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Abstract

In this thesis we analyze the vehicle routing problem with self-imposed time windows and
the proposed solution procedure by Jabali et al. (2015). We analyze their results and discuss
the differences between their results and the ones we found. In addition to this, we evaluate
the effect of different initial solutions, showing that incorporation of shift length in the initial
solution improves the results. Furthermore, we implement a random-sized tabu list, which
proves to perform almost equally well as a tabu list with a fixed size. Lastly, we extend on
the original problem by including time preferences and argue that this increases customer
satisfaction.
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1 Introduction

Many package carrier companies provide their customers with a time frame during which their
package will be delivered. For example, PostNL indicates during which time window the pur-
chase of the customer will be supplied. In such situations, the carrier itself decides in which
time frame the package will be delivered, therefore making the time windows self-imposed. More
specifically, the carrier assigns each customer to a route and, based on the ordering of it, decides
on a time window. We refer to the problem of assigning customers to routes and deciding on
time windows as the Vehicle Routing Problem with Self-Imposed Time Windows (VRP-SITW).

This thesis is based on the work of Jabali et al. (2015). They focus on the allocation of cus-
tomers to routes based on the distance between them. In addition to this, time windows are
communicated to the customer, which companies strive to respect as much as possible. In this
thesis, we analyze the methods and results of Jabali et al. (2015). Furthermore, we address a
couple of alterations to the heuristic they proposed. We consider new initialization methods for
the heuristic, with the aim of improving the running time. In addition to this, we focus on a
different implementation of both the neighborhood generation method and the tabu list.

Another contribution of this thesis is to include time preferences in the model. Some pack-
age carrier companies allow customers to indicate a preferred time window, during which they
would like to be served. We assume the time window is not guaranteed but is taken into consid-
eration during the scheduling phase. By including time preferences, the model provides a new
option for companies to increase customer satisfaction. In our analysis, we take into account
that the expectations of customers might change by giving them the option to indicate their
preferences.

The remainder of this thesis is organized as follows. In Section 2, we outline the relevant
literature concerning Vehicle Routing Problems (VRP) and tabu search. Section 3 provides the
description of the problem that is dealt with in this thesis. The methodology and the computa-
tional results are discussed in Sections 4 and 5 respectively. Finally, Section 6 summarizes the
results and addresses possible topics of further research.
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2 Literature Review

Both the vehicle routing problem and the Vehicle Routing Problem with Time Windows (VRPTW)
have often been a topic of research. The VRP-SITW, however, is a less studied problem. Jabali
et al. (2015) give a clear description of the problem and describe an efficient solution method
based on tabu search. In this section, we reflect on the relevant literature considering both VRP
and VRPTW and the different methods that have been opted to solve these problems.

Laporte et al. (2000) discuss various classical and modern heuristics that have been used to
solve vehicle routing problems. According to them, the quality of these modern heuristics is
usually much higher, with the drawback of increased computation time. Similar to Jabali et al.
(2015), they indicate that the computation times of tabu search heuristics are high. When the
results are needed in a timely manner, for example when a last minute delivery needs to be
scheduled, this is disadvantageous.

In this thesis, we implement a two-phase solution procedure, consisting of a routing and a
scheduling phase. Mitrović-Minić and Laporte (2004) use a similar approach in the context of
dynamic pickup and delivery with time windows, where they solve the routing and scheduling
problem in a sequential manner. Similar to Jabali et al. (2015), a tabu-search procedure is
implemented in the routing phase.

A noteworthy aspect is the stochastic environment that is dealt with in many extensions of
the classical VRP. For example, Laporte et al. (1992) examined stochastic travel times where
a penalty is imposed if the limit on route duration is exceeded. Jabali et al. (2009) used the
idea that the travel time can be delayed by stochastic disruptions. Both of these ideas were
used by Jabali et al. (2015), where tardiness and overtime penalties are imposed when the route
duration is exceeded.

When time preferences of customers are considered, these are often treated as compulsory and
exogenous. The compulsory nature of time preferences leads to the VRPTW. Efficient heuristics
to solve this problem have been proposed, among others, by Cordeau et al. (2001) and Chiang
and Russell (1997). Although the problem at hand is different from the above literature in the
sense that time windows are set by the company, useful insights are provided in tabu search
algorithms. For example, Chiang and Russell (1997) present a dynamically sized tabu list, based
on the randomly varying list sizes reported by Taillard (1991). The idea behind this is that it
is not necessary to decide on a constant size for the tabu list. Cordeau et al. (2001) discuss
diversification mechanisms to explore a broad portion of the solution space. Such a mechanism
has also been implemented by Potvin et al. (1996). They describe a procedure in which the
search alternates between two neighborhood generation methods, thereby exploring new regions
of the solution space.
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3 Problem Description

The problem discussed in this thesis is to allocate customers to routes and to decide on service
time windows for these customers. In this section, we discuss the most important features of
the VRP-SITW.

In this problem, a set of N customers is considered as well as a homogeneous fleet of K ve-
hicles. Each customer i has a demand of qi and has to be assigned to a route, constrained by
vehicle capacity Q. The solution of this problem, also referred to as Z, consists of a set of routes
where each route Rr consists of nr customers, both of which are determined during the routing
phase. Each route starts and ends at the hub, which is defined as nodes 0 and nr+1 respectively.
Therefore, the total number of nodes visited on the route is equal to nr + 2. For each node
i ∈ Rr, a departure time si is specified which is stored in a vector s. The shift length is the time
interval [ss, se] and each customer has a time window of length Wi within which the arrival of
the vehicle is desired. Each node i has a service time of ui, and the service times u0 and unr+1

at the depot are set to zero.

The objective of the VRP-SITW, as described by Jabali et al. (2015), is twofold. The first
goal, which is similar to the goal of the VRP, is to minimize the total travel time, which is
captured by the first term of the objective function. The second part of the objective function
consists of tardiness and overtime penalties. The idea is to assign a penalty if the time windows
are not respected. Arrival before the scheduled window is not penalized, because the driver cost
is assumed to be fixed, but arrival after the time window leads to a penalty proportional to
the tardiness. Although early arrivals are not penalized, service can only start at the beginning
of the indicated time window. In addition to this, if the shift duration is exceeded, overtime
penalties have to be paid to the drivers. The objective function is therefore of the following
form:

F (Z) = c
∑

Rr∈Z

∑
(i,j)∈Rr

dij +
∑

Rr∈Z

Θ(Rr), (1)

with c the cost of traveling one unit of distance, Z the set of routes Rr for which |Z|≤ K

(the maximum number of vehicles), dij the distance between customer i and j (this is later de-
scribed as di, when j is the customer following i on the route) and Θ(Rr), which are the overtime
and tardiness penalties of route Rr. The penalty function Θ(Rr) is described later in this section.

Jabali et al. (2015) assume that disruptions might occur during the execution of a route which
increase the travel time. The length of this delay is equal to Li and occurs with probability
pi on edge di. The variable Li is distributed with probability mass function gi(·). That is, all
lik ∈ Ψik are positive values associated with a disruption for di for which

∑
k∈Ψik

gi(lik) = 1. It is

important to note that the actual value of Li only becomes known when the arc is traversed,
therefore no alterations to the schedule can be made at this point. Furthermore, we assume that
only one disruption can occur, which is widely assumed for the VRP with stochastic demand
and is also assumed by Jabali et al. (2015).
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The uncertainty in travel times because of disruptions, such as traffic jams or roadblocks, is
an important aspect of this problem. This uncertainty might affect departure times, which in
turn might hinder the departure within the imposed time-window. We can define the actual
departure time as follows:

sa
i = max{si; sa

i−1 + di−1 + Li−1 + ui} for i = 1, ..., nr + 1 with sa
0 = s0. (2)

The intuition behind this is that the delay should be incorporated in the actual departure time.
Arrival before the indicated time window is not penalized. Late arrivals at customer i, however,
are penalized with a tardiness penalty ti per-unit-time delay. Similarly, late arrival at the depot
is penalized with tnr+1. The driver is assumed to receive a fixed payment for a shift, considering
it ends at time se. Arrival after the end of the shift is penalized with an overtime penalty b per
time unit. Considering these penalties, the penalty term can be specified as follows:

Θ(Rr) =
∑

i∈Rr\{0}
ti E[max{0; sa

i (s)− (si − ui +Wi)}] + bE[max{0; sa
nr+1 − se}]. (3)

The choice to use the expected performance instead of the worst-case performance is motivated
by Jabali et al. (2015). They emphasize that in the context of the VRP-SITW good average
customer service is desired, which does not entail hard constraints per customer.

