
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis
Econometrics & Operations Research

A TABU Search Heuristic for the
Capacitated Team Orienteering Problem

Author:
Mieke Jansen

Student number:
426021

Supervisor:
M.A. van Zon MSc

Second assessor:
Prof. dr. A.P.M. Wagelmans

July 8, 2018

Abstract

In this paper, we develop a heuristic algorithm to solve the Capacitated Team Orienteering Problem
(CTOP), which is a capacitated version of the Team Orienteering Problem (TOP). In the TOP, a number
of vehicle tours need to be constructed such that the total collected reward is maximized, while a limitation
on the tour duration exists. In the CTOP, additionally, customers have a non-negative demand and
vehicles face capacity constraints. Our solution technique builds upon the solution method for the TOP
as proposed by Tang and Miller-Hooks (2005). An adaptive memory procedure incorporates a tabu
search procedure, which makes use of variable neighbourhood search and executes random and greedy
tour improvement procedures. Computational experiments reveal that our heuristic is able to yield high-
quality solutions for the TOP as well as the CTOP in an efficient way.

Contents

1 Introduction 1

2 Mathematical formulation 3

3 Methodology 5
3.1 Adaptive Memory Procedure (AMP) . 6

3.1.1 Step 1: Generation of N vehicle tours . 7
3.1.2 Step 2: Construction of an initial solution . 8
3.1.3 Step 3: Improvement of the initial solution . 8
3.1.4 Step 4: Update of the adaptive memory . 9

3.2 Tabu search procedure . 10
3.2.1 Step A: Initialization . 10
3.2.2 Step B: Generation and improvement of neighbourhood solutions 11
3.2.3 Step C: Evaluation . 13

4 Computational results 15
4.1 TOP results . 16
4.2 CTOP results . 18

5 Conclusion 19

A Illustration of the tabu procedure 23

B Results for the TOP 25

C Results for the CTOP 32

i

1 Introduction

This paper presents and justifies the need to investigate a tabu search heuristic for the Capacitated Team
Orienteering Problem. It provides methods that will be used to implement, extend and improve a tabu search
approach for solving the Team Orienteering Problem (TOP) as proposed by Tang and Miller-Hooks (2005).
In the TOP, the goal is to find a fixed number of vehicle tours such that profit received from customers
is maximized. In doing so, a pre-specified time limit of a tour may not be exceeded. The TOP originates
from the outdoor sports game called orienteering, where participants try to visit as many control points as
possible. If a participant does not return to the finishing point in time, he or she is disqualified. The TOP can
be regarded as the multi-competitor version of the orienteering game. However, it has many more practical
applications. An example is the recruitment of college football players (Butt and Cavalier, 1994), where
the recruiter cannot possibly visit all high schools in the region to recruit players for the college football
team. To optimize the subset of high schools in the region to be visited, every high school is rewarded a
positive weight based on historical performance of this high school. Taking into consideration school hours, a
limitation exists on the available time per day to make visits. Regarding the high schools as vertices and the
college campus where the recruiter needs to start the day and return to at the end of the day as a depot, this
recruitment problem can be modelled as a TOP. Also, many pickup and delivery problems can be modelled
as TOPs, where time limits of tours exist due to work day length restrictions.

The TOP is closely related to the Orienteering Problem (OP) and the Vehicle Routing Problem (VRP).
The OP, also known as the Selective Traveling Salesman Problem (STSP), consists of constructing a single tour
while maximizing profits and not exceeding a stipulated time limit. In the TOP, however, besides selecting
and ordering customers in a tour, also an assignment decision needs to be made, on which customers should
be assigned to which vehicles. Moreover, the TOP differs from the VRP in two important ways. Firstly,
the sets of vertices to be covered are significantly different. Whereas in the VRP all customers need to be
served in the set of constructed tours, the constructed tours in the TOP might include only a subset of
the customers. Secondly, the objectives of the VRP and the TOP differ. Whereas in the VRP the goal is
to minimize the cost associated with the constructed tours, the TOP strives to maximize the total profit
associated with the visits to customers.

As a consequence of these differences, techniques to address the widely studied (S)TSP and VRP are not
straightforwardly applicable to the TOP. Nevertheless, the TOP is a problem with many practical applica-
tions, as was pointed out earlier. Therefore, it is relevant to investigate solution methods for this problem.

The first study to propose an exact method to solve the TOP was presented by Butt and Ryan (1999). In
their approach they combined column generation and branch-and-bound algorithms to solve a set-partitioning
formulation of the TOP. A column generation technique was also used by Gueguen (1999), who also touched
upon time windows for visiting customers. Following the study by Gueguen (1999), Boussier et al. (2007)
presented an algorithm that solves the TOP exactly. Their method builds on Gueguen’s Branch and Price
algorithm, developing more refined techniques as well as a generic Branch and Price scheme that can be
applied to different types of orienteering problems, amongst which the TOP. More recently, El-Hajj et al.
(2016) presented a cutting planes algorithm that was able to find an optimal solution to instances that were
not earlier solved to optimality.

Laporte and Martello (1990) proved that the OP is NP-hard. Since the OP is the single-vehicle version
of the TOP, the TOP can also be concluded to be NP-hard. Therefore, in literature that considers solution
methods for the TOP, the focus often lies on heuristic approaches. The aforementioned algorithms are able
to solve small to medium instances of the TOP exactly. However, since the aim of this paper is to solve

1

relatively large problem instances of the TOP, a heuristic approach is preferred to exact solution methods.
Butt and Cavalier (1994) were one of the first to present a heuristic procedure for solving the TOP, which

showed to yield high-quality solutions within a reasonable amount of time. Tsiligirides (1984) developed a
stochastic algorithm to solve the one-vehicle variant of the TOP, earlier introduced as the OP. Chao et al.
(1996b) modified this heuristic to make it applicable to the TOP and compared it with a self-constructed
heuristic for the TOP. Results showed that the heuristic as constructed by Chao et al. (1996b) outperformed
the modified heuristic by Tsiligirides (1984) in 60% of the test problems and that the latter produced better
solutions in only 7% of all test problems. Before 2005, no study proposed to perform a tabu search method
for solving the TOP. Since a tabu search approach appeared to provide close to optimal solutions for the
OP in a study by Gendreau et al. (1998), Tang and Miller-Hooks (2005) proposed a tabu search heuristic
for the TOP, which also turned out to produce solutions of high quality. Their results outperformed those
of the heuristics as proposed by Chao et al. (1996b), whose 5-step meta-heuristic appeared to be the best
published heuristic for the TOP until then. Archetti et al. (2007) proposed numerous variable neighbourhood
search methods to solve the TOP. In particular, they showed that on average, the performance of all their
algorithms is better than that of the tabu search method by Tang and Miller-Hooks (2005). Ke et al. (2008)
used an ant colony optimization approach for the TOP and concluded that this approach belongs to one
of the most efficient and effective solution approaches for the TOP thus far. Vansteenwegen et al. (2009)
extended the existing studies on the TOP by introducing time windows. The incorporation of time windows
might be valuable in case of impatient customers or opening hours of places to be visited. Not only did their
iterated local search heuristic yield satisfying solutions, Vansteenwegen et al. (2009) also managed to reduce
the computation time with a factor of several hundreds with respect to the best known solution.

As mentioned earlier, Gendreau et al. (1998) developed a tabu search heuristic for the OP that was able
to provide solutions that approximated optimal solutions. Moreover, Tang and Miller-Hooks (2005) managed
to construct an effective and efficient tabu search algorithm for the TOP. The flexible structure of their tabu
search procedure allows for a wide applicability of the algorithm that they proposed. It is therefore useful to
further investigate and refine this heuristic.

Tang and Miller-Hooks (2005) justify their choice to make use of tabu search by its good performance in
the OP (Gendreau et al., 1998) and other complex combinatorial optimization problems in general (Glover,
1989, 1990). The strength of tabu search lies particularly in the ability to forbid a certain solution area,
allowing the process to move out of a local optimum. The tabu search algorithm will be incorporated in an
Adaptive Memory Procedure (AMP). Benefits of using an AMP to embed the tabu search algorithm include
its ability to save time by taking into account earlier computations and to exhibit a number of different
solutions of high quality (Taillard et al., 2001).

In this paper, first, parts of the research by Tang and Miller-Hooks (2005) will be replicated. This
means that a tabu search algorithm will be implemented as part of an Adaptive Memory Procedure, and
computational experiments will be re-executed. Subsequently, an extension to this heuristic will be suggested
and implemented, in order to be able to solve not only the TOP but also the Capacitated TOP (CTOP). In
this special case of the TOP, customers have a non-negative demand, and we do not only face tour duration
constraints, but also vehicle capacity constraints. A frequently encountered application of the CTOP is the
delivery of packages by a fleet of vehicles. Besides work day length constraints, vehicles will not be able to
carry an unlimited number of packages. Thus far, little research has been conducted to the CTOP. Archetti
et al. (2009) developed meta-heuristics to solve the CTOP that were based on tabu search in combination with
variable neighbourhood search. Tarantilis et al. (2013) incorporated a variable neighbourhood search method

2

in a bi-level framework, leading to results comparable to those of Archetti et al. (2009). The methods
described our this paper will be applied to problem instances used by Archetti et al. (2009) and we will
compare our results to theirs.

The remainder of this paper is structured as follows. In Section 2, a mathematical formulation of the
TOP is provided. In Section 3, the Adaptive Memory Procedure and the incorporated tabu search procedure
will be described thoroughly. Section 4 provides results of computational experiments conducted on data
instances for the TOP and the CTOP. These results will be compared with those obtained by Tang and
Miller-Hooks (2005) and Archetti et al. (2009). Finally, in Section 5, conclusions will be drawn.

