
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Industrial and Tramp Ship Routing and Scheduling Problems
with Speed Optimization and Split Loads

Bachelor of Science (BSc) in Econometrics and Operations Research

Bachelor Thesis

Quantitative Logistics & Operations Research

Name: Lisanne van Huizen

Student Number: 427878

Supervisor: Nemanja Milovanovic

Second Assessor: Remy Spliet

July 8, 2018

Industrial and Tramp Ship Routing and Scheduling Problems
with Speed Optimization and Split Loads

Abstract

Industrial and tramp shipping are two of the main shipping industries within seaborne
transportation. For those industries, the goal is to minimize the total operational cost
of the fleet plus the use of spot charters when not all cargoes can be transported by the
fleet. Hence, efficient schedules must be made for the vessels such that at minimum cost
all cargoes are transported. In the existing literature, this problem is referred to as the
industrial and tramp ship routing and scheduling problem (ITSRSP). The purpose of our
thesis is to analyze whether extending this problem to more real-life applications results
in lower total operational cost. We focus on three extensions of the industrial and tramp
ship routing and scheduling problem. Namely, to speed optimization, to split loads and to
both speed optimization and split loads.

The results showed that extending the ITSRSP to speed optimization, could reduce the
total cost on average with 25% compared to the cost of ITSRSP without any extensions.
For the extension to split loads, the results showed that the operational cost could reduce
up to around 16% compared to the cost without extensions. However unfortunately, the
average cost reduction for this extension is only 2%. Lastly, the extension to both speed
optimization and split loads results in an average cost reduction of 22%. This leads to
the conclusion that extending the problem to speed optimization results on average in the
highest cost reduction. Nevertheless, we recommend to further analyze the extensions to
split loads and to speed optimization combined with split loads, such that more significant
results can be computed. We expect that this would result in even more cost reductions
than is made by only the extension to speed optimization.

1

Contents

1 Introduction 3

2 Literature Review 5

3 Problem Description 7
3.1 Industrial and Tramp Ship Routing and Scheduling Problems 7
3.2 Incorporating Speed Optimization and Split Loads 8

4 Data 9

5 Solution Approaches 11
5.1 Mixed-Integer Programming Models . 12

5.1.1 Industrial and Tramp Ship Routing and Scheduling Problems 12
5.1.2 Incorporating Speed Optimization and Split Loads 14

5.2 Adaptive Large Neighborhood Search Heuristic 16
5.2.1 Removal Heuristics . 17
5.2.2 Insertion Heuristics . 18
5.2.3 Selection of Heuristics . 19
5.2.4 Acceptance and Stopping Criteria . 20
5.2.5 Applying Noise to the Objective Function 20

5.3 Incorporating Speed Optimization and Split Loads 21
5.3.1 Speed Optimization . 21
5.3.2 Split Loads . 23

6 Computational Results 24
6.1 Best Obtained Results of Solution Methods 25
6.2 Performance of Solution Methods . 28
6.3 Cost Improvements . 30

7 Concluding Remarks 32

Bibliography 33

2

Chapter 1

Introduction

The world economy strongly relies on trade, due to differences in manufacturing, differences
in natural resources and temporary imbalances between countries. Large volumes of cargo
have to be transported between different continents. For this, the only cost-effective
transportation mode is seaborne transportation. UNCTAD (2017) reported that even
more than ten billion tons of goods are carried at sea annually by a world fleet with a
capacity of more than 1.86 billion deadweight tons.

In the existing literature, a distinguishing between three different transportation modes
within seaborne transportation is commonly made. These three transportation modes
are liner shipping, tramp shipping and industrial shipping. Liner shipping is mainly the
shipping of containers. The vessels sail a fixed route, and the frequency of the sailing
of the route is known far in advance, just like it is for bus lines. Industrial and tramp
shipping show several similarities in their planning characteristics. They both primarily
transport oil and gas products and dry bulk commodities. However, in the industrial
shipping market, an operator owns the cargoes and controls the ships. The operator tries
to minimize the transportation cost of the cargoes. While in the tramp shipping market, a
company has contracts which specify the mandatory number of cargoes that the company
must transport. The ships of the company usually transport both these mandatory cargoes
and optional spot cargoes, to maximize profit.

UNCTAD (2017) further reported that 16.7% of all trade volume is transported by
container vessels, while 47.5% of all trade volume is transported by bulk carriers and 29.7%
by oil tankers. This shows that industrial and tramp shipping contribute in huge volume
to the total seaborne trade. For the transportation of these volumes holds that the cargoes
must be picked up at the loading port and delivered at the corresponding discharging
port, within a certain time interval. Hence, given the large volumes within industrial and
tramp shipping, improving efficiency in these transportation modes is of high importance
as this could have a huge impact on operational cost and thereby also on the environment.
The planning of the transportation between the loading and the discharging port, while
minimizing total cost, is referred to as the ship routing and scheduling problem.

For the basic implementation of the ship routing and scheduling problem, usually a
fixed speed is used for each vessel during the entire planning period. Furthermore, each
cargo needs to be picked up and delivered by the same ship in time. In reality however,
vessels are able to sail at different speeds, within the range of the minimum and maximum
speed of that vessel. As the fuel consumption and thus the fuel cost is related to the speed
of a vessel, optimizing speed could have a huge effect on the operational cost. Further, cost
can also be reduced by allowing split loads, by which we mean allowing one cargo to be
transported from origin to destination by several ships instead of one. Therefore, the goal
of our research is to extend the basic industrial and tramp ship routing and scheduling
problems to more real-life applications in which we introduce variable speeds during the
planning period and allow for split loads.

3

Among others, Hemmati et al. (2014) argued that despite the high importance of
industrial and tramp ship routing and scheduling problems, researchers are often reluctant
to share their performed research. This is mainly because their instances do not capture
all features of the maritime transportation. Therefore, Hemmati et al. (2014) made
available a wide range of realistic benchmark instances for these routing and scheduling
problems, as well as an instance generator for generating additional instances. The purpose
of the available benchmark instances and the instance generator is that better solution
algorithms can be developed and tested for the industrial and tramp ship routing and
scheduling problems. Furthermore, they recommended modeling the problem to more
real-life extensions. For example, they suggested extending the problem to include speed
optimization, bunkering decisions and environmental regulations. This again indicates the
importance of our research, as we extend the basic problem to incorporate both speed
optimization and split loads.

The remainder of the paper is organized as follows. In Chapter 2, we review relevant
literature on the basic industrial and tramp ship routing and scheduling problems, as well
as solution methods for this problem. Also, we review literature on the same extensions we
make in our research, namely speed optimization and split loads. We continue thereafter
in Chapter 3 with a detailed description of the basic industrial and tramp ship routing
problems and the extensions of the basic problem. Chapter 4 describes the data used
to test the models and solution approaches. The solution approaches are explained in
Chapter 5. Besides the mixed-integer programming formulations of both versions of the
model, we propose an adaptive large neighborhood search heuristic as solution method.
This method is also used by, among others, Hemmati et al. (2014) and Ropke and Pisinger
(2006). As this heuristic does not incorporate split loads and speed optimization, we also
discuss two necessary extension of this heuristic, in this chapter. We continue in Chapter 6
with presenting and discussing the results obtained by the solution methods. We focus on
the best obtained results of each solution method for each problem, and the performance
of the solution methods. We also focus on the cost improvements made by extending the
problem to more real-life applications, as this is the main goal of our research. Finally, in
Chapter 7 we state our concluding remarks and recommendations for further research.

4

Chapter 2

Literature Review

During the last decades, research in industrial and tramp ship routing and scheduling
problems has tremendously increased. Christiansen et al. (2013) provided an extensive
review on research on these problems and extensions thereof, which is the fourth review in
a series of reviews. We base our literature review on theirs such that a correct review on
research is given. They stated that since the last decade the research volume has more than
doubled. However, due to the complexity of the problem, opportunities for improvements
and extensions remain for future research. As the volume of research on this problem is
very large, we focus only on reviewing literature which is in line with our research. We
refer to Christiansen et al. (2013), Christiansen et al. (2004), Ronen (1993) and Ronen
(1983) for extensive literature reviews.

In the existing literature, most research is done on the tramp ship routing and scheduling
problem (TSRSP). This is due to the fact that the industrial ship routing and scheduling
problem (ISRSP) is considered a special case of the TSRSP. The objective in most published
work is therefore to maximize the profit obtained by transporting both mandatory and
optional spot cargoes, instead of minimizing the operational cost. In these TSRSPs, the
speed of each vessel and its fuel consumption is considered fixed during the entire planning
period. Also, each cargo needs to be transported by one ship, meaning that split loads are
not allowed.

For solving these problems, Brønmo et al. (2007) introduced a multi-start local search
heuristic, of which the performance is compared to a path flow formulation where, a priori,
all ship routes are generated. Note that the path flow formulation is not recommended
for solving large instances, as the number of possible routes grow exponentially with the
size of the problem instance. Korsvik et al. (2010) compared the performance of this
multi-start local search heuristic with a tabu search. The tabu search allows validation
of the capacity and time window constraints during the search to an optimal solution.
Even though the tabu search outperforms the multi-start local search heuristic, Malliappi
et al. (2011) introduced an even better method, namely a variable neighborhood search
which outperforms both the multi-start local search heuristic and the tabu search. Further,
Lin and Liu (2011) proposed a genetic algorithm to solve the problem and Brønmo et al.
(2010) a heuristic column generation approach. Most of the heuristics discussed above are
included in a decision support system (DSS) for ship routing and scheduling problems,
presented by Korsvik and Fagerholt (2010).

Instead of only considering the tramp ship routing and scheduling problem, Hemmati
et al. (2014) formulated a combined industrial and tramp ship routing and scheduling
problem (ITSRSP) of which the objective is to minimize the total costs of operating the
fleet plus the cost of using spot charters to transport the cargoes. Besides the mathematical
formulation of the model, they also presented an adaptive large neighborhood search
(ALNS) implementation to solve the problems. For a detailed description of the ALNS
heuristic, they referred to Ropke and Pisinger (2006).

5

As discussed previously, in most of the literature on ship routing and scheduling, a
cargo must be transported by one vessel. By introducing split loads, a cargo may be
split among several vessels as it is transported from origin to destination. This extended
problem is studied by Andersson et al. (2011) and Korsvik et al. (2011). Andersson et al.
(2011) proposed a solution method based on the generation of single vessel routes a priori,
and two alternative path flow models. These solution methods perform well for small
instances, however as the number of routes exponentially increases with the size of the
problem instance, Korsvik et al. (2011) suggested a large neighborhood search heuristic.
This heuristic provides optimal solutions for both small and larger routing and scheduling
problems.

