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Abstract

Despite the abundance of advertisement and price promotion in marketing, consumption

choices often rely just as heavily on personal taste. We compare the conventional Multino-

mial Logit discrete choice model, with a Mixed Logit specification, as to ascertain whether

consumers behave hetero- or homogeneously. We consider both Multivariate Normal and

discrete distributions for model parameters. Model performance is measured by in-sample

information criteria, as well as out-of-sample forecasting performance. We find strong evi-

dence of preference heterogeneity in both a product marketing setting, as well as a discrete

choice survey experiment. By incorporating a Guadagni and Little (1983) loyalty variable,

we extend this result to a dynamic choice setting, finding residual preference heterogeneity,

even when brand loyalty is accounted for.



1 Introduction

Which university to attend, where to go on holiday, which health insurance to buy. Discrete

choices permeate our economic life. The workhorse model to describe such choices was given

by McFadden (1973) in the Multinomial Logit model (MNL). However, since the model is quite

restrictive in its assumptions, more flexible models have since been proposed. The Mixed Logit

Model (MIXL) allows for random coefficients, bypassing the coefficient homogeneity assumption

inherent in the MNL. Whilst attribute coefficients are often assumed to be generated through a

multivariate normal distribution, the Latent Class (LC) model assumes a discrete distribution

for the MNL coefficients. This means that whilst individuals may have somewhat heterogeneous

preferences and reactions to attributes, they all fit in some class of people that shares a set of

coefficients.

In a partial replication of Fiebig et al. (2010), we aim to compare model performance of

the MNL, LC, and MIXL in modeling household choices for crackers, as well as trail preference

among mountain bikers. By means of information criteria, we may observe which model most

efficiently matches consumer behavior in a product marketing setting. Given the different sets

of assumptions underlying each model, this then teaches us the nature of human reactions to

choice attributes; whether they are generally homogeneous or individual-specific.

We extend on Fiebig et al. (2010) by comparing MIXL and MNL performance when dynamics

are incorporated through a Guadagni and Little (1983) loyalty variable. Fiebig et al. (2010)

find significant improvements in model performance when moving from MNL to MIXL. This

improvement may partly originate in the consideration for brand preference offered by MIXL. As

alternative-specific constants are allowed to vary, choice agents are allowed individual preferences

across alternatives. However, we may consider other methods of modeling brand preference, such

as the inclusion of dynamics. If we can model brand preference through an additional covariate to

indicate purchase history, MNL may make similar improvements in model fit, without needing to

assume randomly distributed parameters. We estimate both MNL and MIXL with the addition

of a Guadagni and Little (1983) loyalty variable to ascertain whether the performance superiority

of MIXL over MNL holds up when both models account for brand preference through dynamics.

This may provide valuable insights to product marketeers seeking to model client choices based

on previous purchase behaviors.

We further extend the performance evaluations by Fiebig et al. (2010) by considering out-of-

sample forecasting performance, as well as both revealed preference as stated preference data.
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This allows us to observe whether the in-sample superior performance of MIXL over MNL in

the stated preference data studied by Fiebig et al. (2010) holds up out-of-sample and for actual

choice behaviors. We seek to thereby broaden the scope of existing knowledge on the added

value of parameter randomization to forecasting performance, dynamic choice modeling and a

product marketing setting.

We find MIXL to consistently outperform the MNL model on both in-sample information

criteria, as well as out-of-sample forecast measures. The Latent Class model outperforms MNL,

but underperforms relative to MIXL, suggesting that consumer preference heterogeneity is dis-

tributed continuously, rather than discretely. The improvement in fit from MIXL may be largely

traced back to its consideration for brand preference. The inclusion of dynamics in MNL and

MIXL brings their model performance closer together, but MIXL still outperforms MNL in this

setting. In the context of cracker purchase decisions, we find purchase history to play an eco-

nomically large role. Willingness to pay for a particular brand rises by $0.53 on average if the

brand was purchased in the period preceding the purchase decision.

We continue with a description of the data used in section 2. Section 3 gives a review of the

literature, after which Section 4 describes the data used, with section 5 reporting results and

section 6 concluding.

2 Literature Review

Given the abundance of discrete choices in economic behaviors, choice modeling has been treated

extensively in the econometric literature. In proposing the MNL model, McFadden (1973) argues

that economic choices are made according to some "common behavioral rule". Choice utilities

are modeled to additively depend on choice characteristics, with the whole population sharing

similar preferences for these characteristics.

Choice probabilities are then calculated according to Luce’s (1959) choice axiom, thereby

inferring the Independence of Irrelevant Alternatives (IIA) assumption. By calculating the prob-

abilities as exp(utilityi)/
∑

j exp(utilityj) for any choice i in choice set {1, . . . , J}, the relative

probabilities of two choices are independent of the presence or characteristics of any other choices

in the set {1, . . . , J}. A strict assumption, which has proven questionable by both empirical re-

sults and the proposition of alternative models (Currim, 1982). IIA implies that the addition of a

new choice inew to set {1, . . . , J} would have all the other choices surrender a part of their share
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of the market in proportion to previous market shares. This requires careful considerations in

the construction of the choice set {1, . . . , J} by the researcher. For example, if we were to model

transport mode choices from the set {bike, car, train}, we could not add a secondary public

transport option such as bus, as it is unlikely to receive proportionally as many customers from

previous car owners as previous train users. Similarly, if we were to remove the car option, the

IIA would expect the long distances previously traveled by car to now be undertaken as much

by bike as by train, relative to previous market proportions. Alternative models yield more

freedom in the construction of choice sets by circumventing the IIA assumption. However, the

MNL remains a popular tool for analysis in choice sets with equally similar choices, as well as

for preliminary analysis in more complicated datasets.

One such alternative model is the Mixed Logit Model (McFadden and Train, 2000). By

modeling not just a population-wide "common behavioral rule" as per McFadden (1973), but the

distribution over the individuals of behavioral rules, different actors are no longer assumed to have

identical reactions to changes in choice attributes. Given that, in a marketing setting, individuals

often exhibit a quite specific, seemingly random preference for a particular brand or product,

the population-wide mean probabilities under MNL may provide an inaccurate estimation. The

MIXL allows for a choice setting in which individuals have varying sensitivities to changes in

price or other choice attributes, as well as variable base utilities for each choice. As such, if As

individuals are allowed their own parameter vectors, the IIA assumption need no longer hold.

Using the example of choice set {bike, train, car}, if a bus is added to the choice set, MIXl will

estimate those individuals with parameters that favour public transport to have high utilities for

the bus. Those who favour private transport will see lower utilities. As such, the bus option will

disproportionally cannibalize on the market share of previous train users, in violation of the IIA.

A specific case of the MIXL model is given by the Latent Class model. Kamakura and Russell

(1989) argue that we may segment the individuals in a dataset, drawing their brand preferences

and attribute sensitivities from a discrete distribution. This allows for choice probabilities to be

based on both observable characteristics and unobservable ex-ante preference. In a study of retail

scanner data, they find worthwhile gains in model likelihood to be made from estimating segment-

specific parameters, with segments ordered by the estimated loyalty of the household. Whilst

each segments comes at the cost of having to estimate another segment-specific parameter vector,

the gains in model performance are such that the AIC is found to be optimal at 6 clusters. This

shows significant heterogeneity among consumers in a supermarket shopping setting, as studied
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in this paper also. If this heterogeneity is clustered across different discrete segments, the Latent

Class model may deliver greater performance than the MIXL model with normally distributed

parameters. If there are distinct disjoint peaks in the distribution of parameters, the bell-curved

normal distribution may provide a poor fit.

In a study of survey data from New Zealand car drivers, Greene and Hensher (2003) compare

the performance of Latent Class and Mixed Logit model specifications, in estimating the effects

of certain road attributes on road choice. They find model performance to be reasonably on par

with each other, arguing that model choice should largely be based on whether the researchers

wish to avoid distributional assumptions as in the LC model, or seeks flexibility in modeling the

unobserved heterogeneity, provided in the choice of distribution in the MIXL model.

Given the availability of these tools for modeling consumer heterogeneity, we may wonder

whether its use is warranted based on actual consumer behaviors. Specifically, whether consumers

react to choice attributes homogeneously or heterogeneously. Lim et al. (2005) study household-

level scanner data from a supermarket to determine whether reactions to product attributes differ

among consumers. They find significant segmentation among consumers. Brand-loyal consumers

act differently from less predictable consumers, and a distinction was found between those who

consume great quantities of a product and those who don’t. Market segmentation significantly

improved forecast performance of brand choices for two out of four products studied. Whilst

this result presents some evidence of the value of considering heterogeneous preferences, the

authors consider a discrete distribution into two classes, without performing a comparison with

continuously distributed parameter models. Better fitting models could perhaps be achieved by

allowing more taste variation, as human behavior may not fall only into two categories.

