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Abstract

This paper gives a detailed guide to building a forecasting method when high-dimensional predictors and possible nonlinear issues
exist. From the predictors, a certain number of factors are extracted which will form predictive indices using the sliced inverse
regression. This paper considers mainly two models that can be applied in nonlinear time series forecast: the artificial neural
network (ANN) and the local linear regression (LLR). The paper describes a detailed procedure for building and training ANNs
customized for time series forecast that uses the aforementioned dimension reduction techniques. In the simulation studies, by
various evaluation criteria we examine the in-sample and out-of-sample performance of the ANNs and LLRs, which will also be
compared to the conventional ordinary least squares (OLS). We find that when nonlinearity, such as interaction between factors,
exists, the ANNs and LLRs perform superior to the OLS while the OLS shows the best performance in presence of the linearity. In
the empirical application, the ANN and LLR also show superior forecasting performance compared to the OLS.

1. Introduction

The curse of dimensionality refers to various phenomena that
arise when analyzing and organizing data in high-dimensional
spaces. It is a phenomenon econometricians and deep learning
developers worry about. In the deep learning development, as
the dimension of inputs gets higher, the total number of required
training sets exponentially increases. In econometrics, a large
set of variables is also an obstacle for the ideal regression anal-
ysis, since it increases not only the required amount of data but
also the estimator’s variances, which deteriorate the reliability
of the estimators. Studies in computer science have pointed out
numerous algorithms for input variable selection, which typi-
cally consist of filtering unnecessary variables. In economet-
rics, there are several variable selection tests and methods that
let you know which variables can be ignored.

However, in the era of big data, ignoring seemingly unneces-
sary variables does not seem to be a smart choice. The best op-
tion would be extracting a core information across all available
variables and then creating new variables that represent this ex-
tracted information. The factor model is the conventional way
to do this. Through factor models, the original dimension of the
variables, p, can be reduced to the number of factors, K. An-
other benefit of using factor models that should not be underes-
timated is that it can remove noise, confounding, measurement
errors to some extent. Because we extract common features
from the variables, the individual errors can be effectively ig-
nored. There has been put much effort into applying factor
models in economics theories and time series forecasting, for
example Fama and French (2015) suggest the five-factor model
in financial asset pricing and Schumacher and Breitung (2008)
adopt a factor model for short-term forecasting of the German

GDP growth. Stock and Watson (2002) considers forecasting a
single time series using factors estimated by the principal com-
ponent analysis. There exist various methods for estimating
factors, for example Forni et al. (2000) develop the generalized
dynamic factor model and Kapetanios and Marcellino (2009)
suggest a parametric estimation method for factors that is still
computationally feasible for a very large data set. Doz et al.
(2011) show a two-step estimation of the factors in a dynamic
approximate factor model, in which the parameters of the model
are estimated from an OLS on principal components and then
the factors are estimated via the Kalman smoother.

Yet, this factor-based approach is limited to linear forecast-
ing and does not take into account the information of the target
(Fan et al., 2017). Li (1991) establishes the sliced inverse re-
gression (SIR), in which we first find a covariance matrix con-
ditioned on the target and then form the predictive indices by
linear combination of variables according to the eigenvectors
of the conditional covariance matrix. Following this, Fan et al.
(2017) suggested a new dimension reduction method using both
a factor model and the sliced inverse regression. Here, we make
L predictive indices out of factors that were first extracted from
predictors. In this way, we are able to dramatically reduce the
dimension of the predictors while keeping, or even improving,
the predictive power.

The Artificial Neural Network (ANN) is a computing frame-
work for modeling a broad range of nonlinear functions. One
significant advantage of the ANN models over other classes
of nonlinear models is that ANNs are universal approxima-
tors which can approximate a large class of functions with a
high degree of accuracy (Zhang, 2003). With one hidden layer,
we can represent any continuous function of the input signals,
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and with two hidden layers even discontinuous functions can
be represented (Negnevitsky, 2005). It does not impose any
structural constraints on the data-generating process and the es-
timation can be done flexibly. There are a number of papers
that discuss an application of ANNs in time series forecast-
ing. Zhang (2003) suggests a hybrid methodology that com-
bines both ARIMA and ANN models and Kaastra and Boyd
(1996) give a detailed procedure for designing an ANN archi-
tecture for time series forecasting. Zhang and Qi (2005) in-
vestigate the issue of how to effectively model time series with
both seasonal and trend patterns. Zhang and Berardi (2001) use
a modified version of the neural network applied in predicting
the exchange rate.

Besides the ANN, we will use the local linear regression
(LLR) (Fan and Gijbels, 1996) to capture the nonlinearity of
the data. The LLR is a popular tool used in nonparametric re-
gression analysis in which at each point in the range of the data
set a linear function is fitted into a subset of the data. This
nonparametric regression does not require the specification of
a function to fit a model to all of the data in the sample. In-
stead we only have to determine the length of the bandwidth
and kernel function to use. Like ANNs, the LLR can be fitted
very flexibly when we have a small bandwidth. In certain cases,
the local linear regression performs even better than the ANN
as shown by Shamim et al. (2016).

All the time series forecasting by the nonlinear models have
confronted the curse of dimensionality. As mentioned before,
as the dimension of inputs gets higher, the amount of data re-
quired to get a sufficient forecasting performance exponentially
increases. Unfortunately, the amount of data is often limited
in the financial sector. For this reason, the aforementioned di-
mension reduction technique consisting of the factor model and
SIR will be very useful for time series forecasting by an ANN
or LLR. A few papers adopt either the factor model or the sliced
inverse regression as a way of reducing dimension of inputs; see
Bai and Ng (2008), Yuan and Fine (1998, 1993).

2. ANN forecasting with dimension reduction

2.1. ANN forecasting with factor model and sliced inverse re-
gression

See the following factor model with a target variable yt+1 that
we want to forecast and xit that is the ith predictor at time t:

yt+1 = g(φ′1ft, . . . , φ
′
Lft, εt+1), (1)

xit = b′ift + uit, 1 ≤ i ≤ p, 1 ≤ t ≤ T, (2)

where p and T are respectively the number of predictors and
the number of observations. bi is a K × 1 vector of factor load-
ings and ft = ( f1t, . . . , fKt)′ is a K × 1 vector of common fac-
tors across the predictors. Other than the factors and loadings,
xit also has an error term, or an idiosyncratic component, repre-
sented by uit. Target variable yt+1 is constructed by the unknown
link function g(·) and the predictive indices φ′1ft, . . . , φ

′
Lft.

φ1, . . . , φL are orthogonal vectors of linear combinations in

K-dimension which are called the sufficient dimension reduc-
tion (SDR) directions (Fan et al., 2017). εt+1 is a stochastic
error independent of ft and uit.

As we can see in model 1, the target variable only depends
on the L predictive indices. Of course, we expect the number
L to be lower than the number of the predictors, p, and the fac-
tors, K. The perfectly reduced variables, (φ′1ft, . . . , φ

′
Lft), are

seen to be as informative as the original xt, so these predictive
indices are sufficient in forecasting yt+1. Models 1 and 2 make
it possible to reduce the dimension from p to L. The estimation
methods for factors and SDR directions are given in section 2.2.

We still need to estimate the unknown link function g(·).
This is a nonparametric function with the number of parameters
specified but without any structural conditions imposed. Most
previous researches restricted their estimations of the function
into the linear format. However, these linear functions will not
show satisfying performance when g(·) is actually nonlinear.
Fan et al. (2017) establish a unique forecasting method, named
sufficient forecasting, that takes the possible nonlinearity of g(·)
into account while using the factor model and SIR. The suffi-
cient forecasting adopts the LLR (Fan and Gijbels, 1996) to es-
timate g(·). Another possible option would be the ANN, which
will be mainly discussed in this paper. In section 3 and 4, we
will see which nonlinear model shows the best performance.
The procedure of this forecasting method is given in algorithm
1. The prototype of the ANN forecasting architecture with the
predictive indices is illustrated in figure 1.

