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Abstract

Society deals with worrying environmental changes, partially caused by high CO2 emissions

of freight transport. In this research we investigate whether collaborative freight transport

planning can lower the emissions of companies. We focus on collaborations where companies

share costumers to reduce travel distance. Our aim is to compare emissions of each company

in the case that it collaborates and does not collaborate. To assign emissions to companies

in both cases, we consider the five emission allocation methods introduced by Naber et al.

(2018). These methods can allocate emissions to various targets, such as the costumers of a

company or to the companies themselves. To choose one of the emission allocation methods

to work with we determine which method allocates emissions to costumers best. Therefore

we evaluate each method on stability, consistency, robustness and computation time by

performing a case study. We conclude that the Equal Profit+ method performs best. Using

this method we performed a case study in which two or three companies can collaborate. We

concluded that when two companies cooperate the emissions of both companies decrease,

with 48.2% on average. When three companies cooperate it can happen that one company

observes an emission increase. However, the emission decrease of the remaining companies

is on average equal to 56.3%, which is higher than when two companies cooperate.
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1 Introduction and literature review

In our current society, freight transport is dealt with by trucks, airplanes and ships. Trans-

port activities have been increasing immensely over the past decades. From 1990 to 2010, the

greenhouse gas emission in Europe has risen with 23% according to the European Commission

Directorate-General for Energy and Transport (2009). As a consequence, tons of greenhouse

gasses are released into the air, mostly consisting of carbon dioxide. This gas causes the tem-

perature on earth to rise dramatically; according to IPCC (2013), our current pace will lead

to a 1 to 2 Celcius increase in mean global temperature in 2100. This is not the only negative

consequence. In Patz et al. (2000), extreme weather conditions such as heat waves and humans

inhaling polluted air are two of the many situations that we can expect to occur due to the

carbon dioxide. In fact, it already is occurring.

The world now finally realizes that this is a major problem. Therefore action needs to be

taken; for instance, transportation vehicles should become less polluting and, even better, less

needed. One way to realize this goal might be to plan freight transport collaboratively. Com-

panies can do this by di↵erent means. For instance, companies can share trucks such that full

capacity is used, or companies can let a di↵erent company serve some of its costumers to reduce

travel distance. However, companies are not too keen on such collaborations since it involves

sharing private information with their competitors. It therefore is important to investigate what

the possible benefits of collaborative freight transport planning in terms of emissions are. Based

on results of such research, companies can decide whether these benefits outweigh the disadvan-

tages and can be persuaded to cooperate.

We will first review some of the studies that did research on this topic. In Frisk et al. (2010),

the benefits of collaborative freight transport planning in terms of costs are investigated. Since

costs and distance are positively correlated and distance and emissions are positively correlated,

this study is linked to ours. In the paper, two methods are introduced that construct companies’

transportation routes for two cases whilst minimizing costs. In the first case companies plan

their transport collaboratively, and in the second case each company plans their own trans-

port. Both methods create these routes by solving a vehicle routing problem. For one method

the formulation of the problem is flow-based, and for the other method the problem concerns

backhauling. Backhauling refers to the situation where transportation vehicles deliver a load to

and pick up load from a point at the same time, which lowers the travelled distance. To test

if collaboration can lower the costs of a company, a case study is performed. The case study

concerns eight wood selling companies in Sweden. Using both methods, the authors compute
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the costs for each company in both cases. To assign costs to a company for the collaborative

case, several cost allocation methods are used. It turned out that collaborative freight transport

planning can lower total costs of a company up to 14.2%. This shows that such collaboration

may also lead to lower emissions.

Xu et al. (2012) investigate the benefits of collaborative freight transport planning in terms

of costs as well as in terms of emissions. They perform a case study involving the supply of

two French retailers, which is taken care of by four di↵erent suppliers. The possible benefits

of collaboration for these suppliers are determined by solving a mixed integer linear problem.

Based on the study, the authors conclude that in a time period of 33 weeks costs can be reduced

with 26% and emissions with 13.6 tonnes when freight transport is planned collaboratively.

One of the first studies that focuses entirely on the possible benefits of collaborative freight

transport planning in terms of emissions is done by Verstrepen and Jacobs (2012). The study

concerns two di↵erent companies, JSP and HF-Czechforge. Both companies ship their products

on a regular base from Czech Republic to Germany with trucks. Using full capacity of these

trucks is di�cult for both; the first company produces lightweight and voluminous beads, whilst

the latter sells heavy metal components. To enable themselves to use full capacity, it may be

interesting for these companies to plan their freight transport collaboratively. The authors have

investigated this, and estimate that a collaboration could lead to a reduction of emissions of

about 11%.

Danloup et al. (2015) study the possible benefits of collaborative freight transport planning

in terms of emissions in the food supply industry. The authors use simulation to establish that

the emissions are reduced by at least 26% when trucks are shared. Despite of the conclusions

of all these articles, companies still aren’t convinced to cooperate. Investigating this topic such

that more incentives to collaborate are created is thus extra motivation for us.

There also are studies which introduce methods to appoint possible benefits of collabora-

tive freight transport planning. However, these papers did not perform a case study. One of

these studies is by Özener et al. (2014). These authors introduce a method that can collabo-

ratively plan freight transport whilst keeping transport and emission costs as low as possible.

This method iteratively solves a vehicle routing problem by first generating as many clusters as

trucks available. Then it executes a set partitioning problem to assign costumers to clusters.

This is done such that the packages of costumers in a cluster do not exceed the truck capacity.

Based on these clusters, several feasible delivery patterns are generated. Next, for each pattern

a route is found by solving a travelling salesman problem. This problem minimizes transport

and emission costs. Finally, the set partitioning problem is used to choose the patterns such
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that each costumer is served and emissions and costs are minimal. A similar study is done by

Guajardo (2018). In this study, a method is introduced that solves a vehicle routing problem

whilst minimizing emissions.