Fiebig et al. (2010) provide another model comparison using stated preference data. The

authors compare the MNL and MIXL model with the Scaled Multinomial Logit model (S-MNL),

which assumes homogeneity in the vector of coefficients, but heterogeneity in the scale of this

vector. They find great improvements in model performance, as measured by information criteria,

through allowing coefficient heterogeneity. However, the authors argue that this result is more

symptomatic of scale heterogeneity rather than heterogeneity in reactions to attributes. Whilst

individuals do behave differently, a large part of this difference comes from the extremity of their

reactions, not the nature of their reactions themselves. This lends some credibility once more to

McFadden’s assumption of a "common behavioral rule". If people behave as specified by S-MNL,

they exhibit a common reaction to variations in attributes, but do so with different scales to their
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reaction.

We aim to elaborate on the current literature by extending the MNL model with a Guadagni

and Little (1983) loyalty variable, giving this basic specification some consideration for dynamics.

Modeling scanner supermarket data for coffee purchases, Guadagni and Little (1983) present an

MNL specification with a parametric loyalty variable. They find significant loyalty effects for

both brand and size of serving. Given the similarity of the data with the scanner data studied in

this paper, we expect the addition of a loyalty variable to improve the performance of the basic

MNL for this dataset also.

Fiebig et al. (2010) report a large improvement from estimating MIXL over MNL on all

10 datasets studied. However, we may wonder whether this is rooted in individual variation

in attribute coefficients, or variation in the Alternative Specific Constants (ASCs). Out of 10

datasets studied by Fiebig et al., the 4 datasets with the smallest percentage improvement in

log-likelihood from going from an MNL to a Generalized MNL (which nests MIXL), were those

without any ASCs. By accounting for taste within MNL, by constructing a loyalty variable, we

may already capture a large part of the performance improvement presented by MIXL.

The resulting MNL model is then compared with both the MIXL model, as in Fiebig et al.

(2010), as well as the latent class model. This allows us to observe whether the superiority of the

MIXL model’s performance holds when the MNL includes dynamics, as well as when compared

to discrete consumer heterogeneity through the Latent Class model.

3 Data

To compare the various choice models, we employ a panel dataset of household shopping behavior,

as previously used by Jain et al. (1994). The data observes 136 households across 14 to 77 store

visits per household. Each observation has the household purchasing crackers, choosing one of

four possible brands. Table 1 reports descriptive statistics for brand choice and brand attributes

across all visits. We see that Nabisco is by far the most popular brand with a market share of

54%, with the Private brand capturing 31% of the market, leaving 7% each for the Sunshine

and Kleebler brands. On average, the private brand is the cheapest, with Kleebler reporting the

highest mean price. Besides being frequently chosen, Nabisco is also most likely to be engaged

in a feature promotion, as well as most likely to be in a special store display. Given the general

homogeneity of the choice options, as well as the presence of some explanatory variables to
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motivate brand choice, this dataset lends itself well to the discrete choice models we aim to test.

Table 1: Descriptive Statistics

Min Max Mean St.Dev Min Max Mean St.Dev

Sunshine Kleebler
Chosen 0.00 1.00 0.07 0.26 Chosen 0.00 1.00 0.07 0.25
Display 0.00 1.00 0.13 0.34 Display 0.00 1.00 0.11 0.31
Feature 0.00 1.00 0.04 0.19 Feature 0.00 1.00 0.04 0.20
Price 49.00 129.00 95.70 13.29 Price 88.00 139.00 112.59 10.64

Nabisco Private
Chosen 0.00 1.00 0.54 0.50 Chosen 0.00 1.00 0.31 0.46
Display 0.00 1.00 0.34 0.47 Display 0.00 1.00 0.10 0.30
Feature 0.00 1.00 0.09 0.28 Feature 0.00 1.00 0.05 0.21
Price 0.00 169.00 107.92 14.48 Price 38.00 115.00 68.07 12.41

Table 1 reports the minimal and maximal values for both choice variables and brand attributes,
as well as the mean and standard deviation. Prices are given in dollarcents.

Table 12 reports descriptive statistics for the second dataset used. As previously studied,

and kindly supplied by Morey et al. (2002), the dataset reports the result of a discrete choice

experiment among mountain bikers. Responses were recorded at a 1995 cycling trade show. Re-

spondents were asked to participate in the survey, conditional on identifying as a mountainbiker.

Given the choice between two mountain bike trails with five differing attributes, the experiment

recorded choices between 5 randomized pairs for 289 mountain bikers. 269 mountain bikers re-

ported a choice for each pair, the remaining 20 responded to 3 to 4 pairs, likely from suffering

some interruption during the survey procedure. As all other information about these cyclist is

correctly recorded, we see no reason to invalidate the remaining responses by these cyclists.

Other variables included are age and gender (reported separately in appendix A), as well

as cycling experience metrics, bike characteristics and household characteristics. The average

cyclist surveyed is 30 years of age and has 2 years of experience with mountain biking. Whilst

survey data may not directly translate to actual behaviors, the experimental setting allows for

extensive attribute variation to elicit consumer reactions.
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Table 2: Descriptive Statistics Mountain Biking Data

Variable Min Max Mean St.Dev N

Cyclist ID 1.0 289.0 144.9 83.5 1420
t 1.0 5.0 3.0 1.4 1420
Chose trail A 0.0 1.0 0.5 0.5 1420

Mileage trail A 7.0 21.0 13.5 5.7 1420
Vertical Climbing trail A 400.0 2200.0 1154.2 685.3 1420
Peaks trail A 1.0 4.0 1.7 1.0 1420
Single Track Miles in A 0.0 14.0 5.1 5.4 1420
Hikers/Equestrians on A 0.0 1.0 0.2 0.4 1420
Fee for trail A 1.0 8.0 3.0 2.2 1420

Mileage trail B 7.0 21.0 15.2 5.2 1420
Vertical Climbing trail B 400.0 2200.0 1363.7 673.5 1420
Peaks trail B 1.0 4.0 2.0 1.2 1420
Single Track Miles in B 0.0 21.0 9.6 6.7 1420
Hikers/Equestrians on B 0.0 1.0 0.8 0.4 1420
Fee for trail B 1.0 8.0 4.8 2.7 1420

4 Methodology

4.1 Multinomial Logit

The basic multinomial logit models the choice yi,t of a choice actor i at time t. The choice set

{1, . . . , J} contains all available choice alternatives j. MNL assumes there to be a population-

wide parameter vector β that determines the utility Ui,j,t of a particular choice, conditional on

choice characteristics Xj . For individual i choosing choice j at time t, Ui,j,t = αjx
′
i,j,tβ + εi,j,t,

where αj gives the intercept. αj may be interpreted as the base utility assigned to choice j before

choice characteristics xi,j,t are accounted for. By Luce’s (1959) choice axiom, this yields choice

probabilities as in (1):

P (yi,t = j|Xi,t) =
exp(αj + x′i,j,tβ)∑J
g=1 exp(αj + x′i,g,tβ)

; j = 1, ..., J ; i = 1, ..., N ; t = 1, ..., T. (1)

We may deduce the inherent IIA assumption from the log-odds ratios of two competing alterna-

tives j and l, log(P (yi,t = j|Xi,t))/log(P (yi,t = l|Xi,t)) = αj − αl + (x′i,j,t − x′i,l,t)β. The relative

probability of choosing one alternative j to another option l, is dependent only on the attributes

and intercepts of those two parameters. Therefore, if we add or remove other alternatives to the

choice set {1, . . . , J}, the relative probabilities remain constant, regardless of how similar the

additional alternatives are to either j or l.

For a particular estimate of the parameter vector, β̂, this leads to a likelihood function defined
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as

L(β̂|y, x) =
N∏
i=1

T∏
t=1

J∏
j=1

exp(x′i,j,tβ̂)Iyi,t=j∑J
g=1 exp(x

′
i,g,tβ̂)

, (2)

where Iyi,t=j is an indicator function, taking the value of 1 on the subscripted condition, and 0

otherwise. Using Maximum Likelihood Estimation (MLE), we seek to find the parameter vector

estimate which maximizes this likelihood. For computational stability, we do so by maximizing

the log-likelihood function.

When alternative-specific constants (ASC) are included, one of these is fixed to 0 to identify

the model. Any deviation in individual choices from the probabilities conditional on Xi,j,t are

part of the error term εi,j,t. Heterogeneity in preferences or attitudes to choice attributes are

also swallowed by this error term. This makes the MNL potentially less suited for panel data in

which individuals may show certain choice preferences or individual-specific reactions to attribute

changes. In the presence of unobserved heterogeneity, the MNL does not capture all the available

information in the data, assuming all heterogeneity to be unobservable.

