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Abstract

Small-package carrier companies transport goods to customers. In this article we will focus on
companies who provide a time window for delivery to its customers. The company strives to re-
spect this selected time windows as well as possible. The self-imposed time window (SITW) has
an important aspect that it is selected by the company and not by the customer. We include this
self-imposed time window into the Vehicle Routing Problem (VRP). The VRP-SITW is different
from the VRP with time windows (VRPTW), because in the latter problem the time windows
are chosen by the customer itself. Another main aspect of this article is the incorporation of
uncertainty in the travel times. Disruptions may occur in the routes and we account for this by
allocating buffers. We used a two-stage solution approach with a tabu search heuristic and a
linear programming problem as introduced by Jabali et al. (2015). In the first stage the routing
and the ordering of the customers within a route is done by using the tabu search procedure.
The second stage generates the schedules of the time windows using the linear programming
problem. In this article we test the algorithm on a number of benchmark instances. We in-
dicate the costs involved in including the SITW in the VRP and in addition to this, highlight
the advantages of the VRP-SITW over the VRPTW. Lastly, we make some alterations in the
algorithm to test the influence on the final obtained costs.

Keywords: Vehicle Routing Problem · Self-Imposed Time Windows · Disruptions · Buffers
·Tabu Search · Linear Programming
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1 Introduction

Over the last few decades the purchasing of goods via the Internet has played a tremendous role
in the world economy. In the United Kingdom, the highest online shopping rate is obtained. In
2016, 85% of the Internet users in the United Kingdom purchased goods and services online,
as investigated by UNCTAD (2016). The number of people in the world buying online was
equal to approximately 1.52 billion in 2016 and this number is still increasing. The expected
number of online buyers in 2021 will transcend the 2 billion (Statista (2017)). Most of the goods
purchased online have to be transported to the customers. The small-package carrier companies
can provide this service.

The arrival time of a good is important to the customer. For some goods, the customer needs
to stay at home in order to sign for the product. Some of the carrier companies let decide
their customers when they want to be served. The allocation of vehicles and the routing of
this company is based on the exogenous decisions of the time windows of his customers. Other
small-package carrier companies provide their customers with time windows for delivery. These
time windows are endogenous decisions of the company. One example of such a company, where
the time windows are chosen by the company itself, is UPS. Once the time window is chosen for
a specific customer, the company aims to serve the client within the specified time window.

In this article we will focus on the endogenous time windows, or in other words, the self-imposed
time windows. These time windows are selected by the company. The location of the customer
will influence the time window, but the preference of the customer for a certain time window will
not be taken into account. The time windows are endogenous to the routing problem. Three
steps have to be taken to solve the routing problem with these self-imposed time windows. First
of all, the carrier company has to assign customers to different vehicles. Thereafter the com-
pany has to sequence the customers assigned to one vehicle. When both decisions are made, the
scheduling of the time windows for the customers can be done. This described problem is the
Vehicle Routing Problem with Self-Imposed Time Windows (VRP-SITW), like also discussed in
Jabali et al. (2015).

The carrier companies have to deal with uncertainties in their daily planning. A vehicle break-
down or a traffic jam can damage the planning of the company. In this article we consider delays
in travel time due to disruptions. These delays in a route may let the actual arrival time deviate
from the selected time window. In order to avoid this phenomenon, we can include time buffers
in our schedules, as done by for example Yeo and Ning (2006). We will use a buffer allocation
model in order to account for the disruptions in travel time.

Our aim is to construct routes and schedules of the time windows for the VRP-SITW who
will deal best with disruptions and will try to minimize the operational and customer service
costs. A solution to the problem is generated before the start of a certain planning horizon and
can not be altered during this horizon. In order to obtain the routes for the problem a few
assumptions have to be made. First, we assume that the service of a customer cannot start
before the scheduled time window. When an early arrival occur, the driver of the vehicle has to
wait until the start time of the time window is reached to serve the customer. On top of this,
late arrivals are penalized relatively to their tardiness. One important remark is the fact that
early arrivals are not penalized. Lastly, a driver of a vehicle has a fixed shift length and has to
be paid a constant amount of money per day.

In order to get a good solution for the VRP-SITW, we will use a two-stage solution approach,
introduced by Jabali et al. (2015). In the first stage the assigning of customers to routes and
the sequencing in each route is done by using a tabu search heuristic. The second stage will
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schedule the time windows by solving a linear programming problem, given a certain set of
routes. In the tabu search heuristic of stage 1 an initial set of routes is needed. In this article
we will use different procedures to find the initial solution and explore the effect of the initial
solution on the final obtained costs. On top of this, we will set different penalty settings for
not respecting the time windows and explore the effects on the acquired costs. Besides these
alterations, we will evaluate the solutions of the VRP-SITW by comparing these to the solutions
of the VRP and the VRP with time windows set by the customer (VRPTW). The main contri-
butions of this article are twofold. First of all, we analyze the results from the article of Jabali
et al. (2015). Furthermore, we explore the effect of the initial solution on the final obtained costs.

This article is organized as follows. In Section 2 the literature regarding the VRP-SITW is
discussed. In Section 3 the problem is formalized and the different aspects of the problem are
outlined. In Section 4 the methodology in order to solve this problem is explained and Section
5 describes the data. Section 6 discusses the results and finally, in Section 7 the conclusion of
our findings is given.

2 Literature Review

In the scientific literature of the last decades the Vehicle Routing Problems are studied quite
frequently. The Vehicle Routing Problem (VRP) was introduced over 50 years ago by Dantzig
and Ramser (1959). Dantzig and Ramser called it the Truck Dispatching Problem, but nowa-
days the Vehicle Routing Problem is the most commonly used name. The VRP is considered
as a generalization of the Traveling Salesmen Problem. Due to the capacity constraints of the
vehicles, the VRP may use multiple vehicles in order to satisfy all the demand of the customers.
In the Traveling Salesmen Problem only one vehicle without a limited capacity is used.

The tabu search procedure is commonly used in order to solve Vehicle Routing Problems. The
procedure is used by Gendreau et al. (1994) for example. The algorithm of this article considers
a sequence of routes obtained by removing a vertex from the current route and add this vertex
in another route. Routes that were acquired recently, are forbidden and added into the tabu list
to prevent the phenomenon of cycling.

The classical VRP considers deterministic travel times. But over the years many variations
of the VRP have been studied. One variation is the incorporation of stochastic travel times
and service times, as done by for example Laporte et al. (1992). One reason for stochasticity
in travel time is the weather condition. On a rainy or snowy day, driving is likely to be more
difficult and will take more time compared to driving on a sunny day. When vehicles with a
fixed capacity must collect random quantities from customers, stochasticity in service times is
obtained.

Another variation of the VRP is the inclusion of time windows. The service of a customer
can only begin within the time window imposed by the customer. This problem is called the
Vehicle Routing Problem with Time Windows (VRPTW) and has been researched by for exam-
ple Desrochers et al. (1992) and Homberger and Gehring (2005). The time windows naturally
arise in business organizations that work on fixed time schedules and therefore have to be in-
cluded in this specific problem. In this VRPTW the customer itself can set his time window,
independently of the company. The company strives to satisfy the time windows specified by
the customers as well as possible.

Another form of stochasticity is incorporated in the VRP with Stochastic Demands (VRPSD).
In this problem the demand is not known in advance but announced upon the arrival of the
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vehicle at the customer. The VRPSD is for example investigated by Laporte et al. (2002). In
some cases, the vehicle is unable to serve the amount of goods a customer wants and this situa-
tion will be seen as a failure. The vehicle has to return to the depot, in order to collect another
amount of goods. Penalties are charged for failures corresponding to a return trip to the depot.

In our specified VRP-SITW from the article of Jabali et al. (2015), a few differences are in-
dicated compared to the above named problems. First of all, the demand of the customers is
known in advance. A second difference is the fact that the time windows are not imposed by
the customer but by the company itself. Apart from Jabali et al. (2015), the VRP-SITW has
never been studied before in scientific research.

3 Problem Description

In this section we discuss the different aspects of the VRP-SITW. First, we give a general
description of the VRP-SITW. Thereafter the objective function is introduced, together with its
different components. Then the self-imposed time windows are discussed and the modeling of
disruptions. And lastly, the tardiness and overtime penalties are introduced and explained.

