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ABSTRACT

In this paper, a complementary method to classical statistical modeling such
as ordinary least squares, and instrumental variables estimation, is introduced.
This method, double/debiased machine learning, is applied in the presence
of a high-dimensional nuisance parameter set, which possibly interferes with
the estimator for the treatment effect. The following techniques are introduced
and thoroughly examined: lasso, random forests, neural nets, boosted trees,
and an ensemble method. Thereafter, estimates obtained by these techniques
are compared to those obtained by traditional OLS and IV estimation. Specif-
ically, research results obtained from Nunn and Wantchekon (2011) and Ace-
moglu et al. (2005) are used to empirically examine this nonparametric estima-
tion. The hypothesis that DML performs better out-of-sample estimations is
supported by Nunn and Wantchekon (2011), which therefore questions the re-
liability of classical statistical modeling. This hypothesis can not be confirmed
nor refuted by Acemoglu et al. (2005).



1 INTRODUCTION AND RELEVANCE

As knowledge about the theory behind machine learning (ML) expands, its applications become
increasingly present in daily life. Not only has ML been introduced in search ranking, for instance
by transforming Google Search (Metz, 2016), but also are ML algorithms used for advertisement
targeting (Recchia, 2018) and for personal feeds like Facebook’s (Oremus, 2016).

Before attempting to validly use machine learning, one has to define this type of statistical model-
ing. Murphy (2013) defines Machine Learning as "a set of methods that can automatically detect
patterns in data, and then use the uncovered patterns to predict future data, or to perform other
kinds of decision making under uncertainty (such as planning how to collect more data!)". In
short, machine learning learns from data profoundly and excels at out-of-sample prediction.

Machine learning possesses multiple advantages over classical statistical modeling. One is that
ML can learn from data, instead of using explicitly programmed instructions (Srivastava, 2015).
Furthermore, statistical modeling requires a number of assumptions, such as homoskedasticity,
independence of observations and a deterministic function, whereas ML requires fewer assump-
tions. For instance, when estimating for causal interference, econometricians often use local
linear regression, which can be used well in practice in a low-dimensional nuisance parameter
framework. When more covariates are introduced, however, this method performs worse (Bre-
heny). ML excels at determining which dimensions are relevant, thus reducing the heterogeneity
of the used model. In other words, when lots of covariates are introduced, or as Imbens (2015)
state, when the regressors vector is of dimension bigger than approximately three, OLS is not ad-
missible, making ML (or semi-/non parametric) methods better suited (Imbens, 2015). Lastly,
ML performs well with wide (high number of attributes) and deep (high number of observations)
data (Srivastava, 2015). Statistical modeling, however, is often applied to small data with less
attributes, otherwise overfitting may occur.

This paper aims to present an alternative, more sophisticated method with regard to well-known
estimation techniques. This aim is based on the hypothesis that double/debiased machine learn-
ing techniques perform well in estimating a low-dimensional treatment parameter in a frame-
work of high-dimensional nuisance parameters. To demonstrate this use, I apply double/debi-
ased ML techniques to Nunn and Wantchekon (2011), in which a large number of regressors are
introduced and regressions are estimated using OLS, and examine whether significantly different
results are obtained. The same procedure will be applied to a second paper, namely Acemoglu
et al. (2005), in which four covariates are introduced. In order to apply double/debiased machine
learning on aforementioned two papers, I will make extensive use of the theory provided in Cher-
nozhukov et al. (2017). The first two papers are social economic papers, that make use of several
covariates. I have chosen these paper because not only do they contribute to social scientific re-
search, which allows my paper to have real impact if Nunn and Wantchekon (2011) and Acemoglu
et al. (2005)’s results are disputed, but also because these papers are well-fit to apply DML to. As
DML accounts for non-linearity in high-dimensional nuisance parameters (Layman, 2015), the
unconfoundedness assumption, which will be explained in detail in section 2.3.1, is more likely
to hold in comparison with OLS and IV estimation, which regression models are bound to explic-
itly programmed functions.

This paper mainly contributes to prior findings on the topic of the semi-parametric problem of
inference on a low dimensional parameter θ0, described in this paper as the treatment effect, in
the presence of high-dimensional nuisance parameters η0, by empirically validating the proper
use of these debiased/double machine learning techniques on two socially applicable papers.
This paper’s findings do not necessarily contribute to theoretical scientific research, but rather to
empirical studies, that make use of a high-dimensional covariates vector. It argues the reliability
of results obtained by OLS and IV regression in the face of DML estimation.

In this paper, I find that the application of DML techniques to the social economic framework
of Nunn and Wantchekon (2011) provides significantly different results, thus the hypothesis
that DML techniques are well-suited for estimating treatment effects, particularly in a high-
dimensional nuisance parameter framework, is supported. Therefore, the conclusions drawn
by classical economic estimation techniques, such as OLS and IV, are refuted. Applying DML to
Acemoglu et al. (2005), however, does not yield significantly different results from classical statis-
tical regressions. This can be explained by a setting of lower-dimensional nuisance parameters
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and/or a dataset containing fewer observations, since theoretically DML performs best for high-
dimensional nuisance parameters and a big dataset.

The structure of this paper is as follows: the existing literature about the topics of slave trade, Eu-
ropean economic and political growth, and double/debiased machine learning will be reviewed
(2). Thereafter, the applied methods in these three papers will be depicted and thoroughly ex-
plained (3), after which (adjustment of the used) data and code is explained (4). Lastly, the ob-
tained results will be depicted and extensively elaborated on (5). Lastly, this paper will be con-
cluded (6), followed by a profound appendix containing result tables and used code.

2 EXISTING LITERATURE

2.1 SLAVE TRADE

Throughout its history, Africa has gone through multiple forms of slave trade. Various slave trade
routes were established already during the Middle Ages, but most notable were the four main
routes between 1400 and 1900: the transatlantic, Read Sea, Indian Ocean, and trans-Saharan
routes. During this period, an estimated number ranging from 10 million to 28 million slaves
were shipped to the Americas (BBCNews, 2001). Understandably, African slave trade rooted deep
into every day life of those affected. It caused an environment of widespread insecurity, which in
part made African individuals turn against one another and participate in tricking, kidnapping,
and selling each other into slavery (Foundation, 2018). Consequently, this caused shifting rela-
tionships not only among family and friends, who could trick each other into slavery, but also
between citizens and their local leaders. As chiefs were either willing or forced to cooperate in
the capture of slaves, often were men changed for goods by these leaders, which pressurized this
relationship.

Enslavement was conducted in various ways, for instance by being sold into slavery by acquain-
tances, family, and friends. The most commonly used manner, as researched by Koelle (1854) for
a sample of 144 slaves living in Freetown, Sierra Leone, was kidnapping. Also capturing during
wars and, surprisingly, being sold by friends and relatives have a substantial share of respectively
20 and 25 percent. Lastly, enslavement through the judicial system occurred. Individuals were
convicted of crimes such as adultery, theft, witchcraft or murder, and therefore sentenced to slav-
ery (Lovejoy, 2000).

As Nunn and Wantchekon (2011) applies not only to historical slave trade, but also to nowadays
trust levels amongst Africans, delving into prior research about cultural characteristics is of high
importance. Culture can be viewed as rules-of-thumb for decision-making employed in complex
or uncertain environments. Boyd and Richerson (1995) and Boyd and Richerson (2005) point
out that it may be optimal for people to develop heuristics in decision-making when retrieving
information is costly or imperfect. Slave trade may have affected these heuristics for decision-
making by increasing mistrust. Persistence of this shifted trust can be explained from models
developed by Guiso et al. (2007) and Tabellini (2008). They show arising equilibria in cultural
outcomes, which can be permanently moved in the long-run. These movements, for instance to
equilibria of high levels of mistrust, may explain the persistence of mistrust among lineages most
affected by the slave trade.

Moreover, this persistence can be explained by complementaries between cultural norms and
domestic institutions. Tabellini (2008)’s model suggests that individuals inhibit norms of coop-
eration from their parents and determine the quality of institutions by making political choices.
In this fashion, the equilibrium quality of domestic institutions will be affected through norms
of cooperation. This generates a self-enforcing mechanism where a negative shock in cooper-
ation norms causes the future generation not only to be to be less trusting, but also to choose
institutions with weaker enforcement.

In their paper, Nunn and Wantchekon (2011) exhibit that differences in trust levels amongst
Africans nowadays can be traced back to the Indian Ocean and transatlantic slave trades. Par-
ticularly, they show that Africans whose ancestors were heavily raided during the slave trade are
less trusting today. They exhibit that this relationship is causal and that most impact is through
factors internal to the individual, like cultural norms, beliefs and values.
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They hypothesize that in areas intensely raided by slave trade, norms of trust towards others were
likely less advantage than norms of mistrust, and thus they would have become more prevalent
after a while. Nunn and Wantchekon (2011) exhibit that individuals belonging to those ethnic
groups that were most exposed to the slave trade show lower levels of trust in their relatives,
coethnics, neighbors, and local government today. Their research suggests that the channel in-
ternal to the individual accounts for at least half of the reduced-form effect of the slave trade on
trust.

2.2 THE RISE OF EUROPE

Aforementioned slave trade affected not only those subjected to it in Africa, but also those who
imposed it. This slave trade, associated colonialism and other Atlantic trade have played a big
role in Western Europe’s development between 1500 and 1850, not only economically, but also
institutionally. This rising trend could be described as "The First Great Divergence" and is, for
instance, stated by Allen (2001) as follows: "It is shown that the divergence in real incomes ob-
served in the mid-nineteenth century was produced between 1500 and 1750 as incomes fell in
most European cities but were maintained (not increased) in the economic leaders."

The possible relationship between European countries that were involved in Atlantic trade and
their economic and institutional growth after 1500 is described in Acemoglu et al. (2005). This re-
lationship is supported by figure 1, which shows the development in societies that were involved
in Atlantic trade in contrast to those that were not.

Figure 1: Difference in urbanization rate, weighted by population, between 1300 and 1850 of
Atlantic traders, West-European countries not being Atlantic traders, and Eastern Europe. (Figure
from Acemoglu et al. (2005))

Acemoglu et al. (2005) hypothesize that Atlantic trade, which is described as the opening of sea
routes to Asia, the New World, and Africa and establishing colonial empires, contributed to the
growth of Western Europe between 1500 and 1850, not just through direct economic effects, but
also indirectly by generating fundamental institutional change. Moreover, their hypothesis sug-
gests that the inclination for institutional change should have been much stronger in those so-
cieties that had existing controls on royal power than in those with absolutist governments and
trade monopolies controlled by its monarchies, for in these societies Atlantic trade did not de-
range the status quo. In other words, Acemoglu et al. (2005) hypothesis can be split into 4 subhy-
potheses:

1. Political institutions limiting and constraining state power are crucial for the incentives
to invest and for sustained economic growth;

2. In early modern Europe, such political institutions were supported by commercial in-
terests outside the royal circle, but not welcomed by the monarchy and its allies;

3. Institutions that were favored by politically and economically powerful groups are more
likely to prevail;
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4. In countries without absolutist political institutions, Atlantic trade and colonialism
strengthened commercial interest of groups independent from the monarchy.

As stressed by Acemoglu et al. (2005), they do not intend to offer a mono-causal explanation for
the rise of Western Europe, they show however the major role that Atlantic trade played in the
"First Great Divergence". This role is also endorsed by Broadberry and Gupta (2006), who state
that silver wages in north-western Europe were high compared to the advanced parts of India
and China as they reflect high productivity in the trade sector.