4.1.1 Loyalty

We may extend the MNL estimation slightly to have some consideration for dynamics, by in-

cluding a loyalty variable as introduced by Guadagni and Little (1983). They propose a loyalty

variable bi,j,t for choice j at time for individual i, such that

bi,j,t = φbi,j,t−1 + (1− φ)Iyi,t−1=j , (3)

where I an indicator function, yi,t gives the index of the choice made at time t by individual i,

and φ ∈ [0, 1]. φ is estimated as a model parameter, along with a coefficient βb to model utility

dependency on the loyalty variable. Whilst the inclusion of Iyt−1=j as a regressor would also

allow for dynamics in the MNL model, (3) gives a more forgiving approach to loyalty behaviors1,

that nests the option of simply including a lagged indicator function.

Figure 1 illustrates the behavior of the loyalty variable for two levels of φ, taking household

number 78 of the supermarket scanner data as an example. When an individual deviates from

his favourite brand, the relevant loyalty variable decays by the factor φ. For a high φ, this means
1Momentary deviations from an otherwise loyal customer yield a deterioration in the loyalty variable bi,j,t by a

factor of φ, where φ ∈ [0, 1]. Using an indicator function Iyt−1=j , this factor would always be 0. Ceteris paribus,
this means that someone who has purchased brand j all their life but deviated to brand j∗ would have an equal
probability in the next period of purchasing brand j as someone who has never purchased brand j before. bi,j,t
with φ > 0 is more forgiving in these deviations, letting loyalty decay to 0 only after habitual neglect of brand j.
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(a) Brand loyalty using φ = 0.2 (b) Brand loyalty using φ = 0.8

Figure 1: Household 78’s brand loyalty variables over time

that individuals generally stick to one brand with only momentary deviations, as their loyalty

hardly deteriorates from experimentalism. A low φ indicates rapid deterioration of loyalty, with

strong switching behaviors. For φ = 0, bi,j,t reduces to Iyt−1=j .

bi,j,1 is initialized at t = 1 at the value of φ for the choice j which was made at that time,

and φ/(J − 1), for all other brands. The inclusion of bi,j,t yields J total additional variables,

requiring the estimation of 2 additional parameters, φ and βloyalty. Choice probabilities are now

computed as

P (yi,t = j|Xi,t) =
exp(αj + x′i,j,tβ + bi,j,tβloyalty)∑J
g=1 exp(αj + x′i,g,tβ + bi,g,tβloyalty)

; j = 1, ..., J ; i = 1, ..., N ; t = 1, ..., T,

(4)

for two competing alternative j and l, this leads to the following log-odds ratios:

log(P (yi,t = j|Xi,t))/log(P (yi,t = l|Xi,t)) = αj −αl + (x′i,j,t−x′i,l,t)β+ (bi,j,t− bi,g,t)βloyalty. (5)

As (bi,j,t − bi,g,t) may be affected by the addition or removal of other alternatives to choice set

{1, . . . , J}, the IIA assumption need no longer hold. For example, if a close substitute to j, j∗ is

added to the choice set, bi,j,t is liable to change, as individuals may spread their choices equally

over the two close substitutes. bi,l,t will be unaffected if j∗ provides no substitute to l, causing a

shift in the log-odds ratio.

Under MIXL, brand preference is also accounted for, through the estimation of randomly

distributed intercepts αj for each brand. This requires the estimation of J additional parameters

σj for each brand, assuming a multivariate normal distribution of αj with diagonal Σ (σ2j denoting
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the elements of the diagonal). For non-diagonal Σ, allowing for correlated parameter values, this

requires 1
2J(J + 1) additional parameters. As such, using bi,j,1 to model choice preferences is

sure to require less model parameters.

4.2 Mixed Multinomial Logit

To take into account preference heterogeneity, we may want to allow for individual-specific pa-

rameters. In the MIXL model (McFadden and Train, 2000), utility is given by

Ui,j,t = (β + γi)xi,j,t + εi,j,t; j = 1, ..., J ; i = 1, ..., I; t = 1, ..., T, (6)

where β gives the population-wide mean of the parameter vector, and γi the individual-specific

random deviation from that mean. γi may be specified to be from any distribution, with the

multivariate normal being commonplace. In our estimation, we assume γi to be multivariate

normal. We estimate the model both with and without an independence restriction on the

individual elements of γi. Under independence, this implies a diagonal covariance matrix Σ,

without independence Σ is unrestricted. As a shorthand, MIXL with diagonal Σ will be referred

to as MIXL-I, with the unrestricted model referred to as MIXL-II.

The exact choice probabilities are given by their expected value over the distribution of the

parameters, such that the probability of a specific individual i exhibiting a series of choices

yi,1, , ..., yi,T is given by

P (yi|Xi,t, β,Σ) =

∫
(

T∏
t=1

∏J
j=1 exp((β + γi)xi,j,t)

Iyi,t=1∑J
g=1 exp((β + γi)xi,g,t)

)f(γi|Σ)dγi, (7)

where γi ∼ N(0,Σ), and β gives the population-wide mean parameter vector. Seeing as we

integrate over γi, the ratio of two choice probabilities is a function of all the data. As such, the

IIA assumption need not hold under MIXL Train (2009). Lacking a closed form of this integral,

we approximate its value through Monte Carlo integration. Taking a set of D draws from the

chosen distribution for γi, we may approximate the probabilities for each individual by taking

their average probability over D draws of γi, such that

P̂ (yi|Xi,t, β,Σ) =
1

D

D∑
d=1

(

T∏
t=1

∏J
j=1 exp((β + γ

(d)
i )xi,j,t)

Iyi,t=1∑J
g=1 exp((β + γ

(d)
i )xi,g,t)

), (8)

10



where γ(d)i is drawn from N(0,Σ). These simulated choice probabilities are then used to compute

the likelihood function, such that for an estimate β̂, Σ̂,

L(β̂, Σ̂|y,X) =

N∏
i=1

P (yi|Xi,t, β̂, Σ̂). (9)

Given the inherent variability in the finite amount of random draws, random draws are reused

with the proper transformation to allow the BFGS algorithm to find consistent descent directions.

This is done by drawing a k-length vector from the standard normal distribution and multiplying

it by the Cholesky decomposition L of Σ, where LL′ = Σ, L a lower-triangular matrix, and k the

number of parameters. To force the decomposability of Σ, we directly estimate the elements of L,

which are transformed post-estimation to the resulting covariance matrix, as well as a correlation

matrix.

To obtain standard errors, we use a log-likelihood function which takes the elements of the

covariance matrix Σ itself as inputs, rather than the elements of L. A finite-difference approxima-

tion of the hessian matrix is attempted using the covariance values at the estimated Likelihood

maximum. The estimated standard errors are then given by the diagonal elements of the inverse

of the estimated hessian. However, given the instability of the covariance matrix, even small

deviations from the optimum may lead to the hessian becoming uninvertible. As a result of

this, standard errors for the elements of the covariance matrix are obtained for the MIXL-II

model without loyalty in the cracker dataset, but not for the model including loyalty, nor for the

mountainbike dataset. Although this hampers conclusive interpretation of the parameter values,

a performance comparison of the various models should still be equally possible.

Post-estimation, we may derive individual specific expected parameter valuesE[γi|yi, Xi,t, β,Σ].

These may be used for interpretation, as well as for out-of-sample forecasting. Using Bayes rule,

it can be shown that the conditional expectation

E[γi|yi, Xi, β,Σ] =

∫
γif(yi|Xi, γi)dγi∫
f(yi|Xi, γi)dγi

. (10)

We estimate the integrals through Monte Carlo integration, taking 500 draws γ(d)i and averaging

the terms γif(yi|Xi, γi) and f(yi|Xi, γi) over these draws to obtain estimates of the integrals.

The Mixed Logit model, as compared to the standard MNL, allows for taste variation, relaxes

the Independence of Irrelevant Alternatives assumption (IIA), and allows for temporal correlation
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among choices. In a setting where agents have different preferred choices and personal sensitivities

to attributes, this formulation may prove more realistic. However, it comes at a cost of an

increased amount of required parameters. Moreover, for a small number of draws in the simulated

likelihood function, the model may converge to a fit of the random draws, rather than the actual

consumer behaviors.