3.1 General Description of the VRP-SITW

The solution of the VRP-SITW gives the routes and the schedules of the time windows. To
solve the problem some notation has to be introduced. The set N is the set of customers who
have to be served. The set K is the set of available vehicles. All the customers have a certain
location where they have to be visited. The directed graph G = (V,A) represents the network
with V = {0, . . . , |N |} the set of vertices, or in other words, the customers and A the set of arcs.
These arcs indicate the connection between the different customers. The vertex 0 represents the
depot. The Eucledian distance is used in order to determine the distances between the vertices,
as in Danielsson (1980). The parameter dij gives the Eucledian distance between vertex i and j.

Some specific requirements are needed to solve the problem. First, the routes have to start
and end at the depot. On top of that, the total demand of the customers on one route may not
exceed the vehicle capacity, which is introduced as Q. Lastly each customer has to be visited ex-
actly once, in order to satisfy his demand. A company has to determine a set of routes to satisfy
all the demand of its customers. The set Z is a set of possible routes, where Z = {R1, . . . , R|Z|}.
Because the availability of a limited number of vehicles, the number of routes |Z| may not ex-
ceed the number of available vehicles in K. Each route Rr is a vector with the first and last
element equal to zero. A route is indicated as follows: (0, i, j, . . . , 0) with i, j ∈ V . To be
more convenient in the remaining part of this article, the customers of a route will be displayed
in an ascending order as follows: Rr = (0, 1, . . . , nr, nr + 1), where nr + 1 corresponds with the
depot (vertex 0). The distance between two consecutive customers in a route, di,i+1, is for sake
of simplicity written as di in the remaining part of the article.

3.2 Objective Function

The objective function of the VRP-SITW accounts for two different categories of costs. First it
considers the operational costs. These costs are the costs for operating a vehicle, consisting of
for example the salary of the driver and the fuel costs. The second cost category is the customer
service costs. These costs consist of two components. The first component is a penalty for not
respecting the imposed time window, called the tardiness penalty. When the vehicle arrives
at the customer after the imposed time window, the penalty is incurred. A late arrival will
lead to a decrease in customer satisfaction. One important remark is the fact that an arrival
before the time window is not penalized, but the service can start only after the beginning of
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the time window. Besides this tardiness penalty, the objective function of the VRP-SITW also
imposes an overtime penalty. The drivers of the vehicles have a specific shift length and when
a certain driver has a route duration longer than the shift length, an overtime penalty has to
be paid. Both penalties are discussed in more detail in Section 3.5. Considering this different
categories of costs, the objective function of the VRP-SITW, introduced by Jabali et al. (2015),
is as follows:

F (Z) = c
∑

Rr∈Z

∑
(i,j)∈Rr

dij +
∑

Rr∈Z

Θ(Rr). (1)

In this equation the parameter c is the cost of traveling one unit of distance and therefore the
first part of this equation specifies the operational costs. The function Θ(Rr) represents the
tardiness and overtime penalties of the route Rr, which will be formulated in Section 3.5.

3.3 The Self-Imposed Time Windows

As mentioned in Section 1, the VRP-SITW is a problem where the company itself decides on
the time windows for delivery of his customers. Given a specific route and the corresponding
distances between the customers, a schedule of this route can be made. The departure time
si for each customer i ∈ Rr is given in the schedule vector s = (s0, s1, . . . , snr+1). A driver of
a vehicle has a certain shift length and this shift length is indicated as [ss, se] where ss is the
start time and se the end time of a shift. A vehicle cannot departure from the depot before the
start time of the shift and therefore ss ≤ s0 holds. For each customer, except for the depot,
a time window length Wi is given in which the arrival of the vehicle is requested. The time
window is based on the schedule of the departure times of the customers (s). The company will
communicate these time windows to his customers.

Each customer has to be served and this service is time costly. The service time of a cus-
tomer is ui and it is known before the planning horizon. This means the company knows the
service time of a customer before the arrival of the vehicle at the customer. The service times
u0 and unr+1 are equal to zero because these vertices are the depot in a route, as indicated in
Section 3.1. We assume that a vehicle never leaves a customer before the scheduled departure
time. Therefore the service cannot start before si − ui, for each customer i ∈ Rr. If the service
starts before this specified time, the service ends before the scheduled departure time, which
gives a contradiction with the assumption. Hence, the left bound of the time window equals
si − ui. Considering this left bound of the time window and the time window length Wi, the
right bound of the time window is equal to si − ui +Wi.

3.4 Disruptions

In the described VRP-SITW we will incorporate stochasticity in the traveling times, as also
done by Jabali et al. (2015). There may occur disruptions in the routes, leading to an increase
in the actual traveling time. The length Li of the delay on arc (i, i+1) is a random variable and
is added to the travel time di. The variable Li can take some discrete values, as also done by for
example Kouvelis et al. (2000). The probability of having a delay on arc (i, i+1) is equal to pi.
The variable Li has a probability-mass function gi(·), which gives probabilities to the positive
delay values lik ∈ Ψi. The set Ψi is the set of disruption scenarios for di. Each scenario has a
specific increase in traveling time. As a result the following holds:

∑
k∈Ψi

gi(lik) = 1. (2)
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We have to make an assumption in order to model the disruptions. We assume that a route can
suffer at most one failure or delay. So only one arc of a route has an increase in travel time. A
similar assumption is made by Jabali et al. (2009). However, we will consider different delay sce-
narios, due to the set Ψi. For each arc, we consider a set of different disruption lengths because
a vehicle breakdown may take longer than the delay due to, for instance, bad weather conditions.

Due to the disruptions, the actual departure time may differ from the scheduled departure
time. The actual departure time (sa

i (s)) is a function of s, because the scheduled departure
time influences the actual departure time. Because it is known that the service cannot start
before si − ui, the scheduled departure time does not exceed the actual departure time. When
no disruptions occur, si is equal to sa

i (s), ∀i ∈ Rr. But when disruptions occur, the scheduled
departure time may deviate from the actual departure time. At the beginning of the route, in
the depot, no disruptions have occur and therefore the actual departure time is equal to the
scheduled one. But after leaving the depot disruptions may appear and the departure times are
likely to differ. The following two equations give the actual departure time as a function of the
scheduled time:

sa
0(s) = s0, (3)
sa

i (s) = max{si; sa
i−1(s) + di−1 + Li−1 + ui}. (4)

3.5 Tardiness and Overtime Penalty

The tardiness penalty is introduced as extra costs due to a decrease in customer satisfaction.
An arrival before si − ui is not penalized, the driver of the vehicle only has to wait until he can
serve his client. However, an arrival after the right bound of the time window (si − ui + Wi)
is penalized. The non-negative integer ti is the penalty of one time-unit delay at customer i ∈ Rr.

Besides the tardiness penalty, the overtime penalty is also incorporated in the objective of
the VRP-SITW. A driver has a certain shift length which he gets paid for. When he arrives at
the depot later than the end time of the shift, a penalty has to be paid. This overtime penalty
b is the cost of arriving one time-unit too late at the depot. So the penalty function Θ(Rr),
given in Section 3.2, consists of two components namely the costs of the expected delay at the
customers and the overtime costs. Therefore, the function can be written as follows:

Θ(Rr) =
∑

i∈Rr\{0}
tiE[max{0; sa

i (s)− (si − ui +Wi)}] + bE[max{0; sa
nr+1(s)− se}]. (5)

The first part of the summation is the expected delay at the customers and the second part is
the overtime at the end of the route. In order to model the penalty function we have to write
the function in another form, like also done in Jabali et al. (2015). We distinguish two situations
namely the situation where no arc is disturbed and where one arc is disrupted. There could be
routes who have an overtime even if no disruptions arise. This overtime is incorporated in the
ζ-variable which is the overtime of route Rr with no disrupted arcs. The penalty function can
be written as follows:

Θ(Rr) = min
nr∑
i=0

nr+1∑
j=i+1

|Ψi|∑
k=1

pigiktj∆ijk + b
nr∑
i=0

|Ψi|∑
k=1

pigikΛik + b
(
1−

nr∑
i=0

pi

)
ζ, (6)
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with the following three variables included:

∆ijk = max
{

0; si + di + lik +
j−1∑

m=i+1
(um + dm)− sj + uj −Wj

}
, (7)

i ∈ Rr\{nr + 1}; j ∈ Rr\{0}; i < j; k ∈ Ψi,

Λik = max{0; snr+1 + ∆i,nr+1,k − se}, i ∈ Rr\{nr + 1}; k ∈ Ψi, (8)
ζ = max{0; snr+1 − se}. (9)

The first summation of Equation (6) represents the expected delay costs at the customers.
The second summation is the expected overtime penalty for arriving late at the depot due
to disruptions. The last summation represents the expected overtime penalty in case of no
disruptions. The variable ∆ijk gives the tardiness at customer j due to a disruption pursuant to
scenario k of di. The variable is the maximum of zero and the disruption length of i minus the
buffer size between the customers i and j. One important remark is that the term

∑j−1
m=i+1(um +

dm) is zero when i and j are two consecutive vertices in a route. Λik is the overtime at the depot
due to a disruption according to scenario k of di. The variable ζ is the overtime at the end of the
route if no disruptions occur. If the arrival time at the depot at the end of the route is smaller
than the end time of a shift, the variable ζ will be zero. If the arrival time is higher than the
end time of the shift, ζ will be the difference between the arrival time at the depot and the end
time of the shift.