2 Mathematical formulation

The CTOP as described in Section 1 can be formulated as an integer program. This section provides
mathematical notation of this integer program, which helps to understand the structure of the CTOP. To
be able to provide a mathematical formulation of the CTOP, we introduce some notation. The CTOP can
be considered as a complete graph G = (V,E), where V = {0, 1, . . . , n − 1} and E = {(i, j) | i, j ∈ V }
represent the vertex set and the edge set, respectively. The goal is to construct m vehicle tours which lead to
the collection of maximum reward. Each vehicle has an identical maximum tour duration L and maximum
capacity Q. In V , both vertices 0 and n− 1 represent depots, being the starting point and finishing point of
each tour, respectively, and we define D = {0, n − 1} as the set of depots. For the sake of clear notation,
starting depot 0 will be denoted as Ds and finishing depot n− 1 will be denoted as Df . Consequently, V \D
represents the set of vertices in the graph that are not a depot. The vertices in this set will be referred to as
customer vertices. Visiting a customer vertex always comes along with a positive reward. A depot is always
associated with zero reward. The starting depot and finishing depot of a vehicle tour might differ from each
other, but both are equal for each vehicle in the CTOP.

Four parameters are considered. dij denotes the travel distance from vertex i to vertex j. This distance
is computed as the Euclidian distance between two vertices. As a result of using the Euclidian distance as
a distance measure, the triangle inequality holds; visiting an extra vertex in a route will always result in an
increase of the tour duration. Three parameters are associated with each customer vertex. si denotes the
service time at vertex i, which, together with dij , determines the tour duration. Visiting vertex i results in
the collection of reward ri. The demand of customer vertex i is denoted by qi, which is an essential parameter
regarding the limited capacity of each vehicle.

We introduce two decision variables, one associated with edges and one associated with vertices. xijk

represents the number of times that edge (i, j) is traversed by vehicle k. The number of times that vertex
i is visited by vehicle k is denoted by yik. The fact that every customer vertex can be visited at most once
implies that both decision variables are binary variables.

3

The CTOP can now be formulated as follows:

max

n−2∑
i=1

m∑
k=1

riyik, (1)

s.t.
n−2∑
j=1

m∑
k=1

xDsjk = m, (2)

n−2∑
i=1

m∑
k=1

xiDfk = m, (3)∑
i<j

xijk +
∑
i>j

xjik = 2yjk j = 1, 2, . . . n− 2; k = 1, 2, . . . ,m, (4)

n−3∑
i=0

∑
j>i

dijxijk +

n−2∑
i=1

siyik ≤ L k = 1, 2, . . . ,m, (5)

n−2∑
i=1

qiyik ≤ Q k = 1, 2, . . . ,m, (6)

m∑
k=1

yik ≤ 1 i = 1, 2, . . . , n− 2, (7)∑
i,j∈U,i<j

xijk ≤ |U | − 1 U ⊂ V \D; 2 ≤ |U | ≤ n− 3; k = 1, 2, . . . ,m, (8)

xijk ∈ {0, 1} 0 ≤ i < j ≤ n− 1; k = 1, 2, . . .m, (9)

yik ∈ {0, 1} i = 1, 2, . . . n− 2; k = 1, 2, . . .m. (10)

The objective function (1) represents the total reward that is collected by all m vehicles. Constraints (2)
and (3) ensure that exactly m tours start in the starting depot Ds and finish in the finishing depot Df .
Constraints (4) assure that when a vehicle visits a customer vertex, it must enter this vertex through an edge
and leave it through another. In this way, connectivity of each tour is guaranteed. Constraints (5) prohibit
each tour from exceeding the preset time limit. Since service time of customers is not taken into consideration
in this paper, constraint (5) can be simplified to

n−2∑
i=0

∑
j>i

dijxijk ≤ L. (11)

Constraints (6) impose a restriction on the used capacity of each vehicle. Constraints (7) ensure that each
customer vertex is visited by at most one vehicle. The existence of sub-tours is prevented by (8). Lastly, (9)
and (10) assure integrality of the decision variables.

Note that by setting the demand of each customer to zero, i.e., qi = 0 ∀i ∈ V \D, and by setting the
capacity Q to any strictly positive number, the CTOP can be generalized to the TOP.

4

3 Methodology

Tabu search comes down to a local neighbourhood search where certain solutions are prohibited. In this way,
worsening of a solution is allowed in the hope that the process can steer out of a local optimum. In this
paper, the tabu criterion constitutes removing a vertex from a solution tour which was only recently inserted.
‘Recently’ is a broad term, but is specified by the tabu parameter θ, which will be elaborated on in Section
3.2.1. A solution is a tabu solution when this criterion was violated during the searching process. The tabu
search algorithm will always return a non-tabu neighbour, unless a found tabu solution comes along with
a higher reward than any solution found thus far. A neighbourhood solution, or neighbour, is defined as a
solution which contains the same number of vehicle tours as the initial solution and in which at least one
vertex is visited that was not contained in any of the vehicle tours in the initial solution.

During the tabu search procedure, a method of variable neighbourhood search is employed. This means
that during the searching process, the solution space that is explored can vary. In particular, we will switch
between small and large neighbourhoods exploration stages during the searching process. When investigating
a large exploration neighbourhood yields an improved solution over the current best feasible solution, the
searching process will switch to a small neighbourhood stage, granting the process to explore a smaller
scope of possible solutions in the next iteration. If investigating a small exploration neighbourhood yields
dissatisfying results (i.e. no improved solutions are being found within a given time frame), the searching
process will return to the large neighbourhood exploration stage. Although exploring a large neighbourhood
might lead to better neighbourhood solutions, we need to take into account computational efficiency of our
algorithm, which is why the tabu search process will also return to small neighbourhood stages. This variable
neighbourhood search is based on the approach of Tang and Miller-Hooks (2005), whose empirical experiments
showed that alternation between neighbourhood sizes indeed leads to an efficient searching process, without
major degradation in solution quality.

The tabu search algorithm as developed in Tang and Miller-Hooks (2005) is incorporated in an Adaptive
Memory Procedure (AMP). In an AMP, a memory is created in which partial solutions are stored. In our
application of the CTOP, a partial solution is defined as one single vehicle tour. In other words, a solution to
the CTOP always contains m partial solutions. As multiple iterations of the AMP are executed, this memory
is updated by storing partial solutions that were constructed by a local search procedure; hence the name
‘adaptive memory’ procedure. The updated memory will always be used as the starting point of a new AMP
iteration. In general, the AMP encompasses the following steps (Olivera and Viera, 2007):

Step 1. Initialize the adaptive memory,

Step 2. While a stopping criterion is not met:

a. Construct a new initial solution S by combining partial solutions from the adaptive memory,

b. Perform local search in order to improve the initial solution S. S∗ is the improved solution,

c. Update the adaptive memory by replacing low-quality partial solutions by higher-quality partial
solutions from S∗,

Step 3. Output a solution by combining partial solution from the adaptive memory.

In the AMP that is described in this paper, Step 1 can be identified as the generation of vehicle tours and
storing these in the adaptive memory. In Step 2a, m vehicle tours are combined to construct an initial
solution. The local search method that will be used in Step 2b is a tabu search procedure. The tabu

5

search procedure provides a neighbourhood solution to the initial solution, whose tours replace tours that are
currently stored in the AMP, if they come along with a higher reward, in Step 2c. This means that in every
AMP iteration, at most m vehicle tours in the AMP are replaced. Step 2 will be repeated a preset number
of times, after which a solution is outputted in Step 3. This step will encompass solving a variant to the set
packing model in order to be able to output the best possible solution.

The remainder of this section provides an extensive description of the steps to be executed in the AMP
and the tabu search procedure in Section 3.1 and 3.2, respectively.

3.1 Adaptive Memory Procedure (AMP)

The AMP that is described in this paper starts with generating a set of single vehicle tours. All generated
vehicle tours are stored in an adaptive memory. From these tours in the adaptive memory, a combination of
m tours is selected as an initial solution.

This initial solution is improved by using it as an input for the tabu search algorithm. In the tabu search
procedure, a number of neighbourhood solutions to the initial solution is constructed. The best non-tabu
neighbour is selected to be outputted, unless a tabu neighbour yield higher reward than the current best
feasible solution. After the tabu search procedure has been performed, the adaptive memory is updated by
replacing existing vehicle tours by vehicle tours that were created in the tabu procedure. A global overview
of the steps in the AMP and in the tabu search procedure is provided below.

Adaptive Memory Procedure

1. Generate N vehicle tours.

2. Construct an initial TOP solution by combining vehicle tours in the adaptive memory.

3. Improve initial solution by tabu procedure.

A. Initialize tabu parameters and neighbourhood size.

B. Generate neighbourhood solutions to the initial solution.

C. Evaluate all generated neighbours and determine which neighbour is of highest quality.

4. Update the adaptive memory.

During the execution of the AMP, several parameters are used, whose definitions can be found in Table 1.
The values of these parameters are fixed during the entire AMP. High values of N and λ are likely to lead
to solutions of higher quality. However, their impact on computational effort that is required to execute the
entire AMP needs to be taken into consideration when deciding on their values.

6

Table 1: AMP parameters
This table provides the definition of the parameters used in the Adaptive Memory Procedure and the steps
in which they occur.