4.3 Latent Class Model

A specific case of this MIXL model is the Latent Class model (LCM) (see Kamakura and Russell

(1989)), which assumes a discrete distribution for the parameter variation γi. Rather than

assuming parameters to be completely individual-specific, the LCM assumes that preferences

can be categorized into a finite number of groups. Specifically, that each individual belongs to

some class c, with every class having a specific parameter vector β + γc , with β the population

mean parameter vector. The probability of person i exhibiting a series of choice yi,1, ..., yi,T is

given by

P (yi|Xi,t, β,Σ) =
C∑
c=1

di,c

∏J
j=1 exp((β + γc)xi,j,t)

Iyi,t=1∑J
g=1 exp((β + γc)xi,g,t)

, (11)

where di,c = 1 if individual i belongs to class c, and 0 otherwise. The relevant log-likelihood

function to these probabilities is given by log(L) =
∑N

i log(
∑C

c=1 di,c(
∏T

t=1 P (yi|c,Xi,t))) This is

a missing data model, as di,c is unknown for each i and each c. We therefore optimize the expected

log-likelihood based on estimated probabilities p̂c with which an individual may fall under a class

c. We employ the expectation-maximization algorithm to estimate class probabilities and class-

specific parameters γc. Starting with an initial guess for pc of 1/C, and randomly generated 2,

the first step of the algorithm estimates posterior class probabilities, conditional on the current

parameters γc, where

π̂i,c =
pcP (yi|c,Xi,t)∑C
c=1 pcP (yi|c,Xi,t)

. (12)

Using these estimated personal probabilities πi,c, the second step maximizes through MLE a

weighted log-likelihood for each class, such that for each class we have γ̂c that maximizes∑N
i=1

∑C
c=1 πi,c

∑T
t=1 log(P (yi,t|Xi,t, γc)). p̂c is also set to its maximum likelihood estimate

1
N

∑N
i=1 πi,c. The algorithm iterates over expectation and maximization until the total log likeli-

hood converges to a maximum. Conditional on being in a certain class, individuals are assumed
2Initial guesses for yc are generated through a multivariate normal with mean and Σ as estimated through

MIXL with diagonal Σ.
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to behave in accordance with the IIA assumption. However, as the choice set does influence the

estimated probabilities of belonging to a certain class, the IIA does not hold across classes or

with respect to ex-ante probabilities. To take the choice set train, car, bike as an example. If a

discrete class exists containing those individuals who need to travel great distances, the removal

of the ’car’ option from the choice set will make this class exclusively demand the train option,

without violating the IIA within the cluster. Previous car users may then shift to the train

option in disproportion to previous choice probabilities.

The LCM assumes clustering in discrete choice behaviors. In a marketing context, this

might mean that we have distinct groups that are price sensitive, some who are sensitive to

marketing, and others who are unconditionally loyal to a particular brand, with each of these

groups sharing a group-specific deviation from the mean parameter vector that describes these

behaviors. We estimate the Latent Class model for 2 classes. We incorporate the Guadagni

and Little (1983) loyalty variable in Xi,t. This allows us to observe not only whether consumers

behave heterogeneously after accounting for brand loyalty, but also whether they do so in a

continuously distributed manner (which would favor MIXL), or in discrete behavioral groups

(which would favor LC).

4.4 Model Comparison

Model parameters are estimated through Simulated Maximum Likelihood Estimation (SMLE)

for the MIXL model. We estimate MIXL both with and without the independence assumption

on the distribution of the parameter vector βi. MNL is estimated through Maximum Likelihood.

For the household scanner data, we also estimate MNL, LC and MIXL with the Guadagni and

Little (1983) loyalty variable described in 4.1.1, as to compare model performance in a setting

which includes dynamics. As loyalty considerations are irrelevant to the survey context of the

mountainbike dataset, these models are reserved for the first dataset. For all maximum likelihood

estimations, the stats4 R package is used to optimize the likelihood functions by means of the

BFGS algorithm.

For results of the full sample, the resulting models are then compared by means of the Akaike

(AIC = 2k − 2log(L̂), with k the number of parameters and L̂ the estimated log-likelihood),

Bayes (BIC = log(n)k − 2log(L̂), with n the number of observations) and consistent Akaike

(CAIC = (log(n) + 1)k − 2log(L̂)) criteria to ascertain which model best fits actual consumer

behaviors. Higher values indicate a poorer balance between model fit, represented in the log-
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likelihood term, as well as parsimony, represented in the τk term, with τ some cost coefficient

for k.

The three measures vary in their punishment of overfitting and therefore may yield different

results. AIC is strictly less punishing than the others of high k, with CAIC the most strict.

Models which are preferred by AIC are therefore likely to fit very well, whilst models which are

preferred by CAIC are likely to fit the data very efficiently for the amount of parameters used.

In a performance evaluation of the three measures at identifying the correct parametrization of

simulated data of choice heterogeneity, Fiebig et al. (2010) find BIC and CAIC to yield the most

accurate results.

We also consider out-of-sample performance. Splitting the cracker purchase dataset after

the 12th choice occasion for each household, we estimate the models on the first 12 supermarket

visits. The remaining household visits are then forecasted using each model as to ascertain out-of-

sample performance. Choice probabilities are evaluated as described in the previous subsections,

using the conditional expectations for parameter values. For MNL, this simply means that the

estimated model parameters are used, whilst for MIXL we may use individual model parameters

βi, as calculated in (9). For the LC model, we use posterior class probabilities as in (11) to

construct weighed probabilities P (yi,t = j) =
∑C

c=1 πi,cP (yi,t = j|c). For the mountainbike

survey data, the first four responses of each cyclist are used to estimate the model, with the last

response used to evaluate forecast performance.

Forecast performance is evaluated by the out-of-sample hit-rate (i.e. the fraction of correct

predictions), as well as the F-1 statistic. Computed as F1 =
∑J

j=1 pjj−p2.j
1−

∑J
j=1 p

2
.j

(with pi,j the fraction

of observations where j was predicted and i realized), Veall and Zimmermann (1992) find it

the most reliable statistic of evaluating prediction-realization tables, as determined through a

simulation study comparing various performance measures. The F-1 statistic rewards correct

predictions through the pjj term, whilst quadratically punishing the number of predictions p.j

of each alternative j. As such, for equal hit rates, models which spread their predictions across

the choice set are favored over those which predict only one choice alternative. The statistic

ranges from -1 to 1. Models with actual predictive power should expect a positive value Veall

and Zimmermann (1992), with perfect prediction models attaining an F-1 value of 1.
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Table 3: MNL and MIXL-I results mountainbike data

MNL MIXL-I MIXL-II

Number of Parameters 6 12 27
AIC 1915 1809 1721
BIC 1946 1746 1579
Consistent AIC 1853 1734 1552
Log-Likelihood -951 -917 -888

Variable Coefficient SE/CI Coefficient SE/CI Coefficient SE/CI

Trail Mileage 0.003 0.013 0.013 0.021 0.005 0.031
Feet of Climbing 0.050 0.077 0.058 0.135 0.202 0.193
Number of Peaks 0.145*** 0.040 0.234*** 0.069 0.351*** 0.091
Miles Singletrack 0.020 0.013 0.034* 0.021 0.052** 0.023
Shared track -0.563*** 0.083 -0.896*** 0.144 -1.159*** 0.173
Trail fee -0.039 0.031 -0.071 0.049 -0.113** 0.054
σ1 0.123 [0.06, 0.23] 0.023 -
σ2 0.987 [0.63, 1.54] 0.060 -
σ3 0.408 [0.24, 0.71] 0.786 -
σ4 0.080 [0.04, 0.16] 0.961 -
σ5 0.519 [0.20, 1.37] 1.863 -
σ6 0.260 [0.17, 0.39] 0.856 -
Table 3 reports parameter estimates for MNL and MIXL-I models. AIC, BIC and CAIC values are reported, as
well as the log-likelihood for each estimation. σ parameters are estimated in a transformed manner to map their
estimated values to their proper ranges of [0, Inf). For MIXL-I we report a 95% confidence interval as inferred
from the standard errors of the untransformed parameters. Significance is denoted by *** (1%), ** (5%) and *
(10%), respectively.

5 Results

5.1 Full sample, Mountainbike survey

We estimate model parameters for basic MNL as well as MIXL. Table 3 reports the results.

Parameter estimates are in accordance with expected trail preferences for cyclists. Trail length,

elevation and number of peaks, as well as miles of singletrack trail all contribute to trail utility,

increasing choice probability of the trail with the highest value for these features. Conversely,

trail fees and the presence of hikers or equestrians negatively affect choice probabilities. Of these

variables, only peak numbers and the presence of other trail users significantly affect the choice

probability. As we move from MNL to MIXL-I, we see the singletrack mileage become significant

at the 10% level. Under MIXL-II both singletrack mileage and the trail fee have a significant

effect on choice probabilities.

Comparing Information Criteria across the two models, MIXL-I outperforms MNL on every
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Table 4: Out-of-sample performance mountainbike data

Hit-rate F-1 fA fB

MNL 55% -0.283 77% 23%
MIXL 56% 0.097 58% 42%
MIXL-II 55% 0.077 58% 42%

Table 4 reports out-of-sample performance measures for MNL, MIXL-I and MIXL-II models in
the mountainbike survey dataset. The hit-rate, as well as an F-1 statistic of out of sample
performance are reported. The rightmost columns report for each model the frequency with

which each option j is predicted, fj

account. Reactions to choice attributes differ enough across cyclists to yield an improved model

fit with random parameters. This is in line with results presented in Fiebig et al. (2010), who

also find stated preference data to benefit in model fit from MIXL over MNL.

