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Abstract

This paper introduces a new approach for estimating mutual fund performance that simulta-

neously controls for both factor model betas and firm characteristics. Our double-adjusted

performance measure is motivated by growing concerns in the literature regarding the ability of

traditional Fama-French factor models to adjust returns for the main anomalies. We propose a

hierarchical Bayes approach to model conditional multi-factor model alphas as a linear combina-

tion of firm characteristics. We find that traditional alphas are significantly associated with firm

characteristics, even when the factor model explicitly adjusts returns for those characteristics.

Double-adjusted performance provides new evidence of mutual fund performance persistence, as

we remove the noisy component of performance associated with passive loadings on character-

istics. Moreover, we find that previous relations between traditional performance estimates and

specific fund features, e.g., mutual fund selectivity and mutual fund flows, are partially driven

by the characteristic component of performance.

Keywords: Mutual fund performance, double-adjusted performance, firm characteristics, hier-

archical Bayes
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1 Introduction

Most studies on the performance evaluation of mutual funds resort to factor models such as the

Capital Asset Pricing Model (CAPM) or the model of Carhart (1997). Recently, the beta-pricing

relation underlying these models have been put under scrutiny, as the empirical asset pricing lit-

erature has looked beyond a unilateral explanation of cross-sectional variation in returns by factor

exposures (betas). Instead, considerable evidence indicates that individual firm characteristics such

as market capitalization, book-to-market ratios, and past returns are better predictors of expected

asset returns. This calls into question the usage of standard factor models to evaluate mutual fund

performance.

The drivers behind asset returns have been a staple of modern finance. The CAPM has become a

pivotal model in asset pricing theory, explaining asset returns solely by the exposure to the market.

Later, considerable evidence of cross-sectional patterns (so-called anomalies) in asset returns raised

doubts about the CAPM. Size (Banz, 1981) and book-to-market (Fama & French, 1992) effects

arose; returns on stocks with a small market capitalization have historically exceeded returns on

stocks with a large market capitalization, and high book-to-market (value) stocks displayed better

performance relative to low book-to-market (growth) stocks. Jegadeesh & Titman (1993) document

price momentum, as past winning stocks show strong abnormal performance relative to past losing

stocks. Moreover, recent literature find high abnormal returns obtained by high quality stocks.1

Several prominent studies have proposed multi-factor models, which incorporate risk factors that

can parsimoniously account for the aforementioned anomalies simultaneously. In particular, Fama

& French (1993) advocate a three-factor model that includes risk factors adjusting for size- and

value-effects. The size and value factors are the excess returns on the factor-mimicking portfolios

for market capitalization (small minus big, SMB) and book-to-market (high minus low, HML),

respectively. Carhart (1997) adds the momentum factor, WML, which is the return spread between

past winning stocks and past losing stocks. Fama & French (2015) have proposed the profitability

(robust minus weak, RMW) and investment (conservative minus aggressive, CMA) factors.

Despite the widespread use of these multi-factor models, we beg the question whether the risk

factors fully account for the anomalies underlying these factors. Recent studies have shown that

stock returns with high factor betas do not necessarily imply high values for the corresponding

1Quality is measured by accruals in Bender & Nielsen (2013) and by profitability, stable growth, and a high payout
ratio in Asness et al. (2014).
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firm characteristics underlying these factors.2 Similar to the evidence on stock returns, we find

that mutual fund factor betas and holdings characteristics are correlated, and the correlations are

modest in magnitude (e.g., the average of the absolute value is roughly 0.4), implying that factor

betas and characteristics do not convey identical information. Moreover, Brennan et al. (1998) find

that characteristics explain the cross-section of risk-adjusted returns (alphas), while Busse et al.

(2017) reach the same conclusion using the returns of mutual funds.

This paper applies previous findings of both factor betas and firm characteristics explaining

cross-sectional variation in stock returns to the returns of mutual funds. In the context of mu-

tual fund performance we propose a novel performance measure that controls for both types of

exposures. Specifically, we decompose alpha into two components: (1) characteristic-driven per-

formance, the component which is associated with passive loadings on firm characteristics and (2)

our double-adjusted performance measure, which we define as the difference between alpha and

characteristic-driven performance. To do this, we propose a hierarchical Bayes approach to simul-

taneously estimate (1) conditional factor model parameters for each fund using daily returns in a

rolling-window scheme, (2) the cross-sectional relation between conditional alphas and firm char-

acteristics in each month, and (3) the systematic relation between alphas and firm characteristics

across the entire sample period. The main advantage of our approach is the simultaneous estimation

of the model which mitigates the measurement error problem the traditional two-pass procedures

are prone to (e.g., Brennan et al. (1998), Avramov & Chordia (2006) and Busse et al. (2017)).

To understand the importance of adjusting fund performance to characteristics, consider the

following example. Assume that we estimate the Carhart four-factor model for a certain fund

and obtain an estimated monthly alpha of 10 basis points. Now consider that this fund follows

a momentum strategy, and further suppose that it is common knowledge that in the universe

of mutual funds, the momentum premium earned by funds exceeds that projected by the WML

factor (see, Huij & Verbeek (2009)). This implies that the momentum factor under-adjusts for

momentum effects, such that fund managers can generate alpha by simply taking positions in high

momentum stocks. That is, the four-factor model “falsely” awards superior skill to funds following

a momentum strategy, which is not founded on special information or skill to exploit mispricing.

Thus, it is important to properly adjust for exposures to these investment styles to evaluate the

fund manager’s true skill and, in turn, managerial compensation.

2Chordia et al. (2015) and Chen et al. (2018) both find that the cross-sectional correlations between factor betas
and underlying characteristics of stocks are below 0.5 in absolute value.
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In the first part of this paper we use the net shareholder returns for a sample of actively

managed U.S. domestic equity mutual funds to run monthly cross-sectional regressions (CSRs) of

mutual fund returns on factor betas and characteristics. We aggregate the firm characteristics

of a fund’s holdings to compute aggregate monthly fund-level characteristics. The factor betas

are estimated from the CAPM, the Fama-French three- and five-factor models, and models which

added the momentum factor to the Fama-French factors. Since factor betas are estimated with

error, the CSRs are inherently subject to the errors-in-variable bias (EIV bias), which leads to a

negative bias in estimated risk premia. We address the EIV bias with the EIV-corrected estimator

of Chordia et al. (2015). The cross-sectional regressions provide evidence that market capitalization

and momentum return yield economically significant coefficients, even in a joint model with the size

and momentum betas. The estimated risk premia of all factor betas decrease in magnitude when

their underlying characteristics are added to the model. Moreover, we find that factor betas and

characteristics both account for about half of the model explained variation.

In the second part of this paper we use the hierarchical Bayes approach to adjust alphas for

five characteristics over the period 2001 to 2016: market capitalization, book-to-market, momen-

tum, operating profitability, and asset growth. When we examine the relation between conditional

Fama-French six-factor alphas and each characteristic in isolation, we find that each characteristic

except operating profitability is significantly related to alphas. Considering all characteristics si-

multaneously we find that estimates are similar to the corresponding univariate estimates. When

we estimate the relation between alphas and characteristics using the traditional OLS two-step pro-

cedure, we find insignificant relations between alphas and the size and momentum characteristics.

To ensure the robustness of our results, we estimate the Bayesian model for the other multi-factor

models (mentioned above). The results are qualitatively similar across factor models, such that

we find statistical significance for all characteristics except operating profitability. Thus, funds can

exhibit higher relative performance based on standard factor model alpha by passively loading on

characteristics, even when these factor models explicitly adjust returns for those characteristics.

In the third part of this paper we analyze the impact of our double-adjusted performance measure

on previous studies examining relative mutual fund performance. To provide an indication of the

impact of the characteristic-adjustment of alpha on relative performance, we find that the median

change in percentile performance ranking is roughly 9%. That is, a fund ranked in the median

percentile according to six-factor alpha would be ranked in the 41th or 59th percentile based on

our double-adjusted measure. Furthermore, we find that a large number of funds exhibit dramatic
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changes in percentile ranks, with 10 (5) percent of funds exhibiting a mean change in percentile

ranking greater than 22.99% (27.24%).

One can anticipate that changes in relative performance of this magnitude might alter inference

regarding relative mutual fund performance, which in the majority of past literature has been

based on Fama-French alphas. Central to the mutual fund literature are studies on persistence

in fund performance (e.g., Carhart (1997), Bollen & Busse (2004)). When we adjust performance

for both factor exposure and characteristics, we find that our new performance measure predicts

post-ranking performance up to six years. In line with the results of Busse et al. (2017), the

double-adjusted performance measure reflects true skill, which persists in the long run such that

the documented persistence in standard alpha is mostly attributable to the component of alpha

corrected for loadings on characteristics. In addition to performance persistence, past literature

on relative fund performance also includes numerous studies which examine the relation between

fund performance and a specific fund feature, such as a fund’s factor model R-squared (Amihud &

Goyenko, 2013), or the capital flow of a fund (Barber et al., 2016), among others. We replicate parts

of the analysis of these two studies using our decomposition of alpha as performance measures. We

find that the inverse relation between fund performance and R-squared found in the original study is

mostly driven by the characteristic-driven component of alpha. Similarly, we find that components

of alpha driven by size and momentum characteristics are significant predictors of future fund flows,

suggesting that investors tend to these characteristics when assessing fund performance.

Our paper has a niche in the intersection between the asset pricing literature and the mutual

fund performance literature. Fama & French (1993) and Davis et al. (2000), among many others,

argue that it is factor betas that explain expected returns, while Daniel et al. (1997) contend that

it is characteristics. Brennan et al. (1998) is the forerunner in the literature which considers both

factor betas and characteristics explaining returns. Their main finding was that characteristics

such as market capitalization and book-to-market ratio explained deviations from the Fama-French

three-factor model. This study paved the way for others, including the work of Chordia et al. (2015),

which was the first study to directly evaluate the fraction of explained variance of both factor betas

and characteristics in a joint model. Inspired by their work are the cross-sectional regressions in this

paper, however, we know of no study which analyze the role of factor betas and characteristics in

explaining the returns of mutual funds in a joint model. Our analysis shows that previous findings

of firm characteristics explaining a large fraction of the variation in expected stock returns can be

extended to the returns of mutual funds.
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The closest work to this paper is Busse et al. (2017), who construct a performance measure

adjusting for both factor betas and characteristics, and study the implications of their double-

adjusted measure on previous findings in the mutual fund literature. The setup and goal of this

paper are similar, but the execution differs in a number of ways. The first part of our paper serves

as a theoretical foundation for the characteristic-adjustment of alpha by examining the relation

between fund returns and characteristics in greater detail. Moreover, our paper extends the double-

adjusted performance measure with the profitability and investment factors. Jordan & Riley (2016)

advocate the use of these quality factors as they uncover more distinct patterns in mutual fund

performance which are masked when using three- or four-factor alphas. Most importantly, our

Bayesian estimation does not only circumvent the measurement error problem from the two-step

OLS procedure in Busse et al. (2017), it also increases precision of alpha estimates by exploiting

cross-sectional information. Finally, our Bayesian estimation benefits from combining data sampled

at different frequencies, similar to the hybrid estimator proposed by Cosemans et al. (2015) for

modelling conditional factor betas.3 By using daily returns, we obtain more precise rolling factor

beta estimates than those used in the majority of previous studies which are based on monthly

returns.

This paper proceeds as follows. Section 2 describes the data set and the construction of the fund-

level characteristics. Section 3 presents the cross-sectional regressions of mutual fund returns on

factor betas and characteristics. Section 4 describes our hierarchical Bayes approach to obtain our

double-adjusted performance measure. Section 5 examines the implications of this new performance

measure on previous findings in the mutual fund literature. Section 6 contains robustness checks.

Finally, Section 7 concludes.

2 Data

This section describes our data set and sample selection criteria, followed by summary statistics

for the mutual fund sample including the firm characteristics obtained from the holdings of mutual

funds.

3An attractive feature of both our models is the use of daily returns to obtain rolling estimates from a multi-factor
model and the use of cross-sectional data at a monthly frequency. Apart from the fact that Cosemans et al. (2015)
condition factor betas rather than alpha on a set of conditioning variables, they also specify a time-invariant relation
between the factor betas and conditioning variables, whereas we allow the relation between alpha and characteristics
to vary across time.
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2.A Data Selection

The mutual fund database is constructed by combining the Center for Research in Security Prices

(CRSP) Survivor-Bias-Free U.S. Mutual Fund database with the Thomson Reuters Mutual Fund

Holdings S12 database, formerly known as CDA/Spectrum. To combine these databases, we rely on

the MFLINKS database provided by Russ Wermers on Wharton Research Data Services (WRDS).

The main focus is on U.S. equity actively managed mutual funds, for which the data on holdings is

the most complete and reliable; we eliminate balanced, bond, money market, international, index,

and sector funds, as well as funds not invested primarily in common stocks (for details on our

selection, see Appendix A).

We obtain both monthly and daily mutual fund returns from the CRSP mutual fund database.

Additional stock-level information on the fund holdings are retrieved from the CRSP monthly stock

file and the Compustat database. Consistent with previous literature, this study only considers

common stocks traded on the New York Stock Exchange (NYSE), American Stock Exchange and

NASDAQ; we excluding real estate trusts, foreign companies, closed-end funds and primes (we only

retain shares codes 10 or 11). The final database for the empirical analysis consists of monthly

panel data on mutual fund holdings at the intersection of CRSP, Compustat and Thomson Reuters,

spanning the period from January 2001 to December 2016.

2.B Mutual Fund Holdings Characteristics

For each stock in a fund’s portfolio, we obtain firm characteristics, including market capitaliza-

tion, book-to-market ratio, momentum return, operating profitability and asset growth. Market

capitalization (Mcap) is defined as the product between the previous month-end stock price and

the previous month-end total shares outstanding. Book-to-Market (B/M) is the ratio between the

most recently available book value of equity and the previous month-end market capitalization.4

Momentum (Mom12) is the past twelve-month cumulative return over the period from month t−12

to t − 2, where the most recent month is excluded to avoid short-term reversal effects. Operating

profitability (Profit) is the current revenues minus costs of goods sold, interest expense, selling,

general, and administrative expenses, divided by book equity for the last fiscal year t − 1. Asset

growth (Invest) is the percentage change in total assets from fiscal year t − 2 to fiscal year t − 1.

4We supplement the book values from Compustat with hand-collected data provided by Moody’s. It includes
the data used in Davis et al. (2000) and contains data ranging from 1926 to 2001. The data is available on
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 1: Summary statistics of equity mutual fund sample

This table presents the summary statistics for the equity mutual funds sample over the period
January 2001 to December 2016. Panel A reports statistics on the sample size. Panel B reports
additional information on the funds. Panel C reports the cross-sectional distribution of
characteristics averaged across all sample months. We weight each firm characteristic according to
its current portfolio weight and calculate a fund’s portfolio-weighted average characteristic.
Market capitalization (Mcap) is the product between the previous month-end stock price and the
previous month-end total shares outstanding. Book-to-Market (B/M) is the ratio between the
most recently available book value of equity and the previous month-end market capitalization.
Momentum (Mom12) is the past twelve-month cumulative return excluding the most recent
month. Operating profitability (Profit) is the current revenues minus costs of goods sold, interest
expense, selling, general, and administrative expenses, divided by book equity for the last fiscal
year t− 1. Asset growth (Invest) is the percentage change in total assets from fiscal year t− 2 to
fiscal year t− 1. Panel D reports the time series averages of the cross-sectional distributions of
six-factor betas, which are estimated from rolling time series regressions using the past two years
of daily fund returns. Panel E reports the time series averages of the cross-sectional correlations
between factor betas and characteristics.

Mean
25%
percentile

Median
75%
percentile

Standard
deviation

Panel A: Observations
Number of distinct funds 2,871
Number of fund-report dates 92,903
Number of fund-month dates 314,362
Number of distinct stocks 7,952

Panel B: Fund characteristics
Fund age 22.90 15.76 19.96 25.38 12.33
Fund monthly net return (in %) 0.51 -2.08 0.99 3.60 5.12
TNA (total net assets) (in millions) 1,341.43 56.00 220.00 863.10 5,335.74
Expense ratio (in %) 1.24 0.97 1.19 1.45 0.63
Turnover ratio (in %) 83.19 34.00 62.00 105.00 101.68

Panel C: Fund holdings characteristics
Mcap (in millions) 44,475.74 3,792.98 43,016.63 78,966.25 39,731.13
B/M 0.46 0.32 0.44 0.56 0.16
Mom12 (in %) 17.12 9.15 14.89 22.86 12.13
Profit 0.46 0.35 0.42 0.50 0.24
Invest 0.09 0.07 0.09 0.12 0.04

Panel D: Rolling window fund six-factor betas
βMKT 0.98 0.94 0.99 1.03 0.10
βSMB 0.20 -0.08 0.07 0.46 0.34
βHML 0.00 -0.16 0.01 0.16 0.21
βWML 0.02 -0.05 0.01 0.09 0.12
βRMW -0.06 -0.17 -0.02 0.09 0.21
βCMA -0.04 -0.15 -0.02 0.10 0.21

We assume that all the accounting variables, e.g., book value of equity, operating profitability and

asset growth, are publicly available six months after the fiscal year-end.
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For each fund in our sample, we use individual stock holdings to compute the monthly fund-level

market capitalization, book-to-market ratio, momentum return, operating profitability, and asset

growth. We weight each firm characteristic according to its current portfolio weight and calculate

a fund’s portfolio-weighted average characteristic. For each characteristic, values greater than the

0.995 percentile or less than the 0.005 percentile are set equal to the 0.995 and the 0.005 percentiles

each month.

