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Abstract

This paper examines the Geometric-VaR test of Pelletier and Wei (2016) as a framework
for backtesting Value-at-Risk (VaR) estimates. This study confirms that the test pro-
vides good power properties against various forms of misspecification of VaR estimates,
although slightly lower power is reported for smaller sample sizes compared to earlier
research. The Geometric-VaR test is subsequently employed to investigate the HEAVY
model of Shephard and Sheppard (2010) – an adaption of a standard GARCH model
that incorporates realised measures – in the context of VaR estimation. Additionally, an
asymmetric extension of the HEAVY model is introduced. 19 different models are tested
using data of 21 equity indices over the period 2000-2017. A semi-parametric approach us-
ing Filtered Historical Simulation is found to provide better results than fully-parametric
approaches. Additionally, this paper finds no evidence that the HEAVY models provide
better VaR estimates than their GARCH counterparts over the entire sample period in-
vestigated. Notably, the HEAVY models perform significantly better during the global
financial crisis of 2008, thus suggesting that they can be a valuable addition to a risk
manager’s toolkit during volatile periods.



1 Introduction

“Indeed, better risk management may be the only truly necessary element of

success in banking.”
— Alan Greenspan, 5 October 2004

Since its introduction in the early 1990s and its consequent adoption in the Basel II accord,

Value-at-Risk (VaR) has been the de facto industry standard for risk reporting in the financial

sector (Jorion et al., 2007). Although its interpretation is clear-cut – daily VaR at coverage level

𝑝 is defined such that the probability of one day’s loss exceeding VaR equals 𝑝 – the calculation of

VaR brings several challenges with it and can be performed in various ways. Indeed, current bank

regulations only provide rough guidelines on how VaR calculations should be implemented rather

than a unified framework that should be adopted. However, current rulings prescribe the amount of

capital banks are required to hold based on the daily reported VaR levels. As VaR estimates – and

hence capital requirements – differ across estimation methods, model selection remains a relevant

topic from a financial institution’s perspective. In addition, backtesting the employed models is

relevant for financial practitioners as well as regulators in order to verify whether risks are reported

correctly.

The aim of this paper is twofold: (1) to examine the Geometric-VaR test of Pelletier and

Wei (2016) as a framework for backtesting VaR estimates; (2) to establish whether utilising high-

frequency return data by means of the HEAVY specification of Shephard and Sheppard (2010) can

improve VaR estimation.

VaR backtests are statistical tests devised to reject VaR models that are unable to provide

forecasts that satisfy certain conditions, such as correct unconditional coverage or serial indepen-

dence.1 Recently, Pelletier and Wei (2016), henceforth ‘PW16’, have added to the literature of

VaR backtesting by devising a duration-based test that combines the ideas of the Geometric test

of Berkowitz et al. (2011) and the CaViaR test of Engle and Manganelli (2004). The authors per-

form a series of simulation studies and claim increased power of their test compared to competing

methods. Because of its recent publication, the Geometric-VaR test has not yet been applied in

other research. Hence, this paper verifies the results obtained by PW16 and provides additional

benchmarking before using it as a tool to discriminate between competing VaR estimation models
1Relevant conditions are defined in detail in further sections.
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using a large set of equity indices. The results obtained in this research are similar to PW16, both

quantitatively and qualitatively; indeed, it is found that the Geometric-VaR test provides increased

power over competing backtesting procedures in general. However, this paper especially establishes

the merits of the test in case of large sample sizes. For smaller sample sizes, the Geometric-VaR

test does not always outperform; a fact remarked in PW16 but observed to a larger extent in the

simulations of this research. This effect is especially apparent in case of negative leverage effects

and low volatility persistence. However, it is evident that the Geometric-VaR test provides an

integrated testing framework that is able to reliably detect various forms of VaR misspecification.

Hence, this paper adopts the Geometric-VaR test as the approach to discriminate between specific

VaR estimation models.

Clearly, the modelling of Value-at-Risk and thus volatility has been a major topic of interest

amongst econometricians. Although volatility itself is not directly observable and hence no ‘true’

model for asset volatility has yet been established, the family of generalized autoregressive condi-

tional heteroscedasticity (GARCH) models introduced by Bollerslev (1986) is widely considered as

the leading specification in current academic practice. Still, in modelling the conditional variance

process, GARCH models rely only on daily return information. The increased availability of finan-

cial intra-day data has however facilitated the advent of a new class of estimators, so-called ‘realised

measures’ that gauge daily volatility using intra-day data leading to less noisy estimates of market

volatility. As these measures provide more accurate estimates of volatility, it is hypothesised that

they can improve conditional volatility modelling and thus VaR estimation. Although various at-

tempts have been made to incorporate realised measures into conditional heteroscedasticity models,

few do so in a direct fashion. Shephard and Sheppard (2010) however introduce the high frequency-

based volatility (HEAVY) model, an adaption of the standard GARCH(1,1) model that directly

incorporates realised measures into the conditional variance specification. Since the original paper

demonstrates advantages of such a model in a general context, this research tests whether HEAVY

models have any merit in the context of VaR estimation. Additionally, this paper contributes by

generalising the concept of HEAVY to an asymmetric specification to allow for nonlinearities that

are often observed in real-world asset returns.

The HEAVY models are investigated in a fully-parametric setting by varying distributional

assumptions and a semi-parametric setting by means of Filtered Historical Simulation (FHS). As

realised measures, both ‘realised kernel’ and ‘realised variance’ are examined. Various benchmark

2



models such as Historical Simulation and GARCH specifications are employed to verify whether

indeed the addition of realised measures leads to better VaR estimates. Notably, the application

of Filtered Historical Simulation seems to improve VaR estimates considerably compared to the

fully-parametric approach for all specifications. However, no outperformance is observed for the

HEAVY models compared to their GARCH counterparts over the entire period investigated. Over-

all, the GJR-GARCH model combined with FHS appears to perform best amongst all investigated

specifications for the entire sample. Additionally, the HEAVY models do exhibit outperformance

during the period of the global financial crisis.

