v. The cost of sailing from i to j using ship v is denoted by Cijv and the related
travel time is Tijv. The requested amount at node i is denoted by Qi Each node has a time window[
TiT̄i

]
. The time at which ship v’s service starts at node i is tiv and liv is the total load on board

of ship v after completing service at node i. The variable xijv is a binary variable which indicates
if ship v moves straight from node i to node j. Binary variable yi indicates if cargo i is transported
externally/not transported. When this is the case, costs will increase with csI . The mathematical
problem formulation of Hemmati et al. (2014) is as follows.
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min
∑
v∈V

∑
(i,j)∈Av

Cijv · xijv +
∑
i∈Np

CSi · yi (1a)

subject to
∑
v∈V

∑
(j)∈Nv

xijv + yi = 1 for i ∈ Np (1b)

∑
(j)∈Nv

xo(v)jv = 1 for v ∈ V (1c)

∑
(j)∈Nv

xijv −
∑

(j)∈Nv

xjiv = 0 for v ∈ V, i ∈ Nv \ {o(v), d(v)} (1d)

∑
(j)∈Nv

xjd(v)v = 1 for v ∈ V (1e)

liv +Qj − ljv ≤ Kv · (1− xijv) for v ∈ V, j ∈ NP
v , (i, j) ∈ Av (1f)

liv −Qj − l(n+j)v ≤ Kv · (1− xi(n+j)v) for v ∈ V, j ∈ NP
v , (i, n+ j) ∈ Av (1g)

0 ≤ liv ≤ Kv for v ∈ V, i ∈ NP
v (1h)

tiv + Tijv − tjv ≤ (T̄i + Tijv) · (1− xijv) for v ∈ V, (i, j) ∈ Av (1i)∑
(j)∈Nv

xijv −
∑

(j)∈Nv

x(n+i)jv = 0 for v ∈ V, i ∈ NP
v (1j)

tiv + Ti(n+i)v − t(n+i),v ≤ 0 for v ∈ V, i ∈ NP
v (1k)

Ti ≤ tiv ≤ T̄i for v ∈ V, i ∈ Nv (1l)

yi ∈ {0, 1} for i ∈ NC (1m)

xijv ∈ {0, 1} for v ∈ V, (i, j) ∈ Av (1n)

The objective function (1a) should be minimized, this function sums up the costs of the operating
fleet plus the cost of external transportation. Constraint (1b) makes sure that all cargoes are picked
up. Constraints (1c)-(1e) describe the flow on the route used by ship v. Constraints (1f) and (1g) keep
track of the load on board at loading and unloading nodes. Constraint (1h) makes sure that the load
of ship v never exceeds its capacity. Equation (1i) makes sure that the time at which service starts is
possible, taking travel times into consideration. Constraint (1j) makes sure that if a cargo is loaded,
the same ship visits the unloading port. Constraint (1k) makes sure that every cargo that is unloaded
could have been loaded before. Time windows are checked by constraint (1l), while constraint (1m)
and (1n) are used to make sure that all variables are binary variables. This model can both be used
for deep sea and short sea problems.

This model is valid as well for both mixed load and full load cases, though more efficient formulations
can be obtained for the full case, see for example the problem description inspired by Christiansen
et al. (2007).
This model is basically an extension on the traveling salesman problem, so we can state that this
model is NP-hard. As this problem is NP-hard, its runtime will be too long to be convenient for
bigger instances. This resulted in us using heuristics in this paper.

In general, there is not much research done on this topic. The multi-vehicle pickup and delivery
problem with time windows is at first mentioned by Dumas et al. (1991). The paper does not provide
a clear way to solve this problem, and therefore no clear results can be found.

2.2 Cost Allocation

We use cooperative game theory to develop the cost allocation games. We first introduce some
notation. Let Ni = 1 . . . n be the set of customers that are served by vessel i. We have m vessels so
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we let i be {1 . . .m}. A route visiting Si ⊆ Ni is represented by σ(Si). Let f(σ(Si)) be the costs of
using a route visiting Si. After solving the following optimization problem in the first part:

σ∗(Si) ∈ argmin
i

arg min
σ(Si)
{
∑
1...m

f(σ(Si))} (2)

To clarify, this equation looks for the optimal routes decomposition in which every cargo is transported,
satisfying all the constraints given in Section 2.

The paper of Naber et al. (2015) mainly focuses on the allocation game, so therefore no changes in
the visiting order in the route are made, we do exactly the same for the, to be introduced, Lorenz+
Method and EPM+.