To determine the benefits of collaborative transport planning for companies in terms of emis-

sion, we compare for individual companies its emission in the case of collaborative transport

planning with its emission in the case of non-collaborative planning. Based on the reviewed lit-

erature, we propose to calculate company emissions for both cases using one of the five emission

allocation methods introduced by Naber et al. (2018). These methods can be used to assign

emissions to various targets, such as the costumers of a company or companies themselves. To

choose between these methods, we determine which method allocates emissions to costumers of

companies best. For this we perform a case study with generated data on individual companies

and their costumers, and evaluate each method on stability, consistency, robustness and com-

putation time. With the chosen emission allocation method we allocate emissions to companies

when they collaborate and don’t collaborate, and compare these emissions. For this we also

perform a case study, with generated data on multiple companies and their costumers.

To allocate emissions to companies, we need the total amount of emission that needs to be

distributed among the companies. Naber et al. (2018) computes this using the emission function

of Ligterink et al. (2012). We decide to use this function as well. The function calculates the

total amount of emission based on distribution routes, thus we need to construct routes first

in order to compute emission. Constructing routes for the case in which companies do not col-

laborate involves solving a travelling salesman problem for each company, for which we use the

Christofides (1976) heuristic. When companies do collaborate, the construction of the routes

involves solving a multi-depot vehicle routing problem. For this we have created an algorithm

that solves this problem heuristically.

Four of the considered emission allocation methods are developed based on the emission al-

location game. In this game, the players are the targets to which emissions need to be allocated.

To evaluate these four methods’ emission allocations to costumers, we need the version of the

emission allocation game in which the players are the costumers. To assign emissions to com-

panies with each of these four methods, we need the version of the game in which the players

are the companies. We elaborate on both versions in our paper.

The rest of the paper has the following outline: in Section 2 we describe our research prob-

lem, and we explain the two versions of the emission allocation game in which the players are

costumers or companies. Also, we elaborate on our algorithm to construct routes for the case in

which companies collaborate. Next we elaborate on the five allocation methods and the evalua-
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tion methods in Section 3. In Section 4 an overview of the data that we use is given. We show

our results on the evaluation of the allocation methods and on collaborative transport planning

in Section 5. We end our paper with concluding remarks in Section 6.

2 Problem description

In this paper we investigate whether collaborative transport planning by companies can be

beneficial in terms of emission. Every company has a set of costumers, N1 = {1, . . . , n}, each

costumer characterized by its location and its order size. Each company also has a depot that

is characterized by its location. The companies deliver the orders of these costumers by truck,

which follows a certain route. When constructing this route each company aims to keep the

costs as low as possible.

Constructing routes can be done in two di↵erent settings: a collaborative setting, in which

companies plan their freight transport together, and a non-collaborative setting, in which each

company plans its own freight transport. From now on, we will refer to the first setting as the

cooperative case, and to the second setting as the non-cooperative case. Our aim of this research

is to compare the emissions of individual companies in both cases by performing a case study.

For this generated data is used on multiple companies and their costumers. We let the set of

companies that can collaborate be N2 = {1, . . . ,m}, each company characterized by its depot

location and by the locations and order sizes of its costumers. To compute emissions of compa-

nies in the case study, we use one of the five emission allocation methods introduced by Naber

et al. (2018). These methods can allocate emissions to various targets, for example costumers

of a company or companies themselves. To choose between these methods, we determine which

method allocates emissions to costumers best. For this we evaluate each method on stability,

consistency, robustness and computation time. To test each allocation method for stability,

consistency and computation time we perform a case study with data on individual companies

and their costumers. We use data with similar content to measure robustness, only in this data

there exists a costumer of which order size and location is fixed. With the method that per-

forms best according to the evaluation, we allocate emissions to companies in the cooperative

and non-cooperative case.

In order to allocate emissions to companies, we need the total emission that needs to be

distributed among the companies. We compute this total emission with the emission function

of Ligterink et al. (2018). This function computes the total emission based on the distribu-

tion routes. Thus we need to construct these routes first in order to compute emission. When
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companies do not collaborate, the construction of the route involves solving a travelling sales-

man problem for each company over its costumers, which we solve with the Christofides (1976)

heuristic. More on this heuristic can be found in the Appendix. Constructing routes in the co-

operative case involves solving a multi-depot vehicle problem, for which we propose an algorithm

that solves the problem heuristically. This algorithm is explained in Section 2.2. Since we don’t

have any information on the costs of transport, we can’t construct minimum-cost routes. Thus

we create routes such that the distance is minimized, defined as the two-dimensional Euclidian

distance.

Four of the considered emission allocation methods are developed based on the emission al-

location game. The players in this game are the targets to which emission needs to be allocated.

To evaluate which method allocates emission to costumers best and to allocate emissions to

companies in the cooperative and non-cooperative case, we use two versions of the emission

game: one in which the players are the costumers, and one in which the players are the compa-

nies. We first explain concepts of cooperative game theory that are used to develop the emission

allocation game in Section 2.1. Then we elaborate on the first version of the game in Section

2.1.2 and on the second version of the game in Section 2.1.1.

2.1 Emission allocation game

The emission allocation game is developed by Naber et al. (2018) using concepts of cooperative

game theory. We first discuss cooperative game theory. Then we elaborate on the emission

allocation game for which the players are the costumers of a company in Section 2.1.2, and for

which the players are the companies in Section 2.1.1.

Cooperative game theory concerns games in which players can choose to cooperate with other

players, leading to competition between groups. Such a group of players is called a coalition.