2.3 DOUBLE/DEBIASED MACHINE LEARNING

On the subject of double/debiased machine learning, research has been conducted on infer-
ence based on lasso-type methods for estimating nuisance parameters. Nonetheless, not much
about the theory and applications of other double/debiased machine learning methods in a
high-dimensional setting has been conducted.

Chernozhukov et al. (2017) builds upon the theory of semi-parametric estimation, such as the
kernel spaces of van der Vaart (1996), which focuses on traditional non-parametric methods for
estimating θ0. In their paper, they apply double/debiased machine learning (DML) techniques
on a partially linear regression model, with a low-dimensional parameter θ0 in a framework of
high-dimensional nuisance parameters η0. The following PLR model is considered as a lead ex-
ample:

Y = Dθ0 + g0(X )+U , E [U |X ,D] = 0 (1)

D = m0(X )+V , E [V |X ] = 0 (2)

where Y is the outcome variable, D is the policy/treatment variable of interest, vector X =
[X1,...,Xp ] consists of other controls, and U and V are disturbances. Equation 1 is the main equa-
tion, and θ0 is the main regression coefficient that they would like to estimate. Important to
note is that nuisance parameters g0 and m0 can take on high-dimensional, non-linear functions,
which differs substantially from linear regressions such as OLS and IV estimation.

2.3.1 UNCONFOUNDEDNESS

One important aspect double/debiased machine learning should conform to is the assumption
of unconfoundedness. Confoundedness may appear when not all relevant variables are taken
into account, which occurs often in social sciences (in Social Science, 2015). Consequently, there
may exist unobserved confounding variables that influence the dependent variable Y through
the treatment variable D . The unconfoundedness assumption describes that any correlation be-
tween treatment variable and outcome variable, once controlled for confounding covariates, is
actual causal. In more mathematical terms, this means that the dependent variable Y should
be orthogonal to the treatment variable D given the covariates capturing variable X . In other
words, the treatment variable is practically randomly assigned (once controlled for confounding
variables) (Layman, 2015).

To keep track of confounding, equation 2 is introduced. As DML allows for non-linear nuisance
parameters and covariate interactions, the assumption of unconfoundedness is more likely to
hold compared to OLS and IV regression. Mathematically, this is shown in equation 2 in which
the parameter space of nuisance parameters m0 may be complex, thus allowing for m0 to take
on non-linear functions. This complex parameter space surpasses prior work done in the field
of interaction between treatment effect variables and nuisance parameter. Research conducted
prior to Chernozhukov et al. (2017) "naively" estimated θ0 by splitting sample size N in two equal
parts: a main part and an auxiliary part. They obtain ĝ0 using the auxilary sample and an estimate
for θ0 using the main sample:

θ̂0 = (
1

n

∑
i∈I

D2
i )−1 1

n

∑
i∈I

Di (Yi − ĝ0(Xi )). (3)

Although this "naive" estimation yielded mostly effective predictions, it leaves room for mislead-
ing estimation of θ0 due to two substantial biases: regularization bias and bias induced by over-
fitting.
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Figure 2: Illustrating the regularization bias when "naively" estimating using Machine Learning.
This bias is overcome by orthogonalization.
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Figure 3: Illustrating the bias induced by overfitting when "naively" estimating using Machine
Learning

2.3.2 OVERCOMING BIASES

Regularization bias occurs as the estimator for θ0 in equation 3 has a rate of convergence which
is slower than 1/

p
n, namely |pn(θ̂0 −θ0)| →P ∞. Particularly, the "naive" estimator of θ0 fails to

be
p

N consistent.

Overcoming this regularization bias is done by orthogonalization. Specifically by introducing the
orthogonal regressor V = D −m0(X ) and obtaining an estimate V̂ = D − m̂0(X ), where m̂0 is an
ML estimator of m0 obtained using the auxiliary observations sample. By approximately orthog-
onalizing D with respect to X and approximately removing the direct effect of confounding by
subtracting an estimate of g0, θ̂0 removes the effect of regularization bias.

The scaled estimation error of θ̂0 can be decomposed as follows:
p

n(θ̂0 −θ0) = a∗+b∗+ c∗ (4)

Specifically, a∗ and b∗ possess such properties that they vanish under a broad range of data-
generating processes. Besides, the first two terms satisfy:

a∗ = (EV 2)−1 1p
n

∑
i∈I

ViUi N (0,
∑

) (5)

b∗ = (EV 2)−1 1p
n

∑
i∈I

(m̂0(Xi )−m0(Xi ))(ĝ0(Xi )− g0(Xi )) (6)

The third term c∗ contains terms like:

1p
n

∑
i∈I

Vi (ĝ0(Xi )− g0(Xi )) (7)

Veryfing that θ̂0 has good properties requires the remainder term c∗ to be sufficiently well-
behaved. Sample splitting plays a key role in guaranteeing that c∗ vanishes in probability under
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weak conditions. This is proven by Chebyshev’s inequality, which verifies that term 7 has mean
zero and variance which behaves as follows, where ĝ0 is estimated using only auxiliary sample
observations:

1p
n

∑
i∈I

(ĝ0(Xi )− g0(Xi ))2 →P 0 (8)

This method of sample splitting or "k-cross validation", however, causes the estimator of the
parameter of interest to possibly lose a substantial amount of efficiency, for the estimator only
uses a subset of the available data, namely the main sample. This efficiency loss is solved by
switching the role of the main and auxiliary samples to obtain a second version of the estimator
and then averaging the results. This procedure is commonly known as cross-fitting. In short, by
splitting the sample, cross-fitting prohibits c∗ from exploding, and thus removes bias induced by
overfitting.

3 METHODOLOGY

3.1 SLAVE TRADE

In order to estimate the relationship between the number of slaves that were taken from an indi-
vidual’s ethnic group and the individual’s current level of trust, the following baseline equation is
estimated by Nunn and Wantchekon (2011):

trusti ,e,d ,c =αc +βslave exportse +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (9)

where i describes individuals, e ethnic groups, d districts, and c countries. The trusti ,e,d ,c vari-
able illustrates one of their five measures of trust, which differ across individuals. The follow-
ing measures of trust are captured in this variable: trust of relatives, trust of neighbors, trust of
local council, intragroup trust,and intergroup trust. When estimating the relationship between
trust amongst Africans today and the slave trade conducted throughout history in Africa, only
one of these measures is considered per esimation. Moreover, αc describes country fixed ef-
fects. The variable slave exportse is a measure of the number of slaves taken from ethnic group
e during the slave trade. This variable can take on the following forms of measurement: slave
exports (thousands), exports/area, exports/historical pop, ln(1+exports), ln(1+exports/area), and
ln(1+exports/historical pop). β denotes the coefficient of interest: the relationship between the
slave exports of an individual’s ethnic group and the individual’s current trust-level. To estimate
these coefficients, Nunn and Wantchekon (2011) makes use of OLS and IV regressions.

Moreover, the vector X′
i ,e,d ,c describes a number of individual-level covariates, which include

the respondent’s age, age squared, an indicator variable for gender, a second indicator variable
that equals one if the respondent lives in an urban location, five fixed effects for the respondent’s
living conditions, 18 religion fixed effects, 25 occupation fixed effects, and 10 fixed effects for the
educational attainment of the respondent.

Lastly, the vector X′
e consists of variables capturing the historical characteristics of ethnicities, as

well as the differing impacts of colonial rule on separate ethnic groups.

In this paper, I apply double/debiased machine learning techniques to the PLR model as in 2
to replicate Nunn and Wantchekon (2011). This causes the parameter of interest θ0 to change
to β and D to change to slave exportse . Important to note is that in Section 5 of Chernozhukov
et al. (2017) a binary treatment variable is used, while our intended treatment variable takes on
continuous values. This, however, is not an issue, since the provided code by Chernozhukov et al.
(2017)1 is able to accept non-binary input for the treatment variable.

Moreover, the elements of vector X become α,X′
i ,e,d ,c ,X′

d ,c and X′
e , making functions g0(X ) and

m0(X ) describe these elements. Furthermore, Y defines the variable trusti ,e,d ,c and U describes
εi ,e,d ,c , the error term used in the original paper of Nunn and Wantchekon (2011).

1For provided code see: https://github.com/VC2015/DMLonGitHub
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To investigate whether the possible relationship between slave exports and trust-levels is causal,
Nunn and Wantchekon (2011) pursue three strategies. First, they control for additional covari-
ates, such as initial conditions and colonial rule, that possibly are correlated with the slave trade.
Consequently, they ensure that the found relationship between dependent variable and treat-
ment variable is caused solely by the treatment variable (or unobservables). Second, they asses
the likelihood that our estimates are caused partly due to unobserved heterogeneity across eth-
nic groups. The last strategy to look for causality involves the historical distance from the coast
of an individual’s ethnic group as an instrument for slave exports. Furthermore, they distinguish
between two channels of causality, internal versus external to the individual, and examine which
has the bigger influence.

In this paper, DML is applied to the following tables of Nunn and Wantchekon (2011): Table 1,
2 and 5. These tables make use of a specialization of the main regression stated in this subsec-
tion 9. All tables make use of, at least, the following baseline controls: controlling for individual
traits, district characteristics and country fixed effects. Specifically this comes down to using con-
trols age, age2, a gender dummy, an urban dummy, and different levels of: education, occupation,
religion, living conditions, and isocode. To capture these different levels, multiple dummy vari-
ables were created.

Moreover, accounting for an individual’s district situation is done by making use of the following
district controls: fractionalization of ethnicity per district and proportion of ethnicity per district

Additionally, some tables in Nunn and Wantchekon (2011) are constructed by controlling for
local colonial influence. The variables are captured by colonial controls are considered: to-
tal mission area, railway contact, malaria, explorer contact, cities1400dummies, v30, v33, and
log (initial population density), where variable v30 captures precolonial settlement patterns of
ethnicity, and v33 precolonial jurisdictional hierarchy beyond the local community. Lastly, colo-
nial population density may serve as a control variable.

To clarify the estimations conducted in Nunn and Wantchekon (2011), the estimated equations in
one table (Table 2) are stated below. The other estimated relationships are clarified in the Results
section.

Table 2 of Nunn and Wantchekon (2011) shows the relationship between the baseline measure of
slave exports, ln(1+ expor t s/ar ea), and different measures of trust. The following controls are
taken into account: individual controls, district controls, and country fixed effects. The general
linear regression that is considered is as follows:

trusti ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (10)

where the dependent variable trusti ,e,d ,c differs across the estimated equations. Specifically, the
following equations are estimated:

trust of relativesi ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (11)

trust of neighborsi ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (12)

trust of local councili ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (13)

intragroup trusti ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (14)

intergroup trusti ,e,d ,c =αc +βln(1+exports/area)e +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (15)

All estimated coefficients of interest, denoted by β in aforementioned equations, are negative,
significant at a 1 percent level, and range from −0.00068 to −0.743. For further details, one
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can turn to Table 27 in the appendix. Table 3 of Nunn and Wantchekon (2011) considers the
same relationship between the baseline measure for slave exports, ln(1+ expor t s/ar ea) and
the aforementioned measures of trust. Now, however, additional controls are included, namely
ethnicity-level colonial controls, and controlling for colonial population density. The aforemen-
tioned equations are included in the regression. Again, all estimated coefficients are negative
and significant at a 1 percent level.

