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Abstract

A mixed integer programming model and three heuristics are proposed to maximize market shares

of a smaller liner shipping provider. The aim of this liner shipping provider is to compete with a

bigger established liner shipping provider. The problem is essential to the smaller liner shipping

provider, since otherwise the dominant larger alliances might force it to go out of business. Because

solving the exact model turns out to be hard in practice, this thesis implements a Lagrangian

heuristic, tabu search and a genetic algorithm. All heuristics are considerably faster than the exact

model and for small instances, good quality solutions are found. Both the tabu search and genetic

algorithm are significantly faster than the Lagrangian heuristic. The tabu search provides better

objective values for a larger sized instance as compared to the Lagrangian heuristic, whereas the

genetic algorithm outperformed both the Lagrangian relaxation and tabu search heuristic for most

configurations.
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1. Introduction

1 Introduction

Following the global growth in trade volumes, liner shipping hub-and-spoke networks have emerged.

In a liner shipping hub-and-spoke network, flow is concentrated on hub-to-hub connections. This

has numerous advantages when the ships are sufficiently full. For example, larger, more efficient

vessels can be used on hub-to-hub connections which are both cheaper per twenty-feet equivalent

unit and possibly more environmentally friendly.

As mentioned by Gelareh et al. (2010), several alliances of larger liner shipping providers that

emerged as a reaction to the current trend of global trade volumes have a dominant position.

Therefore smaller, possibly newcomer liner shipping companies need to come up with ways to

compete with the bigger alliances.

We will take a look at the same setting as in Gelareh et al. (2010). Here, it is investigated how

a smaller newcomer liner shipping provider can compete with a bigger liner shipping provider that

has already decided on the network it is going to use, and therefore already has established its fares

and travel times between any pair of ports we consider in the network. We will adopt the same

mathematical model and propose some heuristics to contribute to this problem. Data from this

paper is however not publicly available. Therefore data for this thesis is taken from LINER-LIB 1.

In this paper, we start off with providing an overview of the existing literature on this topic.

This will be covered in Section 2. We explain the dataset in Section 3. Then we will present a

mixed-integer programming formulation (MIP) for our model in Section 4.1. The MIP is difficult

to solve in practice, therefore we follow Gelareh et al. (2010) and apply a Lagrangian heuristic

procedure in Section 4.2. We then propose two additional heuristics, namely a tabu search heuristic

in Section 4.3 and a genetic algorithm in Section 4.4. The results are discussed in Section 5 and the

thesis is concluded in Section 6.

1https://github.com/blof/LINERLIB
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2. Literature review

2 Literature review

In the past decades hub-and-spoke network design problems have emerged in all types of industries.

Amongst others, airline passenger carriers, overnight package delivery services and rail sorting yards

(O’Kelly, 1987). The first papers to address hub location problems are O’Kelly (1986a) and O’Kelly

(1986b). Since then, hub location problems have been studied extensively. A paper that gives an

excellent overview of the different hub location problems is Alumur and Kara (2008). Another

discussion of the evolution of hub location problems can be found in Campbell and O’Kelly (2012).

In the following, we will only focus on (general) hub location problems that include competition.

However, to investigate different solution methods in Section 4 we also looked at hub location and

facility location problems in different application areas.

One of the first papers on hub location problems in a competitive environment (passenger trans-

portation) is Marianov et al. (1999), where customers were attracted to change company by offering

a cheaper alternative. They proposed a tabu search to solve the problem. This work was later

extended by Eiselt and Marianov (2009), using gravity-like utility functions.

Other papers also incorporate game theory in their models. Sasaki and Fukushima (2001) in-

troduced a Stackelberg hub location problem, where a bigger company first decides on its hubs and

other, smaller companies react on that. Lin and Lee (2010) also consider a game theoretic model

using the Cournot-Nash equilibrium. Their results indicated that there are cooperative equilibra

that can make all parties better off, but these equilibria are unstable in the non-cooperative game.

Asgari et al. (2013) consider the competition and cooperation strategies amongst two major con-

tainer hub ports and the shipping companies. They also use a game theoretic model and an interval

branch-and-bound method to solve the models.

A paper that looks into a problem very closely related to our setting is Lüer-Villagra and Mari-

anov (2013). This paper also looks into the situation where a big existing company already operates

on a hub-and-spoke network, and tries to maximize profit for a newcomer company by choosing the

best hub locations and pricing. They use a genetic algorithm to solve the model.

Sasaki et al. (2014) again propose a Stackelberg model. In this paper two firms compete for

customers where the leader first locates its hubs to maximize revenue, the follower then locates

its own hub arcs to maximize its own revenue. Mahmutogullari and Kara (2016) propose a mixed

integer linear formulation for the competitive hub location model. They use an enumeration based

solution approach.
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3. Data

3 Data

Most of the data from this paper is taken from LinerLib 1. We use three instances. The first instance

consists of 10 ports in East-Asia, whereas the other two consist of n= 15 and n= 20 randomly chosen

ports. To compare our results with the results from Gelareh et al. (2010), we try to choose the same

parameter values where known. We choose (βCm, O
C
ijm(βCm)) ∈ {(0.65, 0.4), (0.75, 0.3), (0.9, 0.2)}, ∀

i, j 6= i,m ∈ {1, ..., FC) and (βt
m′ , Otijm′ (βtm′ )) ∈ {(0.25, 0.6), (0.50, 0.5), (0.75, 0.4)}.