4 Methodology

4.1 Two-Stage Solution Approach

The Vehicle Routing Problem (VRP) is an NP-hard problem. The VRP-SITW is a similar
problem as the VRP, but with the inclusion of overtime and tardiness penalties. The VRP-
SITW with only travel costs is equivalent to the VRP and is thus also NP-hard. Therefore
with the considering of the tardiness and overtime penalties, we need a heuristic to solve this
problem. We introduce the two-stage solution approach of Jabali et al. (2015) where in the first
stage the routing and in the second stage the scheduling of the time windows is done. In the
first stage the routes are specified and on top of that, the customers are sequenced within the
routes. We use a tabu search heuristic to get the routes. For a given route, the second stage will
schedule the time windows using a linear programming program. First of all, we describe the
linear programming problem (second stage) to make the schedules. We discuss the second stage
first, because this linear programming problem is required in each iteration of the first stage.
Thereafter the tabu search heuristic (first stage) is explained, with the different procedures of
the initial solution.

4.2 Scheduling

The tabu search procedure provides a set of routes, Z = {R1, . . . , R|Z|}, to satisfy all the
demand of the customers. For one given route, Rr, the linear programming problem will make
the schedule of the time windows. One important remark is that the schedule is based on the
earlier explained assumption of exactly one disrupted arc in a route. The objective function
considers only the tardiness and overtime penalties and is therefore as follows:

Θ(Rr) = min
nr∑
i=0

nr+1∑
j=i+1

|Ψi|∑
k=1

pigiktj∆ijk + b
nr∑
i=0

|Ψi|∑
k=1

pigikΛik + b
(
1−

nr∑
i=0

pi

)
ζ. (10)
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The objective function minimizes the tardiness and overtime penalties of a specific route Rr, as
discussed in Section 3.5. The constraints of the linear programming problem are the following:

si−1 + di−1 + ui ≤ si, i ∈ Rr\{0}, (11)
s0 ≥ ss, (12)

si + di + lik +
j−1∑

m=i+1
(um + dm) ≤ sj − uj +Wj + ∆ijk, (13)

i ∈ Rr\{nr + 1}; j ∈ Rr\{0}; i < j; k ∈ Ψi,

snr+1 + ∆i,nr+1,k − se ≤ Λik, i ∈ Rr\{nr + 1}; k ∈ Ψi, (14)
ζ ≥ snr+1 − se, (15)

all ∆ijk ≥ 0; all si ≥ 0; all Λik ≥ 0; ζ ≥ 0. (16)

Constraints (11) ensure that the departure time of customer i is at least equal to the sum of
the departure time of his predecessor, the distance from the predecessor of i to customer i itself
and the service time of customer i. The buffer size between customer i − 1 and i is equal
to si − (si−1 + di−1 + ui). These buffers will make a route more robust against disruptions.
Constraint (12) requires that the scheduled departure time from the depot is higher than or
equal to the start time of the shift. Constraints (13) specify the terms ∆ijk. The derivation of
these constraints can be obtained from Equation (7) in Section 3.5. Constraints (14) and (15)
specify the terms Λik and ζ respectively. The derivation of these constraints can be obtained
from Equations (8) and (9).

4.3 Tabu Search Heuristic

The tabu search procedure is commonly used for solving Vehicle Routing Problems. That is why
we adopted this procedure also in the VRP-SITW. The tabu search procedure will generate a
set of routes and then the linear programming problem, explained in Section 4.2, will make the
schedule. In the tabu search algorithm the neighbors of the current solution are investigated to
find an improvement. A specific solution can be tabu for the next certain number of iterations,
in order to avoid local minima. In our case, the move will be tabu for the next κ number of
iterations.

A problem arises with the computation time of this two-stage procedure. Each potential move
evaluation requires a linear programming run and the total computation time will be enormous.
In order to avoid these large computations times, an approximation of the tardiness and over-
time penalties is made. These approximations will try to lead the tabu search to the best move
in the current neighborhood. Three different criteria, C1, C2 and C3, will estimate the effect of
the moves in the neighborhood. These criteria are explained in Section 4.4. The best move in
the neighborhood is based on the criteria and the two-stage procedure is given in Algorithm 1.
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Algorithm 1: Tabu Search
Input: The instance with all the customers, distances and service times
Output: The best solution for criterion C1, C2 and C3

1 construct initial solution Z0 and compute F (Z0)
2 function Tabu Search
3 for ξ = 1 to 3 do
4 set Z = Z0 and F (Z) = F (Z0)
5 generate the neighborhood of Z using the 2-opt* and Or-Opt exchanges
6 evaluate all neighbors on criterion Cξ and retain the best non-tabu move as new solution Z
7 evaluate F (Z) and update the tabu list to include Z
8 if Z is feasible and is better than the current best solution then
9 update the best feasible solution for Cξ to Z

10 update excess demand penalty
11 if no improvement in ηmax iterations then
12 store best solution for Cξ
13 else
14 go to line 5

15 return the best solution from ξ = 1, 2 and 3

The initial solution Z0 is an important step in our heuristic. In Section 4.5 the different proce-
dures in order to find the initial solution will be explained. Both the excess demand penalty in
line 10 and the different criteria will be discussed in Section 4.4.

In the article of Jabali et al. (2015) the ηmax parameter is not specified. Therefore we esti-
mate a suitable value for this parameter using the benchmark instances. We will randomly
select a number of instances and test different values of ηmax. The test values are sequenced in
an ascending order. If there is a test value for which no reduction in the objective values F (Z)
of the randomly chosen instances is realized compared to the previous test value of ηmax, we set
ηmax to this value.

Another main task of this procedure is the definition of the neighborhood. For each customer
i ∈ V , the neighbors are created by making the closest η customers available for a move. In
order to generate the neighbors, two exchange procedures are used. The first procedure is the
2-opt* neighborhood, as introduced by Potvin and Rousseau (1995). They argued that classical
k-opt exchange heuristics are not well adapted to problems with time windows. However, the
2-opt* exchange is powerful for problems with these time windows because it introduces the last
customers of a certain route at the end of the first customers of another route. The algorithm of
creating the neighborhood of a current solution Z using 2-opt* exchanges is given in Appendix
A Algorithm 5.

The second neighborhood is found by an Or-Opt exchange, as used by Potvin and Rousseau
(1995). They introduced an Or-Opt-1 exchange procedure where a customer is inserted at
another location to try to improve the current solution. The Or-Opt exchange considers not
only one customer, but inserts also two and three adjacent customers at another location. The
procedure is represented in Appendix A Algorithm 6.

4.4 Criteria

Another important ingredient of the tabu search procedure are the three criteria in order to
avoid large computation times. Before introducing these criteria, another concept has to be
explained. The total travel costs associated with the set of routes Z are the following:
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Ω(Z) = c
∑

Rr∈Z

∑
(i,j)∈Rr

dij . (17)

Gendreau et al. (1994) create a concept to diverse the search in the heuristic. This diversification
is achieved by allowing demand-infeasible solutions. In these solutions the total demand of the
customers in a specific route may exceed the vehicle capacity. The excess demand is penalized
and the objective function in Equation (17) is replaced by the following equation:

Ω2(Z) = Ω(Z) + w
∑

Rr∈Z

[( ∑
i∈Rr

qi −Q
)]+

. (18)

In this above equation each unit of excess demand in a route is penalized by a parameter w.
In order to make the search even more diverse, the demand-infeasible penalty parameter is not
a constant. The penalty is decreased by multiplication with a constant v after φ consecutive
feasible iterations. The search will be guided to infeasible solutions due to this decrease in the
penalty parameter. On the other hand, the penalty is increased by multiplication with the
inverse of v after φ consecutive infeasible iterations. When the algorithm realized a sequence
of infeasible solutions, the increase in the penalty parameter will guide the heuristic to feasible
solutions.

After introducing this concept of diversification of the search we are able to introduce the three
different criteria. These criteria avoid the heuristic to execute a substantial number of linear
programming runs and estimate the objective values of the possible moves.