Furthermore, tables 5 and 6 of Nunn and Wantchekon (2011) take the distance of an ethnic group
to the coast as an instrument for the number of slaves captured, as they assume that distance
from coast had an impact on trust only through slave trade. In order to validate the use of this
instrumental variable, a number of falsification tests outside of Africa are considered. In the first
stage of the IV regressions, the following equation is estimated:

ln(1+exports/area)e =αc +βhistorical distance coaste +X′
i ,e,d ,cΓ+X′

d ,cΩ+X′
eΦ+εi ,e,d ,c , (16)

Additionally, equations 17 - 15 are used to estimate the coefficient of interest β in the second
stage of the IV regressions. All estimates are negative and significant at a 1 percent level. Table
6 makes use of the same equations as in Table 5, both during the first and second stage of the
IV regressions, but besides controls for reliance on fishing, and for distance to a Saharan city or
historic route. All coefficients of tables 5 and 6 are negative and significant.

Table 7 and 8 are used as validation for the power of the instrumental variable historical distance
of ethnic group from coast. Table 9 and 10 serve as tools to identify which channels are causing
the investigated causality. Table 9 makes use of the same controls as Table 3, supplemented by
council trustworthiness fixed effects, and five public goods fixed effects, which consist of school,
health clinic, sewage, piped water, and electricity. Table 10 makes use of the same controls of
Table 3 as well. To see which slave export and trust measures, as well as which controls are con-
sidered, one can turn to tables in the appendix.

3.2 THE RISE OF EUROPE

In Acemoglu et al. (2005), three models are introduced to capture the relationship between
Atlantic trade in western Europe and its economical and political effects. Because the second
model is a more restrictive version of the first model, only the following two models are con-
sidered in this paper. First, the following equation is estimated to keep track of the economic
implications of Atlantic trade:

u j t = dt +δ j +
∑

t≥1600
αt ·W E j ·dt +β ·PAT j · lnATt +X ′

j t ·γ+ε j t (17)

where u j t denotes country j ’s urbanization at time t , W E j is an indicator variable describing
whether country j is in Western Europe, the dt ’s denote year effects, δ j denotes country fixed ef-
fects, X j t is a covariate vector, and ε j t is an error term. Furthermore, the variable PAT j denotes
the measure for Atlantic trade potential, which is an indicator variable for Atlantic trader (the
Netherlands, Portugal, France, Britain, and Spain) or alternatively the Atlantic coastline-to-area
ratio (both cases are time-invariant traits of the country). Additionally, ATt represents an esti-
mate of the aggregate volume of Atlantic trade, and the coefficient of interest β denotes the inter-
action term between log volume of Atlantic trade and potential for Atlantic trade at the country
level.

In this paper, I will use equations 2 and 17 in order to apply DML techniques to Table 2, column 3
of Acemoglu et al. (2005), by replacing the variables in equation 2 to the ones in Table 2, column
3, which are based on equation 17. This causes the dependent variable Y to change to u j t and the
treatment variable D to change to PATt , for t = 1500,1600,1700,1750,1800,1850. Again, impor-
tant to note is that in Section 5 of Chernozhukov et al. (2017) a binary treatment variable is used,
while our intended treatment variable takes on continuous values. This, however, is not an issue,
since the provided code by Chernozhukov et al. (2017) is able to accept non-binary input for the
treatment variable. Furthermore, the parameter of interest θ0 changes to βt , and the elements
of vector X change to dt , δt , and W E j for the aforementioned t ’s. Unlike the regressions used
in Nunn and Wantchekon (2011), the other treatment variables PATt that are not considered at
time t are also added to the covariate vector X .
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Second, to keep track of the political implications of Atlantic trade by western European coun-
tries, the following equation is estimated by Acemoglu et al. (2005):

u j t = dt +δ j +
∑

t≥1600
αt ·W E j ·dt +β ·PAT j · lnATt +

∑
t≥1500

γt · I j ,1415 ·dt +η ·PAT j · lnATt · I j ,1415 +ε j t

(18)

where the same variables as in equation 17 are used, supplemented by the variable I j ,1415, which
denotes country j ’s initial institutions. This variable is calculated as the average of its constraint
on the executive in 1400 and 1500, in order to capture the long-term institutional differences
in the before 1500 period. The γt · I j ,1415 ·dt terms allow for any differential economic trends
associated with differences in initial institutions that would apply without access to the Atlantic
even.

3.3 DOUBLE/DEBIASED MACHINE LEARNING

To establish good behavior of the estimator of the treatment variable, DML techniques have to
conform to certain moment conditions. Generalizing the orthogonal principle in section 3.4, one
has to compare the solution of conventional equations to the solution of estimating the orthog-
onalized equations. The conventional equations can be represented as follows:

1

n

∑
i∈I
ϕ(W ; θ̂0, ĝ0) = 0, (19)

where ϕ is a known "score" function and ĝ0 is the estimator of the nuisance parameter g0. This
score function is sensitive to biased estimation of g as the Gâteaux derivative operator does not
disappear:

∂g Eϕ(W ;θ0, g0)[g − g0] 6= 0 (20)

By contrast, the double/debiased ML estimator θ̂0 solves:

1

n

∑
i∈I
ψ(W ; θ̂0, ĝ0) = 0, (21)

where η̂0 is the estimator of the nuisance parameter η0 and ψ is an orthogonalized or debiased
"score" function that causes the Gâteaux derivative operator to vanish:

∂ηEψ(W ;θ0,η0)[η−η0] = 0 (22)

Equation 22 is also known as "Neyman orthogonality" and ψ as Neyman orthogo-
nal score function. In the partial linear model in 1 and 2, the estimator θ̂0 uses
ψ(W ;θ,η) = (Y − Dα − g (X ))(D − m(X )), with the nuisance parameter being η = (m, g ). It
is clear to see that these score functions ψ are not sensitive to biased estimation of η0 in the
sense that equation 22 holds.

In short, Neyman orthogonality and moment conditions, together with sample splitting or "k-
cross validation", make sure that the estimator of the parameter of interest is unbiased. In this
paper, I use these moment conditions in order to apply DML to Nunn and Wantchekon (2011)
and Acemoglu et al. (2005). The variables and parameters in this subsection change to the ones
mentioned in equation 9 and 17.

3.4 MACHINE LEARNING TECHNIQUES

In order to apply DML to the data used in Nunn and Wantchekon (2011) and Acemoglu et al.
(2005), I make use of several machine learning techniques. These techniques consist of the
following methods: lasso, boosted trees, random forests, deep neural nets, and an ensemble
method. In this paper, the ensemble method consist of the methods "RLasso", "Boosting",
and "Forest". In the appendix, these techniques will be introduced and thoroughly explained.
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Throughout my paper, I examine whether using these ML techniques on Nunn and Wantchekon
(2011) and Acemoglu et al. (2005) provides significantly different results compared to the ones
obtained by OLS regression.

The machine learning techniques mentioned in the appendix are implemented in the code pro-
vided by Chernozhukov et al. (2017). This code is used in the DML paper to provide empirical
results supporting the theory. I have adjusted, however, this code in order to apply DML to the
provided dataset by Nunn and Wantchekon (2011)2 and Acemoglu et al. (2005)3.

4 DATA

4.1 SLAVE TRADE PAPER

The same data used in Nunn and Wantchekon (2011) will be used for its replication. These data
consist of two sources: On one hand, the 2005 Afrobarometer surveys, which represent 17 sub-
Saharan African nations based on interviews conducted in the local languages of a random sam-
ple of either 1200 or 2400 individuals of voting age in each country. In these interviews, individ-
uals categorize their trust in their neighbors, relatives, and their elected government council.

On the other hand, estimates of the number of slaves collected from each ethnic group are based
on country-level slave export data from Nunn (2008). In that paper, Nunn (2008) combines data
on the total number of slaves shipped from all harbors and regions of Africa with data on the
slaves’ ethnic identities. Important to mention is the matching of ethnic identities in the histori-
cal data to the ethnic classification in the Afrobarometer surveys.

4.2 THE RISE OF EUROPE

In order to apply DML to the Rise of Europe paper, the data provided by Acemoglu et al. (2005) is
used. These data consist of three sources.
First, urbanization estimates are constructed based on urban population figures found by
Bairoch (1988). This dataset contains information about all 2200 European cities that had a mini-
mum of 5000 inhabitants, at some time between 800 and 1800. These urban population numbers
are then divided by McEvedy and Jones (1978)’s population estimates in order to calculate urban-
ization. Moreover, estimates of urbanization rates in Asia of Bairoch (1988) are used. Additionally,
Acemoglu et al. (2002a) show that there is a close relationship between urbanization and income
per capita, not only before but also after industrialization had occurred. Hence, urbanization is
taken as a proxy for GDP per capita.
Second, estimates of GDP per capita from Maddison (2001) are used. They are available for
1500,1600,1700,1820, and then more frequently. For these estimates are educational guesses,
they serve the purpose of a check on the results using urbanization data.
Third, European city-level data from Bairoch (1988) is used in order to detect those urban cen-
ters that were driving economic and demographic growth. Additionally, these data were used to
compare the growth of Atlantic harbors to other harbors and inland cities.

4.3 ADJUSTING DATA AND CODE

Regarding the data provided by Nunn and Wantchekon (2011), I adjusted this data in order to esti-
mate the examined relationship between slave exports in Africa and current trust-levels amongst
Africans. First, by replicating the results in Stata, I obtained the dataset with several dummy vari-
ables for a respondent’s education, occupation, religion, living conditions, isocode and several
precolonial traits. This, and adding a constant variable to this dataset, resulted in an adjusted
dataset of 21822 observations of 138 variables. Then, by omitting ’Not Available’ observations for
the used dependent variable, treatment variable, and covariates, a number of observations was
established that equals the corresponding number of observations in Nunn and Wantchekon
(2011).

2For provided dataset see: https://www.aeaweb.org/articles?id=10.1257/aer.101.7.3221
3For provided dataset see: https://www.aeaweb.org/articles?id=10.1257/0002828054201305
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Regarding Acemoglu et al. (2005), running their dataset in Stata resulted in numerous dummies
defining which countries and what years are considered. Furthermore, by adding a constant vari-
able to this new dataset, I was able to implement a constant into the regression. In doing so, an
adjusted dataset of 475 observations of 97 variables was created. By ordering the dataset after
increasing values of the ’date’ variable (from small to large), I was able to depict which rows con-
firmed to the conditions ’date’>1200 and ’date’<1900, which is stated in Table 2 of Acemoglu et al.
(2005). Those rows that did not confirm to these conditions were excluded. The same proce-
dure of ordering and excluding was applied to observations that did not confirm to the condi-
tion: ’asia’ 6= 1 i.e. excluding observations that describe Asian trading. Furthermore, the follow-
ing country and year dummies were deleted due to collinearity issues: countr y1, countr y11,
countr y12, countr y18, countr y22, countr y28, yr 1000, yr 1100, yr 1200, and yr 1850.