Besides the extension to split loads, also the extension to speed optimization has
received much attention in the last decade. This is mainly because fuel prices increased
tremendously, and regulations were set regarding environmental emissions. Among others,
Norstad et al. (2011) and Psaraftis and Kontovas (2013) discussed similar problems. They
both presented methods for solving the problem, by considering speed as decision variable.
Psaraftis and Kontovas (2013) mainly focused on reducing the effects of CO2 emission by
optimizing speed. Norstad et al. (2011) focused on minimizing cost by optimizing speed.
They formulated a speed optimization problem (SOP) for a fixed ship route. For the SOP
two solution methods are proposed, namely the discretization of the arrival times at the
ports and the recursive smoothing algorithm (RSA). In the RSA, the average speed between
ports on the route is adjusted until a feasible and optimal solution is found. They found
that the RSA outperforms the discretization of the arrival times, and that the difference
in their performance is more feasible as the size of the problem instance increases.

As far as we could find, up to now, the extension of the industrial and tramp ship routing
and scheduling problem to both speed optimization and split loads is not yet analyzed.
However, both extensions, in itself, have shown to result in lower total operational cost
of the fleet in all researches. We hope with our thesis to provide more insight in the
possible cost reductions of the extended variant of the industrial and tramp ship routing
and scheduling problem, which includes both speed optimization and split loads.

6

Chapter 3

Problem Description

In this chapter we discuss the basic and extended industrial and tramp ship routing and
scheduling problems in detail. As mentioned before, our focus lies on these problems as
industrial and tramp shipping have similarities regarding operational characteristics and
they both contribute in huge volumes to the total world trade.

Hemmati et al. (2014) stated that in industrial shipping market, an operator owns the
cargoes and controls the ships of the fleet. The operator tries to minimize the transportation
cost of the cargoes. In contrast to the tramp shipping market, where a company has
several long-term contracts in which the mandatory number of cargoes that the company
is committed to carry is specified. The ships of the company transport usually both these
mandatory cargoes and, as many as possible, optional spot cargoes, to maximize profit. As
the objectives of the shipping industries differ, we reformulate the tramp shipping objective
to the minimization of the transportation cost such that both ship routing and scheduling
problems can be solved by the same mixed-integer programming model. Note that this is
also done by Hemmati et al. (2014), and we rely on their formulation of the problem.

In Section 3.1 we provide a detailed description of the basic industrial and tramp ship
routing and scheduling problems (ITSRSP). We continue in Section 3.2, with a description
of the extensions of the basic ITSRSP, which are the extensions to speed optimization and
split loads.

3.1 Industrial and Tramp Ship Routing and Scheduling
Problems

The objective of the ITSRSP is to minimize the operational cost of each vessel, in such
a way that all mandatory and spot cargoes are picked up, by a vessel of the fleet or by a
spot charter, in time. This means that for each vessel of the fleet a schedule must be made
which specifies the order of ports it needs to visit, for minimum cost.

The fleet of vessels is owned by an operator or a company and can be homogeneous
or heterogeneous. However, within industrial and tramp shipping it is more common to
consider a heterogeneous fleet of vessels. In the basic ITSRSP, the speed of a vessel and
its fuel consumption is considered fixed. Each vessel has a maximum capacity, and the
total volume of the cargo quantities on board may not exceed this capacity. The fleet is
considered fixed during the entire planning period, and therefore the fixed cost of vessels,
such as the cost for maintenance, is not taken into account. For the total variable cost only
port costs, sailing costs and spot charter costs (if necessary) are included. Port costs are
ship dependent and they are incurred when a ship loads or unloads cargo at the port. At
each port, vessels have different service times for loading and unloading, and their service
at the loading or discharging ports must start within a specified time window.

For each cargo, the time windows are specified by an earliest and latest start time in
which the pick-up and delivery can take place. Further, each cargo is characterized by its
fixed quantity and its cost when the cargo needs to be transported by a spot charter.

7

3.2 Incorporating Speed Optimization and Split Loads

As mentioned previously, the basic ITSRSP assumes that the speed of each vessel is kept
fixed during the entire planning period and that each cargo must be transported by only
one vessel from origin to destination. As this is not very realistic, we extend the basic
ITSRSP to incorporate speed optimization and split loads. The full name of this problem
is the industrial and tramp ship routing and scheduling problem with speed optimization
and split loads (ITSRSPSOSL).

The used fixed speed of a ship in the ITSRSP is often the design speed of a ship.
However, in reality, ships can sail at different speeds within their range of the minimum
and maximum speed. As the fuel cost of a ship depends on its sailing speed, optimizing the
sailing speed can lower the fuel cost. Hence, we have to take speed as a decision variable for
each sailing leg, in order to further reduce the total operational cost. Besides the speed of
each vessel, the sailing cost of each leg for each vessel in the ITSRSP is also fixed because
the distance of each sailing leg, and thus the travel time at the fixed speed, is known in
advance. In the ITSRSPSOSL, we allow variable speed, which means that the travel time
from port to port is no longer known in advance. Therefore, we have to determine the fuel
cost per hour for each vessel as a function of speed.

Besides assuming a fixed speed and fixed sailing cost of each vessel during the entire
planning period, the ITSRSP also assumes that each cargo must be transported by only
one vessel from origin to destination. In other words, the ITSRSP does not allow for split
loads. Hence, we again extend the formulation such that also split loads are allowed. This
means that a cargo can be transported by several ships, as long as the total quantity of
the cargo is picked up and delivered within the specified time windows at the loading and
discharging port. It thus is important to keep track of the quantity of the cargo transported
by a ship. The total quantity of cargoes on board of a ship may still not exceed the capacity
of the ship. By allowing split loads, the ship utilization can improve such that within tramp
shipping the opportunity arises to transport more spot cargoes and within industrial and
tramp shipping the cost for outsourcing the cargoes to spot charters may reduce. In other
words, the extension to split loads can reduce the total operational cost of the fleet.

8

Chapter 4

Data

Hemmati et al. (2014) provided an instance generator to allow other researchers to test new
models and solution approaches. We use their instance generator to create a total of 18
new instances. Normally, a distinguishing is made in full ship load and mixed ship load for
the type of cargo sizes. Hemmati et al. (2014) stated that, for the major bulk commodities,
the cargo is usually a full ship load. Whereas for the minor bulk commodities, the cargoes
are smaller and therefore ships can carry different cargoes simultaneously, which results
in a mixed ship load. We only consider the mixed load case, as we want to extend the
basic industrial and tramp ship routing and scheduling problem to incorporate split loads.
In case of full ship loads, allowing for split loads does not change much as each ship
can transport only one cargo each time. Therefore, the basic problem and the extended
problem (without speed optimization) result in the almost the same problem for full ship
loads, which is not very interesting.

Before we generate the instances, we form a short sea data set, in which we make a
division of 16 different countries in the Mediterranean region. Our data set is based on the
data sets provided by Brouer et al. (2013) and Hemmati et al. (2014). In total, 39 ports
are included in the short sea port set. The location of each port is shown in Figure 4.1, by
its corresponding port code. For each of these 39 ports, the region, the coordinates, the
distance to all other ports and the fixed cost of berthing at each port for each vessel, is
given in the data set.

Figure 4.1: The 39 ports in the Mediterranean region

The Figure shows the locations of all 39 ports, which are included in the short sea
port set. Each of these ports is presented by a dot and its corresponding port code in the map of

the Mediterranean region.

9

All 18 instances are based on a normal market condition. This means that there will
be a relative average number of cargoes available to be transported, and that the cost
of using spot charters is neither high nor low. Also, the instances have unbalanced flow
between regions, which means that some regions are mainly exporters of goods and others
mainly importers of goods. The latter is more realistic than considering balanced flow
between regions. Furthermore, each instance has ‘normal’ time windows. The ‘normal’
time window for the loading port consist of three consecutive days and for the discharging
port, the time window is usually wider. The latter is to allow ships to load and unload the
cargoes at the loading and discharging ports, respectively.

Finally, all instances have a heterogeneous fleet of vessels. In total, six types of short
sea vessels are included in the data set. For each ship, the capacity, the minimum speed,
the maximum speed, the design speed and the fuel consumption at design speed are given
in the data set and stated in Table 4.1.

Table 4.1: Data of vessel types

Vessel Type Capacity Min. Speed Max. Speed Design Speed Fuel Consumption*
(dwt) (knots) (knots) (knots) (MT/day)

Feeder 4500 4500 10 14 12 18.8
Feeder 8000 8000 10 17 14 23.7
Panamax 12000 12000 12 19 18 52.5
Panamax 24000 24000 12 22 16 57.4
Post Panamax 42000 12 23 16.5 82.2
Super Panamax 75000 12 22 17 126.9
* The fuel consumption (in metric ton per day) for each ship when sailing at the design speed.
The Table states the capacity in deadweight tons, the minimum speed, the maximum speed
and the design speed, all in knots, and the fuel consumption at design speed for each of the

six different vessel types.

For each of the 18 instances, we based the input for the instance generator on the
input of Hemmati et al. (2014). For each of their instances, the included vessel types and
the total number of vessels for each type is stated. Using the same input, the following
information is given after generating each of our instances with the instance generator
provided by Hemmati et al. (2014).

For each vessel, the home port, the time it comes available at the home port and the
capacity of that vessel, is given. For each cargo, the origin port, the destination port, the
quantity, the costs of not transporting, and the start and end times for the time windows
for the pick-up and for the delivery, are stated. Also, for each included vessel, the travel
time in hours and the travel cost in USD between all ports when sailing at design speed,
is given. The times and costs between the ports for each vessel are based on the given
distances between the ports, fuel consumption for sailing at the design speed and the IFO
fuel price of 590 USD per MT (metric ton). Finally, for each included vessel, the service
time in hours for the origin port and the destination port, with corresponding port cost in
USD, is given for each cargo.

10

Chapter 5

Solution Approaches

In this chapter, we discuss the solution approaches for solving the instances described in
Chapter 4. We use different approaches for both variants of the problem. First, we focus on
the basic industrial and tramp ship routing and scheduling problem, which we described in
Section 3.1. Thereafter, we focus on the extended version, in which we incorporate speed
optimization and split loads, as we described in Section 3.2.

We start with providing the mixed-integer programming models of both versions of
the problem in Section 5.1. These mixed-integer programming models can be solved by
commercial optimization software, which in fact is also be done by Hemmati et al. (2014).
However, they showed that solving the mixed-integer programming model with commercial
software goes well for instances up to around 18 cargoes. Of course, we also want to
optimize operational cost for instances with more than 18 cargoes. Therefore, Hemmati
et al. (2014) proposed the adaptive large neighborhood search (ALNS) heuristic, which is
discussed in detail by Ropke and Pisinger (2006). The ALNS heuristic starts with an initial
feasible solution, then selects one of the three removal heuristics, to remove q cargoes from
the current solution, and thereafter, selects one of the two insertion heuristics, to reinsert
the removed cargoes into the solution. The three removal heuristics are the Shaw removal,
the random removal and the worst removal. The two insertion heuristics are the basic
greedy heuristic and the regret-k heuristic. Note that the regret-k heuristic is actually a
class of k insertion heuristics. We give an elaborate description of the ALNS heuristic,
which can be used to solve the basic industrial and tramp ship routing and scheduling
problem, in Section 5.2.