The remainder of this paper is structured as follows: section 2 provides an overview of the

existing body of literature on the topic. Section 3 discusses the methods employed to estimate

VaR, while section 4 provides technical details on the Geometric-VaR test. Section 5 presents an

overview of the data used in this research. Section 6 re-examines the Geometric-VaR test and

its properties by means of simulation. Section 7 examines the performance of the HEAVY model

using the Geometric-VaR test. Section 8 summarises and concludes. Lastly, section 9 provides a

discussion and avenues for further research.

2 Literature

2.1 VaR Estimation

Because of the prominence of VaR as a risk management tool in the global financial system, a

plethora of literature has been devoted to its estimation. In particular, the adoption of VaR as the

standard for risk reporting in the Basel II accord has spurred academic research in the field. Clearly,

one of the easiest and most widely applied methods to estimate Value-at-Risk is the non-parametric

approach called Historical Simulation (HS) (Pérignon and Smith, 2010; Escanciano and Pei, 2012).

The Historical Simulation method does not rely on any distributional assumptions with regards to

the returns and estimates VaR by taking the appropriate percentile of the past 𝑁 returns. Despite

its easiness of use, the Historical Simulation method has several evident drawbacks. For instance, it

does not take the predictability of volatility into consideration and the time-varying characteristics

of volatility are only reflected by the shift in the rolling window. In addition, Pritsker (2006)

demonstrates that Historical Simulation is severely under-responsive to changes in conditional risk.

More sophisticated approaches that attempt to account for the time-varying nature of volatility

can be traced back to the influential work on autoregressive conditional heteroscedasticity (ARCH)
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models by Engle (1982) and the subsequent GARCH generalisation by Bollerslev (1986). Both

models account for time-varying volatility by modelling the conditional variance of the return process

explicitly (as an AR or ARMA process respectively). Although other specifications have been

developed, the GARCH model family is clearly established as the workhorse method to measure,

model and forecast volatility in financial econometrics.

However, when looking at Value-at-Risk in a daily setting, GARCH models are designed such

that their information set is based on returns at a daily level. This is problematic as a single return

only provides a limited and noisy signal about the level of current volatility. This causes standard

GARCH models to be ill-equipped in situations where rapid changes in volatility level might occur.

Andersen et al. (2003) discuss that the standard GARCH model is slow in responding to sudden

changes in volatility and takes many periods for its conditional variance to reach its desired level.

Recently, the increased availability of high-frequency return data and advancements in compu-

tational capabilities has led to a class of estimators of daily volatility based on intra-day prices

called ‘realised measures’ which aim to provide improved signals of current levels of volatility. One

of the earliest and most prominent examples of such realised measures was developed by Ander-

sen et al. (2001b) which they name ‘realised volatility’. Although the computation of the realised

volatility is fairly straightforward (it averages intra-day squared returns at specified intervals), the

authors and the concurrent research of Barndorff-Nielsen and Shephard (2002) show that under

certain regularity conditions it is an unbiased and efficient estimator of return volatility. However,

as pointed out by Hansen and Lunde (2006), high-frequency data often exhibits microstructure

noise, which might cause the regularity conditions of the realised variance estimator to be violated.

Hence, competing realised measures have been constructed in order to mitigate these issues, such

as the ‘realised kernel’ approach of Barndorff-Nielsen et al. (2008). Alternatives are provided by the

multiscale estimators of Zhang et al. (2005) and the pre-averaging method of Jacod et al. (2009).

Although attempts have been made to utilise high-frequency information to forecast volatility,

most approaches have focused on fitting a standard time-series model on a sequence of daily squared

returns, using realised measures as regressors (Andersen et al., 2001a,b, 2003, 2007). Also, estima-

tion of GARCH models that additionally include information of realised measures (GARCH-X) has

been attempted (see for instance Engle (2002) and Forsberg and Bollerslev (2002)).

In Shephard and Sheppard (2010), a parsimonious but novel approach to utilising high-frequency

information is introduced by directly augmenting the original GARCH(1,1) model of Bollerslev

4



(1986) with realised measures. Specifically, the authors devise the HEAVY model, an abbreviation

for ‘High-frEquency-bAsed VolatilitY models’, in which they replace the ARCH term, 𝜖2, of a

standard GARCH(1,1) model by its realised measure counterpart. According to the authors, the

HEAVY model is characterised by attractive momentum and mean reversion effects, as well as its

ability to quickly adjust to structural breaks in the level of the volatility process, hence making it

particularly interesting to investigate in the context of volatility and thus VaR modelling.

The above GARCH and HEAVY models can be used in a fully-parametric setting to forecast

Value-at-Risk. However, models based on theoretical distributions often do not optimally reflect the

empirical characteristics of asset returns, for instance, because of their inability to exhibit fat tails or

volatility clustering (Nieto and Ruiz, 2016). In addition, as discussed, non-parametric methods such

as Historical Simulation have shown to be poor estimates of VaR. An interesting semi-parametric

method is provided by both Barone-Adesi et al. (1997) and Hull and White (1998) and is called

Filtered Historical Simulation. The method uses explicit model estimates of the conditional variance

to scale historical returns and thereby creates a normalised empirical distribution of asset returns

that retains the distributional characteristics of the investigated asset. Subsequently, it uses the

point forecast of the conditional volatility to ‘scale up’ the relevant percentile of the normalised

empirical distribution to a VaR estimate.

Recent reviews of VaR estimation methodologies, such as Abad et al. (2014), have hinted at

the potential of both realised measure based models, such as HEAVY, as well as Filtered Historical

Simulation separately. Consequently, this paper adds to the existing body of knowledge by investi-

gating the combination of the HEAVY model specification with the method of Filtered Historical

Simulation in the context of estimating VaR − a variant that has not been rigorously investigated

before to the knowledge of the author. In addition, a ‘GJR inspired’ asymmetric extension of

HEAVY is introduced and investigated.

