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Abstract

This paper contributes to the empirical literature on China’s air pol-
lution and builds upon the ideas of Abadie and Gardeazabal (2003), and
Abadie, Diamond, and Hainmueller (2010, 2015). It implements a syn-
thetic control method to assess the effectiveness of Jingjinji region-specific
air action plan in reducing the fine particulate matter concentrations in
post-2013 Beijing. The results suggest that following the policy enact-
ment, PM2.5 levels in the Chinese capital have dropped by 24.11%, but
at most one-fifth of this reduction is attributable to the regional program,
as the pollution levels in Beijing decreased by 4.67 µg/m3 relative to the
corresponding synthetic control unit. Besides, the analysis of mechanisms
responsible for the air quality improvement reveals fundamental changes
to final energy structure and an average cutback in consumption of non-
renewable energy products of 47.85%.

1 Introduction

China is the world’s fastest-developing major economy with growth rates av-
eraging 10% in the recent decades (IMF, 2018). This unprecedented economic
expansion does, however, come at a cost. Ever since China has surpassed the
United States in its carbon dioxide emissions in 2007, not only has it become
the world’s biggest polluter (World Bank, 2018), but also the deadliest country
to reside in as far as the air pollution is concerned (WHO, 2016). In China, en-
vironmental concerns have always been a distant second priority to the pursuit
of economic prosperity, but air pollution is undeniably a significant issue which
carries both high public health burden, as well as substantial financial losses.
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In the winter of 2012-2013 China has experienced a multifold of geographi-
cally widespread long-lasting extreme air pollution incidents which have affected
up to a quarter of China’s land area and an estimated 600 million people (Huang
et al., 2014; Ji et al., 2014). During 2013 alone, 1.6 million Chinese have died
due to exposure to ambient air pollution, resulting in an economic loss equiv-
alent to 10.9% of GDP (World Bank & IHME, 2016). More than half of these
premature deaths were attributable to fine particulate matter exposure, which
made it country’s fifth leading cause of death (GBD MAPS Working Group,
2016). Beijing has received the hardest hit by far, with PM2.5 concentrations
exceeding the record range of monitoring instruments on more than one occasion
in a series of events referred to as the “airpocalypse” (Lim, 2013).

Not only have these accidents received extensive international media atten-
tion, but they have also marked a turning point for the governmental approach
to environmental issues. Freshly inaugurated president Xi Jinping has promptly
put pollution on top of the legislative agenda, and issued a National Action Plan
on Prevention and Control of Air Pollution in September of 2013. This program
has set a number of quantitative targets for various regions, mainly focusing on
the ambient particulate matter concentrations. The strictest targeted plan was
set for Beijing and required an overall 25% reduction in PM2.5 levels with an
annual upper threshold of 60 µg/m3. This plan specific to Jingjinji, also known
as Beijing-Tianjin-Hebei region has proposed various to achieve the target set
by the government, which included a more efficient emission control, industrial
optimization and restructuring, as well as an increased supply of clean energy
(Ministry of Ecology and Environment of China, 2013). On the 31st of Jan-
uary 2018, the government has officially announced that the action plan has
achieved “better-than-expected results” (Youbin, 2018) with a 39.6% drop in
average PM2.5 concentrations of 39.6%. The research outlined in this paper is
intended to critically assess this statement and evaluate the effectiveness of the
Jingjinji regional air program. Consequently, the central question this paper
aims to answer is as follows:

To what extent is the air quality improvement in Beijing attributable to
Jingjinji region-specific action plan?

Economic science is frequently concerned with gauging the effects of policy
interventions and large-scale events through comparative case studies which
compare the development of variables of interest in an affected unit with the
development of the same variable in unaffected units. The synthetic control
method is one of the ways to conduct these studies and postulates that a group
of controls generally yields a closer resemblance to the treated unit, than any
single unit in particular. Besides, the synthetic control method offers a number
of other advantages compared to a difference-in-differences (DiD) estimation, as
it provides a greater degree of transparency and makes the relative contribution
of each control unit explicit.

The first study that made use of a synthetic control method was performed
in 2003 by Alberto Abadie who investigated the effect of terroristic activity
on economic development in Basque Country by constructing a control group
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using two Spanish regions (Abadie & Gardeazabal, 2003). Later, Abadie has
assessed the effect of California Proposition 99 on tobacco consumption (Abadie,
Diamond, & Hainmueller, 2010) and the impact of 1990 German reunification
on the economic growth (Abadie, Diamond, & Hainmueller, 2015).

This research draws inspiration from the studies mentioned above and ap-
plies the synthetic control method to assess the effectiveness of Jingjinji region-
specific air action plan. It appears that no single specific region can accurately
estimate the values of PM2.5 pollution predictors for Beijing in the pre-treatment
period, but a weighted average of control regions does provide an adequate ap-
proximation. The results suggest that following the program enactment, air
quality in Beijing in terms of fine particulate matter concentrations has im-
proved relative to the control unit. Results of the synthetic control method
indicate that the ambient PM2.5 levels in Beijing were on average 4.67 µg/m3

lower than what they would have been in the absence of the program, which
equals a 6.50% reduction. The ensuing difference-in-differences analysis pro-
vides a slightly higher estimate of 5.38 µg/m3, which is statistically significant.
Finally, the study looks into the mechanisms behind this air quality improve-
ment, and the results suggest that Beijing has significantly reduced its usage
of numerous non-renewable energy products, including coal, coke and diesel oil.
These findings endure a series of robustness checks and placebo studies.

The rest of the paper is organized as follows: section 2 reviews the related
literature, 3 discusses the main ideas behind the synthetic control method and
outlines the model. Section 4 describes the data, and section 5 applies the
synthetic control method to estimate the policy effect and presents the find-
ings, section 6 assesses their robustness. Section 7 extends the synthetic control
framework with a difference-in-differences estimation and investigates the mech-
anisms behind the PM2.5 development. Finally, section 8 concludes while also
highlighting the research limitations and providing suggestions for future stud-
ies.