Table 1 reports statistics on the characteristics and the factor betas. Each month, we calculate

the cross-sectional mean, standard deviation and percentiles for each characteristic and factor beta.

We report the time series averages of the monthly cross-sectional distribution for characteristics in

Panel C and for factor betas in Panel D. The factor betas are estimated from a six-factor model

which augments the Carhart (1997) four-factor model with the profitability and investment factors

from Fama & French (2015).5 The factor betas are derived from rolling-window regressions using

daily returns of the past two years.

Panel E of Table 1 reports the cross-sectional correlations between the factor betas and the

characteristics averaged across all sample months. Conform to expectations, the betas for SMB

and CMA are negatively correlated with their underlying characteristics, while the betas for HML,

WML, and RMW are positively correlated with their underlying characteristics. The correlations

vary in magnitude, with the highest correlations for the size and value factors (-0.82 and 0.75), the

momentum and investment factors yield slightly lower correlations (0.57 and -0.47), and a modest

correlation of 0.14 for the profitability factor. These correlations suggest that there is substantial

independence in variation of the factor betas and their underlying characteristics, such that both

variables do not convey identical information on the expected return. As a consequence, regressing

fund returns on the risk factors may not fully adjust performance for the main anomalies.

5The risk factor returns for all factor models are provided on Ken French’s Website.
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Table 1 (Continued)

Panel E: Cross-correlations between six-factor betas and characteristics

βSMB βHML βWML βRMW βCMA Mcap B/M Mom12 Profit Invest
βMKT 0.096 -0.093 0.113 -0.204 -0.173 -0.023 -0.114 0.170 -0.004 0.077
βSMB 0.095 0.043 -0.142 -0.075 -0.816 0.110 0.283 -0.255 -0.064
βHML -0.315 0.610 0.328 -0.042 0.746 -0.236 -0.079 -0.452
βWML -0.231 -0.270 -0.054 -0.469 0.568 0.103 0.191
βRMW 0.361 0.246 0.367 -0.283 0.136 -0.274
βCMA 0.049 0.354 -0.215 -0.004 -0.470
Mcap 0.049 0.354 -0.215 -0.004
B/M -0.363 -0.189 -0.486
Mom12 -0.003 0.054
Profit 0.049

3 Explaining Mutual Fund Returns: Betas vs. Characteristics

In this section, we examine the role of both factor betas and firm characteristics in explaining the

returns of mutual funds. For this purpose we run cross-sectional regressions of individual mutual

fund returns on their factor betas and characteristics. We conduct the traditional two-pass procedure

of Fama & MacBeth (1973) with rolling estimation of factor betas. To address the inherent errors-

in-variables (EIV) bias, we use the EIV-corrected estimator of Chordia et al. (2015). Using the

metric of Lindeman & Lindeman (1980), we obtain the relative contributions of factor betas and

characteristics to the explanatory power of the joint model.

3.A Two-pass Procedure

An asset pricing model seeks to explain the cross-section of expected asset returns in terms of their

covariances with certain risk factors. Let Ft = [F1t,...,FKt]’ be a K × 1 vector of observed factors

at time t and let Rit be the return of fund i in excess over the market return. Assume that asset

returns are governed by the following factor model:

Rit = αi + β′iFt + εit, (1)

where αi is the asset return unexplained by the factor model, βi = [βi1,...,βiK ]’ is a K × 1 vector

with factor loadings (betas), and εit are the model residuals.

Many empirical tests of asset pricing models employ the Fama & MacBeth (1973) two-stage

regression to test whether risk factors bear a risk premium in the cross-section of assets. Considering

the possibility that the zero-beta rate differs from the risk-free rate, a general specification of a K-
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factor asset pricing model can be written as

Et−1(Rit) = γ0t + β′it−1γ1t, (2)

where Et−1(Rit) are expected excess returns, γ0 is the excess zero-beta rate over the risk-free rate,

and γ1 is a K × 1 vector of risk premia. The superscript t− 1 denotes that βit−1 is estimated with

excess returns up until time t− 1.

The first stage of the Fama-MacBeth procedure is to estimate the factor betas through time

series regressions in a factor model as presented in Eq.(1). In this regression we can include the

entire time series (Jensen et al., 1972) or rolling windows (Fama & MacBeth, 1973). We use the

latter approach as this allows for time variation in factor betas. This paper employs a rolling

window length of two years for the estimation of factor betas. Employing a shorter period of time

increases the estimation error in the factor betas, while a longer period leads to a slow variation in

the factor betas. The second stage of the Fama-MacBeth procedure is to obtain risk premiums of

the estimated factor betas. This entails a cross-sectional regression of excess returns on estimated

factor betas at each time t, as displayed by Eq.(2). The time series average of these estimates yields

the overall estimated risk premia. We consider models with constant risk premia as this is more

accustomed in existing literature.

3.B Cross-sectional Regressions

We estimate the risk premia harvested by funds following the Fama & MacBeth (1973) two-pass

procedure described in Section 3.A. Estimated factor betas will serve as explanatory variables

alongside characteristics underlying these factors in monthly cross-sectional regressions. For each

fund i in a given month t, we estimate Eq.(1) using past daily returns over a period of two years

ending with month t − 1. This results, given Nt individual funds, into a Nt × K matrix of esti-

mated factor betas B̂t−1. In addition, let Zt−1 be a Nt × L matrix of lagged characteristics. The

characteristics (Z) include the logarithm of market capitalization (Mcap), the logarithm of book-to-

market ratio (B/M), the logarithm of one plus the past twelve-month cumulative return (Mom12),

operating profitability (Profit), and asset growth (Invest). Beginning with the second month of our

sample, risk premia are estimated over the period February 2001 to December 2016, consisting of

191 months.

For the monthly cross-sectional regressions, define the matrix of (lagged) regressors in month t
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as

X̂t−1 = [1Nt B̂t−1 Zt−1], (3)

where 1Nt is a Nt × 1 vector of ones. Each month, we define a 1 × (1+K+L) vector of coefficient

estimates as Γ̂t = (γ̂0t, γ̂1t, γ̂2t), where γ̂0t is the zero-beta rate, γ̂1t contains the risk premia on

factor betas, and γ̂2t contains the coeffcients on characteristics. The OLS estimator is given by

Γ̂OLSt = (X̂ ′t−1X̂
′
t−1)−1X̂ ′t−1Rt, (4)

where Rt is a Nt × 1 vector of excess fund returns. The time series average of Γ̂t yields the

final coefficient estimates. Traditional asset pricing theories validate factor models by rejecting the

hypothesis of γ1 = 0. A joint rejection of Γ = 0 economically implies that the factor model does not

fully explain the cross-sectional differences among returns, but exposure to the risk factors partially

accounts for the expected returns of assets relative to each other.

3.B.1 Errors-in-variables (EIV) Bias

The second-pass cross-sectional regression is inherently subject to the EIV bias, since the explana-

tory variables are estimations resulting from the first-pass time series regressions. Since B̂t−1 is

estimated with error, the OLS-estimator of Γ will be biased downwards. We describe the EIV bias

thoroughly in Appendix B.

Chordia et al. (2015) propose the following bias-corrected estimator of Γt

Γ̂EIVt =

[
X̂ ′t−1X̂

′
t−1 −

Nt∑
i=1

M ′Σ̂βit−1
M

]−1

X̂ ′t−1Rt, (5)

where M is a K × (1+K+L) matrix defined as M = [0Kx1 1KxK 0KxL], and Σ̂βit−1
is the

heteroskedasticity-consistent K × K covariance matrix estimator of White (1980) for the first-

pass estimation of βit−1. The matrix M ensures that the bias-correction only affects the K × K

submatrix B̂′t−1B̂t−1 of Xt−1.

This bias-corrected estimator was originally proposed by Theil & Theil (1971) and Litzenberger

& Ramaswamy (1979). Shanken (1992) generalize the EIV-corrected estimator and show that this

estimator is consistent when Nt diverges. Chordia et al. (2015) gauge the statistical properties of the

EIV-corrected estimator in simulations and show that the negative bias is reduced in comparison

to the OLS estimator. Raponi et al. (2017) employ this estimator in a small T environment to
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test several prominent beta-pricing specifications of Fama-French using individual stocks. They

find significant pricing ability of all factors, while the same risk premia often appear insignificantly

different from zero when estimated using the traditional approach.

The EIV-corrected estimator subtracts the estimated covariance matrix of the estimator of βit

from B̂′t−1B̂t−1, to better approximate the true value of B′t−1Bt−1. However, under a finite T there is

the possibility that this correction will overshoot, turning the matrix in parenthesis nearly singular

or even not positive definite. This may lead to extreme estimates of Γt and nonsensical inference.

To prevent this we apply the following procedure. Following Chordia et al. (2015), we reduce the

likelihood of overshooting due to outliers by winsorizing each element of the estimated covariance

matrix at the 5% and 95% levels across the cross-section of funds at each time t. Then, we apply

the shrinkage procedure of Raponi et al. (2017) using a shrinkage scalar λ (0 ≤ λ ≤ 1):

Γ̂EIV
t =

[
X̂ ′t−1X̂t−1 − λ

Nt∑
i=1

M ′Σ̂βit−1
M

]−1

X̂ ′t−1Rt. (6)

When λ is one we obtain the estimator in Eq.(5), whereas when λ is zero, we obtain the OLS

estimator. The choice of shrinkage parameter λ is dependent on the eigenvalues of the matrix in

parenthesis. Starting from λ = 1, if the minimum eigenvalue of this matrix is negative, we lower

λ by an arbitrary small amount set to 0.05. We also apply this shrinkage in case the difference

between the EIV-corrected and OLS coefficients is bigger than 100%.

To evaluate the statistical properties of the bias-corrected estimators of Γ, we conduct a battery

of simulations using parameters based on the real data. We investigate the bias and the root-

mean-squared error (RMSE) of the estimators in Eqs.(4) and (6). The set-up and results of the

simulations are presented in Appendix C.

3.C Relative Contribution of Betas and Characteristics

We aim to calculate measures of the relative contributions of factor betas and characteristics to the

explanatory power of the combined model in explaining the cross-sectional differences in expected

returns. For this purpose, we conduct the measure of Lindeman & Lindeman (1980), henceforth

LMG,6 which suggests using sequential sums of squares from the linear model. The relative contri-

6The measure of Lindeman & Lindeman (1980) is made known by Kruskal (1987) and generalized by Chevan &
Sutherland (1991) to multiple classes of regression models. More recently, Lipovetsky & Conklin (2001) reinvented
LMG from a game-theory perspective; Azen & Budescu (2003) propose dominance analysis, which generalizes LMG
to other metrics of model fit than R2.
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bution of predictor j is measured by averaging over all possible permutations of the p regressors the

increase of R2 when regressor j is added to the model based on the other regressors entered before

j in the model.

Specifically, let the increase in R2 by adding j be

∆j(r) = R2
+j(Sj(r))−R2(Sj(r)), (7)

where R2(Sj(r)) denotes the R2 of the model including a set of regressors entered before j in the

permutation r, and R2
+j(Sj(r)) denotes the R2 of the model with the regressors in Sj(r) including

j. The contribution of j is the increase of R2 averaged on all 2p permutations of the p regressors as

LMG(j) =
1

p!

∑
rpermutation

∆j(r). (8)

This formula can be rewritten in different forms. An intuitive manner is LMG as the average over

model sizes i of average improvements in R2 when adding regressor j to a model of size i without

j (see, Christensen (1992)), that is,

LMG(j) =
1

p

p−1∑
i=0

 ∑
S⊆{1,..,j−1,j+1,...,p}

n(S)=i

∆j(S)

/(
p− 1

i

) , (9)

where S is a set of i regressors excluding regressor j.

Each month t, we compute the relative contribution of each variable in the second-pass re-

gression of the Fama-MacBeth procedure. In particular, we estimate this regression repeatedly for

different permutations of the regressors to compute the contribution of each regressor using Eq.(9).

These values are averaged over all months to obtain a more precise aggregate measure. Due to

a high computational burden, LMG is only computed using OLS without the bias-correction. By

ignoring the EIV bias, the variance of the estimated factor betas is exaggerated, leading to a minor

overestimation of the relative contribution of factor betas.

3.D Cross-sectional Results

We present the results for the CAPM, the Fama & French (1993) three-factor model, the Carhart

(1997) four-factor model, the Fama & French (2015) five-factor model and a six-factor model with

all factors. This allows us to assess the cross-sectional power of each factor to explain mutual
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fund returns and to determine whether these are priced in the cross-section. First, we examine

the untabulated results of the factor models in the absence of characteristics. Estimated with

OLS, the risk premium of the market beta is statistically indistinguishable from zero in all factor

models, which is consistent with previous studies which find that the market factor is not priced.

In the three-factor model, the risk premia (corrected for the EIV bias) on the size and value factors

equal 0.32% (t = 1.79) and 0.36% (t = 1.76), respectively. Exposure to the momentum factor yields

similar rewards. A portfolio of funds with a unit exposure to the momentum factor earns an average

monthly premium of 0.28% (t = 1.53). The two added factors RMW and CMA exhibit insignificant

risk premia in both the five-factor model and six-factor model. The intercepts are also noteworthy,

as the zero-beta rates range between 0.19% and 0.48%, with t-statistics above 2. Large differences

between the zero-beta rate and the risk-free rate are also found in earlier works including Lewellen

et al. (2010) and Frazzini & Pedersen (2014).

Table 2 reports the estimated coefficients on both factor betas and characteristics with the EIV

bias correction and without. We find that the market factor remains unpriced in the cross-section

when the characteristics are included. The size premium also remains indistinguishable from zero

in all factor models and has decreased when market capitalization (Mcap) is added to the model.

The coefficient on Mcap is economically significant in all factor models and has a negative sign in all

cases, as funds holding positions in smaller stocks earn higher returns. The premium on the value

factor is significant in the three-factor model and in the four-factor model, while the coefficient on

book-to-market (B/M) is insignificant in all cases. The value premium becomes insignificant in the

five-factor model and the six-factor model, possibly due to correlation between the value factor and

the quality factors.

The estimated risk premium (in the absence of characteristics) on the momentum factor suggests

that exposure to this factor is priced in the cross-section, but it may also indicate a mechanical

relation between a factor beta and the underlying characteristic, such that factor betas are mere

signals of the “true” risk factors determining expected returns. Considering the four-factor model,

the premium on WML has decreased, possibly due to competition between the WML beta and

momentum return (Mom12). Mom12 is significant in all factor models excluding the momentum

factor, with t-statistics just above 2. Lou (2012) and Vayanos & Woolley (2013) argue that winning

funds, by scaling up their existing holdings that are concentrated in past winning stocks, drive

up the returns of past winning stocks and thereby enhance the subsequent return of past winning

stocks. This self-enhancing mechanism may lead to higher momentum returns for funds.
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Table 2: Cross-sectional regressions of mutual fund returns

This table presents the time series averages of risk premia (γ) estimated using the cross-section of
mutual fund (monthly) returns following the Fama & MacBeth (1973) procedure. The monthly
regressions are of the form:

Rt = γ0t + γ1tB̂t−1 + γ2tZt−1 + ξt, t = 1, ..., T.

We employ the CAPM, the Fama & French (1993) three-factor model, the Carhart (1997)
four-factor model, the Fama & French (2015) five-factor model and a six-factor model combining
all factors. Factor betas (B̂) are estimated from rolling time series regressions using daily returns
from the past two years. The characteristics (Z) are the logarithm of market capitalization
(Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of one plus the cumulative
past twelve-month cumulative return (Mom12), operating profitability (Profit) and asset growth
(Invest). Each characteristic is winsorized at the 0.5% and the 99.5% levels. To address the EIV
bias, we employ the EIV-corrected estimator of Chordia et al. (2015). Risk premia (in percent per
month) are fitted using OLS, both with EIV-correction and without. Fama & MacBeth (1973)
t-statistics are reported in parenthesis. Estimates significant at the 5% are in bold font. Risk
premia are estimated over the period February 2001 until December 2016.