2.2 VaR Backtesting

Along with the proliferation of papers on VaR estimation methods in financial econometrics,

backtesting VaR estimates has been an area of considerable attention. To ensure financial institu-

tions are adequately capitalised in case of crises or other unexpected market events, validation of

risk model estimates is crucial. This section provides an overview of the developments of literature

on backtesting procedures, starting with tests based on the so-called ‘violation’ or ‘hit’ sequence.

It is convenient to define a ‘violation’ or ‘hit’ as an event where a loss is observed that is greater
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than the VaR estimate for that day. In particular, let us for the moment abuse notation2 and define

𝐼𝑞
𝑡 = 1(𝑟𝑡 < −VaR𝑡(𝑞)), 𝑡 = 1 … 𝑇 with 1(⋅) being the indicator function, 𝑟𝑡 a daily return and 𝑞

the VaR coverage level (i.e. 0.05 or 0.01). This paper follows convention by presenting VaR as a

positive number. Engle and Manganelli (2004) argue that ‘good’ VaR forecasts should satisfy the

following properties: (1) correct unconditional coverage should be provided; (2) violations should

be independent; (3) violations should be uncorrelated with any information up to and including

𝑡 − 1. Condition (1) can be expressed as 𝔼[𝐼𝑞
𝑡 ] = 𝑞. One of the first measures constructed to test

VaR estimates was devised by Kupiec (1995) and is often referred to as the unconditional coverage

test or simply the Kupiec test. Kupiec demonstrates that, if one assumes a constant probability

of a violation occurring, the number of hits ∑𝑁 𝐼𝑞
𝑡 follows a simple binomial distribution. Hence,

the null hypothesis can be tested easily by means of likelihood ratio. However, this test evidently

ignores property (2) and as a consequence VaR estimates that pass the test of Kupiec can exhibit

violation clustering over time. As stressed by Lopez (1999), this is clearly not a desired situation –

any VaR estimate that does not correct for information of increased hit probability in a subsequent

period is by definition suboptimal. Additionally, Escanciano and Pei (2012) demonstrate that the

test of Kupiec is always inconsistent in case of forecasts obtained using Historical Simulation.

Christoffersen (1998) in turn developed the conditional coverage test (CC) which tests 𝐻0 ∶

𝔼[𝐼𝑞
𝑡 |𝐼𝑞

𝑡−1] = 𝑞 and hence assesses property (1) and (2) simultaneously. Implementation of the test

is done by means of likelihood ratio, of which the statistic is obtained by addition of two separate

LR statistics; the unconditional (Kupiec) test statistic and the independence statistic, the latter

of which is computed based on testing if 𝐼𝑞
𝑡 are i.i.d. Bern(𝑞) distributed against the alternative

of first-order Markov dependence. Importantly, Christoffersen (1998) only incorporates first-order

autocorrelation of the hit sequence in its test. Christoffersen and Pelletier (2004) consequently

show that the test is not suitable in a variety of regular settings and exhibits poor finite sample

behaviour. Notwithstanding these shortcomings, Candelon et al. (2010) report it is still one of the

most frequently used backtests in practice.

The aforementioned tests are both conducted by converting return information and the VaR

estimates into a single binary hit sequence. In addition, the test of Kupiec only uses the number

of violations as input, while the CC test of Christoffersen is limited by incorporating only infor-
2Technically, VaR is defined as the loss expressed in absolute dollar terms, rather than as a return. However,
throughout this paper the convention of expressing VaR as an absolute return is adopted because of notational
convenience.
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mation regarding the first order autocorrelation of the binary hit sequence and thus ignores more

general forms of violation dependence. Clearly, potential power is lost by such simplifications. Con-

sequently, Christoffersen and Pelletier (2004) provide an alternative by devising a test that looks

at the duration between violations. The intuition of such duration-based tests is that clustering

of violations generates a large number of both relatively short and relatively long periods without

violations. Let us define a no-hit duration variable 𝐷𝑖 as 𝑡𝑖 − 𝑡𝑖−1, the difference in time between

two consecutive hits. Christoffersen and Pelletier (2004) postulate that under the null hypothesis

of correct VaR specification, the no-hit durations should have no memory and a mean duration of

1/𝑞 observations. Hence, the durations under the null hypothesis are modelled as exponentially

distributed, with the alternative hypothesis being a (continuous) Weibull specification. The test

is then carried out by means of likelihood ratio but the authors mention that the small sample

sizes that are often observed in practice as well as testing on the boundary of the parameter space

warrant caution when using the asymptotic chi-squared critical values. Hence, they propose the

application of the Monte Carlo method of Dufour (2006) in order to control test sizing under these

conditions. Haas (2006) further examines the duration-based test of Christoffersen and Pelletier

(2004) and notes the peculiarity of testing durations, discrete by nature, by means of continuous

distributions. Consequently, Haas (2006) replaces the exponential distribution by the geometric

distribution and applies the discretized Weibull variant of Nakagawa and Osaki (1975) as a replace-

ment for the distribution under the alternative hypothesis. In all cases, an improvement in testing

power is observed for the discretized version compared to the original continuous specification of

Christoffersen and Pelletier (2004).