2 Literature

Consequences of the exposure to poor air quality have always attracted plenty of
scientific attention. Numerous environmental studies have established an asso-
ciation between exposure to fine particulate air pollution and mortality (Samet,
Dominici, Curriero, Coursac, & Zeger, 2000), various health issues (Pope &
Dockery, 2006), and a reduction in life expectancy (Pope, Ezzati, & Dockery,
2009).

Air pollution is currently one of China’s most significant concerns and has
been researched elaborately in the recent years. One paper has investigated the
impact of exposure to air pollution on life expectancy in the Huai River region,
confirming with robust empirical evidence the existence of a negative association
between air pollution and longevity (Chen, Ebenstein, Greenstone, & Li, 2013).
Another study has highlighted an overall increase in mortality due to exposure
to ambient air pollution prior to the 2013 action plan (M. Liu et al., 2017).
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Air quality in the Chinese capital has likewise received elaborate attention
both before the air program, as well as after its implementation. Some studies
have found that due to strict control actions during the 2008 Summer Olympics,
the city’s air quality has seen a considerable improvement. Much to Beijing’s
residents’ dismay, this improvement has been short-lived, and the pollution re-
verted to the conventional levels in the consecutive months (Streets et al., 2007).
2014 APEC Summit was another occurrence where Beijing has experienced a
significant air quality improvement. Likewise, this improvement has proven to
be temporary, and air quality has deteriorated shortly after the emission controls
were lifted (Sheng et al., 2015).

Similarly, long-term developments of air quality in the Chinese capital were
looked into and are believed to generally be improving since the all-time high of
2013 (Zhang et al., 2016). Many think that Beijing’s air quality has a reasonable
chance of achieving the target set by the action plan (Wang et al., 2018). Finally,
one study has evaluated the results of Beijing-specific air policy and concluded
that the program had provided an effective approach to alleviate the PM2.5

pollution in Beijing and the surrounding area (Cai et al., 2017).

3 Methodology

Following Abadie and Gardeazabal (2003), and Abadie, Diamond, and Hain-
mueller (2010, 2015), this paper evaluates the impact of the Jingjinji region-
specific air program on Beijing ambient PM2.5 concentrations by implementing
a synthetic control method. This approach aims to approximate characteris-
tics of Beijing during the pre-policy period using a combination of unaffected
Chinese regions by constructing a synthetic control unit. Consequently, the
post-policy counterfactual outcomes are used to estimate the results that would
have been observed in Beijing in the absence of the policy.

3.1 Econometric model

To set the notation, suppose that J + 1 Chinese regions are observed and,
without loss of generality, only Beijing is affected by the air program. This
leaves J regions to form a pool of controls indicated by i = 1, . . . , J + 1. Let
t = 1, . . . , T denote the time frame with t = 1, . . . , T0 standing for the period
prior to passage of the program and t = T0 + 1, . . . , T the period after its
implementation.

Let Y N
it be the ambient PM2.5 levels that would be observed in region i at

time t in the absence of the intervention, and Y I
it the outcome that would be

observed if the region was exposed to intervention in periods t = T0 + 1, . . . , T .
Additionally, assume that the policy has no effect prior to the period from when
on it is implemented: Y I

it = Y N
it for t = 1, . . . , T0. The final assumption is that

of no inference between units which implies that the pollution levels in control
regions are not affected by the Beijing air program. This inference is addressed
later in the analysis.
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The model aims to estimate the effect of the air program on Beijing ambient
fine particulate matter concentrations: αit = Y I

it −Y N
it . Let Dit be the indicator

that takes on the value of one if region i is exposed to the intervention at
time t, and zero otherwise. Under the assumption that only the first region is
exposed and only after the period T0, Dit = 1 if and only if i = 1 and t > T0.
Hence, the indicator takes on this value exclusively for Beijing during the post-
intervention period. Then, the observed outcome can be written as: Yit =
Y N
it + αitDit. The objective is to estimate the program effect: α1t = Y I

1t − Y N
1t ,

where Y I
1t is observed, but Y N

1t is not. The synthetic control method constructs
a counterfactual that yields an estimate for this unobserved variable by means
of the following model:

Y N
1t = δt + θtζi + λtηi + εit (1)

here, δt denotes the unknown common factor, θt is a (1× r) vector of unknown
parameters, ζi is a (r × 1) vector of observed outcomes not affected by the
intervention, λt is a (1× f) vector of unobserved common factors, and ηi is a
(f × 1) vector of unknown factor loadings. Finally, εit denotes the unobserved
unit-level transitory shocks with the mean of zero.

3.2 Weights estimation

This subsection outlines the way in which weights of the control regions are
estimated to form a suitable control unit. Consider a (J × 1) vector of weights
W with W = (w2, . . . , wJ+1) such that wj ≥ 0 and w2 + · · · + wJ+1 = 1.
This vector is meant to minimize the difference in the pre-policy characteristics
between Beijing and the weighted average of other Chinese regions. Borrowing
from equation (1), the value of the outcome variable is given by

J+1
∑

j=2

wjYjt = δt + θt

J+1
∑

j=2

wjζj + λt

J+1
∑

j=2

wjηj +
J+1
∑

j=2

wjεjt (2)

Assuming that there exist optimal weights w∗ such that

J+1
∑

j=2

w∗

jYj1 = Y11,

J+1
∑

j=2

w∗

jYj2 = Y12, . . . ,

J+1
∑

j=2

w∗

jYjT0
= Y1T0

;
J+1
∑

j=2

w∗

jZj = Z1 (3)

and given a sufficient number of pre-policy periods, α1t can be estimated as
α̂1t = Y1t −