The first criterion is the C1-distance based criterion. This criterion does not take into ac-
count the time windows and the overtime and tardiness penalties, but focuses purely on the
minimization of the traveled distance. Let Z ′ be a neighbor of the solution Z and define
∆2(Z ′) = Ω2(Z) − Ω2(Z ′). The chosen move is the one that is not tabu and maximizes the
expression ∆2(Z ′).

The second criterion is the C2-distance based criterion with marginal penalties. This crite-
rion is the same as C1 but with an added assessment of the penalty component

∑
Rr∈Z Θ(Rr).

For a specific solution Z, the marginal penalty of route Rr is Θ(Rr)
nr+1 . Let there be an exchange

of customers between two routes, R1 and R2, and define the new solution as Z ′. The number
of customers in these routes possibly changed and therefore let n1 be the number of customers
in route R1 and n2 in route R2 of solution Z. Let n′1 and n′2 be the number of customers in R′1
and R′2 of the new solution Z ′ respectively. C2 chooses the move which maximizes the following
equation:

∆2(Z ′) = Ω2(Z)− Ω2(Z ′) + ρ

[
Θ(R1) + Θ(R2)− Θ(R1)

n1 + 1(n′1 + 1)− Θ(R2)
n2 + 1(n′2 + 1)

]
. (19)

When a given route has an increase in the number of customers, the penalties are more likely to
be high. Similarly, when a certain route has a decrease in the number of customers, the penalties
are likely to decrease and therefore this criteria accounts for the delay penalties. When there is
an exchange of customers within one route, the last term of Equation (19) cancels out and the
C2 criterion is exactly the same as the C1 criterion.

The last criterion is the C3-distance and buffer based criterion. The buffer size between cus-
tomer i and customer i+1 in a route Rr is equal to bu(i) = si+1 − (si + di + ui+1). The C3
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criterion regards it beneficial to take moves with small buffers. When the buffer sizes are small,
an improvement in travel times is likely to decrease the penalties as well. Hence, for a solution
Z ′ where a move between customer i and customer j is realized, the following quantity will be
computed:

∆3(Z ′) = Ω2(Z)− Ω2(Z ′)− γ[bu(i) + bu(j)]. (20)

The best neighbor of the current solution Z based on the C3 criterion will be the solution that
maximizes ∆3(Z ′).

4.5 Initial Solution

In a heuristic approach the initial solution is of great importance to the final solution. The
initial solution will guide a heuristic to a certain search area and another starting point is likely
to have another search area. In Algorithm 1 line 1 we use different initial solutions, in order to
investigate the influence of the initial solution.

The first initial solution is obtained by the nearest neighbor procedure. In this procedure the
routes are generated by searching for the nearest neighbor of a specific customer and add this
customer to the current route, if this will generate a feasible route. If the route is not feasible,
the route will return to the depot and a new route will be created. The exact procedure is as
follows:

Algorithm 2: Nearest Neighbor Heuristic
Input: The set of N customers, the distances between the customers and the demand of each customer
Output: A set of routes Z

1 function Nearest Neighbor Heuristic
2 initialize an empty set Z
3 initialize an empty set L
4 initialize a list R and add zero to R
5 initialize the variable edit to zero
6 while the size of set L is smaller than the number of customers do
7 Find the nearest neighbor of the customer edit who is not in set L
8 if the route R obtained by adding the nearest neighbor is feasible then
9 add the nearest neighbor to R and set edit to the nearest neighbor

10 add the nearest neighbor to the set L
11 else
12 add zero at the end of R
13 add R to the set Z
14 clear R and add zero to the list
15 set variable edit to zero

16 return the set of routes Z

The second initial solution is obtained by the savings heuristic, used by for example Laporte
(2009). This procedure starts with only back-and-forth routes. In each iteration, a merge of
routes is tried by maximizing the saving sij = c0i + c0j − cij . Algorithm 3 shows the exact
procedure.
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Algorithm 3: Savings Heuristic
Input: The set of N customers, the distances between customers and the demand of each customer
Output: A set of routes Z

1 function Savings Heuristic
2 take Z the set of |N | initial routes with Ci = {0, i, 0}, i ∈ N
3 initialize an empty set L
4 for all customers i ∈ N do
5 for all customers j ∈ N : j > i do
6 compute the saving sij = d0i + d0j − dij
7 add the saving sij to the list L

8 sort the list L in a nonincreasing order
9 for all savings in the list L do

10 extract and remove from the top of list L the saving sij
11 if customers i and j belong to two separate routes and both are directed linked to the depot then
12 if route obtained by replacing (0. i) and (0,j) with (i,j) is feasible then
13 remove the routes of i and j from Z
14 merge the routes of customer i and j and add the route to Z
15 return the set of routes Z

The last procedure in order to find an initial solution is the sweep heuristic, as introduced by
Gillet and Miller (1974). In this approach first the polar-coordinate angle for each customer is
determined. Thereafter the routing is based on these polar-coordinates. This is done by rotat-
ing a half-line rooted at the depot, adding customers to the route until the route is not feasible
anymore. The procedure is given in Algorithm 4.

Algorithm 4: Sweep Heuristic
Input: The set of N customers, the distances between customers and the demand of each customer
Output: A set of routes Z

1 function Sweep Heuristic
2 initialize an empty set Z
3 initialize an empty list P
4 for all customers i ∈ N do
5 calculate the polar-coordinate angle of customer i
6 add the polar-coordinate angle to the P
7 sort the list P in nondecreasing order
8 initialize a list R and add zero to R
9 while the size of list P is greater than zero do

10 extract from the top of P the polar-coordinate angle p and find corresponding customer j
11 if the route R obtained by adding customer j is feasible then
12 add customer j to R
13 remove polar-coordinate angle p from P
14 else
15 add zero at the end of R
16 add R to the set Z
17 clear R and add zero to the list

18 return the set of routes Z
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5 Data

To asses the computational results of the VRP-SITW we have run a number of experiments on
benchmark instances. The first dataset contains 27 instances from Augerat et al. (1998). The
number of customers is varying between 31 and 79 in these instances and the coordinates of
the locations of the customers are given. The vehicle capacity Q is equal to 100 units and the
service times ui are the same for each customer, namely 10 minutes. The time window length
Wi is equal to 60 minutes for each customer and the start time and end time of a shift are 0 and
200, respectively. The second dataset contains 29 instances from Solomon (1987). Some of these
instances are random (R), some are clustered (C) and the remaining instances are random and
clustered (RC). All the instances contain 100 customers and the service times, window lengths
and the coordinates of the customers are given in the datasets of these instances. The opening
hours of the depot are used as the start and end time of a shift and the vehicle capacity Q equals
200 units.

In order to get a good solution for the VRP-SITW, we need to specify the used parameters. The
travel cost of traveling one-unit of distance, c, is equal to one and therefore the travel time is
equivalent to the distance. The number of customers in a specific benchmark instance is equal
to N and for each customer, the closest η = d0.3Ne customers are allowed to make a move in
the neighborhood search. The tenure size κ of the tabu search equals 20. The initial tardiness
penalty ti equals the value 5 for each customer i ∈ N . The overtime penalty b is equal to 2. The
infeasibility penalty w is equal to 12 and can be altered by the parameters φ = 5 and v = 3

4 .
The penalty parameters for the C2 and C3 criterion are respectively ρ = 1 and γ = 0.1. The
parameter ηmax is not specified in the article of Jabali et al. (2015). We estimate a suitable
value for this parameter, as discussed in Section 4.3.

To model the disruptions the probability of having a delay on arc (i, i + 1), with i, i + 1 ∈ Rr,
have to be specified. The probability pi is equal to one over the number of customers in a route
and the number of vehicles needed to satisfy all the demand of the customers, thus pi = 1

N+k .
Hence, the probability of having a delay is identical for each arc. One important remark is the
fact that k may not exceed the available number of vehicles, so k ≤ K. We introduce four
different delay scenarios, so |Ψi| = 4. The probabilities of having a specific scenario are equal to
gi1 = 0.5, gi2 = 0.3, gi3 = 0.1 and gi4 = 0.1. Hence, the probability of having a specific delay are
also the same for each arc. Lastly, the disruption lengths of the different scenarios are based on
the distance between the customers, namely li1 = 0.1dij , li2 = 0.2dij , li3 = 0.5dij and li4 = dij .
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6 Computational Results

The experiments are all performed on an Intel Core with 2.0 GHz and 4 GB of RAM. The
software used in order to solve the tabu search procedure is JAVA and the linear programming
problems to schedule the time windows are solved by using JAVA CPLEX.