Furthermore, it is assumed that
∑

j∈Ni
f(j) ≥ f(Ni), in this way, it is guaranteed that an efficient

rational emission exists. However, this is extremely unlikely as there usually are cargoes that are
charged for the costs being transported externally. If we look at them individually, all cargoes will
be transported using a vessel from within the fleet, as this is cheaper than external transportation.
However, it is reasonable to assume that this case holds for every individual route created as the
route should be in the right order and ships are usually combined by one vessel to decrease costs in
an efficient way. We consider an allocation of costs x = (xj)j∈Ni to be stable if it is in the core of the
game, which is defined next. Using x(S) =

∑
Ni

∑
j∈Ni

xj the core of a game is defined as

core(e) = {x ∈ Rn : x(Ni) = f(σ(Ni));x(S) ≤ f(σ(Si)), ∀Si ⊂ Ni for every i ∈ {1 . . .m}} (3)

As the costs are allocated to customers, we focus mainly on important criteria from the perspective
of the customers. First the method is preferred to generate stable allocations. Stable allocations are
allocations that lie in the core. For allocations that lie in the core, no subset of customers can gain
by withdrawing from the route on the basis of allocated costs. Although We do not assume that
customers will withdraw based on their allocated costs, it is preferred that there is no reason to do
so either, as it confirms that customers will always gain financially from using the shipping company.
Secondly, in order to get an allocation method accepted by a customers and the distribution company,
the method should be consistent. That is, if some factor varies, the allocated costs should change
accordingly. For example, if the size of a customer’s order increases, while other customers’ order
characteristics do not change, then the costs for the other customers should not increase, and the
costs of that one specific customer should not decrease. We also expect an increase when external
costs are higher and a cost decrease when the time delivery window expands.

Thirdly, an allocation is preferred to be robust. When a customer receives a similar shipment peri-
odically, it probably does not want to be allocated significantly different costs for every period.
Finally, the runtime for every cost allocation method will be reported. Clearly, companies that fre-
quently have to use an allocation method prefer low computation times.

3 Data and Methodology

We used an instance generator1 that is based on several inputs regarding, cargoes, ships and harbors.
Once these inputs have been given, the instance generator works as follows. First, two subsets of
ports are generated, with one subset containing harbors where cargoes are often loaded and one

1we used instances that are already generated by Hemmati et al. (2014), there instances can be found via http:

//home.himolde.no/~hvattum/benchmarks/, they also provide the best known costs and the best known lower bound
for these instances

4

http://home.himolde.no/~hvattum/benchmarks/
http://home.himolde.no/~hvattum/benchmarks/


subset where cargoes are usually unloaded. If the requested instance should have balanced flow of
goods, these subsets are equal to the the full set of ports. All these ports are given in figure 1.
Second, a set of cargoes, whose loading and unloading port and size are specified, is generated. After
that, the generator makes sure that the selected fleet can service all the cargoes. Thereafter, the time
windows and external hiring costs are adjusted according to a selected market situation. In a good
market, more cargoes will be available and in a poor market less cargoes will be available. Last, when
ships cannot reach any cargo in time for the loading time window, these ships are repositioned such
that they can all reach at least one cargo. The generated instances that we have result in a basis for
our MIP and ALNS heuristic, which we use to create feasible routes for as little costs as possible.

Figure 1: Figure with all locations used marked

3.1 Adaptive Large Neighborhood Search

An Adaptive Large Neighborhood Search (ALNS) heuristic for a vehicle routing problem was intro-
duced by Ropke and Pisinger (2006). Given below as Algorithm 1, is a general pseudo-code for our
ALNS implementation. Algorithm 1 uses an initial solution and then, in every iteration, removes an
amount of cargoes from the current solution to reinserts them in a different way to give an other
solution. This algorithm is useful as CPLEX results, that use branch and bound to get to an optimal
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solution, are known to be inefficient, because of this problem being NP-hard.

Result: solution s which is the best solution found
initialization: generate initial solution s
sbest = s;
while stop-criteria is no met do

s′ = s
select removal and insertion heuristic
select number of cargoes to be removed and reinserted, q
select q cargoes to remove using the removal heuristic
reinsert the q removed cargoes into s′ using the insertion heuristic
if f(s′) < f(sbest) then

sbest = s′;
end
if accept(s′,s) then

s = s′;
end
update search parameters

end
return Sbest;

Algorithm 1: Adaptive Large Neighborhood Search Heuristic

3.1.1 Initial Start

The ALNS starts with an initial feasible solution. To be sure the solution is feasible, all cargoes are
inserted using one of the insertion heuristics for a case where every cargo has to be inserted. In this
way we already used an, presumably more efficient way than transporting all cargoes externally.