CAPM FF 3FM Carhart 4FM FF 5FM FF 6FM
OLS EIV OLS EIV OLS EIV OLS EIV OLS EIV

Cnst 1.013 1.020 0.685 0.628 0.887 0.857 0.651 0.638 0.769 0.759
(2.46) (2.49) (1.88) (1.67) (2.61) (2.38) (2.00) (1.93) (2.47) (2.37)

βMKT -0.071 -0.080 -0.011 -0.011 -0.029 -0.033 0.130 0.177 0.100 0.133
(-0.24) (-0.26) (-0.04) (-0.03) (-0.09) (-0.10) (0.46) (0.61) (0.35) (0.46)

βSMB 0.098 0.120 0.049 0.061 0.099 0.099 0.074 0.073
(0.62) (0.66) (0.30) (0.33) (0.66) (0.59) (0.48) (0.42)

βHML 0.347 0.373 0.372 0.412 0.220 0.190 0.266 0.252
(2.12) (2.09) (2.04) (1.99) (1.45) (1.07) (1.61) (1.30)

βWML 0.176 0.227 0.114 0.195
(1.14) (1.19) (1.01) (1.13)

βRMW 0.190 0.224 0.225 0.271
(1.17) (1.16) (1.29) (1.32)

βCMA 0.152 0.141 0.173 0.164
(1.13) (0.90) (1.33) (1.09)

Mcap -0.065 -0.065 -0.047 -0.043 -0.055 -0.052 -0.050 -0.051 -0.054 -0.054
(-1.97) (-1.97) (-1.46) (-1.24) (-1.79) (-1.56) (-1.82) (-1.77) (-1.96) (-1.89)

B/M 0.004 0.003 -0.074 -0.082 0.072 -0.085 -0.025 -0.010 -0.031 -0.017
(0.04) (0.03) (-0.98) (-1.08) (-1.08) (-1.26) (-0.36) (-0.07) (-0.50) (-0.27)

Mom12 0.783 0.787 0.863 0.859 0.478 0.446 0.794 0.774 0.513 0.524
(2.11) (2.12) (2.34) (2.36) (1.78) (1.67) (2.17) (2.13) (1.85) (1.81)

Profit 0.066 0.065 0.047 0.046 0.019 0.016 0.030 0.025 0.003 0.000
(1.18) (1.17) (0.94) (0.94) (0.40) (0.34) (0.68) (0.59) (0.07) (0.02)

Invest -0.573 -0.560 -0.389 -0.371 -0.391 -0.355 -0.279 0.257 -0.230 -0.222
(-1.69) (-1.67) (-1.43) (-1.38) (-1.53) (-1.40) (-1.14) (-0.97) (-0.98) (-0.87)

The estimates of risk premia on RMW and CMA are positive and statistically insignificant,

with respective estimates of 0.22% (t = 1.16) and 0.14% (t = 0.90) in the five-factor model, and

estimates of 0.27 (t = 1.32) and 0.16% (t = 1.09) in the six-factor model. Interestingly, the value and
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momentum premia exhibit a sharp reduction when adding the profitability and investment factors.

In line with the other factors, we find that the estimated risk premia on exposures to the RMW and

CMA factors are lower in the presence of their underlying characteristics, neither of which yielding

significant estimates. The sign of the estimates are as expected; funds holding profitable stocks

which invest conservatively earn higher returns.

The simulations (see Appendix C) show strong results in favor of the bias-corrected estimator.

The downward bias on the estimated risk premia is partially eliminated while the root-mean-squared

errors (RMSEs) are of similar magnitude between the two estimators. Regarding the empirical re-

sults, we find that correcting the EIV bias generally increases the risk premia estimates, occasionally

up to 40%.

Table 3: Relative contributions of factor betas and characteristics

This table presents the relative contributions to the explained model variance using the metric of
Lindeman & Lindeman (1980), which decomposes the model R2 into the relative contributions of
each variable to the explanatory power of the model. Each month t, we compute the relative
contribution of each regressor (factor betas and characteristics) in the second-pass regression of
the Fama-MacBeth procedure. We report the time series averages of the LMG metric for each
variable. Relative contributions are estimated over the period February 2001 until December 2016.

CAPM FF 3FM Carhart 4FM FF 5FM FF 6FM
Panel A: Relative contributions (only betas)
βMKT 0.164 0.083 0.073 0.049 0.044
βSMB 0.196 0.193 0.181 0.176
βHML 0.124 0.113 0.092 0.076
βWML 0.068 0.065
βRMW 0.076 0.073
βCMA 0.053 0.049

Panel B: Relative contributions (all characteristics)
βMKT 0.108 0.066 0.060 0.044 0.041
βSMB 0.099 0.096 0.091 0.088
βHML 0.069 0.063 0.053 0.047
βWML 0.050 0.042
βRMW 0.056 0.056
βCMA 0.039 0.037
Mcap 0.138 0.092 0.088 0.087 0.085
B/M 0.073 0.052 0.050 0.047 0.043
Mom12 0.069 0.056 0.050 0.051 0.046
Profit 0.014 0.010 0.010 0.010 0.010
Invest 0.033 0.026 0.025 0.023 0.022

Table 3 reports the average relative contributions of both factor betas and characteristics. Mea-

sured by Eq.(9), the Lindeman & Lindeman (1980) metric is the contribution of each variable to the
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total explained variance in the model. Firstly, Panel A reports the average relative contributions of

factor betas in the absence of characteristics. The size factor accounts for the largest fraction of the

model R2, which remains stable across factor models. Including the profitability and investment

factors leads to a minor reduction in explanatory power of the other factors, which indicates these

factors convey new information.

Panel B reports the average relative contributions in a joint model of factor betas and char-

acteristics. We find that in each factor model, almost 50% of the model R2 is attributed to the

characteristics. The relative contributions of the size and value betas decrease by roughly 50% when

Mcap and B/M are added. The RMW and CMA betas contribute roughly twice as much as their

respective characteristics.

To sum up, the factor betas and characteristics both account for roughly half of the model

explained variation in fund returns. These findings are consistent with those of Chordia et al.

(2015), which find that in a joint model, firm characteristics explain a majority of cross-sectional

variation in stock returns. In the remainder of this paper, we will explore the implications of the

equal explanatory power of factor betas and characteristics for the performance evaluation of mutual

funds.

4 Double-adjusted Mutual Fund Performance Measure

In this section, we describe our new mutual fund performance measure which adjusts fund returns

for both factor betas and characteristics. Section 4.A discusses the model used to obtain the double-

adjusted performance measure. Section 4.B describes the Bayesian techniques used to estimate the

model. Section 4.C discusses the main results from the model estimation.

4.A Double-adjusted Alpha

There are many alternatives to evaluate the performance of mutual funds. A common performance

measure is a fund’s alpha, the return adjusted for exposures to risk factors that drives most of

the fund’s return. The intercept (alpha) is then interpreted as the abnormal return reflecting the

ability of the fund manager. Alternatively, funds are evaluated relative to the characteristic-based

benchmark approach of Daniel, Grinblatt, Titman, and Wermers (DGTW; 1997). The DGTW

measure controls for the main anomalies through characteristic-sorted portfolio returns.
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Brennan et al. (1998) was the first to look beyond a unilateral explanation of cross-sectional

variation in expected returns by either factor betas or characteristics. They run the following

cross-sectional regressions

αit = δ0t + δ′1tZit−1 + ηit, (10)

where αit is the standard factor model alpha of stock i estimated with returns up until time t

and Zit−1 are lagged characteristics. They find that characteristics (e.g., size, book-to-market,

momentum) remain significantly related to expected returns even after the risk-adjustment by a

factor model with risk factors based on those same characteristics. However, analysis based on the

cross-sectional regression in Eq.(10) is complicated due to the fact that the dependent variable, αit,

is a latent variable estimated with error.

In the spirit of Eq.(10), we develop a new double-adjusted performance measure. Specifically,

we propose a system of equations in which we simultaneously model conditional factor model alphas

and analyze the cross-sectional relation between fund alphas and characteristics. The model takes

on the following structure:

Riτ,t = αit + β′itFτ,t + εiτ,t, εiτ,t ∼ N (0, σ2
εit), τ = t− T + 1, ..., t, i = 1, ..., Nt (11)

αit = δ0t + δ′1tZit−1 + ηit, ηit ∼ N (0, σ2
ηt), t = 1, ..., T, (12)

where Riτ,t and Fτ,t are daily excess returns of fund i and daily factor returns, respectively. The

superscript τ is used to index the daily returns in the rolling window ending in month t and T is

the length of the rolling window, that is, two years (T ≈ 500 trading days). αit and δt = [δ0t δ1t]’

are latent variables, and Zit−1 is a vector of lagged characteristics. We estimate this model over the

period February 2001 to December 2016, rolling the window a month at a time totalling T = 191

months.

Eq.(11) represents the factor model for each fund i based on daily fund returns from the rolling

window. In our empirical analysis we use a six-factor model which augments the Carhart (1997)

four-factor model with the profitability and investment factors from Fama & French (2015). In

Eq.(12), we relate the cross-section of alphas to the characteristics from the previous month. In Z

we include the logarithm of market capitalization (Mcap), the logarithm of book-to-market ratio

(B/M), the logarithm of one plus the past twelve-month cumulative return (Mom12), operating

profitability (Profit), and asset growth (Invest). Before including them in the regressions, each

characteristic is standardized by subtracting the cross-sectional mean in each month.
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We define the double-adjusted performance measure of fund i in month t as

α∗it = αit − δ′1tZit−1 = δ0t + ηit. (13)

In this way we control for both the exposures to risk factors through αit and the effects of firm

characteristics by subtracting the component of alpha attributable to passive exposures to firm

characteristics. Characteristic-driven performance is defined as

αcharit = αit − α∗it = δ′1tZit−1. (14)

The variable δt measures the relation between alphas and characteristics in month t. If the

asset-pricing model holds, fund alphas should not be associated with characteristics. In a given

month, however, risk-adjusted returns may be related to characteristics purely by chance. To

examine whether there is a systematic relation between firm characteristics and alphas throughout

the entire sample period, we add an additional layer to the model hierarchy:

δt = δ̄ + vt, vt ∼ N (0,Σδ), t = 1, ..., T. (15)

In particular, we assume that the parameter vectors, {δt}Tt=1, are drawn from a multivariate normal

distribution centered at δ̄ with covariance matrix Σδ. We treat δ̄ as an unknown parameter and

aggregate the evidence about δt across time to estimate δ̄. If an element of δ̄ is focused away from

zero, there is evidence that the factor model inadequately adjusts for exposure to a certain charac-

teristic, such that this characteristic anomaly persists through time. In our empirical analysis, we

analyze δ̄ when assessing the importance of adjusting alpha for passive exposures to characteristics.

Errors in Eqs.(11) and (12) are assumed to be independent and normally distributed, such that

excess returns are conditionally independent across funds and within rolling windows. Similarly,

alphas are conditionally independent across funds and the monthly relations δt are independent

conditional on δ̄. The main advantage of specifying independent errors in returns and alphas is that

we can consider a large number of test assets without estimating large variance-covariance matrices

to capture autocorrelations and cross-sectional correlations.
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4.B Model Estimation

We adopt a hierarchical Bayes approach to estimate Eqs.(11), (12) and (15) simultaneously.7 This

approach yields several advantages over the alternatives, as the Bayesian approach is computation-

ally more attractive than maximum likelihood estimation, and yields better finite sample properties

than General Method of Moments (GMM).8 Another main advantage or our model is that we es-

timate all model parameters simultaneously. In contrast, a majority of previous studies employ a

two-pass procedure to estimate the relation between alphas and characteristics (e.g., Brennan et al.

(1998), Avramov & Chordia (2006) and Busse et al. (2017)). The two-step procedure includes the

estimation of a factor model before regressing the resulting estimates of alpha on the firm character-

istics. In the first step alphas are estimated with error such that the variance of these estimates equal

the variance of the true alphas plus a measurement error term. Consequently, the standard errors

of the estimated coefficients in the second-step regression are overstated. This measurement error

may lead to insignificant coefficients even if the data conveys a significant relation between alphas

and characteristics. A simultaneous estimation of all model parameters mitigates this measurement

error problem.

4.B.1 Prior Distributions

To conduct Bayesian estimation techniques, we need to specify prior distributions for the model

parameters. A prior distribution incorporates a researcher’s belief about the parameter of inter-

est, often founded on empirical research or economic theory. We specify proper, but relatively

uninformative, priors for all parameters.9

Regarding the loadings on characteristics, the expression in Eq.(15) implies the following hier-

archical prior10 on δt

δt|δ̄,Σδ ∼ N (δ̄,Σδ), (16)

7The first examples of Bayesian inference in asset pricing models are presented in McCulloch & Rossi (1990) and
Harvey & Zhou (1990). More recently, Cremers (2006) propose Bayesian tests for the mean-variance efficiency of a
given portfolio. Ang & Chen (2007) use Bayesian methods to examine whether the conditional CAPM can explain
the value premium. Cosemans et al. (2015) propose a hybrid approach for estimating market beta by shrinking rolling
window estimates toward a firm-specific prior motivated by economic theory.

8Ferson & Foerster (1995) demonstrate that GMM has poor finite sample properties in the context of latent variable
asset pricing models.

9Hobert & Casella (1996) advocate the use of proper priors in estimating hierarchical models. They find that using
improper priors may lead to improper posterior distributions which is difficult to detect from posterior draws.

10Examples of Bayesian estimation with hierarchical priors are presented in Cederburg & ODoherty (2015), which
specify a hierarchical prior on the parameters in their conditional CAPM alpha model, and Cosemans et al. (2015),
which specify a hierarchical prior on the parameters in their conditional factor beta model.
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which is a normal distribution with location parameter δ̄ and covariance matrix Σδ. We treat δ̄ and

Σδ as unknown parameters and assume the following uninformative priors

δ̄ ∼ N (d,Σd) , (17)

Σδ ∼ IW ([ψδSδ], ψδ) , (18)

where IW denotes the inverted Wishart distribution with degrees of freedom ψδ and scale matrix

[ψδSδ]. We specify an uninformative prior for δ̄ by setting d equal to the zero vector and Σd to

100I, where I is the identity matrix. Setting d equal to the zero vector implies that alphas are not

associated with characteristics, which contradicts previous empirical findings. However, by setting

the diagonal elements of Σd to large values we minimize the influence of the prior on the posterior

distribution of δ̄. ψβ is set to the dimension of Σδ, since this value gives the lowest weight to the

prior (see, Gelman et al. (2014)). The matrix Sδ is the prior mean of Σδ and is set to I.

Regarding the fund-specific parameters, the hierarchical structure of our model implies the

following prior on αit

αit|δt, σ2
ηt ∼ N (δ0t + δ′1tZit−1, σ

2
ηt), (19)

in which the prior mean is dependent on characteristics. The posterior of αit combines information

from both the fund-specific time series of returns and from the cross-section of alphas. The relative

importance of both components depends on the rolling window size T and the cross-sectional residual

variance σ2
ηt. We specify a conjugate prior for βit as

βit ∼ N (β̄,Σβ), (20)

where we set β̄ equal to the sample mean of rolling window estimates of fund betas (see Panel D of

Table 1). We define Σβ equal to 10I to let the data speak for itself.

We complete the prior specification of our model by specifying conjugate priors for the idiosyn-

cratic variances σ2
εit and σ2

ηt as

σ2
εit ∼ IG2(vε, sε) (21)

σ2
ηt ∼ IG2(vη, sη), (22)

where IG2 denotes the inverted Gamma-2 distribution. We specify relative uninformative priors by

setting the degrees of freedom parameters vε and vη equal to 3 and the scale parameters sε and sη
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equal to 10−3.

4.B.2 Markov Chain Monte Carlo Gibbs Sampler

We employ the Markov Chain Monte Carlo (MCMC) Gibbs sampler11 to estimate the model. An

attractive feature of MCMC techniques is that samples of random drawings of the model parameters

θ can be generated from the joint posterior indirectly, without the need to specify the exact form

of this joint distribution directly. The Gibbs sampler uses an iterative procedure to create Markov

chains by simulating from full conditional posteriors instead which are typically much easier to

derive. In particular, the parameter vector θ is partitioned into B blocks (θ(1),...,θ(B)). At each

iteration of the Gibbs sampler each block is sampled from its posterior distribution conditioned on

the other blocks and the data. After the Markov chains have converged, the sets of draws that

are obtained from the conditional posteriors can be effectively considered as samples from the joint

posterior. Algorithm 1 summarizes the steps in the Gibbs sampler. We provide the joint posterior

distribution and the derivation of the full conditional posterior distributions in Appendix E.