To apply double/debiased machine learning techniques to a low-dimensional parameter θ0 in a
high-dimensional nuisance parameter environment, I make use of the code provided by Cher-
nozhukov et al. (2017). To properly run this code in R, the following packages had to be down-
loaded: foreign, quantreg, mnormt, neuralnet, gbm, glmnet, MASS, rpart, doParallel, sandwich,
hdm, randomForest, nnet, matrixStats, quadprog, xtable, dplyr, readstata13. The R codes used
to apply DML, which are adjusted versions of Bonus.R and AJR.R4, call the following functions:
MLFuncti ons.R, which specifies the machine learning techniques used in the main code, and
MomentFuncti ons.R, which consists of functions that estimate moments for using DML, as is
thoroughly explained in the Methodology section, and also calls on MLFuncti ons.R. Further-
more, the number of sample splits has to be stated. Due to considerable running time issues, all
results involving DML, which consist of replicating empirical results from Chernozhukov et al.
(2017), and applying DML to Nunn and Wantchekon (2011) and Acemoglu et al. (2005), are con-
ducted with a number of splits equal to 2. These running time issues for a larger number of
splits are mainly due to the two slowest methods: ’Boosting’ and, logically, the ensemble method,
whereas ’Trees’ computes results fastest for both small and large number of sample splits.

My used R code, after loading the required packages and dataset, adjusts the dataset by deleting
’Not Available’ observations. Moreover, dependent variable ’y’, treatment variable ’d’, instrumen-
tal variable ’z’, and control variable ’xl’ (used for ’Lasso’) and ’x’ (used for other the methods) are
specified.

Thereafter, the following machine learning techniques are used in my code for Nunn and
Wantchekon (2011): Lasso, Trees, Boosting, Forest, and an ensemble method. For Acemoglu et al.
(2005), the code also consists of the Neural Nets method. The ensemble method combines these
four (five) other methods by estimating the nuisance functions as weighted averages of estimates
obtained by these four methods. The weights are chosen in such a way that the weighted average
of these methods yields the lowest average mean squared out-of-sample prediction error esti-
mated using 5-fold cross-validation. Moreover, the weights are restricted to sum to one. These
techniques are combined in an additional method ’Best’, which selects the best methods for esti-
mating each nuisance function based on the average out-of-sample prediction performance for
the target variable.

When comparing the DML estimation results to the OLS estimated coefficients, the ’Best’ method
will be considered, as this method yields the best average out-of-sample prediction performance.
Note that if a single ML method outperforms the others regarding prediction accuracy for all nui-
sance functions, the estimate under ’Best’ will be equal to the estimate of that method. Also
important to note is the absence of the ’Neuralnets’ method for applying DML to Nunn and
Wantchekon (2011). If this method was to be implemented, some variables containing 0 or ’Not
Available’ observations had to be deleted. Consequently, I decided not to include this method,
as I regarded these variables to be essential for comparing the DML estimation results to the OLS
estimation results. The ensemble method for Nunn and Wantchekon (2011) does not contain
this method as well.

4For provided code see:https://github.com/VC2015/DMLonGitHub/
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5 RESULTS

5.1 REPLICATING OLS AND EMPIRICAL RESULTS

Before applying DML to the provided datasets, I have replicated tables 1− 3, 5-6, and 9− 10 of
Nunn and Wantchekon (2011) and tables 1− 3 and 5− 6 of Acemoglu et al. (2005) using Stata.
The obtained results are shown in the appendix in tables 27 - 33 and 34 - 38. All tables con-
trol for at least the baseline controls, which consist of: controlling for individual traits, district
characteristics and country fixed effects. As expected, the OLS replication yields similar results
to those originally in Nunn and Wantchekon (2011) and Acemoglu et al. (2005), ensuring the
proper use of both datasets. Appendix tables 27, 28, and 29 for Nunn and Wantchekon (2011) all
show a negative relationship between different measures of slave trade and measures of trust-
levels among Africans. The other tables indicate that this relationship is in fact causal. The same
conclusion can therefore be drawn from the OLS replication: individuals whose ancestors were
heavily raided during the slave trade are less trusting today. Furthermore, appendix tables 34 - 38
confirm the positive influence access to the Atlantic Ocean and the subsequent trade with Africa,
Asia, and the New World via the Atlantic has had on economic and political growth.

Second, I also replicated the empirical results of the Chernozhukov et al. (2017) to ensure the
proper use of the provided code. These results are depicted in the appendix tables 23, 24, 25 and
26. First, I ran the Bonus.R code to replicate the empirical results in Chernozhukov et al. (2017)
as in Table 1 of Section 6.1. The used dataset, penn j ae.d at , contains 5099 observations of 23
variables. The results are captured in Table 23. As one can clearly see, the results are similar to
the ones obtained in the DML paper, thus guaranteeing the proper use of the code.

To verify that the other provided codes are also properly used, I then tested the correctness of the
401K .R code by running it in R and comparing the obtained results with the ones as in Section
6.2 of the DML paper. The dataset Sipp1991.dta was used, which contains 9915 observations of
14 variables. Clearly, one sees that both uses of the code provide approximately similar results.

In addition to aforementioned replication of empirical results, I also replicated Table 3 of Section
6.3 of Chernozhukov et al. (2017) to show the validation of the code 401K-LATE.R. Again, the
dataset Sipp1991.dta was used, containing 9915 observations of 14 variables. Running this code
yields the results presented in Table 25. Again, similar results to the ones in Section 6.3 of the
DML paper were obtained, ensuring the proper use of the 401K-LATE.R code.

Lastly, I have replicated Table 4 of the empirical results in Section 6.4 of Chernozhukov et al.
(2017) by running the provided AJR.R code, with dataset AJR containing amongst others GDP
and mortality rates. This yields the results as captured in Table 26. Again, approximately same
results to those in section 6 of Chernozhukov et al. (2017) were obtained.

5.2 SLAVE TRADE PAPER

In this section, the results of tables 1, 2, and 5 of Nunn and Wantchekon (2011) are estimated
using DML. The mentioned t-values are computed by dividing the estimated coefficient with its
standard error. The following notation for significant coefficients is used:

• * : significant at 10 percent level

• ** : significant at 5 percent level

• *** : significant at 1 percent level

5.2.1 SLAVE TRADE DML REPLICATION OF TABLE 1

In this subsection, Table 1 of Nunn and Wantchekon (2011), in which OLS estimation is applied to
examine the effect of different measures of slave exports on trust neighbors, is analyzed by using
DML estimation. This table makes use of the aforementioned baseline controls. The obtained
DML results are as follows:
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RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.00029315 -0.00041043 -0.00055121 -0.00047586 -0.00043723 -0.00041981

Standard Error (0.00028823) (0.00038224) (0.00034884) (0.00039674) (0.00034982) (0.00037594)

Table 1: Applying DML to Table 1 coefficient 1: The Determinants of Trust in Neighbors

The first coefficient of Table 1 in Nunn and Wantchekon (2011) depicts the relationship between
dependent variable trust neighbors and treatment variable slave exports (thousands). OLS esti-
mation yields a coefficient of −0.00068, which is not significant. As Table 1 shows that the co-
efficient estimated by ’Best’ is somewhat smaller than this OLS coefficient, and with a t-value
of t = −1.126, this coefficient fails to be significant. Furthermore, the coefficients do not differ
much across these techniques. ’RLasso’ yields the smallest effect, and due to a small standard
error, this coefficient fails to be significant. As none of the DML techniques, just like OLS esti-
mation, yield significant coefficients, there does not exist a major difference in results between
using DML techniques and OLS estimation.

RLasso Trees Boosting Forest Ensemble Best
Treatment effect -0.00346421 -0.00975123 -0.01194721 -0.01018604 -0.0111943 -0.01185931

Standard Error (0.00504197) (0.00631649) (0.00810649) (0.00920316) (0.00878241) (0.00897321)

Table 2: Applying DML to Table 1 coefficient 2: The Determinants of Trust in Neighbors

In Table 2, the possible relationship between dependent variable trust neighbors and treatment
variable exports/area is shown, which yields a coefficient of −0.019 when using OLS estimation.
With a standard error of 0.005, this OLS coefficient is significant at a 1 percent level. In 2, the ’Best’
method yields an estimated treatment effect of −0.012, which fails to be significant. Consequen-
tially, a different conclusion is drawn via DML estimation compared to OLS estimation, as DML
does not show a significant relationship between trust neighbors and exports/area. Moreover, the
other coefficients estimated using DML fail to be significant as well, and range from −0.012 to
−0.0035.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -1.13276931*** -0.51769301*** -0.52864914** -0.53121860** -0.51887146** -0.51286407**

Standard Error (0.17593717) (0.16420517) (0.20890125) (0.22674170) (0.22330168) (0.22959157)

Table 3: Applying DML to Table 1 coefficient 3: The Determinants of Trust in Neighbors

In Table 3, the relationship between dependent variable trust neighbors and exports/hist pop is
illustrated. The estimated effect using OLS, as in Nunn and Wantchekon (2011), results in a 1
percent-level significant coefficient of −0.531. Likewise, 3 shows an estimated effect of −0.513
using the ’Best’ method, and with a t-value equal to −2.29, this treatment effect also is signifi-
cant, although at a 5 percent level. The effect estimated by ’RLasso’ and ’Trees’, however, is sig-
nificant at a 1 percent level. In other words, DML estimation draws the same conclusion as OLS
estimation, that there exists a negative relationship between trust neighbors and exports/hist pop.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.15665921*** -0.08172915*** -0.07929812*** -0.05967040** -0.07194555** -0.07198104**

Standard Error (0.02726014) (0.02664016) (0.0281241) (0.02854493) (0.02901513) (0.0295146)

Table 4: Applying DML to Table 1 coefficient 4: The Determinants of Trust in Neighbors

Table 4 investigates the relation between dependent variable trust neighbors and treatment vari-
able ln(1+exports/area). In Nunn and Wantchekon (2011), the coefficient of interest, estimated
using OLS, equals −0.037, which is significant at a 1 percent level. The ’Best’ method in Table
4 produces a much more negative coefficient of −0.072, which is 1.9 times more negative, but,
due to a large standard error of 0.030, this coefficient is less significant (at 5 percent). Other DML
techniques produce all negative, significant coefficients as well, ranging from −0.16 to −0.060.
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Conclusively, DML yields a much more negative relationship, but due to a larger standard error,
this relationship may be less reliable.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.29005216*** -0.14841941*** -0.17519514*** -0.14311183*** -0.1631960*** -0.14841065***

Standard Error (0.03592065) (0.03740631) (0.04285063) (0.04672054) (0.04501974) (0.05073179)

Table 5: Applying DML to Table 1 coefficient 5: The Determinants of Trust in Neighbors

Table 5 describes the relationship between dependent variable trust neighbors and treatment
variable ln(1+exports/area). The ’Best’ method yields a coefficient of −0.15, and with a t-value
of −2.93 this coefficient is significant at a 1 percent level. As the estimated effect in Nunn and
Wantchekon (2011) using OLS is also 1 percent significant, and with an OLS coefficient of −0.159,
the same conclusion can be drawn when using DML estimation: there exists a significant rela-
tionship between trust neighbors and ln(1+exports/area).

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -2.01704169*** -1.43950158*** -1.41850379*** -1.43019678*** -1.44019614*** -1.43943019***

Standard Error (0.13496147) (0.16019681) (0.16619402) (0.18015856) (0.16701842) (0.16810437)

Table 6: Applying DML to Table 1 coefficient 6: The Determinants of Trust in Neighbors

Table 6 shows the relationship between trust neighbors and ln(1+exports/hist pop). Using OLS
estimation, Nunn and Wantchekon (2011) finds a 1 percent significant relationship, with a coef-
ficient equal to −0.743. Moreover, applying DML estimation results in much more negative co-
efficients. For instance, using the ’Best’ method yields a coefficient of −1.44, while significant at
at 1 percent level. Therefore, a much more profound, negative relationship between trust neigh-
bors and ln(1+exports/hist pop) is found by DML. All coefficients are more negative than the OLS
coefficient, are significant at a 1 percent level and range from −2.02 to −1.42.