∑J+1

j=2
w∗

jYjt. In actuality, equation (2) does not strictly hold,
but to an extent determined by how well synthetic control matches Beijing’s
true characteristics. Essentially, equation (1) generalizes the commonly used
difference-in-differences model, which can still be obtained within this frame-
work if λt is kept constant for all t. While the difference-in-differences approach
allows for unobserved confounders, it restricts their effect to be constant over
time, so they can be differenced out. Synthetic control method, on the other
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hand, does allow the unobserved characteristics to vary with time, but as a re-
sult, they can’t be eliminated by taking the time differences. In spite of that, a
synthetic control which satisfies

J+1
∑

j=2

w∗

j ζj = ζ1;
J+1
∑

j=2

w∗

j ηj = η1 (4)

will provide an unbiased estimator of Y N
it . However, since η1, . . . , ηJ+1 are

unobserved, choosing a synthetic control in this way is not feasible. Still, the
factor model Yit = Y N

it +αitDit implies that a synthetic control can fit ζ1 and a
set of pre-intervention outcomes Y11, . . . , Y1T0

, as long as it fits both ζ1 and η1,
hence equation (3) does approximately hold. The methodology outlined in this
section is put into practice using R and specifically, synth extension package
(Heinmueller, 2014). Appendix 1 provides information on the implementation.

3.3 Difference-in-differences estimation

One of the main limiting factors of the synthetic control method is the inability
to accurately gauge the statistical significance of policy effect. A difference-in-
differences estimation following Card and Krueger (1993) does allow for this
inference. Besides, DiD enables this research to address the previously specified
no inference assumption. There is a reason to believe that the improvement
in Beijing air quality could have positively influenced the air quality in the
neighboring Shenyang, thereby violating the assumption. If that is the case,
the estimated effect would be lower, as the particulate matter concentrations in
the control region would be artificially reduced. Additionally, the DiD frame-
work provides a way to assess the development of mechanisms responsible for
the changes in PM2.5 levels. This estimation technique is less sophisticated
compared to the synthetic control method and is outlined in Appendix 2.

4 Data

4.1 Background

Studies commonly turn to official government data in assessing the effectiveness
of policies, but there are a few issues associated with it. Firstly, China’s Min-
istry of Ecology and Environment is severely underfunded and as a result, does
not have the resources to quantify the extent of pollution and provide credible
oversight. More importantly, Chinese politicians are highly sensitive when it
comes to publicizing environmental data. The 2007 China’s Ministry of Land
study illustrates this conjecture best, as the results were ready for publication
within eighteen months, but were not disclosed until the end of 2013 and even
then, to an extent. The full scope of the findings would have created a major lia-
bility for the central government as according to the study, 16.1% of China’s soil
and about 19.4% of farmland appeared to be contaminated (Guangwei, 2014).
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Figure 1: Locations of the air monitoring stations

4.2 Variable of interest

On the grounds that the official data can neither be considered comprehen-
sive nor genuinely reliable, this paper considers data which originates from the
United States embassy and consulates equipped with the air quality monitors
for measuring fine particulate matter concentrations. PM2.5 particulates are less
than 2.5 micrometers in diameter and are believed to pose the largest health
risks, as they are small enough to directly enter the lungs and the bloodstream
(Fann et al., 2012). Besides, PM2.5 is a globally recognized air quality standard
which allows for international comparison.

No data is perfect in every respect and the United States Beijing observations
emerge from a single monitoring station, whereas the government possesses 34,
as illustrated in Figure 1 (Beijing Government, 2018). The U.S. provides hourly
observations for five major Chinese cities for a period between 2012 and 2016,
which are publicly accessible. In February 2014 this caused major civil unrest
as the United States Beijing Air Quality Index indicated that the city’s air
quality was at or above the “unhealthy for sensitive groups” level for 70% and
“hazardous” or beyond for 25% of the time (United States Embassy Beijing,
2014).

The timeframe of this study spans from 2012 up to 2016. While it is desirable
to have an extended pre-treatment period, the sample begins in early 2012, as
only then, PM2.5 concentration readings are available for all control regions.
The policy was passed in September of 2013 resulting in respectively 20 and 28
months of pre- and post-intervention data.1

1For the purpose of this research, hourly data is aggregated to a monthly level.
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4.3 STL decomposition

Pollution readings exhibit a high degree of seasonality which needs to be ad-
dressed before carrying out the research. There are numerous ways in which
observations can be stripped of its seasonal component. Most commonly used
smoothing technique is the simple and exponential moving averages. This pa-
per takes a different approach in arriving to seasonally-adjusted data, namely
the Seasonal Trend decomposition by Loess (STL). This method developed by
Cleveland, Cleveland, McRae, and Terpenning (1990) splits the time series into
three components: trend, seasonal and remainder. STL has a number of advan-
tages over the moving averages decomposition, as it not only can handle any
type of seasonality but also allows the seasonal components to vary over time,
is robust to outliers, and doesn’t sacrifice any of the first and last observations.

Figure 2 illustrates the time series decomposition for Beijing observations.
The raw data is shown in the top panel, the second and third panels graph the
seasonal and trend component, respectively. The remainder, displayed in the
fourth panel is the residual variation. The trend indicates a decline in the ambi-
ent PM2.5 levels in late 2014, which is partially attributable to the air program.
In addition, Table 1 provides descriptive statistics for the seasonally-adjusted
particulate matter concentrations, the main variable of interest. Statistics sug-
gest that Shenyang had the highest average PM2.5levels, closely followed by
Beijing. These alarmingly high estimates are negative externalities of the heavy
industry located in Northeast China.