The problem can be split into two stages. In the first stage, the customers have to be as-
signed to routes such that the capacity of the trucks appointed to these routes is not exceeded.
In the second stage, the time windows are established considering shift length and disruptions,
to which we refer as the scheduling problem. The procedure to find a good solution for this
problem is discussed in the next section.
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4 Methodology

In this section, we outline the most important methodology. The first subsection contains a
description of the scheduling problem. Thereafter, we provide a hybrid solution procedure by
implementing tabu search. In Section 4.3, we extend the model by including time preferences.

4.1 Scheduling and Determining Buffers

For a given route Rr we can find an optimal schedule, considering both disruptions and penal-
ties, by using the linear program below. The variable ∆ijk is the tardiness at client j due to
a disruption of di according to scenario k. Likewise, Λik is the overtime resulting from a dis-
ruption at customer i by scenario k. Because of the modeled disruptions, two situations can
be distinguished for each route, that is, either no leg is disturbed or a single leg is disturbed.
The probability that the leg between customer i and its descendant is disturbed is defined as
pi. If no leg is disturbed, ζ is the overtime for the route. In this case, tardiness penalties are
not relevant.

Θ(Rr) = min
nr∑
i=0

nr+1∑
j=i+1

|Ψi|∑
k=1

pigiktj∆ijk + b
nr∑
i=0

|Ψi|∑
k=1

pigikΛik + b(1−
nr∑
i=0

pi)ζ (4)

subject to

si−1 + di−1 + ui ≤ si i ∈ Rr \ {0} (5)

s0 ≥ ss (6)

si + di + lik +
j−1∑

m=i+1
(um + dm) ≤ sj − uj +Wj + ∆ijk (7)

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ Ψi

snr+1 + ∆i,nr+1,k − se ≤ Λik i ∈ Rr \ {nr + 1}; k ∈ Ψi (8)

ζ ≥ snr+1 − se (9)

∆ijk ≥ 0; si ≥ 0; Λik ≥ 0; ζ ≥ 0 (10)

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ Ψi

The objective function (4) minimizes the penalties for tardiness and overtime for a given route.
The first term is based on the tardiness penalty at the customer and the cost for arriving late
at the depot. The second term provides the overtime penalty in case a leg is disturbed. The
last term in this function gives the overtime penalty for later arrival at the depot in case no
leg is disturbed. Restrictions (5) can be viewed as the precedence constraints. The scheduled
departure from customer i should be at least the departure time of the preceding customer, plus
the service time of customer i and the distance between the two customers. The buffer between
customers i− 1 and i is therefore defined as si − (si−1 + di−1 + ui). Constraint (6) ensures that
the scheduled departure time from the depot cannot be earlier than the starting time of the
shift. Constraints (7), (8) and (9) determine each of the delay terms described above.
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4.2 Solution procedure

The VRP-SITW is NP-hard. It is therefore wise to use a heuristic when solving this problem.
For solving the VRP and the VRPTW, the tabu search heuristic has been widely used, for
example by Potvin et al. (1996). Jabali et al. (2015) also adopt a tabu search algorithm to
solve the VRP-SITW. The algorithm consists of two stages. In the first stage, neighbors of the
current route are generated. The best neighbor is selected according to the criteria that are
discussed in Section 4.2.3. Thereafter, in the second stage, the scheduling of the customers is
done according to the LP problem discussed in Section 4.1. Because of time limitations, Jabali
et al. (2015) proposed three different criteria for selecting the best move in the neighborhood,
to avoid solving the LP problem for every neighbor in every iteration.

The tabu search algorithm is described in Algorithm 1. In Section 4.2.1 we propose four differ-
ent methods to construct the initial solution in line 1. The neighborhood generation in line 4
is discussed in Section 4.2.2. The three aforementioned move selection criteria are discussed in
Section 4.2.3 and are based on distance (C1), combined with marginal penalties (C2) and buffer
size (C3).

Algorithm 1: Tabu Search for VRP-SITW
Input: Instance containing coordinates, demand and service time of each customer and the depot
Output: The solution to the VRP-SITW with the lowest objective among all generated solutions

1 Construct initial solution Z0 and compute F (Z0)
2 for ξ = 1 to 3 do
3 Set Z ← Z0 and F (Z)← F (Z0)
4 Generate the neighborhood of Z
5 Evaluate all neighbors on criterion Cξ and retain the best non-tabu solution as new solution Z
6 Evaluate F (Z) and update the tabu list to include Z
7 if Z is feasible and is better than the current best solution then
8 Update the best feasible solution for Cξ to Z

9 Update excess demand penalty
10 if No improvement in ηmax iterations then
11 Store best solution for Cξ

12 else
13 Go to Step 4

14 return The best solution from ξ = 1, 2 and 3

4.2.1 Initial Solution

Jabali et al. (2015) use the nearest neighbor heuristic to obtain their initial solution. In this
heuristic, the nearest neighbor of the current customer is iteratively added to a route. When
adding the nearest neighbor exceeds the capacity limit on a route, a new route is created. The
capacity limit is imposed by the capacity of the vehicles. This process is repeated until all
customers are covered. The advantage of using this method is that it is fast and simple to
implement. However, the drawback of this method is that the quality can be rather low. Be-
sides this, it does not consider the maximum shift duration, which might lead to high overtime
penalties in the initial solution.
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Another classical method is the savings heuristic by Clarke and Wright (1964). The idea be-
hind the savings heuristic is that all customers start on separate routes. Then the savings sij ,
obtained by merging the two routes with customers i and j, are computed. The biggest saving
is iteratively selected and the two routes are merged by positioning all customers of one route
after the customers of the other, if this leads to a feasible solution.

A third classical method is the sweep heuristic, which is often attributed to Gillett and Miller
(1974). According to Laporte et al. (2000), both the savings heuristic and the sweep heuristic
lead to good solutions quickly. In contrast to the other methods, a customer is represented
by its polar coordinates (θi, ρi) where θi is the angle and ρi is the ray length. An arbitrary
customer i∗ is chosen for which θi∗ is set to 0. All other angles are calculated centered at the
depot, from the initial ray (0, i∗). The customers are then sorted in non-decreasing order of
their θi. The first step of the sweep heuristic is to form clusters. The first customer on this list
is added to a cluster iteratively as long as the capacity is not exceeded, otherwise a new cluster
is created. The task of creating a route within a cluster is done according to the Traveling
Salesman Problem (TSP). We find a solution to the TSP heuristically with the nearest neighbor
heuristic, because the TSP is NP-hard and is therefore time-consuming to solve exactly. The
division of clusters can be highly influenced by the choice of i∗. For this reason, we perform the
sweep heuristic for every i∗ and select the set of routes that minimizes the total distance traveled.

Lastly, we adjust the nearest neighbor heuristic to include the maximum shift duration. This
means that we include an extra restriction that imposes that the total expected time of a route
(service + travel time) cannot exceed the shift length, which reduces the imposed overtime
penalty on the initial solution. An important note is that for some instances it is impossible to
add a certain customer without exceeding the shift length. For example, when this customer
lives far away. In these cases, the customer should be added to a single route for which the time
restriction can be ignored, because otherwise this procedure does not lead to a solution. This
procedure generally leads to more routes than the original nearest neighbor heuristic. However,
since Jabali et al. (2015) did not specify a maximum value for K, we assume that this is allowed.

The nearest neighbor heuristic is implemented to obtain the results in Section 5. The other
initial solutions discussed in this section are used to obtain a comparison of the initial solutions
in Section 5.5.

4.2.2 Neighborhood Generation

The algorithm implements two types of neighborhood generation methods. Both methods cre-
ate a neighborhood for every customer i with the η closest customers, as is described by Potvin
et al. (1996). The first method is the 2-opt* neighborhood by Potvin and Rousseau (1995). This
exchange method is especially effective for problems with time-windows because it preserves the
direction of the routes. Hence, according to Potvin and Rousseau (1995), this method is likely
to generate a feasible solution. The second algorithm is the Or-opt neighborhood by Or (1976).
The Or-opt algorithm moves small sequences of adjacent customers (one, two or three) that
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are generally close together and inserts these customers at a new position while preserving the
orientation. According to Potvin and Rousseau (1995), the Or-opt heuristic can generate solu-
tions that are close to the quality of 3-opt for problems with time-windows but with much less
computation time.

In the 2-opt* neighborhood generation, two links are replaced by two different links. More
specifically, the links (i, i + 1) and (j, j + 1) are replaced by the links (i, j + 1) and (j, i + 1),
where j+1 is one of the η nearest neighbors of i. One drawback of this method is that it can only
be applied when i and j are not on the same route. Because we select the η nodes closest to i in
distance, it is very likely that those are on the same route, therefore eliminating many possible
neighbors. In the Or-opt neighborhood generation, customer i (possibly with customers i + 1
and i+2) is moved after customer j if customer i is one of the η nearest neighbors of customer j.