To calculate the travel time between ports i and j, we first retrieved the distance Dij between

these ports from LinerLib, where we only selected routes that did not pass through the Panama or

Suez canal. Note that the routes are symmetrical, i.e. the distance from i to j equals the distance

from j to i. We assumed the average hourly speed of a ship equals 17 knots/hr. the travel time in

days Tij is therefore calculated as

Tij =
Dij

(24 · 17)

To calculate the costs from port i to j, we have added the fuel costs based on the distance from

i to j and port call costs PCj of port j. The port call costs for every port can be retrieved from

LinerLib, as well as the number of bunker tons required per day for a ship. Based on this data, we

assume a ship uses 50 bunker tons a day. The price of one bunker ton is retrieved online 2 and is set

to 680, which seemed to be an average value in the months May and June 2018 when this research

was conducted. The costs Cij from port i to j can then be calculated as follows:

Cij = PCj +Dij · 680 · 50

To simulate the competition between the two liner shipping providers, we first generated the costs

and travel times as above. Then, for every pair of ports, we generated the costs and travel times

of the two liner shipping providers, by multiplying Cij and Tij with a uniform random number

between 0.7 and 1.3 for every pair of ports and every liner shipping provider. Lastly, we have used

a holding cost of 15% per year.

1https://github.com/blof/LINERLIB
2http://www.bunkerindex.com/prices/bixfree.php?priceindex_id=4
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4. Methodology

4 Methodology

4.1 Mixed integer programming formulation

We adopt the same mathematical model as the MIP introduced in Gelareh et al. (2010). For sim-

plicity, we also use the same mathematical notation for the sets, parameters and decision variables.

In the following, A stands for the bigger liner shipping provider and B for the newcomer/smaller

company. H denotes the set of ports and CA
ij and TA

ij (i, j ∈ H) denote the rate of offered service

and the travel time between ports i and j provided by liner shipping provider A respectively.

The objective of company B is to maximize its market shares. Therefore, we introduce an

attraction function to measure the attraction for customers leaving from A to B when company

B offers service against a certain cost (Cij) or transportation time (Tij). Note that we consider the

offered service and travel time of company A between each pair of ports as given. Several different

attraction functions can be proposed. In this paper we use the following function:

f(x) = e−θx
2

where θ is a small, fixed constant. The exponential function is suitable because it touches the point

(0,1) in the Cartesian plane, and decreases smoothly towards the y-axis. Additionally, the function

never becomes negative. Note that the higher the costs or transportation time, the less people are

attracted by company B. To avoid non-linearity in our model we estimate the attraction function

with a piecewise constant function (Gelareh et al., 2010). The idea behind this discretized function

is that the number of attracted customers will change at certain threshold values, 0 < βC1 < ... <

βC
FC ≤ 1 and 0 < βt1 < ... < βtF t ≤ 1 for costs and transportation times respectively. Thus, if

company B offers service against a certain cost or transportation time, it depends on the cost or

transportation time offered by A to what extent customers are attracted by company B.

We need the following decision variables for our model; xijkl equals 1 if the path from i to j uses

the hub edge k − l in the optimal solution. hk equals 1 if location k is chosen as a hub. aijk equals

1 if the path (in the optimal solution) from i to j uses the spoke edge i − k and i is not a hub,

bijk equals 1 if the path in the optimal solution uses the spoke edge k − j and j is not a hub. γijk

equals 1 if goods are transshipped at hub k in the optimal path from i to j. eij equals 1 if the path

from i to j uses edge i− j in the optimal solution and one of them is a hub, whereas sij equals 1 if

there is a direct connection between i and j in the optimal solution and both are not hubs. Finally,

δmij , m ∈ 1, ..., FC equals 1 if the transportation cost for connection i − j offered by B lies in the

interval (βCm−1C
A
ij , β

C
mC

A
ij ] and ηm

′

ij , m
′ ∈ 1, ..., F t equals 1 if the service time for connection i − j

offered by B lies in the interval (βt
m′−1T

A
ij , β

t
m′TA

ij ].

We will now introduce the necessary parameters. Let T trijk denote the transit time for goods from

i to j at hub port k, and Chk denotes the holding cost proportional to the length of time that goods

are waiting at hub k. Furthermore, let OC(βCm) denote the percentage of market share that company

4



4.1. MIXED INTEGER PROGRAMMING FORMULATION 4. Methodology

B gains if the cost lies in the interval (βCm−1C
A
ij , β

C
mC

A
ij ] and Ot(βt

m
′ )) denotes the percentage of

market share that company B gains if the service time lies in the interval (βt
m′−1T

A
ij , β

t
m′TA

ij ]. tij

denotes the travel time from port i to port j and Ctrk denotes the transshipment cost at hub port k.