Note that all tests considered so far at maximum take into account (1) correct unconditional

coverage and (2) violation independence. As mentioned, Engle and Manganelli (2004) contemplate

that this is a necessary, but not a sufficient condition. Indeed, let us entertain the following thought

experiment: generate a sequence of i.i.d. drawings {𝑥𝑡}𝑇
𝑡=1 with 𝑥𝑡 = 𝐾 with probability 𝑞 and

𝑥𝑡 = −𝐾 with probability (1 − 𝑞) that serves as our VaR series. Setting 𝐾 sufficiently large

generates an adequate risk model for any real-world return sequence under requirements (1) and

(2). The moment 𝑥𝑡 is generated, the probability of a violation is known beforehand to be close to

0 or 1. Hence, Engle and Manganelli (2004) claim that adequate VaR forecasts should additionally

satisfy a third property: violations should be uncorrelated with any information up to and including

𝑡 − 1. They develop the regression-based ‘dynamic quantile’ (DQ) test, which is able to assess a

wide range of violation dependence on past information. Berkowitz et al. (2011) implement the
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DQ test in parsimonious form by using the one-period lagged VaR estimates and the lagged hit

variable as regressors and assuming a logit distribution for the error terms. This specific form of

the DQ test is referred to by the authors as the ‘CaViaR’ test. Berkowitz et al. (2011) also expand

on previous duration-based testing literature by acknowledging that they can model durations as

geometric variables, but with varying rather than constant probabilities to test the alternative

hypothesis. The test is referred to as the ‘Geometric test’ and has the benefit of not having to

resort to continuous distributions as in their previous works (Christoffersen and Pelletier (2004)).

They compare their new Geometric test specification with the CaViaR test and find that the CaViaR

test works best overall, but their duration-based test also performs well in many cases. Clearly, the

Geometric test solves previous issues such as the discreteness/continuous mismatch. However, it

still only tests requirement (1) and (2) indicated by Engle and Manganelli (2004).

Most recently, Pelletier and Wei (2016) have extended the existing duration-based testing liter-

ature by providing a combination of their Geometric test and the so-called ‘VaR test’ (an adaption

inspired by the CaViaR test) which they appropriately call the ‘Geometric-VaR test’. By incorpo-

rating the estimated Value-at-Risk of the relevant observation in the hazard function, they are able

to test all three requirements of Engle and Manganelli (2004) simultaneously. The authors find that

their Geometric-VaR test provides better power than other duration-based tests and regression-

based tests such as the CaViaR test, and has power against various forms of misspecifications.

This paper recognises the potential of the Geometric-VaR test, but also notes that because of

its recent introduction its application has thus far been limited to PW16. Hence, this research adds

to the existing body of literature by implementing the test of PW16 independently of the authors

and re-evaluating its merits. Specifically, its performance compared to other more established VaR

backtesting procedures is examined. In addition, whereas other papers on VaR forecasting methods

often use low-power tests such as those of Kupiec (1995) and Christoffersen (1998) to compare and

contrast models, this paper uses the more powerful Geometric-VaR test to differentiate between

competing model specifications.

3 Methodology for VaR Forecasting
To test the merit of realised measures in estimating VaR, this paper investigates several specifica-

tions, along with a number of benchmark models. An overview is provided in Table 1. In particular,

the HEAVY model class of Shephard and Sheppard (2010) is tested against Historical Simulation
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Table 1: Investigated models

Non-Parametric Normal Student’s t Filtered Historical Simulation

Historical Simulation HS

HEAVY RV-based HNv HTv HFv
HEAVY RK-based HNk HTk HFk

GJR-HEAVY RV-based gHNv gHTv gHFv
GJR-HEAVY RK-based gHNk gHTk gHFk

GARCH(1,1) GN GT GF

GJR-GARCH gGN gGT gGF

Note. This table provides an overview of all model combinations investigated in the paper including acronyms. ‘RV’
denotes Realised Variance, ‘RK’ denotes Realised Kernel.

(HS), because of its prevalence amongst industry practitioners3, and the workhorse GARCH(1,1)

and GJR-GARCH models. HS computes VaR directly, whereas HEAVY and GARCH estimate

the conditional variance of returns. Consequently, for HEAVY and GARCH, a translation from

conditional variance to VaR is needed. This paper employs both a fully-parametric approach us-

ing Normal and Student’s t distributions and a semi-parametric approach using Filtered Historical

Simulation. This section describes the implementation of all forecasting methods investigated.

3.1 Preliminaries

Let us denote daily financial asset returns as 𝑟1, 𝑟2, … , 𝑟𝑇 and ℱ𝐿𝐹
𝑡−1 as the information set

containing all available daily return information up to and excluding time 𝑡, which we call the

‘low-frequency’ dataset. In addition, define the conditional variance 𝜎2
𝑡 ≡ 𝕍(𝑟𝑡|ℱ𝐿𝐹

𝑡−1). Next, let

𝑋𝑡𝑗,𝑡
be the log-price of an asset with 𝑡𝑗,𝑡 being the times of trades on day 𝑡. Consequently, define

𝑥𝑗,𝑡 = 𝑋𝑡𝑗,𝑡
− 𝑋𝑡𝑗−1,𝑡

such that {𝑥𝑗,𝑡}𝑁
𝑗=2 is a collection of intra-day ‘returns’. We then call ℱ𝐻𝐹

𝑡−1

the ‘high-frequency’ dataset, which includes all intra-day returns 𝑥𝑗,𝑖 and daily returns 𝑟𝑖 up to and

excluding time 𝑡. Analogously, define ℎ𝑡 ≡ 𝕍(𝑟𝑡|ℱ𝐻𝐹
𝑡−1).

Following similar literature, define VaR with coverage rate 𝑞 as the 𝑞-th quantile of the condi-

tional distribution of 𝑟𝑡+1:

VaR𝑡+1(𝑞) ≡ −𝐹 −1
𝑡+1(𝑞) (1)

with 𝐹𝑡+1 denoting the conditional distribution of 𝑟𝑡+1.
3In a survey, Pérignon and Smith (2010) find that 73% of the banks that disclosed their VaR forecast method used
Historical Simulation.
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3.2 Historical Simulation

Using the Historical Simulation method, VaR estimates are computed directly as an empirical

estimate of 𝐹𝑡+1 over a specified time window:

VaRHS
𝑡+1(𝑞) = −percentile({𝑟𝑠}𝑡

𝑠=𝑡−𝑇𝑒+1, 100 × 𝑞) (2)

with 𝑇𝑒 being the size of the rolling window used to approximate the conditional distribution of the

returns.

