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Abstract

In this report we study return spillovers among U.S. asset classes and global stock markets
based on financial connectedness measures as introduced by Diebold and Yilmaz (2012). We
show that the assumption of normally distributed residuals in the underlying VAR models
is poorly substantiated. Therefore, we introduce new connectedness measures based on
skewed-t distributed innovations which account for excess kurtosis and skewness and enable
us to make distinctions between the transmission of negative and positive extreme shocks.
We find that the system’s total connectedness is little affected by this new assumption,
but that there are large differences in the transmission of extreme positive and negative
shocks among individual markets. Since the original model of Diebold and Yilmaz (2012) is
nested in our new model, we conclude that it is better to use our newly proposed skewed-t
connectedness measures.
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1 Introduction

The recent global financial and European sovereign debt crisis made it clear that unobserved

cross-market connections can have a detrimental effect on the global economy once a shock hits

one or more financial markets anywhere around the globe. In response to these major economic

events, a large string of academic literature has emerged investigating the role of these unobserved

market-to-market linkages. In more recent years, a wide variety of academics have adopted the

financial connectedness methodology, as introduced by Diebold and Yilmaz (2009), to monitor

and evaluate contagion and interdependence among markets and between countries.

In their connectedness framework, Diebold and Yilmaz (2009) use variance decompositions

to measure how return and volatility shocks are being transferred across markets. Variance

decompositions, as obtained from a vector autoregression, add information on the time-profile of

returns and volatilities to the contemporaneous relations, as obtained from the covariance matrix.

This results in asymmetric interdependence measures which are more informative regarding the

system’s connectedness than simple symmetric correlation measures.

Diebold and Yilmaz (2009) do not only use variance decomposition to reflect market-to-

market return and volatility linkages. They also aggregate the information in these variance

decompositions to connectedness measures related to the dependence of one specific market

on all other markets in the system, and the dependence of the entire system on one specific

market. Furthermore, they develop a so-called Spillover Index which represents the total level

of connectedness in the system.

Newly proposed methods often bring valuable new insights to the table, however even more

often, the further development of methods is necessary to improve accuracy and to indicate the

opportunities and limitations of the methodology. Major methodological improvements already

have been proposed, such as the adoption of the generalized VAR framework to make the con-

nectedness measures invariant to the ordering of variables (Diebold and Yilmaz, 2012) and the

LASSO (shrinkage and variable selection) technique, to improve the estimated dynamics of the

VAR model (Demirer et al., 2015).

We argue that another major improvement can be made, which, to the best of our knowledge,

has not yet been investigated. From an economic point of view, we expect markets to respond

differently to negative versus positive and small versus large shocks. Therefore, we present a

method which enables us to distinguish between these different origins of shocks.

In this report, we show that the assumption of Diebold and Yilmaz (2009) that the residuals
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of the VAR model are normally distributed is not realistic (i.e. they are skewed and leptokurtic),

and we propose a multivariate skewed-t distribution to account for these characteristics. Since

we move away from the elliptical shape of the normal distribution, the variance decompositions,

and subsequently the related connectedness measures, are not invariant to shocks anymore but

instead depend heavily on both the sign and the size of the shocks to the system. We choose to

use the skewed-t distribution, not only because it is able to account for skewness and kurtosis,

but also because the normal distribution is nested in it. The skewed-t distribution converges to

the normal distribution as the skewness parameters tends to zero and the degrees of freedom

parameter tends to infinity. Therefore, if the data is in fact normally distributed, our newly

proposed model converges to the model of Diebold and Yilmaz (2012).

We investigate the opportunities and limitations of this new methodology in a study of

spillovers among U.S. stock, bond, commodity and foreign exchange markets. This data is of

particular interest because spillovers among U.S. asset classes may be representative for global

financial market dynamics and may have been an important aspect of the global financial crisis

which began in 2007 (Diebold and Yilmaz, 2012). Furthermore, we evaluate how the new dis-

tributional assumptions impact the estimated connectedness measures among a set of 10 global

stock markets, of which six are located in industrial countries (United States, United Kingdom,

France, Germany, Japan, and Australia) and four in emerging market economies (Brazil, China,

India and Hong Kong). Since stock markets are an important barometer of current and expected

future economic activity (Diebold and Yilmaz, 2015), it is interesting to apply the connected-

ness methodology to global stock market data because it may lead to insights on how shocks in

economic activity and crises are transmitted around the globe.

Our results show that for the U.S. asset classes the alternative assumption and corresponding

distribution yield different connectedness results when compared to the measures of Diebold and

Yilmaz (2012). While the total system’s connectedness is little affected, there are large differences

between the transmission of extreme positive and extreme negative shocks among the individual

U.S. asset classes. This is especially the case for the spillovers among stocks and bonds.

In the case of global stock markets we find little evidence of differences in positive and

negative shock transmission and the estimated skewed-t connectedness measures resemble those

of Diebold and Yilmaz (2012). This may be explained by the fact that the skewed-t distribution

tends to normality when the dimension of the data becomes larger.

Since the model of Diebold and Yilmaz (2012) is nested in our new model, we conclude that,

based on the assumption that the innovation terms of the VAR model may contain skewness and
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kurtosis, it is best to move forward with our newly proposed skewed-t connectedness measures.

For further research it may be interesting to combine the skewed-t assumption with the LASSO

technique for the VAR estimation to further enhance the accuracy of the models.

This paper is organised as follows. Section 2 provides an overview of the literature regarding

connectedness measures. Section 3 provides details on the proposed methodology. Section 4

reports the results regarding spillovers among U.S. asset classes, including a thorough evaluation

of the methodologies. Section 5 reports the results regarding spillovers among ten global stock

markets. Section 6 presents the conclusions of this research.
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2 Literature Review

In early 2009, Diebold and Yilmaz (2009) introduced a simple and intuitive quantitative measure

of interdependence of asset returns which they called the Spillover Index. This measure was

derived from the forecast error variance decomposition of a covariance stationary VAR(p) model.

They used a Cholesky factorization to identify the orthogonal innovations which are needed for

the calculation of the variance decomposition. As a result of using this Cholesky factorization,

these first constructions of spillover indices were dependent on the ordering of the variables in

the VAR model. The results of this methodology are presented in so-called spillover tables (fixed

window estimation), which indicate the interdependence structure in a specific time period, and

spillover plots (rolling window estimation), which provide an overview of the changes in spillovers

over time.

Using their spillover methodology, Diebold and Yilmaz (2009) found that return spillovers

among a set of 19 global equity markets from the early 1990s to 2007 display a slightly increasing

trend but no bursts. In their analysis on the same markets of volatility spillovers they did not

find a trend but did observe clear bursts of volatility spillovers. Yilmaz (2010) and Diebold

and Yilmaz (2011) extended this research by examining contagion and interdependence across

the East Asian and Americas equity markets, respectively. They obtained similar results and

observed that both return and volatility spillover indices reached their respective peaks during

the global financial crisis of 2007-2008.

As stated before, the methods of Diebold and Yilmaz (2009) are dependent on the ordering

of the variables in the VAR model. Diebold and Yilmaz (2012) circumvent this problem by

exploiting the generalized VAR framework of Koop et al. (1996) and Pesaran and Shin (1998)

which produces variance decompositions invariant to ordering. Furthermore they define so-

called ‘directional spillovers’. One can think of the set of directional spillovers as providing a

decomposition of total spillovers into those coming from (or to) a particular source.

Using these improved methods Diebold and Yilmaz (2012) show that despite significant

volatility fluctuations in U.S. stock, bond, foreign exchange and commodities markets during the

sample period (1999-2009), cross-market volatility spillovers were quite limited until the global

financial crisis that began in 2007. As the crisis intensified so too did the volatility spillovers,

with particularly important spillovers from the bond market to other markets taking place after

the collapse of Lehman Brothers in September 2008.

Diebold and Yilmaz (2014) introduce a new way to interpret the spillover tables. They show
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that variance decompositions define weighted, directed networks, so that their connectedness

measures are intimately-related to key measures of connectedness used in the network literature.

They visualize these networks with directed node-link diagrams which provide a clear illustration

of the transmission of return and volatility shocks. Building on these insights, they track both

average and daily time-varying connectedness of major U.S. financial institutions’ stock return

volatilities in recent years, including during the financial crisis of 2007-2008.

Diebold and Yilmaz (2016) employ this network connectedness approach and characterize

equity return volatility connectedness in the network of major American and European financial

institutions, 2004-2014. Their methods enable precise characterization of the timing and evolu-

tion of key aspects of the financial crisis. First, they found that during 2007- 2008 the direction of

connectedness was clearly from the US to Europe, but that connectedness became bi-directional

starting in late 2008. Second, they found an unprecedented surge in directional connectedness

from European to US financial institutions in June 2011, consistent with massive deterioration in

the health of EU financial institutions. Third, they identified particular institutions that played

disproportionately important roles in generating connectedness during the US and the European

crises.

Lanne and Nyberg (2016) note that with the standard choice of the order invariant generalized

forecast error variance decomposition of Pesaran and Shin (1998) (used by Diebold and Yilmaz

(2012)), the shares of the forecast error variation, do not add to unity, making it difficult to

compare risk ratings and risk contributions at two different points in time. As a solution to this

problem, they introduce a new generalized forecast error variance decomposition.

Finally, very recently, Barbaglia et al. (2017) employ a method which accounts for the possible

fat-tailed distribution of the VAR innovation terms. They use a VAR model with errors follow-

ing a multivariate Student t-distribution with unknown degrees of freedom and study volatility

spillovers among energy, biofuel and agricultural commodities.

The connectedness literature provides researchers with great tools to evaluate interdependence

and contagion among financial markets which are easy-to-interpret. However, to the best of our

knowledge, in the existing literature no distinctions have been made between the transmission of

positive versus negative and large versus small shocks. From an economic point of view, we expect

that these shock characteristics should have an impact on how shocks are transferred among

financial markets. Therefore, we expect that the introduction of the skewed-t connectedness

framework in this paper will add new insights to the existing literature on which can be build

upon.
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3 The Financial Connectedness Methodology

In this section we provide an overview of the methods applied in this research. We make use of

the generalized financial connectedness methodology, introduced by Diebold and Yilmaz (2012),

which is used to evaluate contagion in financial systems. The connectedness measures in this

methodology are based on generalized impulse response functions and generalized forecast er-

ror variance decompositions as proposed by Koop et al. (1996) and Pesaran and Shin (1998).1

Impulse response functions and variance decompositions are used to interpret the dynamics of

estimated vector autoregressive (VAR) models and explain us how shocks move trough financial

systems.

In this report, we propose an adjustment of a fundamental assumption made by Diebold

and Yilmaz (2012). This adjustment affects the impulse response functions and therefore causes

changes in the connectedness measures. In order to explain how this new assumption affects the

connectedness measures, we provide a detailed derivation of the connectedness measures.