This is a subset, which we call S, of the set containing all the players, also referred to as the

grand coalition. After competing in groups, the payo↵ of each coalition needs to be redistributed

among its members. In a cooperative game, the main assumption is that the only coalition that

will form is the grand coalition. Thus the main focus in cooperative game theory is the allocation

of payo↵ to each grand coalition member.
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2.1.1 Emission allocation game for which players are costumers

In this game the grand coalition is the set of costumers of a company, N1. Serving these

costumers concerns transport emissions. The aim of the game is to allocate these emissions

to the costumers. This is accomplished by setting requirements for the allocation. Since these

requirements need to hold for all possible coalitions, we first need to introduce some notation

on coalitions before we can discuss them.

When a company serves the members of a coalition S, a minimum-cost route is constructed

that starts and ends at the depot and visits each member. We let the order in which each of

these costumers is served be equal to �(S). Since finding an optimal route is often di�cult, we

find �(N) instead and let the costumers in �(S) be visited in the same order as in �(N). We

determine �(N) by solving a travelling salesman problem, of which the solution is the least-

cost route that starts and ends at the depot and visits every costumer exactly once. Since this

problem is NP-hard, we solve it with the heuristic of Christofides (1976). More on this heuristic

can be found in the Appendix. Because we don’t have any information on travelling costs we

decide to solve the problem whilst minimizing distance, defined as the two-dimensional Euclidian

distance.

Based on �(S) we calculate the transport emission concerned when serving S, e(S). As

mentioned before, we use the emission function of Ligterink et al. (2012) for this. In the

Appendix a more detailed description of the computation of e(S) can be found.

With e(S) defined, we can introduce the requirements that an allocation needs to meet in

the emission allocation game. The game aims to find an emission allocation x = (xi)i2N , where

xi is the amount of emission allocated to costumer i, such that no member of any coalition is

unsatisfied and wants to withdraw from the route. This is called a stable emission allocation.

For this we make the assumption that
P

i2N e({i}) � e(N) to assure that an e�cient emission

allocation exists. There are two requirements that an allocation needs to meet to assure that it

is stable. The first requirement is that the total of emissions allocated to the members of the

grand coalition is equal to e(N). The second requirement is that for each coalition S, the total

of emissions allocated to coalition members is smaller than or equal to e(S). The set containing

the stable emission allocations is called the core of the game. We let x(S) =
P

i2S xi. Then the

definition of the core is:

core(e) = {x 2 Rn : x(N) = e(N), x(S)  e(S), 8S ⇢ N} (1)

We aim to choose an emission allocation that is in the core. However, the core can be empty,

which can make this di�cult. To find a proper emission allocation that preferably is in the core,
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we can use the allocation methods described in Section 3.1.

2.1.2 Emission allocation game for which players are companies

This game is very similar to the game described in the previous section. Here, the grand coalition

is the set of companies, N2. Each company emits CO2 when serving its costumers. In the game,

the total emission that is emitted by the companies is distributed among the companies. For

this an emission allocation is chosen that preferably is in the core. To find such an allocation, we

can use the allocation methods described in Section 3.1. We want to find emission allocations

for the cooperative and non-cooperative case.

The main di↵erence with the previously described game is the computation of e(S). In this

case, e(S) equals the total emission of transport when the companies S serve their costumers.

To compute this we use the emission function of Ligterink et al. (2012). As can be seen from

the Appendix, this function computes emission based on routes. We thus will explain how we

construct routes to compute e(S) for the cooperative and non-cooperative case when |S| = 1

and when |S| > 1.

When |S| = 1, the construction of the route is done in the same way for both cases. We solve

a travelling salesman problem with the Christofides (1976) heuristic whilst minimizing distance,

defined as the two-dimensional Euclidian distance.

When |S| > 1, we construct routes di↵erently for the cooperative and non-cooperative case.

For the cooperative case we construct routes by solving a multi-depot vehicle routing problem,

for which we propose an algorithm. We elaborate on this algorithm in the next section. For the

non-cooperative case, we construct for each company a route that visits all its costumers and

starts and ends at its depot using the Christofides (1976) heuristic. For both cases we construct

routes such that distance is minimized.

2.2 Algorithm to solve a multi-depot vehicle routing problem

In the following paragraphs, we introduce our algorithm to solve a multi-depot vehicle routing

problem. With this we can construct routes for the case when multiple companies plan their

freight transport collaboratively.

For this algorithm we assume that the collaborating companies have the same products in

stock at their depots. This makes it easy for these companies to serve a costumer of a di↵erent

company. We also assume that each company has one truck, which makes it impossible to let
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multiple routes start from the same depot of a company.

Based on these assumptions we create an algorithm that first assigns costumers to depots

and then creates a transport route for each depot. For this algorithm we would like to construct

routes that lead to lower emissions of companies than in the non-cooperative case. Considering

that we use the emission function of Ligterink et al. (2012) to compute emissions, we therefore

decide to create routes whilst minimizing distance.

Our first step is to determine which depot will serve which costumer. To minimize distance,

we want each costumer to be served by the nearest depot. Therefore we assign each costumer

to the nearest depot such that truck capacity, which we assume to be equal to 507 units, isn’t

exceeded. If a costumer can’t be assigned to the nearest depot due to truck capacity, the

costumer will be assigned to the second-to-nearest depot.

With costumers assigned to a depot, we create a route that starts and ends at the depot and

visits each costumer whilst minimizing distance. This concerns solving a travelling salesman

problem, for which we use the Christofides (1976) heuristic.

3 Allocation and evaluation methods

The five allocation methods are introduced in Section 3.1. We want to evaluate each method

based on its stability, consistency, robustness and computation time. In Section 3.2 we explain

each criterion and how we measure it.