Parameter Definition Step

λ Number of times that the AMP is executed before a final solution is outputted. 4

N Number of vehicle tours that are stored in the Adaptive Memory. 1

T Number of potential vehicle tours to be selected when constructing a feasible initial solution. 2

3.1.1 Step 1: Generation of N vehicle tours

The first step of the AMP comes down to the repeated execution of a procedure in which m feasible vehicle
tours are created. A feasible tour is defined as one of which the duration does not exceed time limit L. The
duration of a tour of vehicle k is denoted by D(tk).

In the construction of a vehicle tour, decisions need to be made on which vertices to include in a tour.
Given that the starting vertex and finishing vertex of each vehicle tour are known, constructing a tour comes
down to selecting a subset of customer vertices and deciding on the order in which they are visited. In this
decision process, an evaluation function is employed in order to valuate the quality of a vertex insertion into a
tour. The evaluation function that is employed when considering the insertion of a vertex j between vertices
p and q in a tour takes into account the ratio of the extra distance and the extra reward that this insertion
brings about, as well as the relative required capacity needed to insert this vertex. In particular,

E(j, p, q) =
dpj + djq − dpq

rj
∗ qj
C
. (12)

In the procedure that follows, an insertion is regarded of higher quality if the evaluation function in (12) is
lower. Since the space in the adaptive memory is specified at N , this procedure is executed dN/me times in
order to guarantee that at least N vehicle tours are created:

Creating m vehicle tours

1. Create m ‘dummy’ tours tk = {Ds, Df}. Let SE be the set of vertices that can be added to a
dummy tour without violating the time limit constraint:

SE = {j | dDsj + djDf
≤ L,∀j ∈ V }.

Set k = 1.

2. If tk contains no vertices but the depots, select a random vertex j ∈ SE and find two vertices p
and q in tk for which E(j, p, q) is minimal. Otherwise, select j ∈ SE and two vertices p and q for
which E(j, p, q) is minimal and for which the updated duration of tk does not exceed time limit
L.
If no such j can be found, go to Step 3. Otherwise, insert j in tk between p and q, set SE = SE\{j}
and repeat Step 2.

3. Set k = k + 1. If k > m, stop. Otherwise, go to Step 2.

7

The N vehicle tours that have been created are stored in the adaptive memory. Furthermore, the iteration
counters qAMP and qtabu are initialized at 0.

3.1.2 Step 2: Construction of an initial solution

In the second step of the AMP, the N tours that were generated in Step 1 are assigned a probability to be
selected in the initial solution. This probability is based upon the objective value of a tour, where tours with
a high reward will have a higher probability to be selected than those with low rewards. A more extensive
description of this procedure is provided below, where R(tk) denotes the total reward that is collected by
vehicle tour tk.

Constructing a feasible initial solution

1. Let candidate list CL contain all N tours in the adaptive memory. Select T vehicle tours with
highest rewards from the adaptive memory and sort them in a non-increasing order. Let Index(0) =

0 and assign each tour ti, i = 1, . . . , T an index value:

Index(i) =

∑i
j=1R(tj)∑T
j=1R(tj)

. (13)

2. Draw a random number from the uniform distribution on the interval [0, 1]. Select tour ti for which
the random number lies between Index(i − 1) and Index(i). Add tour ti to the current solution
and remove all tours from CL that have at least one customer vertex in common with ti.

3. If CL = ∅ and the current solution contains less than m tours, go to Step 4. If the current solution
contains m tours, stop. Otherwise, go to Step 2.

4. Execute the procedure Creating m vehicle tours in Section 3.1.1: every time a tour is created, add
it to the current solution. If the current solution contains m vehicle tours, stop.

3.1.3 Step 3: Improvement of the initial solution

In this step, the tabu search procedure is called in an attempt to improve the initial feasible solution.
The tabu procedure can be characterized into three main steps: (A) Initialization, (B) Improvement and
(C) Evaluation. However, before the tabu procedure can be performed on the feasible initial solution, the
iteration counter qstepC needs to be initialized at 0. This iteration counter is used to keep track of the number
of times that Step C of the tabu procedure is performed. This number is restricted to a maximum of µ, after
which the tabu procedure will terminate and a solution will be outputted.

In Section 3.2, the tabu procedure will be explained in detail. The procedure takes the initial feasible
solution as input and returns a solution with m vehicle tours, which will be used as an input for Step 4 of
the AMP. The tabu procedure employs both random and greedy procedures in the searching process. These
methods are not only aimed at maximizing collected reward, but also at minimizing the travelled distance
of each vehicle. Shorter tours can facilitate the insertion of extra vertices in successive iterations, which can
ultimately lead to higher reward of the final solution.

8

3.1.4 Step 4: Update of the adaptive memory

In the final step of the AMP, the adaptive memory is updated and eventually, if the AMP has been executed
λ times, a final solution is outputted. Otherwise, the AMP returns to Step 2 and uses the updated adaptive
memory to construct a new solution.

When updating the adaptive memory, we attempt to replace low-reward vehicle tours by vehicle tours
that yield higher reward. For each tour tk in solution S that was outputted in Step 3 of the AMP, we check
whether its reward is higher than that of tour tlow, the tour with lowest reward in the adaptive memory. If
this is true, tlow is removed from the adaptive memory and replaced by tk.

The AMP-counter is updated, that is, qAMP = qAMP + 1. If qAMP < λ, the procedure returns to Step 2
of the AMP. Otherwise, the AMP terminates by identifying and outputting the best solution. To output the
best solution, two different approaches are followed. Firstly, every solution that was ever outputted by the
tabu procedure and passed to Step 4 of the AMP is stored. The solution with the highest reward is selected
as the best solution. Call this solution S∗tabu.

The second approach to construct a solution is to combine m tours that are currently stored in the
adaptive memory. To find an optimal combination of tours, a variant of the set packing problem is solved
exactly. To do so, we introduce the binary decision variable xi, which is equal to 1 if tour i is selected in
the final solution and 0 otherwise. Additionally, two parameters are used. aij is equal to 1 if tour i visits
customer vertex j. The total reward that is collected when tour i is executed is denoted by ri.

The variant of the set packing problem that will be solved can be modelled as follows:

max

N∑
i=1

rixi, (14)

s.t.
N∑
i=1

aijxi ≤ 1 j ∈ V \D, (15)

N∑
i=1

xi ≤ m, (16)

xi ∈ {0, 1} i = 1, . . . , N. (17)

In this formulation, the objective is to maximize the total reward collected from executing the tours that are
selected in the solution, as shown in (14). Constraints (15) prohibit a solution from containing tours with a
customer node in common. In other words, a tour can be added to the solution if and only if it visits solely
customer nodes which were not yet visited by other tours in the current solution. Constraint (16) ensures
that the number of selected tours does not exceed the number of available vehiclesm. Solving this set packing
problem yields the optimal combination of tours contained in the adaptive memory. Call this solution S∗AM .

The final solution that is outputted by Step 4 of the AMP is determined as follows:

S∗ = arg min
S∈{S∗

tabu,S
∗
AM}

R(S). (18)

Note that the total reward of a solution S is denoted by R(S), not to be confused with R(tk) as used in
Equation (13), which represents the total reward of a partial solution, i.e. the total reward of a single vehicle
tour.

9

3.2 Tabu search procedure

The tabu search procedure that is called from the AMP can be divided into three main steps: initialization,
solution improvement and evaluation. In the initialization, a set of tabu parameters is determined. This
set depends on the solution space that will be explored in this step. Recall that during the search process,
Tang and Miller-Hooks (2005) decided to make use of variable neighbourhood search: the method alternates
between small and large stages of neighbourhood exploration, as was explained earlier in Section 3. In the
initialization step, the tabu parameters are set to a small neighbourhood stage.

In the second step, random and greedy procedures are applied to explore different neighbourhoods and
to generate corresponding neighbourhood solutions. These solutions are improved by balancing longer and
shorter tours and by exchanging vertices between two tours. When neighbour solutions have been generated,
the evaluation step selects a solution from all generated solutions which yields the highest reward and is not
on the tabu list. During the tabu search procedure, we will always keep track of a list of vertices that cannot
be removed from a tour in the current iteration. If a vertex from this list is removed anyways, the tabu
status of the solution is updated. A solution is put on the tabu list when, during the searching process, a
vertex is removed from a tour less than θ iterations after it was inserted in this tour. θ is a random number
that depends on the two tabu parameters θmin and θmax, which are initialized in the first step of the tabu
procedure. A solution that is on the tabu list can only be selected if its reward is higher than the reward of
the best found solution thus far. The solution that is selected in the evaluation step will be used as the new
initial solution for the next tabu iteration. The following sections will give a comprehensive description of
each step in the tabu search procedure.

3.2.1 Step A: Initialization

In Step A of the tabu procedure, the tabu parameters are initialized to explore a small neighbourhood stage.
This means that a relatively small number of neighbourhood solutions of the initial solution from the AMP
will be be generated in Step B. The tabu parameters are defined as follows:

Table 2: Tabu parameters
This table gives the definition of the parameters in the tabu procedure and the steps in which they occur.

Parameter Definition Step
α Maximum number of non-improvement iterations in the tabu search procedure. C.3
β Number of neighbourhood solutions that will be generated in the tabu search B.6

procedure.
δ Every δ tabu iterations, the previously selected non-tabu solutions will be examined. C.3

If all of them are feasible, penalty coefficient η will be halved; if all of them are
infeasible, η will be doubled.