First we estimate the parameter ηmax using the benchmark instances. On top of that, we
execute some experiments to look into the effect of using the different criteria. Thereafter ex-
periments are executed to explore the tardiness choices. Furthermore, the effect of the initial
solution on the obtained costs is measured. Finally, the solutions of the VRP-SITW are com-
pared to the solutions of the VRP and in addition to this, a comparison is made between the
solutions of the VRP-SITW and the VRPTW. In all these experiments the initial solution is
specified by the nearest neighbor procedure, unless stated otherwise.

6.1 Number of Consecutive Iterations without Update

In order to determine a suitable value for ηmax, the number of consecutive iterations without
update, we randomly took 10 Augerat instances and 10 Solomon instances. For each instance
one of the three criteria is randomly chosen to obtain the set of routes. We tested different values
for ηmax in an increasing order. The sequence of test values for ηmax is as follows: (1, 20, 40, 60,
80, 100, 500, 1,000, 10,000). The objective F (Z) of each instance using a certain test value is
compared to the objective value realized by using the previous test value in the sequence. When
there is an improvement in F (Z), it means that increasing the number of consecutive iterations
without update leads to an improvement in the objective value. Figure 1a indicates the number
of improvements in the objectives of the randomly chosen Augerat instances with comparing
the current test value of ηmax to the previous one. Figure 1b gives the same comparison for the
Solomon instances. One important remark is the fact that the objectives obtained by ηmax = 20
are compared to the objectives realized by the test value of ηmax = 1. In the Augerat instances
for example, there are 8 improvements in the objective using ηmax = 20 instead of ηmax = 1.
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Figure 1: Number of improvements in the objectives

The Figures 1a en 1b indicate that the last improvements in objective are obtained with the
test value of 80. Since we do not check every instance, we set ηmax = 100 in order to get more
certainty. We continue with this value in the upcoming experiments.
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6.2 Move Selection

Table 1 shows the results of the Augerat instances by using only one criterion. Either the C1,
C2 or C3 criterion is used in these experiments. The left hand side of the table displays the
obtained objective values F (Z), as introduced in Equation (1) in Section 3.2. The right hand
side of the table gives the running times. The first important observation is the fact that using
C3 leads in 18 out of the 27 instances to the best objective value F (Z). For C1 this is also the
case in 18 out of the 27 instances and for C2 in 10 out of the 27 instances. One important remark
is the fact that for some instances the same objectives are obtained by using different criteria.
The table indicates that the objective values obtained by using the first and third criterion are
the same in a substantial number of instances. A reason for this could be small buffer sizes
for customer i and j in Equation (20), which makes criteria C1 and C3 similar. Besides this
observation, the same objective values are also obtained by using C1 and C2 in a certain number
of instances. When exchanges occur in the same route, the C1 and C2 criteria are equivalent
and this could be the reason for the same objectives for these two criteria. Another reason could
be the dominant influence of the distance in Equation (19) of criterion C2. The last term of this
equation, which considers the penalties, can be dominated by the distance term and therefore no
differences between the costs of the two criteria are obtained. The running times of the different
criteria are approximately the same. Because the running times of the different criteria are
roughly similar and no criterion obtains clearly better results for the given benchmark instances
of Augerat, there is no clear preference for one of the criteria. However, the results obtained by
criteria C1 and C3 are somewhat better than the results of criterion C2 for the Augerat instances.

Table 1: Comparison of the three move selection criteria for the Augerat instances

Instance Objective Value CPU time (s) Total
C1 C2 C3 C1 C2 C3

32k5 1405.4 1427.3 1405.4 5.4 5.2 5.3 16.0
33k5 888.6 888.6 888.6 4.3 3.9 4.0 12.2
33k6 985.0 1011.4 985.0 4.9 5.0 4.1 14.1
34k5 1074.6 1074.6 1074.6 3.8 3.5 3.7 11.0
36k5 1411.3 1412.3 1465.7 5.5 5.9 5.1 16.5
37k5 972.0 972.0 972.0 4.1 3.9 4.7 12.7
37k6 1478.0 1416.2 1548.5 6.1 6.0 6.3 18.3
38k5 1065.2 1065.2 1065.2 4.3 4.2 4.4 12.9
39k5 1519.4 1471.0 1519.4 4.8 7.8 4.8 17.3
39k6 1340.0 1259.5 1340.0 4.7 5.6 5.0 15.3
44k6 1558.8 1558.8 1558.8 5.5 5.6 5.6 16.6
45k6 1386.6 1448.0 1386.6 6.8 7.9 7.2 21.9
45k7 2003.7 1893.7 1959.0 7.5 8.9 10.7 27.1
46k7 1326.1 1330.8 1326.1 6.8 7.5 6.6 21.0
48k7 1957.3 1852.9 1836.9 8.6 21.3 9.0 38.9
53k7 1570.6 1663.1 1570.6 8.7 7.2 8.7 24.5
54k7 2004.3 2003.8 1986.7 10.0 12.7 11.8 34.5
55k9 1234.8 1239.9 1253.8 7.3 7.5 7.4 22.2
60k9 2215.0 2102.3 2105.7 12.0 31.9 20.2 64.2
61k9 1312.2 1319.3 1312.2 9.6 10.0 9.7 29.3
62k8 2270.7 2332.7 2279.2 16.6 16.9 27.1 60.7
63k10 1881.5 2013.0 1941.4 13.3 23.9 13.1 50.3
63k9 3086.8 3020.5 2989.2 20.4 24.9 25.4 70.7
64k9 2374.3 2545.2 2374.3 22.0 13.8 12.2 48.0
65k9 1547.0 1592.2 1547.0 21.7 11.9 13.8 47.3
69k9 1681.9 1744.9 1681.9 17.7 10.2 16.6 44.5
80k10 3616.8 3552.9 3494.3 28.9 54.9 34.6 118.4
Arithmetic Average 10.0 12.1 10.6 32.8
Geometric Average 8.3 9.2 8.6 26.2

This table represents the objective values and running times of the Augerat
instances using the C1, C2 and C3 criterion.

Table 2 contains the objective values F (Z) and the running time of the Solomon instances.
Again the instances are tested with each criterion separately. The left hand side of the table
gives the objective values obtained by criteria C1, C2 and C3 respectively and the right hand
side gives the running time. Criterion C1 outperforms the other criteria in 26 out of the 29
instances and C3 in 24 out of the 29 instances. Criterion C2 realizes the best objective in 9
of the instances. The different criteria give in a substantial number of benchmark instances
the same objective value. This may be due to the earlier discussed small buffer sizes and the
exchanging of customers on a single route. The running times of the Solomon instances are
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relatively high compared to the running times of the Augerat instances. The reason for this is
the higher number of customers. For the Solomon instances, criteria C1 and C3 are beneficial
because these criteria outperform criterion C2 in almost all the instances and the running times
of the different criteria are similar.

Table 2: Comparison of the three move selection criteria for the Solomon instances

Instance Objective Value CPU time (s) Total
C1 C2 C3 C1 C2 C3

R101 1113.7 1122.8 1103.3 24.3 25.1 25.6 74.9
R102 1113.6 1122.7 1097.9 23.9 25.6 25.8 75.3
R103 1113.2 1122.2 1087.0 34.0 24.6 28.9 87.4
R104 1112.8 1121.8 1113.3 23.5 30.0 30.8 84.4
R105 1112.5 1121.5 1112.5 25.1 24.0 37.1 86.2
R106 1112.5 1121.5 1112.5 26.7 26.6 25.3 78.5
R107 1112.5 1121.5 1113.0 25.0 25.8 22.0 72.8
R108 1112.5 1121.5 1113.0 22.1 21.6 22.3 66.0
R109 1112.5 1121.5 1112.5 29.0 22.1 22.1 73.2
R110 1112.5 1121.5 1112.5 23.9 23.1 28.2 75.2
R111 1112.5 1121.5 1113.0 27.8 22.4 23.4 73.6
R112 1112.5 1121.5 1112.5 25.2 20.4 21.8 67.4
C101 834.2 834.2 834.2 24.8 31.3 31.5 87.6
C102 834.2 834.2 834.2 29.7 32.6 31.1 93.4
C103 834.2 834.2 834.2 28.0 29.7 29.0 86.7
C104 834.2 834.2 834.2 34.1 29.6 31.1 94.8
C105 834.2 834.2 834.2 34.9 32.0 32.4 99.3
C106 834.2 834.2 834.2 35.3 32.2 38.0 105.5
C107 834.2 834.2 834.2 28.4 27.9 31.5 87.7
C108 834.2 834.2 834.2 28.8 31.7 31.6 92.1
C109 834.2 834.2 834.2 31.7 38.8 38.0 108.5
RC101 1105.7 1230.7 1105.7 34.6 40.8 37.9 113.3
RC102 1105.7 1230.7 1105.7 27.6 32.7 35.0 95.3
RC103 1105.7 1230.7 1105.7 33.9 53.5 34.6 122.0
RC104 1105.7 1230.7 1105.7 34.3 43.7 33.4 111.4
RC105 1106.2 1231.1 1131.6 28.0 47.5 41.5 117.1
RC106 1105.7 1230.7 1105.7 29.0 42.1 31.6 102.7
RC107 1105.7 1230.7 1105.7 33.5 33.3 33.7 100.5
RC108 1105.7 1230.7 1105.7 29.6 42.7 32.8 105.0
Arithmetic Average 28.8 31.5 30.6 91.0
Geometric Average 28.6 30.5 30.2 89.3

This table represents the objective values and running times of the
Solomon instances using the C1, C2 and C3 criterion.