3.1.2 Removal Heuristics

The removal heuristics are used to remove cargoes from the current solution. In these heuristics, q
cargoes are removed from the current solution. In each iteration this q is chosen (randomly). Thus,
this number of removed cargoes, q, can vary during the search to provide a different neighborhood
size. We decided to choose a q which is an integer within the range [4, (ε ∗ cargonumber)] where
we choose a different ε for different instances. These epsilons will be given in section Section 4. We
will introduce three different removal heuristics introduced by Ropke and Pisinger (2006). The first
heuristic is the random removal heuristic which removes q random cargoes in every iteration. The
other two methods used are two more complex heuristics. This method is useful as all the cargoes
that are removed may be similar and therefore interchangeable.

3.1.2.1 Shaw Removal Heuristic

In the Shaw removal function, at first a random cargo is chosen to be removed. Along with this cargo
the q− 1 cargoes that are most alike are removed as well. This creates a situation where cargoes that
can interchange each other easily in the routes are selected. The relatedness is defined with respect
to a distance,time, size measure and a measure that takes the ships that can serve the cargoes into
account.

R(i, j) = φ(dA(i),A(j) + dB(i),B(j)) + χ(|TA(i) − TA(i)|+ |TB(i) − TB(i)|)

+ ψ(|Qi −Qj |) + ω

(
1− |Ki ∩Kj |

min{|Ki|, |Kj |}

)
(4)
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where di,j is the minimum traveling cost from i to j. The pickup and delivery location of cargo i is
denoted by A(i) and B(i), Qi represents the size of request i. The set of vehicles that are able to
transport cargo i is Ki.
In this equation φ measures distance, χ measures connectedness of pickup and delivery locations.
The term weighted by ψ measures request size and ω measures the relative size of the set of ships
that can service both ships, the algorithm used for the shaw Heuristic can be found in Algorithm 2
in the Appendix. In our model we decided to use the same value for every parameter, giving every
characteristic the same weight in the similarity check given in eq. (4).

3.1.2.2 Worst Removal Heuristic

The Worst Removal Heuristic has as main idea that the cargoes in the high cost positions are removed.
In this heuristic, the costs of cargoes Ci are calculated, after sorting these cargoes in non-increasing
order, the first cargo is removed. This procedure is repeated a total amount of q times. The algorithm
of this heuristic can be found in Algorithm 3 in the Appendix.

3.1.3 Insertion Heuristics

The paper of Xu et al. (2003) proposes random insertion of the cargos and choosing the best one.
Since this method is based on randomness we decided to go for the two insertion heuristics proposed
in the paper of Ropke and Pisinger (2006). Both these heuristics reinsert the q removed cargoes, in
a parallel way. This means that both heuristics can reinsert cargoes to different ships and therefore
create multiple routes.

3.1.3.1 Basic Greedy Heuristic

The basic greedy heuristic is a simple construction heuristic. It reinserts one cargo in each iteration.
We introduce ∆f−i, k which denotes the change in the objective value of reinserting cargo i into route
k. If we can not insert request i in route k the we set ∆fi,k = CSi which is the price of external/no
delivery. We then introduce ci as ci = min

k∈K
{fi,k} which is the lowest cost of inserting cargo i in a ship.

Finally we choose the cargo i that such that.

arg min
i∈U

ci (5)

and insert this cargo at its minimum cost position. U is the set of removed cargoes. This process
repeats itself till all removed cargoes have been inserted. However, we do not have to repeat the entire
process as only one route changes and therefore ∆fi,k only changes in this route. This can be used to
speed up the heuristic.

3.1.3.2 Regret Heuristic

The Regret Heuristic tries to improve the greedy heuristic by already looking at information after
inserting a cargo. Let xik ∈ {1, . . . ,m} be a variable that indicates request k has the k-th lowest
insertion cost. that is ∆fi,k ≤ ∆fi,k′ for k ≤ k′. This method can express ci from 3.1.3.1 as
ci = ∆fi,xi1 . In the regret heuristic we define a regret value c∗i as c∗i = ∆fi,xi2 −∆fi,xi1 . so basically,
the regret value represents the cost difference between inserting the cargo in the best and the second
best position. In every iteration the regret heuristic uses a cargo such that it maximizes c∗i for i ∈ U .
The request is inserted in its minimum cost position. Ties are broken by selecting the insertion with
lowest cost. We basically choose the cargo which we will regret not picking first most. The heuristic
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can be extended in a way such that it become a Regret-k Heuristic. In the Regret-k Heuristic the
construction heuristic in every construction step chooses to insert the cargo i that maximizes:

max
i∈U
{
k∑
j=1

(fi,xij − fi,xi1)} (6)

The request is inserted at its minimum cost position. The first explanation of the Regret Heuristic
provided in this section is a Regret-2 Heuristic. Compared to a regret-2 Heuristic, Regret Heuristics
with a higher value of k discover earlier that the possibilities for inserting a request becomes limited.
These heuristics are useful as they take later stages of insertion into consideration as well,