Unfortunately, this version of the ALNS heuristic does not provide us with a solution
we want, as during the entire route of a vessel its sailing speed is kept fixed and split loads
are not allowed. To reduce total operational cost, we want to allow each ship to sail at
different speeds, as long as it stays within its range of minimum and maximum speed. The
lower the speed of a ship, the lower the fuel consumption of that ship. Therefore, we want
to include speed optimization in the ALNS heuristic, which can be done by including an
extra algorithm. This algorithm is named the recursive smoothing algorithm (RSA), which
solves the speed optimization problem (SOP). Both the algorithm and the formulation of
the SOP are provided by Norstad et al. (2011). Besides this algorithm, we also have to
include a heuristic which allows one cargo to be split among, thus in other words to be
transported by, several vessels. This is the 1-split or merge heuristic proposed by Korsvik
et al. (2011). We will describe the extension of the ALNS heuristic in Section 5.3.

11

5.1 Mixed-Integer Programming Models

In this section we provide the mixed-integer programming models of both versions of
the problem. We start in Section 5.1.1 with the mathematical formulation of the basic
industrial and tramp ship routing and scheduling problems. Thereafter we continue in
Section 5.1.2 with providing the mathematical formulation of the extended problem. As
the extended problem will turn out to have non-linear constraints and a non-linear cost
function, we also discuss a way to solve this issue. We suggest discretization of the speed
such that only integer valued speeds are allowed. This process is explained in Section
5.1.2.1 in detail.

5.1.1 Industrial and Tramp Ship Routing and Scheduling Problems

We strongly rely on Hemmati et al. (2014) and Korsvik et al. (2011) for the mathematical
formulation of the basic ITSRSP. Unfortunately, Hemmati et al. (2014) did not include the
port cost and the service times at ports, so we slightly reformulate their formulation in line
with the formulation of Korsvik et al. (2011). We use the following analogous notation,
which is also done in both of these papers.

We let N be the set of cargoes, which we index by i. For each cargo i, there exist
a loading port i and a corresponding discharging port i + n, with n denoting the total
number of cargoes in N . We denote the set of loading ports with NP = {1, . . . , n}, and
the set of discharging ports by ND = {n+1, . . . , 2n}. Note that it can be that loading port
k and unloading port u (u 6= k + n), present the same physical port. We further denote
the set of vessels with V , indexed by v. We let Nv be the set of ports which vessel v can
visit. In the set Nv, the origin port o(v) and the artificial destination port d(v) for vessel
v are included. The artificial destination port d(v) corresponds to the last visited port in
the route for vessel v. For each vessel V , we let Av be the set of arcs it can traverse, thus
Av = Nv ×Nv. Lastly, we let NP

v = NP ∩Nv and ND
v = ND ∩Nv denote the loading and

discharging ports which can be visited by vessel v, respectively.
For sailing from port i to port j, we denote the sailing cost by Cijv for vessel v. If

a vessel loads or unloads at port i, a port cost has to be paid, which we denote by Piv

for vessel v. Further, if cargo i cannot be transported by one of the vessels of our fleet, a
cost CS

i is incurred. In industrial shipping, the cost represents the use of a spot charter to
transport the cargo. In tramp shipping, the cost corresponds to the loss in profit from not
transporting the optional spot cargo or to the cost of using a spot charter to transport the
mandatory cargo. The quantity of cargo i is denoted with qi, and the capacity of vessel v
with Qv. We let tijv be the travel time at design speed from port i to port j for vessel v.
Each port has a time window [ei, li], with ei and li the earliest and latest start times for
loading or unloading at port i. The service time at port i for vessel v is denoted with aiv.

The variables xijv are binary variables, xijv equals 1 if vessel v sails from port i to
port j and 0 otherwise. The variables yi are also binary variables, yi equals 1 if cargo i is
transported by a spot charter, and 0 otherwise. Further we let the variable wiv denote the
total load on board of vessel v right after the service is completed at port i. Finally, we let
tiv denote the start time of the service at port i. The mixed-integer programming model
of the industrial and tramp ship routing and scheduling problem (ITSRSP) becomes as
follows.

12

min
∑
v∈V

∑
(i,j)∈Av

(Cijv + Pjv)xijv +
∑
i∈NP

CS
i yi, (5.1)

subject to ∑
v∈V

∑
j∈Nv

xijv + yi = 1, ∀ i ∈ NP , (5.2)

∑
j∈NP

v ∪{d(v)}

xo(v)jv = 1, ∀ v ∈ V, (5.3)

∑
i∈Nv

xijv −
∑
i∈Nv

xjiv = 0, ∀ v ∈ V, j ∈ Nv\{o(v), d(v)}, (5.4)

∑
i∈ND

v ∪{o(v)}

xid(v)v = 1, ∀ v ∈ V, (5.5)

wo(v)v = 0, ∀ v ∈ V, (5.6)

wiv + qjxijv − wjv ≤ Qv(1− xijv), ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v , (5.7)

wiv−qjxi(n+j)v−w(n+j)v ≤ Qv(1−xi(n+j)v), ∀ v ∈ V, (i, n+ j) ∈ Av | j ∈ NP
v , (5.8)

wiv ≤ Qv, ∀ v ∈ V, i ∈ Nv, (5.9)

0 ≤ wiv ≤ Qv

∑
j∈Nv

xijv, ∀ v ∈ V, i ∈ Nv, (5.10)

tiv + (aiv + tijv)xijv − tjv ≤ (li + aiv + tijv)(1− xijv), ∀ v ∈ V, (i, j) ∈ Av, (5.11)

tiv + (aiv + ti(n+i)v)xi(n+i)v − t(n+i)v ≤ 0, ∀ v ∈ V, i ∈ NP
v , (5.12)

∑
j∈Nv

xijv −
∑
j∈Nv

xj(n+i)v = 0, ∀ v ∈ V, i ∈ NP
v , (5.13)

ei ≤ tiv ≤ li, ∀ v ∈ V, i ∈ Nv, (5.14)

yi ∈ {0, 1}, ∀ i ∈ NP , (5.15)

xijv ∈ {0, 1}, ∀ v ∈ V, (i, j) ∈ Av. (5.16)

The objective function (5.1) minimizes the total cost from operating the fleet plus the
cost for using spot charters. Constraints (5.2) make sure that each cargo is transported
by either a vessel from the fleet or by a spot charter. Constraints (5.3) - (5.5) describe
the flow on the sailing route used by vessel v. The initial load on board of vessel v, which
we assume to be zero, is given by (5.6). Constraints (5.7) and (5.8) keep track of the load
on board at the loading port and the discharging port, respectively. Further, constraints
(5.9) and (5.10) ensure that the load on board does not exceed the capacity of the vessel
at loading and discharging ports, respectively. Constraints (5.11) make sure that the start
time of service at the discharging port is later than or at the same time as the start time
of service at the loading port, plus the travel time from the loading port to the discharging
port and the service time at the loading port. Moreover, the loading port has to be visited
before the discharging port, which is taken care of by constraints (5.12). Constraints (5.13)
ensure further that if a vessel picks up cargo at the loading port, it also delivers the cargo
at the corresponding discharging port. Constraints (5.14) make certain that the arrival
time at the ports satisfy the time window constraints and lastly, constraints (5.15) and
(5.16) set binary restrictions on both the yi and xijv variables.

13

5.1.2 Incorporating Speed Optimization and Split Loads

In order to extend the ITSRSP to incorporate speed optimization, we allow each ship to
sail at different speeds on each sailing leg of their scheduled route. Therefore, we introduce
a new variable, namely the variable sijv. This variable denotes the speed of vessel v from
port i to port j. Note that the speed of a vessel must stay between the minimum and
maximum speed of that vessel. The fuel costs per hour are given by the function Cv(sijv),
which is defined in the interval [smin

v , smax
v], with smin

v the minimum speed and smax
v the

maximum speed for vessel v. The formula of the cost function Cv(sijv) is given in Section
5.1.2.1. Further, we let dij denote the distance from port i to port j.

To extend the ITSRSP to incorporate split loads, we allow one cargo to be split
among several vessels as it is transported from origin to destination. Therefore, we also
introduce the variable ziv, which denotes the quantity of cargo i transported by vessel v.
In the mathematical formulation of the ITSRSPSOSL, some constraints remain the same
as in the formulation of the ITSRSP, and for those, only a reference to the constraints
stated in Section 5.1.1 is given. The mixed-integer programming model of the industrial
and tramp ship routing and scheduling problem with speed optimization and split loads
(ITSRSPSOSL) becomes as follows.

min
∑
v∈V

∑
(i,j)∈Av

(
(dij/sijv) Cv(sijv) + Pjv

)
xijv +

∑
i∈NP

CS
i yi, (5.17)

subject to ∑
v∈V

∑
j∈Nv

xijv + yi ≥ 1, ∀ i ∈ NP , (5.18)

(5.3) - (5.6),

wiv + zjv − wjv ≤ Qv(1− xijv), ∀ v ∈ V, (i, j) ∈ Av | j ∈ NP
v , (5.19)

wiv − zjv − w(n+j)v ≤ Qv(1− xi(n+j)v), ∀ v ∈ V, (i, n+ j) ∈ Av | j ∈ NP
v , (5.20)

ziv ≤ wiv ≤ Qv, ∀ v ∈ V, i ∈ NP
v , (5.21)

0 ≤ w(n+i)v ≤ Qv

∑
j∈Nv

x(n+i)jv − ziv, ∀ v ∈ V, i ∈ NP
v , (5.22)

∑
v∈V

ziv = qi(1− yi), ∀ i ∈ NP , (5.23)

tiv + aivxijv + (dij/sijv)− tjv ≤ (li + aiv)(1− xijv), ∀ v ∈ V, (i, j) ∈ Av, (5.24)

tiv + aivxi(n+i)v + (dij/sijv)− t(n+i)v ≤ 0, ∀ v ∈ V, i ∈ NP
v , (5.25)

smin
v ≤ sijv ≤ smax

v , ∀ v ∈ V, (i, j) ∈ Av, (5.26)

(5.13) - (5.16),

ziv ≥ 0, ∀ v ∈ V, i ∈ NP
v . (5.27)

The objective function (5.17) and constraints (5.18) - (5.22), (5.24) and (5.25) have the
same purpose as for the basic model described in Section 5.1.1. Constraints (5.23) ensure
for each cargo that the sum of the split quantities is equal to the cargo quantity if the
cargo is not transported by a spot charter, and zero otherwise. For the speed variables,
constraints (5.26) are lower and upper bounds for each vessel. Lastly, constraints (5.27)
make sure that the quantity of cargo i transported by ship v is nonnegative.