Considering Table 1 and 2, the obtained results are not in line with the article of Jabali et al.
(2015). The obtained objectives F (Z) of the Augerat and the Solomon instances are on average
36.7% and 12.3% higher. The obtained differences are not caused by the specification of the
ηmax, the number of consecutive iterations without update, because a higher value of ηmax will
not lead to a reduction in the objective. A possible explanation could be another implementation
of for example the neighborhood search or the nearest neighbor heuristic.

The implementations of the nearest neighbor heuristic and the neighborhood search are not
given in the article of Jabali et al. (2015). The implementation of these procedures could have
a significant effect on the obtained objectives. Therefore we added the concept of a maximum
number of customers per route in the nearest neighbor heuristic of Section 4.5 and explore
the effects on the obtained costs. A maximum number of customers per route could avoid
long routes and thus the delay penalties. We used the Solomon instances and set the maxi-
mum number of customers per route equal to 10, because routes with more than 10 customers
are more likely to have substantial penalties. The results are represented in Appendix B Table 6.

For the R and C instances, the average objective F (Z) remains approximately the same. In the
R instance a mild increase is acquired, whereas in the C instance a small decrease is achieved.
However, the average objective of the C instances increased with 12.5% compared to the nearest
neighbor heuristic without the concept of the maximum number of customers per route. (Algo-
rithm 2). These results indicate that the implementation of the nearest neighbor heuristic has
a significant effect on the obtained costs. These results do not necessarily proof that the differ-
ences between this article and the article of Jabali et al. (2015) are due to the implementation
of the heuristic. However, the implementation of the nearest neighbor heuristic could be one
cause for the differences.
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6.3 Choice of the Tardiness Penalty

To get some intuition about the effects of the tardiness penalty, we will make some variations in
the penalty costs ti. Four different penalty costs are introduced. The first penalty cost setting
is P5 and the costs are the same as in the previous experiments in Section 6.2. Therefore, in P5
the penalty cost is ti = 5, ∀i ∈ V \{0}, where in P10 the penalty cost ti is equal to 10. In the
third cost setting Prop, the delay cost of a customer is equal to the quantity of his order, thus
ti = qi, ∀i ∈ V \{0}. In this setting the penalty is proportional to the demand of the customer.
In the last penalty setting, 1.3dist, the penalty cost is again ti = 5. However, the distances
between the customers are increased by 30%. This leads to smaller buffer sizes between the
customers and less flexibility in the schedules.

Table 3 indicates the results for the two-stage procedure with the different penalty settings.
The left hand side provides the objective values F (Z) for the instances of Augerat with the
different penalty settings. The value M(Ci) indicates the number of times that criterion Ci has
the best objective value for the given penalty cost setting. For the cost settings P10 and 1.3dist
criterion C3 performs the best, whereas in cost setting Prop criterion C1 gives the best results.
For the cost setting P5 the criteria C1 and C3 are the best performing criteria. Overall criterion
C3 indicates the best results and a possible explanation could be the assessment of the buffer
sizes in this criterion.

In the cost setting P10, the tardiness penalty is doubled compared to the setting P5. How-
ever, the average objective value of P10 is only 0.3% higher than the average objective of P5.
The average objective value of P5 and Prop are approximately the same. Considering these
results we can conclude that varying the penalty costs does not influence the objective values
significantly. In the last cost setting, 1.3dist, the average objective increase is 54.1% compared
to the cost setting P5, whereas the distance increase is only 30%. A possible explanation for
this phenomenon is the fact that when the distances increase, the buffer sizes will decrease and
therefore higher penalties are obtained due to the possible disruptions.

The right hand side of the table represent the penalty ratio, which is defined as follows:

∑
Rr∈Z

Θ(Rr)
F (Z) . (21)

The penalty ratio is the proportion of the objective value corresponding to the overtime and
tardiness penalties. Table 3 indicates that the first three penalty settings have approximately
the same average penalty ratio, while the average penalty ratio of the 1.3dist setting is by far
the largest. Therefore, we conclude that an increase in distance will lead to an increase in the
delay penalties.
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Table 3: Results for the Augerat instances with four different penalty settings

Instance Objective Penalty Ratio
P5 P10 Prop 1.3dist P5 (%) P10 (%) Prop (%) 1.3dist (%)

32k5 1405.4 1407.8 1403.0 2084.9 40.0 40.1 39.9 46.3
33k5 888.6 888.9 889.1 1448.6 22.1 22.2 22.2 38.2
33k6 985.0 985.0 985.0 1525.4 20.1 20.1 20.1 29.7
34k5 1074.6 1075.4 1075.5 1683.2 9.0 9.1 9.1 38.8
36k5 1411.3 1412.8 1410.1 2181.0 35.5 34.8 35.4 48.4
37k5 972.0 972.0 972.0 1672.7 5.3 5.3 5.3 40.4
37k6 1416.2 1417.8 1414.9 2247.6 27.6 27.7 27.6 37.7
38k5 1065.2 1065.5 1065.6 1564.2 17.5 17.5 17.5 34.9
39k5 1471.0 1471.4 1471.2 2219.0 40.2 40.2 40.2 48.6
39k6 1259.5 1259.5 1259.4 2040.4 26.3 26.3 26.3 41.1
44k6 1558.8 1561.4 1558.3 2310.4 17.1 17.2 17.0 44.9
45k6 1386.6 1387.1 1386.1 2085.4 26.7 26.7 26.6 34.9
45k7 1893.7 1964.9 1890.8 2922.2 36.7 39.1 37.5 46.5
46k7 1326.1 1326.2 1326.3 2063.3 26.1 26.2 26.2 38.5
48k7 1836.9 1838.7 1836.4 2824.2 32.7 32.8 32.7 43.8
53k7 1570.6 1571.6 1569.7 2467.7 30.8 30.9 30.8 41.9
54k7 1986.7 1990.4 1983.6 3102.7 39.1 39.3 39.1 49.6
55k9 1234.8 1235.1 1234.4 1994.4 6.6 6.6 6.5 22.4
60k9 2102.3 2106.3 2098.4 3227.7 33.8 33.9 33.7 44.1
61k9 1312.2 1312.2 1312.2 1991.1 16.6 16.6 16.6 28.7
62k8 2270.7 2275.6 2266.4 3455.3 40.4 40.6 40.3 49.3
63k10 1881.5 1882.8 1881.9 2929.4 27.4 27.4 27.4 38.2
63k9 2989.2 2998.5 3012.0 4507.2 42.7 42.9 42.9 51.0
64k9 2374.3 2377.5 2371.4 3522.1 38.7 38.8 38.7 46.7
65k9 1547.0 1547.0 1547.0 2555.1 21.3 21.3 21.3 36.8
69k9 1681.9 1681.9 1681.9 2556.4 27.2 27.2 27.2 36.3
80k10 3494.3 3502.1 3486.7 5249.6 45.6 45.7 45.4 53.0
Average Penalty (%) 30.8 30.9 30.8 42.8
M(C1) 18 17 18 10
M(C2) 10 10 10 10
M(C3) 18 18 17 13

This table displays the objective values and penalty ratios of the Augerat instances using dif-
ferent penalty settings, as explained in Section 6.3.

6.4 Initial Solution Choice

Table 4 represents the obtained results for the Solomon instances using three different procedures
for the initial solution of Algorithm 1. The left hand side of the table represents the objective
values F (Z) obtained by using the nearest neighbor, savings and sweep heuristic for the initial
solution. The savings heuristic outperforms the other heuristics in the R1 and RC1 instances,
whereas the nearest neighbor heuristic outperforms the other heuristics in the C1 instances.
Another important observation is the fact that the C2 criterion performs best in the savings
heuristic. However, in the other heuristics the C2 criterion performs worst.