3.1.4 Selection of Heuristics

We have multiple heuristics that can be used in the optimization, besides choosing one heuristic we
can always decide to use multiple heuristics in one optimization. We can do this using a roulette
selection procedure with a probability assigned to every heuristic. After creating the heuristics we
have 9 insertion heuristics and 3 removal heuristics. We assign an initial probability to them which
is equally distributed in the case of the insertion heuristics and where the star method has an initial
starting probability to be picked of 60% and the other two removal heuristics both have a probability
of 20%. We use the Adaptive Weight Adjustment method proposed by Ropke and Pisinger (2006).
For updating the scores after every 100 itterations, we first normalize the scores (πi) by dividing them
by the number of times they have been used (θi) and afterwards, the new weights will be calculated
by using a predefined parameter (r) to balance the previous weights and the new normalized scores
as follows. The new weights become:

wi,s+1 = wi,s(1− r) + r
πi
θi

(7)

Where wi,s is the weight of i used in segment s. After weighing the heuristics, we have k heuristics
with weights wi, i ∈ {1, 2, ..., k} then we select heuristic j with the probability given in equation
Equation (8) by using a roulette wheel selection principle. Note that the removal and insertion
heuristic are selected independently.This selection procedure is efficient because it creates a bias
towards more successful removal and insertion heuristics.

pj,s =
wj,s∑k
i=1wi,s

(8)

3.1.5 Acceptance and Stopping Criteria

We use simulated annealing to decide whether a solution with higher costs is accepted or not. Solutions
with lower costs will always be selected. We select a solution with higher costs with a probability

e
new−f

T with T > 0. Where T is the temperature. We decided to set the initial temperature as the
biggest costs difference and iteratively update this following Kirkpatrick et al. (1983). We do this to
create a more dynamic model and prevent our heuristic from ending up in a local minimum.
A stopping criterion will be set in the amount of runs. Note, the best solution will always be saved
in case the final solution is not the best solution found.

3.2 Cost Assignment

After creating the routes we look deeper into the possibility of assigning the total costs made a to
the different customers. Inspired by the CO2 emmision allocation methods of Naber et al. (2015)
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we decided to implement the Star method, the Lorenz+ Allocation method and the Equal Profit
Method+.

3.2.1 Star Method

The Star Method allocates the costs proportionally to the stand-alone costs of every customer. The
allocation amount is equal to:

xi =
e({i})∑

(j)∈N
e({j})

e(N) for i ∈ N
(9)

Where e({i} represents the costs of only transporting cargo i, in this way the costs of the cargoes will
be allocated equally based on relative values of the individual costs.

In practice, instead of using the stand-alone costs in every route used it may as well be morally re-
sponsible to look at the minimal stand-alone costs over the vessels or to use the external costs and
compare them. In this way, customers do not get duped for not being part of a route, or being part
of an inconvenient route.

This method is commonly used for the traveling salesman problem, because it has a low runtime
and is easy to understand for every party. However, allocations generated by this method are not
necessarily stable. This method could result in outcomes that lie outside of the core, even when the
core is non-empty. This is the case for the traveling salesman problem, so it may as well be the case
if we do calculate the costs as if the groups of customers in a vessel are separated from the other
customers for core calculations.

3.2.2 Lorenz+ Allocation

The Lorenz Allocation was introduced as Leximin by Arin (2007). It is the core allocation with the
smallest difference between the largest and smalles cost allocation to any customer within the same
route. The Lorenz allocation is the optimal solution to the following LP problem, where f represents
the smallest difference in allocated costs:

min f (10a)

s.t. xi − xj ≤ f for i, j ∈ N (10b)

xS ≤ e(S) for S ⊂ N (10c)

xN = e(N) (10d)

This method does not provide a solution when the core is empty as (10c) & (10d) define the definition
of the core. When this set of x is non/existent, there is no answer. This makes it either unsuitable for
a multiple routes, or the routes would not all be given their individual costs in total. Therefore, we
decided to allocate the costs created in every route separately. When the core for individual routes is
empty, we use the Star emission in these specific routes, as this method also works for a non empty
core, this is why we call this method the Lorenz+ method. This method can be used by companies
if distributional equality is preferred. Furthermore, the optimal solution of this LP problem is often
not unique.
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3.2.3 Equal Profit Method+

The Equal Profit Method (EPM) given by Frisk et al. (2010) provides an allocation similar to the
Lorenz+ Allocation. However, instead of minimizing the largest absolute difference between cus-
tomers, we minimize the largest relative difference between the allocation compared to the minimum
stand-alone cost of each customer as calculated mentioned in the Star method. The EPM+ allocation
is the optimal solution to the following LP problem, where g represents the largest relative difference:

min g (11a)

s.t.
xi

e({i})
− xj
e({j})

≤ g for i, j ∈ N (11b)

xS ≤ e(S) for S ⊂ N (11c)

xN = e(N) (11d)

Like the Lorenz+ allocation, the EPM+ does not provide an allocation when the core is empty. We
use the Star Method if the core is empty, hence we call it the Equal Profit Method+, or EPM+
allocation for short. Again, this allocation is not unique in general.