3.1 Generalized Impulse Response Functions

Let us consider a k-dimensional VAR(p) model for the vector yt = (y1,t, y2,t, . . . , yk,t)
′

yt =

p∑
i=1

Φiyt−1 + εt, εt ∼ i.i.d.(0,Σ) (1)

where εt is an independent and identically distributed error term with mean zero and covariance

matrix Σ. Assuming weak stationarity, yt obtains the infinite-order moving-average VMA(∞)

representation

yt =

∞∑
i=0

Aiεt−i, (2)

where the k × k coefficient matrices Ai can be obtained using the following recursive relations:

Ai = Φ1Ai−1 + Φ2Ai−2 + · · ·+ ΦpAi−p, i = 1, 2, . . . , (3)

where A0 is an identity matrix Ik and Ai = 0 for i < 0.

1Originally, Diebold and Yilmaz (2009) introduced orthogonalized connected measures which were obtained

from orthogonalized impulse response functions based on an orthogonalization by using the Cholesky decomposi-

tion of the covariance matrix. As a result of this, the orthogonalized impulse response functions, and subsequently

the orthogonalized connectedness measures, were dependent on the ordering of the variables in the VAR model.

In Diebold and Yilmaz (2012), a solution to this problem was proposed, by using the generalized impulse response

functions, introduced by Koop et al. (1996), which are in fact invariant to this ordering.
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An impulse response function measures the time profile of the effect of arbitrary shocks at a

given point in time on the (expected) future values of variables in a dynamic system. The best

way to describe an impulse response is to view it as the outcome of a conceptual experiment in

which the time profile of the effect of a hypothetical k×1 vector of shocks δ = (δ1, . . . , δk)′ hitting

the financial system at time t is compared with a base-line case in which there are no shocks

(Pesaran and Shin, 1998).2 The impulse response function is obtained by taking the difference

between the expectation of the future values of the variables yt+h conditional on a shock δ

occurring at time t and the expectation of the future values of the variables yt+h unconditional

of such a shock. Koop et al. (1996) were the first to derive the generalized impulse response

function (GIRF) for a VAR(p) model with an arbitrary current shock, δ, and history, Ft−1.

GIRF(h, εt = δ,Ft−1) = E[yt+h|εt = δ,Ft−1]− E[yt+h|Ft−1] (4)

= Ahδ (5)

Clearly, the GIRF of the VAR(p) model does not depend on the history, Ft−1, and thus we

can choose an arbitrary δ and use estimated coefficient matrices Ai to obtain the GIRF for

h = 1, 2, . . . .

Since we are interested in the response to a shock in one particular variable j of size δj , an

obvious choice would be to set εt = δjej , where ej is a k×1 indicator vector with unity at entry j

and zeros elsewhere. However, then we would not account for the contemporaneous correlation in

the innovation terms as defined by the covariance matrix Σ in Equation (1). Therefore, we take

the expectation of the innovations εt conditional on εj,t = δj to account for this contemporaneous

correlation and use this to obtain estimated GIRFs.

The use of the conditional expectation forces us to make a distributional assumption on the

innovation terms. For the moment we follow Diebold and Yilmaz (2012) and assume normality.

εt ∼ i.i.d. N(0,Σ) (6)

E[εt|εj,t = δj ] =
δj
σ2
j

ηj , (7)

where σ2
j = E[ε2j,t] = e′jΣej and ηj = E[εtεj,t] = Σej . The generalized impulse response

function of the effect of a shock δj to the jth disturbance term at time t on yt+H is now given

2For notational purposes we denote the symbols of vectors in boldface and scalars in normal font style. Matrices

are denoted in boldface capitals.
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by

GIRFj(h, εj,t = δj ,Ft−1) = E[yt+h|εj,t = δj ,Ft−1]− E[yt+h|Ft−1] (8)

= AhE[εt|εj,t = δj ] (9)

=
δj
σ2
j

Ahηj (10)

=
δj
σ2
j

AhΣej . (11)

Scaling the GIRF by setting δj = σj , we obtain the GIRF for a ’unit’ shock (i.e., a shock of one

standard deviation in size) to the jth disturbance term, namely

GIRFj(h, εj,t = σj ,Ft−1) =

(
1

σj

)
AhΣej . (12)

Next, we select the response in the ith variable yi,t+H on a unit shock to the jth disturbance

term at time t by premultiplying by an indicator vector e′i.

GIRFij(h, εj,t = σj ,Ft−1) = E[yi,t+h|εj,t = δj ,Ft−1]− E[yi,t+h|Ft−1] (13)

=

(
1

σj

)
e′iAhΣej (14)

The impulse responses from the GIRF are unique and are not affected by the ordering of the

variables in yt.

3.2 Generalized Forecast Error Variance Decomposition

The generalized impulse response functions are used to derive the generalized forecast error

variance decompositions, defined as the proportion of the H-step ahead forecast error variance

of variable i which is accounted for by the innovations in the variable j (Pesaran and Shin, 1998).

Since the innovation terms are assumed to have zero mean, the variance of the forecast error of

variable i at time t + h caused by a shock in variable j at time t can be obtained by squaring

the impulse response of variable i to the shock in j. By taking the sum of these squared impulse

responses over the horizons h = 0, 1, 2, . . . ,H and dividing it by the total H-step ahead forecast

error variance we obtain the generalized forecast error variance decomposition. The elements of

the variance decomposition DH = {dij(H)} are thus defined as

dij(H) =

∑H
h=0(GIRFij(h, εj,t = δj ,Ft−1))2∑k

j=1

∑H
h=0(GIRFij(h, εj,t = δj ,Ft−1))2

(15)

=

∑H
h=0(GIRFij(h, εj,t = δj ,Ft−1))2

σ2
i (H)

, (16)

where σ2
i (H) denotes the H-step ahead forecast error variance of the ith variable.
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3.2.1 Special Case: Normally Distributed Innovations

By combining (14) and (15), we can show that for the special case of a VAR(p) model with the

assumption of normal innovations and a shock to variable j of unit size (δj = σj), the generalized

forecast error variance decomposition for variable i is defined as:

dij(H) =
σ−2j

∑H
h=0(e′iAhΣej)

2∑k
j=1 σ

−2
j

∑H
h=0(e′iAhΣej)2

(17)

By construction,
∑k
j=1 dij(H) = 1 and

∑k
i=1

∑k
j=1 dij(H) = k.

In this special case with normal innovations, we observe that the variance decomposition is

independent of the size and sign of the shock δj in variable j on which we condition the impulse

responses since they cancel out in the numerator and denominator. Note that the impulse

response functions are not independent of δj .

3.3 Connectedness Measures

Following Diebold and Yilmaz (2012), we derive connectedness measures from the generalized

forecast error variance decomposition. The total spillover index measures the contribution of

spillovers of shocks across the k variables to the total forecast error variance. It is defined as the

sum of all, except for the diagonal elements, of the forecast error variance decomposition DH as

a fraction of the sum of all elements in DH

S(H) =

∑k
i=1

∑k
j=1|j 6=i dij(H)∑k

i=1

∑k
j=1 dij(H)

× 100 (18)

=
1

k
ι′(DH − diag(DH))ι× 100, (19)

where ι is a unit vector of dimension k × 1 and diag(DH) is a matrix consisting of the diagonal

of DH and zeros elsewhere.

The idea of using generalized forecast error variance decomposition to measure financial

connectedness not only helps us to understand how much of the shocks ‘spill over’ across the

variables, but also enables us to learn about the direction of spillovers across variables. We obtain

directional spillovers using the elements of the generalized variance decomposition matrix. We

measure the directional return spillovers received by variable i from all other ‘source’ variables
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s as

Si←s(H) =

∑k
s=1|s6=i dis(H)∑k
s=1 dis(H)

× 100 =

k∑
s=1|s6=i

dis(H)× 100 (20)

= e′iDH(ι− ei)× 100, (21)

since
∑k
j=1 dij(H) = 1, as stated before. Note that this directional spillover from the sources to

variable i is simply the fraction of the sum of row i in DH minus the value of diagonal element

dii over the total sum of row i.

In similar fashion we measure directional spillovers transmitted from variable i to all other

’receiver ’ variables r as

Si→r(H) =

∑k
r=1|r 6=i dri(H)∑k
r=1 dri(H)

× 100 (22)

=
(ι′ − e′i)DHei
ι′DHei

× 100. (23)

Note that this directional spillover from the variable i to the receivers is simply the sum of

column i in DH minus the value of the diagonal element dii as a fraction of the total sum of

column i.

One can think of the set of directional spillovers as providing a decomposition of total

spillovers into those coming from (or to) a particular source. In order to identify which variables

transfer or absorb most of the shocks in the system, we obtain the net spillover of variable i to

or from all other variables j as

Si(H) = Si→r(H)− Si←s(H) (24)

The net spillover is simply the difference between gross shocks transmitted to and gross shocks

received from all other variables.

3.4 Connectedness Tables

Diebold and Yilmaz (2012) construct connectedness tables which provide us with a natural

interpretation of the connectedness measures. Table 1 illustrates the structure of connectedness

tables. In the center of the table we find the forecast error variance decomposition matrix and in

the bottom right corner we find the total spillover index. The right column and the bottom row

provide the directional spillovers from and to a particular variable. Next to the spillover tables,

Diebold and Yilmaz (2012) also introduce so-called spillover plots which provide an overview of
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From

To y1 y2 . . . yk From others

y1 d11(H) d12(H) . . . d1k(H) S1←s(H)

y2 d21(H) d22(H) . . . d2k(H) S2←s(H)
...

...
...

. . .
...

...

yk dk1(H) dk2(H) . . . dkk(H) Sk←s(H)

To others S1→r(H) S2→r(H) . . . Sk→r(H) S(H)

Table 1: Connectedness table for a H-step forecast horizon.

the connectedness dynamics over time. We obtain the dynamic total and directional spillovers

by rolling window estimation and plot these over time.

3.5 Bootstrapped Standard Errors

Since connectedness measures are non-linear functions of the VAR parameter estimates, we

cannot easily obtain exact standard errors. Therefore, we make use of a bootstrapping procedure

to approximate the standard errors of the connectedness measures. From the total set of N × k

VAR innovation terms we randomly draw N sets of k corresponding innovations terms and

calculate the connectedness measures for this random sample. We repeat this procedure n times

(for n large) and obtain a set of n connectedness tables. Now we take the standard deviation

for each separate connectedness measure over the n connectedness tables and use this as the

standard error of the connectedness measures.

3.6 Alternative Assumptions

In the above, following Diebold and Yilmaz (2012), we assume the innovations in the VAR(p)

model to be normally distributed. However, this assumption might be incorrect and alternative

assumptions may improve the model.

It is commonly known that the empirical distributions of financial return series exhibit heavy-

tails and asymmetry. Therefore, we expect the normality assumption to yield an incorrect
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specification of the shock distribution. We let go of normality and propose two alternative

distributions to overcome this problem. First, we impose a multivariate t-distribution on the

innovation terms to account for heavy tails. Second, we propose using a skewed-t distribution to

also incorporate skewness in our approximating distribution.