Potvin et al. (1996) describe a refinement to the tabu search heuristic known as diversifica-
tion. This means that the search alternates between Or-opt and 2-opt* neighborhoods. When
d0.5ηmaxe iterations have been performed without an improvement to the best known solution
with one of the methods, the other method is used. The general iteration limit of ηmax still
holds in this case. The advantage of this method is that it forces the heuristic to explore new
regions of the search space.

4.2.3 Selection Criteria

Jabali et al. (2015) use the three aforementioned criteria to select the best move in a neighbor-
hood. Each criterion tackles a different aspect of the problem. All of the criteria use the travel
costs associated with solution Z, which are defined as,

Ω(Z) = c
∑

Rr∈Z

∑
(i,j)∈Rr

dij . (11)

However, this generally allows solutions where the total demand exceeds the capacity, because
there is no hard capacity constraint in the selection criteria. Therefore, we include a penalty if
the capacity is violated, which is done in the following way:

Ω2(Z) = Ω(Z) + ω
∑

Rr∈Z

[
(

∑
i∈Rr

qi)−Q
]+

, (12)

where qi is the demand of each node on the route and Q is the capacity of the vehicle. The excess
penalty ω is decreased by multiplication with a factor υ after φ successive feasible iterations.
Likewise, ω is increased (multiplied by factor υ−1) after φ infeasible moves.

The first criterion is purely based on minimizing the distance and does not take the time win-
dows into account. Let Z ′ be a neighbor of current solution Z, where we define ∆1(Z ′) =
Ω2(Z)− Ω2(Z ′). According to criterion C1, the chosen move is not tabu and maximizes ∆1(·).
Alternatively, it might be convenient to incorporate a penalty component for the assessment
of the time window. By choosing the move that is not tabu and maximizes ∆2(·), we use the
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observation that penalties increase with the number of customers on the route. On the contrary,
decreasing the number of customers on a route with a large penalty is likely to decrease the total
objective value of the route, because the probability of overcapacity decreases. In this equation,
moves considering routes R1 and R2 lead to the new solution Z ′. In addition to this, nr and n′r
are the number of nodes on route r in the current and new solution respectively.

∆2(Z ′) = Ω2(Z)− Ω2(Z ′) + ρ[Θ(R1) + Θ(R2)− Θ(R1)
n1 + 1(n′1 + 1)− Θ(R2)

n2 + 1(n′2 + 1)] (13)

Criterion C3 favors moves with a small buffer size. Buffer size bu(i) between customers i and
i+1 is defined as si+1− (si +di +ui+1). In this equation, Z ′ involves a move between customer i
and j. The selected move is the one that is not tabu and maximizes ∆3(·). The logic behind this
is that improvements in travel times are more likely to decrease the penalties when the buffers
are small.

∆3(Z ′) = Ω2(Z)− Ω2(Z ′)− γ[bu(i) + bu(j)] (14)

The evaluation of Θ(·) and bu(·) is based on the current solution rather than the neighbor to
avoid solving the LP problem for every neighbor, which is time-consuming.

4.2.4 Tabu list

To avoid cycling, Jabali et al. (2015) use a tabu list. Their approach is to add solutions (Z) to
the tabu list. In addition to this implementation, we add a random element to this list size, as
described by Taillard (1991). Rather than choosing a fixed list size of κ, we choose κ between
κmin and κmax. The value for κ is randomly drawn from a uniform distribution on the interval
[κmin, κmax] and rounded upwards to the nearest integer every 2κmax iterations. In this way,
the problem related to finding the optimal tabu list size is avoided.

The basis for our algorithm is to use the same implementation as Jabali et al. (2015), therefore
implementing a tabu list with a fixed size. However, in Section 5.7 we focus on the computational
differences when a tabu list has a random size.

4.3 VRP-SITW with time preferences

Customers can often indicate during what time window they wish to be served. A first possibility
is treating these time windows as compulsory, making the problem a VRPTW. Another option is
taking the time preferences as a suggestion, which is referred to as the Vehicle Routing Problem
with Self-Imposed Time Windows and Time Preferences (VRP-SITW-TP). In this way, a penalty
is imposed when the time window is not satisfied. The intuition behind this is that customers
can indicate during which part of the day they wish to be served, for example in the morning
or during the evening.
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4.3.1 Description of the VRP-SITW-TP

The mathematical model for the VRP-SITW-TP builds forth on the VRP-SITW discussed in
Section 4.1. An extra penalty term is imposed when the indicated service window lies outside the
preferred time window. The time gap is two-sided, that is, both early and late service should be
penalized. The time gap between the indicated service window and the preferred time window
for customer i is referred to as πi and can be defined as:

πi = max{0, si − ei, ai − (si − ui)}, (15)

where ai and ei are the start and end time of the preferred time window respectively. The
intuition behind this equation is provided in Figure 1.

Time

ui di 

Wi

si - ui si - ui + Wisi

Early Preference

aiei

si - ei

Late Preference
ai - (si + ui)

Figure 1: Illustration of a time window and time preference at customer i

For this equation to hold, three assumptions have to be made. First, we assume that the time
gap is based on the indicated time window rather than the real time window. The intuition
behind this is that customers know their indicated departure time beforehand, therefore having
the opportunity to reschedule other appointments. In addition to this, it will foster computa-
tional simplicity, because the actual departure times are unknown during the scheduling phase.
Second, the time gap only applies to customers, since no time frame has to be communicated
to the depot. Third, the preferred time window should be at least as long as the service time.
The reason for this is that there always needs to be a possibility to satisfy the preferences.

We can now model the restrictions for the time gap in the same way as the delay terms in
Section 4.1. The new model contains all the restrictions from the previous model, with an
additional penalty term in the objective function:

Θ(Rr) = min
Rr∑
i=0

Rr+1∑
j=i+1

|Ψi|∑
k=1

pigiktj∆ijk + b
nr∑
i=0

|Ψi|∑
k=1

pigikΛik + b(1−
nr∑
i=0

pi)ζ + v
nr∑
i=1

πi (16)

where v is the penalty for each unit of time the assigned window differs from the preferred
window. In addition to this, new restrictions have to be introduced based on Equation (15),

10



which implicitly determine the time gap:

πi ≥ si − ei ∀i ∈ Rr \ {0, nr + 1}, (17)

πi ≥ ai − (si − ui) ∀i ∈ Rr \ {0, nr + 1}, (18)

πi ≥ 0 ∀i ∈ Rr \ {0, nr + 1}. (19)

The tabu search heuristic can also be applied to this model. Since the problem differs slightly
from the original problem, some alterations to the heuristic are advantageous. Because of the
introduced time preferences, it might be beneficial to use more vehicles than the amount used
before. Therefore, we introduce an additional neighborhood generation method that generates
extra routes, which is discussed in Section 4.3.2. In addition to this, we consider the time
preferences in our neighborhood moves. For this reason, we introduce a new selection criterion
in Section 4.3.3.

4.3.2 Extra Routes

Our procedure to create extra routes is similar to the Or-opt moves discussed in Section 4.2.2.
For every customer i, we generate Or-opt neighborhoods where customer i (and possibly i + 1
and i + 2) is moved from its current route to a newly created one. The customers are moved
directly after the depot, suggesting that j = 0. These new neighbors are added to the existing
neighborhood of Or-opt and 2-opt* moves. The selection of the best neighbor is performed with
the new selection criterion, which is discussed in the next section.

4.3.3 Selection Criterion

Jabali et al. (2015) introduced various criteria to select the best move in a neighborhood. How-
ever, none of these criteria incorporates the effect of time preferences. For this reason, we
introduce a new criterion CT P that favors moves of customers with a large time gap. That is,
criterion CT P favors to interchange customer i with a large time gap, with customer j whose
position would be favorable for customer i. We define πi,j as the time gap of customer i if it is
placed after customer j. The value for πi,j is calculated as follows:

s∗j = sj + dij + uj , (20)

πi,j = max{0, s∗j − ei, ai − (s∗j − ui)}. (21)

In addition to this, πi,j is equal to zero if i is moved to a new route. The intuition behind this
is that moving a customer to a new route provides more freedom for selecting a departure time.
The selected move is not tabu and maximizes

∆T P (Z ′) = Ω2(Z)− Ω2(Z ′) + δ(πi − πi,j), (22)

where Z ′ involves a move between customers i and j. The logic behind this is that moving a cus-
tomer with an unsatisfied preference to a position where the preference has a higher satisfaction
is likely to decrease the total objective value.
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5 Computational Results

In this section, we discuss the computational results we obtained from various experiments with
the implemented heuristic. All experiments are performed on an Intel Core I7 with 2.8 GHz and
12 GB DDR4 memory. The implementation is coded in Java in single thread. Java CPLEX is
used for solving the LP instances. We have adopted two datasets from the literature, which are
also used by Jabali et al. (2015). The first dataset contains VRP instances from Augerat et al.
(1998), in which the number of customers ranges from 31 to 79. All customers are assumed to
have a service time of 10 time units and a time window of 60 time units. The start and end
time of a shift are 0 and 200 respectively. In this dataset, the vehicle capacity is 100 units.
The second dataset contains VRPTW instances from Solomon (1987), which can be found in
Solomon (2010). All sets contain 100 customers, with service time and time windows that are
provided by the instances. The start and end times of the shifts can be found in the opening
and closing time of the depot. In this dataset, the vehicle capacity is 200 units.