To initialize the Gibbs sampler, we require starting values for the model parameters. For the

fund-specific parameters, we estimate Eq.(11) for each fund in each rolling window and use the

estimates as starting values for αit and βit. Each month t, we regress the estimates of alpha on

a constant and the lagged characteristics using the cross-section of funds. The resulting estimates

are used as starting values for δt. The starting values for σ2
εit and σ2

ηt are set to the sample residual

variance estimator from the corresponding regressions. For the hyperparameters δ̄ and Σδ, we

set the starting values equal to the sample mean and covariance matrix of the estimates {δt}Tt=1,

respectively.

To check the convergence of the Gibbs sampler, we turn to standard diagnostics tests, including

the partial means test of Geweke (1992) and the Gelman-Rubin statistic described in Gelman et al.

(2014). Both tests indicate that the Markov Chains have converged after 2500 iterations. Therefore,

in our empirical analysis we run 5000 iterations of the Gibbs sampler and discard the first 2500

iterations as burn-in period. The remaining draws are used to derive posterior results.

11For an extensive reading on the application of the Gibbs sampler in several econometric models, we refer to
De Pooter et al. (2006).
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Algorithm 1 MCMC Gibbs sampler

Inputs: {{{Riτ,t, Zit−1, Fτ,t}Nti=1}tτ=t−T +1}Tt=1 (data)

Outputs: {θ(m)}Mm=1 (approximate sample from the joint posterior)

1: Set starting values for model parameters:

θ(0) = {{{α(0)
it , β

(0)
it , σ

2
εit

(0)}Nti=1, δ
(0)
t , σ2

ηt
(0)}Tt=1, δ̄

(0),Σ
(0)
δ } and set m to 0.

2: Update parameters given current draws θ(m):

(i) Sample α
(m+1)
it , β

(m+1)
it | σ2

εit
(m), δ

(m)
t , σ2

ηt
(m), for i = 1,...,Nt, t = 1,...,T .

(ii) Sample σ2
εit

(m+1) | α(m+1)
it , β

(m+1)
it , for i = 1,...,Nt, t = 1,...,T .

(iii) Sample δ
(m+1)
t | {α(m)

it }
Nt
i=1, σ2

ηt
(m), δ̄(m), Σ

(m)
δ , for t = 1,...,T .

(iv) Sample σ2
ηt

(m+1) | {α(m+1)
it }Nti=1, δ

(m+1)
t , for t = 1,...,T .

(v) Sample δ̄(m+1) | {δ(m+1)
t }Tt=1, Σ

(m)
δ .

(vi) Sample Σ
(m+1)
δ | {δ(m+1)

t }Tt=1, δ̄(m+1).

3: Set m = m + 1, and go to step 2.

4.C Estimation Results

Table 4 summarizes the relation between six-factor alphas and fund-level characteristics. In Panel

A, we report the posterior estimates of the distribution of δ̄, which measures the systematic relation

between alphas and characteristics over the entire sample period. When we estimate the model

for each characteristic in isolation, we find that market capitalization (Mcap) and book-to-market

(B/M) are negatively associated with alpha, while momentum return (Mom12) and asset growth

(Invest) are positively associated with alpha. Alphas are unrelated to the profitability characteristic.

If the characteristics are correlated with each other and offer little unique information about alphas

then studying each characteristic in isolation will overstate the failings of the factor model. If we

specify alpha as a linear combination of all characteristics, Mcap, B/M, Mom12 and Invest remain

significantly associated with alphas.

Recall that the six-factor model adjusts returns for exposures to factors based on Mcap, B/M,

Mom6, Profit, and Invest. The results in Panel A suggest that the six-factor model under-adjusts for

exposures to the size and momentum factors, while the model appears to over-adjust for influences

related to the value and investment factors. In other words, funds holding small (high-momentum)

stocks show higher abnormal return despite the risk-adjustment to the SMB (WML) factor. Con-

versely, funds holding positions in high book-to-market (conservative investment) stocks under

perform, contradictory to previous findings on value and investment effects. Similar conclusions are
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Table 4: Six-factor alpha vs. characteristics

This table presents the results of the estimation of the model in Eqs.(11), (12) and (15). We
estimate this model in each month during the period February 2001 to December 2016, using an
estimation period of two years to estimate the six-factor model in Eq.(11), rolling the window a
month at a time. The characteristics (Z) are the logarithm of market capitalization (Mcap), the
logarithm of book-to-market ratio (B/M), the logarithm of one plus the past twelve-month
cumulative return (Mom12), operating profitability (Profit) and asset growth (Invest). Each
characteristic is standardized by subtracting the cross-sectional mean each month. We estimate
the model for each characteristic in isolation and for all characteristics in a joint model. Panel A
presents the posterior mean and standard deviation for the aggregate-level parameters in δ̄, based
on the posterior distribution of the parameters constructed from 5000 iterations of the Gibbs
sampler with the first 2500 iterations discarded as a burn-in period. Panel B presents Fama &
MacBeth (1973) estimates and Fama & MacBeth (1973) t-statistics with the Newey & West
(1986) correction of 12 lags. In Panel A, estimates in bold font indicate that the 95% credible
interval of the posterior distribution does not include zero. In Panel B, estimates in bold font
indicate significance at the 5% level.

Panel A: Simultaneous Bayesian estimation
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.004

(0.000) (0.000)
Mom12 0.019 0.005

(0.002) (0.003)
Profit -0.011 -0.003

(0.002) (0.002)
Invest 0.024 0.017

(0.004) (0.004)

Panel B: Two-step OLS approach
Cnst -0.002 -0.002 -0.002 -0.002 -0.002 -0.002

(-1.40) (-1.40) (-1.40) (-1.40) (-1.40) (-1.40)
Mcap -0.001 -0.002

(1.81) (-1.60)
B/M -0.005 -0.006

(-2.45) (-2.29)
Mom12 0.016 0.002

(4.66) (0.18)
Profit -0.011 -0.005

(-1.57) (-2.27)
Invest 0.040 0.023

(2.27) (1.26)

drawn by Huij & Verbeek (2009), which find that fund managers following a value-orientated strat-

egy earn a substantially lower premium than those projected by the hypothetical hedge portfolio

HML, while the momentum premium earned by funds is larger than that projected by the WML
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factor.

In Panel B we report the estimates from a standard OLS two-step procedure. In each month t,

we estimate the six-factor model for each fund i. We then regress cross-sectionally the estimated

alphas on a constant and lagged characteristics. In the style of Fama & MacBeth (1973) we report

the time series averages of the cross-sectional coefficients. The estimation results using OLS lead to

several differences in comparison to the Bayesian estimation. While the inferences regarding B/M,

Mom12 and Invest are similar between the two estimation methods, alpha becomes unrelated to

Mcap using the two-step OLS approach. Moreover, if we consider all characteristics simultaneously

we find that all characteristics but B/M become unrelated with alphas using the two-step OLS

approach.

Inferences for the hierarchical Bayes and two-step OLS approach may differ due to way informa-

tion from both the cross-section and time series is combined. In the hierarchical Bayes approach, the

estimated factor model alphas are a weighted average of fund-specific time series information and

cross-sectional information, with the precision (the inverse of the variance) as weights. Conversely,

the two-step approach directly uses parameter estimates into the second-stage regression, thereby

not exploiting information from the cross-section of funds, which makes the two-step approach more

prone to the influence of outliers. As these outliers are marked by considerable uncertainty, the hi-

erarchical Bayes approach is more suitable to combine multiple sources of information with varying

degrees of precision.

Figure 1 graphs the time series plots of the posterior mean and 95% credible interval of {δt}Tt=1,

obtained from estimating the model using all characteristics. As expected, we find the relation

between six-factor alpha and a given characteristic to be varying across our sample. For instance,

we find that δt for the momentum characteristic is negative in times when momentum stocks perform

poorly (e.g., the internet bubble (post 2001) and the financial crisis of 2007-2008). Moreover, we find

that the monthly posterior distributions for the size, value and momentum characteristics exhibit

higher precision in comparison to the posteriors of the other two characteristics.

Finally, we examine whether our results are robust to the risk factors included in Eq.(11). In

Table 5 we add the posterior results from the model using alphas from the CAPM, the Fama-French

three-factor model, the Carhart (1997) four-factor model and the Fama & French (2015) five-factor

model. The systematic relation between alphas and characteristics are similar across factor models.

The posterior means of B/M, Mom12 and Invest vary the most across the factor models, indicating

that cross-correlations are the largest between the value, momentum and investment effects, both
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Figure 1: Time series plots of the posterior means of the time-varying relation
between six-factor alphas and characteristics δt

The figure presents estimation results of the model in Eqs.(11), (12) and (15) examining the cross-
sectional relation between six-factor alphas and all characteristics simultaneously. In each plot
we report posterior results for a given characteristic across our sample period February 2001 to
December 2016. The solid line is the posterior mean of δt and the dashed lines represent the 95%
credible interval.

through the risk factors and the characteristics. Interestingly, we find that the posterior mean of

B/M changes sign when the quality factors are considered. The value factor in the three- and four-

factor models under-adjusts for the value factor, as alphas are positively related to funds holding

value stocks. Conversely, alphas from the five- and six-factor models are positively related to funds

holding growth stocks. This contradiction is possibly caused by the interaction between the value

factor and the quality factors, which is a negative correlation between the two. All in all, we

conclude that the traditional Fama-French risk factors (jointly) insufficiently adjust returns for the

main anomalies.
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Table 5: Multi-factor model alphas vs. characteristics

This table presents the results of the estimation of the model in Eqs.(11), (12) and (15) based on
several Fama-French models. We employ the CAPM, the Fama & French (1993) three-factor
model, the Carhart (1997) four-factor model, the Fama & French (2015) five-factor model and a
six-factor model combining all factors. We estimate the model in each month during the period
February 2001 to December 2016, using an estimation period of two years to estimate the factor
model in Eq.(11), rolling the window a month at a time. The characteristics (Z) are the logarithm
of market capitalization (Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of
one plus the past twelve-month cumulative return (Mom12), operating profitability (Profit) and
asset growth (Invest). Each characteristic is standardized by subtracting the cross-sectional mean
each month. We report the posterior mean and standard deviation for the aggregate-level
parameters in δ̄, based on the posterior distribution of the parameters constructed from 5000
iterations of the Gibbs sampler with the first 2500 iterations discarded as a burn-in period.
Estimates in bold font indicates that the 95% credible interval of the posterior distribution does
not include zero.

CAPM FF 3FM Carhart 4FM FF 5FM FF 6FM
Cnst 0.000 -0.004 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.003 -0.001 -0.001 -0.002 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000)
B/M 0.006 0.002 0.001 -0.003 -0.003

(0.001) (0.000) (0.000) (0.001) (0.000)
Mom12 0.015 0.008 0.004 0.007 0.005

(0.003) (0.003) (0.003) (0.003) (0.003)
Profit 0.003 0.001 0.001 -0.004 -0.003

(0.001) (0.001) (0.001) (0.001) (0.002)
Invest -0.046 -0.023 0.020 0.014 0.017

(0.005) (0.004) (0.004) (0.004) (0.004)

5 Impact on Relative Mutual Fund Performance

In Section 3, we have established the importance of incorporating characteristics in explaining the

returns of mutual funds. The results in the previous section have demonstrated an important

flaw of the Fama-French factor model alphas, insofar as they attribute skill to passive exposures

to characteristics. Therefore, we have proposed a new mutual fund performance measure which

adjusts performance for exposures to both factor betas and characteristics.

In this section, we examine the extent to which our new double-adjusted alpha affects infer-

ence relating to relative mutual fund performance. We replicate the work of several mutual fund

performance studies using six-factor alpha as our baseline measure of performance. We compute

alpha using the traditional time series regression approach.12 Since we use alpha as our baseline

12Even though the hierarchical Bayes model also provides estimates of fund alphas, we choose the time series
regression approach as this is standard in previous literature. Moreover, the Bayesian estimate of standard alpha
makes use of cross-sectional information. To highlight the difference made by adjusting performance for characteristics,
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performance measure, we can easily extend previous analysis with the two components of alpha, our

double-adjusted measure and the portion of alpha associated with characteristics (see Eqs.(13) and

(14)). The decomposition of alpha will indicate the extent to which both components contribute to

the main findings of previous studies.13

We begin by calculating the difference in fund percentile performance rankings between using

double-adjusted alpha in comparison to those based on alpha. Next, central to the mutual fund per-

formance literature are studies that analyze persistence in fund performance, e.g., Carhart (1997).

Other studies examine the relation between fund performance and certain fund features, such as a

fund’s factor model R-squared (Amihud & Goyenko, 2013) and a fund’s investors cash flows (Barber

et al., 2016).

5.A Relative Mutual Fund Performance Rankings

We examine the degree to which our new performance measure alters the performance rankings of

funds. In each month in our sample, we sort funds into percentiles based on six-factor alpha (α)

and on double-adjusted six-factor alpha (α∗). Given a number of Nt funds in month t, we obtain

pairs of percentile ranks for each fund {(Pα1t, Pα
∗

1t ), ..., (PαNtt, P
α∗
Ntt

)}. Using the percentile rank pairs

we compute Kendall’s tau coefficient, which is a correlation coefficient between two rankings. We

find a time series average of Kendall’s tau equal to 0.70, which indicates differences between the

two rankings.

To examine the impact of double-adjusted alpha on performance rankings in more detail, we

compute the difference between the performance ranks Pαt and Pα
∗

t for each fund in each month

t. Table 6 presents the time series average distribution (across all months in our sample) of the

difference in percentile performance rankings. We find that the median change in percentile rankings

is roughly 9%, i.e., a fund which is ranked in the median percentile according to alpha is ranked in

either the 41th or 59th percentile based on double-adjusted alpha. Moreover, many funds exhibit

dramatic changes in percentile ranking, with 10 (5) percent of funds exhibiting a mean change in

percentile ranking of at least 22.99% (27.24%).

we compare our double-adjusted alpha to a performance measure which is not influenced by these characteristics.
13We follow Busse et al. (2017) in reassessing previous findings in the mutual fund literature using the double-

adjusted performance measure. In addition to the analyses in this paper, they also reevaluated the relation between
fund performance and the industry concentration (Kacperczyk et al., 2005), the return gap (Kacperczyk et al., 2008),
and active share (Cremers & Petajisto, 2009).
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Table 6: Change in performance percentile rankings

This table presents the differences between the performance percentile ranks based on
double-adjusted six-factor alpha (α∗) relative to six-factor alpha (α). These performance measures
are calculated using rolling windows with a window size of 24 months (see section 4.A). Each
month in our sample period we compute the difference between the percentile ranking based on
alpha (Pα) and the percentile ranking based on double-adjusted alpha (Pα

∗
). We report the time

series average distribution of the difference between performance rankings. The sample period is
February 2001 to December 2016.

Percentile 5 10 25 50 75 90 95
Rank (%) -22.93 -17.89 -8.99 -0.02 9.05 17.84 23.07

Abs. Rank (%) 0.99 1.49 4.08 9.03 15.98 22.99 27.24

5.B Mutual Fund Return Persistence

Mutual fund persistence is well documented in the finance literature. Early works include Grinblatt

& Titman (1992), Brown & Goetzmann (1995) and Wermers (1997), which document significant

persistence in mutual fund rankings based on returns after adjustment for risk. This persistence

lasts over horizons of one to three years, and they attribute the persistence to “hot hands” or

common investment strategies. Carhart (1997) add stock momentum as an additional risk factor

and find a significant difference in abnormal returns of more than 4% on an annual basis. Drawing

on Carhart’s findings, Bollen & Busse (2004) find an average abnormal return of 39 basis points for

the top quintile in the post-ranking quarter. This post-ranking abnormal return disappears when

evaluated over longer periods.

We examine return persistence in several performance measures: six-factor alpha (α), double-

adjusted six-factor alpha (α∗) and characteristic-driven performance (αchar). If our new perfor-

mance measure, which accounts for characteristics, is a better indicator of true skill, we expect

double-adjusted alpha to account for most of the persistence in alpha, such that double-adjusted

alpha persists for a longer period. In this case, there should be no distinct return pattern using

characteristic-driven performance. That is, if true skill goes beyond the premia which is passively

associated with characteristics.

We replicate the studies on return persistence.14 Each quarter-end, we sort funds into deciles

using the aforementioned performance measures; decile 10 contains the best performing funds and

decile 1 contains the worst performing funds. We hold the sorted portfolios for up to six years

14This paper adopts a similar approach to the one used in Carhart (1997). The only difference is the frequency
of rebalancing, which is set to a quarterly basis in this work. Busse et al. (2017) analyzed persistence in their
double-adjusted performance measure. They adopted a monthly rebalancing of portfolios and found new evidence of
persistence in mutual fund skill based on their double-adjusted performance measure.
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and compute the equal-weighted return in each decile in the post-ranking period. To deal with

overlapping decile portfolios formed in different quarters, we compute the equal-weighted return

across overlapping periods. We examine the post-ranking performance by concatenating the returns

of all post-ranking periods for each decile and estimate six-factor alpha using the resulting time series

of post-ranking (monthly) returns for each decile.