5.2 Out of Sample, Mountainbike Data

Table 4 summarizes the out-of-sample performance of MNL, MIXL-I and MIXL-II in predicting

trail choice among mountainbikers. We see that the choices are difficult to predict, as each model

has a hit-rate of around 55%. A random prediction (drawing predictions by predicting choice i

with probability pi) would yield a hit rate of 50.5%. Although Mixed Logit does not improve

on the hit-rate generated through Multinomial Logit, an improvement may be seen in the F-1

statistic. The MNL has a negative F-1 value, realizing its hit rate the ’easy way’, by predicting

the most common choice 77% of the time. MIXL-I and MIXL-II have small, but positive F-1

statistic, as they realize a similar hit-rate, but do so through more daring predictions, spreading

the forecasts more evenly over the two options.

5.3 Full sample, Household Scanner data

We estimate model parameters for MNL and MNL with loyalty, as well as MIXL-I (with indepen-

dently distributed parameters) with and without loyalty. Table 5 reports the results. Reviewing

the parameter estimates, the models largely behave as we would expect from the data. Fixing

the ASC for Nabisco to 0, the ASCs are estimated as significantly negative for all other brands,

representing their relative unpopularity. Price significantly detriments choice probability for all

models estimated, with brand features and store displays improving choice probability.

Comparing MIXL-I without loyalty to basic MNL, we find a clear recurrence of the result

presented in Fiebig et al. (2010). MIXL-I outperforms MNL on accounts of all information crite-
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Table 5: Full Sample parameter estimates cracker choice

MNL MIXL-I MNL with Loyalty MIXL-I with Loyalty

k 7 14 9 17
AIC 6724.023 3421.130 3354.154 3238.881
BIC 6760.618 3500.420 3402.948 3336.469
CAIC 6775.718 3522.520 3420.047 3361.568
log(L) -3356.012 -1697.565 -1669.077 -1603.441

Variable Coefficient SE/CI Coefficient SE/CI Coefficient SE/CI Coefficient SE/CI

αKleebler -1.941*** 0.072 -3.488*** 0.252 -0.433*** 0.099 -0.869*** 0.164
αSunshine -2.459*** 0.080 -3.543*** 0.221 -1.101*** 0.108 -1.474*** 0.137
αPrivate -1.814*** 0.101 -4.784*** 0.384 -1.589*** 0.143 -2.523*** 0.264
βPrice -0.032*** 0.002 -0.051*** 0.006 -0.039*** 0.003 -0.043*** 0.005
βFeature 0.143** 0.061 0.426*** 0.121 0.409*** 0.091 0.315** 0.131
βDisplay 0.321*** 0.100 0.552*** 0.178 0.634*** 0.146 0.676*** 0.188
φ 0.784 [0.76 , 0.8] 0.830 [0.78 , 0.86]
βLoyalty 3.693*** 0.087 3.367*** 0.205
σ1 2.269 [1.96 , 2.63] 0.000 -
σ2 2.195 [1.78 , 2.71] 0.394 [0.16 , 0.96]
σ3 0.912 [0.53 , 1.56] 0.000 -
σ4 3.893 [3.38 , 4.48] 1.366 [0.99 , 1.89]
σ5 0.049 [0.04 , 0.06] 0.030 [0.02 , 0.04]
σ6 0.614 [0.34 , 1.11] 0.721 [0.47 , 1.11]
σ7 0.381 [0.03 , 4.36] 0.763 [0.38 , 1.55]
σ8 1.588 [1.12 , 2.25]
Table 5 reports parameter estimates for MNL and MIXL-I models, both with and without brand loyalty as a
covariate. AIC, BIC and CAIC values are reported, as well as the log-likelihood for each estimation. σ and φ are
estimated in a transformed manner to map their estimated values to their proper ranges of [0, Inf) and [0, 1]

respectively. For those transformed variables, 95% confidence intervals are extrapolated from their untransformed
estimates, rather than standard errors. Significance is denoted by *** (1%), ** (5%) and * (10%), respectively.

ria, by realising a two-fold improvement in log-likelihood at the cost of 7 additional parameters.

Behaviorally, this indicates that individuals exhibit distinct reactions to marketing variables, as

well as strong brand loyalty behaviors. The strongly variable ASCs indicate that there is signif-

icant unobserved heterogeneity in baseline product utility across customers. Intuitively this is

quite sensible, as some customers may derive utility just from being used to a particular brand

of cracker, or from the ease of not deliberating brand choice on each supermarket visit.

Comparing the MNL and MIXL-I models with the Guadagni and Little (1983) loyalty vari-

able included, we see similar results. In the MNL model, φ is estimated at 0.784. Revisiting

the examples presented in Figure 1, we may recall that this corresponds to a loyalty variable

that takes time to build up to a high value over the purchase history, but decreases little from

momentary deviations in brand choice. This corresponds to strong loyalty behaviors and a lower

switching propensity.

An intermediate purchase at time t of Sunshine after a long history of purchasing Nabisco
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only decreases the Nabisco Loyalty variable by 22%. For the choice made at time t + 1, this

means that greater utility from purchase history is assigned to the brand chosen abundantly in

the period [1, t − 1], than to the previously chosen brand in period t. This is also seen when

we estimate an MNL model using lagged indicator variables as regressors (the specific case of

φ = 0), which is estimated with a log-likelihood of 2254 and an AIC of 4492. Large gains in

model fit may be made from including long-term purchase history over recent purchase history.

βloyalty is estimated as 3.693 and is strongly significant with a standard error of 0.087.

Table 6: Mixed Logit parameter estimates with non-diagonal Σ

log(L): -1658 BIC: 3439 AIC: 3386 CAIC: 3474

Parameter Coefficient SE ρi1 ρi2 ρi3 ρi4 ρi5 ρi6 ρi7

αnabisco - - 1.00 0.39 0.84 0.43 -0.22 0.41 0.66
αkleebler -3.456*** 0.297 1.00 0.39 0.13 -0.29 0.28 -0.10
αsunshine -3.470*** 0.235 1.00 0.54 0.28 -0.11 0.51
αprivate -4.562*** 0.358 1.00 0.49 -0.30 0.47
βprice -0.045*** 0.006 1.00 -0.97 -0.02
βfeature 0.337** 0.135 1.00 0.20
βdisplay 0.621*** 0.183 1.00
Table 6 reports estimation results for Mixed Logit with unrestricted Σ. Information criteria and log-likelihood are
reported, as well as parameter estimates and standard errors. Concomitantly, a correlation matrix is supplied,
where ρij reports the correlation between parameters i and j, in the order of appearance in the left-most column.
Significance is denoted by *** (1%), ** (5%) and * (10%), respectively.

Comparing MNL and MIXL-I with the loyalty variables included, we find MIXL-I outper-

forming MNL on all accounts. AIC, BIC and CAIC all favor MIXL-I, even in a setting which

already explicitly models dynamics. This suggests that the improved fit is not simply a results

of modeling unobserved brand preferences through heterogeneous ASCS, but that there is also

a distinct difference among consumers in reactions to price, promotions and store displays.

We may note, however, that the improvement when moving from fixed to random parameters

is less dramatic than in the setting without the loyalty variables. Whilst we saw a change of

49.5% previously, we now see a decrease of 4.0% in log likelihood. As the benefit of mixed logit

is partially swallowed by an explicit consideration for loyalty, the differences between the two

models become smaller.

We see this also in σ1, σ2, σ3, σ4, which denote the standard deviation of the ASC for Nabisco,

Kleebler, Sunshine and Private, respectively. Initially estimated to be significant and quite large

relative to their parameters, they are estimated at 0 for two of the brands in MIXL-I with loyalty,

18



Table 7: Mixed Logit parameter estimates with non-diagonal Σ and loyalty

LogL: -1553 BIC: 3264 AIC: 3195 CAIC: 3309 φ: 0.86

Parameter Coefficient SE ρi1 ρi2 ρi3 ρi4 ρi5 ρi6 ρi7 ρi8

αnabisco - - 1.00 0.46 0.98 0.47 -0.12 0.73 0.30 -0.02
αkleebler -1.318*** 0.224 1.00 0.35 0.64 -0.45 0.90 0.37 -0.21
αsunshine -2.047*** 0.250 1.00 0.49 -0.09 0.68 0.32 -0.06
αprivate -2.741*** 0.369 1.00 0.14 0.63 0.49 -0.47
βprice -0.049*** 0.008 1.00 -0.56 -0.06 -0.13
βfeature 0.090 0.171 1.00 0.40 -0.16
βdisplay 0.464* 0.267 1.00 -0.21
βloyalty 3.611*** 0.203 1.00
Table 7 reports estimation results for Mixed Logit with unrestricted Σ and the inclusion of a loyalty variable.
Information criteria and log-likelihood are reported, as well as parameter estimates and standard errors. Concomi-
tantly, a correlation matrix is supplied, where ρij reports the correlation between parameters i and j, in the order
of appearance in the left-most column. Significance is denoted by *** (1%), ** (5%) and * (10%), respectively.

and become much less pronounced for the other two. As we account for brand preference through

purchase history, ASC variability seems to lose its added value.