3.1 Allocation methods

The allocation methods that we consider are the Star method, which is a commonly used method,

and the Shapley value, the nucleolus, the Lorenz+ Allocation and the Equal Profit+ Method,

which are all developed using cooperative game theory. The plus sign indicates that we slightly

changed the original method for our convenience. In this section we briefly explain each method.

3.1.1 Star method

The Star method is a proportional allocation method. It uses the following equation:

xi =
e({i})P
i2N e({i})e(N). (2)
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The method is straightforward, making it easy to understand. Also, it clearly can be seen how

a certain alternation a↵ects allocations created with this method. The downside is that the

allocations developed by this method are not always in the core of the game, which can lead

to instability. On top of that, this method does not take into account the order in which the

costumers are visited and the distance between two costumers.

3.1.2 Shapley value

According to Shapley (1953), costumers should be assigned to a share of the emission pro-

portional to their marginal contribution to the emission. The Shapley value realizes this by

allocating to each costumer its average marginal emission over all coalitions. We let mi(S) =

e(S[ i)�e(S), which is equal to the marginal emission of adding costumer i to coalition S. The

weights used to calculate the average are based on three axioms, on which you can find more in

Shapley (1953). With these weights, the emission allocated to costumer i 2 N equals:

xi =
X

S✓N\i

|S|(n� |S|�1)!

n!
mi(S). (3)

The disadvantage of this method is that its allocation isn’t necessarily in the core.

3.1.3 Nucleolus

The nucleolus is introduced by Schmeidler (1969). To explain what the nucleolus is, we set the

excess of coalition S equal to e(S) � x(S). Let ✓(x) be the vector containing the excesses of

each possible coalition S when allocation x is used, in non-decreasing order. For the definition

of the nucleolus, we also need to explain lexicographic ordering. Let x and x0 be possible

emission allocations. ✓(x) is lexicographically smaller than ✓(x0) if there exists a j such that

✓i(x) = ✓i(x0), i < j and ✓j(x) < ✓j(x0). The nucleolus of the emission allocation game is the

allocation x such that ✓(x) is the lexicographic minimum among all allocations. When the core

is non-empty, the nucleolus is located in it.

Now that we know what the nucleolus is, we need a method to find it. For this, Engevall et

al. (1998) developed a method that concerns iteratively solving linear programming problems.

In each such problem, an allocation is found by maximizing the smallest excess. If it turns out

that this allocation is not unique, we check which coalitions have dual variables greater than

zero. For these coalitions, we fix the excess obtained. Then we maximize the smallest excess

again, but now only for the coalitions for which the excess is not fixed yet. We repeat solving
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this linear programming problem until a unique solution is found. This solution is the nucleolus.

Let’s now introduce the mathematical notation of the linear programming problems. We

set � to be the decision variable equal to the smallest excess among all allocations for which

the excess is not fixed. On top of that, we create �l and set it equal to the optimal value of �

in iteration l. Finally, we let Fl be the set of coalitions for which the excess is fixed after the

problem is iteration l has been solved. This set is initialized as an empty set at each iteration.

The linear programming problem in iteration l is equal to:

�l = max � (4)

s.t. xi  e({i}) 8 i 2 N, (5)

x(S) + �  e(S) 8S ⇢ N,S 62 ([m<lFm), (6)

x(S) + �m = e(S) 8m < l, S 2 Fm, (7)

x(N) = e(N). (8)

Constraints (5) make sure that the emission allocated to a costumer is never greater than its

stand-alone emission. � is set smaller than or equal to the smallest excess among all coalitions

for which excess is not fixed in constraints (6). Constraints (7) fix the excess of the coalitions

for which this should be done. The final constraint (8) makes sure that the total amount of

emission assigned to costumers is equal to the total amount of emission emitted when serving

these costumers. The objective (4) maximizes the smallest excess. When the problem is solved,

all the coalitions for which the dual variable of the constraints (6) is greater than zero are added

to Fl. A unique solution is found if the constraint matrix of the constraints (7) and (8) has rank

|N |, and the algorithm stops.

3.1.4 Lorenz+ Allocation

The Lorenz allocation is introduced by Aguirre and Javier (2003). It is defined as the emis-

sion allocation in the core with minimal di↵erence between the largest and smallest amount of

emission assigned to any costumer. This results in a commonly known ”egaliterian solution”,

which can be preferred. We introduce the decision variable f , which is set equal to this dif-

ference. With this variable, we can find the Lorenz allocation by solving the following linear

programming problem:
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min f (9)

s.t. xi � xj  f 8 i, j 2 N, (10)

x(S)  e(S) 8S ⇢ N, (11)

x(N) = e(N). (12)

Constraints (10) set f greater than or equal to the largest absolute di↵erence between two

amounts of allocated emission. Constraints (11) and (12) make sure that the allocation is in

the core (1). The objective (9) minimizes the largest di↵erence. From its formulation we can

conclude that the problem does not give a solution when the core is empty, which is inconvenient.

We fix this by slightly altering the Lorenz allocation method: when the core is empty, we use

the nucleolus to find an emission allocation since this method is still defined then.

3.1.5 Equal Profit+ Method

This method is introduced by Frisk et al. (2010) and is quite similar to the Lorenz+ allocation.

The only di↵erence is that this method minimizes the di↵erence between the largest and smallest

amount of allocated emission relative to the stand-alone emission of the associated costumer.

This problem is also solved with a linear programming problem that uses the decision variable

g to represent the largest di↵erence. The problem then becomes:

min g (13)

s.t.
xi

e({i}) �
xj

e({j})  g 8 i, j 2 N, (14)

x(S)  e(S) 8S ⇢ N, (15)

x(N) = e(N). (16)

Here, constraints (14) set g greater than or equal to the largest di↵erence between two amounts of

allocated emission relative to the stand-alone emission of the associated costumers. Constraints

(15) and (16) again make sure that the allocation is in the core (1). The largest di↵erence g

is minimized by the objective (13). Again, we note that solving this problem does not give a

solution when the core is empty. Therefore we use the nucleolus to find an emission allocation

in such cases since this method is still defined then.
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3.2 Evaluation methods

We want to evaluate the introduced emission allocation methods on stability, consistency, robust-

ness and computation time. In this section, we briefly explain each criterion and our methods

to test for each criterion. These criteria and methods are introduced by Naber et al. (2018).