Table 7 presents the persistence results. Panel A shows strong evidence of persistence in standard

six-factor alpha. In the short term, the average difference in alpha between the top and bottom

deciles is 0.28 (t = 3.62) in the following quarter and 0.27 (t = 3.85) in the following year, both of

which significant from a statistical and an economic perspective. This abnormal return difference

remains statistically significant in the second and third year after formation, followed by a decrease

in the top-minus-bottom post ranking abnormal return from the fourth year onwards. Consistent

with the findings of Carhart (1997), we find that the majority of the return spread is driven by past

losing funds in the bottom deciles. In untabulated results, we find significant negative alphas in the

bottom decile with t-statistics below -3.

The results in Panel B show strong evidence that the double-adjusted six-factor alpha predicts

future fund performance. We find a distinct return pattern across deciles sorted on our double-

adjusted performance measure, as post-ranking alpha increases nearly monotonically across deciles

and indicates a sizable return spread of 0.19 (t = 5.31) in the post-ranking quarter. The top-minus-

bottom portfolios yield statistical significant alphas between 0.05 and 0.17, which persist up to

six years. In Figure 2, we analyze return persistence on the long term. We graph the cumulative

six-factor alpha of the top-minus-bottom portfolios, where the three plots lines represent alternative

sorts on six-factor alpha, double-adjusted six-factor alpha, and characteristic-driven performance.

The plots indicate an upward trend in the cumulative performance of both alpha and double-

adjusted alpha, which lasts for the entire holding period of ten years. The results in Panel B of

Table 7 combined with the plots from Figure 2 suggest that double-adjusted alpha reflects true skill,

which pays off in the long run such that persistence in this component of alpha causes most of the

persistence in alpha.

In Panel C of Table 7 we turn to the component of alpha driven by passively loading on char-

acteristics. The average return difference in alpha in the first year after formation is 0.16 with

insignificant t-statistics, followed by a slight reversal from the second year onwards. The graph

in Figure 2 shows that sorts on characteristic-driven performance does not exhibit a distinct re-

turn pattern after formation in the long term. These results indicate that returns associated with

30



characteristics do not convey information about future fund performance. This supports the claim

that evidence of return predictability in alpha is mostly accounted for by the component adjusted

for passive loadings on characteristics. By removing this noisy component, which does not detect

skill, double-adjusted alpha is a more precise measurement of skill, leading to stronger evidence of

persistence in mutual fund performance.

Table 7: Mutual fund performance persistence

This table presents the returns of decile porfolios sorted by six-factor alpha (Panel A),
double-adjusted six-factor alpha (Panel B) and characteristic-driven performance (Panel C). These
performance measures are calculated using rolling windows with a window size of 24 months (see
section 4.A). Portfolios are rebalanced every quarter-end and are held for up to six years. To deal
with overlapping portfolios, we follow Jegadeesh & Titman (1993) to take the equal-weighted
return across overlapping portfolios formed in different quarters. Two different returns are
reported: the excess (monthly) return over the risk-free rate and the Fama-French six-factor
alpha. T-statistics, shown in parenthesis, are computed using White’s standard errors. Estimated
significant at the 5% level are in bold font. The sample period is February 2001 to December 2016.

Qtr 1 Qtr 1-4 Qtr 5-12 Qtr 13-24
Decile Excess 6F alpha Excess 6F alpha Excess 6F alpha Excess 6F alpha
Panel A: Six-factor alpha (α)

1 0.43 -0.27 0.44 -0.26 0.49 -0.18 0.57 -0.12
2 0.46 -0.20 0.45 -0.21 0.49 -0.15 0.56 -0.10
3 0.44 -0.19 0.45 -0.19 0.49 -0.15 0.56 -0.10
4 0.47 -0.16 0.47 -0.16 0.49 -0.13 0.56 -0.10
5 0.49 -0.13 0.49 -0.13 0.50 -0.12 0.56 -0.10
6 0.53 -0.09 0.52 -0.11 0.54 -0.10 0.57 -0.09
7 0.54 -0.08 0.54 -0.09 0.55 -0.08 0.57 -0.09
8 0.57 -0.06 0.56 -0.07 0.56 -0.08 0.59 -0.08
9 0.57 -0.05 0.57 -0.04 0.59 -0.06 0.59 -0.08
10 0.58 0.01 0.58 0.01 0.57 -0.06 0.58 -0.08

10-1 0.15 0.28 0.14 0.27 0.08 0.12 0.01 0.05
(1.63) (3.62) (1.61) (3.85) (1.14) (2.17) 0.16 (1.01)

Panel B: Double-adjusted six-factor alpha (α∗)
1 0.43 -0.21 0.45 -0.20 0.51 -0.14 0.57 -0.12
2 0.48 -0.18 0.49 -0.17 0.52 -0.13 0.57 -0.10
3 0.47 -0.18 0.50 -0.17 0.52 -0.13 0.58 -0.09
4 0.48 -0.17 0.49 -0.15 0.52 -0.13 0.56 -0.10
5 0.51 -0.14 0.50 -0.15 0.51 -0.13 0.58 -0.09
6 0.53 -0.11 0.52 -0.12 0.54 -0.11 0.58 -0.09
7 0.55 -0.07 0.52 -0.11 0.53 -0.11 0.57 -0.09
8 0.51 -0.11 0.53 -0.09 0.53 -0.09 0.56 -0.10
9 0.54 -0.04 0.53 -0.06 0.54 -0.07 0.57 -0.08
10 0.57 -0.02 0.56 -0.03 0.55 -0.05 0.59 -0.07

10-1 0.14 0.19 0.11 0.17 0.04 0.08 0.02 0.05
(3.81) (5.31) (3.17) (5.37) (1.34) (2.94) (0.69) (2.05)
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Table 7 (Continued)

Qtr 1 Qtr 1-4 Qtr 5-12 Qtr 13-24
Decile Excess 6F alpha Excess 6F alpha Excess 6F alpha Excess 6F alpha
Panel C: Characteric-driven performance (αchar)

1 0.48 -0.18 0.44 -0.22 0.47 -0.15 0.58 -0.09
2 0.47 -0.16 0.46 -0.17 0.47 -0.14 0.56 -0.09
3 0.46 -0.16 0.45 -0.16 0.48 -0.13 0.55 -0.10
4 0.44 -0.16 0.45 -0.15 0.48 -0.13 0.55 -0.10
5 0.42 -0.18 0.44 -0.15 0.50 -0.12 0.55 -0.11
6 0.45 -0.14 0.46 -0.13 0.52 -0.11 0.55 -0.11
7 0.52 -0.10 0.52 -0.10 0.55 -0.09 0.58 -0.10
8 0.59 -0.06 0.57 -0.08 0.59 -0.06 0.61 -0.08
9 0.62 -0.05 0.62 -0.05 0.60 -0.08 0.61 -0.07
10 0.63 -0.02 0.65 -0.02 0.60 -0.08 0.60 -0.07

10-1 0.15 0.16 0.20 0.20 0.13 0.07 0.02 0.02
(0.97) (1.28) (1.44) (1.91) (1.11) (0.84) (0.20) (0.32)

Figure 2: Cumulative alphas for top-minus-bottom portfolios

This figure presents the cumulative post-ranking Fama-French six-factor alpha for
top-minus-bottom portfolios sorted on one of the following performance measures: six-factor alpha
(α), double-adjusted six-factor alpha (α∗), or characteristic-driven performance (αchar). These
performance measures are calculated using rolling windows with a window size of 24 months (see
section 4.A). Portfolios are rebalanced every quarter-end and held up to 40 quarters. The
horizontal axis shows the post-ranking holding period in quarters.

5.C Mutual Fund’s R-squared

Recent studies show that fund performance is positively affected by fund selectivity or active fund

management, which is measured by the deviation of fund holdings from a diversified benchmark

portfolio. This selectivity measure requires data on the holdings of funds and knowledge on the
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benchmark indices of funds, which are difficult to obtain. In addition, the benchmark portfolio is

not always accurately defined. Amihud & Goyenko (2013) propose a simple and intuitive measure

of mutual fund selectivity:15 the fund’s R-squared (R2), the proportion of the return variance that

is explained by the benchmark portfolios, estimated from a multi-factor model. Amihud & Goyenko

(2013) hypothesize that a low R2 corresponds to high stock selectivity, as a low R2 indicates that

mutual returns are not well explained by the Fama-French risk factors. In this respect, they find

that R2 has a negative and significant predictive effect on fund performance.

We replicate the work of Amihud & Goyenko (2013) by examining the relation between a fund’s

factor model R2 and fund performance. Each month, we calculate a fund’s R2 from a six-factor

model over a 24-month estimation period using daily returns. Following Amihud & Goyenko (2013),

since the distribution of R2 is negatively skewed, we apply the log transformation of R2: R̃2 =

log
[ √

R2

(1−
√
R2)

]
. We test whether fund selectivity explains fund performance by the following panel

regression

Performanceit = c0t + c1tR̃
2
it + c2tExpRatioit−1 + c3tTurnoverit−1 + c4tlog(TNA)it−1

+ c5tlog(FundAge)it−1 + vit, (23)

where Performanceit refers to fund i’s six-factor alpha (α), double-adjusted six-factor alpha (α∗), or

characteristic-driven performance (αchar), all estimated over a rolling window of 24 months ending

in month t. We relate fund performance to the contemporaneous log-transformed R-squared, R̃2,

which is measured over the same rolling window period. Lagged control variables are included in

the regression comprising ExpRatio, the total expenses divided by a fund’s Total Net Assets (TNA);

Turnover, defined as the minimum of aggregated sales or aggregated purchases divided by TNA;

TNA in logarithm; and FundAge in logarithm, computed as the difference in years between the

current date and the date the fund was first offered. The model residuals are given by vit. We

estimate this regression in each month in our sample.

Table 8 reports the averaged cross-sectional regression coefficients along with Fama-MacBeth

t-statistics with the Newey & West (1986) correction for time series correlation with 12 lags. Firstly,

similar to the findings of Amihud & Goyenko (2013), we find that alpha is higher for funds with

15Amihud & Goyenko (2013) define fund selectivity as 1 - R2 = RMSE2

TotalVariance
= RMSE2

SystemeticRisk+RMSE2 .

RMSE is the idiosyncratic volatility, which is the volatility of the factor model residuals. SystemeticRisk is the return
variance that is due to the risk factors. Fund selectivity is greater if the fund’s idiosyncratic volatility is higher relative
to its total variance, meaning that the fund’s volatility is less driven by factor-based (systematic) volatility.
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lower R-squared, that is, funds with high stock selectivity. The control variables yield no sig-

nificant estimates. When we consider double-adjusted alpha we find no significant relation with

R̃2. However, the results indicate a significant (inverse) relation between the characteristic-driven

component of alpha and R-squared, with t-statistics well above two. A potential reason might be

that characteristics can help explain fund returns in cases where the Fama-French factors fail to

do so, such that we find a strong inverse relation between characteristic-driven performance and

R-squared. Thus, using our decomposition of alpha, we find that the component of alpha associated

with passive loadings on characteristics is the main driver of the inverse relation between alpha and

R-squared.

Table 8: Relation between mutual fund performance and R2

This table presents the time series averages of monthly cross-sectional regressions of mutual fund
performance measures on fund selectivity, measured by the contemporaneous log-transformed
R-squared (R̃2). As (annualized) performance measures we employ six-factor alpha (α),
double-adjusted six-factor alpha (α∗) and characteristic-driven performance (αchar). These
performance measures are calculated using rolling windows with a window size of 24 months (see
section 4.A). We estimate the regressions with and without a set of control variables. Fama &
MacBeth (1973) t-statistics with the Newey & West (1986) correction of 12 lags are reported in
parenthesis. Estimates significant at the 5% are in bold font. The monthly regressions cover the
period February 2001 until December 2016.

α α∗ αchar

Cnst 4.770 4.778 -0.518 -0.540 1.073 1.110
(2.01) (1.98) (-2.12) (-2.20) (2.76) (2.61)

R̃2 -1.148 -1.269 -0.018 -0.021 -0.314 -0.306
(-2.12) (-2.36) (-1.02) (-1.18) (-2.67) (-2.55)

ExpRatio 8.112 0.848 -0.548
(1.30) (1.62) (-0.37)

Turnover -0.081 0.001 -0.002
(-1.78) (0.32) (-0.29)

Log(TNA) -0.014 -0.001 -0.002
(-1.07) (-0.23) (-0.45)

Log(FundAge) 0.015 0.006 -0.010
(0.48) (1.45) (-0.60)

5.D Mutual Fund Flows

There is no shortage of literature on mutual fund flows. The first stream of literature (e.g., Warther

(1995), Edelen & Warner (2001), Brown et al. (2003)) have focused on aggregate fund flows to

the equity market, documenting a positive correlation with contemporaneous stock returns. Early

works of Ippolito (1992), Gruber (1996) and Sirri & Tufano (1998) find that capital flows to and
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from funds are strongly related to past fund performance. The general consensus is that the flow-

performance relation is positive, asymmetric and convex; positive returns garner more inflows than

those lost to negative returns. The establishment of a convex flow-performance relation is generally

robust to different performance measures varying from raw returns to multi-factor model alphas.

More recently, a second stream of literature goes beyond the simple flow-performance relations.16

A recent paper of Barber et al. (2016) investigate which risk factors are used by investors to adjust

raw returns when evaluating fund performance. They run linear regressions of fund flows on fund

alphas obtained from several Fama-French factor models and conclude that CAPM alphas are the

best predictor of flows among all factor model alphas. In additional analysis, they decompose fund

returns into alpha and returns resulting from factor tilts. They conclude that alpha generates the

largest flow response, closely followed by a fund’s momentum related return, while flows are least

sensitive to fund returns traced to market beta.

We aim to replicate the work of Barber et al. (2016) using our decomposition of six-factor alpha

(α). Using fund flows, we investigate whether investors tend toward the double-adjusted component

of six-factor alpha (α∗) or toward the characteristic-driven component (αchar) when assessing fund

managers. For this purpose, we follow the majority of the prior literature on fund flows and calculate

net capital flow17 to fund i during month t as

flowit =
TNAit − TNAit−1(1 +Rit)

TNAit−1
, (24)

where TNAit is fund i’s total net assets at the end of month t and Rit is the monthly net return of

fund i in month t.18 The variable flow reflects the percentage growth of a fund that is due to new

investment (under the assumption of dividends being reinvested in the fund).

Similar to Barber et al. (2016), we further decompose characteristic-driven performance into

alpha related to each individual characteristic. Recall that characteristic-driven performance (see

16A mutual fund’s investment style is an important source of information to investors. Cooper et al. (2005) document
an increase in fund flows to funds adopting the current hot investment style in their names. They find that these
inflows are similar across funds who alter their positions matching their new name and those who do not, suggesting
that investors are irrationally influenced by cosmetic effects. Guo (2016) use a fund’s reported holdings to determine
a fund’s investment style and find that funds adopting a more volatile implementation of style strategy garner higher
inflows.

17Frazzini & Lamont (2008) and Lou (2012) correct for fund mergers when calculating fund flows. As fund mergers
are quite rare, this study ignores them.

18Fund flows are dropped if the percentage difference in TNA in between two months is greater than 200% or less
than -50%. These extreme flows are rare and are typically related to structural changes within funds, e.g., mergers.
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Eq.(14)) is defined as

αcharit = δ′1tZit−1

= δMcap
1t Mcapit−1 + δ

B/M
1t B/Mit−1 + δMom12

1t Mom12it−1 + δProfit
1t Profitit−1 + δInvest

1t Investit−1

(25)

which is the sum of lagged (standardized) characteristics multiplied by the corresponding cross-

sectional premia. With this decomposition, we gauge whether fund flows are distributed differently

across the characteristic components of alpha by estimating the following panel regression

flowi,t+1:t+12 = c0t + c1tα
∗
it + c2t[δ

Mcap
1t Mcapit−1] + c3t[δ

B/M
1t B/Mit] + c4t[δ

Mom12
1t Mom12it−1]

+ c5t[δ
Profit
1t Profitit−1] + c6t[δ

Invest
1t Investit−1]

+ c7tExpRatioit + c8tTurnoverit + c9tlog(TNA)it + c10tlog(FundAge)it + vit, (26)

where the dependent variable is the average monthly fund flow of fund i in the following year. The

independent variables include double-adjusted alpha (α∗it) and alpha related to a fund’s size, value,

momentum, profitability and investment characteristics (see Eq.(25)). We include the same control

variables as in Eq.(23). The model residuals are given by vit. We estimate this regression at each

year-end. We expect that managerial skill attracts fund, such that there is no capital directed

towards abnormal return related to known characteristics. That is, we expect that the parameters

related to the characteristic components to be indistinguishable from zero. Contrary evidence

implies that either investors are not considering known factors when assessing fund performance,

or alpha provides an incomplete risk-adjustment for these characteristics.