Algorithm 1: ANN forecasting using factor models

Step 1: Obtain the estimated factors {̂ft}t=1,...,T

Step 2: Obtain the estimated SDR directions, φ̂1, . . . , φ̂L

Step 3: Construct the predictive indices φ̂′1 f̂t, . . . , φ̂
′
L f̂t

Step 4: With the predictive indices from Step 3, use the ANN or
the LLR to estimate g(·) and forecast yt+1.

Figure 1: ANN architecture using factor model
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2.2. Estimation of factors and SDR directions
In practice, the factors, factor loadings and SDR directions in

models 1 and 2 should be estimated. The factors and loadings
can be estimated as follows:

(B̂K , F̂K) = argmin
(B,F)

‖X − BF′‖2F (3)

subject to

T−1F′F = IK , B′B is diagonal,

where X = (x1, . . . , xT ), F′ = (f1, . . . , fT ), and ‖ · ‖F denotes
the Euclidean norm. Note that X is a P × T matrix and its tth
column, xt, is a vector of P dimension. Loading matrix B and
factor matrix F are P × K and T × K matrices, respectively.
This is a typical principal components problem. The columns
of F̂K/

√
T are the eigenvectors corresponding to the K largest

eigenvalues of the T × T matrix X′X and B̂K = T−1XF̂K . One
can use some other robust estimations for factors and loadings
such as Forni et al. (2000).

Traditional analysis of factor models typically focuses on the
covariance with the forecast target cov(xt, yt+1) and the covari-
ance within the predictors xt, denoted by a p × p matrix

Σx = Bcov(ft)B′ + Σu (4)

where Σu is the error covariance matrix of ut. However, this ap-
proach does not fully utilize the information of the target vari-
able, yt+1. So, in this research we will consider E(xt |yt+1) that
is the conditional expectation value of the predictors given the
target variable.

Under model 1, Li (1991) showed that E(ft |yt+1) is contained
in the central subspace S y|f spanned by φ′1ft, . . . , φ

′
Lft. So, it

is reasonable to estimate sufficient directions by investigating
the top L eigenvectors of cov(E(ft |yt+1)). Estimation method
for cov(E(ft |yt+1)) is developed by Li (1991) and is called the
sliced inverse regression (SIR). In this estimation, we divide
our data set into slices I1, . . . , IH such that the proportion of
the yt falls in slice Ih is 1/H. Then we substitute E(ft |yt+1) with
E(ft |yt+1 ∈ Ih) which leads to the following:

Σ f |y =
1
H

H∑
h=1

E(ft |yt+1 ∈ Ih)E(f′t |yt+1 ∈ Ih) (5)

By conditioning on the target yt+1 in model 2, we obtain

Σx|y = cov(E(xt |yt+1)) = cov(E(Bft + ut |yt+1))
= Bcov(E(ft |yt+1))B′

and this gives us another form of 5:

Σ f |y =
1
H

H∑
h=1

ΛbE(xt |yt+1 ∈ Ih)E(x′t |yt+1 ∈ Ih)Λ′b, (6)

where Λb = (B′B)−1B′.
The simplest way to estimate the conditional covariance ma-

trices in 5 and 6 would be to find f̂t from model 3 and then

respectively replace E(ft |yt+1 ∈ Ih) and E(xt |yt+1 ∈ Ih) with the
sample mean of f̂t and xt within each slice. We can denote the
ordered statistics of {(yt+1, f̂t)}t=1,...,T−1 by {(y(t+1), f̂(t))}t=1,...,T−1
according to the values of y, where y(2) ≤ · · · ≤ y(T ). Then we
divide the range of y into H slices, where the first H − 1 slices
contain the same number of observations c > 0 and the last slice
may have less than c observations. The ordered statistics which
are sliced are denoted as follows:

{(y(h, j), f̂(h, j)) : y(h, j) = y(c(h−1)+ j+1, f̂(h, j) = f̂c(h−1)+ j}h=1,...H; j=1,...c.

Then the estimators are as follows:

Σ̂1
f |y =

1
H

H∑
h=1

[1
c

c∑
l=1

f̂(h,l)

][1
c

c∑
l=1

f̂(h,l)

]′
(7)

Σ̂2
f |y = Λ̂b

( 1
H

H∑
h=1

[1
c

c∑
l=1

x(h,l)

][1
c

c∑
l=1

x(h,l)

]′)
Λ̂′b, (8)

where Λ̂b = (B̂
′
B̂)−1B̂

′
. Σ̂1

f |y is a factor-based estimator and Σ̂2
f |y

depends on observations and loadings. These two estimators
look different at glance, but they converge to the same value as
the number of observations of a slice goes to infinity. Either
with many total observations or a great number of slices, the
difference between the two estimators becomes negligible. The
estimation of the SDR directions φ̂1, . . . , φ̂L are the eigenvec-
tors of Σ̂ f |y corresponding to the L largest eigenvalues.

Theorem 1. The estimators Σ̂1
f |y and Σ̂2

f |y converge to the same
value as c→ ∞.

Remark. As an exception, Σ̂1
f |y and Σ̂2

f |y are always equivalent
under the factor model 2 (Fan et al., 2017). However, if you use
another factor model estimation method such as the generalized
factor model (Forni et al., 2000), theorem 1 holds.

2.3. ANN design principles for time series forecasting

Although ANNs are widely used, there is no specific rule for
designing the architectures. Thus, in sections 2.3 and 2.4, we
present some practical methods for designing and training the
ANN customized for time series forecasting.

Typically, ANNs consist of an input and an output layer,
joined by hidden layers. Each layer has neurons that have an
activation function and a threshold. The numbers of neurons in
the input layer and in the output layer are equal to the number
of inputs and outputs of the data set, respectively. The hidden
layers can be freely designed by the users although there exists
a rule of thumbs. All neurons in each layer are perfectly con-
nected with the neurons of their neighbor layers with specified
weights.

Let us say that we have L inputs and one output with s hid-
den layers HL1, ...,HLs. The hth hidden layer HLh has mh neu-
rons. Then the number of parameters (weights and thresholds)
is Lm1 + I(s > 1)

∑s−1
h=1 mhmh+1 + ms +

∑s
h=1 mh + 1. As we

can see, the number of parameters exponentially increases with
the number of hidden layers. This means that the amount of
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the data we must obtain for a proper training also exponentially
increases. This is the curse of dimensionality. With the pres-
ence of a large number of parameters, we can face the notori-
ous over-fitting problem, in which the model fits very well in
a training set but fails to fit additional data or to predict future
observations reliably. Hence, in designing an ANN, it is highly
recommended to follow Occam’s razor principle the simpler the
better. In practice, a three-layer ANN (one hidden layer with
input and output layers) is mostly used and four-layer in certain
cases. There are also ANNs with more than four layers, but they
are mostly experimental. In a financial time series, using only
one hidden layer is recommended, as we usually focus on fore-
casting rather than fitting a model into data. In this paper, we
will deal with a three-layer ANN in which the number of inputs
and output is L and 1, respectively. The number of neurons in
the hidden layer is usually chosen from in-sample simulations
or cross-validations. In sections 3 and 4, we will see which
one gives the best in-sample and out-of-sample performances
among ANNs of one hidden layer with different numbers of
hidden neurons.

The input layer accepts the inputs and distributes them into
the neurons in the hidden layer. Then a neuron in the hidden
layer accepts the value computed with the weights and creates
its intermediate return value with the threshold and the activa-
tion function. The neuron in the output layer accepts the values
the same way and returns the final output of the network.

An ANN without activation functions would simply be a lin-
ear regression model. In neural networks, the activation func-
tion of a neuron, which is an abstraction representing the rate
of action potential that is firing in the cell, defines the output of
the node given inputs. The reason of using the activation func-
tion is to prevent outputs from reaching very large values which
could paralyze the neural network and thereby hinder training.
Linear activation functions are not useful for nonlinear mapping
and classification (Kaastra and Boyd, 1996). A number of re-
searches such as Hsieh (1991) suggest that the data-generating
process in the financial market is nonlinear, so nonlinear acti-
vation functions would be more appropriate in forecasting a fi-
nancial time series. Among the nonlinear activation functions,
the sigmoid ϕ(x) = 1/(1 + e−x) is commonly adopted because
it is nonlinear and differentiable in the whole domain. How-
ever, outputs of sigmoid function range between -1 and 1, so
it is not appropriate to use it for the output neuron since our
outputs can be out of the range. Hence, a neural network with
sigmoid hidden layer neuron activation function and identity
output neuron activation function ϕ(x) = x is the most popular
choice for many successful applications of financial forecasts
(Qi and Zhang, 2001).