4 Results

We solved all our routing initially both using the ALNS heuristic described in section 2 and CPLEX
using the problem described in section 2 in AIMMS. However, CPLEX could not give solutions for the
biggest instances within an acceptable amount of time. Therefore, we decided to mainly compare the
results of the heuristics to the best result possible. We hereby assume that the CPLEX method can
not be implemented because the runtime exceeds every reasonable threshold such that it will never be
useful to apply in real life. To confirm this we ran both our heuristic and the CPLEX for an hour for
certain instances, this gave results that confirm our thoughts about CPLEX. Furthermore we do not
report runtimes for all ALNS instances, as it is hard to compare cases with each other as we adjusted
some parameters in our model for bigger instances to save some runtime. However, all the results we
received took less than 9 hours of runtime and the smallest instances were usually finished running
within 60 seconds.

4.1 Method Specifications

In order to avoid the heuristic from taking up to much runtime, we decided to change some parameters
as our cases got bigger. This resulted in a slightly worse program. However, the runtime decreases
outweigh the performance decreases. Therefore, we decided to update the parameters for different
instance sizes. Table 1 shows all the values we used for these different sizes. Furthermore, we decided
to choose an r of 0.5 for all instances in our weight adjustment method described in 3.1.4, which we
update every 100 iterations.

Table 1: Parameters Used

vessels 1-34 35-50 51-99 100+

epsilon 0.75 0.5 0.5 0.5
iterations 2000 1200 1000 500
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Table 2: ALNS Results for Deep Sea Shipping Instances with Mixed Cargo Loads

cargoes vessels instance #1 instance #2 instance #3 instance #4 instance #5

7 3 5233464 6053699 5889056 6510656 7220458
10 3 7986248 7986248 9566942 8617192 8785219
15 4 13795202 13886935 12677334 13620168 10833641
18 5 50564519 37341527 30365579 32281904 43336197
22 6 49451327 43507540 49214036 55430668 54277296
23 13 41814173 42066086 39543390 36504765 44358844
30 6 25862397 21535658 22227781 28349400 34499834
35 7 81311960 83474363 63059145 84599655 107834236
60 13 97398238 139323183 109932316 134754981
80 20 122806413 135396230 137241195 116846065
100 30 326144018 180642612 189216231
130 40 416479975 393482847 363288000 500945985

Bold face font indicates the highest lower bound costs known and the underlined numbers indicating that the
outcome is within 10% range of the highest lower bound costs known . Blank spaces represent instances that
have not been run.

Table 3: ALNS Results for Deep Sea Shipping Instances with Full Cargo Loads

cargoes vessels instance #1 instance #2 instance #3 instance #4 instance #5

8 3 9816881 9472892 4596681 7109977 6815253
11 4 34891635 25460327 29627143 34149233 28175914
13 5 12015246 13321117 10948497 14512578 11875425
16 6 51633161 48032194 51971383 43708016 53702018
17 13 17652867 13046211 12091554 15847689 13293621
20 6 16582364 17341381 18011412 18257796 19309402
25 7 24887777 25831017 22432920 26667503 27763782
35 13 97393953 102147165 101316800 95788951 115049913
50 20 50815142 41598898 47144565 50786018 52770698
70 30
90 40
100 50 223559813 311429727 235234127 309872871

Bold face font indicates the highest lower bound costs known costs and the underlined numbers indicating that
the outcome is within 10% range of the highest lower bound costs known. Blank spaces represent instances
that have not been run.

4.2 Computational Results

The ALNS was executed on a HP elitedesk 705 G1 SFF with 4GB RAM and a Clock Rate of 3.5 GHz
using matlab, for the CPLEX problem, AIMMS was used. ALNS results for all instances are reported
in tables 2 to 5. The CPLEX results of AIMMS were not able to give a feasible result for every
instance within in hour. Also, for large instances, these solutions usually involve a lot of servicing the
cargoes externally, which leads to higher costs. We can see in table 13, where we compared CPLEX
and the ALNS after running both for 1 hour for some instances, that for the small instances CPLEX
gives good outcomes within a reasonable amount of time. However, for the bigger instances, the
ALNS method appears to outperform the CPLEX solver from AIMMS.