The algorithm and formulation discussed in Section 4 require a large number of parameters.
To verify the results, we use the same parameters as used by Jabali et al. (2015). One exception
is the value for ρ, associated with criterion C2, which we chose equal to 0.1 instead of 1. The
results obtained by using ρ = 0.1 are more similar to those reported by Jabali et al. (2015),
in the sense that when using ρ = 1 almost no improvements are found by the algorithm. This
suggests that the value for ρ has been misspecified.

The value for the parameter ηmax has not been specified by Jabali et al. (2015). In general,
instances with more customers require a higher value for ηmax. For simplicity, we use the same
value for ηmax for all instances. Two main aspects that need consideration in deciding on a
suitable value are that low values might terminate the algorithm too soon, and, moreover, high
values for ηmax increase the computation time without improving the solution. This makes the
computation time more difficult to interpret, because a part of the time is unnecessarily spent
on waiting for the iteration limit to be reached. This can be deducted from the search pattern
entering a cycle, suggesting that no update will be found in the remaining iterations. In addi-
tion to this, high computation times are undesirable in practice. After careful consideration, we
specify the value of ηmax to be 200. Experiments with different values show that the algorithm
would have performed more updates after termination for values below 200. On the contrary,
values higher than 200 do not improve the objective.

In Section 5.1, we compare the different move selection criteria based on their objective value as
well as computation time. Thereafter, we compare the results for different tardiness penalties
in Section 5.2, followed by a comparison of the VRP-SITW with the VRP and VRPTW in
Sections 5.3 and 5.4 respectively. Then we discuss the effects of different implementations of the
initial solution (5.5), neighborhood generation (5.6) and tabu list (5.7). Finally, we analyze the
influence of incorporating time preferences in our model in Section 5.8.
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5.1 Move Selection

In this section, we analyze the performance of the three different evaluation criteria discussed
in Section 4.2.3. We base the performance on both the objective value and the computation
time of the algorithm with each of the criteria implemented. Table 9 and 10 in the Appendix
contain the results for the Augerat and Solomon instances respectively and these results have
been summarized in Table 1.

For both sets of instances, the C2 criterion produces the best objective values the most of-
ten. The computation time with the C2 criterion is also the highest for the Solomon instances.
For the Augerat instances, however, the computation time with the C3 criterion is the highest.
The difference in computation times between the two sets of instances can be explained by the
fact that the Solomon instances consist of more customers, thus creating larger neighborhoods.
In addition to this, the routes consist of more customers, therefore the LP problem consumes
more time. Some of the Solomon instances produce similar results as these are identical to each
other, aside from the time windows that are relaxed. It should be noted that for many instances
criterion C1 and C3 produce similar results. The reason for this is that the time buffers are often
equal to zero. Therefore, it is likely that the two criteria select similar moves.

Table 1: Comparison of the three neighbor selection criteria

Instance Frequency lowest objective Average CPU time (milliseconds)
C1 C2 C3 C1 C2 C3

Augerat 13 17 13 x3,754.8 x5,739.1 x6,566.5
Solomon 17 29 16 17,702.1 31,632.3 18,771.6

An important note is the differences between the obtained results and the results provided by
Jabali et al. (2015). Considering the Solomon instances, Jabali et al. (2015) have higher ob-
jective values for the C1 instances, but lower for the R1 and RC1 instances. An even more
stunning observation is the difference between the computation times. The computation times
reported by Jabali et al. (2015) are up to one hundred times larger than the computation times
we found. There are various explanations for these differences. A first explanation for the dif-
ferences in computation times is the different computer that has been used, as well as different
software. Another explanation is the unspecified value for ηmax. It is possible that Jabali et al.
(2015) used a higher value for ηmax which consequently led to higher computation times. A last
explanation is that the implementation of the neighborhood generation is different. Jabali et al.
(2015) describe their neighborhood generation method as follows: “For each customer i ∈ V ,
we construct 2-opt* (Potvin and Rousseau, 1995) and Or-opt (Or, 1976) neighborhoods for the
η nodes closest to i”. This leaves much room for interpretation. Therefore, it is likely that the
neighborhood generation method used by Jabali et al. (2015) differs from the one we used, which
is explained in Section 4.2.2. The different implementation produces different results regarding
objective values and computation time. We elaborate on this reason in Section 5.6.

13



An interesting observation is that the running time with the C3 criterion is the highest for
the Augerat instances, but not for the Solomon instances. The C3 criterion requires additional
computation time for the computation of the time buffers in every iteration. For the Solomon
instances, this is accompanied with an increase in efficiency of the search pattern, therefore re-
ducing overall computation time. For the Augerat instances, the buffers are relatively small and
do not influence the search pattern significantly, therefore increasing the overall computation
time.

Other than Jabali et al. (2015), we recommend running all three criteria for all instances. This
difference is mainly constituted by the reduced running time. The running time of the larger
Solomon instances is beneath two minutes which is substantially lower than the running times
reported by Jabali et al. (2015).

5.2 Tardiness Penalty

Jabali et al. (2015) also evaluated the effect of varying delay penalty costs ti. In this section,
we analyze their results. Jabali et al. (2015) proposed four different cost settings. The first two
cost settings, referred to as P5 and P10, are constant with respectively ti = 5 and ti = 10. The
third setting, referred to as Prop, deals with costs that are proportional to the quantity ordered
(ti = qi). The final setting, 1.3dist, increases all distances by 30% and has delay penalty costs
ti = 5. According to Jabali et al. (2015), this reduces the available slack time, leading to less
buffer time, thus resulting in tighter instances.

The results of this experiment are in Table 11 in the Appendix and have been summarized
in Table 2. The table contains the average increase in objective value for each of the settings
compared to the P5 setting, as well as the average penalty ratio for all settings. This ratio is
defined as the proportion of the total objective that corresponds to penalties,

∑
Rr∈Z

Θ(Rr)
F (Z) .

The results indicate that the objective values of the P10 and Prop settings are on average only
0.1% higher than those of the P5 setting. This illustrates that even when the penalties are
doubled, this has almost negligible effect on the objective value. On the other hand, the 1.3dist
setting has a large influence. The distances are increased by 30%, which suggests that the
objective would also increase with 30%. However, because the instances are tighter, there is less
buffer time which in turn leads to higher overtime and delay penalties.

Table 2: Comparison of four different tardiness penalty settings

P5 P10 Prop 1.3dist

Average penalty ratio (%) 33.4 33.4 33.4 43.9
Increase in objective compared to P5 (%) * 0.1 0.1 54.1
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Considering the penalty ratio, the P5 setting corresponds to the lowest ratio. However, the
P10 and Prop settings do not increase the penalty ratio significantly. The 1.3dist setting, on
the other hand, does increase the penalty ratio with a substantial percentage. From this, we
conclude, similar to Jabali et al. (2015), that an increase in distance has a considerable impact
on the delay and overtime penalties.

Comparing the average penalty ratios in Table 2 to those reported by Jabali et al. (2015),
a significant difference can be witnessed. The same reasoning can be applied as in Section 5.1,
concerning the neighborhood generation method, on which we elaborate in Section 5.6.

5.3 Comparison of VRP-SITW to VRP

In this section, we analyze to what extent the addition of the self-imposed time windows to the
VRP affects the distance traveled. We compare the traveled distance in the Augerat instances
using the aforementioned delay penalty costs, with the optimal VRP solutions taken from Ralphs
(2010). For the 1.3dist setting, the distances of the VRP solution have been scaled by a factor of
1.3. The details are provided in Table 12 in the Appendix and have been summarized in Table
3. The average distance increase is only 4% for all settings. Therefore, we conclude that the
time windows do not have a substantial influence on the distance traveled. Companies that do
not incorporate self-imposed time windows can provide a more customer-oriented service that
is associated with a relatively small increase in the distance traveled.