3.6.1 t-Distributed Innovations

Here, we assume the vector of random shocks, εt, to follow a multivariate t-distribution, with

location parameter 0, scale parameter V and ν degrees of freedom. We obtain impulse response

functions that are only slightly different from those in the Diebold and Yilmaz (2012) connected-

ness framework. The covariance matrix Ψ for a multivariate t-distribution with scale parameter

V is equal to ν
ν−2V. Ding (2016) provides an extensive description of the conditional multivari-

ate t distribution and some of its properties including the conditional expectation which we use

to obtain a new generalized impulse response function.

εt ∼ MVT(0,Ψ, ν) (25)

E[εt|εj,t = δj ] =
δj
ψ2
j

ζj , (26)

GIRFtij(h, εj,t = ψj ,Ft−1) =

(
1

ψj

)
e′iAhΨej (27)

where ψ2
j = E[ε2j,t] = e′jΨej and ζj = E[εtεj,t] = Ψej are now obtained from the covariance

matrix Ψ and we used the scaling δj = ψj to obtain the GIRF in 27. The generalized forecast

error variance decomposition for a VAR(p) model with multivariate t-distributed innovations is

defined as

dtij(H) =
ψ−2j

∑H
h=0(e′iAhΨej)

2∑k
j=1 ψ

−2
j

∑H
h=0(e′iAhΨej)2

, (28)

which is different from the variance decomposition in the case of normality due to the difference

in the covariance matrices Σ for the multivariate normal distribution and Ψ for the multivariate

t-distribution. However, the differences between these covariance matrices are small and therefore

there will be only small differences between using the multivariate t-distribution and the normal

distribution.

3.6.2 Skewed-t Distributed Innovations

Next, we assume the vector of random shocks, εt, to follow a multivariate skewed-t distribution.

We make use of the multivariate skewed-t distribution as defined by Azzalini and Capitanio

(2003)
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The probability density function of the multivariate skewed-t distribution, MSTk(ξ,Ω,α, νs),

with location parameter ξ, covariance matrix Ω, skewness parameter α and νs degrees of freedom,

is given by

fMSTk
(x; Θ) = 2tkT

{
α′z

(
νs + k

νs +Qξ,Ωx

)1/2

; νs + k

}
, x ∈ Rk, (29)

where Θ = (ξ,Ω,α, νs), z = ω−1(x − ξ), ω is the k × k diagonal matrix containing the square

roots of the diagonal elements of Ω, Qξ,Ωx = (x− ξ)′Ω−1(x− ξ), tk(x; ξ,Ω, νs) =

Γ{(νs + k)/2}(1 +Qξ,Ωx /νs)
−(νs+k)/2/{|Ω|1/2(νsπ)k/2Γ(νs/2)} is the density of a k-variate Stu-

dent’s t distribution with νs degrees of freedom, and T (·; νs + k) is the cumulative distribution

function of a univariate Student’s t distribution with νs + k degrees of freedom.

Here, the skewness parameter α regulates the asymmetry of the distribution and the degrees-

of-freedom parameter νs > 0 regulates the tails of the distribution. When an individual element

of α is αi > 0, the distribution is skewed to the right, when αi < 0 the distribution is skewed

to the left. When all k components of α are zero, the multivariate skewed-t density reduces to

the multivariate Student’s t densitiy tk(·) and to the multivariate Normal density φk(·) when in

addition νs tends to infinity.

Since, there is no analytic solution for the conditional expectation of a skewed-t distributed

variable we have to approximate this conditional expectation numerically. For this approximation

we take the following steps:

1. We set n to a large number and draw random values ε
(i)
t from the multivariate skewed-t

distribution for i = 1, 2, . . . , n.

ε
(i)
t ∼ MSTk(ξ,Ω,α, νs) (30)

2. We approximate the expectation of the shocks εt conditional on a shock of at least size εj,t

to the jth variable by taking the conditional mean of ε
(i)
t , i = 1, 2, . . . , n. We obtain this

conditional mean by imposing a certain restriction on εj,t and then taking the average of

the subset left.

E∗[εt|εj,t ∈ C] =

∑n
i=1 ε

(i)
t I[ε

(i)
j,t ∈ C]∑n

i=1 I[ε
(i)
j,t ∈ C]

(31)

where I[ε
(i)
j,t ∈ C] = 1 when the restriction holds and zero otherwise. Here C defines a

subset of the real numbers which defines the restriction on the conditioning shock εj,t. We

can for example condition on shocks to the jth variable that are larger than two standard

deviations by setting the restriction to ε
(i)
j,t > 2σj .
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Using the approximated conditional expectation E∗[εt|εj,t ∈ C] we can obtain the generalized

impulse response functions

GIRFskew−t
j (h, εj,t ∈ C,Ft−1) = E[yt+h|εj,t ∈ C,Ft−1]− E[yt+h|Ft−1] (32)

= AhE∗[εt|εj,t ∈ C]. (33)

Again, we obtain GIRFskew−t
ij (h, εj,t ∈ C,Ft−1) by pre-multiplying with e′i and obtain the gen-

eralized forecast error variance decomposition

dskew−tij (H) =

∑H
h=0(GIRFskew−t

ij (h, εj,t ∈ C,Ft−1))2∑k
j=1

∑H
h=0(GIRFskew−t

ij (h, εj,t ∈ C,Ft−1))2
. (34)

Note that it is also possible to apply this simulation approach with the assumption of normal

and t-distributed innovations. Furthermore, note that in our new approach we evaluate the

responses to shocks coming from a specified interval of the shock distribution whereas the methods

of Diebold and Yilmaz (2012) evaluate the responses to precisely defined shocks. However,

since the connectedness measures of Diebold and Yilmaz (2012) are independent of the shock

specification (size and sign), the use of this simulation approach in combination with the normal

distribution will yield the same results as the original methodology of Diebold and Yilmaz (2012).
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4 U.S. Asset Class Connectedness

In this section we perform a ’case-study’ of financial connectedness among four U.S. asset classes

in which we explore and evaluate the opportunities and limitations of the connectedness frame-

work as introduced and developed by Diebold and Yilmaz (2012).

4.1 Data: Stocks, Bonds, Commodities, FX

We apply the connectedness methodology to measure return spillovers among four key U.S. asset

classes: stocks, bonds, foreign exchange and commodities.3 This data is of particular interest

because spillovers among U.S. asset classes may be representative for global financial market

dynamics and may have been an important aspect of the global financial crisis which began in

2007 (Diebold and Yilmaz, 2012).

We examine daily returns, calculated as the difference in log prices, on U.S. stock, bond,

commodity, and foreign exchange markets. In particular, we examine the S&P 500 Index, the

10-year Treasury bond yield, the Dow-Jones/UBS Commodity Index, and the U.S. Dollar Index.

The data is obtained from Bloomberg and spans the period of January 4, 2000 through October

16, 2017, for a total of 4,375 daily observations.

We derive the Treasury bond index from the 10-year Treasury bond yield. Assuming that

the average coupon rate of the bonds that make up the index does not change from one day to

the other, we can write the relationship between the yield yt on day t and the price index Pt as

Pt = 100 × (1 + yt)
−10 (Diebold and Yilmaz, 2015). Having obtained the daily bond index, we

measure the daily returns of the four different indices i as ri,t = ln(Pi,t/Pi,t−1) × 100. Table 2

provides descriptive statistics of the annualized asset class returns.

Over the entire sample period, the investment yielding the highest average daily return was

commodities. Second best was stocks, followed by bonds. The worst investment was the U.S.

Dollar Index, which would even have resulted in an overall loss.

3We opt for this dataset since it resembles the data used in Diebold and Yilmaz (2012). By taking this dataset,

we enable ourselves to verify that we have correctly implemented the methods and are able to compare results.

Our dataset differs from the data used by Diebold and Yilmaz (2012) in two ways. First, we evaluate a sample

spanning the period 2000-2017 and Diebold and Yilmaz (2012) use a sample period of 1999 through 2010. Second,

we are unable to derive the exact process used by Diebold and Yilmaz (2012) to cleanse the data. The choices

we made during the cleaning of the data result in a slightly different dataset. We are unable to reproduce the

summary statistics reported by Diebold and Yilmaz (2012) and therefore we also obtain slightly different values

for the connectedness measures.
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Table 2: Descriptive Statistics: U.S. Asset Classes

(a) Annualized Log Returns

Stocks Bonds Commodities FX

Mean 3.02 2.40 7.76 -0.23
Median 12.41 9.64 8.96 -0.32
Minimum -9.47 -2.57 -8.44 -2.73
Maximum 10.96 4.60 6.47 2.52
Standard Deviation 309.34 148.92 263.05 130.83
Skewness -0.20 -0.03 -0.31 -0.02
Kurtosis 11.51 5.18 6.64 4.46

Jarque-Bera 13234.49 863.74 2490.09 391.13
P-Value 0.00 0.00 0.00 0.00

(b) Correlation Matrix

Stocks Bonds Commodities FX

Stocks 1.000 -0.401 0.273 -0.075
Bonds -0.401 1.000 -0.170 -0.129
Commodities 0.273 -0.170 1.000 -0.337
FX -0.075 -0.129 -0.337 1.000

Notes: Panel (a) reports descriptive statistics for annualized daily returns on the four U.S. asset classes
Stocks, Bonds, Commodities and FX for the period of January 4, 2000 through October 16, 2017. Panel (b)
reports the correlation matrix for these four asset classes. The annualized returns are obtained by multiplying
the daily returns by 252 (trading days). For the minimum and maximum returns we report the daily returns
(de-annualized).

Figure 1 provides an overview of the indices and returns for the different asset classes over

time. The plot in the top panel shows us the path which the indices followed over time. The

plots in the lower panels illustrate the asset class returns. In these figures we can observe the

volatility of the returns. As we would have expected, we observe a common feature of financial

return series, namely that volatility is not constant over time. There exist alternating periods of

predominantly high and low volatility (volatility clustering). Figure 1 shows that volatility was

particularly high following the global financial crisis starting in 2007.