14

5.1.2.1 Discretization of Speed

In the ITSRSPSOSL, the fuel cost (Cv(s)) are given in dollars per hour (USD/h) for each
vessel v, as a function of the sailing speed s. As done by Brouer et al. (2013), we can
express the fuel cost as a non-linear function, given by

Cv(sijv) =

(
sijv
s∗v

)3

f∗v p
F , smin

v ≤ sijv ≤ smax
v , ∀ v ∈ V, (i, j) ∈ Av.

In this formula, sijv is the speed in knots (nmi/h) from port i to port j for vessel v, and its
defined within the feasible speed range of the vessel. So, the speed sijv of vessel v, should
be between the minimum speed smin

v and maximum speed smax
v of that vessel. The price

of the fuel per metric ton (USD/MT) is denoted with pF , which is in our case equal to 590
USD per MT. Further, s∗v and f∗v , the latter in metric tonnes per hour (MT/h), denote
the design speed of vessel v in knots and the fuel consumption of vessel v at design speed,
respectively.

As this cost function is non-linear, we cannot use this function in our model as we
are only able to solve linear models. Therefore, we discretize speed for each vessel within
the interval of the minimum and maximum speed of that vessel. For our problem, we
only allow each vessel to sail at an integer valued speed in knots. However, note that also
smaller intervals could be chosen for the discretization. So in our case, for example, if a
vessel can sail between a minimum speed of 10 knots and a maximum speed of 14 knots,
we allow that vessel to sail from port i to port j with a speed of 10 knots, 11 knots, 12
knots, 13 knots or 14 knots. Note that a vessel is therefore still allowed to sail at different
speeds during the entire planning period, but only allowed to sail at a fixed speed from
port to port. In this manner, we are able to compute the costs and travel times of each
sailing leg at these different speeds.

In order to incorporate the discretization of speed into the model, we let FSvr be the
rth allowed fixed speed of vessel v. To illustrate this, we again take the previous example
in which the minimum speed of the vessel is 10 knots and the maximum speed of the vessel
is 14 knots. Then, the 1st allowed fixed speed is 10 knots, the 2nd allowed fixed speed is
11 knots, ..., and the 5th allowed fixed speed is 14 knots. We let r range between 1 and the
number of possible integer valued speeds within the interval of minimum and maximum
speed, and we denote this set with Rv for each vessel v. Using this information, we can
compute the rth fixed travel time FTijvr in hours (h) between port i and j for vessel v by

FTijvr =
dij
FSvr

, ∀ v ∈ V, (i, j) ∈ Av, r ∈ Rv.

In this formula, dij is the distance between port i and j in nautical mile (nmi). As each
vessel can only sail one speed at the time on each sailing leg, we introduce the variable
φijvr, which equals 1 if the rth allowed speed is chosen for vessel v for sailing from port i
to port j and 0 otherwise. Thus, it must hold that∑

r∈Rv

φijvr = xijv, ∀ v ∈ V, (i, j) ∈ Av. (5.28)

To keep the ITSRSPSOSL formulation the same, we compute the used speed sijv of vessel
v from port i to port j by

sijv =
∑
r∈Rv

FSvrφijvr, ∀ v ∈ V, (i, j) ∈ Av. (5.29)

Further, we compute the used travel time Tijv = dij/sijv by

Tijv =
∑
r∈Rv

FTijvrφijvr, ∀ v ∈ V, (i, j) ∈ Av. (5.30)

Constraints (5.28) - (5.30) are added to the extended ITSRSPSOSL model described in
Section 5.1.2, such that the model becomes linear and solvable with commercial optimization
software.

15

5.2 Adaptive Large Neighborhood Search Heuristic

To be able to solve larger instances, Ropke and Pisinger (2006) proposed an adaptive large
neighborhood search (ALNS) heuristic for the pickup and delivery problem with time
windows. This heuristic is also used by Hemmati et al. (2014) for the industrial and tramp
ship routing and scheduling problem (ITSRSP). Ropke and Pisinger (2006) described the
ALNS heuristic as a heuristic that uses several large neighborhoods in an adaptive manner
and chooses between them through using statistics gathered during the search. It thereby
extends the large neighborhood search (LNS) heuristic, as the latter only incorporates one
removal and one insertion heuristic to obtain a solution. Different instances may need
different heuristics to obtain a ‘better’ solution, and therefore it would be more convenient
to choose from different heuristics within the process of obtaining a solution. The ALNS
heuristic does have a longer computation time compared to the LNS as it implements more
heuristics, however it generally does provide better results. The algorithm for the ALNS
heuristic is given by Algorithm 1.

Algorithm 1 Adaptive Large Neighborhood Search (ALNS)
generate initial solution s
sbest ← s
while stop-criterion not met do

s′ ← s
select removal and insertion heuristics based on search parameters
select the number of cargoes to remove and reinsert, q
remove q cargoes from s′

reinsert removed cargoes into s′
if (f(s′) < f(sbest)) then

sbest ← s′

end if
if accept (s′, s) then

s← s′

end if
update search parameters

end while
return sbest

For the generated initial solution, all cargoes are transported by a spot charter, to
ensure feasibility. The cost for the initial solution is thus only the cost for using spot
charters to transport the cargoes. The three removal heuristics used in the ALNS heuristic
are the Shaw removal heuristic, the random removal heuristic and the worst removal
heuristic. All three heuristics remove q cargoes from the current solution. We discuss the
removal heuristics in detail in Section 5.2.1. The q removed cargoes will later be reinserted
in a new solution by an insertion heuristic. The two insertion heuristics are the basic greedy
heuristic and the regret-k heuristic, which we discuss in Section 5.2.2. We note already
that the regret-k heuristic is actually a class of k insertion heuristics. A removal and an
insertion heuristic are independently selected after weighting the heuristics by an adaptive
weight adjustment process. We select a heuristic with a certain probability, by using a
roulette wheel selection principle. The selection of the removal and the insertion heuristics
is described in Section 5.2.3. Also, an acceptance criterion and a stopping criterion are
implemented in the heuristic, which we discuss in Section 5.2.4. Lastly, we apply noise
to the objective function such that the heuristic will hopefully not get trapped in a local
optimum. We discuss this process in Section 5.2.5.

16

5.2.1 Removal Heuristics

In this section, we describe the three removal heuristics which are used in the ALNS
heuristic. All three heuristics provide a solution in which q cargoes are removed from the
current solution. In each iteration of the ALNS heuristic, a new q will be randomly chosen
in the interval [1, min(100, dξne)]. In this interval, n is the total number of cargoes, and
ξ a constant parameter, which we set to 0.4. Note that all of the used parameter values,
mentioned here and later on in other sections, are based on the values used by Hemmati
et al. (2014) and/or Ropke and Pisinger (2006). However, we let 1 be the minimum value
of the interval, while they have both chosen 4 as the minimum value. We cannot use 4 as
the minimum value, due to the fact that our smallest instance only consist of 7 cargoes.
In that case, q should be chosen from the interval [4, 3], which is not possible.

For each removal heuristic, the current solution is given as input, as well as the number
of cargoes q that need to be removed. For the Shaw and worst removal heuristics, also
a parameter p is given as input, which will determine the degree of randomization in the
heuristics, as stated in Ropke and Pisinger (2006). For the Shaw removal heuristic, we let
p = 6 and for the worst removal heuristic, we let p = 3.

5.2.1.1 Shaw Removal

The main idea in the Shaw removal heuristic is to remove somewhat similar cargoes from
the current solution. Ropke and Pisinger (2006) argued that this is convenient because
similar cargoes can be shuffled around more easily and thereby find new and (hopefully)
better solutions. The similarity of cargoes i and j is measured by the relatedness, which
we denote with R(i, j). The relatedness measure is given by

R(i, j) = φ (dA(i),A(j) + dB(i),B(j)) + χ
(
|TA(i) − TA(j)| + |TB(i) − TB(j)|

)
+ ψ |qi − qj |.

In this formula, A(i) and B(i) are respectively the loading and the discharging port for
cargo i. Further, dij denotes the distance between ports i and j. We denote the time at
which port i is visited with Ti and the quantity of cargo i with qi.

As can be seen from the formula, the relatedness depends on the distance between the
origin and the destination ports, the arrival times at ports and the capacity of the cargoes.
The parameters φ, χ and ψ are used to weight each of these terms, respectively. We let
φ = 9 and χ = 3, as been done by Ropke and Pisinger (2006). Further we let ψ = 8, to
put more weight on the relatedness in quantities of the cargoes. The relatedness R(i, j) of
cargoes i and j is defined in the interval [0, 2(φ + χ) + ψ], through normalization of the
distances dij , the arrival times Ti and the quantities qi. The higher the value of relatedness
measure R(i, j), the less cargo i and j are related.

The pseudo code for the Shaw removal heuristic is given in Algorithm 2. At first,
a random cargo is chosen and then the similarity with other cargoes is checked by the
relatedness measure. The heuristic will remove the initial random chosen cargo and the
cargoes that are similar to this random cargo. This process will be continued until all q
cargoes are removed from the current solution.

17

Algorithm 2 Shaw_Removal(s ∈ solutions , q ∈ N, p ∈ R+)

cargo : r = a randomly selected cargo from S
set of cargoes : D = {r}
while |D| < q do

r = a randomly selected cargo from D
Array : L = an array containing all cargoes from s not in D
sort L such that i < j ⇒ R(r, L[i]) < R(r, L[j])
choose a random number y from the interval [0,1)
D = D ∪ {L[yp|L|]}

end while
remove the cargoes in D from s

5.2.1.2 Random Removal

Out of the three removal heuristics implemented by the ALNS heuristic, the random
removal heuristic is the simplest. The heuristic selects q cargoes at random and then
removes them from the current solution. The random removal heuristic is basically a
special case of the Shaw heuristic, as stated in Ropke and Pisinger (2006), and can be
implemented by taking p = 1 in the Shaw heuristic. However, we implement the two
heuristics separately as the random removal heuristic does have a faster running time if we
do not implement it by taking p = 1 in the Shaw heuristic.

5.2.1.3 Worst Removal

The last heuristic is the worst removal heuristic. This heuristic removes cargoes with high
cost positions, such that it can later be reinserted for lower cost. Therefore, we determine
the cost of the cargo in the current solution s by cost(i, s) = f(s) − f−i(s), where f−i(s)
is the cost of the solution without cargo i, as given by Ropke and Pisinger (2006). The
pseudo code for the worst removal heuristic is provided in Algorithm 3.