σ8, which denotes the standard deviation of the βloyalty parameter, shows a 95% confidence

interval of [1.12, 2.25]. This indicates that loyalty behaviors are also heterogeneous among

households, meaning some consumers derive large amounts of utility from purchasing the same

product they did previously, whilst others may be more fickle and shop based on marketing

variables, rather than purchase history.

Table 6 reports estimation results for MIXL-II. The appendix reports the full covariance

matrix. We see another performance improvement, relative to MIXL-I. Estimating parameter

covariances on top of parameter heterogeneity yields a lower AIC, BIC and CAIC. Despite

requiring the estimation of 35 parameters, the improvement in fit outweighs parsimony issues,

according to the information criteria.

Observing the correlation matrix in Table 6, we see that surprisingly, αnabisco negatively

correlates with βprice, despite being the more expensive brand. This may be explained by some

part of the population finding nabisco the superior brand, but only purchasing it on the event

of a discount. Conversely, the cheapest, private brand positively correlates with βprice, making

consumers who prefer the cheapest brand less price-sensitive. This could indicate a subset of the

population who generally prefer the cheapest brand, despite fluctuations in the prices of other

brands.

Sensitivity to one marketing variable (price, feature or display), generally seem to indicate
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greater sensitivity to all marketing variables. Especially for price and feature sensitivity, which

are estimated to be almost perfectly correlated.

Table 7 reports estimation results for MIXL-II with the inclusion of brand-specific loyalty

variables. MIXL-II with loyalty outperforms MIXL-I and MNL with loyalty on all information

criteria. Despite being the model with the greatest number of parameters required at 45, it fits

the observed choices closely enough to yield lower BIC, AIC and CAIC values.

φ is estimated at 0.86, higher than in both the MNL and MIXL-I models. This indicates

very strong loyalty variables, with low switching behaviors. Loyalty under MIXL-II takes long to

build up, but once a customer has revealed a brand preference, temporary deviations do little to

detriment his loyalty to his favorite brand. Households are likely to return to their most-bought

brand, even if they have not done so recently.

The appendix reports the full covariance matrix. The correlations observed in Table 6 gen-

erally persist. βloyalty negatively correlates with all other parameters. This indicates that brand

features and displays have less influence on brand-loyal customers, but also that loyal customers

are more price sensitive than others. This would suggest that households may deviate from their

preferred brand for large discounts in other brands, but return when no such offers are being

held.

5.3.1 Latent Class Model

Table 8 reports parameters from the estimation of a Latent Class model, using two classes. A

Guadagni and Little (1983) loyalty variable is included for each alternative. The LC model

outperforms MNL with loyalty as per the AIC, but fails to outperform MNL on the BIC and

CAIC measures. This indicates that even though we observed strong improvements in model

performance through the inclusion of parameter heterogeneity, a discrete modeling of consumer

preferences poorly represents the household shopping data. Brand preferences, loyalty behaviors

and reactions to marketing attributes seem to be more aptly modeled under an assumption of

normality, than under the assumption of a finite number of preference clusters.

The clusters identified by the algorithm vary greatly in their alternative-specific constants.

The first class is more sensitive to the display and feature marketing variables, whilst showing

less pronounced brand constants. The second class is weighed heavily towards Nabisco. Loyalty

variables are insignificantly different across the two classes.

However, we should note that the Latent Class likelihood surface is prone to local maxima
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Table 8: Latent Class MLE results

Class 1 Class 2
Parameter Estimate SE/CI Estimate SE/CI

βkleebler 0.279 0.325 -1.300*** 0.455
βsunshine -0.593* 0.321 -1.901*** 0.366
βprivate -0.691 0.705 -2.824*** 0.541
βprice -0.033*** 0.010 -0.048*** 0.011
βfeature 1.874*** 0.670 -1.379** 0.674
βdisplay 1.141** 0.551 0.075 0.439
βloyalty 3.342*** 0.401 3.486*** 0.270
φ 0.843 [0.78, 0.87] 0.756 [0.72, 0.78]
pc 0.620 0.380

Log-Likelihood -1641 AIC 3319
BIC 3436 CAIC 3435

Table 8 reports parameter estimates and standard errors for a latent class model with C = 2. For φ, a
transformation is used to map an estimated parameter to the proper range [0, 1] of φ. As such, direct standard

errors were not generated. As an alternative, a 95% confidence interval is presented for the estimates of φ.
Significance is denoted by *** (1%), ** (5%) and * (10%), respectively.

that may cause the EM-algorithm to converge outside the global maximum. Although care was

taken to perform the algorithm 20 times with different random initializations of πi,c, this does

not guarantee a global maximum. Since the estimation of the class-specific parameter φc makes

the evaluation of the likelihood more computationally expensive (as compared to a choice models

without loyalty), a greater number of random draws proved to be beyond the resources of this

study. Future research may focus on investigating discrete heterogeneity in a dynamic context

with more thoroughness in this area.

5.3.2 Parameter Distributions under MIXL

To ascertain the distribution of household-specific attribute coefficients and brand preferences,

we may calculate the conditional expectations of γi for each household. Figures 2 to 7 report

histograms of βi,price under MIXL-I and MIXL-II, as well as of βi,loyalty and αi,nabisco. For

the price parameter under MIXL-I and MIXL-II, we see that the distribution of the parameter

is slightly skewed to the left. Close to the mean of the parameter of -0.039 we see a large

peak, otherwise the parameter seems to be distributed quite normally. Under MIXL-II, we see

the parameter take more extreme values. As the parameter becomes subject not only to its

own normal distribution, but also the covariances with other parameters, more extreme values

become feasible. Across both histograms, discrete clusters (in the form of separated peaks) are
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Figure 2: βprice distribution MIXL-I Figure 3: βprice distribution MIXL-II

not readily apparent.

Figure 4 and 5 show the variety of brand preference in the dataset. Taken from the estimation

without loyalty variables, the two histograms show the variety of alternative-specific constants

across households. As every household exhibits some preference, the tails of the distribution are

fat, with the mean parameter estimate of 0 appearing no more frequently than values even on the

edges of the distribution. As the distribution is not single-peaked, clustering is feasible. This is

consistent with the αj parameters being the most variable in the Latent Class analysis presented

in table 8.

βi,loyalty, shown in figures 6 and 7 appears to be distributed nearly normal, with a nega-

tive skew. Nearly all households exhibit some consideration for their purchase history, with a

few outliers which approach 0. These do not recur under MIXL-II, where all households have

βi,loyalty > 2. Here too, parameter clustering does not readily appear, which may lend some

explanation to the poor performance of the Latent Class model.
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Figure 4: αNabisco distribution MIXL-I Figure 5: αNabisco distribution MIXL-II

Figure 6: βloyalty distribution MIXL-I Figure 7: βloyalty distribution MIXL-II

5.4 Out-of-sample performance, household scanner data

Table 9: Forecasting performance cracker data

Model
∑J

j=1 pjj F-1 p.kleebler p.nabisco p.private p.sunshine

MNL 57.0% -0.32 0.0% 79.6% 20.4% 0.0%
MIXL-I 81.8% 0.67 4.5% 53.7% 39.2% 2.6%
MIXL-II 80.3% 0.65 4.5% 54.9% 37.5% 3.1%
MNL (loyalty) 85.5% 0.73 3.3% 56.1% 36.9% 3.7%
MIXL-I (loyalty) 85.7% 0.74 3.6% 55.6% 37.7% 3.1%
MIXL-II (loyalty) 85.8% 0.75 3.9% 54.2% 37.8% 4.2%
LC (loyalty) 69.8% 0.49 2.0% 76.4% 20.1% 1.3%

Table 9 reports out-of-sample performance measures for MNL, MIXL-I, MIXL-II and the Latent Class model.
Hit-rates are of correct predictions are reported, as well as an F-1 statistic and prediction frequencies for each

model.
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Table 9 reports out-of-sample performance for MNL and MIXL-I, both with and without loyalty

variables included. For basic MNL, we find that the model is able to predict the purchase on 57%

of choice occasions. It does so by predicting Nabisco as a choice 79.6% of the time, and Private

otherwise. Forecasting performance in the marketing setting is much better than in the mountain

bike dataset, as a random prediction, based on in-sample choice frequencies would realize a hit-

rate of 40.3%. Using the conditional expectation of γi for each individual for MIXL-I and MIXL-II

forecasts, much higher hit rates of over 80% are realized. Observing brand preferences and price

reactions by individuals in the first 12 observations yield large improvements in our ability of

predicting cracker choice in future store visits. F-1 statistics for MIXL-I and MIXL-II are quite

similar, suggesting that for forecasting, independently distributed parameters suit the cracker

dataset just as well as covarying parameters.