We can see in tables 6 and 7 that for the small instances, ALNS provides anwers that lie within
a 10% range of the best known answer for most of the time, and this difference gets bigger as we
introduce some larger instances. However, for the bigger instances, table 13 shows that the ALNS
method appears to outperform the CPLEX solver of AIMMS, especially for the bigger instances.
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Table 4: ALNS Results for Deep Sea Shipping Instances with Mixed Cargo Loads

cargoes vessels instance #1 instance #2 instance #3 instance #4 instance #5

7 3 1476444 1134176 1196466 1657162 1160394
10 3 2204593 2020521 1986779 2125461 2162453
15 4 1959153 2560004 2600046 2272223 2230861
18 5 2374420 2987358 2301308 2400016 2842413
22 6 4345671 3848843 3365795 3423552 3868111
23 13 2282593 2376839
30 6 5581051 4652612 4593968 5134789
35 7 5456592 5242213 5051545 4895518 6631823
60 13 8549032 9274121 10489016
80 20 16870053 18715375 16591819 14874311
100 30 23263266 19556582 16404034 22575785
130 40 26722207 22793646 24696474 22575785

Bold face font indicates the highest lower bound costs known and the underlined numbers indicating that the
outcome is within 10% range of the highest lower bound costs known

Table 5: ALNS Results for Short Sea Shipping Instances with Full Cargo Loads

cargoes vessels instance #1 instance #2 instance #3 instance #4 instance #5

8 3 1391997 1246273 1698102 1777637 1657668
11 4 1080236 1068722 1204743 1471639
13 5 2503697 2061318 2378283 2727367 3079761
16 6 4065271 3775951 3587380
17 13 2376051 2820346 2924255
20 6 2999655 3254475 3211554 3350835 3191797
25 7 3908254 3809208 4299252 4333730 4146765
35 13 3095227 3149647 3183766 4278768 3529406
50 20 7800073 8106774 7515034 11814613 8419378
70 30
90 40 16205433
100 50 16791721 23107559 20005940 24089051 23094789

Bold face font indicates the highest lower bound costs known and the underlined numbers indicating that the
outcome is within 10% range of the highest lower bound costs known. Blank spaces represent instances that
have not been run.
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Table 6: Comparison of Instances with Mixed Cargo loads Best Known Solution and the ALNS
Answers

short sea shipping deep sea shipping
ALNS fraction ALNS fraction

cargoes vessels of best known of best known

7 3 1,0639 1,0000
10 3 1,0124 1,0104
15 4 1,0020 1,0611
18 5 1,0021 1,1536
22 6 1,0537 1,2903
23 13 1,0219 1,2223
30 6 1,1068 1,2862
35 7 1,1343 1,3921
60 13 1,1720 1,4259
80 20 1,6024 1,6915
100 30 1,5425 1,4761
130 40 1,4390 1,7412

The fraction indicates the outcome of the solvers solver divided by the best solution known

Table 7: Comparison of Instances with Full Cargo Loads between Best Known Solution and the ALNS
Answers

short sea shipping deep sea shipping
ALNS fraction ALNS fraction

cargoes vessels of best known of best known

8 3 1,0026 1,0131
11 4 1,0418 1,0065
13 5 1,0539 1,1030
16 6 1,0698 1,1185
17 13 1,0194 1,0658
20 6 1,0084 1,0678
25 7 1,0214 1,1854
35 13 1,0543 1,1712
50 20 1,1422 1,1840
70 30 Not a Number Not a Number
90 40 1,1590 Not a Number
100 50 1,5087 1,3178

The fraction indicates the outcome of the solvers solver divided by the best solution known, ’Not a Number’ is
used for the instances where we do not have any results to provide.
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4.3 Cost Allocation Method Performances

We mention the results stated in the paper of Naber et al. (2015) and give comments on the differences
in our case(vehicle routing in stead of traveling salesman problems).

4.3.1 Stability

A non-empty core was used for every instance in the case study of Naber et al. (2015). Because the
Lorenz+ and EPM+ guarantee a solution in the core when it is non-empty, their allocations were
stable by definition. In contrast, their allocation of the Star method resulted in an allocation in the
core in 34.9% of the instances. So from a stability point of view, the Star method performs worst.
In the case of multiple routes, the Lorenz+ and EPM+ method would still have allocation that are
stable. However, this is only the case if the routes are seen as separated parts, otherwise an empty
core is a possibility that is very likely, and the case for all the instances given on the because of the
fact that external transportation is always needed and more expensive.

In our case less than 2% of the instance had a non-empty core for every vessel’s route in it, so we
may say that the assignments of the Star method, that never satisfied the core constraint is only
performing a little bit worse than the other methods. Besides, our definition of the core was only used
within a route for the methods, because non of the cases had a non-empty core when all the routes
were combined. Based on this we can conclude that none of the methods were very stable.