5.2.2 SLAVE TRADE DML REPLICATION OF TABLE 2

In this subsection, Table 2 of Nunn and Wantchekon (2011), in which the effect of the baseline
measure of exports, ln(1+ expor t s/ar ea), on different measures of trust is depicted using OLS
estimation, is analyzed by using DML estimation. This table also makes use of the baseline con-
trols. This produces the following results:

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.40196582*** -0.26914065*** -0.22501479*** -0.21053868*** -0.21871492*** -0.2160142***

Standard Error (0.031914232) (0.02979140) (0.02751021) (0.02679158) (0.02749167) (0.02740186)

Table 7: Applying DML to Table 2 coefficient 1: The Determinants of the Trust of Others

Table 7 shows the influence of the baseline measure of slave exports, ln(1+exports/area), as a
treatment variable on dependent variable trust neighbors. This relationship is estimated in Nunn
and Wantchekon (2011) using OLS and yields a coefficient of −0.133, which is significant at a 1
percent level. As shown in Table 7, all DML techniques also provide negative and 1 percent signif-
icant coefficients. Nonetheless, with an estimated coefficient of −0.22 using the ’Best’ method,
this relationship is much more thorough, as this effect is approximately 1.7 times larger than the
OLS estimated effect. Likewise, the other DML techniques provide very negative coefficients,
ranging from −4.0 till −0.21.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.46501978*** -0.25716494*** -0.2618306*** -0.23501988*** -0.19874846*** -0.24868474***

Standard Error (0.03591604) (0.03401982) (0.03196403) (0.03046916) (0.02965121) (0.02950197)

Table 8: Applying DML to Table 2 coefficient 2: The Determinants of the Trust of Others
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Tabel 8 depicts the relationship between the treatment variable ln(1+exports/area) and depen-
dent variable trust neighbors. In Nunn and Wantchekon (2011), this effect, using OLS estimation,
is described by a 1 percent significant coefficient of −0.159. Similarly, the ’Best’ method of ap-
plying DML provides a coefficient of −0.25. With a t-values of −8.4, this coefficient, just like the
coefficients obtain using the other DML methods, is highly significant at a 1 percent level. Conse-
quently, the same conclusion can be drawn when DML is applied instead of OLS i.e. there exists
a significant negative relationship between trust neighbors and the baseline measure of slave ex-
ports ln(1+exports/area).

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.29601548*** -0.14593016*** -0.1470315*** -0.13201689*** -0.14306491*** -0.14310658***

Standard Error (0.03263718) (0.03040195) (0.02819501) (0.01930151) (0.02519301) (0.02631940)

Table 9: Applying DML to Table 2 coefficient 3: The Determinants of the Trust of Others

Table 9 describes the effect of ln(1+exports/area) on trust local council. OLS regression yields a
1 percent significant coefficient of −0.111, as shown in Table 2 of Nunn and Wantchekon (2011).
Likewise, the ’Best’ method provides an approximately similar coefficient of −0.143, with also
is significant at a 1 percent level, due to a standard error of 0.026. This, together with the sim-
ilar results obtained by the other DML techniques, causes the same conclusion in Nunn and
Wantchekon (2011) to be drawn when using DML.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.38910241*** -0.187912041*** -0.19315960*** -0.16849104*** -0.18381940*** -0.17912039***

Standard Error (0.03501691) (0.03221950) (0.02949301) (0.02812590) (0.02772910) (0.02841051)

Table 10: Applying DML to Table 2 coefficient 4: The Determinants of the Trust of Others

In Table 10, the effect of ln(1+exports/area) on intragroup trust is estimated using DML tech-
niques. The coefficient estimated by the ’Best’ method equals −0.18, and with a t-value of −6.3,
this coefficient is highly significant. Moreover, this coefficient does not differ much from the
coefficient in Nunn and Wantchekon (2011) using OLS regression, which equals −0.144 and
is significant at a 1 percent level as well. Therefore, the same negative relationship between
ln(1+exports/area) and intragroup trust can be concluded from DML.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.35491581*** -0.20501293*** -0.18912057*** -0.18129851*** -0.18361354*** -0.19571389***

Standard Error (0.03591205) (0.02982015) (0.02830198) (0.02911921) (0.02712859) (0.02987211)

Table 11: Applying DML to Table 2 coefficient 5: The Determinants of the Trust of Others

Table 11 describes the fifth and final coefficient of Table 2 in Nunn and Wantchekon (2011), which
captures the effect of ln(1+exports/area) on intergroup trust. In Nunn and Wantchekon (2011),
this relationship is described by a 1 percent significant OLS coefficient of −0.097, whereas the
’Best’ method of DML produces a much more negative coefficient of −0.196, which is approxi-
mately 2 times larger than the corresponding OLS coefficient. With a t-value of −6.55, this DML
coefficient is also 1 percent significant. Consequently, using DML draws a similar, but more pro-
found conclusion i.e. the estimated negative influence of ln(1+exports/area) on intergroup trust
is much larger.

5.2.3 SLAVE TRADE DML REPLICATION OF TABLE 5

In this section, the results of applying DML to Table 5 of Nunn and Wantchekon (2011), in which
results are estimated using instrumental variable regressions, are shown. In addition to the base-
line controls, this table controls for colonial population density and makes use of ethnicity-level
colonial controls.
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RLasso Trees Boosting Forest Ensemble Best
Treatment Effect 0.04491581 -0.07120491*** -0.07348192*** -0.08738199*** 0.02237310 0.02259139

Standard Error (0.03911351) (0.02031567) (0.01812950) (0.02359120) (0.03949341) (0.03949130)

Table 12: Applying DML to Table 5 coefficient 1: IV estimates of the effect of Slave Trade on Trust

Table 12 shows the estimation results of using DML with treatment variable ln(1+exports/area),
dependent variable trust relatives and as instrumental variable the hist dist to coast is taken.
In Table 5 of Nunn and Wantchekon (2011), IV estimation produces a coefficient of interest of
−0.190, which is significant at a 1 percent level. The ’Best’ method in Table 12, however, yields a
positive constant of 0.023, which is surprising since, intuitively, one does not expect slave trade to
be positively correlated with trust-levels. With a t-value of 0.57, this coefficient is not significant,
which may explain the unexpected positive coefficient. On top of that, the DML methods that
are significant all show negative treatment effects. Thus Table 12 does not support nor reject the
conclusion of a negative relationship between the baseline measure of exports and trust relatives.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect 0.03739105 -0.07419274*** -0.1131931*** -0.12742315*** -0.0653488 -0.0641120

Standard Error (0.0404319) (0.02129414) (0.01949302) (0.02448391) (0.04048923) (0.04185933)

Table 13: Applying DML to Table 5 coefficient 2: IV estimates of the effect of Slave Trade on Trust

In Table 13, the relationship between the baseline measure of slave exports and trust neighbors
is depicted. In Table 5 of Nunn and Wantchekon (2011), this relationship is estimated by IV re-
gression, which provides a 1 percent significant coefficient of −0.245. This negative effect is sup-
ported by Table 13, which shows all negative treatment effects, except for a positive, but insignif-
icant coefficient produced by the ’RLasso’ method. As the ’Best’ method yields a treatment effect
of −0.064 with a t-value of −1.53, the negative relationship between ln(1+exports/area) and trust
neighbors is not sufficiently supported due to insignificant treatment effects.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.21493012*** -0.23392012*** -0.22859261*** -0.22489211*** -0.24038912*** -0.24038493***

Standard Error (0.04541031) (0.02419501) (0.02249201) (0.02710483) (0.04531450) (0.04539102)

Table 14: Applying DML to Table 5 coefficient 3: IV estimates of the effect of Slave Trade on Trust

Table 14 shows the effect of ln(1+exports/area) on trust local council, with the historical distance
of ethnic group from coast used as an instrumental variable. The ’Best’ method yields a result
of −0.24, which is significant at a 1 percent level as its t-value equals −5.30. Similarly, the cor-
responding OLS coefficient in Table 5 of Nunn and Wantchekon (2011), which equals −0.221, is
highly significant at a 1 percent level. As both DML and OLS produce approximately similar re-
sults, and because the coefficients obtained using different DML techniques do not differ much,
the same conclusion of a negative relationship can be drawn from Table 14.

RLasso Trees Boosting Forest Ensemble Best
Treatment Effect -0.02564921 -0.13710492*** -0.15193011*** -0.13905833*** -0.07841213** -0.07841213**

Standard Error (0.04030194) (0.02183910) (0.02112344) (0.02502914) (0.0391280) (0.0391280)

Table 15: Applying DML to Table 5 coefficient 4: IV estimates of the effect of Slave Trade on Trust

Table 15 describes the influence of the baseline measure of slave exports, ln(1+exports/area), and
the intragroup trust measurement. This relationship estimated by IV estimation, as in Table 5
of Nunn and Wantchekon (2011), yields a highly significant coefficient of −0.251. Likewise, the
’Best’ method in Table 15 produces a negative coefficient of −0.78. Therefore, Table 15 endorses
the same conclusion drawn by Table 5, however, due to a 5 percent significant, and less negative
’Best’ coefficient, this conclusion is stated less profoundly. Note that this coefficient equals the
’Ensemble’ coefficient, as this method outperforms the other methods regarding average out-of
sample prediction performance.
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RLasso Trees Boosting Forest Ensemble Best
Treatment Effect 0.12940481 -0.01920391 -0.02039130 -0.02729301 0.08501299* 0.08749130*

Standard Error (0.04391349) (0.02149341) (0.0201431) (0.02513135) (0.04391581) (0.05539103)

Table 16: Applying DML to Table 5 coefficient 5: IV estimates of the effect of slave trade on trust

Table 16 shows the influence of treatment variable ln(1+exports/area) on dependent variable in-
tergroup trust. In Table 5 of Nunn and Wantchekon (2011), this coefficient, estimated using IV,
equals −0.174 and is significant at a 10 percent level. The ’Best’ estimate in Table 16 equals 0.087,
but with a t-value of 1.58, this coefficient fails to be significant. This may explain the unexpected
positive relationship between slave trade and trust. Conclusively, DML replication cannot con-
firm nor reject the conclusion of a positive relationship between ln(1+exports/area) and inter-
group trust obtained by OLS estimation.

5.3 THE RISE OF EUROPE

In this section, the results of table 2 of Acemoglu et al. (2005) are estimated using DML. The
following notation for significant coefficients is used:

• * : significant at 10 percent level

• ** : significant at 5 percent level

• *** : significant at 1 percent level

5.3.1 RISE OF EUROPE DML REPLICATION OF TABLE 2, COLUMN 3

In this section, the results of applying DML to Table 2, column 3 of Acemoglu et al. (2005) are
depicted. As dependent variable, the country-level urbanization is taken, and as treatment vari-
able, the potential for Atlantic trade is taken over different years t . Further details about variables
involved, are described in the Methodology section.

RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.00093197 8.364e-05 0.00115032 0.0007272* 0.00055991** 0.00138209* 0.00114283

Standard Error (0.00087984) (0.00025389) (0.00078642) (0.00043402) (0.00028359) (0.00078342) (0.00076547)

Table 17: Applying DML to Table 2 column 3, coefficient 1: Atlantic trade and Urbanization

In Table 17, six double/debiased machine learning techniques are applied to Table 2, column 3
of Acemoglu et al. (2005), plus a ’Best’ method, combining the methods to yield the best result
regarding average out-of-sample prediction performance. The first coefficient describes the pos-
sible relationship between dependent variable urbanization and treatment variable PAT1500, a
dummy describing potential for Atlantic trade in 1500. This coefficient estimated by OLS, as in
Acemoglu et al. (2005), equals 0.016 and is not significant due to a t-value of 0.76. As stated in Ta-
ble 17, the ’Best’ method produces a coefficient of 0.0011, which is not significant. Therefore, the
estimated effect by DML is similar compared to OLS estimation, thus the same conclusion that
there does not exist a significant relationship between PAT1500 and urbanization can be drawn.

RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.00071850* 0.00029127 0.00068883 0.00020821 0.00044711 0.00020299 0.00085595

Standard Error (0.00037748) (0.00025801) (0.00186911) (0.00057435) (0.00029181) (0.00026411) (0.0025793)

Table 18: Applying DML to Table 2 column 3, coefficient 2: Atlantic trade and Urbanization

The estimated coefficient of Table 2 of Acemoglu et al. (2005), which is shown in Table 13, de-
scribes the possible influence of dummy variable PAT1600 on urbanization, and equals 0.006
when estimated using OLS. With a standard error of 0.023, this coefficient is not significant in
Acemoglu et al. (2005). Likewise, estimating this relationship using the ’Best’ DML technique
yields a non significant coefficient of 0.00086. Therefore, no significant different conclusion be-
tween DML and OLS can be drawn.
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RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.00081566** 0.00046631* 0.00157424 8.2e-05 0.00023965 0.00041452 0.00041452

Standard Error (0.00041092) (0.00025826) (0.00203929) (0.00049344) (0.00031211) (0.00026751) (0.00026751)

Table 19: Applying DML to Table 2 column 3, coefficient 3: Atlantic trade and Urbanization

In Table 19, the possible relation between dependent variable urbanization and treatment vari-
able PAT1700 is illustrated. In Acemoglu et al. (2005), this relationship yields a non-significant
coefficient of 0.032. Besides, estimating this influence using DML provides a non-significant co-
efficient of 0.00041. Note that this coefficient equals the ’Ensemble’ coefficient, as this method
outperforms the other methods. Therefore, the same conclusion as in Acemoglu et al. (2005)
may be drawn, that the potential for Atlantic trade in 1700 does not have significant influence on
country-level urbanization.

RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.00073145 0.0024088 0.00265073 0.00569058 0.05644388 0.01392618 0.02847844

Standard Error (0.02163872) (0.01788663) (0.01331804) (0.02835258) (0.04029227) (0.02420537) (0.03856443)

Table 20: Applying DML to Table 2 column 3, coefficient 4: Atlantic trade and Urbanization

Table 20 uses DML to estimate the possible relationship between treatment variable PAT1750 and
country-level urbanization, which yields an OLS coefficient of 0.032, whereas DML estimation
provides a coefficient of 0.028. Both coefficients are similar in value and not significant, thus the
same conclusion of a not significant effect can be drawn by DML as well as OLS estimation.

RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.0160856 0.00015093 0.00306622 0.02872649 0.02763679 0.03208941 0.02763679

Standard Error (0.02671498) (0.02173214) (0.02271309) (0.04163544) (0.0366209) (0.03751121) (0.0366209)

Table 21: Applying DML to Table 2 column 3, coefficient 5: Atlantic trade and Urbanization

Table 21 shows the possible relationship between dependent variable urbanization and treat-
ment variable PAT1800, which yields a 5 percent significant OLS coefficient of 0.048. With a t-
value of 0.75, the DML coefficient estimated by the ’Best’ method, which equals 0.028 fails to
be significant. Therefore, DML cannot endorse the conclusion of Acemoglu et al. (2005), which
states that a potential Atlantic trader in 1800 is positively correlated with urbanization.

RLasso Trees Boosting Forest Nnet Ensemble Best
Treatment Effect 0.01606023 0.01536904 0.02713653 0.05377637 0.0410558 0.05870471 0.05870471

Standard Error (0.02825376) (0.0273625) (0.0376909) (0.04285481) (0.07175434) (0.04430209) (0.04430209)

Table 22: Applying DML to Table 2 column 3, coefficient 6: Atlantic trade and Urbanization

Table 22 provides estimation results for dependent variable urbanization and treatment variable
PAT1850. The estimated ’Best’ coefficient equals 0.059 and with a t-value of 1.33, this coeffi-
cient fails to be significant. Note that this coefficient has the same value as the one produced
by the ’Ensemble’ method, showcasing the outperforming of other methods by ’Ensemble’. As
the corresponding OLS coefficient, which equals 0.085, is highly significant, the positive effect
of a potential Atlantic trader in 1850 on urbanization, concluded by OLS estimation, cannot be
confirmed by DML.

6 CONCLUSION

As shown in the Results section for Nunn and Wantchekon (2011), DML produces more pro-
found and significant relationships between dependent variable and associated treatment effect
in most cases. This shows the complimentary effect DML has compared to classical economet-
ric estimation methods, questioning their trustworthiness, and showing the relevance of apply-
ing DML to research in a social economic framework. Regarding the results for Acemoglu et al.
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(2005), since DML provides insignificant coefficients in most cases, this does not show the rel-
evance of double/debiased machine learning for treatment effects’ applications. Therefore, the
conclusions reached in Nunn and Wantchekon (2011) are disputed, casting doubt about the reli-
ability of classical econometric methods, whereas those in Acemoglu et al. (2005) are not. From
this difference in conclusions, one may argue that researchers should consider using DML more
frequently in a framework of many covariates and/or big datasets.

Nonetheless, in the process of expanding the theory behind double/debiased machine learning
and its applications, this paper contributes in empirically validating its relevance, by questioning
the trustworthiness of OLS and IV estimation compared to DML. This paper, however, is prone
to several points of improvements. First, as a used number of sample splits of 2 is fairly low, con-
ducting this same research may yield substantially different results when using the same number
of splits. Moreover, increasing the number of splits would improve the trustworthiness of this pa-
per, due to running time issues, however, this was not achievable at this time.

Second, as the neural nets machine learning method required the exclusion of certain vital co-
variate variables for Nunn and Wantchekon (2011), I decided not to include this method. Luckily,
this method was applicable to Acemoglu et al. (2005), but for a more robust empirical valida-
tion of this method, neural nets would have to be applied to more papers to clearly evaluate its
usefulness.

Third, estimating the treatment effect for several equations in Acemoglu et al. (2005), resulted
in many insignificant coefficients. This may be due to the fact that Acemoglu et al. (2005) only
uses about 4 covariates. Moreover, the unadjusted dataset of Acemoglu et al. (2005) contains
only 475 observations. The applied machine learning techniques do not cope well with both
these characteristics within a framework of low-dimensional nuisance parameters. Therefore, a
different paper, which uses more covariates and/or a bigger dataset, may be more suitable.

Lastly, regarding the content of these two social economic papers, I noticed that Nunn and
Wantchekon (2011) only investigates the possible relationship of slave trade and the social and
political state of Africa today through its effect on trust-levels amongst Africans. Interestingly,
this may not be the only trustworthiness factor that has been eroded due to slave trade. For in-
stance, further research into Africans trustworthiness of Europeans may be interesting, or, since
Africans were also enslaved by Arabs (Martin and Ryan, 1977), researching the trustworthiness of
Arabs by (Eastern) Africans can be of interest, to potentially support or reject the social impact
that slave trade has had in Africa.
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Appendices

A MACHINE LEARNING TECHNIQUES

A.0.1 LASSO

The "Least Absolute Selection and Shrinkage Operator", or LASSO, is a technique which is used
often in econometrics. One reason is because LASSO yields few non-zero estimates, so one can
discuss which covariates matter most. LASSO makes use of the standard linear equation Yi =
X ′

iβ+ε in order to estimate the coefficient of interest β. This estimation minimizes the following
formula with respect to β:

N∑
i=1

(Yi −Xiβ)2 +λ‖β‖1 (23)

where the L1 norm is used, which is a specification of the LP norm: ‖x‖p = (
∑K

k=1 |xk |p )
1
p

A.0.2 REGRESSION TREES

The main idea behind the technique of regression trees is to sequentially partition the covariate
space into subspaces where the regression function is estimated as the average outcome for units
with covariate values in that subspace.

First, one defines for covariate k and threshold t the estimator:

gk,t (x|X,Y) = ¯Yl e f t I (xk(X,Y) ≤ t (X,Y))+ ¯Yr i g ht I (xk(X,Y) > t (X,Y)) (24)

where

¯Yle f t =
∑

i :Xi ,k≤t Yi∑
i :Xi ,k≤t 1

¯Yr i g ht =
∑

i :Xi ,k>t Yi∑
i :Xi ,k>t 1

(25)

Consequently, one can find the covariate k∗ and the threshold t∗ that solve (k∗, t∗) =
argmink,t Q(gk,t (·)), where the function Q(g ) is the sum of squared deviations. By solving this
equation, one can keep splitting the covariate space into two subspaces, by whether Xi ,k∗ ≤ t∗
or not. Consecutively dividing subspaces minimizes the objective function, with a penalty term:
Q(g )+λ∗ (number of leaves).

A.0.3 BOOSTED TREES

The boosted trees technique makes use of a so-called weak learner: a simple, possible naive way
of estimating a regression function. Boosting is a general approach to repeatedly use the weak
learner to get a good predictor for both classification and regression problems. Suppose g (x|X,Y)
is based on a regression tree with only a single split. The algorithm selects a covariate k(X,Y) and
a threshold t (X,Y) and then estimates the regression function as in 30.

Thereafter, one defines the residual relative to this weak learner as ε1i = Yi − g1(Xi |X,Y). Now
apply the same weak learner to the new data set (X,ε1). By repetitively growing new trees, defin-
ing the residuals and re-applying the weak learner to the new dataset, one obtains an additive
approximation to the regression function g (x|X,Y):

M∑
m=1

gm(x|X,εm−1) =
K∑

k=1
hk (xk ) where ε0 = Y (26)

A.0.4 RANDOM FORESTS

Given data (X,Y), with dimension of X equaling N ×K , the random forests method constructs a
tree starting with a single leaf in the following manner:
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1. Randomly select L regressors out of the set of K regressors

2. Select the optimal covariate and threshold among L regressors

3. If some leaves have more than Nmi n units, go back to step (1)

4. Otherwise stop

A.0.5 DEEP NEURAL NETS

The deep neural nets method uses the following relationship between Xi and Yi through hidden
layers of Zi :

Zi ,m =σ(α0m +α′
1m Xi ), for m = 1, ..., M (27)

Yi =β0 +β′
1Zi +εi (28)

So the Yi are linear in a number of transformations of the original covariates Xi . The parameters
α and β are valued by minimizing:

N∑
i=1

(Yi − g (Xi ,α,β))2 (29)

Estimation using Neural Nets, however, can be hard. One possible drawback of this method,
however, is the risk of overfitting. This can be solved by adding a penalty term to formula 15.