In conclusion, in a case of univariate time series forecasting,
the ANN consists of one input layer of L neurons and an output
layer of one neuron. The neurons in the hidden layer have the
sigmoid activation function and the output layer neuron has the
identity activation function. We will use only one hidden layer,
in order not to have over-fitting problems, and the hidden layer
has m hidden neurons. So, in this three-layer ANN, we have
Lm + m weights and m + 1 thresholds. These Lm + 2m + 1
parameters should be estimated from training.

2.4. ANN training

In supervised learning, the ANN is iteratively presented ex-
amples of the correct known answers. The aim of the super-
vised learning is to find the set of weights between the neurons
that minimizes the error function. Mostly the error function is
defined as the mean squared errors. Let us say we have a three-
layer ANN. The number of neurons in the input, hidden and
output layers is respectively L, m and 1. We have L input sig-
nals φ′1ft, . . . , φ

′
Lft which are created from the factor model

and the SIR in section 2.2. For ease of notation, we denote
φ′1ft, . . . , φ

′
Lft as p1t, . . . , pLt and the vector of these as pt.

The indices l and j refer to neurons in the input and hidden lay-
ers, respectively. The sigmoid activation function will be used
in the hidden layer and the identity function in the output neu-
ron.

Before starting the training, we need to initialize the weights
and thresholds with random numbers. Haykin (2009) suggests
that these parameters can be set to random numbers drawn from
the uniform distribution (−2.4/Fi, 2.4/Fi) where Fi is the total
number of inputs of neurons i, i.e. the number of neurons in its
left neighbor layer. In our case, Fi for the hidden and output
neurons are L and m, respectively.

When we input a training set into the network, the ANN
propagates p1t, . . . , pLt to the hidden layer. The value a hid-
den neuron receives is the net-weighted input subtracted by the
threshold:

P jt =

L∑
l=1

pltwl j − θ j for j = 1, . . . ,m,

where θ j is the threshold of hidden neuron j, and wl j is the
weight between neuron l in the input layer and neuron j in the
hidden layer. Next, this net-weighted value is passed through
the sigmoid activation function:

yH
jt = ϕ(P jt) =

1
1 + e−P jt

for j = 1, . . . ,m.

Figure 2 depicts how the neuron j in the hidden layer takes this
procedure. These intermediate returns yH

1t, . . . , y
H
mt are used

for the output neuron to calculate the final output of the ANN.
Note that the output neuron uses not the sigmoid but the identity
activation function, so the net-weighted intermediate result with
the threshold subtracted is the output. Our final output is

ŷt+1 =

m∑
j=1

yH
jt w j − θ,

where w j is the weight between neuron j and the output neuron
and θ is the threshold of the output neuron. The difference be-
tween the output ŷt+1 and the actual value yt+1 is simply denoted
as et = yt+1 − ŷt+1.

We have seen that the inputs are processed through the net-
work. However, the parameters, weights and thresholds are
nothing more than random numbers, so we have to adjust them
to the optimal values that minimize the error function. Back-
propagation is a training method used in ANN to calculate a
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Figure 2: Propagation from the inputs to the jth neuron in the hidden layer. Intermediate return yH
jt is used to calculate the final output.

gradient that is needed for updating the weights and thresh-
olds. It is called back-propagation as it propagates the errors
backward and makes the parameters update accordingly. In this
method, the parameters in the back side are updated first.

We calculate the error gradient for the neuron in the output
layer. The error gradient in the output layer is determined as
the derivative of the activation function multiplied by the error
at the neuron output, i.e. δ = etϕ

′(yH
jt ). With identity activation,

the error gradient is equal to the error yt+1 − ŷt+1. The weights
and threshold corrections are

∆w j = α × yH
jt × δ

∆θ = α × (−1) × δ

and we update the weights and thresholds

w j ← w j + ∆w j

θ ← θ + ∆θ

Now we calculate the error gradient for the neurons in the
hidden layer:

δ j = yH
jt × (1 − yH

jt ) × δ × wi j

Here the term δ × wi j is the error signal for which neuron j is
responsible and this is multiplied by the derivative of the activa-
tion function at the neuron. The error corrections are as follows:

∆wl j = α × pl × δ j

∆θ j = α × (−1) × δ j,

and we update the weights and thresholds as before:

wl j ← wl j + ∆wl j

θ j ← θ j + ∆θ j

We continue all these steps through the entire training data
sets. One main difference of ANN training from the model esti-
mation in econometrics is that the same data sets are iteratively
being processed multiple times until we find a set of reason-
able parameters. The training sets constitute one epoch which

is iteratively used for training. After the training, we select the
parameter set that has the lowest value of the error function.
Unlike econometric nonlinear or linear regressions, the ANN
training results in different estimation values of the parameters
depending on the initialization.

When it comes to the number of iterations of training, Kaas-
tra and Boyd (1996) show two main schools of thought. The
first one stresses that the training should stop if there is no im-
provement in the error function a certain number of times. Here,
the point at which the network does not improve is called con-
vergence. The second one argues that the training should stop
after a predetermined number of iterations.

Remark. One can use modified back-propagation algorithms
which will give you more efficiency of training. The back-
propagation algorithm used in this paper is the most basic ver-
sion which is rarely used in practice for its inefficiency. One
can include a momentum constant that would incur a stabiliz-
ing effect on training (Watrous, 1987). Allowing learning rate
α to change by heuristic methods can also speed up the training
(Jacobs, 1988).

2.5. Local linear regression
One can adopt another estimation method for the link func-

tion g(·) in model 1. One appropriate option would be the local
linear regression which does not require the specification of a
function. In LLR, we only have to determine the bandwidth pa-
rameter h and the kernel function to use. In addition, the LLR is
very flexible, making it ideal for modeling nonlinear relations
for which no theoretical models exist.

For the predictive indices, we use the same notation as in the
last section, i.e., plt = φ′lft and pt = (φ′1ft, . . . , φ

′
Lft)′. The

conventional linear regression model for model 1 is given by

yt+1 = β0 + β1 p1t + . . . + βL pLt + εt+1

= (1, p′t) β + εt+1,

where β = (β0, β1 . . . , βL)′. The parameters in this linear
model are globally fixed, therefore we can say this model is a
global fitting.
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On the other hand, the local linear regression allows the pa-
rameters β0, β1, . . . , βL to change depending on the value of
the predictive indices. Then the model is structured as follows:

yt+1 = β0 + β1(p1t) p1t . . . + βL(pLt) pLt + εt+1

Here, the value of βl(·) is a function of predictive index plt for
l = 1, . . . , L.

The estimation of the multivariate LLR model is based on the
following minimization problem:

min
β

T−1∑
t=1

{yt+1 − β0 −

L∑
l=1

βl(plt − pl)}2
1
|B|

K(B−1(pt − p)) (9)

where K(·) is the kernel function, and B and |B| are respectively
the bandwidth matrix and its determinant. Bandwidth matrix B
is an invertible L × L matrix, which is simply

B = diag{h1, . . . , hL}.

Here, hl is the bandwidth for the lth variable, which specifies
how many nearest neighbors will be included for the local fit-
ting. Note that here p and pl are random variables of pt and plt.
The elements of β in 9 depend on p. In this sense, β can be
considered a function of p.