Figure 2: STL decomposition of Beijing PM2.5 observations
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Table 1: Descriptive statistics of the seasonally-adjusted PM2.5 concentrations

Average Median Std. Dev. Min Max

Beijing 82.14 74.90 9.40 59.54 86.63

Chengdu 75.11 76.40 8.95 56.11 89.09

Guangzhou 46.53 48.39 9.91 33.24 60.69

Shanghai 49.97 51.30 4.99 39.07 56.27

Shenyang 84.20 82.77 7.95 54.84 92.91

4.4 Predictor variables

The availability of data constraints the pre-treatment period for the depended
variable to 20 months preceding the intervention. Statistics on the predictor
variables are compiled from other sources allowing for an additional 11 years of
data. The primary goal of synthetic control is to approximate characteristics of
the treated unit during the pre-treatment period, hence extending the timeframe
should positively influence the precision.

4.4.1 Population density

Population density is first on the list of predictor variables for the PM2.5 pollu-
tion, as it is proven to be positively associated with particulate matter emissions
(He et al., 2001). The data on this variable is derived from the Chinese national
population surveys and considers metropolitan statistical area population den-
sities.

4.4.2 GDP per capita

Capita-adjusted GDP is the second predictor variable and is a commonly used
measure of financial development. Data on this variable originates from the
China statistical yearbooks and is measured in 2013 RMB. Economic advance-
ment is generally considered one of the primary driving forces behind the PM2.5

emissions (Guan et al., 2014) with a positive correlation between GDP values
and pollution readings (Selden & Song, 1994).

4.4.3 Meteorological indicators

Meteorological conditions greatly affect the fine particulate matter concentra-
tions implying that different weather conditions can induce different pollution
readings even if the underlying emissions are the same (Liang et al., 2015). Com-
monly, non-parametric models and Kernel statistical learning are used to ac-
count for meteorological factors. These are a powerful tool for weather-adjusting
the data but are beyond the scope of this paper. As pollution levels need to
ideally be compared under similar weather conditions, air temperature, wind
speed, and relative humidity are added to the list of predictor variables. Data
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on these variables is compiled from the Weather Underground weather service
website. Air temperature is argued to be positively correlated with the PM2.5

levels as the higher temperature can lead to slightly higher pollution readings
(Y. Liu, Franklin, Kahn, & Koutrakis, 2007). Wind speed is also proven to be
influential in studies on particulate matter pollution as wind transferred dust
greatly contributes to the PM2.5 concentrations (Hueglin et al., 2005). There-
fore, higher average wind speed can lead to an increase in particulate matter
pollution. Relative humidity is defined as the amount of ambient water vapor
as a percentage of volume needed for saturation. An increase in precipitation
with a consequent rise in relative humidity is proven to cause a decrease in
fine particulate matter concentrations through a process known as “scavenging”
(Liao, Chen, & Seinfeld, 2006).

4.4.4 Air pollution indicators

This paper primarily looks into the developments of fine particulate matter con-
centrations, but since ambient pollutants are typically intercorrelated, particu-
late matter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) are taken
into account. Annual statistics on these variables are derived from the China
statistical yearbooks and unlike PM2.5pollution, cover the entire pre-treatment
period. Particulate matter (PM10) generally exhibits a strong positive corre-
lation with fine particulate matter (Airborne Particles Expert Group, 1999).
Sulfur dioxide and nitrogen dioxide also show a positive correlation of 0.45
(Venners et al., 2003) and 0.70 (Beckerman et al., 2008), respectively.

4.4.5 Human impact indicators

Human activity is the leading cause of PM2.5 pollution. Hence, this paper con-
siders a number of consumption indicators of various energy sources, including
coal, coke, crude oil, gasoline, kerosene, diesel oil, natural gas, and electricity.
Data on this last group of variables is compiled from Chinese national bureau of
statistics. Natural gas is measured in cubic meters, electricity in kilowatt hours,
and the remaining predictors in kilograms.

Production and consumption of coal and crude oil are proven to be posi-
tively correlated with fine particulate matter levels and contribute greatly to
its composition (Ito et al., 2011). Traffic exhaust fumes are also a significant
source of PM2.5 pollution (De Kok, Driece, Hogervorst, & Briedé, 2006), as well
as electricity (Davidson, Phalen, & Solomon, 2005) due to its origin, which in
China lies primarily in non-renewable energy.

4.5 Descriptive statistics

Table 2 summarizes the descriptive statistics of the predictor variables. The
regions are vastly different in their characteristics and comparing Beijing to a
single control, or a simple weighted average is unlikely to yield accurate results.
Synthetic control estimation offers a solution by fine-tuning weights of untreated
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Table 2: Descriptive statistics of the predictor variables

Variable Average Median Std. Dev. Min Max

Population density 1548.20 1708.00 646.19 630.00 2177.00

GDP per capita 17872.80 19718.00 5274.01 11204.00 24230.00

Temperature 15.31 17.77 6.59 5.48 22.80

Relative humidity 63.54 61.02 6.41 58.29 73.11

Wind power 9.20 8.87 3.01 5.09 13.45

Particulate matter 100.16 110.00 17.17 80.00 116.00

Sulfur dioxide 42.20 41.30 3.49 39.90 48.40

Nitrogen dioxide 53.56 53.60 3.33 48.80 57.10

Coal 1940.58 1755.26 989.09 390.07 4151.06

Coke 248.71 217.11 206.34 15.60 784.25

Crude oil 631.95 519.95 468.59 4.67 1611.92

Gasoline 116.88 106.82 62.53 17.25 263.57

Kerosene 70.10 25.07 63.26 4.33 273.48

Diesel oil 129.96 121.01 65.35 19.40 279.22

Natural gas 160.53 128.56 144.51 1.41 746.94

Electricity 3446.11 3555.04 1406.27 625.80 6140.58

regions to construct a fitting comparison unit. The statistics display a high
degree of variation for the majority of the predictor variables, yet the most
striking inequalities are observed in the consumption of energy products with
standard deviations reaching values as high as 90% of the average. The air
pollution indicators, on the other hand, are moderately stable across regions.