4.3.2 Consistency

Consistency is evaluated by Naber et al. (2015) based on the distance to the depot, the average dis-
tance to other customers and the order size. These factors (possibly) influence the allocated costs.
Therefore, they performed an OLS regression to evaluate the consistency of every allocation method,
where the allocated costs is the dependent variable. The explanatory variables were the distance
to the home depot, the average distance to other customers, the size of the order and a constant.
The allocated costs were used as the dependent variable. Furthermore, they added two cross-product
variables that included the order size. They did this because these cross-terms were combined in the
CO2 emission calculation. It turned out that, except for three cases, the coefficients of the variables
were significantly different from zeros at a 5% significance level. However, the size had a negative
coefficient in the Lorenz+ method, which is not expected. Furthermore, the coefficients of the cross
products were both positive and negative. So these results, may be ignored. However, it can be stated
that the Lorenz+ method is very likely to be inconsistent on the size basis. The Star method and
EPM+ did have a significant positive effect on the allocated emission, so, we have reason to believe
that they are consistent in general. In addition, they state that the R-squared of the Star Method is
the highest and therefore they mark the Star Method most consistent.

In the case of multiple routes it may be the case that some routes are inconsistent compared to
other routes for every method as costs can be significantly higher for some cargoes due to extern
transportation. However, we used a regression of the cost allocation using, weight, average time
window length and external costs as variables (tables 8 to 11). If we use a 95% significance interval
we can see that, for all three methods, extra weight and higher external costs mean higher costs.
However, a bigger size of the time window and therefore more flexibility only resulted in significant
negative coefficient once, this is when we use the Star method. Also, the significance of the other two
variables was usually higher which makes it safe to say that we assume the Star method to be the
most consistent one. This thought gets confirmed by the R-squared values of the methods, as it has
the highest value for every instance. Tables 8 to 11 also show that this value is a little bit higher
for the EPM+ method, ergo the EPM+’s consistency may be a little bit higher than the Lorenz+
method’s consistency, which is also stated by Naber et al. (2015) .
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Table 8: Regression on the Allocations of the Deep Sea Instances with Full Cargo Sizes

Star Method Lorenz+ Method EPM+
Coefficient p-value Coefficient p-value Coefficient p-value

Constant 12059.52 0.7213 642442.7 0.0008 719157.8 0.0003
external costs 0.342051 0.0000 0.301664 0.0000 0.299993 0.0000
size time window 51.51994 0.0774 -230.1441 0.1718 -294.7142 0.0881
R-squared 0.973895 0.271742 0.259952

Table 9: Regression on the Allocations of the Short Sea Instances with Full Cargo Sizes

Star Method Lorenz+ Method EPM+
Coefficient p-value Coefficient p-value Coefficient p-value

Constant 22481.50 0.0117 -122131.3 0.0001 -131966.2 0.0000
external costs 0.371862 0.0000 0.231719 0.0000 0.235717 0.0000
size time window -53.45197 0.0061 319.0046 0.0000 332.3661 0.0000
R-squared 0.773029 0.188462 0.192463

Table 10: Regression on the Allocations of the Deep Sea Instances with Mixed Cargo Sizes

Star Method Lorenz+ Method EPM+
Coefficient p-value Coefficient p-value Coefficient p-value

Constant 39837.07 0.2457 31926.36 0.8016 -88511.97 0.5387
external costs 0.294789 0.0000 0.250972 0.0000 0.321458 0.0000
size time window 54.09246 0.0040 71.02026 0.2959 -26.00561 0.7340
weight 1.239981 0.0000 4.790137 0.0000 4.047357 0.0000
R-squared 0.743579 0.180970 0.184744

Table 11: Regression on the Allocations of the Short Sea Instances with Mixed Cargo Sizes

Star Method Lorenz+ Method EPM+
Coefficient p-value Coefficient p-value Coefficient p-value

Constant -3079.024 0.3617 -23951.00 0.1344 -37745.74 0.0202
external costs 0.325058 0.0000 0.259937 0.0000 0.271782 0.0000
size time window -4.443799 0.4310 4.689872 0.8608 16.00059 0.5555
weight 0.686295 0.0000 5.856402 0.0000 5.863635 0.0000
R-squared 0.790633 0.153608 0.159982
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4.3.3 Computation time

We provide the average computation times per instance for all the allocation methods used. The
computation time is low for every method, Naber et al. (2015) provide the average computation times
for all the allocation methods they used. The computation time is low for all allocation methods,
however the Star method is more than 15 times faster than the Lorenz+ and EPM+. This is due to
the fact that the star method has a polynomial number of computations, while the LP problems have
an exponential number of constraints. Clearly, the size of the instances is still relatively small, so the
running times are not too high. In our case we can sea ass well that the STAR method’s running time
is significantly lower than the running time of the Lorenz+ Method, there is also a notable difference
between the running time of the Lorenz+ Method and the EPM+ method. To conclude, based on
runtimes we can state that the STAR Method performs best and the EPM+ performs worst.