The discount factor applied to hub-to-hub edges is denoted by α (0 < α < 1). Lastly, Cij denotes

the rate of offered service between ports i and j by liner shipping provider B. We are now ready

to present the MIP formulation of the model:

Maximize λ
∑
i

∑
j 6=i

F c∑
m=1

OCijm(βCm)δmij + (1− λ)
∑
i

∑
j 6=i

F t∑
m′=1

Ot
ijm′ (βtm′ )ηm

′

ij , (4.1)

Subject to∑
k

hk = p, (4.2)∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij + sij = 1, ∀i, j 6= i ∈ K, (4.3)

∑
l 6=j

xijlj +
∑
l 6=i,j

bijl + eij + sij = 1, ∀i, j 6= i ∈ K, (4.4)

∑
l 6=k,i

xijkl + bijk =
∑
l 6=k,j

xijlk + aijk, ∀i, j 6= i, k 6= i, j ∈ K, (4.5)

xijkl + xijlk ≤ hk, ∀i, j 6= i, k, l > k ∈ K, (4.6)

xijkl + xijlk ≤ hl, ∀i, j 6= i, k, l > k ∈ K, (4.7)∑
l 6=k

xkjkl ≤ hk, ∀j, k 6= j ∈ K, (4.8)

∑
k 6=l

xilkl ≤ hl, ∀i, l 6= i ∈ K, (4.9)

aijk +
∑
l 6=j,k

xijlk ≤ hk, ∀i, j 6= i, k 6= i, j ∈ K, (4.10)

bijk +
∑
l 6=k,i

xijkl ≤ hk, ∀i, j 6= i, k 6= i, j ∈ K, (4.11)

eij + 2xijij +
∑
l 6=j,i

xijil +
∑
l 6=i,j

xijlj ≤ hi + hj , ∀i, j 6= i ∈ K, (4.12)

∑
k

∑
l 6=k

αCklxijkl +
∑
k 6=i,j

Cikaijk +
∑
k 6=i,j

Ckjbijk + Cij(eij + sij)+∑
k 6=i,j

(2Ctrk + T trijkC
h
k )γijk ≤ CA

ij

∑
m∈FC

βCmδ
m
ij +MδF

C+1
ij , ∀i, j ∈ K, (4.13)

FC+1∑
m=1

δmij = 1, ∀i, j ∈ K, (4.14)∑
k

∑
l 6=k

tklxijkl +
∑
k 6=i,j

tikaijk +
∑
k 6=i,j

tkjbijk + tij(eij + sij)+

∑
k 6=i,j

γijkT
tr
ijk ≤ TA

ij

∑
m∈FT

βt
m′ηm

′

ij +MηF
T+1

ij , ∀i, j 6= i ∈ K, (4.15)
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4.2. LAGRANGIAN HEURISTIC 4. Methodology

FT+1∑
m′=1

ηm
′

ij = 1, ∀i, j 6= i ∈ K, (4.16)

γijk ≤ hk, ∀i, j 6= i, k 6= i, j ∈ K, (4.17)

γijk ≤ aijk + bijk, ∀i, j 6= i, k 6= i, j ∈ K, (4.18)

γijk ≤ 1− sij , ∀i, j 6= i, k 6= i, j ∈ K, (4.19)

γijk ≤ 1− eij ∀i, j 6= i, k 6= i, j ∈ K, (4.20)

γijk ≥ aijk ∀i, j 6= i, k 6= i, j ∈ K, (4.21)

γijk ≥ bijk, ∀i, j 6= i, k 6= i, j ∈ K, (4.22)

eij ≤ 2− (hi + hj), ∀i, j 6= i ∈ K, (4.23)

sij ≤ 1− hi ∀i, j ∈ K, (4.24)

sij ≤ 1− hj ∀i, j ∈ K, (4.25)

aijk ≤ 1− hi ∀i, j 6= i, k 6= i, j ∈ K, (4.26)

bijl ≤ 1− hj ∀i, j 6= i, l 6= i, j ∈ K, (4.27)

hi, xijkl, aijk, bijk, eij , sij , γijk, δ
m
ij , η

m
′

ij ∈ {0, 1}, ∀i, j, k, l ∈ K. (4.28)

Here, (4.1) maximizes the total percentage of market shares as a convex combination of costs and

time. The parameter λ is application-specific and can be decided by the user. A company that

wants to differentiate itself with high service levels can choose λ to be close to 0, whereas a company

that wants to focus on cheap fares can choose λ close to 1. Constraints (4.2) ensure that exactly

p ports are used as hubs. Constraints (4.3) − (4.5) enforce flow conservation. Constraints (4.6) −
(4.7) make sure that both hubs are opened if 2 hubs are used along the route. Constraints (4.8)

and (4.9) enforce that only demand with origin or destination in a hub can select a hub edge to

leave from the origin or arrive at the destination. Constraints (4.10) − (4.11) make sure that if

demand enters any other port (apart from origin and destination) along the route, this port is a

hub node. Constraints (4.12) make sure the correct hub is allocated to a path. Constraints (4.13)

choose the fare that company B offers. If the fare is too high to attract customers, the constraint

becomes redundant. Constraints (4.14) make sure that either the fare is too expensive or the fare

falls exactly between two boundaries of the attraction function. Constraints (4.15) − (4.16) do the

same for the transportation time. Constraints (4.17) − (4.22) control the transits at any path.

Constraints (4.23) − (4.27) control the destinations of any path. Lastly, constraints (4.28) ensure

that all variables are binary.