ε Tour duration limit L is sometimes adjusted to L · (1 + ε) in the tabu search procedure. B.3
φ Maximum capacity Q is sometimes adjusted to Q · (1 + φ) in the tabu search procedure. B.3
η Penalty coefficient applied to the rewards of solutions that were generated in the C.1

tabu search procedure, which are infeasible due to time limit constraint.
ζ Penalty coefficient applied to the rewards of solutions that were generated in the C.1

tabu search procedure, which are infeasible due to capacity constraint.
µ Maximum number of times that Step C of the tabu procedure is executed. C.3
[θmin, θmax] Tabu tenure θ for each recently inserted vertex is randomly chosen from the interval B.3,B.4,

[θmin, θmax]. B.5

10

3.2.2 Step B: Generation and improvement of neighbourhood solutions

In Step B of the tabu procedure, a number of neighbourhood solutions of the current solution are generated
and improved by using heuristic procedures. The number of generated neighbourhood solutions is equal to
the parameter β, which varies with the size of the neighbourhood. Recall that a neighbour is defined as
a combination of m tours that contains at least one vertex which is not contained in the initial solution.
Generating and improving a neighbour encompasses at most five steps, which are repeated β times. This
results in the generation of β neighbours to the initial solution.

Besides keeping track of the tabu status of a solution, the feasibility of every generated solution is stored.
This is necessary in order to determine whether penalty coefficients η and ζ can be halved or need to be
doubled in the evaluation step. Infeasible solutions can occur when a solution tour exceeds the stipulated
time limit or maximum capacity. Allowing this to happen during the tabu procedure can help the searching
process to escape from a local minimum. Therefore, we will see that in Step B.3, B.4 and B.5, solutions
might turn out infeasible. However, infeasible solutions as final solutions are not desirable and will thus be
penalized when evaluating their quality.

Step B of the tabu search procedure encompasses a number of sub-steps, which can be summarized as
follows:

Tabu procedure Step B - Overview

0. Let neighbourhood counter p = 0, set the current initial solution to S. Let S̄ be the set of vertices
that are not contained in the tours of S.

1. Randomly select two distinct tours t1 and t2 from S.

2. Try to insert additional vertices in t1 and t2. If any vertex could be inserted into either t1 or t2,
go to Step 4.

3. Exchange vertices between t1 and t2 and S̄.

4. Try to balance between t1 and t2 by removing a node from the longer tour and inserting it in the
shorter tour. If this was successful, go to Step 6.

5. Exchange vertices between t1 and t2 in order to decrease the total duration.

6. Let p = p+ 1 and qtabu = qtabu + 1. If p < β, go to Step 1.

Depending on whether a preceding step was successful, not every sub-step will always be executed. In the
remainder of this section, a more thorough description of steps B.1-B.5 will be provided. In Appendix A, a
visual representation of the solution tours during different stages of Step B of the tabu procedure is provided
for two TOP problem instances.

Step B.1 In this step, two distinct tours are randomly chosen from the initial solution S that was passed
from Step 2 of the AMP. In the remainder of this section, these two tours will be referred to as t1 and t2.

11

Step B.2 For each tour t1 and t2, a variant of the cheapest insertion procedure for the Travelling Salesman
Problem is executed. In this procedure, the evaluation function that is used takes into account solely the
extra distance associated with the insertion of vertex j in between vertices p and q, that is:

E(j, p, q) = dpj + djq − dpq. (19)

Insertion procedure

1. Let SE be the set of vertices in S̄ that can be inserted in a dummy tour without violating the time
limit constraint and capacity constraint:

SE = {j | dDsj + djDf
≤ L, qj ≤ Q,∀j ∈ S̄}.

2. Select j ∈ SE and two vertices p and q in tour tk for which E(j, p, q) is minimal and for which
the updated duration of tk does not exceed time limit L and for which the updated used capacity
does not exceed vehicle capacity Q.
If no such j can be found, continue to Step 3. Otherwise, insert j in tk between p and q, set
SE = SE\{j} and repeat Step 2.

3. If Step 2 was successful, go to Step B.4 of the tabu procedure. Otherwise, go to Step B.3 of the
tabu procedure.

Step B.3 If in Step B.2 no vertices could be inserted into any of the tours t1 and t2, the tabu search
procedure continues to step B.3. In this step, for each tour t1 and t2, vertices are exchanged with S̄.

Exchanging vertices between tk and S̄

1. Let numRemove be a number that was randomly drawn from the uniform distribution on the
interval between 0 and the number of customer vertices in tk. Set qremoved = 0.

2. Select a random customer vertex in tk and remove it from the tour. Let qremoved = qremoved + 1.

3. If qremoved < numRemove, repeat Step 2. Otherwise, go to Step 4.

4. Select a random vertex j ∈ S̄. Find the position in tk that entails the smallest increase in tour
duration dextra. This location is found by applying the evaluation function as given in Equation
(19). If D(tk) + dextra < L(1 + ε) and C(tk) + qj < Q(1 + φ), insert j at this position in tk.

5. If D(tk) < L, C(tk) < Q, S̄ 6= ∅ and not all j ∈ S̄ have been checked yet, repeat Step 4. Otherwise,
stop.

12

Step B.4 In the fourth step of the tabu search procedure, an attempt is made to move a vertex from the
longer to the shorter of the two tours t1 and t2. This might result in a better balance between the durations
of the two tours.

Balancing longer and shorter tour

1. Let tlong,old be the tour with the longest duration and tshort,old the one with the shortest duration.

2. For each customer vertex in tlong,old, investigate whether it is possible to insert this vertex into
tshort,old, resulting in tlong,new and tshort,new, such thatD(tlong,new)+D(tshort,new) <D(tlong,old)+

D(tshort,old).

3. If Step 2 was successful, proceed to Step B.6 of the tabu procedure. Otherwise, go to Step B.5 of
the tabu procedure.

Note that in the second step of this procedure, the solution might become infeasible. This can occur when
the duration of the tour that used to be the short tour, exceeds time limit L after the insertion of the
vertex from tlong,old. The condition of total tour duration decrease, i.e. D(tlong,new) + D(tshort,new) <
D(tlong,old) +D(tshort,old), might still be satisfied in this case.

Step B.5 If the replacement of a vertex from the shorter to the longer tour in Step B.4 was not successful,
Step B.5 will make a one-vertex exchange between t1 and t2.

Exchanging vertices between t1 and t2

1. Set i = 1.

2. Select the ith customer vertex in t1 and call this vertex x. For each customer vertex y ∈ t2,
investigate whether it is possible to exchange vertices x and y such that D(t1,new) + D(t2,new) <
D(t1,old) +D(t2,old). If so, immediately make this exchange and proceed to Step 3.

3. Set i = i+ 1. If i > size(t1), stop. Otherwise, repeat Step 2.

Just like in Step B.4, Step B.5 might also cause infeasibility of a solution. The same reasoning can be followed
as for Step B.4; since the time limit capacity is not restrained, it might be violated even though the total
duration of tours t1 and t2 has decreased.

3.2.3 Step C: Evaluation

In Step C of the tabu procedure, the best solution will be selected from the neighbours created in Step B.

Step C.1 In the selection process, infeasible solutions will be penalized by means of a reduction of their
reward, leading to a ’quasi-reward’ that is lower than the original reward. For feasible solutions, the quasi-
reward will be equal to their original reward. The severeness of the penalty for infeasible solutions is deter-
mined by tabu parameter η. In particular, quasi-reward of any solution S is calculated by using the following

13

formula:

Rquasi(S) =

m∑
k=1

R(tk)− η
m∑

k=1

max(D(tk)− L, 0)− ζ
m∑

k=1

max(C(tk)− C, 0), (20)

where the total reward of a tour tk is denoted by R(tk) and the total used capacity of vehicle k is denoted
by C(tk).

Step C.2 The best non-tabu and best tabu neighbour are denoted by Snt and St, respectively. Recall
that solution is considered tabu if a vertex that was inserted in a tour, was deleted from that tour within θ
iterations after its insertion. θ is a random number that is chosen on interval [θmin, θmax]. Both Snt and St

are selected based on their quasi-rewards. Two cases are considered:

Selecting the best neighbour

• If the reward associated with the best tabu solution is higher than any solution found thus far,
its tabu status can be overridden and this solution is selected as the best neighbour. The tabu-
iteration counter is reset.
→ If R(St) > R(Snt) and R(St) > R(S∗), let S∗ = St, S = St and qtabu = 0,

• In all other cases, the best non-tabu solution will be returned as best neighbour. If the reward
of this non-tabu solution is higher than the best found solution thus far, S∗ is updated and the
tabu-iteration counter is reset.
→ Let S = Snt. If Snt > S∗, set S∗ = Snt and qtabu = 0.

Step C.3 In the last step, the best neighbour S is checked for feasibility and the current best feasible
solution S∗f is updated accordingly. Depending on the number of iterations that were needed for a solu-
tion improvement and on the feasibility of the neighbours that were generated in the last δ iterations, the
neighbourhood size and tabu parameters α, η and ζ are updated.

Step C always starts with updating the step counter: qstepC = qstepC + 1. This counter is initialized at 0

in the AMP before the tabu procedure is called. If qstepC > µ, stop; proceed to Step 4 of the tabu procedure.
Otherwise, execute the following procedure:

Check feasibility of S and update tabu parameters

• If S is feasible and R(s) > R(S∗f), let S∗f = S and qtabu = 0,

• If at least one of the solutions found in the last δ tabu iterations was feasible, the penalty coefficients
for non-feasible solutions can be halved, that is, η = η/2 and ζ = ζ/2,

• If all solutions found in the last δ tabu iterations were infeasible, the penalty coefficient for non-
feasible solutions is doubled, that is, η = 2η and ζ = 2ζ,

• If the neighbourhood that was explored in the last tabu iteration was small and qtabu > α/2, let
the neighbourhood size in the next tabu iteration be large and go to Step B of the tabu procedure,

14

• If the neighbourhood that was explored in the last tabu iteration was small and qtabu ≤ α/2, go
to Step B of the tabu procedure,

• If the neighbourhood that was explored in the last tabu iteration was large and qtabu = 0, let the
neighbourhood size in the next tabu iteration be small and go to Step B of the tabu procedure,

• If the neighbourhood that was explored in the last tabu iteration was large and 0 < qtabu ≤ α, go
to Step B of the tabu procedure,

• Otherwise, go to Step A of the tabu procedure.