Table 3: Average distance of VRP-SITW compared to VRP using the Augerat instances

P5 (%) P10 (%) Prop (%) 1.3dist (%)

104.2 104.2 104.2 104.1

5.4 Comparison of VRP-SITW to VRPTW

In this section, we compare our results of the VRP-SITW to the best known solution of the
VRPTW. The aim is to evaluate the difference between the flexible, self-imposed time windows
and the exogenous predetermined time windows. In our evaluation, we use the same instances
as used by Jabali et al. (2015), which are the VRPTW instances from Solomon (1987). The
best-known solutions are retrieved from Solomon (2010). The results are reported in Table 13
in the Appendix and are summarized in Table 4. Abbreviations have been used for the distance
and the number of vehicles. TF and TS denote the distance for the VRPTW and the VRP-SITW
respectively. Similarly, KF and KS denote the number of vehicles used.

The second column of the table indicates that the distance traveled increases on average when
the time windows are exogenous. A difference can be observed between the R1 and RC1 in-
stances on the one hand and C1 instances on the other. The limited increase in distance of
C1 instances suggests that the time windows for these instances are quite unrestrictive. Inves-
tigation of the instances shows that the shift length of the C1 instances is significantly larger
compared to the R1 and RC1 instance (1236 compared to 230 and 240 respectively), while the
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time windows are still evenly distributed across the duration of the shift. This implies that the
limited increase in distance is logical. Similar conclusions follow from the low penalty ratio as
well as the absent vehicle reduction between VRPTW and VRP-SITW for the C1 instances.

Table 4: Comparison of VRP-SITW with the best-known VRPTW solutions for the Solomon
instances

Instance TS/TF (%) KF −KS Penalty ratio (%)

R1 74.9 5.0 24.6
C1 99.9 0.0 0.0
RC1 76.7 3.8 11.2
Average 83.1 3.1 13.3

Reflecting on all instances, we can conclude that restrictive instances (instances with a small shift
length), allow for substantial reductions of travel times and number of used vehicles. Therefore,
we advise companies that deal with small shift lengths to use self-imposed time windows rather
than exogenous time windows. In addition to this, companies that have long-lasting shifts can
use exogenous time windows without increasing the total distance traveled and the number of
vehicles used drastically and thereby providing a more customer-oriented service.

5.5 Initial Solution

In this section, we compare the different initial solutions we proposed in Section 4.2.1. We
consider both the objective value as well as the computation time. The results of this experiment
are provided in Table 14 in the Appendix and have been summarized in Table 5. The results are
generated by using the C1 criterion for the Solomon instances. Similar results can be obtained
for the other two criteria and for the Augerat instances.

Table 5: Comparison of the initial solutions for the Solomon instances using the C1 criterion

Heuristic Average objective value Average CPU time (milliseconds)

Nearest neighbor 1,130.1 17,702
Nearest neighbor + TC 1 1,017.8 10,556
Sweep 1,058.5 12,473
Saving 1,152.4 19,843

1 TC = Time Constraints

Jabali et al. (2015) implemented the nearest neighbor heuristic. The results indicate that this
procedure leads to a relatively long average computation time. Considering the objective value,
this method produces a relatively high objective value compared to the other initial solutions.
The nearest neighbor heuristic with time constraints performs the best of the four initial solutions
considering both the achieved objective value and the computation time. However, it should
be noted that this method also uses more vehicles for some instances compared to the other
methods. Based on these findings, our advice is to use the nearest neighbor heuristic with
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time constraints when there is no restriction on the number of vehicles. Otherwise, our advice
would be to use the sweep heuristic. This heuristic produces slightly worse results, however, the
number of vehicles used is lower.

5.6 Neighborhood Generation

The previous sections indicated large differences between our obtained results and the reported
results by Jabali et al. (2015). Until now, these differences have been attributed to a different
implementation of the neighborhood generation method. In this section, we implement a dif-
ferent method for neighborhood generation to verify whether this effect is indeed substantial.
We implement the neighborhood generation method with diversification, as was discussed in
Section 4.2.2. The effect of the different implementation on the results using the C1 criterion in
the Augerat instances is shown in Table 15 in the Appendix.

The objective values achieved by the two different implementations are different. The aver-
age difference is almost 3% and these differences can reach up to 11% in some instances when
Or-opt is used in the first iterations. When 2-opt* is used in the first iterations, the average dif-
ference is more than 7% and these differences reach up to 20% in some instances. This indicates
that, even though the difference in implementation is minimal, the effect on the objective value
is substantial. For this reason, we believe that the difference in objective value between our
research and that of Jabali et al. (2015) can possibly be justified by a different implementation
of the neighborhood search heuristic.

In Section 4.2.2, we stated that many possible 2-opt* neighbors are eliminated because they
are on the same route. By selecting the η nearest customers that are not on the same route for
the 2-opt* method, we can evaluate the effect on the objective value. Experiments indicated
that no or insignificant improvements were found by this alteration, thus suggesting that the
elimination of neighbors because they are on the same route is acceptable.

Although these results might seem contradictory, a clear conclusion can be drawn. Our re-
sults suggest that the order in which neighbors are visited is of significant importance for the
obtained objective value. However, the number of nearest neighbors evaluated in each iteration
does not have a significant influence.
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5.7 Tabu List

In this section we investigate the influence of using a random-sized tabu list on the results of
the first criterion considering the Augerat instances. Jabali et al. (2015) used a tabu list of size
κ, which was equal to 20. For this reason, we choose the interval [κmin, κmax] in such a way that
20 is contained in the interval. We compare the results of four cases. In the first case, κ is fixed
at 20. For the other three cases, the interval ranges from 10 to 30, 40 and 50 respectively. It
should be noted that the value for κ is generated from a uniform distribution, rounded to the
nearest integer. Each run therefore contains a random element, suggesting that the results can
slightly differ between runs. Experiments with multiple runs have shown that these differences
are not significant. The results of this experiment are provided in Table 16 in the Appendix and
are summarized in Table 6. From these results we can conclude that the implementation of a
random-sized tabu list does not have a significant influence on the objective value, nor on the
computation time. This suggests that, when no specific estimation of the optimal tabu list size
can be made, random size within a well-specified interval produces satisfying results.

Table 6: Average objective value and computation time for the different values of κ

κ 20 [10,30] [10,40] [10,50]

Objective value 1,688.5 1,692.2 1,689.7 1,692.5
CPU time (milliseconds) 3,755 3,730 3,679 3,854

5.8 Analysis of the VRP-SITW-TP

In this section we analyze the influence of time preferences, using the Solomon instances. We
chose to use three equal sized time preference possibilities. Intuitively, this corresponds to the
morning, afternoon and evening. We also allow selecting multiple time frames, thereby enlarging
the preferred window. We generated the time preferences by using the exogenous time windows
provided by the Solomon instances. The preferred time window covers the start and end time
provided by the instance, such that multiple time windows are selected if those lie in different
windows.

For the evaluation of the time preference satisfaction, we consider two evaluation criteria. The
first is the percentage of the customers whose preference has been satisfied. That is, where
the indicated service window falls within the preference of the customer. In addition to this,
we consider the average deviation from the preferred time window, as a percentage of the shift
length.

We consider four different penalty settings, of which the values for v and δ are shown in Table
7. The TP0 case aims to find the current situation. By setting δ to 0, the C1 criterion is
used and therefore time preferences are not considered during the route selection procedure. In
addition to this, by choosing v extremely small, this is unlikely to affect the outcome of the
scheduling problem and therefore provides insights into the situation where time preferences are
not considered. The TP1 setting allows us to evaluate the solution when time preferences are
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considered during the scheduling problem, but not during the routing procedure. The other
penalty settings allow us to analyze the effect of higher penalties on the solution, when time
preferences are considered in both stages of the problem. The same parameter values are used
as before, except for the value of ηmax which we increase to 300. The reason for this is that
a larger neighborhood is generated, creating more possible moves. Various experiments have
shown that choosing ηmax to be 300 leads to good solutions regarding both the objective value
and computation time.

Table 7: Penalty settings for the time preference experiment

TP0 TP1 TP2 TP3

v 0.0000001 0.1 0.1 0.1
δ 0.0 0.0 0.1 1.0

The computation time of this problem is higher compared to the original VRP-SITW. The aver-
age computation time using the TP2 setting is 33 seconds, which is higher than the computation
time of each of the three criteria, which are provided in Section 5.1. Multiple reasons for this
can be found. For example, the scheduling problem is extended with an extra variable and two
extra restrictions, which increases the time needed to solve the scheduling problem. In addition
to this, an extra neighborhood is generated compared to the original solution procedure, which
takes time to generate and evaluate.