A.0.6 ENSEMBLE METHODS

The ensemble methods make use of a number M candidate estimators gm(·|X,Y) and combine
them to obtain a better estimator than the one obtained by using any single algorithm. The in-
volved methods can be similar, such as trees, but may also very well be qualitatively different, for
instance some trees, some neural networks and some regression models. This requires assigning
weights to the different methods, which can be constructed in the following way:

min
α1,...,αM

N∑
i=1

(
Yi −

M∑
m=1

αm · gm(Xi )
)2

(30)

In case of many algorithms to choose from, regularizing this case by adding a LASSO-type penalty
term may be useful. This results in a weighted average that puts non-zero weights on only a few
models.

B REPLICATING EMPRICIAL RESULTS DML

RLasso Trees Forest Boosting Nnet Ensemble Best
ATE -0.0842 -0.0852 -0.0745 -0.0740 -0.0778 -0.0756 -0.0740
SE 0.0358 0.0359 0.0356 0.0354 0.0353 0.0354 0.0354
MSE[Y|X] 1.214 1.215 1.215 1.200 1.208 1.200 1.215
MSE[D|X] 0.475 0.474 0.479 0.474 0.478 0.474 0.474

Table 23: Replicating empirical results Table 1 by running Bonus.R

RLasso Trees Forest Boosting Nnet Ensemble Best
ATE 7715 8494 8557 8519 9374 8859 9046
SE 1419 1371 1274 1321 1308 1295 1286
MSE[Y|X] 57283 57528 54284 54961 53520 53711 63516
MSE[D|X] 0.4488 0.4497 0.4516 0.4436 0.4482 0.4433 0.4832

Table 24: Replicating empirical results Table 2 by running 401K.R
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RLasso Trees Forest Boosting Nnet Ensemble Best
ATE 10393 10942 11661 11363 12157 11467 11480
SE 28011 1768 1796 1606 1909 1596 1605
MSE[Y|X,Z=0] 50050 51238 48508 26139 48887 46407 63936
MSE[Y|X,Z=1] 67756 68529 64107 64613 64841 64890 64696
MSE[D|X,Z=0] 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MSE[D|X,Z=1] 0.453 0.453 0.462 80490 0.461 0.449 0.624
MSE[Z|X] 0.452 0.450 0.452 0.443 0.447 0.442 0.483

Table 25: Replicating empirical results Table 3 by running 401K-LATE.R

RLasso Trees Boosting Forest Nnet Ensemble Best
ATE 0.955 0.824 0.699 1.141 1.039 1.114 1.115
SE 0.166 0.227 0.218 0.528 0.276 0.512 0.516
MSE[Y|X] 1.056 0.868 0.829 0.833 0.906 0.824 NA
MSE[D|X] 1.467 1.457 1.389 1.343 1.423 1.346 NA
MSE[Z|X] 1.211 1.173 1.005 0.912 1.068 0.933 NA

Table 26: Replicating empirical results Table 4 by running AJR.R

C REPLICATING OLS RESULTS SLAVE TRADE PAPER

Dependent variable:
trust of neighbors

Slave
exports

(thousands)
(1)

Exports/
area

(2)

Exports/
historical

pop
(3)

ln(1+
exports)

(4)

ln(1+
exports/

area)
(5)

ln(1+exports/
historical pop)

(6)

Estimated coefficient −.000679 −.0188 −.531 −.0374 −.159 −.743
Robust Standard Error .000142 .00510 .147 .0138 .0339 .187
Number of observations 20,027 20,027 17,644 20,027 20,027 17,644
Number of ethnicities 185 185 157 185 185 157
Number of districts 1,257 1,257 1,214 1,257 1,257 1,214
R-squared 0.156 0.156 0.147 0.150 0.156 0.147

Table 27: OLS replication of Table 1 in Slave Trade Paper, including controlling for the baseline
controls.

Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Trust of
local

council
(3)

Intra-
group
trust
(4)

Inter-
group
trust
(5)

ln(1+exports/area) −.133 −.159 −.111 −.144 −.0969
Robust Standard Error .0360 .0339 .0216 .0315 .0278
Number of observations 20,062 20,027 19,733 19,952 19,765
Number of ethnicity clusters 185 185 185 185 185
Number of district clusters 1,257 1,257 1,283 1,257 1,255
R-squared 0.133 0.156 0.196 0.144 0.112

Table 28: OLS replication of Table 2 in Slave Trade Paper, including controlling for the baseline
controls.

25



Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Trust of
local

council
(3)

Intra-
group
trust
(4)

Inter-
group
trust
(5)

ln(1+exports/area) −.178 −.202 −.129 −.188 −.115
Robust Standard Error .0198 .0299 .0211 .0317 .0299
Number of observations 16,709 16,679 15,905 16,636 16,473
Number of ethnicity clusters 147 147 146 147 147
Number of district clusters 1,187 1,187 1,194 1,186 1,184
R-squared 0.130 0.160 0.206 0.155 0.119

Table 29: OLS replication of Table 3 in Slave Trade Paper, including baseline controls, colonial
population density, and colonial controls for ethnicity-level.

Besides, I have replicated Tables 5 and 6 with two-step IV regression by running the .do file in
Stata and saving the results. These results are captured in tables 30 and 31, as shown below.
In Table 30, the following controls are taken into account: district controls, individual controls,
colonial controls for ethnicity-level, measures for colonial population density and country fixed
effects. In Table 31, not only are these controls taken into account, but also reliance on fishing
and the distance to a Saharan city/route. In both tables, the historical distance of an ethnic group
from the coast is taken as an instrumental variable.

Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Trust of
local

council
(3)

Intra-
group
trust
(4)

Inter-
group
trust
(5)

Second stage: Dependent var.: individual’s trust
ln(1+exports/area) −.190 −.245 −.221 −.251 −.174
Robust Standard Error .0673 .0705 .0599 .0876 .0806
R-squared 0.130 0.159 0.204 0.154 0.118
First stage: Dependent var. : ln(1+exports/area)
Historical distance of ethnic −.00139 −.00138 −.00138 −.00139 −.00139

group from coast (.000268) (.000268) (.000263) (.000268) (.000267)
Number of observations 16,709 16,679 15,905 16,636 16,473
Number of clusters 147/1,187 147/1,187 146/1,194 147/1,186 147/1,184
R-squared 0.807 0.807 0.810 0.807 0.807

Table 30: IV replication of Table 5 in Slave Trade Paper, including baseline controls, colonial con-
trols for etnicity-level, and colonial population density.

Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Trust of
local

council
(3)

Intra-
group
trust
(4)

Inter-
group
trust
(5)

Second stage: Dependent variable: individual’s trust
ln(1+exports/area) −.172 −.271 −.262 −.254 −.189
Robust Standard Error .0758 .0881 .0750 .109 .103
R-squared 0.131 0.158 0.203 0.155 0.118
First stage: Dependent variable: ln(1+exports/area)
Historical distance of ethnic −.00147 −.00147 −.00145 −.00148 −.00147

group from coast (.000316) (.000316) (.000308) (.000317) (.000316)
Number of observations 16,709 16,679 15,905 16,636 16,473
Number of clusters 147/1,187 147/1,187 146/1,194 147/1,186 147/1,184
R-squared 0.808 0.808 0.810 0.808 0.808

Table 31: IV replication of Table 6 in Slave Trade Paper, including baseline controls, colonial con-
trols for ethnicity-level, colonial population density. reliance on fishing and distance to Saharan
city/route.

26



To replicate tables 9 and 10 of Nunn and Wantchekon (2011) using OLS, I executed the provided
.do file in Stata and captured the results in tables 32 and 33. In Table 32, the regression for
intergroup trust measures also includes the average slave export measure of respondents in
the Afrobarometer survey that live in the same district, region, or village as the respondent.
Furthermore, an ethnicity-based slave export measure is included in the regression as a baseline
measure for each out of five trust variable. In Table 33, additionally to the same baseline
measure, a location-based slave export measure is included in the OLS regression. This measure
is the natural log of the number of slaves taken from the location where an individual is currently
living (normalized by land area). Both OLS replications of these tables yield similar results to the
ones in Nunn and Wantchekon (2011):

Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Within
town

(3)

Within
district

(4)

Within
province

(5)

Ethnicity-based slave export measure −.0720 −.0704 −.102 −.120 −.0982
(baseline measure) (.0194) (.0191) (.0282) (.0268) (.0294)

Average slave export measure amongst other −.0366 −.0630 −.0908
ethnicities in the same location (.0291) (.0302) (.0352)

Council trustworthiness fixed effects Yes Yes No No No
Five public goods fixed effects No Yes No No No
Number of observations 12,827 12,203 9,673 12,513 15,999
Number of clusters 146/1,172 145/1,130 147/725 147/737 147/1,127
R-squared 0.367 0.368 0.117 0.120 0.117

Table 32: OLS replication of Table 9 in Slave Trade Paper, including baseline controls, colonial
controls for etnicity-level, and colonial population density.

Trust
of

relatives
(1)

Trust
of

neighbors
(2)

Trust of
local

council
(3)

Intra-
group
trust
(4)

Inter-
group
trust
(5)

Ethnicity-based slave export measure −.155 −.182 −.0999 −.169 −.0895
(baseline measure) (.0287) (.0289) (.0230) (.0331) (.0300)

Location-based slave export measure −.0580 −.0406 −.0677 −.0385 −.0470
(.015) (.0189) (.0175) (.0223) (.0239)

Number of observations 15,999 15,972 15,221 15,931 15,773
Number of clusters 146/269 146/269 145/272 146/269 146/269
R-squared 0.133 0.158 0.207 0.151 0.118

Table 33: OLS replication of Table 10 in Slave Trade Paper,including baseline controls, colonial
controls for etnicity-level, and colonial population density.
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D THE RISE OF EUROPE

Whole
sample,

unweighted

Whole
sample,

weighted

Atlantic
Western
Europe

Non-
Atlantic
Western
Europe

Eastern
Europe

Asia

Weighted by population
Urbanization rate 0.0664 0.0991 0.801 0.101 0.0409 0.110
in 1300 (0.0523) (0.0316) (0.0282) (0.0613) (0.0327) (0.00707)
Urbanization rate .0.0764 0.103 0.0852 0.121 0.0394 0.111
in 1400 (0.0948) (0.0360) (0.0240) (0.0997) (0.0145) (0.00527)
Urbanization rate 0.0834 0.106 0.101 0.114 0.0395 0.115
in 1500 (0.0764) (0.0343) (0.0533) (.0676) (0.0176) (0.00707)
Urbanization rate 0.0963 0.117 0.136 0.140 0.0440 0.120
in 1600 (0.0759) (0.0403) (0.0763) (0.0877) (0.0275) (0.00705)
Urbanization rate 0.107 0.112 0.145 0.131 0.0373 0.115
in 1700 (0.0847) (0.0405) (0.0683) (0.0809) (0.0216) (0.00664)
Urbanization rate 0.141 0.102 0.198 0.169 0.0703 0.0894
in 1800 (0.0908) 0.0488 (0.0792) (0.0752) (0.0327) (0.0141)
GDP per capita 627.539 608.29 721.46 850.73 506.94 575
in 1500 (159.25) (117.95) (31.07) (217.13) (78.15) (35.36)
GDP per capita 740.731 630.49 916.31 908.22 578.30 576.79
in 1600 (225.58) (144.24) (149.32) (167.26) (112.27) (35.27)
GDP per capita 862.115 662.23 1079.21 980.81 636.01 574.19
in 1700 (348.37) (208.10) (321.40) (128.19) (136.09) (35.34)
GDP per capita 988.000 691.66 1321.95 1095.40 719.50 575.46
in 1820 (373.57) (264.51) (348.65) (125.32) (174.88) (45.65)
Constraint on executive 1.667 1.732 1.75 1.990 1.462
in 1500 (0.761) (0.792) (0.563) (0.991) (0.787)
Constraint on executive 1.667 1.533 1.617 1.544 1.452
in 1600 (1.007) (0.836) (1.238) (0.586) (0.793)
Constraint on executive 1.833 1.515 1.830 1.414 1.298
in 1700 (1.308) (1.175) (1.761) (0.941) (0.755)
Constraint on executive 2.25 2.18 3.986 1.898 1.000
in 1800 (1.824) (1.830) (1.793) (1.776) 0.000
Atlantic coastline-to-area 0.00570 0.00139 0.0118 0.00257 0.000 0.000