Several types of kernel functions are commonly used: uni-
form, triangle, Epanechnikov, quartic, tricube, triweight, Gaus-
sian, quadratic and cosine, among which Gaussian is the most
popular (Fan and Gijbels, 1996). The Gaussian kernel is defined
as:

K(u) =
1
√

2π
e−

u2
2 , (10)

where u is a real number. The structure of kernel functions are
based on a symmetric probability density function. Hence, in
most applications they satisfy the following two constraints:

1.
∫

K(u)du = 1

2. K(u) = K(−u)

The kernel function given in 10 is univariate and when we have
more than one predictive index we need to transform this into
the multivariate form. The multivariate kernel function of L
dimension, KL(·), is as follows:

KL(u) = KL(u1, . . . , uL) = K
(( L∑

l=1

u2
l

) 1
2
)

The smoothing parameter hl indicates the window size of the
kernel defining its bandwidth. The amount of observations used
for local fitting gets higher as hl increases. Hence, with a large
hl you have a smoother regression curve and with a small h your
regression curve fluctuates more. hl = 0 results in an estimate
which essentially interpolates the observations, while hl = +∞

is equivalent to a linear model (Fan and Gijbels, 1996). A pop-
ular rule-of-thumb procedure is to choose

hl = clS (pl)(T − 1)−1/(4+L) for l = 1, . . . , L, (11)

where cl is an arbitrary positive constant, S (pl) is the sample
standard deviation of {plt}t=1,...,T−1 and T − 1 is the number of
observations (Li and Racine, 2007). In practice, cl is often cho-
sen to be 1 or some other constant close to 1. An alternative se-
lection method for bandwidth is given by Hurvich et al. (1998).
This method is based on the AICc information criterion. We
test with many different bandwidths and select the one with the
best AICc. More details about this information criterion will
follow in section 3.1.

Smoothing matrix H is a (T − 1) × (T − 1) matrix of
kernel weights in which (i, j) element is given by Hi j =

Kh,i j/
∑T−1

t=1 Kh,it where Kh,i j =
∏L

l=1 h−1
l K((pli − pl j)/hl) (Li and

Racine, 2007). This matrix is needed to find the aforementioned
AICc by Hurvich et al. (1998).

2.6. Selection of parameters
Selection of parameters is important in practice, since some-

times the results of the models differ considerably depending
on it. In finding the conditional covariance matrix given in 7
and 8, the number of slices H has to be determined. The choice
of H may affect the asymptotic variance of the estimators, but
the difference is not significant for practical sample sizes (Li,
1991). Fan et al. (2017) show that we always have the same
rate of convergence for φ̂l as long as H ≤ max{L, 2}.

In terms of the number of predictive indices L, the first L
eigenvalues of Σ f |y must be significantly different from zero,
compared to the estimation error. If the factors are normally
distributed, the asymptotic distribution of the average of the
smallest K −L eigenvalues of Σ f |y is chi-square distribution (Li,
1991). However, the normality of factors is hardly satisfied, so
if the normality cannot be confirmed by a statistical test such as
the Jarque-Bera test, one can just choose L such that the ratio of
the Lth eigenvalue to the sum of all eigenvalues is greater than
0.05 and L + 1th is not.

We should choose the number of factors K as small as possi-
ble, but so that the included factors explain at least a sufficiently
high fraction of the total variance of the predictors. The ratio-
based estimator given by Ahn and Horenstein (2013) can be a
method, in which we maximize a ratio of two adjacent eigen-
values of X′X arranged in descending order, i.e.

K̂ = argmax
1≤i≤kmax

λ̂i/λ̂i+1,

where λ̂1 ≥ . . . ≥ λ̂T−1 are the eigenvalues.
The learning rate of the ANN works as a controller of the

speed of training. The ANN is trained by gradient descent on
the weights and thresholds as mentioned in section 2.4. This
means that at each iteration we use back-propagation to cal-
culate the derivative of the loss function with respect to each
weight and threshold and subtract it from them. However, with-
out learning rate, the weights will vary far too much each iter-
ation, which will make them over-correct and the loss will ac-
tually increase. Therefore, in practice, people usually multiply
each derivative by a small value of learning rate before they up-
date its corresponding weight. The choice of the learning rate is
important, since a high value can cause too much change, lead-
ing to the minimum to be missed, while an overly low learning
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rate slows down the training unnecessarily. This value must be
between 0 and 1 and should be chosen differently depending
on the activation function of the output neuron. Typically, the
learning rate for a neuron with identity activation function is set
to be 0.01 and one with sigmoid activation function is 0.1.

Remark. The ratio-based method of choosing K in this sec-
tion is introduced by Fan et al. (2017). However, we found that
this method is not applicable for some empirical applications
including the data used in section 4. Chances are that in the
financial data the first eigenvalue is significantly greater than
the second one, which leads the ratio of the first to the sec-
ond eigenvalue to be the greatest among all the ratios. How-
ever, with K̂ = 1, the conditional covariance in 7 and 8 is a
scalar, that would make it impossible to find the SDR direc-
tions. Hence, when deciding on parameter K, it is important
not only to use a predefined mathematical method but also to
consider the individual characteristics of the data.

2.7. Out-of-sample forecast without look-ahead bias
Testing a model’s forecast performance is commonly con-

ducted by splitting a data set into an in-sample period, used
for the initial parameter estimation, and an out-of-sample pe-
riod, used to evaluate forecasting performance. Typically, in
the time series we estimate the model by using the observations
before the target and use this estimated model to make a fore-
cast. In order to get a precise statistical performance measure,
one must not include any observations at or after the time of the
target in estimating the parameters. Violating this principle is
the so-called ‘look-ahead bias’.

Estimating the conditional covariance matrix in 7 and 8 in-
evitably includes a one-step-ahead target variable. When pre-
dicting the target at τ, you would need to include target yτ in
estimating the covariance matrix in order to make predictive in-
dices at τ − 1, which is definitely the look-ahead bias. Then
how can we obtain the predictive indices at time τ − 1 avoiding
this problem? One feasible way would be to estimate the con-
ditional covariance matrix with the factors for t = 1, . . . , τ− 2
and then to make the predictive indices at τ − 1 with the factors
at τ−1 and the SDR directions from the conditional covariance
matrix. We can use this predictive indices for forecasting the
target at τ. The procedure of this out-of-sample forecast can be
summarized in the following algorithm 2.

In this algorithm, we should see that the estimation of Σ f |y

includes only the factors until τ − 2 and the targets from t = 2
to τ− 1. The reason is that if we include the factors at τ− 1, we
also have to include the forecasting target at τ. The predictive
indices at τ− 1 are made out of the SDR directions φ̂1, . . . , φ̂L

that are estimated without the factors at τ − 1 and the target at
τ.

3. Simulation studies

In this section, we generate data by the conventional time se-
ries models and the factor models. We will see both in-sample
and out-of-sample performances which will be examined by
various evaluation criteria. In this simulation, we will extract

Algorithm 2: Out-of-sample forecast

Step 1: Obtain estimated factors {̂ft}t=1,...,τ−1 from {xt}t=1,...,τ−1

Step 2: Estimate Σ f |y from 7 and 8 by using {̂ft}t=1,...,τ−2 and
{yt}t=2,...,τ−1

Step 3: Obtain the estimated SDR directions, φ̂1, . . . , φ̂L, from
Σ f |y in Step 2

Step 4: Construct the predictive indices φ̂′1 f̂t, . . . , φ̂
′
L f̂t for

t = 1, . . . , τ − 1

Step 5: Use the ANN or LLR to estimate g(·) with
{φ̂′1 f̂t, . . . , φ̂

′
L f̂t}t=1,..,τ−2 and {yt}t=2,...,τ−1

Step 6: Make a forecast ŷτ with φ̂′1̂fτ−1, . . . , φ̂
′
L̂fτ−1

factors from predictors and then generate predictive indices out
of the factors as explained in section 2.2. Then we will use three
ANNs and local linear regression with five different bandwidths
in order to estimate the link function g(·). ANN(1, m) means the
ANN with one hidden layer and m hidden neurons. The local
linear regression is denoted as LLR(h f ) where h f is a fraction
of the bandwidth to the maximum distance between two oppo-
site corners of the hypercube (p1, . . . ,pT−1), i.e. the Euclidean
distance between the maximum and the minimum value of the
matrix. The ordinary least squares (OLS) model is also used
mainly for comparison with the ANNs and LLRs.

Note that we have T − 1 pairs of xt and yt+1 when T observa-
tions are generated as xt is one-lagged compared to yt+1. Hence,
{(xt, yt+1)}t=1,...T−1 is used in practice and the total number of
observations is T − 1.