The results of the experiment are displayed in Table 8. From the first row we can deduce
that slightly more vehicles are needed when time preferences are considered. Additional exper-
iments without the use of extra vehicles indicate that, on average, this has a negative effect on
both distance and preference satisfaction. This can be explained by the need for extra vehicles
to be able to satisfy the preferences of customers. This result is also visible in Section 5.4 where
more vehicles are needed when time windows are exogenous.

Table 8: Comparison of the different penalty settings

TP0 TP1 TP2 TP3

Average number of vehicles 8.9 8.9 9.1 9.2
Average distance 909.2 933.1 924.0 928.4
Average fraction of satisfied customers (%) 63.2 68.3 81.6 82.3
Average deviation from preference (%) 8.2 6.4 2.2 2.0

Considering the first two settings, we observe that incorporating time preferences during the
scheduling phase increases the distance, but has a positive effect on the satisfaction of time
preferences regarding both evaluation criteria. Comparing this to the results of TP2 indicates
that when the time preference is also considered during the route generation phase, this has
a substantial positive effect on the satisfaction of the preferences of the customers. The aver-
age distance obtained when using the TP2 setting decreases compared to the TP1 setting and
increases with only 1.6% on average compared to the TP0 setting. This suggests that when
time preferences are considered, it is important to incorporate those during the route generation
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phase as well. The effect of increasing the penalty costs can be deduced from the comparison of
the last two settings. This indicates that increasing the penalty costs does not have a significant
effect on the satisfaction of preferences, nor on the distance.

Comparing the TP0 setting with the TP2 setting provides us with insight on the effect of
time preferences. On average, the distance increases with only 1.6%. Considering the preference
satisfaction on the other hand, the average deviation from the preference declines with 73.2%
and the percentage of customers whose preference is satisfied increases with 29.1%. For this
reason, we can conclude that taking into account the time preferences of customers in both
phases, increases the percentage of customers of which the time preferences are satisfied. We
should be careful to conclude that the customer satisfaction is also improved. When customers
are provided with the option to indicate their preferences, they might expect that their prefer-
ences are likely to be satisfied. Due to higher expectations we are unable to conclude what the
actual effect on customer satisfaction is. However, the differences in our evaluation criteria are
substantial enough to suspect that customer satisfaction increases.
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6 Conclusion

In this thesis we analyzed the vehicle routing problem with self-imposed time windows and
the proposed solution procedure by Jabali et al. (2015). We implemented their hybrid algo-
rithm, consisting of a routing and a scheduling phase. The routing phase is implemented via
a tabu search heuristic, with 2-opt* and Or-opt neighborhood generation methods. Scheduling
is performed by solving an LP problem that implicitly inserts time buffers into a scheduled route.

Our first contribution was to analyze the experiments discussed by Jabali et al. (2015). Our
analysis indicated that there were major differences between their results and the results of our
experiments. We attributed these differences to the interpretation of the neighborhood gen-
eration methods. As we stated, small differences in implementation have a large effect of the
solution on the heuristic.

In addition to this, we investigated the effect of different initial solutions. Our experiments
argue that both the objective value and the average computation time can be reduced by imple-
menting a different initial solution method compared to the nearest neighbor heuristic that was
implemented by Jabali et al. (2015). The best result among the initial solutions we implemented
was achieved by the nearest neighbor heuristic with additional time constraints.

Furthermore, we implemented a random-sized tabu list to evaluate the importance of the optimal
size of the tabu list. Our experiments indicated that, when no specific estimation of the optimal
tabu list size can be made, random size within a well specified interval produces satisfying results.

Lastly, we included time preferences into our model. In this way, we can deal with exogenous
time windows as a suggestion rather than a condemnation, which is the case in the VRPTW. We
assumed that service before and after the preferred time window are both penalized. Due to the
incorporation of time preferences, we extended the LP problem and proposed some alterations
to the solution procedure. Our results indicate that incorporating time preferences in both
stages of the problem increases the likeliness of satisfying a customers preference and decreases
the average deviation from the preference of the customer. However, because of different expec-
tations in a situation where customers can indicate their preferences, we cannot conclude with
absolute certainty that overall customer satisfaction increases by incorporating time preferences.

For further research on this topic it would be interesting to analyze past customer behavior,
in order to forecast their time preferences. In this case, the model including time preferences
will indeed increases customer satisfaction, because the expectations of the customer will not
change. Other topics of future research are to analyze the effect of time dependent travel times,
as well as the inclusion of backhauls. Both of these topics are well studied in the context of vehicle
routing problems, and would be interesting to investigate in the context of the VRP-SITW.
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7 Appendix

Table 9: Comparison of the three move selection criteria for the Augerat instances

Instance Objective value CPU time (milliseconds)
C1 C2 C3 C1 C2 C3 Total

32 k5 1,466.5 1,372.5 1,466.5 2,529 3,878 4,409 10,816
33 k5 910.1 910.1 910.1 1,668 2,766 3,117 7,551
33 k6 987.5 992.3 987.5 1,907 3,518 3,819 9,244
34 k5 1,151.2 1,145.1 1,151.2 2,263 2,894 4,150 9,307
36 k5 1,389.6 1,429.4 1,389.6 1,890 3,924 3,474 9,288
37 k5 1,183.9 1,183.9 1,183.9 1,815 3,544 3,439 8,798
37 k6 1,471.0 1,402.9 1,471.0 3,678 3,887 7,046 14,611
38 k5 1,190.9 1,190.7 1,190.9 1,828 3,494 3,528 8,850
39 k5 1,533.2 1,535.0 1,533.2 2,409 4,753 4,411 11,573
39 k6 1,450.8 1,450.8 1,450.8 2,330 4,216 4,114 10,660
44 k6 1,533.6 1,545.9 1,533.6 2,192 3,938 4,078 10,208
45 k6 1,358.6 1,356.9 1,358.6 2,354 4,285 4,105 10,744
45 k7 1,875.1 1,859.5 1,875.1 2,675 4,650 4,563 11,888
46 k7 1,341.1 1,326.8 1,341.1 2,646 5,081 4,461 12,188
48 k7 1,795.6 1,786.6 1,795.6 2,697 4,743 4,489 11,929
53 k7 1,622.0 1,795.6 1,622.0 8,829 5,298 14,956 29,083
54 k7 2,178.1 2,121.6 2,178.1 5,423 5,970 9,360 20,753
55 k9 1,471.2 1,466.0 1,471.2 2,938 5,719 5,251 13,908
60 k9 2,144.1 2,233.5 2,144.1 6,215 6,526 10,618 23,359
61 k9 1,270.6 1,312.8 1,270.6 3,556 5,857 6,064 15,477
62 k8 2,278.7 2,211.4 2,278.7 4,849 13,974 8,469 27,292
63 k10 1,997.1 1,866.7 1,997.1 5,544 7,170 9,435 22,149
63 k9 2,880.3 2,960.6 2,880.3 4,206 9,736 7,615 21,557
64 k9 2,391.9 2,371.5 2,391.9 5,339 8,086 9,570 22,995
65 k9 1,583.4 1,580.6 1,583.4 4,293 7,610 7,343 19,246
69 k9 1,646.5 1,674.1 1,646.5 4,506 8,934 7,557 20,997
80 k10 3,486.9 3,516.5 3,486.9 10,800 10,504 17,855 39,159
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Table 10: Comparison of the three move selection criteria for the Solomon instances