Algorithm 3 Worst_Removal(s ∈ solutions , q ∈ N, p ∈ R+)

while q > 0 do
Array : L = All planned cargoes i, sorted by descending cost(i, s)
choose a random number y in the interval [0,1)
cargo : r = {L[yp|L|]}
remove r from solution s
q = q − 1

end while

5.2.2 Insertion Heuristics

In this section, we describe the two insertion heuristics which are used in the ALNS
heuristic. The insertion heuristics reinsert the q cargoes, which were removed by one
of the removal heuristics, back into the solution. We first discuss the basic greedy heuristic
and thereafter the class of regret-k heuristics.

5.2.2.1 Basic Greedy Heuristic

The basic greedy heuristic is an iterative insertion heuristic. In each iteration of a maximum
specified number of iterations, the heuristic inserts one cargo and computes the change in
cost of inserting that cargo into a route. If a cargo cannot be inserted in a route, the cost
change is set on infinity. The heuristic will insert the cargo at the best position, by taking
the position for which the cost change is minimal. This process will be repeated until all
cargoes that can be inserted, have been inserted.

18

5.2.2.2 Regret-k Heuristic

The class of regret-k heuristics improve the basic greedy heuristic, as it looks ahead by
selecting the cargo to reinsert into the current solution. In each iteration, the heuristic
inserts the cargo at the position for which the regret value is maximized. The regret value
is, as stated in Ropke and Pisinger (2006) and Hemmati et al. (2014), the sum of differences
in cost of inserting the cargo at its best position, at its second best position, at its third
best position, . . ., at its k-th best position. When the regret value is maximized for one of
the cargoes, this cargo is inserted at its minimum cost position. The basic greedy heuristic
can actually be seen as a regret-1 heuristic.

5.2.3 Selection of Heuristics

In order to select both a removal and an insertion heuristic, we weight each heuristic by
wi, with i ∈ {1, . . . ,H}. We let H be the total number of heuristics to choose from. In
our case, H = 3 for the removal heuristics and H = k for the insertion heuristics. We then
use a roulette wheel selection principle, to select heuristic j with probability

wj∑H
i=1wi

.

The weights can be given manually, however this can be very time consuming. Therefore,
we incorporate an adaptive weight adjusting algorithm, as also been done by Ropke and
Pisinger (2006). We strongly rely on their implementation.

In the adaptive weight adjusting algorithm, we measure the performance of a heuristic,
by giving it a score πi. The higher the score, the higher the performance of a heuristic.
We divide the search process of the ALNS heuristic into segments, each consisting of 100
iterations. At the beginning of a new segment, we set all scores to zero. The score can be
increased, in three different situations, by a given parameter value for that situation. The
score of the heuristics that provide a new best solution will increase the most, with a factor
of σ1 = 33. If the heuristics result in a new solution, and the cost of the new solution are
better than the cost of current solution, an increase in the score will be given, with a factor
of σ2 = 9. Finally, if the heuristics provide a solution which is now accepted but has not
been accepted before, and the cost are worse compared to the current solution, the score
will be increased with a factor of σ3 = 13.

After each segment of 100 iterations, we update the weights wij of heuristic i in segment
j by using the scores πi. For this, we first normalize the scores by the total number of
times we used the heuristic, which we denote by θi. The weights of the heuristics in the
first segment are all equal, and for the other segments they can be computed by

wi(j+1) = wij(1− r) + r
πi
θi
.

In this formula, we take r = 0.1 as the reaction factor. If the reaction factor is high,
the new weights of the heuristics for the next segment will more depend on those of the
last segment. If the reaction factor is low, the new weights will stay close to their initial
weights.

19

5.2.4 Acceptance and Stopping Criteria

We implement the same acceptance and stopping criteria as has been done by Ropke and
Pisinger (2006). They, and also Hemmati et al. (2014), used the acceptance criterion of
simulated annealing. In this criterion, solutions are accepted which are better than the
current solutions, but also ones which are worse than the current solution. The latter is
accepted with probability e−|f(s′)−f(s)|/T , in which f(s′) and f(s) are respectively the cost
of the new and of the current solution, and T is the temperature.

The temperature T is always larger than zero, starts with an initial temperature T0
and decreases with a cooling rate c = 0.99975, through T = T · c. The initial temperature
T0 depends on the problem instance and is therefore determined in the same manner as
described by Ropke and Pisinger (2006). Namely, first the cost of the initial solution is
computed, and then we set T0 such that a solution which is w percent worse than this
solution is accepted with a probability of 0.5. We choose to set w = 0.05 as again been
done by Ropke and Pisinger (2006).

Finally, as stopping criterion we set the maximum number of iterations of the ALNS
heuristic on 25000.

5.2.5 Applying Noise to the Objective Function

Despite that the insertion heuristics are somewhat myopic, Hemmati et al. (2014) do
not state that they incorporate any further extensions to deal with this. Fortunately,
Ropke and Pisinger (2006) have provided a solution for the fact that the heuristics can get
trapped in a local optimum. We strongly rely on their implementation to deal with this
problem. In the same manner that we use an adaptive weight adjustment process for the
insertion heuristics, we also determine in each iteration whether or not to apply noise to
the objective function. By applying noise, in some iterations, to the objective function,
we allow for more random solutions. This may seem unnecessary due to the simulated
annealing process, however as stated in Ropke and Pisinger (2006), applying noise is very
important because the insertion heuristics are not sampled randomly.

To apply noise to the objective function, we first calculate the normal cost C of the
insertion of the cargo. We then take a random number noise in the interval [-Nmax,
Nmax], which we use to compute the modified cost C ′. In this notation, Nmax denotes the
maximum noise that can be added to the normal cost C. The modified cost is computed
by taking the minimum value of the total cost of not transporting any cargoes by the fleet
but by using spot charters, which we denote with CS and the total of the normal cost C
plus the noise factor. So, the modified cost is computed by C ′ = min{CS , C + noise}.
Further, we compute Nmax by η ·maxi,j∈Av{dij}, such that it depends on the problem size.
In our implementation, we take η = 0.025, as been done by Ropke and Pisinger (2006).

20

5.3 Incorporating Speed Optimization and Split Loads

In this section, we discuss the solution methods which are used to solve the industrial and
tramp ship routing and scheduling problems with speed optimization and split loads. We
start in Section 5.3.1 with the explanation of the speed optimization problem. We then
propose a recursive smoothing algorithm to optimize speed on a fixed route of a vessel, such
that we can extend the basic industrial and tramp ship routing and scheduling problem to
include speed optimization. Thereafter in Section 5.3.2, we describe a heuristic which can
be used to allow for split loads. This heuristic is called the 1-split or merge heuristic.

5.3.1 Speed Optimization

The ALNS heuristic described in Section 5.2 does not incorporate speed optimization.
Fortunately, in the ITSRSPSOSL formulation given in Section 5.1.2, we can recognize a
subproblem. The subproblem arises when we assume a fixed route for each vessel. Given
the route, the port cost will remain the same even when we change the speed of the vessel
on the route. Thus, given the route, the total operational cost will only change if the fuel
cost changes by changing the speed. Norstad et al. (2011) also pointed out this subproblem,
which they call the Speed Optimization Problem (SOP). We also use this name for the
subproblem throughout the rest of our paper.

As stated in Norstad et al. (2011), the objective of the SOP is to minimize the total fuel
cost, given the sequence of ports and their corresponding time windows, for each vessel.
This can be done by determining the optimal speed for each leg in the given route, such
that the fuel cost is minimized. For this, we index each port in the route by i = 0, . . . ,m.
As the SOP can be solved for each vessel separately, we no longer use the index v in the
parameters and variables. However, besides that, we use the same notation as done before,
by formulating the SOP. The mathematical formulation of the speed optimization problem
(SOP) becomes as follows.

min
m−1∑
i=0

(di,i+1/si,i+1) C(si,i+1), (5.31)

subject to

ti+1 − ti − ai − di,i+1/si,i+1 ≥ 0, i = 0, . . . ,m− 1, (5.32)

ei ≤ ti ≤ li, i = 1, . . . ,m, (5.33)

smin ≤ si,i+1 ≤ smax, i = 0, . . . ,m− 1. (5.34)

The goal is to minimize the value of the objective function (5.31), which is the sum of
the fuel cost for a given route of a vessel. Constraints (5.32) make sure that each port is
visited in the right order, and that the service at the next port, does not start before the
vessel is able to arrive at that port after it completed service at the previous port. The
time window constraints are given by constraints (5.33). Note that the first port in the
route does not have a specified end time at which the vessel must leave the port, but only
an earliest time t0 at which the vessel becomes available. Finally, constraints (5.34) ensure
that the speed of the vessel stays within the feasible speed range of that vessel.

For the SOP two solution methods are proposed by Norstad et al. (2011). In the first
method, the arrival time within the time window of each port is discretized. Thereafter,
the problem is solved as a shortest path problem. The second method is the recursive
smoothing algorithm (RSA), in which the average speed between each port on the route
is adjusted until a feasible and optimal solution is found. In our research, we only use
the second method proposed by Norstad et al. (2011), as they showed that this method
outperforms the first method.

21

The recursive smoothing algorithm (RSA) is based on the fact that sailing a distance
at the lowest possible speed for a vessel, results in the lowest fuel cost for that vessel.
This is because the fuel consumption function is convex in the range of feasible speeds.
It is therefore also more convenient for a vessel to sail at a constant speed during its
entire route, if time windows at each port do not restrict this possibility. For example,
disregarding the time windows, we prefer that a ship sails with the same speed from port A
to port C, instead of at reduced speed from port A to B and at increased speed from port
B to C, even though the arrival time at port C remains the same. The RSA starts with
incorporating this example, by determining a fixed speed for the entire route of a vessel.
The algorithm then recursively adjusts the speed for each leg of the route until the arrival
times at each port, all fall within the time windows for each port. If all arrival times are
within the time windows, the solution is optimal.

The full algorithm of the RSA is given in Algorithm 4. In this algorithm, we let A
and B present the start and end ports in the route, respectively. Further, ti denotes the
start time of service at port i, ai the service time at port i and di(i+1) the distance form
port i to port i + 1. We further let TS denote the total service time on the route. The
optimal speed for a vessel, from port i to port j is given by s∗i(i+1), and while the speed is
not optimal, we let si(i+1) denote the speed. Lastly, we denote the time window for port i
with [ei, li], with ei and li the earliest and latest arrival times at port i.