4.2 Lagrangian heuristic

Solving the MIP exactly is rather difficult. Therefore we propose a Lagrangian heuristic that was

introduced by Gelareh et al. (2010) in this section, a tabu search heuristic in 4.3 and a genetic
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4.2. LAGRANGIAN HEURISTIC 4. Methodology

algorithm in 4.4. We explain the Lagrangian procedure by means of an example. We take a look

at the following problem (D):

max cTx

s.t. Ax ≤ b

Dx ≤ d

x ≥ 0

(4.29)

For this problem, we make the assumption that the problem without the difficult constraint set

Dx ≤ d is relatively easy to solve. Hence, these constraints complicate the problem. The Lagrangian

relaxation removes these restrictions and incorporates them in the objective function, assigning a

Lagrangian multiplier vector λ to them. Violated constraints can be penalized in the objective by

adjusting the Lagrangian multipliers. The Lagrangian relaxation (LR) is as follows:

max cTx+ λT (d−Dx)

s.t. Ax ≤ b

x ≥ 0

(4.30)

Here, the function θ(λ) = max(cTx + λT (d − Dx)), subject to the easy constraints Ax ≤ b

and nonnegativity constraints x ≥ 0 is called the Lagrangian function. The above problem is a

relaxation of problem (D) and therefore provides upper bounds on the problem. The problem of

seeking values for the Lagrangian multipliers that correspond to the lowest possible upper bound is

called the Lagrangian dual problem and is defined as follows:

Zd = min(θ(λ) : λ ≥ 0)

The objective of this Lagrangian dual problem is called the the Lagrangian dual function and is an

upperbound on the original problem (D).

In a Lagrangian heuristic procedure, a Lagrangian relaxation is solved to obtain an upper bound

for the problem. A lower bound for the problem can be obtained by transforming the infeasible

solution of the Lagrangian relaxation by making use of the interpretation of the problem. The

Lagrangian dual function is non-smooth, and a possible way to determine the best λ corresponding

with the tighest upper bound is subgradient optimization. In the following subsections, we will

discuss the computation of a lower and upper bound and the heuristic procedure in detail.

4.2.1 Finding an upper bound

Gelareh et al. (2010) relax constraints (4.3), (4.4), (4.5), (4.8), (4.9), (4.10), (4.11) and (4.12), using

the multipliers u1ij , u
2
ij , u

3
ijk, u

4
ij , u

5
ij , u

6
ijk, u

7
ijk, and u8ij . We then obtain the following problem:

7



4.2. LAGRANGIAN HEURISTIC 4. Methodology

Maximize λ
∑
i

∑
j 6=i

F c∑
m=1

OCijm(βCm)δmij + (1− λ)
∑
i

∑
j 6=i

F t∑
m′=1

Ot
ijm′ (βtm′ )ηm

′

ij +

∑
i,j 6=i
−u1ij(

∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij + sij − 1) +
∑
i,j 6=i
−u2ij

∑
l 6=j

(xijlj +
∑
l 6=i,j

bijl + eij + sij − 1)+

∑
i,j,k 6=i,j

−u3ijk(
∑
l 6=k,i

xijkl + bijk −
∑
l 6=k,j

xijlk + aijk) +
∑
j,k 6=j

−u4jk(
∑
l 6=k

xkjkl − hk)+∑
i,l 6=i
−u5il(

∑
k 6=l

xilkl − hl) +
∑

i,j,k 6=i,j
−u6ijk(aijk +

∑
l 6=j,k

xijlk − hk)+∑
i,j,k 6=i,j

−u7ijk(bijk +
∑
l 6=k,i

xijkl − hk) +
∑
i,j 6=i
−u8ij(eij + 2xijij +

∑
l 6=j,i

xijil +
∑
l 6=i,j

xijlj − hi − hj)

(4.31)

s.t. (4.2), (4.6), (4.7), (4.13), (4.14), (4.15), (4.16), (4.17), (4.18), (4.19), (4.20),

(4.21), (4.22), (4.23), (4.24), (4.25), (4.26) and (4.27), (4.28)

When we solve this problem, regarding the Lagrangian multipliers as given, we obtain an upper

bound on the optimal objective value of the MIP problem.

4.2.2 Finding a lower bound

After solving the Lagrangian relaxation and obtaining an optimal solution and corresponding upper

bound, we make this solution feasible with a heuristic procedure (Gelareh et al., 2010). It turns

out that once we know where to locate the hubs, the remaining problem is much easier to solve.

Constraint 4.2 can be discarded and many of the remaining constraints can be decomposed for every

pair of ports. The remaining problem is solved with CPLEX.

4.2.3 The complete Lagrangian heuristic procedure

Now we know how to find an upper and lower bound, we are ready to take a look at the optimiza-

tion procedure. Different values of the Lagrangian multipliers can be chosen, and we try to find

the value of these multipliers that corresponds to the lowest possible upper bound. This is done

by a subgradient procedure. This procedure iteratively improves the value of the upper bound by

updating the Lagrangian multipliers in every step as follows (Guta, 2003):

uq,n+1
ij(k) = uq,nij(k) + θn∆n

i

where, q ∈{1, 2, 3, 4, 5, 6, 7, 8}. uq,nij(k) is the Lagrangian multiplier for iteration n + 1, θn is the

step size and ∆n
i is the subgradient. Many forms of this optimization procedure exist. We will use

8



4.3. TABU SEARCH 4. Methodology

the step size as proposed by Guta (2003):

θn =
µn(UB − LB)

‖∆n
i ‖2

Here, θn is the step size for iteration n, UB is the best upper bound so far and LB is the best lower

bound so far. µn is a step size parameter that can be chosen by the user.