The right hand side of the table indicates the running times of the heuristics. On average,
the savings heuristic has the lowest running time. The running time of the nearest neighbor
heuristic is on average only 11% higher. The sweep heuristic has a substantially higher running
time than the savings heuristic, namely an increase of 72%. Considering the objective values
and the running times, we can conclude that the procedure for the initial solution and the initial
solution itself have a significant effect on the obtained objective value and the running time.
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Table 4: Results of the Solomon instances with different initial solution procedures

Instance Objective Value CPU time (s)
Nearest Neighbor Savings Sweep Nearest Neighbor Savings Sweep

R101 1103.3 977.7 1104.4 25.6 20.4 43.1
R102 1097.9 977.2 1077.8 25.8 19.3 38.9
R103 1087.0 975.8 1102.4 28.9 27.3 45.2
R104 1112.8 974.7 1179.9 23.5 17.7 49.0
R105 1112.5 974.1 1232.4 31.1 20.9 49.1
R106 1112.5 974.1 1263.0 26.0 25.9 45.6
R107 1112.5 974.1 1263.0 25.0 17.3 48.1
R108 1112.5 974.1 1263.0 22.1 18.6 38.0
R109 1112.5 974.1 1263.0 25.5 21.6 47.0
R110 1112.5 974.1 1158.8 26.0 22.3 45.7
R111 1112.5 974.1 1150.5 27.8 21.9 46.2
R112 1112.5 974.1 1263.0 23.5 21.1 44.9
C101 834.2 850.2 840.9 29.2 20.8 38.8
C102 834.2 850.2 840.9 31.1 31.0 39.8
C103 834.2 850.2 840.9 28.9 22.4 42.0
C104 834.2 850.2 840.9 31.6 27.8 42.5
C105 834.2 850.2 840.9 33.1 22.1 42.8
C106 834.2 850.2 840.9 35.2 29.6 47.3
C107 834.2 850.2 840.9 29.2 21.3 44.6
C108 834.2 850.2 840.9 30.7 20.9 45.7
C109 834.2 850.2 840.9 36.2 28.1 40.7
RC101 1105.7 1096.5 1106.4 36.3 34.8 36.5
RC102 1105.7 1096.2 1106.4 31.3 37.0 63.1
RC103 1105.7 1096.0 1099.9 34.3 35.8 74.1
RC104 1105.7 1095.7 1104.1 33.9 38.2 64.4
RC105 1106.2 1097.4 1107.0 28.0 36.7 41.7
RC106 1105.7 1095.6 1106.4 30.3 38.4 40.5
RC107 1105.7 1095.6 1106.4 33.6 33.0 43.4
RC108 1105.7 1095.6 1106.4 31.2 35.7 34.6
Average CPU time (s) 29.5 26.5 45.6
M(C1) 26 13 18
M(C2) 9 29 0
M(C3) 24 14 20

This table represents the objective values obtained by using the nearest neighbor, savings
and sweep heuristic in order to find the initial solution of the tabu search procedure. In
addition to this, the running times are given.

6.5 VRP-SITW versus VRP

The introduction of self-imposed time windows into the vehicle routing problem may influence
the total distance traveled. Therefore, we compare the distances obtained by the VRP-SITW
with the distances obtained by the VRP. This experiment is executed on the Augerat instances
and the VRP solutions are obtained from Ralphs (2010). The results are represented in Table
7 in Appendix B. The incorporation of the self-imposed time windows increased the average
traveled distance with approximately 9% in the cost settings P5, P10 and Prop. For the 1.3dist
setting the VRP distances are increased by 30% and the VRP-SITW distances are approximately
7% higher. Hence, the incorporation of self-imposed time windows does influence the traveled
distance mildly. A carrier company has to decide whether it is beneficial to incorporate self-
imposed time windows. The company has to weigh the costs of traveling additional distance
against an increase in customer service level due to the self-imposed time windows.

6.6 VRP-SITW versus VRPTW

A company can choose to let their customers decide on the time windows for delivery. In this
section the benefits of self-imposed time windows over the exogenous time windows will be
evaluated. We compare the results of the VRP-SITW Solomon instances with the results of
the VRPTW obtained by Solomon (2010). In the VRPTW the time windows are set by the
customer. Table 5 represents the results. TF is the travel time or distance of the VRPTW
and TS for the VRP-SITW. The number of vehicles used in the VRPTW is represented by KF

and in the VRP-SITW by KS . The third column indicates that the travel time of the R1 and
RC1 instances reduced using the self-imposed time windows. These instances have tight time
windows, as visible from the penalty ratios and therefore the self-imposing of these time windows
reduces the travel time. For the C1 instances the travel time slightly increases. The last column
of the table indicates that these instances have a penalty ratio of zero. These instances have
more flexibility in their time windows and the self-imposing does not influence the travel time
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drastically. Column 4 of the table displays the decrease in the number of vehicles. The R1
and RC1 instances have a substantial reduction in the number of used vehicles, whereas in the
C1 instances no reductions are achieved. In conclusion, the instances that allow a substantial
reduction in travel time are also suitable for improvements in the number of used vehicles. And
on average, the traveled distance will decrease with using self-imposed time windows compared
to time windows set by the customers.

Table 5: Comparison of VRP-SITW with the VRPTW solutions for the Solomon instances

Instance TF TS / TF (%) KF KF - KS

∑
Rr∈Z

Θ(Rr) /
F (Z) (%)

R101 1637.7 62.5 20 10 7.3
R102 1466.6 69.4 18 8 7.3
R103 1208.7 81.7 14 4 9.2
R104 971.5 106.5 11 1 7.1
R105 1355.3 76.3 15 5 7.0
R106 1252.0 82.6 12 2 7.0
R107 1064.6 97.1 11 1 7.0
R108 960.9 107.6 9 -1 7.0
R109 1146.9 90.2 13 3 7.0
R110 1068.0 96.8 12 2 7.0
R111 1048.7 98.6 12 2 7.0
R112 982.1 105.3 9 -1 7.0
C101 827.3 100.8 10 0 0.0
C102 827.3 100.8 10 0 0.0
C103 826.3 101.0 10 0 0.0
C104 822.9 101.4 10 0 0.0
C105 827.3 100.8 10 0 0.0
C106 827.3 100.8 10 0 0.0
C107 827.3 100.8 10 0 0.0
C108 827.3 100.8 10 0 0.0
C109 827.3 100.8 10 0 0.0
RC101 1619.8 62.3 15 6 8.8
RC102 1457.4 69.2 14 5 8.8
RC103 1258.0 80.2 13 4 8.8
RC104 1261.7 80.0 11 2 8.8
RC105 1513.7 66.7 15 6 8.8
RC106 1424.7 70.8 11 2 8.8
RC107 1207.8 83.5 12 3 8.8
Average 89.1 5.3

This table displays the comparison between the VRP-SITW and
the VRPTW solutions for the Solomon instances.

7 Conclusion

In this article we analyzed the routing of the small-package carrier companies. The routing
decisions are combined with the scheduling of self-imposed time windows. The companies set
the time windows of delivery for its customers. The so-called VRP-SITW is an extension of
the classical VRP. Firstly, by including the self-imposed time windows and secondly by adding
stochasticity into the travel times. Due to possible disruptions, a delay can occur between spe-
cific customers. The VRP-SITW is a relaxed variation of the VRPTW. In the VRPTW the
time windows are exogenous constraints imposed by the customer itself.

The VRP-SITW is an NP-hard problem and we introduced the two-stage solution approach
used by Jabali et al. (2015). In the first stage the routing and sequencing of the customers
within a route is done by using a tabu search procedure. In the second stage the scheduling
of the time windows is done by using a linear programming model that inserts buffers into the
schedules. This buffer allocation model has an assumption of only one disrupted arc per route.
To avoid large computation times, we used three different criteria in order to guide the tabu
search heuristic in the right direction.

To test our algorithm we run some experiments on instances with 31 to 100 customers. A
first result was that the criterion based on the distance and the criterion based on distance
and buffer sizes are performing relatively better than the criterion based on the distance and
marginal penalties. However, there are instances where the criterion based on the distance and
the marginal penalties is outperforming the other criteria.
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In addition to this result, we explored the influence of the penalty costs. The result is that
the value of the penalty costs is less relevant for the penalty ratio compared to an increase in
distance. When we increase the distance, the penalty ratio increases substantially. However, by
varying the value of the penalty costs, the penalty ratios remain approximately similar.