Table 9 reports the cross-sectional regression coefficients averaged across time along with Fama-

MacBeth t-statistics with the Newey & West (1986) correction for time series correlation with 3

lags. In the first two columns, we specify future fund flows as a linear combination of double-

adjusted alpha and characteristic-driven performance, with and without the set of control variables.

We find strong positive relations between both performance measures and fund flows, where the

double-adjusted component garners the most inflows. Among the set of control variables, we find

positive but statistically insignificant coefficients for ExpRatio and log(FundAge). Of interest are

the estimated sensitivities of flows to the characteristic components of alpha. Generally, fund

returns related to characteristics do not garner the same magnitude of flows as double-adjusted
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Table 9: Response of fund flows to components of alpha

This table presents the time series averages of annual cross-sectional regressions of the one-year
ahead average of monthly fund flows on double-adjusted six-factor alpha (α∗) and
characteristic-driven performance (αchar). These performance measures are calculated using
rolling windows with a window size of 24 months (see section 4.A). We also estimate the
regressions in which we further decompose αchar into alpha related to each individual
characteristic. We estimate the regressions with and without a set of control variables. Fama &
MacBeth (1973) t-statistics with the Newey & West (1986) correction of 3 lags are reported in
parenthesis. Estimates significant at the 5% are in bold font. We estimate these annual
regressions at the end of each year, covering 16 years from 2001 to 2016.

Cnst 0.014 0.004 0.014 0.005
(6.69) (0.58) (6.48) (0.69)

α∗ 4.061 4.044 4.065 4.047
(9.75) (9.80) (9.75) (9.81)

αchar 0.396 0.366
(2.41) (2.16)

δMcap · Mcap -1.476 -1.455
(-2.19) (-2.11)

δB/M · B/M 0.275 0.215
(0.31) (0.24)

δMom12 · Mom12 1.778 1.720
(3.06) (2.91)

δProfit · Profit 0.338 0.221
(0.37) (0.22)

δInvest · Invest 1.776 1.694
(0.85) (0.87)

ExpRatio 0.481 0.468
(1.42) (1.40)

Turnover 0.000 0.000
(-0.96) (-1.07)

Log(TNA) 0.000 0.000
(-0.82) (-0.82)

Log(FundAge) 0.002 0.002
(1.75) (1.78)

alpha does. The coefficients on the value and profitability characteristics are both statistically and

economically insignificant. However, we do find evidence of investors tending to size and momentum

characteristics, which yield significant parameter estimates of about half of that of double-adjusted

alpha (in absolute value). Thus, in aggregate, we find that investors allocate their investment toward

funds with favourable characteristics in the size and momentum dimensions.
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6 Robustness Checks

6.A Overlapping Rolling Windows

In a recent paper, Britten-Jones et al. (2011) examine the impact of overlapping dependent variables

on the inference from standard Fama-MacBeth cross-sectional regressions. The overlap induces an

autocorrelation pattern in the standard errors of the cross-sectional regressions and commonly used

methods (e.g., White or common Newey-West standard errors) to deal with this autocorrelation

are inadequate and can lead to misleading estimates of the confidence intervals associated with

coefficient estimates obtained from finite samples.19 As the rolling windows overlap in our model

in Eqs.(11), (12) and (15), we check the robustness of our results in Section 4.C. Specifically, we

re-estimate our model using different frequencies of the cross-sectional regressions in Eq.(12).

Table 10 reports the results. In Panel A, we estimate the cross-sectional regressions at each

quarter-end rolling the window three months at a time. The results are very similar compared

to the results using monthly cross-sectional regressions (see Table 4).20 All characteristics except

operating profitability remain significantly associated with six-factor alphas. Moreover, we find

an increase in the posterior standard deviations for the momentum, profitability and investment

characteristics. In Panel B, we estimate the cross-sectional regressions at a semi-annual frequency.

We use less periods to estimate the systematic relation between alphas and characteristics, which

leads to a further increase in posterior standard deviations. Consequently, we find more tenuous

relations between six-factor alphas and the momentum and investment characteristics.

Another factor to consider is the frequency of mutual fund portfolio disclosure. The Thomson

Reuters database provides quarterly snapshots of fund portfolios, which we keep constant between

quarters to create a monthly time series of fund holdings (see Appendix A). Consequently, the vari-

ation in fund-level characteristics within quarters is only caused by the monthly variation in firm

characteristics of each fund position. The staleness in our holdings data might compound the auto-

correlation in the standard errors described above. While our analysis would benefit from portfolio

disclosure at a higher frequency, the potential effects of frequent mutual fund portfolio disclosure

remains the focus of a longstanding debate among practitioners, regulators, and academics.

19Britten-Jones et al. (2011) transform original regressions into an equivalent representation in which the dependent
variables are non-overlapping to remove the autocorrelation. Their method is easily applicable within standard
frequentist analyses and they show that conventional inference procedures (OLS-, White-, Newey-West- standard
errors) are asymptotically valid when applied to the transformed regression.

20We repeated the analysis of Section 5 using double-adjusted alpha obtained from quarterly cross-sectional regres-
sions. In untabulated results, we find that inference is qualitatively similar to that based on double-adjusted alpha
from monthly cross-sectional regressions.
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Table 10: Rolling window frequency robustness

This table presents the results of the estimation of the model in Eqs.(11), (12) and (15) using
different frequencies of the cross-sectional regressions in Eq.(12). We estimate this model during
the period February 2001 to December 2016, using an estimation period of two years to estimate
the six-factor model in Eq.(11), rolling the window three months at a time between quarter-ends in
Panel A and six months at a time in Panel B. The characteristics (Z) are the logarithm of market
capitalization (Mcap), the logarithm of book-to-market ratio (B/M), the logarithm of one plus the
past twelve-month cumulative return (Mom12), operating profitability (Profit) and asset growth
(Invest). Each characteristic is standardized by subtracting the cross-sectional mean each month.
We estimate the model for each characteristic in isolation and for all characteristics in a joint
model. We presents the posterior mean and standard deviation for the aggregate-level parameters
in δ̄, based on the posterior distribution of the parameters constructed from 5000 iterations of the
Gibbs sampler with the first 2500 iterations discarded as a burn-in period. Estimates in bold font
indicate that the 95% credible interval of the posterior distribution does not include zero.

Panel A: Quarterly cross-sectional regressions
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.004

(0.000) (0.001)
Mom12 0.019 0.005

(0.003) (0.005)
Profit -0.011 -0.003

(0.003) (0.002)
Invest 0.022 0.016

(0.007) (0.007)

Panel B: Semi-annual cross-sectional regressions
Cnst -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Mcap -0.002 -0.002

(0.000) (0.000)
B/M -0.003 -0.003

(0.001) (0.001)
Mom12 0.017 0.006

(0.004) (0.007)
Profit -0.011 -0.003

(0.004) (0.002)
Invest 0.017 0.012

(0.009) (0.009)

6.B Characteristic-based Benchmark Approach

Daniel et al. (1997) develop a new measure of mutual fund performance which use benchmarks

based on the firm characteristics of mutual fund holdings. The benchmarks are constructed from

the returns of passive portfolios sorted on characteristics that are matched with the characteristics
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of the evaluated fund’s holdings. Specifically, the DGTW characteristic selectivity (CS) measure is

calculated as

CSit =

Nit∑
j=1

wjt−1(Rjt −R
bjt
t ), (27)

where wjt−1 is the portfolio weight on stock j at the end of month t−1, Rjt is the month t return of

stock j, R
bjt
t is the month t return of the characteristic-based benchmark portfolio that is matched

to stock j, and Nit is the number of holdings of fund i in month t. We use the DGTW CS measure

to adjust fund returns for size, value, momentum, profitability and investment effects. In Appendix

F, we describe in more detail the construction of the characteristic-based benchmark portfolios.

To test whether this characteristic-based performance measure fully adjusts fund returns for the

main anomalies, we regress cross-sectionally the DGTW CS measure on the factor betas from the

Fama-French six-factor model. Particularly, we conduct the following panel regression

CSi,t−23:t = c0t +
6∑

k=1

cktβikt + vit, (28)

where the dependent variable is the average DGTW CS measure of fund i across a 24-month period

ending in month t. The independent variables include the six-factor betas of fund i estimated over

the same 24-month period using daily fund returns. The model residuals are given by vit. Beginning

with the 24th month of our sample, we estimate the monthly cross-sectional regressions over the

period December 2002 to December 2016, consisting of 169 months.

Table 11 reports the results. In Panel A, we only adjust returns for size, value and momentum

effects. When considered in isolation, we find significant relations between the DGTW CS measure

and the market, momentum and profitability betas. That is, the characteristic-based measure under-

adjusts for exposures to the momentum and profitability factors. When we consider all factor betas

together, the profitability beta is no longer significantly related with characteristic-adjusted fund

performance. In Panel B, we adjust returns for all characteristics and the results are qualitatively

similar.

In sum, we conclude that the characteristic-based measure of Daniel et al. (1997) does not fully

adjust fund performance for the main anomalies. Controlling only for factor betas, as in Fama-

French factor models, or only for characteristics, as in DGTW, may overlook the other effect, and

in so doing materially impact estimates of fund manager skill.
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Table 11: DGTW CS measure vs. six-factor betas

This table presents the time series averages of monthly cross-sectional regressions of the DGTW
characteristic selectivity (CS) measure on the Fama-French six-factor betas. We calculate the
average DGTW CS measure across the past 24 months. We estimate the six-factor model over the
same 24-month period using daily fund returns. In Panel A, the DGTW CS measure controls for
the size, value and momentum characteristics. In Panel B, the DGTW CS measure also controls
for the profitability and investment characteristics. Fama & MacBeth (1973) t-statistics with the
Newey & West (1986) correction of 12 lags are reported in parenthesis. Estimates significant at
the 5% are in bold font. Starting with the 24th month in our sample, the monthly regressions
cover the period December 2002 to December 2016.

Panel A: Size, value and momentum characteristics
Cnst 0.225 0.003 0.001 -0.004 0.013 0.003 0.207

(3.30) (0.31) (0.06) (-0.40) (1.81) (0.32) (2.89)
RMRF -0.227 -0.211

(-3.09) (-2.71)
SMB -0.008 -0.008

(-0.35) (-0.31)
HML 0.090 0.071

(1.67) (1.65)
WML 0.207 0.323

(2.31) (3.89)
RMW 0.116 0.063

(2.03) (1.18)
CMA 0.010 0.001

(0.11) (0.02)

Panel B: All characteristics
Cnst 0.250 0.006 0.007 0.000 0.016 0.011 0.218

(3.54) (0.59) (0.68) (0.01) (1.79) (1.20) (3.31)
RMRF -0.246 -0.223

(-3.10) (-3.08)
SMB 0.014 0.013

(0.76) (0.60)
HML 0.046 0.024

(1.06) (0.48)
WML 0.237 0.351

(2.59) (4.11)
RMW 0.092 0.067

(2.23) (1.27)
CMA 0.019 0.041

(0.29) (0.91)

7 Conclusion

Growing concerns arise among academics and practitioners alike regarding the portfolio-based ap-

proach for identifying anomalies and, more generally, for testing asset-pricing models. This approach

sorts stocks on a firm characteristic and constructs a zero-cost hedge portfolio which reflects the

return differential between stocks in the top characteristic decile and stocks in the bottom character-
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istic decile. Ang et al. (2008) and Fama & French (2008), among many others, argue that grouping

stocks into portfolios and aggregating returns wastes and potentially distorts cross-sectional pat-

terns in stock returns. Consequently, the Fama-French multi-factor models, that incorporate these

portfolios as risk factors, do not fully adjust returns for the main anomalies. Instead of estimated

factor betas many studies (e.g., Avramov & Chordia (2006), Chordia et al. (2015)) have opted for

individual firm characteristics to explain expected returns.

Our paper moves the debate of factor betas versus characteristics to the returns of mutual funds.

We conduct monthly cross-sectional regressions of fund returns on estimated factor betas and firm-

level characteristics (aggregated to a fund-level statistic from a fund’s holdings). Similar to the

evidence on stock returns, we find that factor betas and characteristics each account for about half

of the total model explained variation in fund returns. Thus, despite the mechanical relation one

might expect between factor betas and their underlying characteristics, our results imply they do

not convey identical information.

An important application of the Fama-French factor models is the performance evaluation of

mutual funds. Since these factor models do not fully account for the main anomalies, they only

partially control for passive influences on fund returns. Our paper proposes a new performance

measure that adjusts fund returns for both factor exposures and characteristics simultaneously.

While it is debatable whether fund managers that actively shift their portfolios towards a certain

characteristic dimension qualifies as skill, we belief that a performance measure should fully adjust

for a particular anomaly.

To calculate our double-adjusted performance measure, we propose a hierarchical Bayes struc-

ture in which we simultaneously model conditional factor model alphas and analyze the cross-

sectional relation between fund alphas and characteristics. We find that characteristics are statis-

tically significantly related to fund returns even after controlling for factor model betas, suggesting

that performance identified via Fama-French factor models could be attributable to loadings on

characteristics. When we reassess several previous studies on mutual fund relative performance, we

find that our double-adjusted performance measure is a purer measure of skill when we analyze per-

sistence in fund performance. Moreover, we find that relations between specific fund features (fund

selectivity and fund flows) and fund performance is partially driven by the characteristic component

of performance. All in all, by more fully adjusting performance for the influence of characteristics

we might alter previous inference on relative mutual fund performance.

Our hierarchical Bayes model can be extended in various directions. For example, the MIDAS
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approach of Ghysels et al. (2005) can be adopted to assign optimal weights to the daily returns in

the window used to estimate the rolling window factor betas. In addition, one can impose a common

structure on the factor betas too, rather than just the alphas, to further exploit information from

the cross-section of funds. Furthermore, while we focus on the characteristics underlying the Fama-

French factors because of the widespread use of the Fama-French models, our model can be readily

extended to adjust performance for other characteristics such as those underlying the q-factors from

Hou et al. (2015) or underlying the short- and long-run behavioral factors from Daniel et al. (2017).
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Appendices

Appendix A: Mutual Fund Selection

Our sample contains U.S. equity actively managed funds at the intersection of the CRSP Survivor-

Bias-Free U.S. Mutual Fund database with the Thomson Reuters Mutual Fund Holdings S12

database. We use the MFLINKS database available from Wharton Research Data Services (WRDS)

to combine both databases. Our final database contains mutual fund holdings spanning the period

from January 2001 to December 2016.

A.1 CRSP Mutual Fund Database

Since we wish to capture active mutual funds that invest primarily in U.S. equities, we follow

Kacperczyk et al. (2008) and Lou (2012), by eliminating balanced, bond, money market, interna-

tional, index, and sector funds, as well as funds that do not primarily invest in U.S. common equity.

We base our mutual fund selection on identifiers provided in the CRSP mutual fund database.

Specifically, we select funds with the following Lipper Objective codes: EI, EIEI, EMN, FLX, G,

GI, I, LCCE, LCGE, LCVE, LSE, MC, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE,

SCGE, SCVE, SESE, SG. If a fund’s Lipper Objective code is missing, we pick funds with the

following Strategic Insight Objective codes: SCG, GRO, AGG, ING, GRI, GMC. If both codes are

missing for a fund, we select funds with the following Wiesenberger Fund Type codes: SCG, AGG,

G, G-S, S-G, GRO, LTG, I, I-S, IEQ, ING, GCI, G-I, G-I-S, G-S-I, I-G, I-G-S, I-S-G, S-G-I, S-I-G,

GRI, MCG.

Since some funds misreport their objective code, we require funds to hold at least 80% and at

most 105% in common stocks, on average. Index funds are eliminated based on the CRSP index

fund flags (provided since 2003) and by screening fund names. In particular, funds are dropped if

the fund name contains the following strings: INDEX, IND, INDX, IDX, IDX, MKT, MARKET,

SP, SP, MSCI, NYSE, RUSSELL, NASDAQ, ISHARES, DOWJONES, SPDR, ETF, 100, 400, 500,

600, 1000, 1500, 2000, 3000, 5000. Following Kacperczyk et al. (2008), to address the incubation

bias21 we delete observations for which the date of the observation is prior to the reported fund

start-date and we delete observations with missing fund names. Other data from the CRSP mutual

fund database include the total net assets (TNA), net returns (both monthly and daily), fees, and

21Evans (2004) and Kacperczyk et al. (2008) detect a form of survival bias in the CRSP mutual fund database,
which stems from fund families sugarcoating their past performance. Fund families incubate private funds and only
report the returns of the surviving incubated funds and do not disclose the past performance of terminated funds.
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other qualitative fund data. We aggregate all different share classes belonging to a single fund at

each point in time into one observation. Regarding the quantitative attributes of funds, we sum

the TNA and we take a weighted average of the fund returns, expense ratio, turnover ratio and

fees, using the lagged TNAs of each individual share class as weights. Regarding the qualitative

attributes of funds (e.g., fund name, CRSP objective code, year of origin), the data of the oldest

fund is retained.