The subgradient is different for every constraint. In particular, if the constraints are of the form

Ax ≤ b, then ∆n
i = Axn − b, where xn is the solution of the Lagrangian relaxation. For example,

for constraints 4.3 the subgradient becomes:

∆n
ij =

∑
l 6=i

xijil +
∑
l 6=i,j

aijl + eij + sij − 1

As can be seen, the subgradient measures to what extent a constraint is violated. If a constraint

is violated, the Lagrangian multiplier must be updated accordingly in order to heavily penalize the

constraint violation.

The entire Lagrangian heuristic procedure is given in Algorithm 1. The algorithm has the

parameters n, x and ε as inputs. n and ε determine the stopping conditions. The algorithm is

terminated when a maximum of n iterations is reached, when the upper bound and lower bound

coincide or when µ has become smaller than a preset value. x is chosen to determine the value of

µ in equation 4.2.3. We will determine µ based on Han (2013), who compare different step size

parameters for the subgradient method and the parameter µ = 1
2counter , where counter indicates

the number of times the procedure did not update the upper bound for x iterations seems suitable.

In every iteration, the heuristic first calculates an upper bound using the Lagrangian relaxation

and transforms this solution into a feasible solution, obtaining a lower bound by considering the

hub nodes as fixed. If the new upper (lower) bound is lower (larger) than the best upper (lower)

bound found so far, the best upper (lower) bound is updated. Then, we calculate the subgradient

and update the Lagrangian multipliers. We continue this process untill at least one of the stopping

criteria is met.

4.3 Tabu search

Tabu search is a widely-used heuristic and has also been applied to network design problems. Calık

et al. (2009) use a tabu search for the hub covering problem and found efficient solutions on a large

data set. Abyazi-Sani and Ghanbari (2016) solved the uncapacitated single allocation hub location

problem with a tabu search. They compared their results to known exact results and obtained the

optimal solution for many instances in a short computation time.

Tabu search is a heuristic closely related to local search and uses a so-called tabu list to avoid

getting stuck in a local optimum. It is necessary to define the neighbourhood of a solution, which

is a set of solutions that can be reached by systematically changing a solution into a new solution

by only changing some characteristics.

9



4.3. TABU SEARCH 4. Methodology

Algorithm 1: Subgradient procedure

1 Subgradient(n, x, ε);

2 Initialization: UB ←−∞, LB ←− −∞;

3 ncur ←− 0, xcur ←− 0, µ0 ←− 1, counter ←− 1, uq,0ij(k) ←− 0 ∀i, j, k;

4 while µ ≥ ε and ncur ≤ n do

5 Obtain UBcur and LRsol by solving (4.31) with uq,nij(k);

6 if UBcur ≤ UB then

7 UB ←− UBcur ;

8 xcur ←− 0

else

9 xcur ←− xcur + 1

10 Obtain LBcur by transforming LRsol into a feasible solution;

11 if LBcur ≥ LB then

12 LB ←− LBcur

13 if xcur = x then

14 counter ←− counter + 1 ;

15 xcur ←− 0 ;

16 µ←− 1
2counter ;

17 Calculate subgradient ∆n
i ;

18 uq,n+1
ij(k) = uq,nij(k) + θn∆n

i ;

19 ncur ←− ncur + 1

10



4.3. TABU SEARCH 4. Methodology

The heuristic starts with an initial solution. Then the neighbourhood of that solution is explored

and a new solution is chosen. Often this is the solution with the highest objective value. In the

tabu search, we keep track of a tabu list, which is a list with solutions that cannot be used for a

certain number of iterations θ. This list can for example contain the last k solutions, such that is

it forbidden to go back to a past solution for θ iterations. The new solution that is chosen can of

course not appear on the tabu list. If there is no solution that increases the objective value, we

choose the solution that worsens the objective value the least.

The tabu search heuristic we propose consists of 2 parts. In the initialization, p hubs are chosen

randomly and then a local search procedure is performed on the resulting solution with these hubs.

The local search procedure is displayed in Algorithm 2. Given a certain solution, local search is

performed as follows. We start by determining the neighbourhood of this solution. For every route

from i to j, we construct with Allocate I a direct route from i to j. With Allocate II we construct

a route that passes through exactly one hub node and with Allocate III we construct a route that

passes through exactly two hub nodes. We chose not to include the option of passing through more

than 2 hub ports, because the additional port call costs and time for loading and unloading the ship

might make this option less attractive and the computation time increases heavily. The 3 different

allocation methods are summarized below.

• Allocate I: Direct connections. In this method only direct connections from i to j are

generated,

• Allocate II: Connections that pass through a hub. Here, we establish connections of the

type i −→ k −→ j, with k a random hub port,

• Allocate III: Connections that pass through 2 hubs. Here, we establish connections of the

type i −→ k −→ l −→ j, with k and j random hub ports.

After establishing the new routes we have determined the neighbourhood of an initial solution. If

the objective value of this solution is higher than the best objective value found so far, we update

the latter one. We continue this process for a fixed number of iterations and return the best solution

found so far after these iterations.