In order to get a general notion of how the asset classes are related to each other, we present

the correlation matrix in Panel (b) of Table 2. The stocks asset class is strongest correlated to

bonds (-0.401), followed by commodities (0.273). The correlation of stocks with FX is close to

zero. The Treasury index shows, next to the strong correlation to stocks, weak correlations with

the commodity and dollar indices (-0.170 and -0.129, respectively). Finally, the commodity and

dollar indices exhibit strong negative correlation.
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(a) Indices: U.S. Asset Classes

(b) Returns: Stocks

(c) Returns: Bonds

(d) Returns: Commodities

(e) Returns: FX

Figure 1: Indices and returns of four U.S. asset classes.
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Table 3: VAR(5) Model

Eq(-1) Trs(-1) Com(-1) FX(-1) Eq(-2) Trs(-2) Com(-2) FX(-2)

Stocks -0.075∗∗∗ 0.006 -0.031 -0.001 -0.077∗∗∗ -0.062∗ 0.020 -0.052
Bonds 0.026∗∗∗ -0.021 0.007 0.009 0.010 -0.043∗∗ -0.013 0.001
Commodities 0.117∗∗∗ 0.038 -0.034∗∗ -0.036 -0.024∗ 0.016 0.043∗∗∗ -0.016
FX -0.051∗∗∗ -0.049∗∗∗ -0.007 -0.031∗ 0.002 -0.009 -0.014 0.006

Eq(-3) Trs(-3) Com(-3) FX(-3) Eq(-4) Trs(-4) Com(-4) FX(-4)

Stocks 0.017 0.032 0.003 -0.035 -0.036∗∗ -0.033 0.001 -0.020
Bonds 0.011 0.003 -0.022∗∗ -0.005 0.008 0.023 0.005 -0.009
Commodities -0.002 0.004 0.013 0.015 -0.008 -0.041 0.016 -0.025
FX 0.018∗∗ -0.015 -0.006 -0.021 0.007 0.027∗ 0.002 0.026

Eq(-5) Trs(-5) Com(-5) FX(-5) Const. R2 F-stat p-value

Stocks -0.024 0.044 -0.023 -0.013 0.015 0.016 3.62∗∗∗ 0.000
Bonds 0.007 -0.014 0.019∗∗ 0.016 0.009 0.011 2.51∗∗∗ 0.000
Commodities 0.002 -0.008 0.000 0.071∗∗ 0.029∗ 0.021 4.70∗∗∗ 0.000
FX 0.001 0.003 -0.005 -0.006 0.000 0.017 3.86∗∗∗ 0.000

Notes: This table reports the regression coefficients, R-squared and F-statistics with corresponding p-values
for the separate regression equations of the VAR(5) model in which constant terms are included. These
statistics are estimated on the returns of four U.S. asset classes for the period of January 4, 2000 through
October 16, 2017. In the notation of the explanatory variables Eq, Trs, Com and FX refer to the asset classes
Stocks, Bonds, Commodities and FX respectively, and the lag order is denoted in parentheses. ***, ** and *
correspond to 1, 5 and 10 percent significance levels.

4.2 The Diebold-Yilmaz Connectedness Framework

4.2.1 Static (Full-Sample) Financial Connectedness

We estimate the dynamics in the system of asset classes with a VAR(5) model. The estimated

model is presented in Table 3. Overall, we find the regression coefficients up to lag 5 to be jointly

significant, but that the first lag variables account for most of the system dynamics. Especially

the coefficients for the first lag of the stock returns are highly significant for all asset classes.4

Using the VAR(5) model parameters, we obtain the connectedness measures, as reported in

Table 4, based on a 10-day ahead forecast error variance decomposition. Throughout this paper

we use 10-day ahead forecast error variance decompositions unless specifically stated otherwise.

Here, we focus on the full-sample connectedness as reported in Panel (a).

First, we focus on the forecast error variance decomposition given in the top-left part of the

table. This variance decomposition provides estimated values of the asset-to-asset directional

4Note that these highly significant VAR coefficients suggest that there is some predictability in asset returns.

However, this is in contradiction with the literature. Based on previous findings, we would only expect to find

significant coefficients when evaluating the dynamics of the volatility of return series instead of the return series

itself. Further research is needed to explain these highly significant lags.
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spillover effects in the system. For example, based on the ’stocks-bonds’ entry of this table, one

can state that 12.7% of the forecast error variance of stocks comes from the spillover of return

shocks in the bonds asset class.

It is easy to see that the largest return spillovers exist between stocks and bonds, in which

the stocks asset class is the net sender and the bonds asset class is the net receiver of spillovers.

We also observe strong connectedness among the commodity and FX market, in which the

commodity market is the net sender and the FX market is the net receiver and has very low

connectedness to other markets.

Second, the right part of the table reports the total directional connectedness measures,

indicating to what extent the asset class returns are affected by return shocks in other asset

classes. We observe that stocks and commodities receive relatively large spillover effects from

the other asset classes and spillovers from the other asset classes have a relatively small impact

on FX.

Third, the bottom part of the table gives the spillover of return shocks send by a specific

asset class to all other asset classes. Here we observe that stocks send relatively large spillovers

to the other asset classes. Again, we see that FX is weakly connected to the other asset classes

with a spillover to others of 11.0%.

Fourth, the Spillover Index for this financial system of asset classes is 17.5% (bottom right

corner). This means that 17.5% of the total forecast error variance in the model comes from

spillovers of return shocks across the four asset classes.

The variance decomposition estimates are related to the correlation matrix (as given in Table

2). Variance decompositions, which are key to the connectedness measures of Diebold and Yilmaz

(2012), add information on the time-profile of returns, as obtained from the VAR(p) model, to the

contemporaneous relations, as obtained from the covariance matrix. This results in asymmetric

connectedness measures which are more informative regarding the system’s connectedness than

can be approximated by a simple symmetrical correlation matrix.

The connectedness measures can also be interpreted in a network setting. Diebold and Yilmaz

(2014) show that variance decompositions define weighted, directed networks. Building on these

insights, we visualize the financial network, as defined by Table 4 Panel (a) in Figure 2. The

arrows follow the direction of the individual spillovers and large spillover effects are highlighted by

the use of darker arrows. The size of the nodes are proportional to the spillovers each asset class

sends to other asset classes. The color of the nodes indicates whether an asset class is a net sender

or a net receiver of spillover effects. The color scheme for the nodes comes from a fading color
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Table 4: Return Connectedness Tables, Multiple Time Periods

(a) Full-Sample (2000-2017)
From

To Stocks Bonds Commodities FX Others

Stocks
80.0 12.7 6.7 0.7 20.0
(1.5) (1.1) (0.9) (0.3) (1.5)

Bonds
13.4 82.3 2.9 1.4 17.7
(1.2) (1.3) (0.5) (0.5) (1.3)

Commodities
7.8 2.7 80.7 8.9 19.3

(0.9) (0.5) (1.4) (0.8) (1.4)

FX
1.8 1.6 9.5 87.2 12.8

(0.3) (0.5) (0.9) (0.9) (0.9)

Others
23.0 16.9 19.1 11.0 17.5
(1.7) (1.3) (1.6) (0.9) (1.0)

(b) Crisis period (2012)
From

To Stocks Bonds Commodities FX Others

Stocks
51.8 20.0 14.7 13.6 48.3
(2.7) (2.1) (2.2) (1.9) (2.7)

Bonds
22.9 61.6 8.8 6.7 38.4
(2.0) (4.0) (2.0) (1.9) (4.0)

Commodities
16.8 10.4 57.4 15.5 42.6
(2.1) (1.7) (3.7) (2.4) (3.7)

FX
14.7 10.5 16.5 58.3 41.7
(2.0) (1.6) (2.5) (3.5) (3.5)

Others
54.4 40.8 40.0 35.8 42.7
(3.9) (4.3) (5.1) (4.6) (3.0)

(c) Recent period (2016-2017)
From

To Stocks Bonds Commodities FX Others

Stocks
82.8 8.5 2.9 5.8 17.2
(4.2) (2.9) (1.7) (2.4) (4.2)

Bonds
10.5 69.6 1.5 18.4 30.4
(2.8) (3.4) (0.7) (3.0) (3.4)

Commodities
3.5 2.4 92.0 2.1 8.0

(1.7) (0.9) (1.9) (0.9) (1.9)

FX
8.1 20.3 1.6 70.0 30.0

(2.3) (2.9) (0.7) (3.2) (3.2)

Others
22.1 31.2 5.9 26.3 21.4
(4.7) (4.5) (1.8) (3.9) (2.5)

Notes: This table reports the return connectedness measures as developed by Diebold and Yilmaz
(2012) with bootstrapped standard errors (10,000 iterations) in parentheses for the set of four U.S.
asset classes. The variance decompositions in all panels are obtained via 10-day ahead impulse
response functions based on VAR(5) models with constant terms included. Panel (a) reports the full
sample connectedness measures, estimated for the period of January 4, 2000 through October 16,
2017 for a total of 4,375 observations. Panel (b) and (c) report connectedness measures for the sub
samples January 3, 2012 through January 10, 2013 and October 3, 2016 through October 16, 2017,
respectively.
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Figure 2: A network interpretation of financial connectedness.

scale from red to white to blue where red are net senders and blue are net receivers. Furthermore,

the closer the nodes are positioned together, the stronger the connectedness between the two asset

classes.

4.2.2 Time-Variation in Financial Connectedness

In the above, we evaluate the full-sample connectedness spanning the period 2000-2017. As

mentioned before, Figure 1 indicates that volatility varies over time which might lead to time

variation in the dependence structure of the asset classes.

The Panels (b) and (c) in Table 4 illustrate that there is time-variation in connectedness

measures. We observe large differences in connectedness between the crisis period and the more

recent stable period. For example, we observe large changes in the directional spillover from

commodities to stocks. In the more recent period, this connectedness measure is estimated to
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Figure 3: Total return connectedness of stocks, bonds, commodities and FX.

be around 3%, while it is estimated to be close to 15% in 2012. The time-dynamics of the

individual directional spillovers translate to a time-varying total Spillover Index which was very

high in 2012 (43%), but has returned to a lower level (21%) in the more recent period.

Although point estimations, such as provided by Panel (b) and (c) in Table 4, give a notion of

the time-profile of spillover effects, it is better to estimate the model in a rolling window setting

in order to observe how the connectedness measures evolve over time. The resulting dynamic

spillover index is presented in Figure 3.

Figure 3 illustrates that connectedness measures, and thus the underlying dependence struc-

ture of the financial system which we are trying to approximate, change heavily over time. We

observe, for the VAR(5) model with a 1-year rolling window, that in the early 2000s the spillover

index was relatively low at around 10-20% with a spike in 2003 to 30%. In 2006 the spillover

index was at its lowest point (just below 10%) within the 2000-2017 sample period. In the

following years, as the global financial and European debt crisis evolved, the system’s connect-

edness increased and reached its maximum near the end of 2012 at 55%. In 2013, the spillover

index decreased rapidly to a relatively low level of around 20%. In the following years the index

remained in the 15-25% range with a brief spike in 2016 to 30%. The most recent observations

are spillover indices around 20% in October 2017.
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Note that, from 2006 onwards, the system’s connectedness was increasing, which was probably

caused by the state of distress the U.S. markets were in during the financial crisis. These markets

stabilized and started recovering by the summer of 2009, and thus one might also expect the total

spillover index to stabilize and eventually decrease. However, we observe that it kept increasing

after 2009 and reached its maximum near the end of 2012 after which it quickly dropped back

to a level of around 20%. For now, we cannot provide an easy explanation for this observation

and further research is needed to evaluate this result.