A.2 Thomson Reuters Database

Mutual fund holdings are provided by Thomson Reuters and are compiled from mandatory SEC

fillings22 and voluntary disclosures. From this database we exclude funds with the following objective

codes: International, Municipal Bonds, Bond & Preferred, Balanced and Metals. Every fund files

the SEC form at the end of a quarter (the file date), which is often in the same quarter as the report

date; the date for which the holdings are actually held (adjusted for stock splits23). To create a

monthly time series of fund holdings, we keep reported holdings constant between report dates

(e.g., holdings reported at the end of September are valid in October, November and December).

A majority of funds report holdings on a quarterly basis, while a small number of funds have gaps

between report dates of more than two quarters. To fill these gaps (of no more than two quarters),

we impute holdings of missing quarters using the most recently available report date, assuming that

these funds adopt a buy-and-hold strategy. In the final database about 65% of the funds disclose

their holdings quarterly, 34% semi-annually, and 1% on a less frequent basis.

A.3 MFLINKS

To combine the CRSP mutual fund database with the Thomson Reuters database, we use the

MFLINKS provided by Russ Wermers on Wharton Research Data Services (WRDS). MFLINKS

maps CRSP fund identifiers to Thomson Reuters fund identifiers, covering approximately 98% of

the domestic equity mutual funds. We manage to link about 92% of the target universe in the

CRSP mutual fund database to holdings data from Thomson Reuters. To ensure a reliable linkage

between the two databases, we require that the TNAs reported by both databases do not differ by

more than a factor of two. Finally, funds with less than 10 identified stock positions and less than

22Investment companies, which include mutual funds, insurance companies, banks, pension funds, and numerous
other institutions are often called 13f institutions. These institutions are required to fill in a form with the Securities
and Exchange Commission (SEC) on a semiannual basis.

23Adjustments are made using the cumulative adjustment factor for shares in the CRSP monthly file.
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$5 million assets under management are excluded.

The final mutual fund database contains 2,871 distinct mutual funds including 92,903 fund-

report dates and 314,362 fund-month observations. Table A1 presents the number of funds at the

end of each year along with the TNA and number of holdings reported by Thomson Reuters. There

is a rising trend in both the number of funds, the average fund size, and the market share held.

Table A1: End of year summary statistics of the equity mutual fund sample

This table presents summary statistics for the mutual fund database as of December each year.
#Holdings is the number of reported holdings in Thomson Reuters. #Distinct stocks contains the
number of unique stocks held by the funds in the sample and the aggregated percentage market
share held. TNA is the total net assets under management reported by CRSP, expressed in
millions USD.

Year #Funds #Holdings #Distinct stocks TNA($M)
Mean Median Mean %Market Mean Median

2001 1,126 110 73 4,802 7.83 730.69 165.20
2002 1,236 120 75 4,301 9.57 759.20 141.00
2003 1,221 115 78 4,383 10.10 903.92 164.85
2004 1,137 113 75 4,392 12.57 1,192.07 192.30
2005 1,061 124 77 4,056 11.71 1,420.41 238.80
2006 967 122 76 4,021 12.14 1,700.04 298.60
2007 1,071 113 75 4,211 11.96 1,649.38 276.30
2008 1,192 120 75 4,012 11.98 972.76 165.20
2009 1,114 116 80 3,793 12.82 1,387.80 233.45
2010 1,294 122 78 3,691 12.91 1,520.00 299.10
2011 1,226 122 78 3,470 12.17 1,440.66 290.80
2012 1,335 123 77 3,398 12.79 1,579.65 361.80
2013 1,176 114 77 3,365 12.44 2,153.20 519.85
2014 1,170 119 78 3,424 11.58 2,383.97 540.90
2015 797 111 70 3,320 9.56 2,584.96 584.60
2016 697 113 75 3,180 8.45 2,798.21 648.10
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Appendix B: Errors-in-variables (EIV) Bias

The estimation of risk premia is subjected to the EIV bias, because the set of regressors include

estimations of factor betas. The OLS estimator for the factor betas for fund i in month t can be

written as

β̂it = (F ′τ,tFτ,t)
−1F ′τ,tRiτ,t, τ = t− T + 1, ..., t. (A.1)

The superscript τ is used to index the daily fund returns in the rolling window ending in month t

and T is the length of the rolling window, that is, two years (T ≈ 500 trading days). The estimation

error in the first stage is

uit = β̂it − βit = (F ′τ,tFτ,t)
−1F ′τ,tεiτ,t, τ = t− T + 1, ..., t. (A.2)

We stack the excess returns, factor betas estimates, residual returns, and estimation errors for all

funds at each time t. Denote Rs = [R1s,...,RNts]’, B̂t = [β̂1t,...,β̂Ntt]’, εs = [ε1s, ...,εNts], and Ut

= [u1t,...,uNtt]’, given a total number of Nt funds in the cross-section at time t. The second-pass

regression in the Fama-MacBeth procedure is of the form Rs = γ̂0 + B̂tγ̂ + ξs, with time s often

simply one period ahead t+1. If we assume that the factor model holds (α = 0), the true model

is Rs = Btγ + εs. The cross-sectional residuals are expressed as ξs = (Bt − B̂t)γ + εs, which are

correlated with the estimated factor betas. This endogeneity problem induces a downward bias in

the estimated γ̂.

Specifically, let 1Nt be a Nt × 1 column vector of ones and define B̂∗t as [1Nt B̂t]. Then the OLS

estimator of γ is written as

γ̂t+1 = (B̂∗t
′B̂∗t )−1B̂∗tRt+1. (A.3)

The expected value of the matrix in parenthesis is written as

E(B̂∗t
′B̂∗t ) = B∗t

′B∗t + Λt with

Λt =

 0 01×K

0K×1 E(U ′tUt)

 =

 0 01×K

0K×1
∑Nt

i=1E(u′ituit)

 =

 0 01×K

0K×1
∑Nt

i=1 V (u′it)

 . (A.4)

Notice that the cross-products in the expectation of B̂∗t
′B̂∗t disappear as the estimate B̂t is an
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unbiased estimator of Bt. The term V(u′it) is

V (u′it) = E(uitu
′
it) = (F ′τ,tFτ,t)

−1F ′τ,tE(εiτ,tε
′
iτ,t)Fτ,t(F

′
τ,tFτ,t)

−1, τ = t− T + 1, ..., t, (A.5)

which is simply the covariance matrix of the estimator of βit, denoted by Σβit .

The right-bottom term of Λt is the summation of covariance matrices of Nt assets, which is

positive semi-definite such that B̂∗t
′B̂∗t >B

∗
t
′B∗t , leading to a negative bias in the estimated risk

premia γ̂. Notice that the second term in Eq.(A.3), B̂∗tRt = B∗tRt + U ′tRt does not systematically

deviate from zero as E(U ′tRt) = 0. The EIV bias is less severe when the estimation of Bt is more

precise. Assuming the true value of Bt is time invariate, a way to improve precision is to increase the

rolling window length T . Asymptotically, the smaller measurement error in the first-pass regression

reduces the bias in the second stage.

A large stream of literature have followed Jensen et al. (1972) and Fama & MacBeth (1973),

among many others, in mending the EIV bias by grouping assets into portfolios. The underlying

motivation of grouping assets is to decrease idiosyncratic risk in the first-pass regression. Assuming

unbiased estimates of the true factor betas and the estimation error being independent across

different assets, the estimated factor betas of portfolios, which merely constitutes a weighted average

of individual factor beta estimates, tend to become smaller as the portfolio contains a larger number

of assets. Intuitively, the errors in estimated factor betas of individual assets tend to offset one

another. Thus, creating portfolios allows for more efficient estimates of factor betas.

But using portfolios, rather than individual assets, has its own shortcomings. The number of

test assets is dramatically reduced, such that there is less cross-sectional variation in factor betas to

form risk premia estimates. Perhaps more alarming is that diversification into portfolios can mask

cross-sectional phenomena in individual assets. Liang (2000) argue that measurement errors in the

sorting variables can compound the EIV problem and further bias test results. Ang et al. (2008)

show that the smaller standard errors of portfolio betas do not lead to smaller standard errors of

the cross-sectional estimated risk premia.

Therefore, this paper will work with individual funds. This is in line with recent literature

including the works of Chordia et al. (2015), Jegadeesh et al. (2016), and Raponi et al. (2017). We

employ the EIV-corrected estimator of Chordia et al. (2015), described in Section 3.B.1.

Pukthuanthong et al. (2014) and Jegadeesh et al. (2016) have proposed an instrumental vari-

ables approach to mitigate the EIV bias. Recall that the explanatory variables in the second-pass
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regression suffer from endogeneity. A standard econometric solution is to define a particular set of

well-behaved instruments which meet two conditions: (1) the instruments are correlated with the

endogenous variables and (2) the instruments are uncorrelated with the residuals. They propose

estimated factor betas from non-overlapping observations to serve as instruments for the second-

pass regression. We have explored the IV estimator in simulations. The IV estimator did reduce

the negative bias on γ, but exhibits the highest variability among all estimators.24

24In untabulated simulation results, the IV estimator ranked second behind the EIV-corrected estimator of Chordia
et al. (2015). A major pitfall of instrumental variable estimation is the ”weak instrument” problem, which is caused by
low cross-correlations between endogenous variables and instruments, which may cause nonsensical estimates. Factor
betas on value and momentum factors are most prone to time variation, due to the volatile nature of these anomalies.
In simulations, these factors exhibit the highest variability due to low correlated instruments.
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Appendix C: Simulation Experiments

In order to gauge the statistical properties of the proposed estimators of Γ under small T and large

Nt, we resort to simulations with parameters matched to the real data. We investigate the bias and

the root-mean-squared error (RMSE) of the OLS estimator and the EIV-corrected estimator. For

this purpose a simple data-generating process is set, in which fund returns follow a six-factor model

with time invariant factor betas:

Rit = βi1RMRFt + βi2SMBt + βi3HMLt + βi4WMLt + βi5RMWt + βi6CMAt + εit, (A.6)

where RMRFt is the excess return on the market portfolio on day t. SMB, HML and WML are the

factors from Carhart (1997) and are excess returns on the factor mimicking portfolios for size (small

minus big), book-to-market (high minus low) and one-year momentum (winners minus losers).

The two additional factors RMW and CMA from Fama & French (2015) are factor returns for

profitability (robust minus weak) and investment (conservative minus aggressive). The benchmark

returns of RMRF, SMB, HML, WML, RMW and CMA are provided on Ken French’s Website.

The simulation parameters are set equal to the corresponding parameters in the actual data

covering the sample period of January 2001 to December 2016. For each fund, we estimate the six-

factor model using rolling time series regressions based on the past two years of daily return data.

For the sake of simplicity, we assume the residuals are homoskedastic and compute the variance of

residuals as σ̂2
ε = ε′ε

T−K . This results in a set of factor betas and residual variances from which we

calculate the first two sample moments.

We conduct a simulation with 1000 replications where fund returns are randomly generated on

a daily basis using the following procedure:

1: For each replication, we randomly generate daily factor returns for RMRF, SMB, HML, WML,

RMW and CMA from normal distributions N (0.025,1.520), N (0.017,0.331), N (0.014,0.398),

N (0.012,0.984), N (0.019,0.200) and N (0.013,0.131), respectively. These parameters are cal-

culated using actual data on daily factor returns during our sample period.

2: For each fund i, we randomly generate six-factor betas and σ̂εi , which we keep constant

over the entire sample period. The factor betas are generated from normal distributions

N (0.980,0.010), N (0.197,0.114), N (0.000,0.046), N (0.021,0.015), N (-0.057,0.043), and N (-

0.037,0,044). σ̂εi is generated from N (0.293,0.031). All parameters are obtained from real
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data.

3: For each fund i and each day t, we randomly generate residual returns εit from independent

normal distributions N(0,σ̂2
εi).

Then for each fund i and each day t, we calculate the fund return according to Eq.(A.6), using the

realized factors (from step 1), the fund’s factor betas (from step 2), and the residual return (from

step 3).

We estimate the Fama-French six-factor model (first-stage regression) for each fund using a

rolling window of the past two years of daily returns. The data is then aggregated to monthly

frequency and the estimated betas are used in the second-stage cross-sectional regression (monthly

fund returns on estimated factor betas) using the OLS and the EIV-corrected estimator. We roll

the two-year estimation window forward by one month and repeat the risk premia estimation over

the period February 2001 to December 2016, totalling 191 months. The final risk premia estimates

are the time series averages of the γ̂ts.

We present the simulation results relative to the ex-ante risk premia (the true values) and also

relative to the ex-post risk premia, which equal the time series means of the real factors and the

simulated factor returns, respectively. Shanken (1992) derive an expression for the ex-post risk

premia as γex−post = γ + f̄ - E(f). As the true premium is the factor’s expected value, the ex-

post premium is simply the realized factor’s sample mean. The notion of an ex-post premium is

meaningful only conditional on the factor’s realizations; as T diverges, f̄ will converge to E(f) and

γex−post converges to the true value. However, under a finite T , γ and γex−post will differ in general.

The ex-post perspective is informative since it largely removes the component of estimation variance

corresponding to factor outcomes, such that the performance of the EIV-correction relative to the

residual variance component is highlighted. The ex-ante perspective presents the total picture,

including factor surprises. Both the average bias and the average RMSE are reported from both

perspectives.

Table C1 reports the average bias and the average RMSE across 1000 replications, using N ∈

[250, 500, 1000, 2000] funds using a rolling window of the past two years to estimate factor betas.25

Considering the bias relative to the ex-ante risk premia, the OLS estimations are, on average, always

below the true risk premia, ranging from a negative bias between roughly 6% for the size factor

to a negative bias of roughly 23% for the investment factor. This negative bias remains relatively

25In untabulated results, we find similar results when using rolling window sizes of one year, three years and five
years.
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stable when increasing the number of funds in the cross-section. The negative bias is similar when

calculated relative to the ex-post risk premium. The negative bias is partially eliminated by the

bias-corrected estimator, leading to a negative bias in the estimated risk premia ranging from 2%

to 7%.

Next, we turn to the average RMSEs. Considering the ex-ante premia, the differences between

the estimators are modest, almost equal for most factors. Recall that the RMSE is a function of

both the bias and the variability of the estimator. Evidently, the OLS estimator has the smallest

standard deviation, but it exhibits a more severe negative bias such that the RMSEs are similar.

When considering the ex-post premia, there is a sharp reduction in RMSEs for both estimators,

especially when correcting for the EIV bias. This indicates that a large part of the estimator’s

variability is caused by variability in factor outcomes.
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Table C1: Simulation results

We simulate daily fund returns from the six-factor model:

Rit = βi1RMRFt + βi2SMBt + βi3HMLt + βi4WMLt + βi5RMWt + βi6CMAt + εit.

At the beginning of each replication, we simulate daily factor returns from normal distributions
with moments matched to sample moments from February 2001 to December 2016. Factor betas
are drawn from normal distributions N (0.980,0.010), N (0.197,0.114), N (0.000,0.046),
N(0.021,0.015), N(-0.057,0.043), and N(-0.037,0,044), respectively. We generate the residual
variance σ̂εi from N (0.293,0.031) and draw a residual return from N(0,σ̂2

εi). For each fund i, factor
betas are estimated from a rolling time series regression using the past two years of simulated
daily fund returns. This table presents average biases and root-mean-squared errors (RMSEs) in
risk premia estimated when the second stage regressions are fitted using the OLS and the
EIV-corrected estimators, across 1000 replications. The bias and RSMEs are presented relative to
the true risk premium (time series mean factor) and the ex-post risk premium of Shanken (1992).
The latter is the time series averages of factor returns in each replication.