The complete tabu search heuristic is shown in Algorithm 3. It has as inputs n and k. n deter-

mines the maximum number of iterations and k determines the maximum size of the tabu list. In

the initial solution, hubs are chosen randomly and only direct paths from i to j are used. In every

iteration, we perform a local search as explained above on the current solution. If we find a better

solution than the best solution found so far, and this solution does not occur in the tabu list, we

update the best solution. If the size of the tabu list exceeds the maximum size of the tabu list, we

remove the first element of the tabu list (the solution that was stored in the list longest). Then, in

the Swap Hub method, a random hub node is switched with a random non-hub node. If there were

existing routes through one of these nodes, we transform these routes to a direct route from i to j.

The tabu search terminates when a pre-set number of maximum iterations n is reached.

11
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Algorithm 2: Local search heuristic

1 LocalSearch(initialSolution);

2 Input: initialSolution;

3 Output: best solution after performing local search;

4 Initialization: best soFar ←− initialSolution, current Sol ←− initialSolution, counter

←− 0, n ←− 10;

5 while counter < n do

6 Compute neighbourhood of current Sol with Allocate I, Allocate II and

allocate III;

7 current Sol ←− solution with highest objective value;

8 if Objective of current Sol > objective of best soFar then

9 best soFar ←− current Sol

10 Return best soFar

Algorithm 3: Tabu search heuristic

1 TabuSearch(n, k);

2 Initialization: best soFar ←− initialSolution, current Sol ←− initialSolution, counter

←− 0, TabuList ←− ∅;
3 while counter < n do

4 current Sol ←− LocalSearch(current Sol)

5 if Objective of current Sol > objective of best soFar and current Sol /∈ TabuList then
6 best soFar ←− current Sol

7 Add current Sol to TabuList;

8 if Size of TabuList > k then

9 Remove first element of TabuList

10 current Sol ←− Swab Hubs(current Sol)
11 counter ←− counter + 1;

12 Return best soFar

12
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4.4 Genetic algorithm

Genetic algorithm is a meta-heuristic that can be used on a wide range of problems. The idea of

the genetic algorithm originates from biology. We start with an initial population of n solutions

and change this population by combining two solutions into one and mutating solutions, untill no

better solutions are found. The population thus involves over time. The chromosomes correspond

to solutions of the problem, and the fitness function that defines the quality of a chromosome (often

this is the objective function). Solutions evolve through selecting two ’parents’ and combining them

into a child. Enough diversity in the chromosomes is maintained by the mutation operator.

Alp et al. (2003) propose a genetic algorithm for the p-median problem and many features of the

genetic algorithm proposed in this paper are inspired by Alp et al. (2003). They do not implement

a mutate procedure because they did not find much improvement after doing this, so we will also

not adopt this procedure.

We define the chromosomes to be the chosen hub ports. We evaluate the fitness of our solutions

with the objective function of the original MIP formulation. We aim to construct an initial popula-

tion where all genes are present. The population should not be too big to slow down the algorithm,

but a population that is too small might not exhibit enough genetic diversity. Alp et al. (2003)

propose to choose the population size as a function of n, the number of ports, and p, the number

of hub ports, as follows:

P (n, p) = max{2, [ n
100
· ln(S)

d
]}d

where S is the binomial coefficient, the number of times we can choose p hub ports out of n ports.

We thus have a total S of s possible unique hub choices. Furthermore, d is defined as d =
⌈
n
p

⌉
.

The complete genetic algorithm procedure is displayed in Algorithm 4. We will go through this

algorithm step by step. First, we initialize the counter iter to 0, that keeps track of the total number

of iterations the best objective value found so far did not change. We initialize a population of size

P (n, p) as follows. We want to have a population where all genes are present. We start with a

solution that corresponds with hub ports 1, 2, ..., p. For a second solution, we allocate the hub ports

p + 1, p + 2, ...2p. When we have reached the total number of ports, we repeat the same process a

little differently, as this time we allocate genes 1, 3, ..., 2p− 1. With this procedure, a lot of genetic

variation is present in the initial population which is very desirable. The corresponding solutions

are found by solving a MIP and considering the hub nodes as fixed. This can be done in reasonably

faster time than solving the complete MIP as introduced in Section 4.1.

In every iteration, we randomly select 2 parents and combine them into a candidate solution.

This is done as follows. First, if there are hub nodes that are the same in both parents, they are

always selected as hub nodes in the new gene. Then, for every hub node that was present in either

parent1 or parent2, we calculate (using the MIP with fixed hubs) the increase in fitness when

adding that hub to the gene. We add the hubs that correspond with the highest increase till we

again have p hubs.

13
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After obtaining this candidate member, we check whether its fitness is higher than the best

fitness found so far. If this is not the case, we update the counter iter. Then, we update the

population with the replace procedure. This procedure checks whether the candidate solution from

the combine algorithm is at least better than the worst solution in the population. If this is the

case, the worst member of the population is replaced by the candidate member and the best solution

found so far is updated. We repeat this process till we do not find an improvement in fitness for⌈
n
√
p
⌉

iterations, as Alp et al. (2003) propose.

Algorithm 4: Genetic algorithm

1 Initialization: iter ←− 0, initialize a population of size P(n,p), bestSoFar ←− first

member of the population, candidate ←− null;

2 while iter ≤
⌈
n
√
p
⌉
do

3 randomly select parent1 and parent2 from the population;

4 candidate ←− combine(parent1, parent2)

5 if fitness of candidate ≤ fitnessofBestSoFar then

6 iter ←− iter + 1;

7 bestSoFar ←− replace(candidate)

8 Return bestSoFar
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5. Computational results

5 Computational results

All results were obtained with a computer running Windows 10, Intel Core i7-6500U 2.5 GHz and

8 GB DDR3 with 2 cores. Where needed, we used the MIP solver CPLEX (version 12.8). All

heuristics are implemented in Java (version 8, update 112). This section is organized as follows.