Furthermore, the effect of the initial solution of our algorithm on the obtained operational
and customer service costs is explored. Using different procedures we obtain a substantial ef-
fect of the initial solution on the obtained costs and running times. This is a limitation of our
research, because it would be ideal to get similar costs for a given instance, irrespectively of the
initial solution.

Another main aspect of this article is the comparison of the VRP-SITW distances to the VRP
distances. The results indicate that the VRP-SITW requires only a mild average increase in
distance. Another comparison is made between the VRP-SITW and the VRPTW. The results of
these two problems show substantial differences. The VRP-SITW uses significantly less vehicles
and even more important significantly less distance. This is due to the flexibility in setting time
windows in the VRP-SITW.

The VRP-SITW and its two-stage solution approach may be beneficial to the small-package
carrier companies. A first benefit is for companies using a business model without time windows.
These companies could increase its customer service level by incorporating the self-imposed time
windows. The increase in operational costs can be weighted against the increase in the customer
service level. A second possible benefit is for the companies who let decide their customers on
the time window. These companies have a high customer service level but on the other hand also
high operational cost. It could be beneficial for these companies to incorporate the VRP-SITW
model in order to decrease these operational costs. The traveled distance and number of vehi-
cles will decrease substantially and this can be weighted with the possible decrease in customer
service level. For companies who already set the time windows by itself, this article could be
beneficial as well. The influence of the penalty cost, the initial solution of the procedure and the
different disruption scenarios can be investigated and could give some insight in the strategic
decisions of the company.

Further research could make a setting where a subset of the customers has fixed or exogenous
time windows. So the company lets decide the customer whether they want to set their time
window by itself, against extra costs, or let the company decide on the time window. This gives
a combination of the VRP-SITW and VRPTW and could give a reduction in operational costs
and an increase in the customer service level. Furthermore, the research into time-dependent
travel times may be interesting. Traveling in the early morning during rush hours will take
more time than for example traveling during the night. Accounting for this phenomenon in the
routing and scheduling decisions could be beneficial for the small-package carrier companies.
Another extension can focus on adding stochasticity in the demand, like done in the Vehicle
Routing Problem with Stochastic Demands. The demand of a certain customer is announced
upon the arrival of the vehicle and this can lead to a return trip to the depot and therefore extra
costs. All these possible further research topics may be relevant for companies, depending on
its specific requirements and specifications.
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A Appendix

Algorithm 5: 2-opt* neighborhood
Input: The current solution Z and the distances between the customers
Output: The neighbors of Z using a 2-opt* exchange

1 function 2-opt* neigborhood
2 initialize an empty set of neighbors B
3 for all customers i ∈ V do
4 for the η closest customers j to i do
5 find the route of customer i and set this route to R1
6 find the route of customer j and set this route to R2
7 Set Z* = Z
8 if R1 is not equal to R2 then
9 Delete R1 and R2 from Z*

10 find index of customer i in R1
11 find index of customer j in R2
12 Make a route S1 of R1 from index 0 to the index of customer i - 1
13 Make a route S2 of R2 from index 0 to the index of customer j - 1
14 Make a route S3 of R1 from index of customer i to the end of the route
15 Make a route S4 of R2 from index of customer j to the end of the route
16 Merge S1 and S4 and add the route to Z*
17 Merge S2 and S3 and add the route to Z*
18 Add Z* to B

19 return the set B

Algorithm 6: Or-Opt neighborhood
Input: The current solution Z and the distances between the customers
Output: The neighbors of Z using a Or-Opt exchange

1 function Or-Opt neigborhood
2 initialize an empty set of neighbors B
3 for all customers i ∈ V do
4 for the η closest customers j to i do
5 find the route of customer i and set this route to R1
6 find the route of customer j and set this route to R2
7 Set Z* = Z
8 for k = 1 to 3 do
9 if k equals 1 and the exchange of nodes is feasible then

10 delete customer i from R1 and add him after customer j in R2
11 update R1 and R2 in Z*
12 if k equals 2 and the exchange of nodes is feasible then
13 delete customer i and his successor from R1 and add them after customer j in R2
14 update R1 and R2 in Z*
15 if k equals 3 and the exchange of nodes is feasible then
16 delete customer i and his two successors from R1 and add them after customer j in

R2
17 update R1 and R2 in Z*
18 if Z is not equal to Z* then
19 add Z* to B and set Z* = Z

20 return the set B
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B Appendix

Table 6: Comparison of the three move selection criteria for the Solomon instances

Instance Objective Value CPU time (s) Total
C1 C2 C3 C1 C2 C3

R101 1094.6 1167.5 1094.6 26.5 24.7 29.8 81.1
R102 1094.1 1167.4 1094.1 28.0 27.0 35.7 90.8
R103 1093.0 1166.5 1093.0 26.1 22.8 26.0 75.0
R104 1091.8 1165.6 1091.8 26.9 22.9 25.9 75.7
R105 1091.0 1165.1 1091.0 22.4 20.6 28.0 70.9
R106 1091.0 1165.1 1091.0 25.3 21.4 27.8 74.4
R107 1091.0 1165.1 1091.0 28.3 20.8 26.0 75.1
R108 1091.0 1165.1 1091.0 23.8 28.5 30.0 82.4
R109 1091.0 1165.1 1091.0 26.1 21.4 31.6 79.2
R110 1091.0 1165.1 1091.0 26.0 21.1 25.5 72.7
R111 1091.0 1165.1 1091.0 24.5 21.8 25.7 72.1
R112 1091.0 1165.1 1091.0 24.9 22.3 27.3 74.4
C101 916.9 980.3 916.9 36.7 24.5 34.9 96.1
C102 916.9 980.3 916.9 32.6 24.0 36.7 93.3
C103 916.9 980.3 916.9 31.4 22.8 38.9 93.1
C104 916.9 980.3 916.9 35.3 24.5 44.0 103.8
C105 916.9 980.3 916.9 42.3 26.5 41.1 109.8
C106 916.9 980.3 916.9 40.2 23.2 38.7 102.1
C107 916.9 980.3 916.9 34.4 22.5 43.1 100.1
C108 916.9 980.3 916.9 35.6 25.6 38.5 99.8
C109 916.9 980.3 916.9 37.4 26.8 35.0 99.2
RC101 1091.1 1226.3 1091.1 45.3 23.6 38.3 107.2
RC102 1091.1 1226.0 1128.2 41.4 23.9 39.5 104.8
RC103 1091.1 1225.6 1127.9 36.9 23.4 37.9 98.3
RC104 1091.1 1225.4 1127.7 37.6 24.0 39.6 101.2
RC105 1091.5 1225.7 1168.4 43.9 24.6 40.9 109.4
RC106 1091.1 1225.4 1091.1 36.1 26.4 42.2 104.6
RC107 1091.1 1225.4 1091.1 43.5 22.5 50.1 116.0
RC108 1091.1 1225.4 1091.1 45.4 24.2 45.1 114.6

This table represents the objective values and running times of
the Solomon instances using the C1, C2 and C3 criterion. The
initial solution is obtained by the extended nearest neighbor
heuristic.

Table 7: Comparison of VRP-SITW with optimal VRP solutions for the Augerat instances

Instance Increase in distance
P5 (%) P10 (%) Prop (%) 1.3dist (%)

32k5 107.6 107.6 107.6 109.8
33k5 104.7 104.7 104.7 104.3
33k6 106.1 106.1 106.1 111.2
34k5 125.7 125.7 125.7 101.8
36k5 113.9 115.3 113.9 108.4
37k5 137.6 137.6 137.6 114.7
37k6 108.0 108.0 108.0 113.5
38k5 120.4 120.4 120.4 107.2
39k5 107.0 107.0 107.0 106.7
39k6 111.7 111.7 111.7 111.2
44k6 138.0 138.0 138.0 104.5
45k6 107.7 107.7 107.7 110.7
45k7 104.7 104.4 103.2 104.9
46k7 107.2 107.2 107.2 106.8
48k7 115.2 115.2 115.2 113.7
53k7 107.6 107.6 107.6 109.1
54k7 103.6 103.6 103.6 103.1
55k9 107.5 107.5 107.5 111.0
60k9 102.8 102.8 102.8 102.4
61k9 105.8 105.8 105.8 105.6
62k8 105.0 105.0 105.0 104.7
63k10 104.0 104.0 104.0 106.0
63k9 105.9 105.9 106.4 105.2
64k9 103.8 103.8 103.8 103.0
65k9 103.7 103.7 103.7 105.8
69k9 105.7 105.7 105.7 108.0
80k10 107.9 107.9 107.9 107.7
Average 109.2 109.3 109.2 107.1

This table indicates the increase in distance of the
Augerat instances using the VRP-SITW compared
to the VRP.
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