Number Ex-ante premium Ex-post premium
of Bias RMSE Bias RMSE
funds OLS EIV OLS EIV OLS EIV OLS EIV
Panel A: γRMRF

250 0.013 0.062 0.421 0.470 -0.048 0.001 0.226 0.240
500 -0.002 0.044 0.388 0.429 -0.045 0.001 0.153 0.156
1000 0.003 0.049 0.386 0.428 -0.049 -0.003 0.117 0.110
2000 0.003 0.048 0.363 0.403 -0.053 -0.007 0.098 0.080

Panel B: γSMB

250 -0.029 -0.016 0.185 0.191 -0.012 0.001 0.065 0.066
500 -0.017 -0.003 0.185 0.192 -0.013 0.001 0.044 0.043
1000 -0.019 -0.006 0.190 0.197 -0.014 0.000 0.034 0.031
2000 -0.012 0.002 0.182 0.189 -0.014 0.000 0.029 0.025

Panel C: γHML

250 -0.029 -0.005 0.211 0.228 -0.027 -0.003 0.103 0.106
500 -0.035 -0.012 0.207 0.222 -0.023 0.000 0.073 0.074
1000 -0.022 0.002 0.196 0.211 -0.022 0.002 0.058 0.054
2000 -0.012 0.013 0.188 0.204 -0.024 0.000 0.046 0.038

Panel D: γWML

250 -0.032 -0.007 0.340 0.377 -0.020 0.005 0.172 0.185
500 -0.031 -0.006 0.324 0.356 -0.025 0.000 0.128 0.132
1000 -0.058 -0.036 0.323 0.353 -0.019 0.003 0.093 0.095
2000 -0.047 -0.024 0.314 0.344 -0.020 0.002 0.075 0.069
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Table C1 (Continued)

Panel E: γRMW

250 -0.070 -0.010 0.170 0.184 -0.063 -0.003 0.119 0.116
500 -0.067 -0.006 0.150 0.158 -0.064 -0.004 0.096 0.079
1000 -0.067 -0.007 0.152 0.161 -0.064 -0.004 0.085 0.059
2000 -0.071 -0.013 0.149 0.154 -0.064 -0.006 0.077 0.042

Panel F: γCMA

250 -0.064 -0.005 0.147 0.170 -0.062 -0.003 0.120 0.128
500 -0.066 -0.008 0.135 0.150 -0.062 -0.004 0.101 0.094
1000 -0.063 -0.006 0.123 0.134 -0.065 -0.007 0.086 0.063
2000 -0.065 -0.009 0.120 0.127 -0.066 -0.009 0.080 0.044
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Appendix D: Probability Density Functions

In this appendix several univariate and multivariate probability density functions are given which

are used throughout this paper. For univariate densities, we indicate the first moment around the

mean by µ, whereas for multivariate densities this is indicated by µµµ.

D.1 Univariate Distributions

Normal density:

The pdf of a normal distributed random variable Z with mean µ and variance σ2, that is, Z ∼

N (µ, σ2) is given by

p(Z|µ, σ2) =
1√

2πσ2
exp

(
−(Z − µ)2

2σ2

)
. (A.7)

Inverted Gamma-2 density:

The pdf of an inverted Gamma-2 distributed random variable Z with scale parameter s > 0 and

degrees of freedom v > 0, that is, Z ∼ IG2(s, v) is given by

p(Z|s, v) = c−1Z−
v+2
2 exp

(
− s

2Z

)
, (A.8)

where c = Γ(v/2)
(

2
s

)v/2
. The mean and variance of Z are given by

E[Z] =
s

v − 2
for v > 2

Var[Z] =
2

v − 4
(E[Z])2 for v > 4.
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D.2 Multivariate Distributions

Multivariate Normal density:

The pdf of a multivariate normal distributed random variable Z with k-dimensional location pa-

rameter µµµ and k x k positive definite symmetric covariance matrix Σ, that is, Z ∼ N (µµµ,Σ) is given

by

p(Z|µµµ,Σ) =

(
1√
2π

)k
|Σ|−

1
2 exp(−1

2
(Z −µµµ)′Σ−1(Z −µµµ)), (A.9)

where the mean and variance of Z are µµµ and Σ, respectively.

Inverted Wishart density:

The pdf of an inverted Wishart distributed k x k symmetric positive definite matrix Z with degrees

of freedom v ≥ k and symmetric positive definite scale matrix S, that is, Z ∼ IW (S, v) is given by

p(Z|S, v) = c−1 |S|v/2

|Z|(v+k+1)/2
exp

(
−1

2
tr(Z−1S)

)
, (A.10)

where c = 2
vk
2 Γk

(
v
2

)
. The mean of Z is given by

E[Z] =
S

v − k − 1
for v > k + 1.

For a nice representation of the variance of Z, we refer to Nydick (2012).
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Appendix E: Posterior Distributions

We provide the posterior distributions of the parameters in our model in Eqs.(11), (12) and (15),

which we repeat here for convenience

Riτ,t = αit + β′itFτ,t + εiτ,t, εiτ,t ∼ N (0, σ2
εit), τ = t− T + 1, ..., t, i = 1, ..., Nt (A.11)

αit = δ0t + δ′1tZit−1 + ηit, ηit ∼ N (0, σ2
ηt), t = 1, ..., T, (A.12)

δt = δ̄ + vt, vt ∼ N (0,Σδ), t = 1, ..., T. (A.13)

For the sake of convenience, we can write the model in matrix form as

Ri,t = XtBit + εi,t (A.14)

αt = Yt−1δt + ηt (A.15)

δt = δ̄ + vt, (A.16)

where Ri,t is a T × 1 vector with daily returns of fund i during the rolling window ending in month

t, Xt is a T × (K+1) matrix with a column of ones and the corresponding factor returns, Bit =

[αit, βit]’ contains the parameters of the factor model, and εi,t is a T × 1 vector with residuals. In

the second equation, αt is a Nt × 1 vector with factor model alphas in month t, Yt−1 is a Nt ×

(L+1) matrix with a column of ones and the lagged fund-level characteristics for each fund, and ηt

is a Nt × 1 vector with residuals.

63



E.1 Joint Posterior Distribution

The joint posterior distribution is proportional to the product of the likelihood function of the

data and the prior distributions. Denote θ = {{{αit, βit, σ2
εit}

Nt
i=1, δt, σ

2
ηt}Tt=1, δ̄,Σδ} as the model

parameters. Denote R as the matrix which stacks the returns in the rolling windows across all

funds over the entire sample period. Substituting the prior specifications as in Section 4.B.1, the

joint posterior is given by:

p(θ|R) ∝ p(R|θ)p(θ)

∝
T∏
t=1

Nt∏
i=1

(σ2
εit)
−T

2 exp

[
− 1

2σ2
εit

(Ri −XtBit)
′(Ri −XtBit)

]

×
T∏
t=1

(σ2
ηt)
−Nt

2 exp

[
− 1

2σ2
ηt

(αt − Yt−1δt)
′(αt − Yt−1δt)

]

×
T∏
t=1

Nt∏
i=1

|Σβ|−
1
2 exp

[
−1

2
(βit − β̄)′Σ−1

β (βit − β̄)

]

×
T∏
t=1

|Σδ|−
1
2 exp

[
−1

2
(δt − δ̄)′Σ−1

δ (δt − δ̄)
]

× |Σd|−
1
2 exp

[
−1

2
(δ̄ − d)′Σ−1

d (δ̄ − d)

]
× |Σδ|−

ψδ+k+1

2 exp

[
−1

2
tr(Σ−1

δ [ψδSδ])

]
×

T∏
t=1

Nt∏
i=1

σ(vε+2)
εit exp

(
− sε

2σ2
εit

)

×
T∏
t=1

σ
(vη+2)
ηt exp

(
− sη

2σ2
ηt

)
, (A.17)

where k denotes the dimension of Σδ.
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E.2 Conditional Posterior Distributions

In order to implement the MCMC Gibbs sampler, we need to derive the full conditional posterior

distributions for each block of model parameters. The conditional densities can be obtained from

the joint posterior density by gathering all the terms that depend on the parameters of interest

and ignore all the remaining parameters. We then obtain the conditional density for each block

of parameters by rearranging the remaining terms into the kernel of a known distribution.26 We

partition the model parameters θ into the following blocks:

• θ(1): Fund-specific factor model parameters (αit, βit)

• θ(2): Fund-specific idiosyncratic variance (σ2
εit)

• θ(3): Characteristic loadings (δ0t, δ1t)

• θ(4): Cross-sectional idiosyncratic variance (σ2
ηt)

• θ(5): Time series mean of characteristic loadings (δ̄)

• θ(6): Time series covariance matrix of characteristic loadings (Σδ)

The conditional posteriors for all parameters have convenient functional forms which trace back

to a known distribution. Therefore, we use the Gibbs sampler to iteratively draw from the full

conditional distributions of θ(1), θ(2), θ(3), θ(4), θ(5), and θ(6). Using the joint posterior distribution

in Eq.(A.17), we will derive the full conditional posteriors for each block.

26Appendix D provides the probability density functions (pdfs) of the distributions used in our analysis.
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E.2.1 Conditional Posterior [αit βit]’

In order to derive the full conditional posterior of [αit βit]’, we require the following mathematical

relations. First, we require

B−1 = B−
1
2
′B−

1
2 , (A.18)

which is denoted the Cholesky decomposition, i.e., the decomposition of a positive-definite matrix

into the product of a lower triangular matrix and its conjugate transpose. We also require the

decomposition rule:

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β − β̂)′X ′X(β − β̂), (A.19)

where β̂ = (X ′X)−1X ′y is the OLS estimator of β.

Following Bayes’ theorem, we can write

p(Bit|R) ∝ p(R|Bit)p(Bit)

∝ exp

[
− 1

2σ2
εit

(Ri,t −XtBit)
′(Ri,t −XtBit)

]
× exp

[
−1

2
(Bit − B̄it)′Σ−1

Bit
(Bit − B̄it)

]
,

where B̄it =

δ0t + δ′1tZit−1

β̄

 and ΣBit =

 σ2
ηt 01×K

0K×1 Σβ


= exp

[
−1

2

(
1

σ2
εit

(Ri,t −XtBit)
′(Ri,t −XtBit) + (Σ

− 1
2

Bit
B̄it − Σ

− 1
2

Bit
Bit)

′(Σ
− 1

2
Bit
B̄it − Σ

− 1
2

Bit
Bit)

)]
using Eq.(A.18)

= exp

[
−1

2
(wit − VitBit)′(wit − VitBit)

]
,

where wit =

[
σ−1
εit Ri,t Σ

− 1
2

Bit
B̄it

]′
and Vit =

[
σ−1
εit Xt Σ

− 1
2

Bit

]′
∝ exp

[
(Bit − B̂it)′V ′itVit(Bit − B̂it)

]
, using Eq.(A.19),

where B̂it = (V ′itVit)
−1V ′itwit, (A.20)

which is the kernel of a normal distribution with mean B̂it and variance (V ′itVit)
−1, that is, the full
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conditional posterior27 of Bit = [αit βit]’ follows a multivariate normal distribution and is given by

αit
βit

 |θ−(αit,βit), R ∼ N
(
B̃it,

[
σ−2
εit X

′
tXt + Σ−1

Bit

]−1
)
, (A.21)

with

B̃it =
[
σ−2
εit X

′
tXt + Σ−1

Bit

]−1 [
σ−2
εit X

′
tRt + Σ−1

Bit
B̄it

]
. (A.22)

We derive the full conditional posteriors of δt and δ̄ in the same way, leading to the following results.

E.2.2 Conditional Posterior δt

The full conditional posterior of δt follows a multivariate normal distribution and is given by

δt|θ−(δt), R ∼ N
(
δ̃t,
[
σ−2
ηt Y

′
t−1Yt−1 + Σ−1

δ

]−1
)
, (A.23)

with

δ̃t =
[
σ−2
ηt Y

′
t−1Yt−1 + Σ−1

δ

]−1 [
σ−2
ηt Y

′
t−1αt + Σ−1

δ δ̄
]
. (A.24)

E.2.3 Conditional Posterior δ̄

The full conditional posterior of δ̄ follows a multivariate normal distribution and is given by

δ̄|θ−(δ̄), R ∼ N
(

˜̄δ,
[
TΣ−1

δ + Σ−1
d

]−1
)
, (A.25)

with

˜̄δ =
[
TΣ−1

δ + Σ−1
d

]−1

[
Σ−1
δ

T∑
t=1

δt + Σ−1
d d

]
. (A.26)

27Let θ−(x) denote the model parameters excluding the set x.
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E.2.4 Conditional Posterior Σδ

In order to derive the full conditional posterior of Σδ, we require the following mathematical rela-

tions. First, we require

A = tr(A) (A.27)

tr(ABC) = tr(CAB) = tr(BCA) (A.28)

tr(A) + tr(B) = tr(A+B), (A.29)

where tr denotes the trace of a matrix. The above relations state that the trace of a scalar is

equivalent to the scalar itself, that the trace is invariant under cyclic permutations, and that the

sum of traces equals the trace of the sum.

Following Bayes’ theorem, we can write

p(Σδ|R) ∝ p(Σδ)p(δt)

∝ |Σδ|−
ψδ+k+1

2 exp

[
−1

2
tr(Σ−1

δ [ψδSδ])

]
×

T∏
t=1

|Σδ|−
1
2 exp

(
−1

2
(δt − δ̄)′Σ−1

δ (δt − δ̄)
)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2

(
tr(Σ−1

δ [ψδSδ]) + tr

(
T∑
t=1

(δt − δ̄)′Σ−1
δ (δt − δ̄)

))]
,

using Eq.(A.27)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2

(
tr(Σ−1

δ [ψδSδ]) + tr

(
T∑
t=1

Σ−1
δ (δt − δ̄)(δt − δ̄)′

))]
,

using Eq.(A.28)

= |Σδ|−
ψδ+T+k+1

2 exp

[
−1

2
tr

(
Σ−1
δ

[
T∑
t=1

(δt − δ̄)(δt − δ̄)′ + ψδSδ

])]
,

using Eq.(A.29), (A.30)

which is the kernel of an inverted Wishart distribution, that is, the full conditional posterior distri-

bution of Σδ is given by

Σδ|θ(−Σδ), R ∼ IW

(
T∑
t=1

(δt − δ̄)(δt − δ̄)′ + ψδSδ, ψδ + T

)
. (A.31)
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E.2.5 Conditional Posterior σ2
εit

Following Bayes’ theorem, we can write

p(σ2
εit |R) ∝ p(R|σ2

εit)p(σ
2
εit)

∝ σ−(T +vε+2)
εit exp

[
− 1

2σ2
εit

(
(Ri,t −XtBit)

′(Ri,t −XtBit) + sε
)]
, (A.32)

which is the kernel of an inverted Gamma-2 distribution, that is, the full conditional posterior

distribution of σ2
εit is given by

σ2
εit |θ

(−σ2
εit

), R ∼ IG2
(
(Ri,t −XtBit)

′(Ri,t −XtBit) + sε, T + vε
)
. (A.33)

E.2.6 Conditional Posterior σ2
ηt

The full conditional posterior of σ2
ηt follows an Inverted Gamma-2 distribution and is given by

σ2
ηt|θ(−σ2

ηt), R ∼ IG2
(
(αt − Yt−1δt)

′(αt − Yt−1δt) + sη, Nt + vη
)
. (A.34)
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Appendix F: Construction of Benchmark Portfolios of DGTW Characteristic

Selectivity Measure

We construct the benchmark portfolios in the spirit of Daniel, Grinblatt, Titman, and Wermers

(DGTW; 1997). We proceed as follows. We conduct a three-dimensional sort along the size, value

and momentum dimensions. All stocks having accounting data from Compustat, as well stock return

and market capitalization data are sorted into quintile portfolios by their market capitalization. The

breakpoints for the sort on size is based on stocks listed on the NYSE, while the analysis includes

all stocks listed on the NYSE, NYSE MKT (formerly known as AMEX), and NASDAQ. Each size

quintile is further subdivided into quintiles based on the book-to-market ratio of stocks, resulting

into 25 fractile portfolios. Then, each fractile portfolio is further subdivided into quintiles based

on the past twelve-month cumulative return excluding the most recent month. This 5x5x5 sorting

procedure leads to 125 portfolios, each with a unique combination of size, value, and momentum

rankings.28

Next, to adjust for profitability and investment effects, we also conduct a 3x3x3x2x2 sorting

procedure along the size, value, momentum, profitability, and investment dimensions. Similar to the

previous sorting procedure, we first sort stocks into three portfolios based on market capitalization,

using breakpoints derived from NYSE listed stocks. Then we further subdivide the portfolios, first

into three value portfolios and then into three momentum portfolios, resulting into 27 portfolios.

Then, we subdivide each fractile portfolio into two portfolios based on the operating profitability

of stocks. We conclude the sorting procedure by further dividing the fractile portfolios into two

portfolios based on the investment variable. Thus, we end up with 108 portfolios, each with a

distinct combination of size, value, momentum, profitability, and investment rankings.

The 3x3x3x2x2 (5x5x5) sorting procedure is repeated at the end of each quarter, such that the

108 (125) portfolios are reconstituted each quarter-end, and are held for the subsequent quarter.

We calculate the value-weighted average return for each portfolio during the months in the holding

period. We store quarter-end rankings for all stocks, such that we can track the rankings of all

portfolio holdings, which are valid for the subsequent quarter.

28For example, a stock sorted in size portfolio five, value portfolio five, and momentum five, is a large, value and
high momentum stock.
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