(0.0117) (0.00647) (0.0181) (0.00524) (0.000)

Table 34: OLS replication of Table 1 in Rise of Europe paper: Descriptive Stats
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Panel,
1300-1850

(1)

Panel,
1000-1850

(2)

Panel,
1300-1850

(3)

Panel,
1000-1850

(4)

Panel,
1300-1850,

unweighted
(5)

Panel,
1300-1850,
with Asia

(6)

Panel,
1300-1850,

without Britain
(7)

Panel,
1300-1850

(8)

Panel,
1000-1850

(9)

Panel,
1300-1850,

unweighted
(10)

Atlantic trade potential is measured by:
Atlantic trader dummy Atlantic coastline-to-area

Panel A: Flexible specification
p-value for Western Europe [0.00] [0.00] [0.45] [0.09] [0.80] [0.00] [0.12] [0.09] [0.01] [0.78]
× year dummies,1600-
1850
Atlantic trade potential 0.0158 0.0086 0.0550 0.0142 0.0177 0.4997 0.376 0.7464
× 1500 (0.0208) (0.0190) (0.0260) (0.0218) (0.0159) (0.6831) (0.6449) (0.865)
Atlantic trade potential 0.0060 −0.0041 0.0495 0.0054 0.0085 0.2045 0.0297 0.9392
× 1600 (0.0230) (0.0211) (0.0280) (0.0280) (0.0175) (0.6823) (0.6414) (0.9369)
Atlantic trade potential 0.0322 0.0222 0.0708 0.0316 0.024 1.811 1.638 2.01
× 1700 (0.0213) (0.0192) (0.0280) (0.0257) (0.0161) (0.6296) (0.5824) (0.9369)
Atlantic trade potential 0.0323 0.0221 0.0734 0.0316 0.0226 2.164 1.988 2.602
× 1750 (0.0205) 0.0184 (0.0280) (0.0247) (0.0155) (0.6191) (0.5705) (0.9369)
Atlantic trade potential 0.0475 0.0375 0.1115 0.0469 0.0276 3.303 3.124 3.764
× 1800 (0.0193) 0.0171 (0.0280) (0.0233) (0.0147) (0.565) (0.5083) (0.9369)
Atlantic trade potential 0.0848 0.0755 0.1146 0.0842 0.0426 5.052 4.881 4.672
× 1850 (0.0180) (0.0157) (0.0280) (0.0217) (0.0138) (0.5103) (0.4439) (0.9369)
R-squared 0.87 0.85 0.890 0.871 0.817 0.844 0.925 0.920 0.827
Number of observations 192 240 192 240 192 208 184 192 240 192

Panel B: Structured Specification
p-value for Western Europe [0.000] [0.000] [0.35] [0.06] [0.83] [0.00] [0.11] [0.16] [0.02] [0.81]
× year dummies, 1600 -
1850
Atlantic trade potential 0.011 0.0083 0.016 0.011 0.005 0.75 0.65 0.62
× volume of Atlantic (0.0024) (0.0020) (0.0034) (0.0029) (0.0018) (0.07) (0.06) (0.11)
trade
R-squared 0.87 0.85 0.88 0.86 0.81 0.84 0.92 0.92 0.90 0.82
Number of observations 192 240 192 240 192 208 184 192 240 192

Table 35: OLS replication of Table 2 in Rise of Europe paper: Atlantic Trade and Urbanization.
Dependent variable is country-level urbanization

Panel,
1500-1820

(1)

Panel,
1500-1870

(2)

Panel,
1500-1820

(3)

Panel,
1500-1870

(4)

Panel,
1500-1820,

unweighted
(5)

Panel,
1500-1820,
with Asia

(6)

Panel,
1500-1820,

without
Britain

(7)

Panel,
1500-1820

(8)

Panel,
1500-1870

(9)

Panel,
1500-1820,

unweighted
(10)

Atlantic trade potential is measured by:
Atlantic trader dummy Atlantic coastline-to-area

Panel A: Flexible specification
p-value for Western Europe × [0.44] [0.05] [0.92] [0.23] [0.17] [0.01] [0.89] [0.97] [0.58] [0.31]
year dummies,1600-1820 or
-1870
Atlantic trade potential 0.14 0.15 0.16 0.14 0.13 4.43 4.46 3.42
× 1600 (0.07) (0.11) (0.07) (0.13) (0.07) (2.42) (3.61) (2.21)
Atlantic trade potential 0.18 0.19 0.21 0.18 0.14 8.84 8.80 6.32
× 1700 (0.07) (0.10) (0.07) (0.12) (0.06) (2.27) (3.40) (2.21)
Atlantic trade potential 0.27 0.27 0.18 0.27 0.20 12.03 11.89 8.06
× 1820 (0.06) (0.10) (0.07) (0.11) (0.06) (2.10) (3.14) (2.21)
Atlantic trade potential 0.22 15.84
× 1870 (0.09) (2.93)
R-squared 0.94 0.94 0.96 0.95 0.96 0.92 0.96 0.96 0.96 0.96
Number of observations 96 120 96 120 96 104 92 96 120 96

Panel B: Structured Specification
p-value for Western Europe × [0.44] [0.05] [0.92] [0.48] [0.14] [0.01] [0.88] [0.99] [0.54] [0.23]
year dummies, 1600-1820 or
-1870
Atlantic trade potential × 0.069 0.040 0.047 0.069 0.051 3.21 3.18 2.22
volume of Atlantic trade (0.016) (0.017) (0.018) (0.028) (0.015) (0.53) (0.50) (0.58)
R-squared 0.94 0.94 0.96 0.95 0.96 0.92 0.96 0.96 0.96 0.96
Number of observations 96 120 96 120 96 104 92 96 120 96

Table 36: OLS replication of Table 3 in Rise of Europe paper: Atlantic Trade and GDP per capita.
Dependent variable is country-level log GDP per capita
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Balanced panel,
1300-1850,
weighted

(1)

Balanced panel,
1300-1850,

unweighted
(2)

Balanced panel,
1300-1850,
weighted

(3)

Balanced panel,
1300-1850,

unweighted
(4)

Balanced panel,
1300-1850,
weighted,

without London
and Amsterdam

(5)

Balanced panel,
1300-1850,
weighted,

with full set
of country
× year

interactions
(6)

Balanced panel,
weighted,

1300-1850,
weighted
with Asia

(7)

Balanced panel,
1300-1850,
weighted,

with
Mediterranean

and Atlantic
ports

(8)

Atlantic port Potential Atlantic Port Atlantic port
p-value for Western Europe [0.34] [0.05] [0.30] [0.16] [0.28] [0.30] [0.41] [0.32]
× year dummies,1600-
1850
Atlantic port −0.04 −0.05 0.027 0.048 −0.008 −0.072 −0.03 −0.05
× 1500 (0.19) (0.20) (0.17) (0.16) (0.20) (0.20) (0.20) (0.19)
Atlantic port 0.36 0.46 0.41 0.43 0.41 0.36 0.36 0.36
× 1600 (0.16) (0.20) (0.14) (0.16) (0.17) (0.17) (0.16) (0.16)
Atlantic port 0.71 0.62 0.76 0.76 0.297 0.47 0.71 0.74
× 1700 (0.14) (0.20) (0.13) (0.16) (0.17) (0.17) (0.15) (0.15)
Atlantic port 0.70 0.71 0.79 0.89 0.26 0.46 0.70 0.72
× 1750 (0.14) (0.20) (0.13) (0.16) (0.16) (0.16) (0.15) (0.14)
Atlantic port 0.79 0.92 0.95 1.10 0.32 0.57 0.80 0.84
× 1800 (0.14) (0.20) (0.12) (0.16) (0.15) (0.15) (0.14) (0.14)
Atlantic port 1.09 1.00 1.19 1.23 0.48 0.46 1.09 1.10
× 1850 (0.13) (0.20) (0.12) (0.16) (0.14) (0.14) (0.14) (0.13)
p-value for Mediterranean
port × year dummies, [0.19]
1500-1850
R-squared 0.92 0.79 0.92 0.80 0.89 0.95 0.94 0.92
Number of observations 1544 1544 1544 1544 1528 1544 1624 1544

Panel B: Structured Specification
p-value for Western Europe [0.23] [0.04] [0.23] [0.10] [0.31] [0.33] [0.30] [0.20]
× year dummies, 1600-1850
Volume of Atlantic trade × 0.17 0.16 0.17 0.16 0.065 0.078 0.17 0.17
Atlantic port (0.02) (0.02) (0.017) (0.024) (0.019) (0.018) (0.018) (0.0.17)
p-value for Mediterranean
port × year dummies, [0.14]
1500-1850
R-squared 0.92 0.79 0.92 0.80 0.89 0.95 0.94 0.92
Number of observations 1544 1544 1544 1544 1528 1544 1624 1544

Table 37: OLS replication of Table 5 in Rise of Europe paper: Growth of Atlantic Ports

Panel,
1300-1850

(1)

Panel,
1300-1850

(2)

Panel,
1300-1850

(3)

Panel,
1300-1850,
controlling
for religion

(4)

Panel,
1300 to 1850,
controlling

for wars
(5)

Panel,
1300 to 1850,
controlling
for Roman

heritage
(6)

Panel,
1300 to 1850,
controlling
for latitude

(7)

Panel,
1300 to 1850,
using Atlantic

coastline-to-area
measure of

potential for
Atlantic trade

(8)

Panel,
1300 to 1850,
using Atlantic

coastline-to-area
measure of

potential for
Atlantic trade

(9)

p-value for Western Europe [0.00] [0.35] [0.00] [0.00] [0.00] [0.26] [0.00] [0.00] [0.00]
× year dummies,1600-
1850
Atlantic trade potential −0.42 −20.83
× 1500 (0.47) (22.94)
Atlantic trade potential −0.14 10.94
× 1600 (0.52) (22.91)
Atlantic trade potential 0.29 62.12
× 1700 (0.48) (21.14)
Atlantic trade potential 0.32 81.45
× 1750 (0.46) (20.78)
Atlantic trade potential 2.07 79.81
× 1800 (0.44) (18.97)
Atlantic trade potential 2.96 72.25
× 1850 (0.41) (17.13)
Atlantic trade potential 0.42 0.45 0.43 0.39 0.43 12.99
× volume of Atlantic (0.06) (0.06) (0.06) (0.06) (0.06) (2.31)
trade
p-value for Protestant × [0.00]
year effect
Wars per year in preceding −0.034
century (0.20)
p-value for Roman heritage [0.05]
× year
p-value for latitude × year [0.49]
R-squared 0.75 0.85 0.81 0.84 0.81 0.82 0.81 0.81 0.79
Number of observations 192 192 192 192 176 192 192 192 192

Table 38: OLS replication of Table 6 in Rise of Europe paper: Atlantic Trade and Institutions
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