3.2.1 Stability

As stated before, a stable allocation is an allocation for which no subset of costumers is unsat-

isfied and wants to withdraw from the route. All these allocations can be found in the core of

the game. Thus, to test for the stability of the di↵erent allocation methods we perform a case

study with generated data instances. Since the nucleolus, the Lorenz+ Allocation and the Equal

Profit+ method always find an allocation that is the core, we leave these methods out of the

case study. In the case study we apply the remaining methods to every instance, and check for

each method what percentage of the created allocations is in the core of the game.

3.2.2 Consistency

A costumer can be located far away from the other costumers or close to them. When the

locations of the other costumers are identical in both cases, a costumer may expect the emission

allocated to him or her to be greater in the first case than in the second case. We would like to

have an emission allocation method that is consistent with such costumer expectations.

We determine the consistency of each allocation method by first applying the method to every

generated data instance. With these results, we execute an OLS regression. The dependent

variable is the allocated emission and the explanatory variables are a constant, the distance to

the depot in kilometer and the average distance to the other costumers in kilometer. Naber

et al. (2018) also include the order size of costumers and two cross-terms that concern order

size as explanatory variables. We leave these variables out of the regression since in our data

instances the order size of the costumers is constant, on which we elaborate in Section 4.1. With

the results of the regressions, we can determine for each allocation method which explanatory

variables are significant for the explanation of the dependent variable at a 5% significance level,

and if their e↵ects on the allocation of emissions are consistent with costumer expectations. On

top of that, we can determine for which allocation method the explanatory variables explain the

dependent variable best using R2.
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3.2.3 Robustness

There can be cases in which a costumer places similar orders from time to time. When this

costumer is assigned significantly di↵erent amounts of emission at each order, he will not be

pleased. There is a possibility that this can happen, since the total emission of transport depends

on for instance the locations of the other costumers on the route. An allocation method that

can prevent this from happening is called a robust method.

To evaluate the robustness of each allocation method we investigate whether the allocated

emissions of one targeted costumer, with fixed location and order size, stay the same when the

locations and order sizes of the other costumers change. One way to check this is by computing

the standard deviation of the emission allocated to this targeted costumer. However, this would

lead to insu�cient results since the Star method often assigns less emission to this costumer

than the other allocation methods do. Therefore we use the Coe�cient of Variation to evaluate

robustness. In order to determine the Coe�cient of Variation for each allocation method, we

perform a case study with randomly generated data instances.

3.2.4 Computation time

When emissions of transport frequently have to be allocated to costumers, short computation

times are useful. To measure these times, we will perform a case study where we apply each

method to every generated data instance and time its performance. Next, we will take for each

method the average over its computation times.

4 Data

For our research, we need three di↵erent data sets. Our first data set is needed for the mea-

surement of stability, consistency and computation time. The second data set is necessary for

the measurement of robustness. We use the third data set to compare emissions of companies

in the cooperative and non-cooperative case. We generate each data set randomly, of which the

process is explained in the next sections.
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4.1 Data set for stability, consistency and computation time

To measure stability, consistency and computation time we generate data instances, each con-

taining information on one company and its costumers. Each company has a depot and 5, 10 of

15 costumers. The depot of the company is characterized by its location, and every costumer

is characterized by its location and order size. The locations are expressed in clusters and in a

vertical and horizontal coordinate. The order size of a costumer is expressed in loading units,

each weighing 0.01 ton, and is the same for all costumers in the instance. This order size can

be low, equal to 1.4 units, medium, equal to 7.1 units, or high, equal to 35.7 units.

The locations of the depot and the costumers of an instance are generated in the following

way. First, three groups that need to be located are formed: the depot, a target costumer and

the other costumers. Next, we need to decide for each group where we locate them. We can

choose to put the groups close together, such that transportation vehicles can avoid highways

most of the time, or further apart, in which case these vehicles do use highways. Our decision

on location therefore a↵ects the covered distance and average speed of the transporting vehicles,

which influences the emission of transport.

We do the locating of each group by uniformly distributing the members of the group over

a square with sides of length 10 kilometer. Then we construct a square with sides of length

100 kilometer and randomly place each of the smaller squares in the bottom left corner, the

center or the top right corner of the bigger square. Multiple smaller squares can be positioned

at the same cluster. If groups are located in the same cluster the driving speed between these

groups is 35 kilometers per hour, and is 70 kilometers per hour between the groups that are

located in di↵erent clusters. Since only the distance between the three groups is important for

the emissions and not the cluster in which they are placed, we can locate the three groups in

ten di↵erent ways. This gives us 90 di↵erent data instances. For a visualization of the locating

of the groups, see Table 1. The categories mentioned in this table are used for the second data

set, on which we elaborate in the next section.

4.2 Data set for the robustness measurements

To generate data for the measurement of robustness we follow the data generating process

described in Section 4.1, except for two aspects: the order size and the location of the target

costumer. We need both to be constant over the data instances. Therefore we set the order

size of the target costumer equal to 7.1 units in each data instance, whilst the order size of the
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other costumers can still be low, medium or high. To assure that the location of the target

costumer is the same in each data instance, we make use of the fact that a fixed target costumer

location means a fixed distance between the target costumer and the depot. Thus we categorize

the created instances based on this distance: in type I, the depot and the target costumer are

located in the same cluster, in type II they are located in clusters that lie next to each other, and

in type III they are two clusters apart. In each category the location of the target costumer is

somewhat fixed. For a visualization of this categorization, see Table 1. We measure robustness

of each method by determining the Coe�cient of Variation per category.