Table 12: Average Runtime per Instance

allocation method time (s)

STAR Method 7.15
Lorenz+ Method 13.19
EPM+ 23.86

5 Conclusion, Limitations and Future Research

We have considered the cargo ship routing and scheduling problem with time windows, which arises in
industrial and tramp shipping. We presented up to 240 benchmark instances that represent realistic
planning problems four several segments of this problem. An instance generator to create more cases
has been provided by Hemmati et al. (2014). We used an ALNS heuristic to solve the cargo ship
routing and scheduling problem with time windows. The benchmark instances have been solved by
the ALNS and a MIP solver. The MIP solver is able to find optimal solutions for the smaller instances
given. The ALNS solver usually finds solutions that are at least as good as those given by the MIP
solver, and that can be used for big instances as well, as runtime is low and the answers are almost
always within a 50% range of the best known answer. After these solutions are found we use the
STAR, Lorenz+ and EPM+ method to allocate costs between the customers in the every instance.
Comparing these methods showed us that on the field of consistency and Run time, the STAR method
outperforms both the other methods, while the other methods perform slightly better on the field of
stability.

However, the model and program we created have some limitations. The code used to solve this ALNS
had some efficiency issues, this may lead to higher runtime and therefore, we were not able to run all
the instances provided.
Furthermore we are aware that this ALNS uses deterministic values for the shipment times, which
does not always seem reasonable given the real life situation.
Besides this we basically used a two step approach in deciding how to divide the costs over several
cargoes in which we first create a route and then assign cost to each cargo afterwards. However, it may
be more stable if we could create a method in which the assignment of the costs is not only decided
based on the final route of the ALNS, but if it also uses other route compositions, that may lead to
a more stable devision of costs between the cargoes that are transported externally and internally.

We hope our work will stimulate researchers to create algorithms for this important planning and
devision problem and, even more importantly, make these instances more realistic, such that these
algorithms work even better in real-life.
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A Appendix

A.1 Removal Heuristics

Algorithm 2: Shaw Removal

function ShawRemoval(s ∈ {solutions}, q ∈ N, p ∈ R+)
request : r = a randomly selected request from S
set of requests : D = {r}
while |D| = {r} do

r = a randomly selected request from D
Array: L = An array containing all request from s not in D
Sort L such that i ≤ j → R(r, L[i]) < R(r, L[j])
choose a random number y from the interval [ 0,1 )
D = D ∪ {L[yp|L]}
end

remove the requests in D from s
end function

Algorithm 3: Worst Removal

function WorstRemoval(s ∈ {solutions}, q ∈ N, p ∈ R+)
while q ≥ 0 do

Array: L = All planned requests i, sorted by descending cost(i, s)
choose a random number y from the interval [ 0,1 )
request : r = L[yp|L]
remove r from from solution s; q=q-1;
end

end function
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A.2 Tables

Table 13: Comparison CPLEX and Heuristic

Deepsea/Shortsea full/mixed cargo sizes #cargoes #vessels Cplex answer Heuristic Answer Best Answer Known

Deepsea full 13 5 11820655(0.5 sec) 11820655 11820655
Deepsea full 20 6 16529748(256 sec) 16580233 16529748
Deepsea full 50 20 62257674 43482561 41398100
Deepsea full 70 30 513166677 177746128 162903901
Deepsea full 100 50 667681419.00 258344112 224430601
Deepsea mixed 15 4 12457251(126 sec) 12457251 12457251
Deepsea mixed 22 6 36459842 34462012 34129809
Deepsea mixed 35 7 209579470 66607715 65082675
Deepsea mixed 80 20 360503449.00 97510237 78918099
Deepsea mixed 130 40 no solution found 285584294 246883618
Shortsea full 13 5 2043253 (1.19 sec) 2043253 2043253
Shortsea full 17 13 2806231 (226,95 sec) 2811427 2806231
Shortsea full 35 13 3215480 3061701 2986667
Shortsea full 70 30 38328124 12172906 10314521
Shortsea full 100 50 49702794 15902779 14106741
Shortsea mixed 15 4 2560004 (74 sec) 2560004 2560004
Shortsea mixed 22 6 3507448 3307557 3228262
Shortsea mixed 35 7 18387821 5413762 4942430
Shortsea mixed 80 20 42930718 12116948 9763401
Shortsea mixed 130 40 no solution found 21418183 18533293

No solution found indicates that no feasible solution was found after running aimms for an hour.
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