3.3 (Semi-)Parametric Models
3.3.1 GARCH(1,1)

As a useful benchmark, the family of GARCH models is employed to estimate the conditional

variance of asset returns. Specifically, let us use the standard GARCH(1,1) model as introduced in

the seminal paper by Bollerslev (1986):

𝑟𝑡 = 𝜖𝑡 (3)

𝜖𝑡|ℱ𝐿𝐹
𝑡−1 ∼ 𝒩(0, 𝜎2

𝑡 ) (4)

𝜎2
𝑡 = 𝜔 + 𝛼𝜖2

𝑡−1 + 𝛽𝜎2
𝑡−1 (5)

with the parameter restrictions 𝜔 ≥ 0, 𝛼 ≥ 0, 𝛽 ∈ [0, 1) to ensure positive variance and stability.

As financial asset returns often exhibit fat-tails, this paper also employs a 𝑡-GARCH(1,1) model in

which the distribution of the innovation is given by a Student’s 𝑡 distribution such that 𝜖𝑡|ℱ𝐿𝐹
𝑡−1 ∼

𝑡(𝜈, 𝜎2
𝑡 ), which denotes a distribution with 𝜈 degrees of freedom and a (scaled) variance of 𝜎2

𝑡 .

3.3.2 GJR-GARCH

To allow for an asymmetric leverage effect often found in asset returns (Cont, 2001), let us also

examine the specification of Glosten et al. (1993):

𝜎2
𝑡 = 𝜔 + 𝛼𝜖2

𝑡−1 + 𝛾𝜖2
𝑡−1𝐼𝑡−1 + 𝛽𝜎2

𝑡−1 (6)

in which 𝐼𝑡−1 = 0 if 𝜖𝑡−1 ≥ 0, and 𝐼𝑡−1 = 1 if 𝜖𝑡−1 < 0. Again, both 𝜖𝑡|ℱ𝐿𝐹
𝑡−1 ∼ 𝒩(0, 𝜎2

𝑡 ) and

𝜖𝑡|ℱ𝐿𝐹
𝑡−1 ∼ 𝑡(𝜈, 𝜎2

𝑡 ) are employed. In addition, the following restrictions are imposed: 𝜔 ≥ 0, 𝛼 ≥

0, 𝛽 ≥ 0, 𝛾 + 𝛼 > 0 and 𝛼 + 1
2𝛾 + 𝛽 < 1 to ensure positive variance and stability.

3.3.3 Models Based on Realised Measures

Although the GARCH approach to volatility modelling has been widely adopted, it is limited by

the fact that it uses daily data and can hence be slow to adapt because the squared returns provide
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noisy estimates of volatility. The HEAVY model of Shephard and Sheppard (2010) attempts to

improve volatility forecasting by providing a parsimonious functional form to model the conditional

variance that includes high-frequency intra-day data (ℱ𝐻𝐹
𝑡 ). Let us start by defining the ‘realised

measure’ RM𝑡 as an intra-day based estimate of volatility that will be employed in the modelling

of conditional daily asset volatility. One of the most commonly utilised versions of the realised

measure is the ‘realised variance’, which is simply computed as

RMRV
𝑡 = ∑ 𝑥2

𝑗,𝑡 (7)

However, high-frequency data often exhibits microstructure noise (Hansen and Lunde, 2006), which

might cause consistency problems in case of the simple realised variance estimator. To counteract

this, this paper replaces the tick-by-tick returns 𝑥𝑗,𝑡 in (7) by intra-day 5-minute returns to compute

the realised variance. Additionally, the statistic is sub-sampled every 30 seconds. That is, without

loss of generality, let 𝑠1 = 0 be the starting time in seconds of the estimation sample for the first

realised variance measure RMRV,1. The set of intra-day 5-minute returns for this measure are then

calculated by the log difference of the last tick prices at times 𝑔1,𝑤 and 𝑔1,𝑤−1 in seconds with

𝑔1,𝑤 = 𝑠1 +(5 ⋅60)𝑤 and 𝑤 = 1, … , 𝑀 with 𝑀 being the number of minutes in a trading day divided

by 5. Now, define 10 of such measures: RMRV,𝑖, 𝑖 ∈ {1, … , 10} and set 𝑠𝑖 = 30(𝑖 − 1) such that

the measures are spaced 30 seconds apart. Now calculate the subsampled version of the realised

variance as RMRV = 1
10 ∑10

𝑖=1 RMRV,i.

In addition to the realised variance, a more sophisticated approach is the ‘realised kernel’ esti-

mator suggested by Barndorff-Nielsen et al. (2008) and further specified for practical purposes in

Barndorff-Nielsen et al. (2009). Instead of subsampling, the realised kernel approach mitigates con-

sistency issues due to microstructure noise by means of a kernel weighting function. The estimator

is specified as follows:

RMRK
𝑡 =

𝐻
∑

ℎ=−𝐻
𝑘(ℎ/(𝐻 + 1))𝛾ℎ, 𝛾ℎ =

𝑛
∑

𝑗=|ℎ|+1
𝑥𝑗,𝑡𝑥𝑗−|ℎ|,𝑡 (8)

where 𝑘(𝑢) is a kernel weighting function, 𝐻 is the bandwidth4 and 𝛾ℎ is the ℎ-th realized autoco-
4In the computation of the realised kernel the exact approach of Barndorff-Nielsen et al. (2009) is employed in setting
the appropriate values for 𝐻 and the reader is referred to said paper for further details.
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variance. Let the kernel weights be specified by the Parzen function:

𝑘(𝑢) =

⎧
{{
⎨
{{
⎩

1 − 6𝑢2 + 6𝑢3, 0 ≤ 𝑢 ≤ 1/2

2(1 − 𝑢)3, 1/2 < 𝑢 ≤ 1

0, 𝑢 > 1

(9)

which benefits from various desirable properties over competing kernel weighting specifications in

the setting of computing realised measures, such as non-negativity (Barndorff-Nielsen et al., 2009).