Category Location config. name Bottom left Center Top right

Type I 1 D, T, C

2 D, T C

3 D, T C

Type II 4 D, C T

5 D T, C

6 D T C

7 C D T

Type III 8 D, C T

9 D C T

10 D T, C

Table 1: Visualization of the locating of the groups and the categorization of the data instances.

D stands for depot, T stands for target costumer and C stands for other costumers.

4.3 Data set to compare emissions of companies

For the comparisons of companies’ emissions in the cooperative and non-cooperative case we

need data instances containing information on multiple companies and their costumers. We

generate data for this by combining several single-depot instances of the data set of Section

4.1 into one multi-depot instance. It is important to notice that combining many instances

might lead to a collaboration that is too complicated for companies. Therefore we decide to

combine two or three single-depot instances. We also need to be careful when choosing the

single-depot instances to combine. For example, it probably isn’t beneficial in terms of emission

to combine two instances of which the depot is located close to its costumers. Thus we set three

requirements: (1) when combining instances, at least for two instances its other costumers are
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not located in the same cluster as the depot, (2) when single-depot instances are combined it

should be true for at least one depot that the distance between its other costumers and itself is

greater than the distance between these costumers and a di↵erent depot, and (3) the depots of

the instances shouldn’t all lie in the same cluster.

Based on these requirements we create the multi-depot instances. First we discuss how we

can make multi-depot instances out of two single-depot instances. For this we can’t use data

instances with location configuration 1, 4 and 8 since this violates the first requirement. Of

the seven remaining location configurations, six have a depot placed in the bottom left cluster.

A combination of two data instances with these location configurations will conflict with our

third requirement. We therefore decide to ’flip’ the location configuration of one of the instances

horizontally and vertically. For an instance with the depot in the bottom left cluster, this

flipping would cause the depot to become located in the top right cluster. In this way we can

make 21 di↵erent combinations of two location configurations such that all three requirements

are met. For each of these combinations, we decide to create a multi-depot instance consisting of

two single-depot instances that have the associated location configurations. Which single-depot

instances that are is chosen randomly. To create the multi-depot instances consisting of three

single-depot instances, we repeat this process and add to each of the 21 created multi-depot

instances one of the 90 data instances. This data instance is randomly chosen. This gives us 42

multi-depot data instances in total.

5 Results

In this section we show our results. Firstly, we discuss the results of the evaluation of the emission

allocation methods on stability, consistency, robustness and computation time in Section 5.1.

Also, we compare these results with the evaluation results of Naber et al. (2018). Based on

this evaluation, we will choose one emission allocation method to continue with. Secondly,

we present our results of the comparisons between emissions of companies in the cooperative

and non-cooperative case in Section 5.2. We have implemented the allocation methods and our

method to construct routes for the cooperative case using Eclipse Neon 4.6.0 for Java (2016), and

we used CPLEX 12.8 (2017) to solve the linear programming problems. To run the programs,

we used an Intel(R) Core(TM) i5 @ 2.30 GHz with 8 GB of RAM.
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5.1 Evaluation allocation methods

5.1.1 Stability

First, we checked for each generated data instance if the core is non-empty. For two instances

the core turned out to be empty. In both instances the depot is located in the central cluster,

the other costumers in the bottom left cluster and the target costumer in the top right cluster.

A truck that visits all these costumers somewhat passes the depot along the way. Thus breaking

the route of this truck apart into two routes probably leads to a emission reduction. This might

explain the empty cores.

With this in mind, we started our case study to test for stability. We conclude that the Star

Method provided allocations of which 33.3% are in the core, and is therefore quite unstable. For

the Shapley value, we found that 98.7% was a core solution. This means that the Shapley value

finds a core solution for all the data instances with a non-empty core. Our results on stability

are in line with the results of Naber et al. (2018).

5.1.2 Consistency

The results of the regressions can be found in Table 2. We see that, except for the Star method,

the constant, the distance to the depot and the average distance to other costumers explain

the allocated emissions. The signs of the coe�cients belonging to the distance to the depot

and the average distance to other costumers are consistent with costumer expectations. In the

table we can find the R2 values of each regression as well. We can conclude from these values

that the variables explain the allocated emissions best for the nucleolus, followed by the Equal

Profit+ method, and worst for the Lorenz+ Allocation. This means that the nucleolus is the

most consistent method according to our findings.

The obtained coe�cient and R2 values di↵er greatly from the results of Naber et al. (2018).

There are two possible explanations for this. The first possible explanation is that we use a

di↵erent method to find �(N); we use the Christofides (1976) heuristic, and Naber et al. (2018)

use the software package Response. The decision on this method a↵ects the values that we find

for the dependent and explanatory variables. The second possible explanation is that we don’t

know the units in which Naber et al. (2018) express the dependent and explanatory variables.

The units that we use might deviate from their units, causing our results to be di↵erent.
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Table 2: Results of the regressions to test for the consistency of the allocation methods.

Star Shapley nucleolus Lorenz+ Equal Profit+

Explanatory variable Coe↵. p val. Coe↵. p val. Coe↵. p val. Coe↵. p val. Coe↵. p val.