Algorithm 4 Recursive_Smoothing_Algorithm(A,B)
δ ← 0
p← 0
TS ←

∑B−1
i=A ai

s∗AB ←
∑B−1

i=A di(i+1)/(tB − TS − tA)
for i← A to B do

i← i+ 1
s(i−1)i ← s∗AB

ti ← ti−1 + ai−1 + d(i−1)i/s(i−1)i
if ti − li > |δ| then

δ ← ti − li
p← i

end if
if ei − ti > |δ| then

δ ← ti − ei
p← i

end if
end for
if δ > 0 then

tp ← lp
Recursive_Smoothing_Algorithm(A,p)
Recursive_Smoothing_Algorithm(p,B)

end if
if δ < 0 then

tp ← ep
Recursive_Smoothing_Algorithm(A,p)
Recursive_Smoothing_Algorithm(p,B)

end if

As the ALNS heuristic described in Section 5.2 does not consider variable speed, each
new constructed route for a vessel in the solution must be optimized using the RSA,
each time the cost of the new constructed route has to be computed. In this manner,
both insertion heuristics and the worst removal heuristic will consider the possible cost
improvements after optimizing the speed on the route of the vessel. Note that the speed
of the vessel must be set on the maximum speed during the rest of the search to check for
feasibility of the route, as been done by Norstad et al. (2011), such that the time window
constraints at the ports can always be satisfied.

22

As we only allow integer valued speed in the mixed-integer programming models, we
round the optimal speed provided by the RSA up to the nearest integer. In this manner, the
time window constraints at the ports are still satisfied. Furthermore, if the optimal speed is
lower than the minimum speed of a vessel, we set the optimal speed equal to the minimum
speed. By doing this, we are able to compare the results provided by implementing the
mixed-integer programming models and the extended version of the ALNS heuristic more
accurately.

5.3.2 Split Loads

Besides that the ALNS heuristic described in Section 5.2 does not incorporate speed
optimization, it neither does include split loads. In the previous section, we described
a way to optimize speed within the ALNS heuristic. In this section, we extend the ALNS
heuristic further by allowing for split loads. Among others, Korsvik et al. (2011) discussed
a heuristic for this problem and we use this within our extended ALNS heuristic. One of
the heuristics that they proposed is a 1-split or merge heuristic, which consist of four steps.

In the first step of the 1-split or merge heuristic, the cargo is removed from all routes it is
assigned to. In the next step, all possible insertion points in each vessel route are computed,
while satisfying both the capacity and the time window constraints. All these points are
sorted by their insertion cost. Thereafter, each combination of routes for which the total
spare capacity is equal or more than the quantity of the removed cargo is examined, by
inserting the cargo in the cheapest manner on the route. Finally, the combination of
insertion points with minimum cost is chosen as solution.

Korsvik et al. (2011) also proposed a 2-split or merge heuristic, as this provides more
possibilities for the insertion of the cargo. However, as our ALNS heuristic does already
incorporate many heuristics, we only use the 1-split or merge heuristic such that the
computation time for the entire ALNS heuristic is not too long.

We implement the 1-split or merge heuristic as one of the insertion heuristics to choose
from. The selection of the 1-split or merge heuristic is thus also done by the adaptive
weight adjustment process and the roulette wheel principle. Note that the other insertion
heuristics, the basic greedy heuristic and the regret-k heuristics, are still only used to
reinsert a ‘full’ cargo into one of the routes. As we implement the heuristic as one of the
insertion heuristics, the first step of the 1-split or merge heuristic, in which the cargo is
removed from all routes it is assigned to, does not have to be done anymore. This is then
actually already been done by one of the removal heuristics.

23

Chapter 6

Computational Results

In this chapter, we discuss the results obtained by solving the instances in four different
ways. The instances were described in Section 4. We first solve the basic industrial and
tramp ship routing and scheduling problem (ITSRSP), using both the ALNS heuristic
described in Section 5.2 and the model given in Section 5.1.1. Thereafter, we solve
the industrial and tramp ship routing and scheduling problem with speed optimization
(ITSRSPSO), using both the extended version of the ALNS as described in Section 5.3.1
as well as the model given in Section 5.1.2, without the split load implementation. Then, we
use both the extended version of the ALNS as described in Section 5.3.2 and the model given
in Section 5.1.2 without the speed optimization implementation, to solve the industrial and
tramp ship routing and scheduling problem with split loads (ITSRSPSL). Finally, we solve
the full extended industrial and tramp ship routing and scheduling problem with speed
optimization and split loads (ITSRSPSOSL), with both the extended version of the ALNS
as described in Section 5.3 as well as with the model provided in Section 5.1.2. Solving the
instances in these four ways allows for better comparison of the possible cost improvements
by extending the basic formulation of the problem.

All mixed-integer programming models are solved using the IBM ILOG CPLEX
Optimization Studio Version 12.8, and all heuristics are solved using MATLAB R2017b. By
comparing the optimal solutions of the small instances and the lower bounds of the larger
instances provided by CPLEX, we get an indication of the performance of the (extended)
ALNS heuristic. For each instance, the (extended) ALNS heuristic is executed 10 times,
including 25000 iterations in each run. The search for a solution in CPLEX is stopped
after one hour, as been done by Hemmati et al. (2014). Both CPLEX and MATLAB were
executed on a quad-core, using a 3.4 GHz CPU with 8GB RAM and a 64-bit operating
system.

The remainder of this chapter is organized as follows. In Section 6.1, we present the
best obtained results of each of the 18 instances for each solution method. We continue in
Section 6.2 with discussing the performance of the solution methods. We first discuss the
performance of CPLEX and the (extended) ALNS heuristic individually, and thereafter
we compare both solution methods. Finally in Section 6.3, we analyze whether or not cost
improvements can be made by extending the ITSRSP to more real-life applications, as
that is the goal of our thesis.

24

6.1 Best Obtained Results of Solution Methods

In this section, we discuss the individually best obtained results of the four different models
for each instance. These four models are the ITSRSP, the ITSRSPSO, the ITSRSPSL and
the ITSRSPSOSL. For each of these models, we provide the results obtained by CPLEX
and by the (extended) ALNS heuristic for each of the 18 instances. We only report the
best obtained results out of the ten runs of the ALNS heuristic. The known optimal values
are indicated by bold face font.

Table 6.1 presents the costs obtained by CPLEX and the ALNS heuristic for the basic
industrial and tramp ship routing and scheduling problem (ITSRSP). The results show
that CPLEX is only able to solve the model given in Section 5.1.1 for instances which
include up to 15 cargoes and 4 vessels, within one hour. The costs provided by the ALNS
heuristic are for all instances, evenly as good or better than the costs provided by CPLEX.
This means that the same costs are obtained in case of known optimality and otherwise,
the cost obtained by CPLEX are higher than the cost obtained by the ALNS. Note that
the results provided by CPLEX for the larger instances are very high. This is due to the
fact that the only solution found by CPLEX is one in which all, or most of the cargoes are
transported using spot charters.

Table 6.1: Results for the industrial and tramp ship
routing and scheduling problem (ITSRSP)

Costs obtained by CPLEX ($) Costs obtained by ALNS ($)
Cargoes Ships Instance 1 Instance 2 Instance 1 Instance 2
7 3 1,173,759 767,605 1,173,759 767,605
10 3 1,763,098 1,530,670 1,763,098 1,530,670
15 4 2,995,352 3,081,808 2,995,352 3,077,774
18 5 3,731,855 3,285,046 3,335,600 3,194,437
22 6 4,329,571 3,893,365 3,272,809 3,465,686
23 13 4,951,880 7,922,644 4,182,256 4,624,710
30 6 5,969,030 8,394,500 3,713,041 4,338,509
35 7 14,048,706 12,162,428 4,981,399 5,108,551
60 13 31,550,695 24,908,704 8,596,102 9,483,378
The Table states the costs for the industrial and tramp ship routing and scheduling
problem. On the left side, the Table states the costs obtained by CPLEX after a
run time of one hour. On the right side, the Table states the lowest cost obtained

by the adaptive large neighborhood search heuristic, out of the 10 runs.

Table 6.2 presents the costs of the industrial and tramp ship routing and scheduling
problem with speed optimization (ITSRSPSO). The results show that CPLEX can solve
instances with up to around 10 cargoes and 3 vessels to optimality. This is less than for
the ITSRSP, which is due to the fact that more variables are included in the model. Note
that also due to the same reason, CPLEX is not even able to provide a solution within
one hour for the largest instances. For those instances, CPLEX remains in the presolving
phase. Fortunately, the ALNS heuristic provides better results, as for most instances the
costs are less than those obtained by CPLEX. Note however that the ALNS heuristic does
not find any known optimal solution, although it is close to optimal for small instances.

The reason for the latter is that within the ALNS heuristic, we optimize speed over a
fixed route using the RSA. As we only allow integer valued speed for the ITSRSPSO in
CPLEX, we choose to round the optimal speed obtained by the RSA up to the nearest
integer. In that manner, we still satisfy the time window constraint at the ports. However,
this can result in higher costs than necessary. For example, if the optimal speed for a vessel
is 10.5 knots to sail from A to B to C, then the RSA can determine that the vessel needs
to sail at a constant speed of 11 knots from origin to destination. But the optimal speed
in CPLEX can be 10 knots from A to B and 11 knots from B to C, which results in lower
costs for the route of the vessel.

25

Finally, note again that the cost obtained by CPLEX for the larger instances are very
high as the total cost is the cost of not transporting (most of) the cargoes by the fleet, but
by spot charters.

Table 6.2: Results for the industrial and tramp ship
routing and scheduling problem with speed optimization (ITSRSPSO)

Costs obtained by CPLEX ($) Costs obtained by ALNS ($)
Cargoes Ships Instance 1 Instance 2 Instance 1 Instance 2
7 3 933,711 628,764 937,823 637,652
10 3 1,539,276 1,212,183 1,458,575 1,214,751
15 4 2,108,224 3,215,687 2,250,003 2,096,951
18 5 8,956,417 3,925,740 2,507,575 2,252,206
22 6 12,615,008 6,938,145 2,491,085 2,488,621
23 13 21,239,332 23,061,567 2,977,247 3,236,480
30 6 14,375,843 14,622,333 3,056,477 3,271,521
35 7 19,686,051 23,022,724 3,629,618 4,129,226
60 13 - - 6,008,301 6,787,264
The Table states the costs for the industrial and tramp ship routing and scheduling

problem with speed optimization. On the left side, the Table states the costs
obtained by CPLEX after a run time of one hour. On the right side, the Table states

the lowest cost obtained by the extended adaptive large neighborhood search
heuristic, out of the 10 runs. The extended adaptive large neighborhood search
heuristic incorporates the recursive smoothing algorithm to optimize speed.

Table 6.3 presents the costs of the industrial and tramp ship routing and scheduling
problem with split loads (ITSRSPSL). For this problem, CPLEX is only able to provide
optimal results for the smallest instances. Again, the high costs obtained by CPLEX are
the cost of not transporting (most of) the cargoes by the fleet, but by using spot charters.
The results obtained by the ALNS are, besides for the smallest instances, all better than the
results provided by CPLEX. This means that the costs are lower than the costs provided
by CPLEX. The ALNS heuristic does not provide any known optimal solutions, besides the
solution of the second instance with the least number of cargoes and vessels. The reason
for this will be discussed in the next section, as this is mainly due to the performance of
the heuristic(s).