3.1. Model evaluation criteria

The in-sample goodness of fit can be evaluated by the con-
ventional R2 which describes how close the data are to the fitted
model:

R2 = 1 −
∑T

t=2(yt − ŷt)2∑T
t=2(yt − ȳ)2

.

However, this measure can distort the real goodness of fit of
the model since it almost monotonically increases, and never
decreases as the number of included parameters increases. So,
when fitting models, it is possible to increase the statistical mea-
sure by adding parameters, or more variables, but doing so may
result in over-fitting. The Akaike Information Criterion (AIC)
(Akaike, 1974) is one of the most popular evaluation methods
for both linear and nonlinear models. The AIC is defined as the
log-likelihood term penalized by the number of model parame-
ters. A very common form of it is:

AIC = log(σ̂2
MLE) +

2m
T − 1

, (12)
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where m is degrees of freedom, and σ̂2
MLE denotes the maximum

likelihood estimate of the variance of the residual term,

σ̂2
MLE =

∑T
t=2(yt − ŷt)2

T − 1
.

The degrees of freedom is a parametric concept but it is pos-
sible to approximate it in nonparametric regressions, resulting
in numbers that are not necessarily integers. For the LLR, m
can be approximated by tr(H), where H is the smoothing ma-
trix (Hurvich et al., 1998). In the ANNs, we will consider the
number of parameters as m, which is the way adopted by Qi and
Zhang (2001). But it should be noted that the number of param-
eters cannot be an unbiased and consistent estimator for degrees
of freedom for the ANN. Hence, all information criteria for the
ANNs in this paper are intended for comparing in-sample per-
formance between the ANN models, but not with another form
of model such as LLR and OLS. See a more detailed expla-
nation in the remark at the end of this section. For the OLS,
the number of variables can be an estimator for the degrees of
freedom, m, and this is consistent with the LLR’s degrees of
freedom estimation, which makes it possible to compare the in-
formation criteria of the OLS with those of the LLR. The first
term of 12 measures the general fit of a given model and the sec-
ond term penalizes over-parametrization. A lower AIC means
a model is considered to be closer to the truth.

Although the AIC is a reasonable criterion which balances
model fitting and model parsimony, the AIC often leads to a
model with an unnecessarily large number of parameters in
certain cases (Qi and Zhang, 2001). Especially, this over-
parametrization problem of the AIC becomes more serious for
nonlinear models (De Gooijer and Kumar, 1992). There are
many modifications of AIC to fix this problem by adjusting the
penalty term, of which AICc is one of the most popular. The
application and validity of AICc was extensively discussed by
Anderson et al. (1998) and Hurvich et al. (1998). AICc is con-
structed as follows:

AICc = log(σ̂2
MLE) + 1 +

2(m + 1)
T − m − 3

.

As you can see, AICc gives more penalty on the number of
parameters compared to AIC.

We also look at the Bayesian Information Criteria (BIC)
(Schwarz, 1978). Like the AIC, the BIC attempts to resolve
the over-fitting problem by introducing a penalty term for the
number of parameters. The penalty term is larger in BIC than
in AIC.

BIC = log(σ̂2
MLE) +

m log(T − 1)
T − 1

We also adopted multiple out-of-sample performance evalu-
ation criteria. The out-of-sample R2

OS suggested by Campbell
and Thompson (2008) measures how accurate the predictions
by a model are compared to historical averages. This is defined
as:

R2
OS = 1 −

∑T
t=[T/2](yt − ŷt)2∑T
t=[T/2](yt − ȳt)2

, (13)

where ŷt is the value predicted by the model such as ANN, LLR
and OLS and ȳt is the historical average, both of which are com-
puted using all information available by t − 1.

The mean squared error (MSE) and mean absolute error
(MAE) respectively measure the average of the squares and the
absolute values of the errors or deviations, i.e. the difference
between the real yt and what is estimated, ŷt.

As our out-of-sample starts at t = [T/2], the total number of
evaluations is T − [T/2] + 1

RMSE =

√√√
1

T − [T/2] + 1

T∑
t=[T/2]

(yt − ŷt)2

MAE =
1

T − [T/2] + 1

T∑
t=[T/2]

|(yt − ŷt)|

The mean absolute percent error (MAPE) measures the size
of the error in the ratio to yt. It is calculated as the average of
the unsigned percentage error, as shown below:

MAPE =
1

T − [T/2] + 1

T∑
t=[T/2]

∣∣∣∣∣ (yt − ŷt)
yt

∣∣∣∣∣
Remark. In recent years, there have been many papers on the
concept of degrees of freedom for general statistical estimators.
For linear estimators, such as the nonparametric regression es-
timators we considered in this paper, tr(H) is the right choice,
and is consistent with the literature on degrees of freedom, such
as Efron (1986, 2004). However, there has been few research
on any simple approximation for degrees of freedom in the ANN
estimator, which is highly nonlinear. One would most likely
need to work with the general definition of degrees of freedom
as given by Efron, but unfortunately this is going to involve un-
known quantities. An alternative approach might be possible
using the AICI method of Hurvich et al. (1990), but a likelihood
function corresponding to the ANN would be required. Devel-
oping degrees of freedom in the ANN would go beyond the scope
of this paper and is left for future research.

3.2. Linear case
We first consider a case where the target variable yt is gener-

ated by a linear function of the latent factors. Here, we assume
yt depends on a single predictive index which is a linear combi-
nation of the factors. The data-generating process is as follows:

yt+1 = φ′ft + σyεt+1, (14)
xit = b′ift + uit, (15)

where K = 5 and φ = (0.8, 0.5, 0.3, 0, 0)′. The loadings bi’s
are drawn from the standard normal distribution. In order to
include autocorrelation in the series, we generate f jt and uit with
AR(1) processes:

f jt = α j f jt−1 + e jt, uit = ρiuit−1 + vit,

where α j and ρi are drawn from U[0.2, 0.8]. In 14, σy is the
standard deviation of φ′ft, so that the infeasible best forecast
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using φ′ft has an R2 of approximately 0.5. The unconditional
variance of f jt can be found so that

var( f jt) = var(α j f jt−1 + e jt) = α2
jvar( f jt−1) + 1

→ var( f jt) =
1

1 − α2
j

.

Then, the variance of φ′ft is ΣK
j=1φ

2
j/(1 − α

2
j ). There is no cross

terms when computing the variance of the linear combination of
the factors, because all factors are assumed to be independent
of each other. So, we have

σy =

√√√ K∑
j=1

φ2
j

1 − α2
j

We used three ANN models, local linear regressions with five
different bandwidths and the ordinary least squares. Here we
use a single estimated predictive index φ̂′1̂ft. The ANNs have
only one hidden layer for the reasons mentioned in section 2.3
and the number of neurons is set to be two, three, and four. We
train the networks until there is no improvement in the error
function

∑T
t=2(yt − ŷt)2/(T − 1), 50 times in a row.

We set the fraction bandwidth h f of the local linear regres-
sions to be 0.5, 0.4, 0.3, 0.2 and 0.1. In order to find the best
forecasting local linear regression model, it is important to test
with many different bandwidths. With a narrow bandwidth, it
is possible to sophisticatedly fit a model in sample, but we are
in danger to fall into the over-fitting problem which will lead to
a poor out-of-sample forecasting performance. We expect the
OLS to perform superior to other nonlinear models when the
data is generated by the linear link function, but inferior to the
others when nonlinearity exists.

In this simulation, the number of slices H, used for SIR, is set
to 10. For the ANNs, the learning rate α is 0.01 for the output
neuron and 0.1 for the hidden neurons. The Gaussian kernel
function is used throughout the simulation for the LLR(h f )s.
We use only one predictive index for model estimation.

The result of the simulation is given in table C.2. The OLS
shows very good performance for both in-sample and out-of-
sample. In some cases, it even has a greater in-sample R2 than
the ANNs which have more parameters and LLRs that can be
locally fitted. Regardless of the values of p and T , the OLS
is also the best model according to AIC, AICc and BIC. Also,
in the out-of-sample, the OLS performs quite well, although
ANNs and LLRs have a better R2

OS in some cases. This result
is not surprising because the data is generated by a linear link
function whose features can be perfectly captured by the linear
model.