3.3.4 Standard HEAVY

Having defined the realised measures allows the specification of the ‘standard’ HEAVY model

introduced by Shephard and Sheppard (2010) as follows:

ℎ𝑡 = 𝜔 + 𝛼RM𝑡−1 + 𝛽ℎ𝑡−1 (10)

with the restrictions 𝜔 ≥ 0, 𝛼 ≥ 0 and 𝛽 ∈ [0, 1), again for positive variance and stability. Observe

that this specification is closely related to the GARCH(1,1) model, but 𝜖2
𝑡−1 being replaced with

the realised measure RM𝑡−1. Note that in this original specification, the model does not make

any explicit assumptions with regards to the exact distribution of the return process and hence

the normal-based maximum likelihood can be treated as a ‘quasi’ maximum likelihood estimator.

However, the Student’s 𝑡-distribution is also investigated as an alternative in this study.

3.3.5 GJR-HEAVY

Analog to the GJR-GARCH model, this paper introduces the ‘GRJ-HEAVY’ specification. It

is closely related to its GARCH counterpart in terms of its ability to capture asymmetric leverage

effects. However, as in the standard HEAVY model, our daily return information is replaced by

realised measures. The model is formalised as follows:

ℎ𝑡 = 𝜔 + 𝛼RM𝑡−1 + 𝛾RM𝑡−1𝐼𝑡−1 + 𝛽ℎ𝑡−1 (11)

in which 𝐼𝑡−1 = 0 if 𝑟𝑡−1 ≥ 0, and 𝐼𝑡−1 = 1 if 𝑟𝑡−1 < 0. Additionally, let us impose restrictions

similar to the GJR-GARCH specification: 𝜔 ≥ 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝛾 + 𝛼 > 0 and 𝛼 + 1
2𝛾 + 𝛽 < 1.

3.3.6 Parameter and Conditional Variance Estimation

Parameter estimation for both the GARCH and HEAVY models is carried out by means of

common (quasi) maximum likelihood procedures. In case of the GARCH models the following
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log-likelihood function is utilised:

𝑙𝑜𝑔 𝑄𝒩(𝜓) = −𝑇
2

𝑙𝑜𝑔(2𝜋) − 1
2

𝑇
∑
𝑡=1

(𝑙𝑜𝑔 𝜎2
𝑡 + 𝑟2

𝑡 /𝜎2
𝑡 ) (12)

for the normal error distributions and

𝑙𝑜𝑔 𝑄𝑡(𝜓, 𝜈) = 𝑇 𝑙𝑜𝑔 [
Γ(𝑣+1

2 )
√𝜋(𝜈 − 2)Γ(𝜈

2)
] − 1

2

𝑇
∑
𝑡=1

𝑙𝑜𝑔 𝜎2
𝑡 − (𝜈 + 1

2
)

𝑇
∑
𝑡=1

𝑙𝑜𝑔 [1 + 𝑟2
𝑡

𝜎2
𝑡 (𝜈 − 2)

] (13)

for the 𝑡-distributed cases, letting 𝜓 = (𝜔, 𝛼, 𝛽) for the symmetric specification and 𝜓 = (𝜔, 𝛼, 𝛾, 𝛽)

for GJR specification. Due to the similarities in model structure, it is also possible to employ (12)

and (13) to estimate the parameters of the standard HEAVY and GJR-HEAVY specifications by

replacing 𝜎2 with ℎ𝑡. In all instances, this paper sets either 𝜎2
1 or ℎ1 to be 𝑇 −1/2 ∑⌊𝑇 ⌋1/2

𝑡=1 𝑟2
𝑡 .

For all models, estimation is done on a rolling window basis of size 𝑇𝑒 ∈ {250, 1000, 1500}

(corresponding to 1, 4 and 6 years of data respectively) and hence one-day ahead forecasts of 𝜎̂2
𝑡+1

and ℎ̂𝑡+1 are easily computed with (5), (6), (10) and (11) using the estimated parameters 𝜓 in the

normal cases or 𝜓 and ̂𝜈 for the 𝑡-distributed cases.

3.3.7 VaR Estimation

Having estimated the conditional variance, there are two methods to compute the Value-at-

Risk: the fully-parametric approach and the semi-parametric approach utilising Filtered Historical

Simulation. The first method is carried out as follows: having obtained the estimated conditional

variance series, the VaR estimates for 𝑡 = (𝑇𝑒 +1), … , 𝑇 in case of normally distributed errors follow

almost trivially using

VaRLF
𝑡+1(𝑞) = −𝑧𝑞 ⋅ 𝜎̂𝑡+1 and VaRHF

𝑡+1(𝑞) = −𝑧𝑞√ℎ̂𝑡+1 (14)

with 𝑧𝑞 being the critical value of the Normal distribution at the appropriate level 𝑞. This paper

employs 𝑞 = 0.01 and 0.05 as is usual in similar literature. For the models using a 𝑡-distribution,

compute

VaRLF
𝑡+1(𝑞) = −𝜎̂𝑡+1 (

̂𝜈𝑡+1 − 2
̂𝜈𝑡+1

)
1
2

𝜏𝑞, ̂𝜈𝑡+1
and VaRHF

𝑡+1(𝑞) = −√ℎ̂𝑡+1 (
̂𝜈𝑡+1 − 2

̂𝜈𝑡+1
)

1
2

𝜏𝑞, ̂𝜈𝑡+1
(15)

with 𝜏𝑞, ̂𝜈𝑡+1
the critical value of the 𝑡-distribution at coverage probability 𝑞 and ̂𝜈𝑡+1 degrees of free-

dom with ̂𝜈𝑡+1 being estimated in the same maximum likelihood estimation as for 𝜓 with information

of window size 𝑇𝑒 up to and including 𝑡.