4 Computational results

In this section, results of computational experiments will be presented and compared with the results found
by Tang and Miller-Hooks (2005) and Archetti et al. (2009). The complete algorithm as described in this
paper was implemented in Java. CPLEX (2016) was used to solve the set packing problem in Step 4 of the
AMP exactly. All computations were executed on an Intel Core i5-4210U CPU 1.70GHz and 8GB RAM.

The data sets for the TOP that were used to test the tabu search algorithm in combination with an
AMP originate from earlier literature (Chao et al., 1996b,a, 1993; Tsiligirides, 1984). For the CTOP, ten
test instances were taken from Christofides et al. (1979). These instances originate from the VRP, meaning
that travelling costs, customer demands and capacity constraints were present. Also, time constraints were
already incorporated in these instances. No customer rewards were provided, which is why we used rewards
as proposed by Archetti et al. (2009), who defined ri = (0.5 + h)qi, where h is a random number that was
drawn from the uniform distribution on the interval [0, 1]. These 10 instances for the CTOP will be referred
to as the benchmark instances.

An overview of the instances for the TOP and CTOP is provided in Table 3. Regarding the TOP, every
data set contains multiple problem instances, each with the same set of vertices but differentiated by the
values of m and L. In total, there are six data sets which contain 320 test problems in total. The reward
that is associated with each customer vertex is random for data sets 1, 3, 4 and 7. For data sets 5 and 6, Ds

and Df are equal and rewards are proportional to the distance from this depot.

15

Table 3: Summary of Data Sets
This table shows (1) the number of vertices in each data set and (2) the shape of the geographical locations
of these vertices.

(a) Instances for the TOP

Data Set n Shape
1 32 Random
3 33 Random
4 100 Random
5 66 Square
6 64 Diamond
7 102 Random

(b) Instances for the CTOP

Instance n m Shape
3 101 15 Random
6 51 10 Random
7 76 20 Random
8 101 15 Random
9 151 10 Random
10 200 20 Random
13 121 15 Random
14 101 10 Random
15 151 15 Random
16 200 15 Random

The set of employed tabu parameters varies with the size of the neighbourhood. For data sets 1, 3, 4 and 7,
the parameter sets are defined as follows:

Small neighbourhood: (α, β, δ, ε, φ, η, µ, θmin, θmax) = (n, 2n, 6, 0.02, 0.02, 1, 10, 5, 10),

Large neighbourhood: (α, β, δ, ε, φ, η, µ, θmin, θmax) = (n, 8n, 6, 0.05, 0.05, 1, 10, 6, 12).

Note that the values of penalty coefficients ε and φ are set equal in our computational experiments. Depending
on how much value is assigned to the tour duration constraints and the capacity constraints, ε and φ can be
modified accordingly. For data sets 5 and 6, different error terms ε and φ are employed than for the other
data sets. For these two data sets, the time limit may not be exceeded in Step B.3 of the tabu procedure,
and thus both values are set at zero. The remaining tabu parameters remain unchanged, resulting in the
following parameter sets for data sets 5 and 6:

Small neighbourhood: (α, β, δ, ε, φ, η, µ, θmin, θmax) = (n, 2n, 6, 0, 0, 1, 10, 5, 10),

Large neighbourhood: (α, β, δ, ε, φ, η, µ, θmin, θmax) = (n, 8n, 6, 0, 0, 1, 10, 6, 12).

Parameters that are used in the AMP are λ = 3, N = 1500 and T = 30.
The AMP and tabu search algorithm as described in this paper were executed on each of the 320 TOP

instances and 10 CTOP benchmark instances. Please note that since a heuristic approach is used for solving
the NP-hard (C)TOP, the problems will not always be solved to optimality. Reported rewards always
represent the best lower bound that our heuristic was able to find. When reporting the results, our results
will be reported under ‘Tabu’. Results of the tabu search heuristic by Tang and Miller-Hooks (2005) and
Archetti et al. (2009) are referred to as ‘TMH’ and ‘AFHS’, respectively. Average rewards will always be
rounded to the nearest integer. Additionally, (maximum) CPU times in seconds are always reported.

4.1 TOP results

The problem instances of the TOP were divided into 18 sub-categories, for which the average collected reward
of both the implementation described in this paper and the tabu search heuristic by Tang and Miller-Hooks

16

(2005) is reported in Table 4. Also, the maximum CPU times in seconds is provided, determined based
upon all problems in a problem category. Since in Step 4 of the AMP an integer programming problem is
solved exactly, the algorithm has become more time-consuming. To compensate for this extra computation
time, the Random Vertex Insertion (RVI) procedure that was used by Tang and Miller-Hooks (2005) was not
incorporated in the algorithm as described in this paper. Testing the algorithm with a variant of this RVI
procedure yielded minor or no improvements in the quality of the found solutions. This is confirmed by the
results in Table 4, where the average reward of each problem category always lies within a 4.2% range from
the average rewards found by Tang and Miller-Hooks (2005). We find that the solutions approximate the
results by Tang and Miller-Hooks (2005) particularly well for data sets 1, 3, 5 and 6. This suggests that for
large instances, incorporating a Random Vertex Insertion procedure might be beneficial. However, a trade-off
will always need to be made between higher solution quality and extra computation time.

The summary that is provided in Table 4 is based on five-run results for the TOP instances. The reason
that five runs were performed is the fact that the maximum CPU times of one-run results are significantly
lower than the maximum CPU times as reported in Tang and Miller-Hooks (2005). This implies that despite
an increase in computation time, performing five repetitions will still not require excessive computation time.
Compared with one-run results, of which a summary can be found in Table 7 in Appendix B, performing five
runs leads to further improvement of the results for several problem categories. Tables 8-13 contain five-run
results of every separate problem instance. Note that in these tables, maximum CPU times are reported
for ‘Tabu’, since five repetitions were performed, whereas CPU times reported under ’AFHS’ are based on
one-run results.

Table 4: Summary of five-run results TOP
This table shows (1) the average reward for all 18 problem categories of the TOP and (2) the maximum
CPU times in seconds of all the problems in each category, and (3) the relative difference between the results
found and the results found in AFHS.

Set n m Tabu TMH %diff.

Reward CPUmax Reward CPUmax

1 32 4 138 0.6 138 1.5 0.0
3 33 4 347 0.7 353 0.8 -1.7
4 100 4 773 11.8 785 136.8 -1.5
5 66 4 694 4.0 699 22.6 -0.9
6 64 4 712 3.0 713 19.9 -0.1
7 102 4 505 11.9 515 101.0 -2.1
1 32 3 165 0.7 166 2.6 -0.6
3 33 3 622 1.2 634 3.3 -1.9
4 100 3 821 15.4 844 317.4 -3.0
5 66 3 763 5.0 776 51.7 -1.5
6 64 3 785 4.4 787 37.2 -0.3
7 102 3 578 14.4 593 143.2 -2.7
1 32 2 130 1.0 135 1.3 -3.7
3 33 2 433 1.3 441 6.6 -1.8
4 100 2 876 29.2 895 796.7 -2.1
5 66 2 864 8.4 887 71.3 -2.6
6 64 2 811 7.7 818 53.8 -0.9
7 102 2 609 22.2 634 432.6 -3.9

17

4.2 CTOP results

In Table 5, results of performing one run of the AMP on the benchmark instances of the CTOP are reported.
The reason that only one run was performed is that, except for data set 9, the upper bound on possible
collected reward was already reached by the algorithm after executing the AMP once. That is, the sum of
the rewards of all customers was collected by the vehicles in the CTOP. This is not a surprising result since
the maximum number of vehicles m is relatively high, which facilitates visiting every customer by one of these
vehicles. As a consequence, the CTOPs solved in data sets 3-16 show strong similarities with the multiple
knapsack problem, where n vertices (items) need to be divided over m vehicles (knapsacks). In order to do a
better evaluation of the quality of our tabu search procedure, we therefore tested our algorithm on modified
test instances; we solved each instance with a maximum of 2, 3 and 4 vehicles. Results of these tests can be
found in Table 14 in Appendix B. Summary results are provided in Table 6. We observe that for problem
categories with relatively lower values for maximum capacity Q and time limit L, our tabu search procedure
performs well compared to the tabu procedure by Archetti et al. (2009); the relative difference between
average rewards is always smaller than 4%. However, the tabu heuristic as proposed by Archetti et al. (2009)
seems to perform better than ours for higher values of Q and L. Nonetheless, the results in Table 5 show
that our AMP and tabu search heuristic performs excellently when a large number of vehicles are available,
regardless of the fact that values for Q and L are relatively high. Also, it is important to take note of the
substantial differences in maximum computation time of the Tabu algorithm and the AFHS algorithm. From
Table 6 we can conclude that the maximum computation time of the AMP with incorporated tabu procedure
as described in this paper is at least 35 times lower than that of the AFHS tabu procedure. In addition, the
maximum CPU times as reported in the ‘Tabu’ column encompass the entire AMP, which includes the tabu
search procedure, whereas the maximum CPU times as reported under the ‘AFHS’ column only provides
the required time to execute the tabu procedure itself. This difference in measuring computation time also
provides an explanation for the observed difference in CPU times between the two algorithms as reported in
Table 5. Archetti et al. (2009) report only the computation time of the tabu procedure, which is terminated
as soon as the upper bound is reached. On the other hand, the ‘Tabu’ results show CPU times of the entire
AMP, which is always executed as a whole and never terminated intermediately. Please note that direct
comparison between the running times remains complicated, since lower CPU times might also be attributed
to a stronger computational power of the Intel i5-4210U processor with respect to the Intel Pentium 4 CPU
2.80 GHz and 1.048 GB RAM that was used by Archetti et al. (2009).