Interestingly, the ANNs have worse in-sample R2s and out-
of-sample R2

OS s than the LLR(0.5), LLR(0.4), LLR(0.3) and
LLR(0.2). This result implies that in the presence of linearity
the artificial neural network is not a good option.

LLR(0.1) has the best in-sample fitting indicator R2 across
all p and T because it has a relatively narrow bandwidth that
allows a dense fitting. But it seems that it has an over-fitting
problem when T = 100 since its R2

OS is very low compared

to the others (and MSE, MAE, MAPE are accordingly high).
When T = 200, 500, it performs better than or equal to the
ANNs. This clearly shows that the nonparametric estimation
needs more observations to adequately perform when the model
has a narrow bandwidth fraction h f .

3.3. Nonlinear case with factor interaction

Now we look into the case where the interaction between
factors exists. The target yt is generated as follows:

yt+1 = f1t( f2t + f3t + 1) + εt+1 (16)

where εt+1 is drawn from the standard normal distribution. Here
we can see interaction between f1t and f2t, f3t. The data-
generating process for xit is the same as before, except that now
we let K = 7. In the factor model estimation, seven factors are
extracted from the predictors. In the model estimation, we first
include two predictive indices. The result of the simulation is
given in table C.3.

In this simulation, the nonlinear models perform way better
than the linear model. Across p and T , all ANNs and LLRs
have higher R2 and R2

OS than the OLS. This shows that when
nonlinearity such as the factor interaction in 16 exists, a linear
model cannot show a satisfying performance.

When T = 100, among the ANNs the ANN with one hid-
den layer and two hidden neurons can be considered the best
in-sample by the information criterion AIC. This is because it
shows a rather similar or even greater in-sample R2 with keep-
ing the number of parameters small. With AICc and BIC, the
difference becomes even larger since those information criteria
put more penalty on having more parameters. Among LLRs,
for all p and T , the one with h f = 0.1 is considered the best by
AIC and AICc. However, by BIC the LLR with h f = 0.2 is a
better model when T = 100 while the LLR with h f = 0.1 is still
the best when T = 200, 500. This is because of the fact that
the BIC puts more penalty on having more parameters which
can be compensated by having more observations. Surprisingly,
among the LLRs with the different bandwidths, the one having
the best BIC has also the best R2

OS , which shows BIC could be
a model section criterion for out-of-sample forecasting.

The ‘highly’ nonlinear models such as ANN with four hidden
neurons and the LLR with h f = 0.1 improve a lot in out-of-
sample when T becomes large. For example, when p = 100
and T = 500, the LLR with h f = 0.1 and ANN with four hidden
neurons have R2

OS s of 0.665 and 0.622, respectively, which are
the first and second highest while when p = 50 and T = 100
they have the worst R2

OS among ANNs and LLRs, respectively.
Especially, the LLR with h f = 0.1 seems to have an over-fitting
problem when p = 50 and T = 100 since its out-of-sample
performance is far behind its in-sample one. However, its in-
sample and out-of-sample performances are superior to all other
models when T = 500. This shows again that when we use
more complicated models, we must be able to rely on a large
amount of data to expect a proper performance.

All models, including the OLS, have positive R2
OS , which

means they have a better predictive power than the average of
the past target’s observations. This forecasting performance is
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Figure 3: Out-of-sample R2
OS over 100 replications. OLS(2) denotes the OLS including first two predictive indices φ̂′1̂ft and φ̂′2̂ft . OLS-factInter is the OLS with

three regressors, φ̂′1̂ft , φ̂′2̂ft and the interaction term, (φ̂′1̂ft) · (φ̂′2̂ft).

not surprising if we consider the fact that the dimension of the
predictors is reduced in a way that they somehow reflect their
target yt+1 by the sliced inverse regression. Although having
positive R2

OS , the OLS does not seem a good option for nonlin-
ear time series forecasting.

Secondly, we examine if the OLS can be improved by tak-
ing the interaction effect into account. Two OLS models are
generated, one is the OLS with two predictive indices and the
other includes not only the two predictive indices but also the
product of these two terms. The modified OLS is constructed
as follows:

yt+1 = β0 + β1 φ̂
′
1̂ft + β2 φ̂

′
2̂ft + β3 (φ̂′1̂ft) · (φ̂′2̂ft) + ηt+1,

where ηt+1 is set to be standard normal. In figure 3, you can see
that across different values of p the modified OLS performs bet-
ter than the previous one in out-of-sample forecasting. When
T = 100 both models have R2

OS approximately between 0.15
and 0.25, while the OLS with the interaction term keeps per-
forming slightly better. The difference between these two mod-
els becomes larger as T increases. When T = 500, the modified
OLS’s R2

OS s are around 0.5 but the previous models’ are around
0.2. OLS models can also perform well if they consider the
nonlinearity.

4. Empirical application to financial data

Besides simulation, we will see how well the newly devel-
oped forecasting method performs. Here we adopt the data set
from Stock and Watson (2012). The data set includes 185 quar-
terly observed macroeconomic variables from 1959 I to 2008
IV. The fact that it has a large number of variables, almost as
many as the observations, makes it appropriate for this paper,
which aims at forecasting with dimension reduction. This data
set has been adopted by a few papers such as Fan et al. (2017)
and a shortened version is used by Ludvigson and Ng (2009)
and Bai and Ng (2008).

The time series are made stationary by taking logarithms
and/or being differenced. If a variable includes negative values,
it is only differenced, otherwise the logarithmed variable is dif-
ferenced. Following the way in Fan et al. (2017), we treat each
of them as a forecast target yt, with all others forming the pre-
dictor set xt. The forecasting performance is examined by the
out-of-sample R2

OS proposed in 13. The learning rate of ANN
α is set to be 0.001 for the output neuron and 0.01 for the hid-
den neurons as before. Following the second school of thought
described in Kaastra and Boyd (1996), the ANNs are trained
for 200 iterations and we select the weights and thresholds that
have the lowest value of the error function. As before, we try
with LLRs with five different bandwidth fractions. We extract
seven factors from the predictors, which are found to explain
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Figure 4: Forecasting results for GDP264 (index for imports). The left panel shows the eigenvalues of Σ̂ f |y and the right panel gives a 3D plot of the regression
surface estimated by ANN(1, 2). The eigenvalue bar diagrams for the rest variables are given in figure D.5 in the appendix.

Table 1: Out-of-sample macroeconomic forecasting.

ANN(1, 2) ANN(1, 3) ANN(1, 4) LLR(0.5) LLR(0.4) LLR(0.3) LLR(0.2) LLR(0.1) OLS
GDP components GDP264 0.129 0.105 0.115 0.144* 0.144 0.141 0.127 0.053 0.143
IP IPS13 0.062 0.064 0.098* 0.072 0.072 0.071 0.062 0.014 0.068
Employment CES048 0.305 0.33 0.387* 0.302 0.302 0.304 0.31 0.331 0.301
Unemployment rate LHU680 0.151 0.154 0.164* 0.161 0.16 0.16 0.16 0.139 0.161
Housing HSSOU -0.012 -0.02 -0.005 0.008 0.012 0.022 0.044* 0.035 0
Inventories PMNO -0.104* -0.123 -0.118 -0.111 -0.11 -0.113 -0.136 -0.209 -0.12
Prices GDP275_3 -0.021 -0.025 -0.02 -0.012* -0.013 -0.014 -0.022 -0.081 -0.012
Wages LBMNU 0.372 0.354 0.354 0.412 0.414 0.418 0.428 0.432* 0.408
Interest rates FYFF 0.206 0.199 0.208* 0.174 0.175 0.178 0.186 0.205 0.172
Money CCINRV 0.086 0.153 0.156* 0.042 0.042 0.043 0.051 0.077 0.042
Exchange rates EXRCAN 0.023 0.02 0.003 0.03 0.031 0.034 0.042 0.065* 0.027
Stock prices FSDJ -0.046 -0.047 -0.049 -0.046 -0.047 -0.046 -0.037 -0.022* -0.044
Consumer expectations HHSNTN -0.121 -0.119 -0.125 -0.111 -0.11* -0.113 -0.136 -0.209 -0.12

Note: Out-of-sample R2
OS for one-quarter ahead forecasts. All models include the first two predictive indices φ̂′1̂ft, φ̂′2̂ft. The greatest numbers in

each row are asterisked.

more than 40 percent of the variation in the data according to
Bai and Ng (2013). The same approach is adopted by Fan et al.
(2017). We include two predictive indices here.