Table 6.3: Results for the industrial and tramp ship
routing and scheduling problem with split loads (ITSRSPSL)

Costs obtained by CPLEX ($) Costs obtained by ALNS ($)
Cargoes Ships Instance 1 Instance 2 Instance 1 Instance 2
7 3 1,068,490 767,605 1,073,400 767,605
10 3 1,592,748 1,530,670 1,382,423 1,480,551
15 4 3,200,059 4,557,588 2,645,743 2,476,585
18 5 7,597,482 3,720,851 3,058,738 3,220,828
22 6 7,040,378 6,763,137 3,088,453 3,622,013
23 13 13,183,677 14,576,222 4,344,651 4,933,177
30 6 12,727,332 11,237,790 4,009,258 4,633,912
35 7 17,258,154 21,075,254 5,102,405 5,416,075
60 13 32,998,027 32,649,168 9,187,462 9,780,594
The Table states the costs for the industrial and tramp ship routing and scheduling
problem with split loads. On the left side, the Table states the costs obtained by

CPLEX after a run time of one hour. On the right side, the Table states the lowest
cost obtained by the extended adaptive large neighborhood search heuristic, out of
the 10 runs. The extended adaptive large neighborhood search heuristic incorporates
the 1-split or merge heuristic to make it possible to split loads among several vessels.

26

Finally, Table 6.4 presents the costs obtained by CPLEX and the ALNS heuristic, for
the industrial and tramp ship routing and scheduling problem with speed optimization
and split loads (ITSRSPSOSL). For this problem, neither CPLEX nor the ALNS heuristic
provide any known optimal results. This indicates that the extended version of the ITSRSP
is very hard to solve. For almost all results, the ALNS heuristic provides lower costs than
CPLEX. Note that only for the second instance with 7 cargoes and 3 vessels, CPLEX is
able to find a better solution. We believe that this is again due to the rounding of the
optimal speed up to the nearest integer valued speed within the RSA, just as it was for the
solutions of the ITSRSPSO. Note further that also just as it was for the largest instances
of the ITSRSPSO, CPLEX is again not able to find a solution within one hour. This
time, CPLEX stopped the presolving phase after around 12 minutes for both the largest
instances due to an out of memory error.

Table 6.4: Results for the industrial and tramp ship routing and scheduling
problem with speed optimization and split loads (ITSRSPSOSL)

Costs obtained by CPLEX ($) Costs obtained by ALNS ($)
Cargoes Ships Instance 1 Instance 2 Instance 1 Instance 2
7 3 981,991 635,127 937,820 637,652
10 3 1,709,814 1,605,122 1,130,773 1,192,632
15 4 10,873,189 5,630,471 2,244,790 2,114,839
18 5 12,976,519 11,787,366 2,531,683 2,329,378
22 6 12,615,008 12,133,281 2,715,149 2,832,641
23 13 21,239,332 23,061,567 2,979,297 3,285,446
30 6 14,375,843 14,622,333 3,443,012 3,430,171
35 7 19,686,051 23,022,724 4,141,079 4,202,465
60 13 - - 7,087,373 7,998,943
The Table states the costs for the industrial and tramp ship routing and scheduling
problem with speed optimization and split loads. On the left side, the Table states

the costs obtained by CPLEX after a run time of one hour. On the right side,
the Table states the lowest cost obtained by the extended adaptive large neighborhood
search heuristic, out of the 10 runs. The extended adaptive large neighborhood search
heuristic incorporates both the RSA and the 1-split or merge heuristic to optimize

speed and to make it possible to split loads among several vessels.

27

6.2 Performance of Solution Methods

In this section, we discuss the performance of the solution methods. First, the performance
of CPLEX and the (extended) ALNS heuristic are discussed individually. Thereafter we
compare both solution methods with each other. Note that for all performance gaps, the
average is taken over the two instances of the specified number of cargoes and ships.

Table 6.5 presents the average optimality gap and the average gap to the best known
solution, of the results provided by CPLEX. The average optimality gap is the average gap
of the two instances, between the best solution found in CPLEX and the lower bound. As
expected, the larger the size of the problem, the harder to solve to optimality. This can be
seen from the increase in the average optimality gap as the size of the problem instances
increase. We further see that by extending the problem to either speed optimization, split
loads or both, it also becomes harder to solve. This can be seen from the increase in the
average gap to the lower bound, and from the increase in the average gap to the best known
solution, as the size of the instance increases.

If we compare the average optimality gaps of each problem, we see that the ITSRSP
is the easiest to solve, thereafter the ITSRSPSO, then the ITSRSPSL and finally the
ITSRSPSOSL. The latter is so difficult to solve for CPLEX that the smallest average gap
to the lower bound is 35.00%. While this gap is not reached up to around 22 cargoes and
6 vessels for the ITSRSP. Hemmati et al. (2014) concluded for their implementation of the
ITSRSP that optimal solutions could be found for up to around 18 cargoes and 5 vessels.
Our implementation is slightly worse, as it is only able to solve instances up to around 15
cargoes and 4 vessels to optimality. However, this can also be due to the fact that we used
(slightly) different instances. Note that for the largest instances, the average optimality
gap and the gap to the best known solution for the ITSRSPSO and the ITSRSPSOSL is
not stated. This is due to the fact that no solution was found within one hour because
CPLEX remained in the presolving phase or an out of memory error occurred, for both
the ITSRSPSO and the ITSRSPSOSL, respectively.

Table 6.5: Average performance of CPLEX

Average Optimality Gap (%) Average Gap to Best Known (%)
Cargoes Ships ITSRSP +SO +SL +SOSL ITSRSP +SO +SL +SOSL
7 3 0.00 0.00 0.00 35.00 0.00 0.00 0.00 2.25
10 3 0.00 11.74 17.61 58.55 0.00 2.62 8.24 29.78
15 4 11.67 55.71 52.11 89.87 0.07 17.39 31.49 70.90
18 5 33.21 81.00 62.79 92.99 6.69 57.32 36.59 80.36
22 6 43.78 84.12 75.77 89.76 17.70 72.19 51.29 77.57
23 13 60.02 95.27 86.35 95.35 28.58 85.97 66.60 85.86
30 6 62.85 87.74 82.12 88.48 43.06 78.18 63.63 76.30
35 7 74.31 91.60 87.07 92.10 61.27 81.81 72.37 80.36
60 13 83.20 - 88.50 - 67.28 - 70.56 -

The Table presents the average performance of CPLEX over the two instances of each
specified number of cargoes and ships. On the left side, the average optimality gap
in percentages is stated, which is the average gap from the cost obtained after one
hour and the corresponding lower bound. On the right side, the average gap to the

best known solution is given, also in percentages.

For the ALNS heuristic, many best known solutions are found for the larger instances.
However, if we look at the average of the minimum gap to the best known solution for
the smallest instance, the ALNS heuristic only finds solutions without a gap to the best
solution for the ITSRSP. This means that we either deal with the problem described in
Section 6.1 regarding the ceiling of the optimal speed to get an integer valued speed, or
that we may got trapped in a local minimum. The reason for the latter is discussed by
Ropke and Pisinger (2006).

28

Ropke and Pisinger (2006) argued that for different variants of the problem, the
parameters used in the ALNS heuristic have to be tuned. This means that parameters
should be found which work most efficiently and effectively in finding the optimal solution.
We did not perform any parameter tuning, which may have resulted in worse solutions
than necessary, as the ALNS heuristic gets trapped in a local minimum. This can mainly
be seen from the average gaps to the best known solutions for the ITSRSPSL and for
the ITSRSPSOSL, which are on average much higher than those of the ITSRSP and the
ITSRSPSO.

Another reason for the large average gaps to the best known solution of the ITSRSPSL
and the ITSRSPSOSL is that we did not incorporate the 2-split or merge heuristic as
proposed by Korsvik et al. (2011). They argued that the 2-split or merge heuristic provides
more possibilities for insertion the cargo into a route. This should lead to better solutions,
and thus more cost improvements. A side effect is that the computation time will increase,
which lead to our decision to not include this heuristic, as the ALNS heuristic already does
incorporate many heuristics and thus has a long computation time.

Table 6.6: Average performance of the (extended) ALNS heuristic

Average of Minimum Average Gap to
Gap to Best Known (%) Best Known (%)

Cargoes Ships ITSRSP +SO +SL +SOSL ITSRSP +SO +SL +SOSL
7 3 0.00 0.92 0.23 0.20 0.08 0.93 0.23 0.20
10 3 0.00 0.11 0.00 0.00 0.00 0.11 5.56 5.95
15 4 0.00 3.15 0.00 0.00 0.06 6.58 6.93 10.29
18 5 0.00 0.00 0.00 0.00 1.68 2.70 7.40 9.36
22 6 0.00 0.00 0.00 0.00 1.63 2.90 11.21 15.03
23 13 0.00 0.00 0.00 0.00 2.68 1.94 2.89 4.69
30 6 0.00 0.00 0.00 0.00 4.58 5.44 9.79 9.47
35 7 0.00 0.00 0.00 0.00 4.12 6.42 11.81 15.49
60 13 0.00 0.00 0.00 0.00 4.29 5.20 9.22 12.01

The Table presents the average performance of the (extended) adaptive large
neighborhood search heuristic over the two instances of each specified number of cargoes
and ships. On the left side, the average of the minimum gap to the best known solution
in percentages is stated, which is the average gap from the lowest cost obtained by the
(extended) adaptive large neighborhood search heuristic in 10 runs and the best known
cost obtained by either CPLEX or the (extended) adaptive large neighborhood heuristic.
On the right side, the average gap in percentages to the best known solution is given.

If we compare both solution methods, we conclude that CPLEX should be used for
instances which include up to 7 cargoes and 3 vessels, as for most of these small instances
better solutions are found. Moreover, with CPLEX we know when a solution is optimal,
while with the ALNS heuristic we are not sure if we cannot compare the results with known
optimal results. Therefore, it still is convenient to use CPLEX for all instances to compare
the results, as we have done. However, the more extensions to the ITSRSP and the larger
the size of the problem instance, the more we recommend using the ALNS heuristic to
provide solutions. The ALNS heuristic is namely able to solve all instances and it also
provides in almost all cases evenly as good or better solutions compared to those obtained
by CPLEX.

29

6.3 Cost Improvements

In this section, we discuss and provide the results of the cost improvements made through
extending the ITSRSP to more real-life applications. The goal of our research was to
further minimize the operational cost of the fleet by making the extensions. The cost
improvements are analyzed for each of the three different variants of the problem. These
three variants are the extension of the ITSRSP to speed optimization, to split loads, and
to both speed optimization and split loads.