5 Results

Figure 3 plots the development of fine particulate matter concentrations for Bei-
jing and the average of unaffected regions. During the entire pre-intervention
period, Beijing shows considerably higher PM2.5 concentrations compared to
the controls. Specifically, at the time of policy enactment, Chinese capital has
over 50% higher pollution level. Air quality begins to improve a year after
policy implementation as fine particulate matter levels in Beijing experience a
noticeably sharper decline compared to untreated regions. This development
serves as a preliminary indication of the policy effect. However, to accurately
assess the effectiveness of the program, a synthetic control which plots the the-
oretical PM2.5concentrations in Beijing in the absence of intervention needs to
be constructed. A fitting synthetic control is capable of clearly illustrating any
discrepancies caused by the policy.
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Figure 3: Trends in PM2.5 concentrations for Beijing and the average of control group

Table 3: Control region weights in Synthetic Beijing

Region Weight

Chengdu 0.40

Guangzhou 0.01

Shanghai 0.15

Shenyang 0.44

Table 3 provides the weights assigned to control regions which make up a
synthetic control unit. By design, these weights sum up to one. Beijing carries
the highest resemblance with the neighboring city of Shenyang, and Chengdu
follows in a close second place. Shanghai and Guangzhou appear to be vastly
different in their pre-intervention characteristics and as a result, end up in a
distant third and fourth place, respectively.

Table 4 compares the actual pre-treatment characteristics of Beijing with its
synthetic counterpart and the average of control regions. The estimates suggest
that the mean values of predictor variables in the unaffected areas don’t provide
a sufficiently accurate comparison. On average, the values of the control group
deviate from Beijing by 29.40%. The synthetic control unit offers an almost
three times more precise approximation with an average deviation of 9.96%.
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Table 4: Mean values of the predictor variables during pre-intervention period

Variable Beijing Synthetic Beijing Average of controls

Population density 1167.00 1474.00 1643.00

GDP per capita 20407.00 13651.76 17239.25

Temperature 12.53 12.50 16.01

Relative humidity 56.29 60.85 64.86

Wind power 8.72 8.56 9.36

Particulate matter 116.00 107.53 96.75

Sulfur dioxide 39.90 40.24 43.03

Nitrogen dioxide 56.20 54.49 52.90

Coal 1439.92 1476.42 2065.74

Coke 199.31 207.45 258.15

Crude oil 519.39 549.87 660.09

Gasoline 168.12 157.35 104.07

Kerosene 170.89 121.77 44.90

Diesel oil 96.51 106.56 138.33

Natural gas 337.68 286.50 114.90

Electricity 3819.93 3710.03 3352.66

Average deviation 0.096 0.294

Beijing is nearly identical to its synthetic counterpart in terms of air tempera-
ture, wind power, and sulfur dioxide concentrations. In general, every predictor
variable for the per capita GDP is more accurately approximated by the syn-
thetic control as compared to a simple average. The high difference in the GDP
values is directly induced by the composition of the counterfactual. The rela-
tively less wealthy Shenyang and Chengdu make up for 84% of the total resulting
in lower GDP value compared to when regions are weighted equally.

It is worth noting, that pioneering studies which made use of the synthetic
control method have generally accomplished a near perfect fit with less than
1% discrepancy in (Abadie et al., 2010), and 6% in (Abadie et al., 2015).2 It is
challenging to estimate a precise control unit due to a limited size of the donor
pool, and this is the best obtainable approximation. It is far from perfect, but
still sufficiently accurate to allow for plausible inferences with regard to the
policy effect, as illustrated in Figure 4 which plots the development of ambient
PM2.5 pollution for Beijing and its synthetic counterpart.

2Author’s calculations based on the mean values of predictor variables in the quoted studies.
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Figure 4: Trends in PM2.5 concentrations for Beijing and Synthetic Beijing

In contrast to equally weighted controls, synthetic Beijing tracks the trajec-
tory of real Beijing far more closely during the intervention period and provides
a reasonable approximation for the PM2.5 concentrations that would have been
observed in Beijing post-2013 in the absence of the air program. Due to the
developments in the Chinese environmental legislation, particulate matter pol-
lution trends are mostly downward sloping. Following the policy enactment
in September of 2013, Beijing PM2.5levels have remained virtually unchanged
for nearly a year. It isn’t uncommon for environmental programs to exhibit a
delayed impact, as established by among others, Popp (2003), and Divan and
Rosencranz (2001) who addressed the effectiveness of 1970 U.S. clean air act
and 1974 act on pollution prevention and control in India, respectively. The lag
is caused by the fact that the pollution-reducing measures, such as transmission
to sustainable energy and industry restructuring are time-consuming and pro-
vide gradual rather than instant results. Later part of the analysis highlights
the developments in the consumption of non-renewable energy in detail. One
thing is clear: in the absence of the region-specific policy, Beijing would have
still experienced an air quality improvement, albeit of a lesser magnitude.

On average, the policy has reduced the PM2.5 pollution by an additional
4.67 µg/m3per month, or 6.50% compared to the baseline level. Fine particulate
matter concentrations have dropped by a total of 24.11% since the policy effect
was first observed, but at most one-fifth of this reduction is directly attributable
to the region-specific program. The regional plan appears insignificant on its
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Figure 5: Gaps in PM2.5concentrations between Beijing and Synthetic Beijing

own, but in combination with the ongoing air quality improvement, the Jingjinji
program has undoubtedly contributed to Beijing’s pursuit of 60 µg/m3annual
threshold. The timeframe of this study doesn’t extend into 2018 as the respec-
tive data is not publically available yet. However, a proclaimed 39.6% reduction
certainly seems attainable based on the observed developments.