One can see the result of the application in table 1. ANN(1,
4) has the greatest R2

OS s in forecasting IP, employment, un-
employment rate, interest rates and CCINRV. The LLR with
h f = 0.1 is the best-performing model in forecasting wages,
exchange rates and stock prices. Since they have more param-
eters or a smaller bandwidth, they are more flexible than the
others. The two models have the best R2

OS s in predicting eight
variables out of thirteen. Thus, we can see that adopting mod-
els that reflect nonlinearity is recommended in financial fore-
casting. In certain variables, the OLS does show a performance
similar to these highly nonlinear models, e.g GDP components
and prices. However, except in stock prices, the R2

OS s of the
OLS are less than or equal to the R2

OS s of LLR(0.5), which has
the largest bandwidth.

5. Conclusion

In this paper, we have applied the factor model and the sliced
inverse regression to reduce the high-dimensional predictors,
and then predicted the target by nonlinear models such as the
ANN and LLR. Especially we have introduced the procedure
for building and training the neural networks when using the

factor model and SIR. The performance of the ANNs is com-
patible with the LLRs when nonlinearity exits between the ex-
tracted factors and the forecasting target, while the OLS is good
enough when the relation is simply linear. Our application
would be helpful for those who develop the real world forecast-
ing model and algorithm. The reduction of dimension is very
useful when using nonlinear models since chances are that the
curse of dimensionality and over-fitting problems happen with
high-dimensional data.

In the real-world forecasting, one would need to adopt the
cross-fold validation. The basic idea is that in the in-sample
data, we check the potential for generalization of the model in
forecasting. For the ANN, the data is split into a training, a
test and a validation set. The training set is used for estimating
weights and thresholds, and this trained ANN is evaluated with
the validation set. The final choice of the ANN is the one which
performs best in the test set. For the detailed procedure of the
ANN cross-validation customized for time series forecasting,
see Kaastra and Boyd (1996). For the LLR, AICc (Hurvich
et al., 1998) in section 3.1 can be applied as a selection crite-
rion of the bandwidth. Li and Racine (2004) show that AICc
tends to perform better than other cross-validation methods in
a limited sample. Although we tested multiple ANNs with dif-
ferent numbers of neurons and LLRs with different bandwidths,
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the complete cross-validation has not been done. This is left for
future research.
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AppendixA. Proof of theorem 1
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l=1

f̂(h,l)

][1
c

c∑
l=1

f̂(h,l)

]′
+

1
H

H∑
h=1

[1
c

c∑
l=1

f̂(h,l)

(1
c

c∑
l=1

û′(h,l)
)
Λ̂′b

+ Λ̂b

(1
c

c∑
l=1

û(h,l)

)1
c

c∑
l=1

f̂
′

(h,l) + Λ̂b

(1
c

c∑
l=1

û(h,l)

)(1
c

c∑
l=1

û′(h,l)
)
Λ̂′b

]
= Σ̂1

f |y + D̂(H, c),

(A.1)

where D̂(H, c) = Σ̂2
f |y −

1
H

∑H
h=1

[
1
c
∑c

l=1 f̂(h,l)

][
1
c
∑c

l=1 f̂(h,l)

]′
=

Σ̂2
f |y − Σ̂1

f |y. By the law of large numbers, as c→ ∞, 1
c
∑c

l=1 û(h,l)

converges to zero, which leads D̂(H, c) = 0. So, when c → ∞,
only Σ̂1

f |y remains in A.1. Therefore, Σ̂1
f |y = Σ̂2

f |y as c→ ∞.

AppendixB. Proof of the remark of theorem 1

This proof is given by Fan et al. (2017). It is sufficient to
show that F̂

′

t = Λ̂bX. By construction of the factor model es-
timation 3, we have X′XF̂ = F̂ where M = diag(λ1, . . . , λk)
and λk are the largest K eigenvalues of X′X. Then,

B̂
′
B̂ = (T−1XF̂)′(T−1XF̂) = T−2F̂

′
(X′X)F̂ =

= T−2F̂
′
F̂M = T−1M

Now, you can see that

(B̂
′
B̂)−1B̂

′
X = TM−1(T−1F̂

′
X′)X = M−1(X′XF)′ = F̂

′

Hence, F̂
′

t = Λ̂bX under model 3 and this leads Σ̂1
f |y = Σ̂2

f |y.
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AppendixC. Results of simulations

Table C.2: In-sample and out-of-sample performance of models in the linear case.
ANN(1, 2) ANN(1, 3) ANN(1, 4) LLR(0.5) LLR(0.4) LLR(0.3) LLR(0.2) LLR(0.1) OLS

p = 50 T = 100
R2 0.484 0.483 0.481 0.489 0.491 0.494 0.499 0.512 0.486
AIC -0.546 -0.484 -0.418 -0.65 -0.65 -0.649 -0.645 -0.629 -0.67
AICc 0.49 0.567 0.653 0.373 0.373 0.375 0.38 0.403 0.351
BIC -0.362 -0.221 -0.077 -0.59 -0.586 -0.577 -0.553 -0.478 -0.644
R2

OS 0.449 0.451 0.45 0.473 0.472 0.47 0.46 0.386 0.472
RMSE 0.748 0.747 0.747 0.731 0.732 0.733 0.74 0.785 0.731
MAE 0.601 0.601 0.601 0.59 0.59 0.59 0.595 0.614 0.59
MAPE 3.43 3.646 3.378 3.253 3.252 3.25 3.25 3.304 3.253
p = 50 T = 200
R2 0.475 0.472 0.468 0.492 0.493 0.494 0.496 0.504 0.491
AIC -0.585 -0.549 -0.512 -0.665 -0.665 -0.664 -0.661 -0.654 -0.676
AICc 0.428 0.468 0.509 0.346 0.346 0.347 0.35 0.359 0.335
BIC -0.47 -0.383 -0.297 -0.628 -0.625 -0.619 -0.604 -0.558 -0.659
R2

OS 0.452 0.452 0.457 0.482 0.481 0.48 0.477 0.457 0.482
RMSE 0.742 0.743 0.739 0.722 0.722 0.723 0.725 0.739 0.722
MAE 0.591 0.592 0.589 0.576 0.577 0.577 0.579 0.586 0.576
MAPE 3.427 3.586 3.71 3.161 3.169 3.184 3.216 3.35 3.145
p = 100 T = 100
R2 0.491 0.488 0.484 0.498 0.499 0.501 0.506 0.521 0.495
AIC -0.558 -0.491 -0.423 -0.666 -0.665 -0.663 -0.659 -0.644 -0.687
AICc 0.478 0.56 0.647 0.357 0.358 0.361 0.367 0.387 0.334
BIC -0.375 -0.229 -0.082 -0.606 -0.601 -0.591 -0.566 -0.494 -0.661
R2

OS 0.449 0.448 0.449 0.472 0.47 0.468 0.46 0.384 0.473
RMSE 0.739 0.739 0.738 0.723 0.724 0.726 0.731 0.779 0.722
MAE 0.591 0.593 0.59 0.58 0.581 0.582 0.586 0.607 0.58
MAPE 4.305 4.489 4.609 4.118 4.121 4.118 4.079 3.946 4.103
p = 100 T = 500
R2 0.475 0.475 0.471 0.493 0.493 0.494 0.494 0.498 0.492
AIC -0.621 -0.609 -0.59 -0.675 -0.675 -0.675 -0.674 -0.67 -0.679
AICc 0.384 0.396 0.415 0.329 0.329 0.329 0.33 0.334 0.325
BIC -0.562 -0.525 -0.481 -0.656 -0.655 -0.653 -0.646 -0.622 -0.671
R2