We first discuss the MIP results. Then we perform a small sensitivity analysis for the Lagrangian

heuristic and we end with a comparison of the different heuristics.

5.1 Mixed integer programming formulation

Table 5.1 gives an insight how big the instances are. Both the number of variables and the number

of constraints grow heavily when the number of ports n increases. This implies that solving the

problem for larger instances becomes harder and harder.

Table 5.1: Number of variables and number of constraints for the different instances.

n Number of variables Number of constraints

10 12439 18252

15 58334 80327

20 177662 232702

The results for the Asia instance with n = 10 for different configurations are displayed in Table

5.2. The same model with an equally sized instance instance is run for the same configurations in

Gelareh et al. (2010). The running times in that paper are significantly higher than the running

times obtained in this paper. This might be due to the more recent value of CPLEX and the

higher computing power of the used laptop. However, as can be seen in Table 5.3, for larger sized

instances of n = 15 and n = 20, the problem cannot be solved to optimality in reasonable time.

Thus, the MIP can still not be solved exactly within reasonable timeframes for larger instances.

One configuration, where λ = 0 seems to be much easier to solve than the other configurations and

can even be solved to optimality in reasonable time for the larger instances. Recall that λ = 0

corresponds to the case where the objective only focuses on maximizing the market shares with

respect to travel times. Because the travel times as taken from LinerLib are symmetric, and based

on actual distances, they satisfy the triangle inequality. This does not necessarily need to hold for

the fares, and with a problem where λ 6= 0 we may end up with a problem that does not satisfy the

triangle inequality. It seems that this increases the complexity of the problem drastically.

To get an idea what an actual network might look like, we displayed the network for the instance

with n = 10 ports in Asia in Figure 5.1. For the given settings, ports (2,6,7,9) are chosen as hubs.

In the figure, only the routes leaving from port 4 going to all other ports are displayed. Consider for

example the route from port 4 to 6. The distance from 4 to 6 is relatively large, and to save costs

15



5.2. LAGRANGIAN HEURISTIC 5. Computational results

Table 5.2: Results for the MIP model for the instance with n = 10 ports.

p = 2 p = 4

α λ Hubs Objective Time in seconds Hubs Objective Time in seconds

0.6 0.0 (5,8) 27.00 1.14 (2,5,8,9) 27.37 0.66

0.2 (5,7) 22.98 162.98 (2,6,7,9) 24.06 177.32

0.4 (5,7) 18.96 194.14 (2,6,7,9) 20.27 240.14

0.6 (5,7) 14.95 176,33 (2,6,7,9) 16.90 242.56

0.8 (5,7) 10.93 210.21 (2,6,7,9) 13.54 800.09

1.0 (5,7) 6.91 155.41 (2,6,7,9) 10.17 532.35

0.75 0.0 (5,8) 27.00 0.77 (2,5,8,9) 27.00 0.69

0.2 (6,9) 22.90 164.72 (2,5,6,7) 23.24 223.35

0.4 (6,9) 18.79 154.93 (2,5,6,7) 19.49 283.34

0.6 (6,9) 14.69 183.56 (2,5,6,7) 15.73 218.89

0.8 (6,9) 10.58 193.09 (2,5,6,7) 11.97 385.49

1.0 (6,9) 6.48 223.62 (2,5,6,7) 8.215 279.96

0.9 0.0 (5,8) 27.00 0.74 (2,5,8,9) 27.00 0.77

0.2 (6,9) 22.79 114.67 (3,5,8,9) 22.96 159.99

0.4 (3,9) 18.58 217.72 (3,5,8,9) 18.92 231.13

0.6 (3,9) 14.36 154.91 (3,5,8,9) 14.88 215.12

0.8 (0,7) 10.15 213.62 (3,5,8,9) 10.84 229.92

1.0 (6,9) 5.94 431.29 (3,5,8,9) 6.80 208.74

the route passes through hub 9, utilizing the hub-to-hub discount factor α between hubs 9 and 6.

In contrast, if we look at the route from 4 to 8, we see that this route does not pass through hub 9.

A possible reason for this is that the costs that would have been saved by using the hub edge 9 -

8 are not as big as the additional port call costs and holding costs that are involved when passing

through hub 9.

5.2 Lagrangian heuristic

In the Lagrangian heuristic procedure described in Section 4.2, several parameters have to be

specified, x, n and ε. Because quite some variation is possible in especially x, we perform a sensitivity

analysis and try different values for x. If x is low, the µ will be updated faster and the stepsize θ will

decrease faster than when compared to a higher value of x. Han (2013) propose a value for x of 5,

but indicated they did not try different values. We use default values of n = 500 and ε = 0.000001

in the following. Because of the long computation times for larger sized instances, we perform the

sensitivity analysis for n = 10 and assume that larger instances follow the same behaviour. We
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Hub

Port

Hub-to-hub or spoke-
to-hub connection

Spoke-to-spoke
connection

Figure 5.1: Resulting network from MIP model for an instance with n = 10 and p = 4, α = 0.6 and

λ = 0.5. In the figure, only the routes leaving from port 4 to all other ports are displayed.

consider the values x = 1, 5, 10, 15. The results are shown in Figure 5.2. It can be seen that the

higher x, the longer the running time and the lower the best obtained upper bound. There is a

trade-off between the quality of a solution and computation time.
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Figure 5.2: The lowest obtained upper bound (solid line) and the running time (dashed line) for

various values of x.