Next, we observe that the level and time profile of the connectedness measure depends on

the rolling window length. The timing ability of the model is better for the shorter 1-year rolling

window. For the 3- and 5-year rolling window, the spillover dynamics are averaged out over a

longer period and therefore the changes in connectedness indicated by these models are lagged.

Although, the latter two models have less timing ability, they support the conclusion of the 1-

year window model that connectedness was relatively low before the financial crisis, high during

the crisis and has decreased to lower levels afterwards.

The timing ability of the model is important because in practice, risk managers and other

financial agents need to have information about the current state of the markets to base decisions

on. If they would use the 3- and 5-year window, they may be too late to respond effectively.

Therefore, one might argue that it is better to estimate the connectedness measures on an even

shorter window than 1-year to increase the timing ability. However, the number of parameters

in a VAR(p) model grows linearly in the order p and quadratically in the number of variables

k. In this case-study with 4 financial variables and a VAR(5) model, we already need to fit 84

regression parameters (21 per regression equation). Therefore, we need as many observations

as possible when estimating the model in order to keep the parameter uncertainty within an

acceptable range (bias-variance tradeoff). We observe in Panel (b) and (c) of Table 4, which

represent 1-year samples both in a crisis and more stable period, that the standard errors remain

relatively low. Thus, we conclude that the increased parameter uncertainty does not seem to

pose a worrying threat to the stability of our measures and we choose to move forward using a

1-year rolling window.

4.2.3 The Order p of the VAR(p) Model

In all of the above, we interpret the connectedness of asset class returns estimated by a VAR(5)

model. Here, we investigate the impact of the VAR-order p on the connectedness measures. Table

5 provides us with the connectedness measures derived from VAR(p) models, where p = 1, 3, 5,
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estimated on the most recent year of data.

The choice of the VAR-order has a weak effect on the dynamics in both the individual

directional spillovers and the aggregated connectedness measures. There are some variations in

the connectedness measures, but these variations lie within one standard deviation of each other

and therefore there is no indication that they differ significantly.

Figure 3 gives the 1-year rolling spillover index for a VAR(1) model next to that of a VAR(5)

model. The connectedness measures indicate slightly different levels of connectedness for the

different model specifications but this does not impact the dynamic nature of the measures. The

rolling spillover indices for VAR(p) models of order p = 2, 3, 4 yield similar results.

The fact that the VAR(5) spillover index lies above the VAR(1) spillover index can be ex-

plained by the additional significant lags that are included in the VAR(5). This suggests that

it might take a few days before the asset prices have fully adopted the new information that is

related to the return shocks.

Going forward, we choose to continue with the VAR(5) model since the inclusion of more lags

enables us to capture more of the time dynamics in the asset class returns. Again, in VAR(p)

models, the choice for a high order p can introduce large parameter uncertainty. However, based

on the low variation in the standard errors in Table 5, this is not the case here.

4.3 The Skewed-t Connectedness Framework

4.3.1 Conditional Expectations

In all of their works, Diebold and Yilmaz (2009); Yilmaz (2010); Diebold and Yilmaz (2011,

2012, 2014, 2016, 2015) impose a multivariate normal distribution on the innovation terms in

the VAR model. However, Table 2 reports negative skewness and excess kurtosis in the returns

of all markets. This suggests that the returns of the asset classes are not normally distributed

and this is confirmed by significant Jarque-Bera normality test statistics.

From a risk perspective, one prefers a diversified portfolio in which assets show as little con-

nectedness as possible. The results above show that the normality assumption used by Diebold

and Yilmaz (2012) cannot be substantiated. By falsely assuming normality, we risk underestimat-

ing responses to shocks in the tails of the distribution and may be unable to identify differences

in the responses to positive and negative shocks. Therefore, the Diebold-Yilmaz framework may

suggest low portfolio connectedness, while there is in fact high connectedness for negative events

and low connectedness for positive events.
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Table 5: Return Connectedness Tables, Multiple VAR-orders

(a) VAR(1)
From

To Stocks Bonds Commodities FX Others

Stocks
87.8 6.5 2.0 3.6 12.2
(4.6) (3.1) (1.6) (2.3) (4.6)

Bonds
5.5 74.0 0.5 20.1 26.0

(2.7) (3.9) (0.6) (3.3) (3.9)

Commodities
2.4 0.8 95.2 1.5 4.8

(1.6) (0.7) (2.0) (1.4) (2.0)

FX
3.2 20.3 1.1 75.4 24.6

(2.1) (3.4) (1.1) (3.4) (3.4)

Others
11.1 27.7 3.6 25.2 16.9
(4.4) (4.9) (1.9) (3.7) (2.6)

(b) VAR(3)
From

To Stocks Bonds Commodities FX Others

Stocks
85.1 7.7 2.1 5.1 14.9
(4.5) (3.1) (1.6) (2.5) (4.5)

Bonds
8.7 71.9 1.0 18.5 28.1

(2.8) (3.7) (0.7) (3.2) (3.7)

Commodities
2.7 1.1 94.6 1.6 5.4

(1.7) (0.9) (2.0) (1.3) (2.0)

FX
7.4 19.9 1.1 71.6 28.4

(2.4) (3.2) (1.0) (3.4) (3.4)

Others
18.7 28.8 4.2 25.1 19.2
(4.7) (4.7) (1.8) (4.0) (2.6)

(c) VAR(5)
From

To Stocks Bonds Commodities FX Others

Stocks
82.8 8.5 2.9 5.8 17.2
(4.2) (2.9) (1.7) (2.5) (4.2)

Bonds
10.5 69.7 1.5 18.3 30.3
(2.7) (3.5) (0.7) (3.0) (3.5)

Commodities
3.5 2.3 92.0 2.1 8.0

(1.6) (0.9) (1.9) (1.0) (1.9)

FX
8.2 20.2 1.6 70.0 30.0

(2.3) (3.0) (0.8) (3.3) (3.3)

Others
22.2 31.1 5.9 26.3 21.4
(4.6) (4.5) (1.8) (3.9) (2.5)

Notes:
This table reports the return connectedness measures as developed by Diebold and Yilmaz (2012)
with bootstrapped standard errors (10,000 iterations) in parentheses for the set of four U.S. asset
classes. The variance decompositions in all panels are obtained via 10-day ahead impulse response
functions based on VAR(p) models with constant terms included estimated on the period of October
3, 2016 through October 16, 2017 for a total of 246 observations. The connectedness tables in Panel
(a), (b) and (c) are obtained via VAR(1), VAR(3) and VAR(5) models, respectively.
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The rejection of normality and presence of skewness and kurtosis pave the way for the intro-

duction of an alternative shock distribution which enables us to account this non-normality. In

our newly proposed connectedness methodology, we impose a multivariate skewed-t distribution

on the innovation terms. One of the reasons why we have opted for the skewed-t distribution

is that the normal distribution is nested in it (i.e. we obtain the normal distribution from the

skewed-t distribution when we set the skewness parameters to zero and let the degrees of freedom

run off to infinity). This enables the connectedness model to account for skewness and kurtosis.

Table 6: Skewed-t Distribution Parameters for the VAR(5) innovation terms, U.S. asset classes.

Stocks Bonds Commodities FX

Location parameter (ξ) 0.267 0.017 0.032 -0.017
(0.063) (0.042) (0.056) (0.029)

Skewness parameter (α) -0.408 -0.179 0.031 0.003
(0.091) (0.101) (0.084) (0.082)

Degrees of Freedom (ν) 4.947
(0.186)

Covariance Matrix (Ω) Stocks Bonds Commodities FX

Stocks 0.783 -0.145 0.160 -0.020
(0.036) (0.011) (0.017) (0.009)

Bonds -0.145 0.215 -0.051 -0.029
(0.011) (0.006) (0.007) (0.004)

Commodities 0.160 -0.051 0.662 -0.102
(0.017) (0.007) (0.020) (0.006)

FX -0.020 -0.029 -0.102 0.171
(0.009) (0.004) (0.006) (0.005)

Notes: This table reports the parameter estimates for the multivariate Skewed-t distribution function
as given in equation (29) fitted on the innovations terms. Bootstrapped standard errors are given in
parentheses. The innovation terms are obtained from a VAR(5) model, estimated on the set of four
U.S. asset classes Stocks, Bonds, Commodities and FX for the period of January 4, 2000 through
October 16, 2017.

Table 6 reports the fitted parameters for the skewed-t distribution of the U.S. asset classes.

We observe that the estimated degrees of freedom parameter is close to five and thus the fitted

distribution is fat-tailed. The skewness parameters also indicate non-normality as they are non-

zero (especially for stocks and bonds). The four skewness parameters indicate that there is

asymmetry in particular directions of the distribution. Based on these four parameters, we

cannot make generalized statements on whether the full multivariate distribution is skewed to

the left or to the right. For such statements measures of multivariate skewness are needed. In

support of our choice to reject the assumption of normality, the full set of estimated parameters

show that the skewed-t distribution does not converge to the normal distribution.
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Equation 9 shows that the impulse response functions, and subsequently the variance de-

compositions and connectedness measures, depend heavily on the conditional contemporaneous

expectation of the innovation terms in the VAR(p) model. Therefore, we expect this alternative

distributional assumption to have a large impact on the connectedness results.

In order to make a comparison between DY (Diebold and Yilmaz (2012)) and skewed-t con-

nectedness, we now evaluate the conditional contemporaneous expectations of the innovation

terms obtained by these different methodologies. Because of the asymmetry in the skewed-t

distribution, we are unable to obtain analytic solutions for the conditional expectations, as is

possible in the DY normality framework. Therefore, we apply a sampling algorithm to obtain

an approximation of the conditional shock distribution. To make the results for the normal and

skewed-t distribution comparable, first, we also apply this sampling procedure to the normal

distribution. Second, for each distribution, we obtain conditional expectations using the same

conditioning shock size. We determine the shock size by taking quantiles of the empirical distri-

bution. We condition on shocks that lie below the first and fifth and above the 95th and 99th

percentiles of the empirical distribution (we refer to this as q(0.01), q(0.05), q(0.95), q(0.99)).

Finally, to evaluate how our simulated shocks relate to ’real’ shocks, we compare the normal and

skewed-t conditional expectations with those of the empirical distribution.

The results are reported in Table 7. In Panel (a), (b), (c) and (d) we condition on extreme

shocks to the asset classes stocks, bonds, commodities and FX, respectively. The first column

gives the conditional expectations in the DY framework. The other columns report the condi-

tional expectations based on the empirical distribution and the normal and skewed-t distributions

obtained with the sampling procedure. In each panel, the first values in each column give the

conditioning shock size and the latter four values give the conditional shock vector which we use

in Equation 9 later on.