OS 0.462 0.464 0.46 0.488 0.488 0.488 0.487 0.482 0.488
RMSE 0.735 0.734 0.736 0.717 0.717 0.717 0.718 0.721 0.717
MAE 0.587 0.586 0.588 0.573 0.573 0.573 0.574 0.576 0.573
MAPE 3.961 3.708 3.932 3.659 3.661 3.665 3.672 3.669 3.654
p = 500 T = 100
R2 0.49 0.487 0.487 0.498 0.499 0.501 0.507 0.521 0.495
AIC -0.555 -0.487 -0.425 -0.664 -0.664 -0.662 -0.657 -0.642 -0.686
AICc 0.481 0.564 0.645 0.359 0.36 0.362 0.368 0.389 0.336
BIC -0.371 -0.225 -0.085 -0.604 -0.599 -0.589 -0.565 -0.492 -0.659
R2

OS 0.465 0.468 0.465 0.492 0.491 0.487 0.48 0.427 0.494
RMSE 0.736 0.734 0.736 0.717 0.718 0.72 0.725 0.76 0.715
MAE 0.589 0.59 0.59 0.575 0.576 0.578 0.581 0.598 0.574
MAPE 4.295 4.327 4.314 4.245 4.257 4.27 4.245 4.119 4.219
p = 500 T = 500
R2 0.488 0.486 0.486 0.503 0.504 0.504 0.505 0.508 0.503
AIC -0.646 -0.63 -0.619 -0.696 -0.696 -0.695 -0.694 -0.691 -0.7
AICc 0.358 0.375 0.387 0.308 0.309 0.309 0.31 0.314 0.304
BIC -0.587 -0.546 -0.509 -0.677 -0.676 -0.673 -0.667 -0.642 -0.691
R2

OS 0.472 0.47 0.47 0.498 0.497 0.497 0.496 0.49 0.498
RMSE 0.724 0.726 0.725 0.707 0.707 0.707 0.708 0.712 0.706
MAE 0.577 0.578 0.578 0.563 0.563 0.563 0.564 0.566 0.563
MAPE 2.966 3.088 3.123 2.839 2.84 2.842 2.848 2.861 2.837

Note: ANN(1, m) denotes the artificial neural network with one hidden layer and m hidden neurons. LLR(h f ) is the local linear regression with
bandwidth h f × maxDist and OLS is the ordinary least squares. All the models use one single predictive index φ̂′1̂ft. The evaluation criteria are
averaged over 100 replications.
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Table C.3: In-sample and Out-of-sample evaluation criteria in the nonlinear case with factor interaction.

ANN(1, 2) ANN(1, 3) ANN(1, 4) LLR(0.5) LLR(0.4) LLR(0.3) LLR(0.2) LLR(0.1) OLS
p = 50 T = 100
R2 0.428 0.447 0.444 0.326 0.347 0.383 0.441 0.536 0.278
AIC -0.458 -0.413 -0.333 -0.361 -0.392 -0.445 -0.528 -0.59 -0.315
AICc 0.588 0.658 0.773 0.664 0.634 0.582 0.505 0.482 0.708
BIC -0.222 -0.072 0.112 -0.271 -0.295 -0.333 -0.371 -0.244 -0.262
R2

OS 0.281 0.278 0.273 0.23 0.248 0.276 0.303 0.204 0.185
RMSE 0.85 0.851 0.853 0.888 0.876 0.857 0.835 0.883 0.916
MAE 0.629 0.632 0.634 0.657 0.649 0.635 0.618 0.641 0.678
MAPE 4.372 3.382 3.675 3.987 3.81 3.468 3.733 5.046 4.349
p = 50 T = 200
R2 0.467 0.484 0.487 0.31 0.338 0.385 0.461 0.554 0.249
AIC -0.591 -0.587 -0.556 -0.355 -0.396 -0.471 -0.603 -0.742 -0.28
AICc 0.425 0.434 0.473 0.656 0.615 0.541 0.41 0.281 0.731
BIC -0.442 -0.372 -0.274 -0.299 -0.336 -0.402 -0.509 -0.519 -0.247
R2

OS 0.391 0.396 0.41 0.269 0.298 0.344 0.41 0.429 0.203
RMSE 0.769 0.765 0.756 0.845 0.828 0.8 0.757 0.741 0.882
MAE 0.566 0.565 0.563 0.619 0.607 0.587 0.558 0.546 0.644
MAPE 2.909 3.124 3.135 3.302 3.208 3.055 2.837 2.875 3.496
p = 100 T = 100
R2 0.423 0.431 0.439 0.319 0.339 0.374 0.431 0.524 0.272
AIC -0.452 -0.383 -0.325 -0.353 -0.383 -0.434 -0.515 -0.572 -0.308
AICc 0.594 0.688 0.782 0.673 0.643 0.593 0.518 0.501 0.714
BIC -0.216 -0.042 0.121 -0.262 -0.285 -0.321 -0.358 -0.225 -0.256
R2

OS 0.266 0.273 0.271 0.224 0.245 0.276 0.305 0.189 0.172
RMSE 0.845 0.84 0.839 0.871 0.858 0.839 0.821 0.881 0.9
MAE 0.629 0.626 0.627 0.649 0.64 0.627 0.613 0.64 0.67
MAPE 2.928 2.853 2.999 2.843 2.803 2.745 2.718 3.091 2.941
p = 100 T = 500
R2 0.575 0.636 0.666 0.336 0.377 0.448 0.568 0.698 0.246
AIC -0.866 -1.005 -1.089 -0.404 -0.468 -0.591 -0.844 -1.204 -0.282
AICc 0.139 0.001 -0.082 0.6 0.536 0.413 0.16 -0.198 0.722
BIC -0.79 -0.895 -0.946 -0.376 -0.439 -0.558 -0.799 -1.093 -0.265
R2

OS 0.548 0.6 0.622 0.318 0.361 0.436 0.557 0.665 0.221
RMSE 0.669 0.629 0.61 0.828 0.801 0.752 0.665 0.574 0.884
MAE 0.497 0.473 0.463 0.6 0.583 0.552 0.496 0.437 0.637
MAPE 2.885 2.839 3.143 3.483 3.381 3.198 2.899 2.749 3.698
p = 500 T = 100
R2 0.428 0.438 0.442 0.317 0.34 0.377 0.436 0.531 0.267
AIC -0.449 -0.39 -0.317 -0.347 -0.378 -0.431 -0.514 -0.569 -0.3
AICc 0.597 0.681 0.79 0.679 0.648 0.597 0.519 0.504 0.723
BIC -0.213 -0.049 0.129 -0.256 -0.28 -0.318 -0.357 -0.222 -0.247
R2

OS 0.274 0.282 0.274 0.239 0.259 0.288 0.316 0.231 0.188
RMSE 0.859 0.853 0.857 0.884 0.872 0.853 0.832 0.877 0.914
MAE 0.626 0.625 0.63 0.645 0.636 0.622 0.607 0.634 0.667
MAPE 7.326 8.639 8.325 6.565 6.788 7.072 7.324 7.665 5.968
p = 500 T = 500
R2 0.578 0.646 0.677 0.335 0.376 0.448 0.572 0.708 0.245
AIC -0.878 -1.035 -1.123 -0.403 -0.468 -0.592 -0.853 -1.241 -0.28
AICc 0.127 -0.029 -0.116 0.601 0.536 0.412 0.152 -0.235 0.724
BIC -0.802 -0.925 -0.979 -0.375 -0.438 -0.559 -0.808 -1.13 -0.263
R2

OS 0.546 0.602 0.634 0.319 0.363 0.438 0.561 0.676 0.224
RMSE 0.671 0.627 0.601 0.828 0.801 0.752 0.663 0.564 0.885
MAE 0.494 0.47 0.455 0.596 0.579 0.548 0.491 0.429 0.632
MAPE 3.988 3.679 4.773 3.939 3.819 3.606 3.294 3.402 4.198

Note: All models include the first two predictive indices φ̂′1̂ft, φ̂′2̂ft. The evaluation criteria are averaged over 100 replications.
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AppendixD. Eigenvalues of the empirical data of Stock and Watson (2012)

Figure D.5: The eigenvalues of Σ̂ f |y of each macroeconomic variables.
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