In Section 6.1, all best known results are presented for each solution method and for
each instance. For analyzing the cost improvements, we only include the best known result
for each instance for each variant of the extended problem. This means that for one instance
we may include the solution provided by CPLEX, while for another instance we include
the solution provided by the ALNS heuristic. We then take the average percentage of the
best known cost improvement of the two instances compared with the best known cost of
the ITSRSP, with the same number of cargoes and vessels. These average percentages are
shown in Figure 6.1, to allow for good comparison of the cost improvements made through
extending the ITSRSP.

Figure 6.1: Percentages of cost improvements

The Figure shows the percentages of the cost improvements made through extending the
industrial and tramp ship routing and scheduling problem to speed optimization, split

loads and both speed optimization and split loads. The given percentages in the histogram
are the average percentages of the two instances of each specified number of cargoes and ships.

We see that on average, most cost improvements are made by extending the ITSRSP
to only include speed optimization. This yields on average a cost improvement of 25.02%.
However, extending the problem to both speed optimization and split loads also has a
huge positive effect on the total costs, as the costs on average reduce with 21.77%. We
would expect the cost improvement of the full extension of the ITSRSP, to be higher
than the extension to only speed optimization. Unfortunately, the full extended problem
is very hard to solve, and due to the fact that we did not perform parameter tuning as
discussed in Section 6.2, and because we did not incorporate the 2-split or merge heuristic,
we believe that the costs obtained for the full extended problem are further away from the
optimal costs than those obtained for the ITSRSPSO. Moreover, we believe that the cost
improvements for the extension to split loads and to both speed optimization and split
loads, are not significant.

30

Also, due to time limitations, we could not run more than two instances for each
specified number of cargoes and ships. The results of the ITSRSPSL and the ITSRSPSOSL
are more instance dependent than those of the ITSRSP and ITSRSPSO. By this we mean
that, for each instance, it is possible to sail at a slower speed than the design speed for
at least one vessel on a route. However, it is not possible for every instance to split loads
among several vessels. This can be seen from the fact that the average cost reduction made
by extending the problem to split loads, lies between -7.39% and 15.60%, resulting in an
average cost reduction of 1.66%. While for the extension to speed optimization, the average
cost reduction over the instances lies between 19.04% and 30.74%. The interval between
the minimum and maximum cost improvement is thus smaller for the extension to speed
optimization. Therefore, this again indicates that we may not have obtained significant
results for testing the extension to split loads.

To show the latter even more, if we only look at the smaller instances up to 18 cargoes
and 5 ships, an average cost reduction of 9.06% compared to the costs of the ITSRSP
can be obtained for the extension to split loads. Thus, this could mean that large cost
improvements can be found (also for the larger instances) by extending the industrial and
tramp ship routing and scheduling problem to split loads, if we did not get trapped in a
local minimum. This would then also hold for the extension to both speed optimization and
split loads, as those cost improvements lie between 14.10% and 28.97% for all instances,
but only lie between 19.68% and 28.97% for the smaller instances up to 18 cargoes and 5
ships.

31

Chapter 7

Concluding Remarks

Industrial and tramp shipping are two of the main shipping industries within seaborne
transportation. The objective for those industries is to minimize the operational cost of
the fleet by transporting cargoes under time and capacity constraints, in an efficient way.
In most literature, it is assumed that within the industrial and tramp ship routing and
scheduling problems, the speed of each vessel is fixed (often kept at design speed) and each
cargo is only allowed to be transported by one vessel from origin to destination port.

The goal of our thesis was to extend the industrial and tramp ship routing and scheduling
problem to more real-life applications, as suggested by Hemmati et al. (2014). We focused
on the extensions to speed optimization and to split loads. For the extension to speed
optimization, this means that we allow ships to sail at different speeds, as long as they
stay within their range of minimum and maximum speed, during the time horizon of the
pick-up and deliveries. For split loads, this means that we allow cargoes to be split among
several ships such that it can more efficiently be transported. With these extensions, the
goal was to further minimize the operational cost of the fleet.

In order to do so, we first reproduced the results of the mixed-integer programming
model as proposed by Hemmati et al. (2014), as well as the results of the adaptive large
neighborhood heuristic, which was described in detail by Ropke and Pisinger (2006).
Therefore, we used the instance generator provided by Hemmati et al. (2014) to create
instances based on the data described in Brouer et al. (2013). The results showed that for
our implementation of the industrial and tramp ship routing and scheduling problem,
CPLEX was able to solve instances with up to around 15 cargoes and 4 vessels, to
optimality. The ALNS heuristic was able to find evenly as good, or better results than the
results obtained by CPLEX.

To incorporate our extensions into the industrial and tramp ship routing and scheduling
problem, we mainly used the insights, the mathematical formulations of the problems and
the proposed solution approaches of Norstad et al. (2011) and Korsvik et al. (2011). We first
analyzed the extension to only speed optimization. For this extension, CPLEX was able to
solve instances with up to around 10 cargoes and 3 vessels to optimality. Unfortunately, the
ALNS heuristic in combination with the RSA did not result in any known optimal solutions.
However, for most of the instances, better solutions where found by the ALNS heuristic
compared to the solutions found by CPLEX. On average, a cost reduction of 25.02% can
be obtained by extending the industrial and tramp ship routing and scheduling problem
to include speed optimization.

Thereafter, we also analyzed the extension to only split loads. CPLEX was able to
find optimal solution for up to around 7 cargoes and 3 vessels. Although we did not
perform parameter tuning for the ALNS heuristic, which may have caused worse solutions
than necessary, the solutions found by the ALNS heuristic are for most instances better
than those found by CPLEX. The extension to incorporate split loads is very instance
dependent, which leads to an average cost reduction of only 1.66% compared to the costs
of the ITSRSP.

32

For small instances which consist of a maximum of 18 cargoes and 5 vessels, large
cost improvements could be found by the ALNS heuristic for the extension to split loads,
namely up to around 15.60% on average. Unfortunately, for the larger instances, the ALNS
heuristic got trapped in a local optimum, or was not able to find an optimal solution because
we did not incorporate the proposed 2-split or merge heuristic by Korsvik et al. (2011).
Incorporating this heuristic would have led to a longer computation time but would provide
more possibilities for the insertion of the cargoes.

Finally, we performed the extension of the industrial and tramp ship routing and
scheduling problem to both speed optimization and split loads. The results showed again
that due to the same reasons as for the extension to split load, the ALNS heuristic got
trapped in a local optimum or was not able to find an optimal solution for larger instances
due to the fact that we did not incorporate all proposed heuristics. Also, CPLEX was
not even able to find an optimal solution for any of the instances, within one hour. This
indicates how difficult it is to solve the full extended version of the ITSRSP. On average, a
cost reduction of 21.77% could be obtained by extending the ITSRSP to incorporate both
speed optimization and split loads.

For further research, we recommend performing parameter tuning on (some of) the
parameters used in the adaptive large neighborhood search, as suggested by Ropke and
Pisinger (2006). In our research we based the parameters on theirs, however better results
can be obtained due to the fact that the parameters are dependent on the kind of variant
of the problem. This could be seen from the average gap to the best known solutions, as it
seemed that sometimes we get trapped in a local minimum. We also recommend increasing
the number of instances, such that more significant results for the cost improvements of the
extensions can be given. The latter is mainly needed for the extension to split loads and to
both speed optimization and split loads, as we saw that these extensions are very instance
dependent. Finally we recommend to also incorporate the 2-split or merge heuristic, which
was proposed by Korsvik et al. (2011). Incorporating this heuristic will increase the running
time, but it provides more possibilities for insertion the cargo into one of the routes of the
vessels. This means that more efficient schedules for pick up and deliveries can be found,
which then could imply further cost minimization of operating the fleet.

33

Bibliography

Andersson, H., Christiansen, M., and Fagerholt, K. (2011). The maritime pickup and
delivery problem with time windows and split loads. INFOR: Information Systems and
Operational Research, 49(2):79–91.

Brønmo, G., Christiansen, M., Fagerholt, K., and Nygreen, B. (2007). A multi-start local
search heuristic for ship scheduling—a computational study. Computers & Operations
Research, 34(3):900 – 917. Logistics of Health Care Management.

Brønmo, G., Nygreen, B., and Lysgaard, J. (2010). Column generation approaches to
ship scheduling with flexible cargo sizes. European Journal of Operational Research,
200(1):139 – 150.

Brouer, B. D., Alvarez, J. F., Plum, C. E., Pisinger, D., and Sigurd, M. M. (2013). A
base integer programming model and benchmark suite for liner-shipping network design.
Transportation Science, 48(2):281–312.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2013). Ship routing and
scheduling in the new millennium. European Journal of Operational Research, 228(3):467
– 483.

Christiansen, M., Fagerholt, K., and Ronen, D. (2004). Ship routing and scheduling: Status
and perspectives. Transportation Science, 38(1):1–18.

Hemmati, A., Hvattum, L. M., Fagerholt, K., and Norstad, I. (2014). Benchmark suite
for industrial and tramp ship routing and scheduling problems. INFOR: Information
Systems and Operational Research, 52(1):28–38.

Korsvik, J. E. and Fagerholt, K. (2010). A tabu search heuristic for ship routing and
scheduling with flexible cargo quantities. J. Heuristics, 16:117–137.

Korsvik, J. E., Fagerholt, K., and Laporte, G. (2010). A tabu search heuristic for ship
routing and scheduling. Journal of the Operational Research Society, 61(4):594–603.

Korsvik, J. E., Fagerholt, K., and Laporte, G. (2011). A large neighbourhood search
heuristic for ship routing and scheduling with split loads. Computers & Operations
Research, 38(2):474 – 483.

Lin, D.-Y. and Liu, H.-Y. (2011). Combined ship allocation, routing and freight assignment
in tramp shipping. Transportation Research Part E: Logistics and Transportation Review,
47(4):414 – 431.

Malliappi, F., Bennell, J. A., and Potts, C. N. (2011). A variable neighborhood search
heuristic for tramp ship scheduling. In International Conference on Computational
Logistics, pages 273–285. Springer.

Norstad, I., Fagerholt, K., and Laporte, G. (2011). Tramp ship routing and scheduling
with speed optimization. Transportation Research Part C, 19(5):853 – 865.

34

Psaraftis, H. N. and Kontovas, C. A. (2013). Speed models for energy-efficient maritime
transportation: A taxonomy and survey. Transportation Research Part C, 26:331 – 351.

Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems.
European Journal of Operational Research, 12(2):119 – 126.

Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational
Research, 71(3):325 – 333.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science, 40(4):455–472.

UNCTAD (2017). Review of Maritime Transport. United Nations publication, New York
and Geneva. Sales No. E.17.II.D.10.

35