Adding the loyalty covariates increases performance for both MNL and MIXL. MNL now

makes more diverse predictions, predicting Kleebler and Sunshine on a respective 3.3% and 3.7%

of choice occasions. A higher hit-rate of 85.5 % is realised, as well as an improved F-1 statistic.

As in the full-sample performance measures, MNL and MIXL performance is much closer when

dynamics are accounted for. MIXL, for both diagonal or dense Σ, realizes a slightly higher

hit-rate than MNL, with slightly higher F-1 measures also. Although the increased performance

of MIXL over MNL extends to their forecasting abilities, the differences are very slight once

dynamics are accounted for.

The Latent Class model (with two classes), with loyalty variables included, performs very

poorly relative to the other models. The classes identified in the first 12 observations lead the

model astray in forecasting the subsequent store visits. The forecast profile is quite similar to

basic MNL, predicting mostly Nabisco and Private.
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5.5 Tracing MIXL performance

Figure 8: Observation-average log-likelihood contributions per household

Figure 8 reports the observation-average log-likelihood contributed to the total model log-likelihood per household,

for the full sample of Cracker purchase data. Households are sorted left to right by their log-likelihood contri-

bution to the MIXL-II model, represented by the black line. MNL (circles) and MIXL-I(crosses) log-likelihood

contributions are graphed concomitantly.

To ascertain why Mixed Logit outperforms MNL on all accounts, we may consider the specific

households in which the largest differences in model fit are realised. Figure 8 plots household

log-likelihood under MNL, MIXL-I and MIXL-II (all without loyalty variables included), sorted

by their observation-average log-likelihood values for MIXL-II. From left to right, this shows us

the households who have near perfect fits under MIXL-II, to those which MIXL-II is unable to

fit at all on the far right.

We see that MIXL-I and MIXL-II log-likelihood values are very similar. MNL log-likelihood

values are much more variable. Although there exists some correlation between MNL household

log-likelihood values and MIXL values, MNL fit for the middle third of the graph is not much

better than the latter third. In other words, MNL fit is consistently poor after the first 45

households, and not much better for those first 45, as sorted by MIXL-II log-likelihood values.

To identify behavioral differences among the households with near-perfect MIXL-II fit (the

left-most 45 households in figure 8) and the worst-fitting households (the right-most 46 households

in figure 8), we estimate an MNL model with loyalty variables on each subsample separately.
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Table 10 reports the results.

The most prominent difference can be seen in βloyalty. Whilst the two subsamples are esti-

mated to have similar values for φ, βT1,loyalty is estimated at 5.14, whilst βT3,loyalty is estimated

at 0.25. Clearly the first subsample is much more brand-loyal than the latter. As MIXL-II is able

to fit household-specific values to αi,j for each brand, such loyalty behaviors may be accounted

for. Under MNL, these individuals are subject to the same αj as the whole population. Seeing

as φ is estimated to be very close between the two subsamples, it seems that the latter group

is not more fickle with their brand preferences, they simply do not attach value to their own

purchase history.

Considering the marketing variables, T3 has positive estimates for βfeature and βdisplay, whilst

T1 does not. This suggests that marketing variables affect T1 more than they do T3, which is

in line with the observed loyalty behaviors.

Table 10: Type I and Type III MNL estimates with loyalty

Parameter T1 SE T3 SE

βkleebler -1.574 0.418 -1.192 0.120
βsunshine -2.429 0.527 -1.105 0.116
βprivate -3.927 0.637 -0.634 0.140
βprice -0.079 0.014 -0.021 0.003
βfeature -0.287 0.429 0.404 0.091
βdisplay -0.244 0.758 0.601 0.157
βloyalty 5.143 0.331 0.249 0.079
φ 0.774 0.802

Table 10 reports MNL parameter estimates for the disjoint subsamples T1 and T3. A Guadagni and Little
(1983) loyalty variable is included for each choice alternative. T1 includes the 45 households with the highest

MIXL-II log-likelihood values, T3 the 46 the households with the lowest MIXL-II log-likelihood values.

5.6 Willingness to Pay analysis

To shed more light on the relative importance of household purchase histories, we re-estimate the

MIXL-I model with and without loyalty, in Willingness to Pay (WTP) space. This means that we

fix βprice = −0.01 and leave all other parameters unrestricted. The subsequent estimated values

for βk, with k some choice characteristic, may then be interpreted as a household’s willingness

to pay for that characteristic, as the price of alternative j would have to go down by 100 cents

to yield an equivalent benefit to the utility of alternative j as βk.

For the display and feature parameters, this is straightforward. If we see a βfeature of 1.5 in
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WTP space, this mean that the household would pay $1.50 more to enjoy the same utility from

a featured product as they do from an unfeatured, cheaper one. For the αj parameters, we need

to consider differences between alternatives. If αj is strongly negative in WTP space, but still

higher than the αj′ parameters of the other alternatives, we estimate a positive WTP for brand

j over the others.

For the loyalty variables, the process of obtaining WTP values is twofold. Firstly, we observe

the estimated value for φ. From this, we know that purchasing brand j at time t−1 increases the

loyalty variable bi,j,t by (1− φ), yielding an increase in Utility of βloyalty(1− φ) from purchasing

that particular brand at time t-1. By observing the distribution of βloyalty, we may calculate the

distribution of WTP increases from brand j being the last chosen brand.

Table 11 reports the result, showing the mean and tenth to ninetieth percentiles of the

distribution of each parameter under MIXL-I, as well as under MIXL-I with loyalty. As per

MIXL-I, Nabisco is valued on average as being worth $3.94 more to the households in our sample.

This is a striking difference with the MNL estimate in WTP space, which only reports a $0.87

difference. The majority of households has a positive WTP for featured and displayed products,

of $0.70 and $0.99 on average. We may note a large difference in the MNL WTP estimates of

$0.26 and $0.53. As brand preference is unaccounted for under MNL, the marketing variables

are estimated to be less valuable than they really are. After controlling for brand loyalty, as

also seen in the MNL estimate with loyalty included, we find they do much more to increase

household’s WTP for a product.

In MIXL-I with loyalty, we see that the alternative-specific constants are much more equal

across the population, seeing as loyalty behaviors are specifically accounted for. We find that the

purchase of a brand at time t− 1 leads to an increase in WTP for that brand at time 1 of $0.53

on average. As βloyalty is also heterogeneous, this may range from $0.24 to up to $0.81 for the

10% most loyal households. Seeing as the mean price of a box of Nabisco crackers is $1.07, this

means that 90% of households are willing to pay at least 22% more for Nabisco if they purchased

it on their last store visit.
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Table 11: Willingness to Pay distributions for choice attributes

Model WTP for Mean P10 P25 P50 P75 P90 MNL estimate

MIXL Nabisco -0.56 -3.99 -2.36 -0.56 1.25 2.88 0.48
Kleebler -3.29 -5.08 -4.24 -3.29 -2.35 -1.50 -1.48
Sunshine -3.47 -4.40 -3.96 -3.47 -2.98 -2.53 -1.61
Private -4.50 -8.84 -6.78 -4.50 -2.21 -0.15 -0.39
Feature 0.70 -0.06 0.30 0.70 1.11 1.47 0.26
Display 0.99 -0.12 0.40 0.99 1.57 2.09 0.53

MIXL
with
loyalty

Nabisco 0.16 0.16 0.16 0.16 0.16 0.16 -0.56
Kleebler -0.92 -1.85 -1.41 -0.92 -0.43 0.01 -1.04
Sunshine -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.18
Private -1.82 -3.70 -2.81 -1.82 -0.83 0.06 -0.97
Feature 0.47 -0.40 0.01 0.47 0.92 1.33 0.57
Display 0.86 -0.01 0.40 0.86 1.32 1.74 0.94
Chosing j at t-1 0.53 0.24 0.38 0.53 0.68 0.81 0.78

Table 11 reports MIXL-I estimates of the distribution of the Willingness to Pay for choice
characteristics. With βprice fixed to -0.01, the mean parameter values are given for each choice
characteristic, as well as percentile values P. of the distribution of the parameters. In the
right-most column, we report the estimated parameter value under MNL in WTP space.

6 Discussion and Conclusion

Under the choice framework presented by McFadden (1973), the Multinomial Logit model, dis-

crete choices are made by individuals, according to some "common behavioral rule". Through

other models that cast aside this assumption, we show that this axiom fails to hold up in a mar-

keting setting, as well as in a discrete choice experiment among mountainbikers. As in Fiebig

et al. (2010), we find sufficient preference heterogeneity for the MIXL model to outperform MNL

on in-sample information criteria, and out-of-sample forecasting performance. We extend this

result to dynamic choice models, finding enough residual preference heterogeneity for MIXL to

still outperform MNL, even after brand preferences are accounted for.

A Latent Class model with two classes reports unconvincing results in and out of sample.