Lastly, Figure 5 looks at the policy effect from an alternative angel by plot-
ting the differences in PM2.5 levels between Beijing and its counterfactual. It is
possible that the observed differences are created artificially by the lack of fit
and are not indicative of policy effect. This concern is addressed in the following
section which compares Beijing gaps with those of the untreated regions.

6 Placebo studies and robustness checks

Placebo studies assess the robustness of the estimates by trying to answer the
question whether the results of comparable magnitude and direction could be
driven by chance. In this effort, the synthetic control method is applied to the
untreated regions, and if gaps similar to the one estimated for treated unit one
are observed, then analysis fails to provide sufficient evidence for the presence
of the policy effect. On the other hand, if the differences in Beijing observations
appear to be unusually large relative to the placebo gaps, then the program is
believed to have been effective in reducing the pollution.
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Figure 6: Gaps in PM2.5concentrations in Beijing and placebo gaps in control regions

Table 5: Ratios of post- and pre-intervention mean squared prediction errors

Region Ratio

Beijing 3.98

Chengdu 0.85

Guangzhou 2.37

Shanghai 1.12

Shenyang 2.86

Figure 6 shows the results of the placebo studies. Gray lines represent gaps
associated with the control regions measured as differences in PM2.5 levels be-
tween each unit and its synthetic counterpart. The black line represents Beijing
gaps borrowed directly from Figure 5. The latter appears to reach the highest
negative value in the post-intervention period with a 7.26 µg/m3 difference in
particulate matter pollution concentrations, which is over 2.5 times greater than
the value of the largest placebo gap. However, the precision of the placebo tests
leaves much to be desired. Hence, the unusually large positive gaps are most
likely caused by the lack of fit, as opposed to an intervention effect. A way
to assign goodness of fit values to these observations is the mean squared pre-
diction error (MSPE) which measures the magnitude of the gap between each
region and its synthetic counterpart. Note that a large post-intervention MSPE
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is not indicative of a significant policy effect if the pre-intervention MSPE is
also large. Intuitively, a high post-intervention prediction error is not indicative
of policy effect if the synthetic control doesn’t closely reproduce the outcome of
interest during the pre-treatment period.

Table 5 reports the ratios of post- and pre-intervention prediction errors,
and Beijing stands out with the post-intervention gap nearly four times as large
as the pre-intervention gap. To put it into perspective, Abadie et al. (2015)
have estimated a ratio of over 15, and Abadie et al. (2010) an impressive 130.
Consequently, this analysis can hardly be considered indicative on its own and it
remains challenging to accurately establish the significance of the policy effect.
While the synthetic control method is a more sophisticated way to gauge the
effectiveness of a policy, the difference-in-differences analysis can numerically
measure the statistical significance of an estimate.

7 Extensions

7.1 Significance of the estimates

In addition to outlining the general intuition behind the difference-in-differences
estimation, Appendix 2 specifies the parallel trend assumption necessary for the
unbiasedness of the DiD estimator. Figure 3 at the beginning of the results
section demonstrates its validity for the Beijing observations, as the time series
follow similar paths in the pre-intervention period. The difference-in-differences
estimation outlined in this section weights control regions both conventionally,
as well as according to synthetic control estimates.

Table 6 shows the regression results. The first thing to note is the significance
of policy effect coefficients in both weighting alternations. Secondly, the coef-
ficient of synthetically weighted regression which indicates a PM2.5 reduction
of 5.38 µg/m3 is similar to the estimate of a synthetic control method. Other
estimates also fall in line with the earlier observations. The time trend coeffi-
cient is negative and statistically significant. Moreover, the regional difference

Table 6: Results of the difference-in-differences analysis for PM2.5concentrations

Beijing PM2.5 levels Equal weights Synthetic weights Placebo time

Air action plan effect -4.515** -5.380*** -2.167

(1.938) (1.976) (1.540)

Time trend -10.160*** -9.010*** -13.075***

(1.181) (1.291) (1.314)

Regional difference 14.921*** 6.359*** 11.140***

(1.125) (1.170) (1.176)
R squared 0.497 0.783 0.364

Sample size 132 132 132

*p-value< 0.1, **p-value< 0.05, ***p-value < 0.01
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coefficient indicates that the PM2.5levels in Beijing are significantly higher com-
pared to control regions, especially when they are weighted equally. Besides, the
policy coefficient of a placebo policy of one year earlier is both smaller in value
and not statistically significant, indicating that there was no significant change
in PM2.5concentrations a year prior to the policy enactment. In conclusion, the
research presents sufficient empirical evidence to reject the null hypothesis that
the policy effect is not significantly different from zero.

7.2 Spatial displacement

Geographical displacement of a policy effect can violate the previously made
assumption of no inference between units. As Figure 8 illustrates, the most likely
candidate to benefit from the Beijing air program is the neighboring Shenyang.
Placebo tests assign treatment status to each of the control regions to assess
whether spatial diffusion has indeed occurred. Table 7 summarizes the results.
The coefficients were mostly to be expected: statistically significant negative
time trend and large variations in PM2.5concentrations across regions. Most
importantly, the policy effect coefficient for Beijing stands out as it not only is
statistically significant but also takes on the highest negative value. Guangzhou
also appears to have a highly significant negative coefficient of policy effect,
but a considerable distance between two regions makes it highly unlikely that
Guangzhou could have benefited from Beijing air program. Seemingly, neither
did Shenyang benefit from the pollution controls, as the coefficient is not only
relatively low in value, but also not statistically significant. Hence, the null
hypothesis concerning the policy effect on the PM2.5 levels in Shenyang cannot
be rejected as the associated coefficient appears not to be significantly different
from zero.