Instance Objective value CPU time (milliseconds)
C1 C2 C3 C1 C2 C3 Total

R101 1,344.4 1,143.2 1,346.6 22,123 57,852 25,693 105,668
R102 1,344.0 1,142.6 1,346.1 20,047 63,451 25,493 108,991
R103 1,343.1 1,141.7 1,345.1 18,613 59,319 22,606 100,538
R104 1,342.0 1,140.8 1,343.6 17,059 55,839 16,987 89,885
R105 1,341.4 1,140.3 1,341.4 15,505 49,777 19,062 84,344
R106 1,341.4 1,140.3 1,341.4 15,268 48,002 18,488 81,758
R107 1,341.4 1,140.3 1,341.4 15,088 41,912 18,432 75,432
R108 1,341.4 1,140.3 1,341.4 15,170 25,557 18,585 59,312
R109 1,341.4 1,140.3 1,341.4 15,288 25,366 18,650 59,304
R110 1,341.4 1,140.3 1,341.4 15,290 25,472 19,446 60,208
R111 1,341.4 1,140.3 1,341.4 15,190 25,362 18,456 59,008
R112 1,341.4 1,140.3 1,341.4 15,169 25,327 18,369 58,865
C101 826.0 826.0 826.0 14,753 22,556 17,409 54,718
C102 826.0 826.0 826.0 14,706 22,560 17,311 54,577
C103 826.0 826.0 826.0 14,621 22,189 17,023 53,833
C104 826.0 826.0 826.0 14,525 22,237 16,986 53,748
C105 826.0 826.0 826.0 14,668 22,580 17,250 54,498
C106 826.0 826.0 826.0 15,058 22,705 17,447 55,210
C107 826.0 826.0 826.0 14,710 27,709 18,016 60,435
C108 826.0 826.0 826.0 14,741 37,932 17,636 70,309
C109 826.0 826.0 826.0 14,728 22,195 17,100 54,023
RC101 1,154.3 1,154.3 1,154.3 16,513 23,922 19,660 60,095
RC102 1,154.3 1,154.3 1,154.3 16,360 23,996 19,542 59,898
RC103 1,154.3 1,154.3 1,154.3 16,308 23,938 17,091 57,337
RC104 1,154.3 1,154.3 1,154.3 16,855 23,630 19,285 59,770
RC105 1,155.2 1,155.2 1,157.2 31,867 25,519 14,652 72,038
RC106 1,154.3 1,154.3 1,154.3 25,725 23,562 19,364 68,651
RC107 1,154.3 1,154.3 1,154.3 26,960 23,437 19,231 69,628
RC108 1,154.3 1,154.3 1,154.3 30,425 23,433 19,107 72,992
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Table 11: Comparison of the four penalty settings for the Augerat instances

Instance Objective value Penalty Ratio (%)
P5 P10 Prop 1.3dist P5 P10 Prop 1.3dist

32 k5 1,372.5 1,375.2 1,375.9 2,082.6 39.4 39.5 39.5 48.1
33 k5 910.1 910.1 910.1 1,444.1 23.1 23.1 23.1 38.1
33 k6 987.5 987.5 987.5 1,507.6 24.5 24.5 24.5 35.7
34 k5 1,145.1 1,145.2 1,145.2 1,847.6 30.9 30.9 30.9 44.3
36 k5 1,389.6 1,389.6 1,389.7 2,057.9 41.6 41.6 41.6 48.8
37 k5 1,183.9 1,183.9 1,183.9 1,750.2 40.4 40.4 40.4 47.3
37 k6 1,402.9 1,403.8 1,404.1 2,354.5 29.2 29.3 29.3 44.7
38 k5 1,190.7 1,190.7 1,190.7 1,830.8 33.4 33.4 33.4 45.8
39 k5 1,533.2 1,533.2 1,533.2 2,222.3 45.8 45.8 45.8 50.9
39 k6 1,450.8 1,450.8 1,450.8 2,236.8 38.5 38.5 38.5 48.1
44 k6 1,533.6 1,534.3 1,534.4 2,349.5 32.0 32.1 32.1 42.3
45 k6 1,356.9 1,358.8 1,359.6 2,113.8 26.2 26.3 26.4 39.4
45 k7 1,859.5 1,862.1 1,864.8 2,825.0 37.0 37.1 37.2 46.5
46 k7 1,326.8 1,327.5 1,328.6 2,052.9 30.4 30.4 30.5 41.6
48 k7 1,786.6 1,788.2 1,788.7 2,751.7 35.1 35.2 35.2 46.3
53 k7 1,622.0 1,622.7 1,622.7 2,733.9 35.6 35.6 35.6 46.9
54 k7 2,121.6 2,123.1 2,124.9 3,166.2 42.1 42.1 42.1 49.9
55 k9 1,466.0 1,466.0 1,466.0 2,217.0 24.0 24.0 24.0 32.5
60 k9 2,144.1 2,147.6 2,151.7 3,184.8 34.3 34.4 34.5 43.9
61 k9 1,270.6 1,270.6 1,270.6 2,016.9 14.5 14.5 14.5 31.2
62 k8 2,211.4 2,214.6 2,216.3 3,425.5 39.6 39.7 39.8 49.0
63 k10 1,866.7 1,867.1 1,867.5 2,896.0 26.0 26.0 26.1 38.4
63 k9 2,880.3 2,886.8 2,888.9 4,285.0 41.9 42.0 42.0 50.0
64 k9 2,371.5 2,374.7 2,374.5 3,530.2 38.9 39.0 39.0 46.1
65 k9 1,580.6 1,581.1 1,581.3 2,585.8 23.8 23.8 23.9 37.5
69 k9 1,646.5 1,646.5 1,646.5 2,605.5 26.2 26.2 26.2 40.5
80 k10 3,486.9 3,491.8 3,491.9 5,055.7 46.9 47.0 47.0 52.6
Average 33.4 33.4 33.4 43.9
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Table 12: Comparison of distance of VRP-SITW with the distance in the optimal VRP solutions
for the Augerat instances

Instance P5 (%) P10 (%) Prop (%) 1.3dist (%)

32 k5 106.2 106.2 106.2 106.2
33 k5 105.8 105.8 105.8 104.0
33 k6 100.5 100.5 100.5 100.5
34 k5 101.7 101.7 101.7 101.7
36 k5 101.5 101.5 101.5 101.4
37 k5 100.9 100.9 100.9 101.5
37 k6 104.6 104.6 104.6 105.6
38 k5 108.7 108.7 108.7 104.6
39 k5 101.1 101.1 101.1 102.1
39 k6 107.5 107.5 107.5 107.5
44 k6 111.3 111.3 111.3 111.3
45 k6 106.0 106.0 106.0 104.4
45 k7 102.2 102.2 102.2 101.4
46 k7 101.0 101.0 101.0 100.8
48 k7 108.0 108.0 108.0 105.9
53 k7 103.3 103.4 103.4 110.5
54 k7 105.4 105.4 105.4 104.5
55 k9 103.9 103.9 103.9 107.2
60 k9 104.1 104.1 104.1 101.6
61 k9 105.0 105.0 105.0 103.1
62 k8 103.5 103.5 103.5 104.1
63 k10 105.0 105.0 105.0 104.4
63 k9 102.5 102.5 102.5 100.8
64 k9 103.3 103.3 103.3 104.4
65 k9 102.3 102.3 102.3 105.6
69 k9 104.0 104.0 104.0 102.1
80 k10 104.9 104.9 104.9 104.5
Average 104.2 104.2 104.2 104.1
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Table 13: Comparison of VRP-SITW with the best known VRPTW
solutions for the Solomon instances

Instance TF TS/TF (%) KF KF −KS Penalty ratio (%)

R101 1,637.7 52.5 20 12 24.8
R102 1,466.6 58.6 18 10 24.7
R103 1,208.7 71.2 14 6 24.7
R104 971.5 88.5 11 3 24.6
R105 1,355.3 63.5 15 7 24.6
R106 1,252.0 68.7 12 4 24.6
R107 1,064.6 80.8 11 3 24.6
R108 960.9 89.5 9 1 24.6
R109 1,146.9 75.0 13 5 24.6
R110 1,068.0 80.5 12 4 24.6
R111 1,048.7 82.0 12 4 24.6
R112 982.1 87.6 9 1 24.6
C101 827.3 99.8 10 0 0.0
C102 827.3 99.8 10 0 0.0
C103 826.3 100.0 10 0 0.0
C104 822.9 100.4 10 0 0.0
C105 827.3 99.8 10 0 0.0
C106 827.3 99.8 10 0 0.0
C107 827.3 99.8 10 0 0.0
C108 827.3 99.8 10 0 0.0
C109 827.3 99.8 10 0 0.0
RC101 1,619.8 63.3 15 6 11.1
RC102 1,457.4 70.4 14 5 11.1
RC103 1,258.0 81.5 13 4 11.1
RC104 1,261.7 81.3 11 2 11.1
RC105 1,513.7 67.8 15 6 11.2
RC106 1,424.7 72.0 11 2 11.1
RC107 1,207.8 84.9 12 3 11.1
RC108 1,114.2 92.1 11 2 11.1
Average 83.1 13.3

TF = distance for VRPTW, TS = distance for VRP-SITW,
KF = number of vehicles used for VRPTW,
KS = number of vehicles used for VRP-SITW
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Table 14: Comparison of the different initial solutions for the Solomon instances using the C1
criterion

Instance Objective value CPU time (milliseconds)
NN NN time Sweep Saving NN NN time Sweep Saving