Constant -54.91 0.32 -677.13 0.00 -659.02 0.00 -707.79 0.00 -590.80 0.00

Dist. to depot 17.39 0.00 6.22 0.00 20.74 0.00 21.88 0.00 20.67 0.00

Avg. dist. to other cust. 25.51 0.00 48.51 0.00 51.20 0.00 50.84 0.00 47.43 0.00

R2 0.48 0.55 0.60 0.23 0.58

5.1.3 Robustness

In Naber et al. (2018) the Coe�cient of Variation (CoV) is calculated using the data instances

with a non-empty core, and using all instances. The authors made this distinction because

the Lorenz+ Allocation and the Equal Profit+ method allocate emissions di↵erently when the

core is empty, and 20 out of 90 instances had an empty core. Thus we first checked for each

generated data instance if the core is empty or non-empty. We found that two instances have an

empty core. For both instances, the depot and the other costumers are located in the bottom

left cluster. For one instance the target costumer is located in the center, and for the other

instance the target costumer is situated in the top right cluster. When the target costumer is

located far away from the rest, we expect the emission allocated to the target costumer to be

the highest. For coalitions S containing the target costumer, this could make it di�cult to meet

the requirement of the core that x(S)  e(S), which may lead to an empty core. Since we only

have two instances with an empty core, we decide to not make the same distinction as Naber et

al. (2018) and only calculate the CoV using all instances.

Our results on this can be found in Table 3. When we compare the CoV values of the

di↵erent allocation methods, we conclude that for each category the nucleolus has the lowest

CoV. Therefore, this method is according to us the most robust method. The nucleolus is

closely followed by the Equal Profit+ method. The Lorenz+ Allocation performs worst in terms

of robustness for each category.

Our results on robustness deviate from the results of Naber et al. (2018). These authors

state that the Star method performs worst in terms of robustness for type I and III instances.

As mentioned before, in our results the Lorenz+ Allocation is the least robust method for these

instances. We think that these dissimilarities are mainly caused by our di↵erent methods to

construct routes. We use the Christofides (1976) heuristic for this, and Naber et al. (2018) used

the software package Response. These methods greatly a↵ect the emission allocation, which
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Table 3: The Coe�cient of Variation of each allocation method per category and other results.

Instance type Allocation method Average emission Std. dev. of emission % alloc. in core CoV

Type I Star method 168 120 11.1 0.717

Shapley 299 231 100.0 0.772

nucleolus 500 288 100.0 0.576

Lorenz+ 394 334 100.0 0.847

Equal Profit+ 349 228 100.0 0.654

Type II Star method 2057 1576 44.4 0.766

Shapley 2853 2864 94.4 1,004

nucleolus 3925 2660 100.0 0.678

Lorenz+ 3116 3129 100.0 1.004

Equal Profit+ 3585 2683 100.0 0.748

Type III Star method 5070 4048 33.3 0.798

Shapley 5836 4716 100.0 0.808

nucleolus 7390 4703 100.0 0.636

Lorenz+ 6422 5210 100.0 0.811

Equal Profit+ 6986 4575 100.0 0.655

could lead to di↵erent results. There are also some similarities between our results and the

results of Naber et al. (2018) on robustness: we both obtain high values for the CoV in all cases

and we both conclude that the nucleolus is the best method in terms of robustness.

5.1.4 Computation time

When we consider the definitions of the allocation methods, we see that the Star method exe-

cutes a polynomial number of computations to come to a solution. The other methods require

an exponential number of computations depending on the number of costumers. The nucleolus

even requires an exponential number of computations for each iteration. This is consistent with

the average computation times over all instances that we determined for the allocation meth-

ods, which can be found in Table 4. In these average computation times, solving the travelling

salesman problem with the Christofides (1976) heuristic is included. The Star method clearly

has the shortest average computation time. For the Shapley Value, the Lorenz+ Allocation and

the Equal Profit+ method the average computation times are higher than for the Star method,

but are still relatively low. However the average computation time of the nucleolus seems to

have exploded a bit, which deviates from the results of Naber et al. (2018). This is caused by
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the generated data instances with 15 costumers, as can be concluded from Table 4. The data

instances of Naber et al. (2018) contain no more than 11 costumers.

Now that we have finished the evaluation of the allocation methods, we want to choose the

allocation method(s) to compute emissions of companies. Based on stability, consistency and

robustness, the nucleolus and the Equal Profit+ method outperform the other methods. How-

ever, the nucleolus has a relatively long average computation time, especially for data instances

with 15 costumers. Since our multi-depot data instances can contain more than 15 costumers

it is inconvenient to use this method. Therefore we decide to use the Equal Profit+ method.

Table 4: For each allocation method the average computation time over all instances, and over

the instances with 5, 10 and 15 costumers.

Allocation method Average time (s) Average time (s) 5 cost. Average time (s) 10 cost. Average time (s) 15 cost.

Star method 0.013 0.010 0.013 0.017

Shapley value 3.958 0.039 0.252 11.584

nucleolus 80.798 0.032 1.940 240.423

Lorenz+ 4.063 0.012 0.238 11.939

Equal Profit+ 3.669 0.015 0.240 10.752

5.2 Comparison emissions cooperative case and non-cooperative case

In this section we show our results on the comparisons between emissions of companies in the

cooperative and non-cooperative case. As mentioned before, we consider the case in which two

or three companies can cooperate. For both cases, all the multi-depot instances have a non-

empty core. We first focus on the results on the case with two companies. We then do the same

for the case with three companies. Finally, we briefly compare the results on the cases with two

and three companies.

The results on the case with two companies can be found in Table 5 in the Appendix. For

every company duo the emissions of both companies decrease when they plan their transport

together. The emission decrease of a company ranges from 5.7% to 85.9%, and is on average

equal to 48.2%. The wide range might be caused by the location configurations that we have

combined when creating the multi-depot data instances. For instance, we see that the emissions

of both companies decrease heavily when the companies have location configurations 3 and 10

or 10 and 10. In these two location configuration combinations the depot of each company

is two clusters apart from its other costumers, whilst the depot of the other company is in

the same cluster as these costumers. For such companies we see that they almost completely

20



switch costumers when they cooperate, leading to a significantly lower travelled distance for each

company. That might explain the large emission decrease for both companies. This explanation

is visualized in Figure 1 and Figure 2 for location configuration combination 3 and 7. Based on

location configuration combinations we can also explain why some companies observe a relatively

small emission decrease when they cooperate. We see that Company 1 observes a slight emission

decrease for the location configuration combination 2 and 7. For this combination, the depot of

Company 2 is not located nearer Company 1’s other costumers than the depot of Company 1

itself. Thus Company 1 has to serve most of its own costumers, which could lead to a relatively

small emission decrease.