Figure 7: Geographical locations of the regions

18



Table 7: Results of the placebo difference-in-differences analysis

PM2.5 levels Beijing Shanghai Guangzhou Chengdu Shenyang

Policy effect -5.380*** 3.493* -1.494*** 5.282 1.012
(1.976) (2.018) (0.868) (2.050) (0.302)

Time trend -9.010*** -11.819*** -8.210** -8.650** -11.671***

(1.291) (1.383) (1.183) (1.044) (1.188)

Regional difference 6.359*** -19.253*** -14.456*** 9.530** 28.176***

(1.170) (1.409) (0.972) (1.588) (1.066)

R squared 0.783 0.747 0.832 0.639 0.578

Sample size 132 132 132 132 132

*p-value< 0.1, **p-value< 0.05, ***p-value < 0.01

7.3 Mechanisms behind the reduction

The study has successfully established the significance of the effect of Beijing air
program on ambient particulate matter pollution. The final step is to determine
the factors which have contributed to the observed changes in PM2.5 levels. The
last part of the analysis takes a close look at the consumption of some of the
non-renewable energy products, considered earlier as predictor variables. Table
8 shows the results of difference-in-difference estimation for each energy prod-
ucts. Firstly, the air policy enactment has seemingly influenced consumption
of the majority of considered variables, with only gasoline consumption staying
unaffected. That is likely to due it being highly inelastic in short- and mid-run,
as it is used in cars. The time trend coefficients show an increase in consumption
across the board with only the coefficient of diesel oil consumption not being
statistically significant. Lastly, Beijing differs significantly from other regions in
consumption of all but one energy product, namely the electricity.

While regression estimates provide a way to make inferences with regard to
the significance of the effects, it doesn’t offer a suitable framework to compare
consumption changes. Table 9 shows the percentage differences for the consid-
ered variables in Beijing, a control region and the difference in differences which
indicates the program effect. Following the passage of the air program, Beijing
has significantly reduced its consumption of heavy industrial products, namely
coal, coke, crude oil, and diesel oil. The utilization of gasoline, kerosene and
natural gas, on the other hand, has increased. If all products are considered to
contribute to PM2.5 pollution evenly, then Beijing has reduced the average con-
sumption by 47.85%. Of course, not every form of energy is equally polluting,
but a precise analysis of the contribution of each is beyond the scope of this
paper. The main takeaway is that following the policy implementation, Beijing
has adjusted its energy structure by reducing consumption of coal and coke in
favor of low-carbon natural gas, the result which lies in line with the predictions
of previous studies Feng, Chen, and Zhang (2013).

19



T
ab

le
8:

C
h
an

ge
s

in
th

e
co

n
su

m
p
ti
on

of
n
on

-r
en

ew
ab

le
en

er
gy

p
ro

d
u
ct

s

V
ar

ia
b
le

C
oa

l
C

ok
e

C
ru

d
e

oi
l

G
as

ol
in

e
K

er
os

en
e

D
ie

se
l
oi

l
N

at
u
ra

l
ga

s
E

le
ct

ri
ci

ty

A
ir

ac
ti
on

p
la

n
eff

ec
t

-1
39

8.
86

7*
**

-2
86

.1
07

**
-2

63
.5

04
**

*
-1

2.
16

1
81

.7
84

**
-6

8.
36

1*
**

27
7.

68
9*

**
-7

85
.8

06
**

*

(1
95

.7
48

)
(4

0.
75

1)
(5

3.
11

5)
(1

7.
49

3)
(1

7.
02

6)
(1

5.
23

3)
(6

7.
49

4)
(3

13
.2

77
)

T
im

e
tr

en
d

35
2.

13
3*

**
10

1.
75

7*
**

16
5.

20
5*

*
64

.7
85

**
*

18
.3

58
**

*
54

.2
86

10
2.

30
4*

*
15

86
.4

78
**

(1
30

.8
67

)
(2

8.
00

4)
(4

3.
17

1)
(1

2.
35

2)
(3

.7
73

)
(1

3.
62

2)
(1

4.
82

1)
(2

64
.4

06
)

R
eg

io
n
al

d
iff

er
en

ce
-6

89
.6

42
**

*
-8

7.
23

7*
*

-2
93

.9
84

**
*

62
.9

12
**

*
12

5.
69

1*
*

-4
7.

98
1*

**
20

5.
17

0*
**

34
8.

57
6

(1
58

.9
03

)
(4

0.
20

8)
(3

9.
21

5)
(1

5.
99

5)
(1

3.
89

5)
(1

4.
79

8)
(3

7.
23

2)
(2

94
.3

12
)

R
sq

u
ar

ed
0.

70
1

0.
59

2
0.

79
6

0.
52

1
0.

84
9

0.
60

3
0.

77
9

0.
55

2

S
am

p
le

si
ze

13
6

13
6

13
6

13
6

13
6

13
6

13
6

13
6

*
p
-v

a
lu

e
<

0
.1

,
*
*
p
-v

a
lu

e
<

0
.0

5
,
*
*
*
p
-v

a
lu

e
<

0
.0

1

T
ab

le
9:

P
er

ce
n
ta

ge
ch

an
ge

s
in

th
e

co
n
su

m
p
ti
on

of
n
on

-r
en

ew
ab

le
en

er
gy

p
ro

d
u
ct

s

V
ar

ia
b
le

C
oa

l
C

ok
e

C
ru

d
e

oi
l

G
as

ol
in

e
K

er
os

en
e

D
ie

se
l
oi

l
N

at
u
ra

l
ga

s
E

le
ct

ri
ci

ty

B
ei

ji
n
g

-0
.6

44
-0

.9
62

-0
.1

83
0.

33
1

0.
65

4
-0

.1
42

1.
40

4
0.

21
8

C
on

tr
ol

0.
15

2
0.

36
4

0.
19

9
0.

67
5

0.
66

7
0.

36
9

1.
56

3
0.