18

Table 5: One-run results CTOP benchmark instances
This table shows (1) the obtained reward for all 10 benchmark instances for the CTOP and (2) the maximum
CPU times in seconds of all problems in each category. A value in italics means that this value is equal to
the upper bound for this problem instance.

Set n m Q L Tabu AFHS

Reward CPUmax Reward CPU
3 101 15 200 200 1409 1.7 1409 0
6 51 10 160 200 761 0.7 761 0
7 76 20 140 160 1327 1.4 1327 0
8 101 15 200 230 1409 1.6 1409 0
9 151 10 200 200 2039 25.1 2061 163
10 200 20 200 200 3048 6.0 3048 0
13 121 15 200 720 1287 2.6 1287 0
14 101 10 200 1040 1710 2.7 1710 0
15 151 15 200 200 2159 4.6 2159 0
16 200 15 200 200 3066 9.1 2965 270

Table 6: Summary of five-run results modified CTOP instances
This table shows (1) the average reward for 9 problem categories of the CTOP, (2) the maximum CPU times
in seconds of all the problems in each category, and (3) the relative difference between the results found and
the results found in AFHS.

m Q L Tabu AFHS %diff.

Reward CPUmax Reward CPUmax

2 50 50 127 7.1 131 312 -3.7
3 50 50 189 5.8 194 303 -2.6
4 50 50 245 5.7 253 324 -3.0
2 75 75 190 27.7 207 1821 -7.9
3 75 75 280 24.0 297 2156 -5.5
4 75 75 368 23.4 387 2435 -5.0
2 100 100 248 56.0 272 2144 -9.0
3 100 100 369 47.8 399 2606 -7.6
4 100 100 480 41.1 520 2124 -7.6

5 Conclusion

In this paper, we developed a heuristic algorithm to solve the capacitated version of the TOP. The proposed
algorithm shares strong similarities with the tabu search algorithm as proposed by Tang and Miller-Hooks
(2005). The features of a flexible adaptive memory, alternation between neighbourhood stages and the
combination of random and greedy procedures for tour improvement can all be found in the algorithm of
Tang and Miller-Hooks (2005). Distinction lies in the addition of a variant of the set packing problem to
construct a high-reward, feasible solution from the tours in the adaptive memory. Since this problem is solved
exactly, the algorithm has become more demanding with regard to computation time. To compensate this, a
random vertex insertion procedure that was used by Tang and Miller-Hooks (2005) was left out, which lead
to only minor degradation in the solution quality.

Another major distinctive factor is the ability of the developed algorithm to solve not only TOP instances,
but also CTOP instances. Computational experiments revealed that the algorithm performs excellently for

19

benchmark instances provided by Christofides et al. (1979); the optimal solution was found for 9 out of 10
instances. Modifying these benchmark instances allowed us to solve more diverse and more difficult CTOP
problems. For these instances, solving to optimality is an unrealistic goal, but our algorithm does still yield
satisfactory results. In particular, from the low computation times we can conclude that we developed an
efficient algorithm.

Due to the flexibility of the structure of our AMP and tabu search procedure, the algorithm lends itself for
further extensions or specifications. For example, the (C)TOP might become more realistic and practically
applicable by considering time-dependent customer rewards. Here, some customers assign more value to
quick service than other customers, and they are thus prepared to pay a higher price for quicker service.
This case could be studied in combination with time-dependent travel times as well. Also, service times can
be taken into consideration and customer demands might be stochastic. Regarding the CTOP, one might
investigate the possibility of split delivery, as was studied by Archetti et al. (2014). Lastly, a challenge would
be not to consider a deterministic set of customers, but to amend the heuristic to one which can solve an
on-line (C)TOP, where not all customer information is available in advance.

20

References

Archetti, C., Bianchessi, N., Speranza, M. G., and Hertz, A. (2014). The split delivery capacitated team
orienteering problem. Networks, 63(1):16–33.

Archetti, C., Feillet, D., Hertz, A., and Speranza, M. G. (2009). The capacitated team orienteering and
profitable tour problems. Journal of the Operational Research Society, 60(6):831–842.

Archetti, C., Hertz, A., and Speranza, M. G. (2007). Metaheuristics for the team orienteering problem.
Journal of Heuristics, 13(1):49–76.

Boussier, S., Feillet, D., and Gendreau, M. (2007). An exact algorithm for team orienteering problems. 4or,
5(3):211–230.

Butt, S. E. and Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem.
Computers & Operations Research, 21(1):101–111.

Butt, S. E. and Ryan, D. M. (1999). An optimal solution procedure for the multiple tour maximum collection
problem using column generation. Computers & Operations Research, 26(4):427–441.

Chao, I. et al. (1993). Algorithms and solutions to multi-level vehicle routing problems.

Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996a). A fast and effective heuristic for the orienteering
problem. European journal of operational research, 88(3):475–489.

Chao, I.-M., Golden, B. L., and Wasil, E. L. (1996b). The team orienteering problem. European Journal of
Operational Research, 88(3):464–474.

Christofides, N., Mingozzi, A., and Toth, P. (1979). The vehicle routing problem. Combinatorial Optimization,
pages 315–338.

CPLEX (2016). IBM ILOG CPLEX Optimizer 12.7.0 (2016). URL https://www.ibm.com/analytics/cplex-
optimizer.

El-Hajj, R., Dang, D.-C., and Moukrim, A. (2016). Solving the team orienteering problem with cutting
planes. Computers & Operations Research, 74:21–30.

Gendreau, M., Laporte, G., and Semet, F. (1998). A tabu search heuristic for the undirected selective
travelling salesman problem. European Journal of Operational Research, 106(2-3):539–545.

Glover, F. (1989). Tabu search—part i. ORSA Journal on computing, 1(3):190–206.

Glover, F. (1990). Tabu search—part ii. ORSA Journal on computing, 2(1):4–32.

Gueguen, C. (1999). Méthodes de résolution exacte pour les problèmes de tournées de véhicules. PhD thesis,
Châtenay-Malabry, Ecole centrale de Paris.

Ke, L., Archetti, C., and Feng, Z. (2008). Ants can solve the team orienteering problem. Computers &
Industrial Engineering, 54(3):648–665.

Laporte, G. and Martello, S. (1990). The selective travelling salesman problem. Discrete applied mathematics,
26(2-3):193–207.

21

Olivera, A. and Viera, O. (2007). Adaptive memory programming for the vehicle routing problem with
multiple trips. Computers & Operations Research, 34(1):28–47.

Taillard, É. D., Gambardella, L. M., Gendreau, M., and Potvin, J.-Y. (2001). Adaptive memory programming:
A unified view of metaheuristics. European Journal of Operational Research, 135(1):1–16.

Tang, H. and Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers
& Operations Research, 32(6):1379–1407.

Tarantilis, C. D., Stavropoulou, F., and Repoussis, P. P. (2013). The capacitated team orienteering problem:
a bi-level filter-and-fan method. European Journal of Operational Research, 224(1):65–78.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational Research Society,
35(9):797–809.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., and Van Oudheusden, D. (2009). Iterated local search for
the team orienteering problem with time windows. Computers & Operations Research, 36(12):3281–3290.

22

Appendix

A Illustration of the tabu procedure

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) Initial solution.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(b) Solution after Step B.3 of the tabu procedure.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(c) Solution after Step B.4 of the tabu procedure.

Figure 1: An illustration of the routes contained in the solution during the tabu search procedure. In this
particular case, Step B.2 and was not successful, so Step B.3 was executed. Step B.4 was successful, so Step
B.5 was skipped.

23

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(a) Initial solution.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(b) Solution after Step B.3 of the tabu procedure.

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

80

(c) Solution after Step B.5 of the tabu procedure.

Figure 2: An illustration of the routes contained in the solution during the tabu search procedure. In this
particular case, Step B.2 and Step B.4 were not successful, so Step B.3 and B.5 were executed.

24

B Results for the TOP

Table 7: Summary of one-run results TOP
This table shows (1) the average reward for all 18 problem categories of the TOP and (2) the maximum CPU
times in seconds of all the problems in each category.

Set n m Tabu TMH %diff.