Considering the results of the sensitivity analysis, we decided to use a value of x = 5, n = 500

and ε = 0.000001. The Lagrangian heuristic is visualized in Figure 5.3. This shows a typical pattern

for subgradient optimization. The lowerbound increases non-monotonically while the upper bound

decreases closer and closer to the lowerbound. After some iterations, the upper and lower bound do

not seem to get any more closer and it is advisable to terminate the heuristic there. It is remarkable

that the lowerbound already obtains a relatively high value already in the first iterations. The

solution quality of the lowerbound does not seem to improve after more iterations. In fact, it turns

out that a good quality lower bound is often already found in the first few iterations.

It should be noted that, to speed up the Lagrangian heuristic procedure, the maximum time

to solve the Lagrangian relaxation was set to 20 seconds as proposed by Gelareh et al. (2010). We

found that this did not decrease the solution quality much, but assured much faster convergence of

the algorithm.

We finally run the Lagrangian heuristic for instances with 10, 15 and 20 ports with different

parameter configurations. The results are displayed in the left part of Table 5.3. The running times

are often larger than the running times for a similar instance in Gelareh et al. (2010). This might

be due to some implementation choices. For example, we chose a maximum number of iterations of

500 which seems rather conservative, as the total number of iterations in the aforementioned paper

did never exceed 100. Because of these implementation issues, it is difficult to compare the results.

The objective values found with the Lagrangian heuristic are close to the optimal values found in
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the previous section, but not yet optimal. It should be noted that, as displayed in Figure 5.3, a

good quality solution is often already obtained after the first few iterations. Therefore the high

running times in Table 5.3 do not seem realistic as we can often find a good quality solution in the

first few iterations (max 3 - 15 seconds for an instance of n = 15).

Figure 5.3: Typical development in subgradient optimisation. The graph was made applying the

heuristic on an instance with n = 10 ports, p = 4 hubs, α = 0.6 and λ = 0.2. The highest line

corresponds to the upperbound and the lower line corresponds to the lowerbound.

5.3 Comparison of heuristics

The results for all heuristics and the MIP are displayed in Figure 5.3 for different instances. After

a short analysis in the previous section, we found that a good quality solution can be found in the

first iteration of the Lagrangian heuristic. It turns out that this is also the case for the tabu search

and genetic algorithm. Also for these heuristics, a relatively high quality solution is already found

in the first few iterations.

Initially, the neighbourhood of the tabu search heuristic was computed by considering the Al-

locate I, Allocate II and Allocate III methods for every path from i to j. To speed up this process

and to ensure enough variety in the solutions, we have altered this approach by only including every

path with a certain probability. This reduces the running time significantly.

In Table 5.3, it can be seen that the Lagrangian heuristic provides good lower bounds for smaller
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instances. As the instances grow however, the quality of the solution decreases slightly. The tabu

search heuristic is outperformed by the Lagrangian heuristic for n = 10 and n = 15 several times,

but outperforms the Lagrangian heuristic for n = 20 for all configurations. This suggests that the

tabu search performs better on larger instances. The genetic algorithm is faster than both the

Lagrangian heuristic and tabu search, and outperforms both in 13 out of 15 cases.
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6. Conclusion

6 Conclusion

In this thesis we replicated the mixed integer programming model as proposed by Gelareh et al.

(2010). The computation times obtained in this paper were considerably faster than the ones ob-

tained in the aforementioned paper, possibly due to an improved version of CPLEX or improved

computing power of the used computer. However, the computation times still became too large for

larger sized instances. Therefore we proposed three heuristics and described them in detail.

For the Lagrangian heuristic, we have proposed a method to solve both the Lagrangian relax-

ation and a method how to obtain a feasible solution from this relaxation by making use of the

simplified problem when considering the hubs as fixed. We have further proposed a method to solve

the Lagrangian dual problem with subgradient optimization. Both the tabu search and genetic

algorithm also made use of the simplified problem with fixed hubs that was proposed in Section

4.2.2.

Comparing the results of the three proposed heuristics, the genetic algorithm clearly outperforms

both tabu search and Lagrangian relaxation in both solution quality and computation time. We

think the genetic algorithm can still be improved by for example varying the size of the population.

It would be interesting to look at this for further research.

We did not discuss one assumption that was implicitly made by Gelareh et al. (2010). In the

proposed MIP model that we implemented from this paper, the percentage of market shares that

can be obtained for every pair of ports i and j are maximized. With this approach, every origin-

destination pair is given equal priority. This might however not be the most realistic. It can be of

much higher importance for the smaller liner shipping provider to hold a high percentage of market

share on busy routes with a lot of demand and/or high profits, whereas there are other routes that

might not necessarily have a big influence on the profits of the smaller liner shipping provider.

Incorporating this in the model, by for example applying a weighing function based on demand or

profits that can be obtained from port i to j, can give different outcomes.
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