47
6

D
iff

er
en

ce
-i
n
-d

iff
er

en
ce

s
-0

.7
96

-1
.3

26
-0

.3
82

-0
.3

44
-0

.0
13

-0
.5

12
-0

.1
59

-0
.2

59

20



8 Discussion and conclusion

8.1 Main findings

This paper has utilized a synthetic control method to evaluate the impact of 2013
Beijing region-specific air program on the PM2.5 pollution levels by comparing
the pre-program concentrations to the post-program concentrations, while also
accounting for the overall trend. Synthetic control approach has allowed this
study to utilize a more similar control region for Beijing than a difference-in-
differences analysis would, whereas the latter has provided numerical estimates
for the significance of the policy effect.

Empirical estimates suggest that following the implementation of the air
program, fine particulate matter pollution has experienced a noticeable decrease
in Beijing, relative to the control regions, as Beijing had on average 4.67 µg/m3

lower PM2.5 levels. Overall, the pollution levels have dropped by 24.11%, but
only one-fifth of this decrease can be owed to the regional policy. The difference-
in-difference analysis provides a similar estimation, in addition to confirming
the statistical significance of the policy effect. Generally, when the ongoing
downward trend and the effect of a policy are jointly considered, the PM2.5

levels could have surely dropped by proclaimed 39.6% in 2018, in addition to
falling below the 60 µg/m3 threshold. A look into the consumption of non-
renewable energy products has revealed that Beijing underwent a transaction
in its final energy composition by switching from carbon-rich coal and coke to
less polluting natural gas.

This paper contributes to the ever-expanding archive of literature on Chi-
nese air pollution, but the first one to utilize the synthetic control method to
evaluate air program effectiveness. The main conclusion of this study is that the
Jingjinji regional program did, in fact, significantly contribute to the improve-
ment of Beijing air quality by effectively reducing the fine particulate matter
concentrations.

8.2 Limitations and further research

The main limiting factor encountered by this research is the limited availabil-
ity of data. Under ideal circumstances, the timeframe of the study should
be expanded to include a greater number of observations as the length of the
pre-intervention period positively impacts the integrity of the synthetic control
estimation. Likewise, a restricted number of control regions has provided only
a moderate synthetic unit approximation, which can be enhanced by a larger
donor pool. Besides, an economic evaluation of the program which weights im-
plementation and other various costs up against the monetary value of human
lives saved is worth considering. In addition, assessment of policy effect based
on the official government data could provide curious insights regarding various
omitted variables. Government corruption is a major problem in a modern-day
China and could be an influential factor.
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Appendix 1: Synthetic control method implementation

This appendix elaborates upon the implementation of synthetic control method
using synth package in R. First, let Ui be a (r × 1) vector of observed covariates
for each unit and let K = (k1, . . . , kT0

)′ be a (T0 × 1) vector that denotes a linear

combination of pre-intervention outcomes Y
K

i =
∑T0

s=1
ksYis, which is used to

to control for unobserved common factors with time-varying effects. To imple-
ment the synthetic control method numerically, difference between the treated
unit and its synthetic counterpart is defined by combining characteristics of the

exposed unit in a (k × 1) vector X1 =
(

U
′

1, Y
K1

1 , . . . , Y
KM

1

)′

and the absolute

distance between X1 and X0W subject to a weight constraint. Specifically,
synth solves for an optimal vector of weights W ∗ that minimizes

||X1 −X0W ||v =
√

(X1 −X0W )′ V (X1 −X0W )

where V is a (k × k) symmetric semidefinite matrix which allows for different
weights of the variables in X0 and X1 depending on their power of predicting
the outcome. While synth permits manual choice of weights for the predictor
variables, this paper employs a data-driven procedure, similarly to Abadie and
Gardeazabal (2003), which generates V ∗ such that the mean squared prediction
error (MSPE) of the synthetic control estimator is minimized over the pre-
intervention period.
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Appendix 2: Difference-in-differences estimation

This appendix outlines the intutition behind the difference-in-differences esti-
mation. To set the notation, let I = 0, 1 indicated the treatment status, where
0 refers to the control group of Chinese regions unaffected by the intervention,
and 1 refers to Beijing. Particulate matter concentrations are assumed to be
observed during two periods t = 0, 1 where 0 indicates the time period prior
to the implementation of the air program, and 1 the period after it has been
implemented. Observed PM2.5values are indexed by i = 1, . . . , N . Lastly, Bei-
jing pre- and post-intervention average particulate matter concentrations are
denoted as Y I

0 and Y I
1 , respectively. Similarly, Y C

0 and Y C
1 refer to pre- and

post-intervention averages of the control regions. These outcomes are given by
the following equation:

Yi = α+ βIi + γti + δ(Iiti) + εi

Here, α is the constant term, β is the effect specific to the treated unit, γ is
the common time trend, δ is the true effect of the intervention, and ε is the
error term. For δ to provide an unbiased estimation, ε needs to have an average
expected value of zero and to be uncorrelated with the other variables in the
equation. The latter is known as the parallel-trend assumption and is crucial for
the DiD estimation. Consider cov(εi, Iitt) = E(cov(εi, Iitt)) = ϕ. If Yi follows a
different trend for the treatment and the control group, respectively γI = γ+ϕ,
and γC = γ, the estimated intervention effect will be biased:

E(δ̂DiD) = (γI + δ)− γC = γ + ϕ+ β − γ = δ + ϕ

A DiD estimator takes the difference between a difference in average outcome
in the treatment and controls groups prior- and post-intervention:

δ̂DiD = (Y I
1 − Y I

0 )− (Y C
1 − Y C

0 )

Consequently, δ̂DiD can be rewritten in terms of expected values:

δ̂DiD = (E(Y I
1 )− E(Y I

0 )) − (E(Y C
1 )− E(Y C

0 ))

δ̂DiD = (α+ β + γ + δ)− (α+ β)− (α+ γ)− γ

δ̂DiD = (γ + δ)− γ

δ̂DiD = δ
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