Table 7 should be interpreted as follows. Given a negative return shock (impulse) to the asset

class stocks of magnitude larger than 3.44, and given the assumption of skewed-t distributed

innovations, we expect a positive contemporaneous return shock (response) for the asset class

bonds of size 0.82. Under the normality assumption, we conditionally expect this to be a positive

contemporaneous return shock of size 0.73. From the empirical distribution of the innovations, we

obtain that the average response in bonds to such a negative shock in stocks was 1.15 over the full

sample. This is an indication that the skewed-t distribution is able to model the transmission of

such shocks between these two asset classes more accurately. However, we do note that we cannot

make stronger statements than saying it is an indication since there are only 44 observations in
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the first percentile of the empirical distribution. For shocks coming from the top or bottom five

percentiles we can make a more accurate comparison since these parts of the tail include 219

observations.

The first thing we notice in Table 7 is that, as expected, the different distributional assump-

tions result in different conditional expectations. While large differences can be observed, it is

difficult to assess which distribution is more accurate (by comparing to the empirical conditional

expectations). Overall, in 13 out of the 16 cases, the skewed-t distribution seems to be more ac-

curate than the normal distribution when it comes to approximating the conditional expectation

of an extreme shock in the shocked asset class itself (i.e. the entries stocks-stocks, bonds-bonds,

etc.).

In contrast to this, for the conditional expectations of the transmitted shocks (i.e. the entries

stocks-bonds, stocks-commodities, stocks-FX, etc.), we observe that in 25 out of 48 cases, the

normal distribution is better at approximating the empirical contemporaneous shock transmission

than the skewed-t distribution. Therefore, we conclude that the new distributional assumptions

result in different conditional expectations, but that we are unable to assess which one performs

better.

Furthermore, we observe that overall, there exist large differences between the empirical con-

ditional shocks and both the normal and skewed-t conditional shocks. This indicates that, while

using the skewed-t distribution may be an improvement to the model, this skewed-t distribution

might still be too restrictive to accurately model the contemporaneous relations between the

return shocks.

Since the comparison to the empirical conditional shocks does not indicate which model

performs better, we move forward with the assumption that the conditional expectations of the

skewed-t distribution are correct and compare how the conditional expectations of the normal

distribution relate to it.

In Table 7 we observe for large negative shocks (q(0.01) and q(0.05)), that the conditional

responses are generally underestimated by the normal distribution when we assume that the

skewed-t distribution is the correct choice. In some cases, this underestimation of the conditional

shocks by the normal distribution is large. For example, the shock to bonds conditional on a

shock in stocks is underestimated by about 11% (0.82 versus 0.73). The only significant exception

to this underestimation is the overestimation of the response in stocks to a shock in bonds.

For large positive shocks (q(0.95) and q(0.99)), we observe a stronger underestimation by the

normal distribution model. Now, the shock to bonds conditional on a shock in stocks is under-
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estimated by about 26% (-0.96 versus -0.71). Here, the exception to this underestimation is the

overestimation of the response in stocks conditional on an extreme shock in commodities. These

large differences underwrite the importance of using a correctly specified shock distribution.

With the new distributional assumption, most conditional shocks change only in size. How-

ever, in the case of the expected response in stocks, conditional on an extreme negative return

in FX (q(0.01)), we see that not only the absolute magnitude changes, but also the sign of the

conditional expectation changes (-0.03 versus 0.13). Although a shock response of -0.03 is a

very small and therefore unlikely to incite asset-to-asset spillovers, it does show us that the sys-

tem dynamics can fundamentally change as a result of changes in the underlying distributional

assumptions on the innovation terms.

Note that the conditional expectations in Table 7 are obtained from VAR(5) residuals which

have been estimated on the full data range. These conditional expectations will vary when eval-

uating subsets of data and when performing rolling window estimation on for the connectedness

measures.

Furthermore, assuming the skewed-t distribution to be the correct choice may be argued to be

naive and other distributions might also be considered. However, the statement that the skewed-t

distribution is more suitable to fit the data than the normal distribution is a statement which

we can make without hesitations. Since the normal distribution is nested inside the skewed-t

distribution, the maximum likelihood estimation procedure will automatically converge towards

a parameter fit with zero skewness and very high degrees of freedom when the shock distribution

is actually normal. However, as shown in Table 6 we do not observe such a tendency and observe

that maximum likelihood estimation selects non-zero skewness parameters and degrees of freedom

close to 5. Therefore, we conclude that the assumption of the skewed-t distribution is the one to

move forward with.

4.3.2 Full-Sample Skewed-t Connectedness

Now that we have established that changes in the shock distribution have a large impact on

the conditional expectations, we evaluate the subsequential impact it has on the connectedness

measures. Table 8 provides three full-sample connectedness tables based on the transmission

of large negative shocks (q(0.01)). For ease of comparison, Panel (a) gives the connectedness

measures based on the DY-methodology. Panel (b) and (c) report the connectedness measures

based on the conditional shock vectors from Table 7 for the skewed-t and empirical distribution,

respectively. Table 9 provides similar connectedness measures, but now for the transmission of
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large positive shocks (q(0.99)).

Overall, in the Panels (b) of Table 8 and 9, we observe that the newly proposed skewed-t

methodology yields very different connectedness measures as compared to the DY-framework

which lead to different economic interpretations. Both the individual directional spillovers and

the aggregated connectedness measures of the skewed-t framework show large deviations from

the DY-connectedness measures.

For example, for the DY-framework we observe a directional return spillover from stocks to

bonds and from bonds to stocks of 13.4% and 12.7%, respectively. Thus, in the DY-framework

there is a net spillover effect from stocks to bonds of 0.7%. Therefore, one might argue that

it is hard to make a sharp distinction between the sender and receiver of return spillovers.

Note that these numbers in the DY-framework represent the full range of shocks and do not

distinguish between positive and negative return shocks and do not account for the non-normal

characteristics of the shocks.

Now, in Table 8, Panel (b), when we do distinguish between positive an negative shocks,

and do account for skewness and kurtosis in the shocks distribution, we observe that for large

negative shocks, the bonds-to-stocks and stocks-to-bonds directional return spillovers are 13.3%

and 5.8%, respectively. Hence, now we do observe a large net spillover effect of return shocks

(7.5%) from stocks to bonds and thus arrive at a new economic interpretation; large negative

return shocks in stocks pose a larger threat to bond returns than the other way around.

Similarly, in Table 9, Panel (b), we observe that, this time for, large positive shocks, the bonds-

to-stocks and stocks-to-bonds directional return spillovers are 19.3% and 11.6%, respectively.

Again, we observe a large net spillover effect (7.7%) from stocks to bonds. And again, we arrive

at a new economic interpretation; for large positive return shocks, shocks to stocks also have a

larger impact on bond returns than the other way around. Additionally, the impact of shocks in

the asset classes is larger for positive shocks.

Furthermore, we observe in Table 8 that for the DY-framework shocks to the long-term

interest rate (bonds) were the main contributor to the forecast error variance in stocks, but that

this has changed to the commodities asset class for the skewed-t framework for large negative

shocks. For large positive shocks it remains the same and the contribution of commodities is

diminished to a very low level of 1.8%.

Next to changes in the individual directional spillovers, we also observe large changes in

the aggregated connectedness measures. Where, in the DY-framework the net spillover effects to

other asset classes were relatively low (2.9%, -0.8%, -0.3% and -1.9%, respectively), they are much
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Table 8: Return Connectedness Table, Large Negative Return Shocks

From
(a) Diebold-Yilmaz Framework From

To Stocks Bonds Commodities FX Others

Stocks 80.0 12.7 6.7 0.6 20.0
Bonds 13.4 82.4 2.9 1.4 17.7
Commodities 7.8 2.7 80.7 8.9 19.3
FX 1.7 1.5 9.5 87.3 12.7

To Others 22.9 16.9 19.0 10.9 Spillover
From Others 20.0 17.7 19.3 12.7 Index:
Net Spillover 2.9 -0.8 -0.3 -1.9 17.4

(b) Skewed-t Lower-Tail Connectedness From

To Stocks Bonds Commodities FX Others

Stocks 88.1 5.8 6.1 0.1 11.9
Bonds 13.3 83.5 1.8 1.4 16.5
Commodities 6.4 1.3 86.6 5.7 13.4
FX 1.9 2.7 11.1 84.3 15.7

To Others 21.5 9.8 19.0 7.2 Spillover
From Others 11.9 16.5 13.4 15.7 Index:
Net Spillover 9.6 -6.7 5.6 -8.5 14.4

(c) Empirical Lower-Tail Connectedness From

To Stocks Bonds Commodities FX Others

Stocks 79.7 5.9 14.1 0.4 20.3
Bonds 25.4 67.7 5.8 1.1 32.3
Commodities 16.7 1.7 74.1 7.5 25.9
FX 4.7 3.1 12.4 79.8 20.2

To Others 46.7 10.7 32.3 9.0 Spillover
From Others 20.3 32.3 25.9 20.2 Index:
Net Spillover 26.4 -21.6 6.4 -11.2 24.7

Notes: Panel (a) reports the return connectedness measures as developed by Diebold and Yilmaz
(2012) for the set of four U.S. asset classes. The connectedness measures in Panel (b) and (c) are
obtained using the skewed-t and empirical distribution to calculate the expected contemporaneous
asset class responses to positive return shocks of size larger than the 99th percentile of the empirical
distribution (q(0.99)). The variance decompositions in all panels are obtained via 10-day ahead
impulse response functions based on VAR(p) models with constant terms included estimated on the
period of January 7, 2000 through October 16, 2017 for a total of 4,375 observations.
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Table 9: Return Connectedness Table, Large Positive Return Shocks

From
(a) Diebold-Yilmaz Framework From

To Stocks Bonds Commodities FX Others

Stocks 80.0 12.7 6.7 0.6 20.0
Bonds 13.4 82.4 2.9 1.4 17.7
Commodities 7.8 2.7 80.7 8.9 19.3
FX 1.7 1.5 9.5 87.3 12.7

To Others 22.9 16.9 19.0 10.9 Spillover
From Others 20.0 17.7 19.3 12.7 Index:
Net Spillover 2.9 -0.8 -0.3 -1.9 17.4

(b) Skewed-t Upper-Tail Connectedness From

To Stocks Bonds Commodities FX Others

Stocks 85.7 11.6 1.8 1.0 14.3
Bonds 19.3 76.7 1.9 2.1 23.3
Commodities 7.8 1.7 82.5 8.1 17.5
FX 1.3 1.9 7.6 89.3 10.7

To Others 28.4 15.1 11.3 11.1 Spillover
From Others 14.3 23.3 17.5 10.7 Index:
Net Spillover 14.1 -8.2 -6.3 0.4 16.5

(c) Empirical Upper-Tail Connectedness From

To Stocks Bonds Commodities FX Others

Stocks 71.1 21.6 2.3 5.0 28.9
Bonds 14.1 82.4 3.3 0.2 17.6
Commodities 5.8 9.7 69.9 14.6 30.1
FX 1.7 1.9 13.2 83.3 16.7

To Others 21.6 33.2 18.7 19.8 Spillover
From Others 28.9 17.6 30.1 16.7 Index:
Net Spillover -7.4 15.6 -11.3 3.1 23.3

Notes: Panel (a) reports the return connectedness measures as developed by Diebold and Yilmaz
(2012) for the set of four U.S. asset classes. The connectedness measures in Panel (b) and (c) are
obtained using the skewed-t and empirical distribution to calculate the expected contemporaneous
asset class responses to negative return shocks of size larger than the first percentile of the empirical
distribution (q(0.01)). The variance decompositions in all panels are obtained via 10-day ahead
impulse response functions based on VAR(p) models with constant terms included estimated on the
period of January 7, 2000 through October 16, 2017 for a total of 4,375 observations.
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larger in the skewed-t connectedness framework (14.1%, -8.2%, -6.3%, and 0.4%, respectively for

large positive shocks) and are larger for large positive shocks than for large negative shocks.