In addition to the parametric approach described above, let us combine our conditional variance
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point forecasts 𝜎̂2
𝑡+1 and ℎ̂𝑡+1 of the GARCH and HEAVY models with the so-called ‘Filtered

Historical Simulation’ technique inspired by Hull and White (1998). FHS constructs a standardised

empirical distribution to compute critical values for VaR construction, rather than the theoretical

Normal or 𝑡-distribution. Let {𝑟𝑠}𝑡
𝑠=𝑡−𝑇𝑒+1 be the set of relevant returns in the current rolling

window up to and including time 𝑡. Computing 𝜓 using maximum likelihood yields an estimated

conditional variance 𝜎̃2
𝑖 or ℎ̃𝑖 for 𝑖 = (𝑡 − 𝑇𝑒 + 1) … 𝑡 within the rolling window, as well as a point

forecast 𝜎̂2
𝑡+1 or ℎ̂2

𝑡+1. Now let us compute the ‘normalised’ returns as 𝑟∗
𝑖 = 𝑟𝑖/𝜎̃𝑖 in the case of the

GARCH models and 𝑟∗∗
𝑖 = 𝑟𝑖/√ℎ̃𝑖 in case of HEAVY specifications, for 𝑖 = (𝑡 − 𝑇𝑒 + 1), … , 𝑡. VaR

estimates follow from (16) and (17):

VaRLF
𝑡+1(𝑞) = −percentile({𝑟∗

𝑠}𝑡
𝑠=𝑡−𝑇𝑒+1, 100 × 𝑞) ⋅ 𝜎̂𝑡+1 (16)

and

VaRHF
𝑡+1(𝑞) = −percentile({𝑟∗∗

𝑠 }𝑡
𝑠=𝑡−𝑇𝑒+1, 100 × 𝑞) ⋅ √ℎ̂𝑡+1 (17)

4 Methodology for VaR Evaluation
4.1 Geometric-VaR Test

To assess the VaR estimates of the various models, this paper makes use of the Geometric-VaR

test introduced in PW16. The method is briefly summarised below, but the reader is referred to

the original paper for further details and derivations. Let us define a violation or a hit as the event

that a loss on a given day 𝑡 exceeds the VaR estimate at level 𝑞 generated by our model. Then, let

𝐼𝑡 be an indicator function such that 𝐼𝑡 = 1 when there is a violation, that is:

𝐼𝑡 =
⎧{
⎨{⎩

1, if 𝑟𝑡 < −VaR𝑡(𝑞)

0, otherwise
(18)

Let 𝑡𝑖 denote the day of the 𝑖-th hit. The no-hit duration 𝐷𝑖 is then simply constructed by

𝐷𝑖 = 𝑡𝑖 − 𝑡𝑖−1. Transformation of the hit sequence into a duration sequence by computing 𝐷𝑖 for

all hits allows the use of duration modelling techniques to perform backtesting. More specifically,

specify the following hazard function:

𝜆𝑖
𝑑 = 𝑎𝑑𝑏−1𝑒−𝑐⋅VaR𝑡𝑖+𝑑 (19)

where 0 ≤ 𝑎, 0 ≤ 𝑏 ≤ 1, and 𝑐 ≥ 0. Under the null hypothesis that VaR is correctly specified, viola-

tions follow an i.i.d. Bernoulli sequence, such that durations between violations follow a geometric
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distribution with parameter 𝑞, in which case the null hypothesis corresponds to 𝑎 = 𝑞, 𝑏 = 1, and

𝑐 = 0. The parameter 𝑎 in the hazard rate captures the unconditional coverage. The second part

in the hazard function, 𝑑𝑏−1, describes duration dependence or time dependence in violations. The

exponential part 𝑒−𝑐⋅VaR𝑡𝑖+𝑑 controls for independence of violations on the estimated VaR levels.

Again, under the null hypothesis of correct VaR specification, 𝐷𝑖 follows a geometric distribution

with parameter 𝑞:

Pr(𝐷𝑖 = 𝑑) = 𝑞(1 − 𝑞)𝑑−1 (20)

which in combination with the hazard function 𝜆𝑖
𝑑 allows us to write the probability of a specific

duration occurring:

𝑓 𝑖(𝑑) = Pr(𝐷𝑖 = 𝑑) = 𝜆𝑖
𝑑

𝑑−1
∏
𝑘=1

(1 − 𝜆𝑖
𝑘) (21)

as well as a survival function:

𝑆𝑖(𝑑) = Pr(𝐷𝑖 ≥ 𝑑) =
𝑑−1
∏
𝑘=1

(1 − 𝜆𝑖
𝑘) (22)

To take into consideration data censoring, let us define a binary indicator sequence {𝐶𝑖}𝑁
𝑖=1

with 𝐶𝑖 = 1 indicating that the corresponding duration 𝐷𝑖 is censored. That is, 𝐶1 equals 0 if the

entire hit sequence starts with a violation and likewise 𝐶𝑁 equals 0 if the hit sequence ends with a

violation. Hence, if 𝐶𝑖 = 0, the contribution of duration 𝑖 to the log-likelihood function is given by

𝑓 𝑖(𝑑). In case of censoring, 𝐶𝑖 = 1, the contribution is simply given by the survival function of the

duration, 𝑆𝑖(𝑑). Taking left and right censoring into account leads to the following log-likelihood

function:

𝑙𝑜𝑔 𝐿(𝐷|Θ) = 𝐶1 𝑙𝑜𝑔 𝑆1(𝐷1) + (1 − 𝐶1) 𝑙𝑜𝑔 𝑓1(𝐷1)

+
𝑁−1
∑
𝑖=2

𝑙𝑜𝑔 𝑓 𝑖(𝐷𝑖) + 𝐶𝑁 𝑙𝑜𝑔 𝑆𝑁(𝐷𝑁) + (1 − 𝐶𝑁)𝑙𝑜𝑔𝑓𝑁(𝐷𝑁) (23)

The full Geometric-VaR test is then performed by means of a standard likelihood ratio test:

LRGV = −2 [𝑙𝑜𝑔 𝐿(𝐷| ̂𝑎, ̂𝑏, ̂𝑐) − 𝑙𝑜𝑔 𝐿(𝐷|𝑎 = 𝑞, 𝑏 = 1, 𝑐 = 0)] (24)

Note that reducing the test to the special case 𝑐 = 0 yields the Geometric test of Berkowitz et al.