Reward CPUmax Reward CPUmax

1 32 4 138 0.6 138 1.5 0.0
3 33 4 347 0.7 353 0.8 -1.7
4 100 4 768 11.8 785 136.8 -2.2
5 66 4 692 4.0 699 22.6 -1.0
6 64 4 709 3.0 713 19.9 -0.6
7 102 4 503 11.9 515 101.0 -2.3
1 32 3 165 0.7 166 2.6 -0.6
3 33 3 618 1.2 634 3.3 -2.5
4 100 3 813 15.4 844 317.4 -3.7
5 66 3 762 5.0 776 51.7 -1.8
6 64 3 784 4.4 787 37.2 -0.4
7 102 3 575 14.4 593 143.2 -3.0
1 32 2 130 1.0 135 1.3 -3.7
3 33 2 431 1.3 441 6.6 -2.3
4 100 2 872 29.2 895 796.7 -2.6
5 66 2 863 8.4 887 71.3 -2.7
6 64 2 811 7.7 818 53.8 -0.9
7 102 2 608 22.2 634 432.6 -4.1

Table 8: Five-run results TOP data set 1
This table shows (1) the reward for all problem instances of the TOP in data set 1, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
32 4 18.8 175 0.5 175 1.5 0.0

18.2 165 0.6 165 1.3 0.0
12.5 75 0.5 75 0.8 0.0

3 25.0 215 0.7 220 1.5 -2.3
24.3 200 0.7 205 2.6 -2.4
21.7 175 0.7 170 1.4 2.9
13.3 70 0.5 70 0.8 0.0

2 23.0 130 1.0 135 1.3 -3.7

25

Table 9: Five-run results TOP data set 3
This table shows (1) the reward for all problem instances of the TOP in data set 3, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
33 4 22.5 540 0.7 560 0.7 -3.6

15.0 310 0.6 310 0.8 0.0
10.0 190 0.7 190 0.6 0.0

3 36.7 730 1.2 750 3.3 -2.7
31.7 650 0.7 680 3.1 -4.4
30.0 640 0.8 640 2.1 0.0
28.3 580 0.7 590 2.0 -1.7
25.0 510 0.8 510 2.0 0.0

2 47.5 730 1.3 760 5.4 -3.9
42.5 680 1.3 690 6.6 -1.4
30.0 500 1.2 490 1.5 2.0
27.5 440 1.2 460 3.8 -4.3
25.0 390 1.7 410 3.1 -4.9
20.0 290 0.9 290 1.2 0.0
17.5 250 0.9 250 0.8 0.0
12.5 180 0.9 180 1.2 0.0

Table 10: Five-run results TOP data set 4
This table shows (1) the reward for all problem instances of the TOP in data set 4, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
100 4 60.0 1233 9.7 1255 136.8 -1.8

57.5 1203 10.7 1243 86.6 -3.2
55.0 1135 9.5 1165 79.7 -2.6
52.5 1096 10.4 1124 115.5 -2.5
50.0 1045 10.1 1056 134.5 -1.0
47.5 994 10.0 1014 112.8 -2.0
45.0 934 12.7 977 111.9 -4.4
42.5 893 10.5 910 78.5 -1.9
40.0 860 10.3 875 96.2 -1.7
37.5 808 9.9 819 80.9 -1.3
35.0 730 8.9 732 63.8 -0.3
32.5 648 9.0 627 47.3 3.3
30.0 558 7.9 554 31.4 0.7
27.5 461 8.3 453 23.7 1.8
25.0 324 7.8 315 11.2 2.9
22.5 183 6.9 182 3.2 0.5
20.0 38 9.4 38 1.4 0.0

26

Table 10: Five-run results TOP data set 4 (continued)

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU

3 80.0 1282 14.3 1288 241.1 -0.5
76.7 1246 14.6 1282 317.4 -2.8
73.3 1228 13.3 1265 220.9 -2.9
70.0 1192 15.5 1249 210.9 -4.6
66.7 1149 15.7 1218 296.2 -5.7
63.3 1102 14.2 1151 193.7 -4.3
60.0 1052 14.5 1119 143.9 -6.0
56.7 990 15.9 1005 167.3 -1.5
53.3 931 13.7 951 137.0 -2.1
50.0 872 13.8 906 164.9 -3.8
46.7 824 12.6 860 169.4 -4.2
43.3 768 15.8 785 92.3 -2.2
40.0 703 12.2 709 134.1 -0.8
36.7 629 10.7 646 50.8 -2.6
33.3 565 11.3 579 43.2 -2.4
30.0 458 9.9 465 56.5 -1.5
26.7 335 9.2 333 22.3 0.6
23.3 193 7.7 192 15.3 0.5
20.0 38 9.4 38 1.4 0.0

2 120.0 1282 25.8 1306 457.1 -1.8
115.0 1270 27.6 1294 796.7 -1.9
110.0 1241 24.3 1277 579.3 -2.8
105.0 1212 26.8 1255 766.9 -3.4
100.0 1172 25.8 1208 650.3 -3.0
95.0 1134 21.7 1175 384.2 -3.5
90.0 1103 24.3 1150 317.1 -4.1
85.0 1058 22.4 1089 464.2 -2.8
80.0 1019 23.7 1022 317.1 -0.3
75.0 971 19.7 963 342.4 0.8
70.0 917 23.2 914 232.6 0.3
65.0 855 21.7 915 332.8 -6.6
60.0 803 20.7 827 173.7 -2.9
55.0 726 19.7 749 114.0 -3.1
50.0 667 16.8 666 163.3 0.2
45.0 592 17.2 593 92.3 -0.2
40.0 515 14.8 517 72.1 -0.4
35.0 441 13.6 438 58.9 0.7
30.0 331 12.3 341 90.2 -2.9
25.0 206 9.5 202 33.7 2.0

27

Table 11: Five-run results TOP data set 5
This table shows (1) the reward for all problem instances of the TOP in data set 5, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
66 4 32.5 1620 3.3 1575 12.5 2.9

31.2 1520 3.8 1520 22.6 0.0
30.0 1380 3.3 1410 13.3 -2.1
28.8 1360 3.1 1380 14.1 -1.4
27.5 1260 3.7 1310 19.1 -3.8
26.2 1200 2.9 1275 13.1 -5.9
25.0 1100 3.9 1100 7.9 0.0
23.8 1000 3.6 1000 14.6 0.0
22.5 925 4.0 960 8.5 -3.6
21.2 860 3.8 860 7.4 0.0
20.0 760 4.0 760 6.8 0.0
18.8 680 4.3 680 5.9 0.0
17.5 620 3.7 620 5.7 0.0
16.2 555 3.3 555 5.9 0.0
15.0 430 3.0 430 4.9 0.0
13.8 340 3.1 340 5.0 0.0
12.5 340 2.9 340 2.9 0.0
11.2 240 3.2 240 2.3 0.0
10.0 140 2.7 140 1.8 0.0
8.8 140 3.5 140 1.6 0.0
7.5 80 2.8 80 1.4 0.0
6.2 50 2.6 20 0.1 150.0
5.0 20 2.2 20 0.1 0.0
3.8 20 2.5 20 0.3 0.0

3 43.3 1635 4.7 1635 51.7 0.0
41.7 1590 4.6 1580 29.2 0.6
40.0 1505 4.7 1530 26.0 -1.6
38.3 1430 4.5 1465 26.8 -2.4
36.7 1400 4.5 1410 26.0 -0.7
35.0 1290 4.3 1330 39.1 -3.0
33.3 1220 5.0 1240 19.9 -1.6
31.7 1145 5.3 1175 19.5 -2.6
30.0 1055 4.7 1115 25.0 -5.4
28.3 1025 4.3 1065 17.2 -3.8
26.7 930 4.2 990 11.5 -6.1
25.0 830 4.4 835 10.7 -0.6
23.3 755 4.9 755 9.6 0.0
21.7 650 5.1 650 8.3 0.0
20.0 585 5.0 575 7.8 1.7

28

Table 11: Five-run results TOP data set 5 (continued)

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
18.3 495 4.3 495 7.5 0.0
16.7 470 4.0 470 5.7 0.0
15.0 335 3.4 335 6.3 0.0
13.3 260 3.2 260 6.0 0.0
11.7 185 3.5 185 8.0 0.0
10.0 110 3.3 110 5.5 0.0
8.3 95 3.4 95 1.7 0.0
6.7 60 3.5 60 1.9 0.0
5.0 20 2.8 20 0.1 0.0
3.3 15 2.9 15 1.1 0.0

2 65.0 1665 8.3 1665 63.2 0.0
62.5 1640 8.7 1630 53.9 0.6
60.0 1600 8.7 1610 71.3 -0.6
57.5 1560 9.2 1560 52.0 0.0
55.0 1480 9.9 1500 31.4 -1.3
52.5 1440 8.5 1445 36.5 -0.3
50.0 1320 8.1 1380 34.9 -4.3
47.5 1270 8.3 1310 33.9 -3.1
45.0 1200 7.0 1260 46.4 -4.8
42.5 1100 6.9 1185 51.4 -7.2
40.0 1020 7.9 1090 53.6 -6.4
37.5 940 6.8 975 30.1 -3.6
35.0 880 6.6 920 21.6 -4.3
32.5 820 6.9 860 23.8 -4.7
30.0 710 6.9 770 18.3 -7.8
27.5 640 6.7 670 13.8 -4.5
25.0 560 6.2 560 11.7 0.0
22.5 470 6.1 480 12.2 -2.1
20.0 400 5.3 410 10.8 -2.4
17.5 320 5.9 320 7.6 0.0
15.0 240 4.2 240 5.3 0.0
12.5 180 4.5 180 3.9 0.0
10.0 80 3.4 80 2.8 0.0
7.5 50 3.1 50 1.6 0.0
5.0 20 3.2 20 1.0 0.0

29

Table 12: Five-run results TOP data set 6
This table shows (1) the reward for all problem instances of the TOP in data set 6, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
64 4 20.0 1062 3.1 1068 8.9 -0.6

18.8 912 3.0 912 11.0 0.0
17.5 690 3.1 696 8.7 -0.9
16.2 528 3.8 522 4.4 1.1
15.0 366 3.4 366 3.2 0.0

3 26.7 1152 4.0 1152 18.6 0.0
25.0 1062 4.1 1080 15.4 -1.7
23.3 990 4.2 990 14.5 0.0
21.7 888 4.7 876 10.8 1.4
20.0 828 4.8 828 10.1 0.0
18.3 636 3.6 612 15.0 3.9
16.7 444 3.6 444 7.5 0.0
15.0 282 3.9 282 3.5 0.0

2 40.0 1224 7.6 1260 45.7 -2.9
37.5 1176 7.2 1188 30.3 -1.0
35.0 1092 7.1 1116 26.3 -2.2
32.5 1026 6.8 1032 20.0 -0.6
30.0 936 7.1 936 17.6 0.0
27.5 888 6.2 888 16.7 0.0
25.0 780 5.6 780 14.1 0.0
22.5 660 5.0 660 12.1 0.0
20.0 588 5.8 588 11.1 0.0
17.5 360 5.2 360 8.3 0.0
15.0 192 4.0 192 4.5 0.0

Table 13: Five-run results TOP data set 7
This table shows (1) the reward for all problem instances of the TOP in data set 7, (2) the maximum CPU
times in seconds of all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘TMH’, and (3)
the relative difference between our results and the results found by ‘TMH’.