Observation of posterior parameter estimates under MIXL also yields little reason to believe

that consumers exhibit discrete choice heterogeneity. For a marketing purpose, we recommend

a MIXL model with a continuous parameter distribution.

We find that for conventional MNL and MIXL-I, the largest improvement is seen in households

who are particularly brand loyal. The smallest difference in performance for the two models

is found for households who show less consideration for their purchase history, and a higher
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sensitivity to marketing variables.

In estimating the model in WTP space, we find that households are willing to pay $0.53

more on average for a brand which they also purchased on their last store visit. This puts the

benefit of product sampling on par with store displays and brand features. We also find that

WTP estimates for marketing variables are higher once choice dynamics are accounted for. The

use of the basic MNL model in ascertaining return on investment for marketing efforts may lead

marketeers astray if preference heterogeneity is ignored.

Future research may give more elaborate consideration to the Latent Class model. A large

number of classes, as well as more thorough efforts to ensure the EM-algorithm reaches a global

maximum proved beyond the resources of this research. Secondly, the performance of MIXL in

a dynamic choice setting could be further explored. We may consider whether MIXL models

with loyalty could be made more parsimonious by restricting the variances of the alternative

specific constants to 0, as brand preference heterogeneity is already accounted for through loyalty

behaviors. Moreover, we are curious to see whether the importance of scale heterogeneity over

preference heterogeneity found by Fiebig et al. (2010) extends to the dynamic setting.
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A. Mountainbike data

Table 12: Descriptive Statistics Mountain Biking Data

Variable Min Max Mean St.Dev N

Cyclist ID 1.0 289.0 144.9 83.5 1420
Age 10.0 69.0 29.8 10.0 1400
Gender 0.0 2.0 0.8 0.4 1367
Mountain Biking Experience 1.0 3.0 2.0 0.7 1415
Is a Mountainbiker 0.0 1.0 0.6 0.5 1415
Respondent has raced 0.0 1.0 0.4 0.5 1420
NORBA racing category 0.0 3.0 0.4 0.9 1365
USCF racing category 0.0 7.0 0.3 1.0 1395
Days spent Mountain Biking per season 0.0 7.0 4.1 1.7 1299
Considers Mountain Biking training 0.0 1.0 0.5 0.5 1357

Suspension bike 0.0 1.0 0.4 0.5 1362
Clipless pedals 0.0 1.0 0.3 0.5 1357
Cost of bike 0.0 4000.0 832.7 659.8 1332
Age of bike 0.0 11.0 2.7 2.1 1346

Married 0.0 2.0 0.6 0.5 1386
Children 0.0 10.0 0.6 1.1 1371
Household Spending 13.0 2200.0 908.0 682.6 1297
Hourly Wage 0.2 150.0 16.0 12.9 1192
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B. MIXL-II covariance matrices

Table 13: MIXL-II covariance matrix cracker data

αnabisco αkleebler αsunshine αprivate βprice βfeature βdisplay
αnabisco 0.04***(6.8E-5)
αkleebler 0.115***(3.9E-3) 1.552***(2.0E-2)
αsunshine 0.059(3.0E-4) 0.133***(1.1E-2) 0.091(7.9E-4)
αprivate 0.783(2.7E-3) 6.738***(2.7E-3) 1.25***(2.8E-4) 70.602***(2.7E-2)
βprice -0.053(6.2E-3) -1.209(1.7E-3) -0.061(5.6E-4) 2.47***(7.5E-3) 4.56(1.5E-5)
βfeature 0.166***(3.0E-5) 1.264***(5.8E-3) 0.231***(3.2E-4) 5.975(2.5E-3) -1.363(2.3E-4) 1.284(2.5E-3)
βdisplay 0.085(7.4E-2) 0.65***(2.0E-1) 0.136(8.3E-2) 5.924(1.2E+1) -0.182(8.9E-2) 0.648(4.4E+0) 2.03***(2.8E-1)
Table 13 reports parameter variances and covariances for the MIXL-II model estimated on the full sample of

household shopping data. Standard errors, given in parentheses, are obtained through a finite-difference
approximation of the hessian, using step-size 10−7. The approximated hessian is inverted, such that the

diagonal elements of the inverse give the approximate standard errors. Significance is denoted by *** (1%),
**(5%) and *(10%).

Table 14: MIXL-II covariance matrix cracker data with loyalty

αnabisco αkleebler αsunshine αprivate βprice βfeature βdisplay βloyalty

αnabisco 0.04
αkleebler 0.12 1.55
αsunshine 0.06 0.13 0.09
αprivate 0.78 6.74 1.25 70.60
βprice -0.05 -1.21 -0.06 2.47 4.56
βfeature 0.17 1.26 0.23 5.98 -1.36 1.28
βdisplay 0.08 0.65 0.14 5.92 -0.18 0.65 2.03
βloyalty -0.01 -0.47 -0.03 -6.95 -0.47 -0.32 -0.53 3.05
Table 14 reports estimated variances and covariances of the MIXL-II model with loyalty variables included,
estimated on the full sample of household shopping data.

Table 15: MIXL-II covariance matrix mountainbike data

βmileage βft.climbing βno.peaks βsingletrack βsharedtrack βfee

βmileage 0.001
βft.climbing -0.001 0.004
βno.peaks 0.005 -0.016 0.617
βsingletrack -0.001 0.000 0.569 0.923
βsharedtrack 0.006 -0.022 1.398 1.241 3.472
βfee 0.002 -0.007 0.382 0.129 1.181 0.732
Table 15 reports the estimated covariance matrix for MIXL-II estimated on the mountainbike dataset.
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C. Prediction-Realisation tables

Table 16: Prediction-Realization tables cracker data

Realized

MNL kleebler nabisco private sunshine F_1:0.27

Predicted

kleebler 0 0 0 0 0.0%

nabisco 76 768 406 72 79.6%

private 23 113 179 23 20.4%

sunshine 0 0 0 0 0.0%

6.0% 53.1% 35.2% 5.7% 57.0%

Realized

MIXL-I kleebler nabisco private sunshine F_1:0.69

Predicted

kleebler 44 16 11 4 4.5%

nabisco 34 771 56 30 53.7%

private 20 87 513 31 39.2%

sunshine 1 7 5 30 2.6%

6.0% 53.1% 35.2% 5.7% 81.8%

MIXL-II Realized

MNL kleebler nabisco private sunshine F_1:0.66

Predicted

kleebler 46 14 10 4 4.5%

nabisco 34 768 65 44 54.9%

private 19 86 495 23 37.5%

sunshine 0 13 15 24 3.1%

6.0% 53.1% 35.2% 5.7% 80.3%

Realized

MNL-loy kleebler nabisco private sunshine F_1:0.75

Predicted

kleebler 47 5 1 1 3.3%

nabisco 37 808 58 29 56.1%

private 13 58 520 21 36.9%

sunshine 2 10 6 44 3.7%
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6.0% 53.1% 35.2% 5.7% 85.5%

Realized

MIXL-I loy kleebler nabisco private sunshine F_1:0.76

Predicted

kleebler 51 5 1 2 3.6%

nabisco 32 804 51 36 55.6%

private 15 64 529 18 37.7%

sunshine 1 8 4 39 3.1%

6.0% 53.1% 35.2% 5.7% 85.7%

Realized

MIXL-II loy kleebler nabisco private sunshine F_1:0.76

Predicted

kleebler 52 6 4 2 3.9%

nabisco 29 797 47 26 54.2%

private 17 66 527 18 37.8%

sunshine 1 12 7 49 4.2%

6.0% 53.1% 35.2% 5.7% 85.8%

Realized

LC loy kleebler nabisco private sunshine F_1:0.49

Predicted

kleebler 24 8 1 0 2.0%

nabisco 68 835 295 71 76.4%

private 7 33 286 8 20.1%

sunshine 0 5 3 14 1.3%

6.0% 53.1% 35.2% 5.6% 69.8%

Table 16 presents prediction/realisation table for MNL and MIXL-I both with and without loyalty variables

included. Concomitantly, hit-rates are presented, as well as an F1 measure of out-of-sample fit, computed as

F1 =
∑J

j=1 pjj−p2.j

1−
∑J

j=1 p2.j
, where pij is the fraction of all out-of-sample observations where i was observed and j predicted.

Column indexes denote realized values, whilst row indexes denote predicted values.
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Table 17: Prediction-Realization tables Mountainbike data

MNL Realized
B A

Predicted B 30 31 22.7%
A 90 118 77.3%

44.6% 55.4% 55.0%

MIXL-I Realized
B A

Predicted B 57 55 41.6%
A 63 94 58.4%

44.6% 55.4% 56.1%

MIXL-II Realized
B A

Predicted B 56 57 42.0%
A 64 92 58.0%

44.6% 55.4% 55.0%
Table 17 reports predictions-realisation tables for 269 out-of-sample observations in the

mountainbike dataset. Hit rates are given in the bottom left for each table.
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