However, for large negative return shocks, all asset classes have a net spillover effect to others

and for large positive return shocks, FX is neither a sender nor a receiver of return spillovers to

other asset classes.

Finally, we observe a total spillover index of 17.4% for the DY-framework, 14.4% for large

negative skewed-t return shocks and 16.5% for large positive skewed-t return shocks. Hence, we

do not observe a large change in the system’s total connectedness level but we do observe large

changes in the asset-to-asset connectedness levels.

As a final note, the Panels (c) in Table 8 and 9 indicate that not only the DY, but also the

skewed-t framework may be too restrictive to accurately identify the system’s ’real’ connected-

ness.

4.3.3 Dynamic Skewed-t Connectedness

The differences between the normal and skewed-t connectedness measures, which are discussed

above, are based on the full sample period (2000-2017). However, as we have noted before, the

level of connectedness varies over time. Therefore, in Figure 4, we compare the time profile of

connectedness measures based on skewed-t distributed innovations and compare it with those

based on the normality assumption.

In Plot (a) of Figure 4, we observe that over time, there are some differences between the

total spillover index of Diebold and Yilmaz (2012) based on normality and that of our skewed-

t framework. However, these differences are generally small and the overall dynamics of the

spillover index are the same for both models. This was to be expected due to the small differences

in the spillover indices in Table 8 and 9. We conclude that the new methodology has no significant

impact on the total spillover index and thus the aggregated system’s connectedness.

Differences in the financial connectedness measures become apparent when we evaluate indi-

vidual directional spillovers, for example those from bonds to stocks. In Plot (b) for example,

we observe that due to the new distributional assumptions, new economic insights arise for the

period around 2003 and during and following the financial crisis (mid-2007 till end-2012).

Based on the DY-framework, one might argue that the directional spillover of bonds to stocks

increased over 2003, with a peak at 30%. However, for the skewed-t connectedness framework,

we observe that large negative shocks (q(0.01)) incited much higher spillovers, with a peak at

50%, and that for large positive shocks (q(0.99)), there was an increase in spillovers during the
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(a) Total Spillover Index: Stocks, Bonds, Commodities, FX

(b) Directional Spillover: From Bonds to Stocks

Figure 4: Dynamic Diebold-Yilmaz and Skewed-t return connectedness measures, using a VAR(5)

model and 1-year rolling window
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second half of 2002, but the index halted around the 15% level and remained at this level for the

following year before returning to lower levels in 2004.

Following the start of the global financial crisis in the summer of 2007, we observe that the DY

directional spillover measure increased to a level of 20% and fluctuated around this level untill the

beginning of 2013, before returning to a lower level of 5% in the beginning of 2014. During the

global financial and European sovereign debt crisis, we observe that the skewed-t connectedness

measures indicate much lower return spillovers resulting from large negative shocks and much

higher values, with a peak at 50%, for spillovers resulting from positive return shocks. Also, for

the period of mid-2014 untill the start of 2016, we observe similar differences in the dynamic

return spillover levels from bonds to stocks.

Based on all of the above, we conclude that the connectedness methodology of Diebold and

Yilmaz (2012) is highly dependent on the assumption that the residuals of the VAR(p) model

are normally distributed. However, as shown, this assumption is clearly unsubstantiated and it

makes more sense to opt for a distribution which incorporates the high level of excess kurtosis

and negative skewness exhibited by the residuals. Furthermore, by incorporating skewness, we

are able to differentiate between the effects of positive and negative return shocks.

Note that we do not claim the skewed-t assumption to be perfect, however, we think it is

safe to say that it is better to go with skewed-t distributed shocks then to keep the normal

distribution for the estimation of the connectedness measures introduced by Diebold and Yilmaz

(2012).
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5 Global Stock Market Connectedness

In the previous section we have established that the newly proposed skewed-t framework can

have a large impact on financial connectedness measures. The spillovers related to the stocks

asset class were affected the most. We expect that this was due to the fact that this asset

class exhibited large skewness and the highest kurtosis. In this section we investigate financial

connectedness among a broader set of stock markets around the world and assess the impact of

the new methodology.

5.1 Data: 10 Global Stock Indices

In the analysis of global stock market connectedness we include 10 major stock markets. The

list includes six industrial countries (the United States, the United Kingdom, France, Germany,

Japan, and Australia) and four emerging market economies (Brazil, China, India and Hong

Kong).5

Table 10: Summary Statistics: Global Equity Markets

µ σ Median Min∗ Max∗ Skew Kurt JB-stat P-val

USA 3.98 301.52 10.08 -9.47 10.96 -0.24 13.5 17366.55 0.00
UK -0.70 298.05 5.04 -9.27 9.38 -0.14 10.54 8937.97 0.00
GER 2.87 373.34 17.64 -7.43 10.80 -0.01 8.02 3960.44 0.00
FRA -2.24 367.91 5.04 -9.47 10.59 0.00 8.70 5101.18 0.00
JAP 2.38 371.42 0.00 -12.11 13.23 -0.49 10.94 10051.36 0.00

AUS 0.95 254.41 7.56 -8.70 5.63 -0.47 8.73 5292.08 0.00
HKG 1.64 356.60 2.52 -13.58 13.41 -0.02 13.46 17199.18 0.00
CHI 4.14 422.29 2.52 -9.70 8.97 -0.41 7.49 3274.32 0.00
IND 10.15 353.42 7.56 -11.81 15.99 -0.10 13.29 16628.71 0.00
BRA 6.79 435.78 0.00 -12.10 13.68 -0.07 7.77 3570.66 0.00

Notes:This table reports the summary statistics for annualized daily returns on 10 stock indices
around the world for the period of January 7, 2003 through November 24, 2017 for a total of 3,771
observations. The annualized returns are obtained by multiplying the daily returns by 252 (trading
days). ∗ Minimum and maximum daily returns (de-annualized).

For each country we use daily local-currency stock market indexes, taken from Bloomberg.

The daily returns are calculated as the change in daily log prices. We provide descriptive statistics

for the annualized returns in Table 10.

5Just as with the U.S. asset classes, we opt for this dataset since it resembles the data used by Diebold and

Yilmaz (2015). By taking this dataset, we enable ourselves to compare results. Note that our sample period differs

from that of Diebold and Yilmaz (2015). We evaluate a sample spanning the period 2002-2017 and Diebold and

Yilmaz (2015) use a sample period of 1994 through 2013. Therefore we obtain slightly different values for the

connectedness measures.
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The developing economies India, Brazil and China have the best performing stock markets

over the entire sample period, followed by the United States. France shows the worst performance

over the sample period. The markets with the highest volatility are the emerging economies Brazil

and China. Surprisingly, Germany has the highest volatily among the set of developed markets.

Most stock markets exhibit large negative skewness and all countries have excess kurtosis.

The highly significant Jarque-Bera statistics verify the fact that the stock markets are not nor-

mally distributed and validate our choice for this dataset to illustrate the effect of dropping the

normality condition of Diebold and Yilmaz (2012).

5.2 Full-Sample Return Connectedness

We estimate a VAR(5) model on the returns of the global stock markets and derive full-sample DY

and skewed-t connectedness measures from this. A graphical illustration of global stock market

linkages based on DY connectedness is given in Figure 5 and DY and skewed-t connectedness

tables are given in Table 11.

In Figure 5, we observe that the largest directional spillover effects exist among the European

countries and the United States. Both Australia, Brazil and Japan are related to, predominantly,

the United States, but are mainly receivers of return spillovers. Among the Asian markets (Hong

Kong, China and India), Hong Kong is the main sender of return spillovers to the other Asian

markets. The United States, United Kingdom, Germany, France and Brazil are the net senders

of returns spillovers and Japan, Australia, Hong Kong, China and India are the net receivers.

Overall, the United States stock market has the strongest connectedness to other markets and the

Chinese stock market the weakest. A more detailed representation of the system’s connectedness

can be found in the DY connectedness table in Panel (a) of Table 11.

In Panel (b) and (c) of Table 11, we report connectedness measures as obtained with the

newly proposed skewed-t connectedness methodology. For most individual directional spillovers

we do not observe significant changes as a result of changing the distributional assumptions of

the model. Especially the spillover effects among the United States and the European countries

remain unchanged. For the emerging markets we observe some slight changes however these are

not of significant size.

We obtain similar results for the aggregated connectedness measures. Both the total direc-

tional spillovers and the total spillover index show little deviation from the DY-connectedness

measures. The only difference we observe is a lower spillover index of 54.5% for the transmission

of large positive shocks compared to the spillover index of 62.6% in the original DY-connectedness
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Figure 5: Return Connectedness among 10 global stock markets

framework.

We expected to find different upper- and lower tail connectedness, however the results do

not comply with this expectation. There are multiple explanations. Perhaps, there simply is no

difference in upper- and lower tail stock market behavior, however, this seems unlikely due to

the skewness in the returns. Alternatively, there might be a problem with the estimation of the

connectedness measures. Perhaps, by including 10 countries, the dimensions of the model gets

to large to accurately fit the skewed-t distribution. The algorithm we use in R to fit the skewed-t

distribution might be only able to accurately estimate the mean and variance parameters for

such dimensions, and have difficulties to correctly identify the degrees of freedom and skewness

parameters. This seems reasonable since the values in the skewed-t connectedness tables resemble

those in the DY-connectedness table.