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
102 4 100.0 1027 10.5 1067 86.6 -3.7

95.0 976 12.5 1019 84.3 -4.2
90.0 923 11.9 966 101.0 -4.5
85.0 890 11.4 905 95.2 -1.7
80.0 818 11.2 832 82.0 -1.7
75.0 770 11.2 776 71.3 -0.8
70.0 701 11.3 726 54.4 -3.4
65.0 643 9.9 643 68.6 0.0
60.0 571 9.6 576 31.8 -0.9

30

Table 13: Five-run results TOP data set 7 (continued)

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
55.0 507 8.4 503 44.9 0.8
50.0 456 7.4 462 23.6 -1.3
45.0 359 7.5 359 20.6 0.0
40.0 285 7.5 285 17.2 0.0
35.0 217 5.5 217 10.0 0.0
30.0 164 7.0 164 5.5 0.0
25.0 123 6.9 123 3.3 0.0
20.0 79 6.0 79 0.1 0.0
15.0 46 5.7 46 0.1 0.0
10.0 30 6.0 30 0.1 0.0

3 133.3 1062 15.5 1098 143.2 -3.3
126.7 1018 14.2 1061 99.8 -4.1
120.0 961 14.7 1011 93.6 -4.9
113.3 940 13.7 966 98.8 -2.7
106.7 893 13.7 922 74.0 -3.1
100.0 841 15.2 874 102.8 -3.8
93.3 780 14.7 789 126.5 -1.1
86.7 732 14.2 756 121.2 -3.2
80.0 672 13.5 681 69.5 -1.3
73.3 614 12.9 632 94.4 -2.8
66.7 547 12.1 563 107.7 -2.8
60.0 479 10.7 481 36.0 -0.4
53.3 422 9.7 416 34.0 1.4
46.7 344 7.9 344 21.1 0.0
40.0 248 7.9 247 23.7 0.4
33.3 175 6.9 175 12.0 0.0
26.7 117 6.4 117 3.7 0.0
20.0 79 7.5 79 2.3 0.0
13.3 46 5.6 46 0.1 0.0

2 200.0 1079 26.2 1165 290.6 -7.4
190.0 1043 25.9 1116 215.6 -6.5
180.0 1011 22.0 1067 432.6 -5.2
170.0 987 24.7 1017 239.6 -2.9
160.0 941 23.6 987 272.1 -4.7
150.0 901 21.5 914 202.8 -1.4
140.0 829 21.2 864 224.3 -4.1
130.0 787 25.6 817 174.1 -3.7
120.0 729 19.4 767 217.5 -5.0
110.0 670 19.0 702 120.1 -4.6
100.0 611 20.5 638 118.7 -4.2
90.0 566 18.9 578 84.4 -2.1
80.0 514 17.6 521 52.0 -1.3

31

Table 13: Five-run results TOP data set 7 (continued)

n m L Tabu TMH %diff.

Reward CPUmax Reward CPU
70.0 457 14.7 459 74.6 -0.4
60.0 381 15.2 382 42.7 -0.3
50.0 290 9.6 290 37.7 0.0
40.0 190 10.3 190 16.3 0.0
30.0 101 7.7 101 8.6 0.0
20.0 64 7.4 64 2.8 0.0
10.0 30 4.3 30 0.1 0.0

C Results for the CTOP

Table 14: Five-run results modified CTOP instances
This table shows (1) the reward for all modified CTOP instances, (2) the maximum CPU times in seconds of
all instances for ‘Tabu’, and CPU times in seconds of all instances for ‘AFHS’, and (3) the relative difference
between the results found and the results found by ‘AFHS’.

Instance n m Q L Tabu AFHS %diff.

Reward CPUmax Reward CPU
3 101 2 50 50 128 0.8 133 34 -3.8

3 50 50 193 0.7 198 34 -2.5
4 50 50 253 0.7 260 35 -2.7
2 75 75 193 3.4 208 224 -7.2
3 75 75 287 2.8 307 225 -6.5
4 75 75 380 2.2 403 299 -5.7
2 100 100 252 5.7 277 291 -9.0
3 100 100 375 5.0 408 320 -8.1
4 100 100 489 3.9 531 317 -7.9

6 51 2 50 50 118 0.3 121 3 -2.5
3 50 50 177 0.3 177 3 0.0
4 50 50 218 0.2 222 3 -1.8
2 75 75 179 0.5 183 33 -2.2
3 75 75 263 0.5 269 28 -2.2
4 75 75 338 0.5 348 25 -2.9
2 100 100 234 1.0 252 28 -7.1
3 100 100 347 0.8 369 30 -6.0
4 100 100 452 0.7 482 25 -6.2

7 76 2 50 50 126 0.4 126 14 0.0
3 50 50 187 0.5 187 14 0.0
4 50 50 240 0.4 240 13 0.0
2 75 75 183 1.1 193 89 -5.2

32

Table 14: Five-run results modified CTOP instances (continued)

Instance n m Q L Tabu AFHS %diff.

Reward CPUmax Reward CPU
3 75 75 270 1.1 287 87 -5.9
4 75 75 358 0.9 378 88 -5.3
2 100 100 238 2.1 266 95 -10.5
3 100 100 354 1.8 397 113 -10.8
4 100 100 472 1.6 521 119 -9.4

8 101 2 50 50 128 0.8 133 34 -3.8
3 50 50 192 0.7 198 34 -3.0
4 50 50 253 0.7 260 35 -2.7
2 75 75 197 3.3 208 224 -5.3
3 75 75 289 2.8 307 225 -5.9
4 75 75 378 2.3 403 299 -6.2
2 100 100 253 5.7 277 2291 -8.7
3 100 100 374 4.5 409 320 -8.6
4 100 100 495 4.0 531 317 -6.8

9 151 2 50 50 131 2.4 137 115 -4.4
3 50 50 193 2.2 201 115 -4.0
4 50 50 252 1.9 262 112 -3.8
2 75 75 196 11.0 210 785 -6.7
3 75 75 293 7.2 310 808 -5.5
4 75 75 386 8.6 407 958 -5.2
2 100 100 258 19.7 278 971 -7.2
3 100 100 378 17.0 414 1521 -8.7
4 100 100 494 15.2 539 924 -8.3

10 200 2 50 50 128 7.1 134 312 -4.5
3 50 50 192 5.8 200 303 -4.0
4 50 50 254 5.7 265 324 -4.2
2 75 75 200 20.6 208 1759 -3.8
3 75 75 295 15.7 310 1890 -4.8
4 75 75 394 18.3 410 2194 -3.9
2 100 100 259 42.9 280 2115 -7.5
3 100 100 393 37.1 417 2606 -5.8
4 100 100 507 36.0 549 2077 -7.7

13 121 2 50 50 119 1.5 134 10 -11.2
3 50 50 180 1.1 193 9 -6.7
4 50 50 228 0.9 243 8 -6.2
2 75 75 177 1.8 193 4 -8.3
3 75 75 250 1.2 265 4 -5.7
4 75 75 316 0.9 323 4 -2.2
2 100 100 221 3.7 253 27 -12.6
3 100 100 326 2.6 344 24 -5.2

33

Table 14: Five-run results modified CTOP instances (continued)

Instance n m Q L Tabu AFHS %diff.

Reward CPUmax Reward CPU
4 100 100 407 1.7 419 24 -2.9

14 101 2 50 50 124 0.9 124 37 0.0
3 50 50 184 0.9 184 35 0.0
4 50 50 235 0.7 241 36 -2.5
2 75 75 173 2.9 190 98 -8.9
3 75 75 257 2.2 279 97 -7.9
4 75 75 337 2.1 366 102 -7.9
2 100 100 250 4.9 271 181 -7.7
3 100 100 370 4.9 399 248 -7.3
4 100 100 486 4.8 523 210 -7.1

15 151 2 50 50 130 2.4 134 123 -3.0
3 50 50 196 2.2 200 129 -2.0
4 50 50 257 2.1 266 113 -3.4
2 75 75 202 11.2 211 904 -4.3
3 75 75 300 9.1 315 782 -4.8
4 75 75 397 8.0 414 998 -4.1
2 100 100 261 17.9 282 924 -7.4
3 100 100 387 18.0 416 883 -7.0
4 100 100 497 14.7 549 1252 -9.5

16 200 2 50 50 133 5.3 137 305 -2.9
3 50 50 197 4.7 203 303 -3.0
4 50 50 261 4.5 269 295 -3.0
2 75 75 203 27.7 212 1821 -4.2
3 75 75 300 24.0 317 2156 -5.4
4 75 75 396 23.4 420 2435 -5.7
2 100 100 250 56.0 285 2144 -12.3
3 100 100 384 47.8 421 2421 -8.8
4 100 100 502 41.1 554 2124 -9.4

34