R101 1,344.4 1,088.8 1,072.3 1,295.2 22,123 12,749 15,203 26,658
R102 1,344.0 1,088.5 1,072.0 1,294.2 20,047 11,242 15,322 42,796
R103 1,343.1 1,087.8 1,071.7 1,292.6 18,613 11,045 12,996 33,762
R104 1,342.0 1,086.6 1,071.3 1,290.9 17,059 12,466 13,840 19,056
R105 1,341.4 1,086.1 1,071.1 1,289.5 15,505 11,769 12,046 17,545
R106 1,341.4 1,086.1 1,071.1 1,289.5 15,268 10,899 12,089 17,759
R107 1,341.4 1,086.0 1,071.1 1,289.5 15,088 11,467 11,548 17,715
R108 1,341.4 1,085.9 1,071.1 1,289.5 15,170 11,535 10,940 17,353
R109 1,341.4 1,085.9 1,071.1 1,289.5 15,288 11,207 11,694 17,249
R110 1,341.4 1,085.9 1,071.1 1,289.5 15,290 10,771 11,527 17,175
R111 1,341.4 1,085.9 1,071.1 1,289.5 15,190 10,519 11,596 17,324
R112 1,341.4 1,085.9 1,071.1 1,289.5 15,169 11,051 10,790 17,027
C101 826.0 825.2 923.0 972.2 14,753 10,667 10,655 10,430
C102 826.0 825.2 923.0 972.2 14,706 10,674 10,442 10,420
C103 826.0 825.2 923.0 972.2 14,621 9,730 10,755 10,709
C104 826.0 825.2 923.0 972.1 14,525 9,751 10,440 17,925
C105 826.0 825.2 923.0 972.1 14,668 9,849 10,832 19,118
C106 826.0 825.2 923.0 972.1 15,058 10,671 10,852 20,117
C107 826.0 825.2 923.0 972.1 14,710 10,708 10,328 19,968
C108 826.0 825.2 923.0 972.1 14,741 10,738 10,739 18,542
C109 826.0 825.2 923.0 972.1 14,728 10,376 10,401 19,354
RC101 1,154.3 1,131.1 1,192.8 1,148.2 16,513 9,465 14,118 20,068
RC102 1,154.3 1,131.1 1,192.1 1,147.9 16,360 9,789 14,800 20,809
RC103 1,154.3 1,131.1 1,191.5 1,147.6 16,308 9,929 13,861 20,727
RC104 1,154.3 1,131.1 1,191.2 1,147.5 16,855 9,304 15,007 20,665
RC105 1,155.2 1,131.5 1,192.7 1,148.9 31,867 10,022 15,768 24,070
RC106 1,154.3 1,131.1 1,190.9 1,147.1 25,725 9,095 14,657 20,375
RC107 1,154.3 1,131.1 1,190.9 1,147.1 26,960 9,410 14,772 20,449
RC108 1,154.3 1,131.1 1,191.0 1,147.2 30,452 9,238 13,692 20,295
Average 1,130.1 1,017.8 1,058.5 1,152.4 17,702 10,556 12,473 19,843

NN = Nearest Neighbor Heuristic, NN time = Nearest Neighbor Heuristic with time
constrains,
Sweep = Sweep Heuristic, Saving = Savings Heuristic
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Table 15: Comparison of the two neighborhood generation methods using the C1 criterion for
the Augerat instances

Instance Objective CPU time (milliseconds)
Jabali et al. (2015) Diversification Jabali et al. (2015) Diversification

32 k5 1,466.5 1,521.2 2,529 2,660
33 k5 910.1 933.7 1,668 1,997
33 k6 987.5 986.4 1,907 3,298
34 k5 1,151.2 1,154.4 2,263 6,746
36 k5 1,389.6 1,438.6 1,890 4,239
37 k5 1,183.9 1,179.8 1,815 7,546
37 k6 1,471.0 1,545.4 3,678 3,687
38 k5 1,190.9 1,259.1 1,828 3,791
39 k5 1,533.2 1,409.8 2,409 8,213
39 k6 1,450.8 1,426.1 2,330 4,831
44 k6 1,533.6 1,533.6 2,192 4,658
45 k6 1,358.6 1,358.6 2,354 4,533
45 k7 1,875.1 1,967.2 2,675 4,933
46 k7 1,341.1 1,342.3 2,646 5,289
48 k7 1,795.6 1,806.0 2,697 5,371
53 k7 1,622.0 1,809.9 8,829 6,731
54 k7 2,178.1 2,237.9 5,423 6,280
55 k9 1,471.2 1,480.7 2,938 6,191
60 k9 2,144.1 2,158.7 6,215 8,600
61 k9 1,270.6 1,274.2 3,556 7,438
62 k8 2,278.7 2,274.9 4,849 13,199
63 k10 1,997.1 2,102.2 5,544 8,595
63 k9 2,880.3 3,064.5 4,206 8,872
64 k9 2,391.9 2,444.3 5,339 26,609
65 k9 1,583.4 1,576.1 4,293 25,334
69 k9 1,646.5 1,626.1 4,506 24,272
80 k10 3,486.9 3,621.6 10,800 12,153
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Table 16: Comparison of the different tabu list sizes κ for the C1 criterion for the Augerat
instances

Instance Objective value CPU time (milliseconds)
κ 20 [10,30] [10,40] [10,50] 20 [10,30] [10,40] [10,50]

32 k5 1,466.5 1,466.5 1,466.5 1,466.5 2,529 2,564 2,576 2,702
33 k5 910.1 910.1 910.1 910.1 1,668 1,549 1,504 1,565
33 k6 987.5 987.5 987.5 987.5 1,907 2,078 2,146 2,114
34 k5 1,151.2 1,151.2 1,151.2 1,151.2 2,263 2,231 2,232 2,292
36 k5 1,389.6 1,389.6 1,389.6 1,389.6 1,890 1,911 1,985 1,900
37 k5 1,183.9 1,183.9 1,183.9 1,183.9 1,815 1,855 1,874 1,869
37 k6 1,471.0 1,499.1 1,499.1 1,499.1 3,678 4,159 4,994 4,149
38 k5 1,190.9 1,190.9 1,190.9 1,190.9 1,828 1,787 1,800 1,788
39 k5 1,533.2 1,424.8 1,533.2 1,533.2 2,409 4,266 2,333 2,380
39 k6 1,450.8 1,450.8 1,450.8 1,450.8 2,330 2,246 2,306 2,230
44 k6 1,533.6 1,533.6 1,533.6 1,533.6 2,192 2,167 2,156 2,132
45 k6 1,358.6 1,358.6 1,358.6 1,358.6 2,354 2,283 2,287 2,278
45 k7 1,875.1 1,875.1 1,875.1 1,875.1 2,675 2,566 2,582 2,577
46 k7 1,341.1 1,341.1 1,341.1 1,341.1 2,646 2,513 2,540 2,506
48 k7 1,795.6 1,795.6 1,795.6 1,795.6 2,697 2,602 2,552 2,584
53 k7 1,622.0 1,785.4 1,675.7 1,675.7 8,829 2,950 5,894 5,613
54 k7 2,178.1 2,237.9 2,159.6 2,237.9 5,423 2,981 4,673 3,033
55 k9 1,471.2 1,471.2 1,471.2 1,471.2 2,938 2,980 2,995 2,988
60 k9 2,144.1 2,135.9 2,144.1 2,144.1 6,215 4,818 6,278 6,291
61 k9 1,270.6 1,270.6 1,270.6 1,270.6 3,556 3,593 3,634 3,696
62 k8 2,278.7 2,278.7 2,259.8 2,278.7 4,849 5,442 6,863 5,000
63 k10 1,997.1 1,976.9 1,976.9 1,976.9 5,544 4,996 5,081 5,054
63 k9 2,880.3 2,866.1 2,880.3 2,866.1 4,206 5,683 4,200 5,290
64 k9 2,391.9 2,391.9 2,391.9 2,391.4 5,339 6,273 5,488 8,786
65 k9 1,583.4 1,583.4 1,583.4 1,583.4 4,293 4,588 4,313 4,263
69 k9 1,646.5 1,646.5 1,646.5 1,646.5 4,506 4,891 4,565 4,675
80 k10 3,486.9 3,486.9 3,494.3 3,486.9 10,800 14,730 9,483 14,303
Average 1,688.5 1,692.2 1,689.7 1,692.5 3,755 3,730 3,679 3,854
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Taillard, É. (1991). Robust taboo search for the quadratic assignment problem. Parallel com-
puting, 17(4-5):443–455.

31


	Introduction
	Literature Review
	Problem Description
	Methodology
	Scheduling and Determining Buffers
	Solution procedure
	Initial Solution
	Neighborhood Generation
	Selection Criteria
	Tabu list

	VRP-SITW with time preferences
	Description of the VRP-SITW-TP
	Extra Routes
	Selection Criterion


	Computational Results
	Move Selection
	Tardiness Penalty
	Comparison of VRP-SITW to VRP
	Comparison of VRP-SITW to VRPTW
	Initial Solution
	Neighborhood Generation
	Tabu List
	Analysis of the VRP-SITW-TP

	Conclusion
	Appendix