To evaluate this hypothesis, we report the parameter estimates of the skewed-t distribution

for the ten stock markets in Table 12. We observe that the multivariate skewed-t distribution

has 5 degrees of freedom and non-zero skewness parameters. This parameter values show large
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Table 11: Return Connectedness Table, Global Stock Markets

(a) Diebold & Yilmaz Connectedness From

To USA UK GER FRA JPN AUS HKG CHN IND BRA Others

USA 34.1 13.9 15.1 14.6 1.4 2.1 3.1 0.4 2.6 12.7 65.9
UK 13.4 27.5 18.3 21.5 2.0 2.6 3.6 0.5 3.2 7.4 72.5
GER 13.5 18.7 28.2 23.1 1.9 1.9 3.2 0.4 2.9 6.3 71.9
FRA 13.3 20.9 21.8 26.6 2.0 2.1 3.2 0.4 2.9 6.7 73.3
JPN 12.2 9.1 9.6 9.5 33.7 6.6 7.6 1.0 4.1 6.5 66.2
AUS 14.9 10.6 9.1 9.7 5.4 29.0 7.1 1.2 4.0 8.9 70.9
HKG 9.8 7.6 6.9 6.8 7.0 7.9 32.6 5.5 8.0 8.0 67.5
CHN 1.9 2.1 1.5 1.7 2.1 2.8 11.6 71.2 2.6 2.5 28.8
IND 6.5 6.3 5.9 6.0 3.5 5.0 11.2 1.8 48.3 5.5 51.7
BRA 15.9 10.4 9.1 9.8 1.3 2.2 4.6 1.0 3.1 42.7 57.4

To Others 101.4 99.6 97.3 102.7 26.6 33.2 55.2 12.2 33.4 64.5 Spillover
From Others 65.9 72.5 71.9 73.3 66.2 70.9 67.5 28.8 51.7 57.4 Index:
Net Spillover 35.5 27.1 25.4 29.4 -39.6 -37.7 -12.3 -16.6 -18.3 7.1.0 62.6

(b) Skewed-t Lower-Tail Connectedness From

To USA UK GER FRA JPN AUS HKG CHN IND BRA Others

USA 34.3 14.3 14.9 15.1 1.7 2.3 2.6 0.8 2.3 11.7 65.7
UK 13.4 28.0 18.5 21.1 2.1 2.8 3.5 0.7 3.2 6.8 72.1
GER 13.2 18.8 28.3 23.7 2.0 2.0 3.0 0.5 2.9 5.5 71.6
FRA 13.2 20.5 22.6 27.1 2.1 2.1 3.0 0.6 2.9 5.9 72.9
JPN 12.1 9.1 9.6 9.7 36.7 6.0 6.2 0.9 3.6 6.1 63.3
AUS 14.1 10.5 8.8 9.4 5.4 31.8 6.7 1.4 3.6 8.4 68.3
HKG 9.7 7.8 7.0 6.9 6.1 7.3 34.9 5.6 6.9 7.9 65.2
CHN 2.0 2.1 1.5 1.7 1.7 2.6 10.7 73.3 2.0 2.4 26.7
IND 6.0 6.3 6.1 6.4 3.1 4.1 9.4 1.7 51.5 5.3 48.4
BRA 15.3 9.9 8.4 9.3 1.4 2.1 3.9 1.3 2.7 45.6 54.3

To Others 99.0 99.3 97.4 103.3 25.6 31.3 49.0 13.5 30.1 60.0 Spillover
From Others 65.7 72.1 71.6 72.9 63.3 68.3 65.2 26.7 48.4 54.3 Index:
Net Spillover 33.3 27.2 25.8 30.4 -37.7 -37.0 -16.2 -13.2 -18.3 5.7 60.9

(c) Skewed-t Upper-Tail Connectedness From

To USA UK GER FRA JPN AUS HKG CHN IND BRA Others

USA 40.9 14.2 15.1 15.1 0.5 0.9 1.1 0.1 0.9 11.2 59.1
UK 13.2 31.4 19.6 22.9 1.1 1.6 2.3 0.3 2.0 5.7 68.7
GER 12.9 19.7 31.5 25.7 1.1 1.0 1.8 0.2 1.8 4.3 68.5
FRA 13.0 21.7 24.3 29.8 1.1 1.1 1.9 0.2 1.9 4.9 70.1
JPN 11.3 7.9 8.5 8.4 43.8 5.9 6.0 0.7 2.5 5.0 56.2
AUS 14.8 9.8 7.9 8.5 4.8 37.9 5.8 0.9 1.9 7.8 62.2
HKG 9.5 6.8 5.8 5.8 5.6 6.6 41.9 5.2 5.7 7.1 58.1
CHN 1.2 1.4 0.8 1.0 1.0 1.7 9.6 80.6 1.1 1.6 19.4
IND 5.0 4.8 4.5 4.8 1.8 2.7 8.3 0.9 63.0 4.1 36.9
BRA 15.3 9.2 7.1 8.1 0.4 1.0 2.4 0.4 1.4 54.9 45.3

To Others 96.2 95.5 93.6 100.3 17.4 22.5 39.2 8.9 19.2 51.7 Spillover
From Others 59.1 68.7 68.5 70.1 56.2 62.2 58.1 19.4 36.9 45.3 Index:
Net Spillover 37.1 26.8 25.1 30.2 -38.8 -39.7 -18.9 -10.5 -17.7 6.4 54.5

Notes: Panel (a) reports the return connectedness measures as developed by Diebold and Yilmaz (2012) for a set of
10 stock markets. The connectedness measures in Panel (b) are obtained using the skewed-t distribution to calculate
the expected contemporaneous asset class responses to negative return shocks of size larger than the first percentile of
the distribution. The connectedness measures in Panel (c) are obtained using the skewed-t distribution to calculate the
expected contemporaneous asset class responses to positive return shocks of size larger than the 99th percentile of the
distribution. The variance decompositions in all panels are obtained via 10-day ahead impulse response functions based
on VAR(p) models with constant terms included estimated on the period of January 7, 2003 through November 24, 2017
for a total of 3,771 observations. 41



Table 12: Skewed-t Distribution, Global Stock Markets, VAR(5) innovation terms.

USA UK GER FRA JAP

Location parameter (ξ) 0.262 0.209 0.269 0.240 0.117
Skewness parameter (α) -0.239 -0.079 -0.121 0.182 0.041

AUG HKG CHI IND BRA

Location parameter (ξ) 0.161 0.216 0.177 0.240 0.323
Skewness parameter (α) -0.166 -0.059 -0.051 -0.124 -0.051

Degrees of Freedom (ν) 5.047

Notes: This table reports the parameter estimates for the multivariate Skewed-t distribution function as given in
equation (29) fitted on the innovations terms. The innovation terms are obtained from a VAR(5) model, estimated on
the set of ten stock markets around the world, United States, United Kingdom, Germany, France, Japan, Australia,
Hong Kong, China, Brazil for the period of January 7, 2003 through November 24, 2017.

resemblance with those of the four U.S. stock markets in Table 6. Therefore, we conclude that

the parameter estimation does not cause the small impact of the new distributional assumptions

on the connectedness measures.

Finally, when we evaluate the definition of the multivariate skewed-t (MST) distribution as

given in Equation (29), we find the reason which probably causes the fact that we do not find

different levels of connectedness with the skewed-t framework. In Equation (29), we see that the

MST distribution function fMSTk
depends on the univariate Student’s t-distribution T (·; νs+k).

As the dimension of the data k becomes larger, the degrees of freedom parameter increases and

this t-distribution starts to resemble a normal distribution. In this example of global stock market

connectedness we use a dataset of dimension k = 10 where we used a dataset of dimension k = 4

in the previous Section. Therefore, this univariate Student’s t-distribution does not exhibit fat-

tails anymore and shows more resemblance to the normal distribution. Therefore, the skewed-t

connectedness results resemble those of the DY connectedness framework.

This suggests that it is best to use the skewed-t connectedness framework to evaluate linkages

among a small set of markets in order to be able to identify asymmetries in shock transmission.

5.3 Dynamic Returns Connectedness

In the above, we performed full-sample estimation. However, as we have stated before, volatility

changes over time, and therefore we expect the connectedness measures also to be time-varying.

The dynamic connectedness measures are presented in Figure 6.

In Plot (a), we observe that the system’s total connectedness fluctuated between 50% and
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(a) Total Spillover Index: 10 Stock Markets

(b) Directional Spillover: From GER to USA

(c) Directional Spillover: From HGK to USA

Figure 6: Dynamic Diebold-Yilmaz and Skewed-t connectedness measures, using a VAR(5) model

and 1-year rolling window.
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60% in the early years of the sample. Mid 2005, before the global financial crisis, the system’s

connectedness reached its lowest recorded level at below 50%. From this moment onwards, the

system’s connectedness increased rapidly to a level of about 70% at the end of 2008. In the third

quarter of 2012, the global stock market connectedness decreased over a two-year period to a

level around 55%, before another surge of stock market connectedness mid 2015 to a level around

65%. Over the most recent year, the global stock market connectedness level is decreasing again

towards a lover level of just above 50%.

From the above, one might derive that the total spillover index of global stock markets may

function as an indicator of financial turmoil around the world. However, further research needs

to be done before drawing conclusions on this subject.

In Plot (b) and (c) we present the dynamic connectedness measures for the spillover from Ger-

many and Hong Kong to the United States, respectively. Interestingly, the directional spillover

from Germany to the United States was relatively high in the first year of the sample and de-

creased afterwards to a level of 10% in 2006. During the global financial crisis, an increase in

spillovers can be observed. However, the high spillover level of 2003 has not been reached since.

In some periods there are small but insignificant differences in total connectedness, but overal

it remains unaffected by the new distributional assumptions. We make a similar observation for

the directional spillovers for Germany and Hong Kong to the United States.

We conclude that the skewed-t distribution has little to no effect on the full-sample and dy-

namic estimates of global stock market connectedness. Both for the directional spillover measures

and the aggregated spillover indices.
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6 Conclusion

We study the transmission of return shocks among U.S. asset classes and global stock markets

using the financial connectedness methodology based on both normally and skewed-t distributed

shocks.

We find that return connectedness changes heavily over time. Furthermore, we find that

the level of the estimated connectedness measures increases as a function of the amount of lags

included in the VAR model, but that the dynamics and economic interpretation remain the same

for the examined markets.

There are three main arguments to opt for the multivariate skewed-t distribution to model

return shocks in the connectedness methodology. First, return shocks are typically not normally

distributed, i.e. they are skewed and leptokurtic. Both the U.S. asset class and the global stock

market returns exhibit these non-normal characteristics.

Second, the asymmetry of the skewed-t distribution enables us to distinguish between different

market responses to negative versus positive shocks. In the case of U.S. asset returns we find that

the total system’s connectedness is little affected, but that there are large differences between the

transmission of extreme positive and negative shocks among the individual asset classes. This is

especially the case for the spillovers among stock and bonds.

In the case of global stock markets we find little evidence of differences in positive and negative

shock transmission. This may be explained by the fact that the skewed-t distribution tends to

normality when the dimension of the data becomes larger.

Third, if the return shocks in fact turn out to be normally distributed, there is little harm in

using the skewed-t distribution since it then converges to the normal distribution and we obtain

similar results as with the original methodology.

Based on our findings we prefer the use of the skewed-t connectedness methodology over that

of Diebold and Yilmaz (2012). Note that we do not claim the skewed-t assumption to be perfect,

however, there is little risk in using it and its underlying assumptions are more realistic.

Further research may be conducted to find more accurate methods to estimate the contem-

poraneous relations. For example the use of a less restrictive distribution function or a copula

approach. Furthermore, it might be interesting to combine these more optimal methods to es-

timate the conditional contemporaneous expected shock transmissions with the more accurate

LASSO technique to estimate the dynamics in the VAR model.
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