Figure 1: Two companies with location

configurations 3 and 7 that don’t cooper-

ate. The squares are the depots, the circles

are the costumers, and the color indicates

which depot serves which costumer.

Figure 2: Two companies with location con-

figurations 3 and 7 that cooperate. The

squares are the depots, the circles are the

costumers, and the color indicates which

depot serves which costumer.

In Table 6 in the Appendix the same results are shown for the case with three companies. For

13 out of 21 generated company trio’s, emission decreases for every company. For the remaining

8 company trio’s the emission decreases for two companies and increases for one company. The

emission increases range from 5.1% to 270.2%. Large increases are for instance observed for

the location configuration combination 7, 9 and 1. In this combination, there is one depot in

every cluster. Most costumers (25 out of 30) are located in the bottom left cluster, in which the

depot of Company 3 is located as well. Thus Company 3 serves the majority of the costumers,

which increases its emission dramatically. The emission increases for other location configuration

combinations can have an explanation of the same sort.

From the table we conclude that the emission decrease of a company that cooperates has a
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wide range from 3.7% to 100.0%, and is on average equal to 56.3%. The wide range could have

the same explanation as for the case with two companies.

Finally we compare the results on the cases with two companies and three companies. A

benefit of the case with two companies is that every company benefits from collaboration. This

is not true for the case with three companies. However, for the case with two companies the

average emission decrease is smaller than for the case with three companies.

6 Conclusion

We end our research with some concluding remarks. We first evaluated five di↵erent emission

allocation methods on stability, consistency, robustness and computation time. For this we

performed a case study with generated data. The nucleolus and the Equal Profit+ method per-

formed best during this evaluation. Since the nucleolus has a relatively long and inconvenient

average computation time, we concluded that the Equal Profit+ method performs best.

Using this method we computed emissions of companies for the cooperative and non-cooperative

case, and compares these emissions. We did this for the cases in which two or three companies

have the opportunity to plan their freight transport together. When two companies cooperate

the emission of both companies decreases. The average decrease in emission of a company is

48.2%. For three companies this average is higher, equal to 56.3%. However, when three com-

panies cooperate it can happen that the emission of one company increases. This all depends

on the locations of their depots and costumers. When a company takes this in consideration, it

can greatly benefit from collaborative transport planning in terms of emission.

We have three recommendations on future research. First, for our algorithm that constructs

routes for the cooperative case we make two assumptions; the first assumption is that each

company has the same products in stock, and the second assumption is that each company owns

only one truck. However, both assumptions are not very realistic. It would be interesting to

drop one assumption or both, recreate the research and compare the results with the results of

our research.

Second, when we create the multi-depot instances, we choose the single-depot instances to

combine randomly and don’t create every possible combination of single-depot instances. How-

ever, the combinations that we didn’t make might give us di↵erent results than we have obtained

now. Thus it might be interesting to create all possible multi-depot instances and see if this

leads to di↵erent conclusions. With this it should be kept in mind that the amount of results is

enormous.
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Third, using an exact method instead of the Christofides (1976) heuristic to construct routes

might also be worth investigating. We think that this would improve our results since the

Christofides (1976) heuristic has an approximation factor of 0.5. When this indeed improves

results and the results show the same benefits in terms of emission, companies will have more

incentives to plan their freight transport collaboratively.
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8 Appendix

8.1 Calculating e(S)

As mentioned before, we use the emission function introduced by Ligterink et al. (2012) to

calculate e(S). This function computes the emission per kilometer by taking into account the

load weight, distance and driving speed between two consecutive costumers. Put di↵erently, the

inputs of the function are d, which is equal to the load of the transport vehicle expressed in

order units, and V , which is the driving speed of the transport vehicle expressed in kilometers

per hour. With d, we first calculate KWt = 131.25
5+0.01d . Then we can calculate the emission per

kilometer ekm with the following equation:

ekm =
465.390 + 48143KWt

V
+ 32.389 + 0.8931KWt� (0.4771 + 0.02559KWt)V

+ (0.0008889 + 0.0004055KWt)V 2. (17)

Using �(S), we first compute the emission of transport between each pair of consecutive

costumers. For this we determine ekm for each pair of consecutive costumers and multiply this

with the distance between the two costumers, defined as the two-dimensional Euclidian distance.

To calculate e(S), we sum over these emissions of transport.

8.2 The Christofides heuristic

This heuristic is developed using graph theory. In our case the vertices in the graph G are

the costumers and the depot, and the edges are the roads between any pair of vertices. In the

first step the heuristic finds the minimum-cost spanning tree over the vertices, which we call T .

Next, it computes the least-cost perfect matching M over the vertices in T with odd degree. The

heuristic takes the union of edges in T and M . This union, which we name H, is the Eulerian

subgraph of G. In the final step, the heuristic makes sure that no vertex in H has a degree

greater than two. If a vertex does not meet this requirement, it deletes two edges indicent to

this vertex and to two other vertices, which we call i and j. Also, it adds an edge between

i and j. The heuristic repeats this procedure until each vertex meets the degree requirement.

Overall, this heuristic performs well: it has an approximation factor of 0.5, which means that the

heuristic finds a route of which the costs are at most 50% higher than the costs of the optimal

route.
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