(2011). Setting 𝑏 = 1 corresponds with performing the test of Engle and Manganelli (2004). In

PW16, the authors show that the Geometric-VaR test can be decomposed into separate parts.

Specifically, let us define the following tests:

15



1. Unconditional coverage test (UC) (maintaining 𝑏 = 1, 𝑐 = 0):

𝐻0 ∶ 𝑎 = 𝑞 𝐻𝑎 ∶ 𝑎 ≠ 𝑞

2. Duration independence test (Dind) (maintaining 𝑐 = 0):

𝐻0 ∶ 𝑏 = 1 𝐻𝑎 ∶ 𝑏 < 1

3. VaR independence test (Vind):

𝐻0 ∶ 𝑐 = 0 𝐻𝑎 ∶ 𝑐 > 0

4. Geometric test (Geom): unconditional coverage and duration independence (under the as-

sumption that 𝑐 = 0):

𝐻0 ∶ 𝑎 = 𝑞 and 𝑏 = 1 𝐻𝑎 ∶ 𝑎 ≠ 𝑞 or 𝑏 < 1

5. VaR test (VaR): unconditional coverage and VaR independence (under the assumption that

𝑏 = 0):

𝐻0 ∶ 𝑎 = 𝑞 and 𝑐 = 0 𝐻𝑎 ∶ 𝑎 ≠ 𝑞 or 𝑐 > 0

6. Geometric-VaR test (GV): unconditional coverage, duration independence and VaR indepen-

dence:

𝐻0 ∶ 𝑎 = 𝑞, 𝑏 = 1 and 𝑐 = 0 𝐻𝑎 ∶ 𝑎 ≠ 𝑞 or 𝑏 < 1 or 𝑐 > 0

As mentioned, the design of the test allows for testing different hypothesis seperately as part of the

Geometric-VaR test. In particular, note that we can write LRGV = LRUC + LRDind + LRVind.

Parameters are estimated using maximum likelihood after generating the duration sequence con-

sisting of the different 𝐷𝑖’s. As suggested in PW16, this paper employs the Monte Carlo technique

of Dufour (2006) to generate 𝑝-values that are robust to limited sample size by constructing an

empirical distribution of the likelihood ratio under the null hypothesis. Specifically, generate an

i.i.d. Bernouilli sequence with the same length as the investigated sample size 𝑇𝑒 and hit proba-

bility 𝑞 to serve as the ‘violation sequence’. In addition, construct independent VaR estimates by

assuming that the returns follow a flexible nonlinear asymmetric GARCH process (NGARCH) of

the type first introduced by Engle and Ng (1993), which allows the replication of stylised facts of
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asset returns, such as asymmetries, heavy tails, volatility clustering and leverage effects:

𝑟𝑡+1 = 𝜎𝑡+1((𝑑 − 2)/𝑑) 1
2 𝑧𝑡+1 (25)

𝜎2
𝑡+1 = 𝜔 + 𝛼𝜎2

𝑡 ((𝑑 − 2
𝑑

)
1
2

𝑧𝑡 − 𝜃)
2

+ 𝛽𝜎2
𝑡 (26)

with 𝑧𝑡 being drawn from a Student’s 𝑡(𝑑) distribution. The ‘true’ values for VaR based on the

conditional variance process follow easily by using

VaR𝑡+1 = −𝜎𝑡+1((𝑑 − 2)/𝑑) 1
2 𝜏𝑑,𝑞 (27)

with 𝜏𝑑,𝑞 being the relevant critical value of a 𝑡(𝑑)-distribution at VaR level 𝑞. The relevant parame-

ters of the NGARCH process are estimated using maximum likelihood for the relevant return series

for which a VaR model is being assessed. To generate the empirical distribution of LR statistics

under the null, simulate 𝐾 times such a Bernoulli violation sequence and NGARCH VaR sequence.

Setting 𝐾 sufficiently large, convert each Bernoulli hit sequence to a duration sequence and compute

the LR statistics for the Geometric-VaR test and its sub-tests per (24) using the NGARCH VaR

sequence as input for VaR𝑡 in the hazard function. The 𝑝 value is then calculated by means of

comparing the LR statistic of the relevant VaR model being tested to the empirical distribution

generated by the simulations. In doing so, this paper employs the exact procedure of Dufour (2006)

and the reader is referred to said paper for further details.

5 Data
This paper utilises data from the ‘Realized Library (v0.2)’ from the Oxford-Man Institute of

Quantitative Finance5, which contains daily return data for 21 indices spanning the period 3 January

2000 - 5 December 20176, as well as realised measures. The underlying source of the data is the

Thomson Reuters DataScope Tick History database. Data points are cleaned and processed exactly

based on the methodology specified in Shephard and Sheppard (2010). In addition, days on which

exchanges are closed are excluded from the sample as in Opschoor et al. (2017). A wide variety

of indices is included in the sample in order to test robustness of the VaR models under different

market structures. Indeed, the summary statistics presented in Table B1 and B2 in Appendix

B support the notion of variety in index characteristics. Specific attention has been paid to the
5See http://realized.oxford-man.ox.ac.uk/
6Some indices have different starting and ending dates because of holidays or data availability. The reader is referred
to Table A1 in Appendix A for a full list of included indices, as well as the exact periods covered.
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Table 2: Size of 10% duration-based tests applied to 5% VaR

Sample size UC Dind Vind Geom VaR GV

Using chi-squared asymptotic critical values
250 0.148 0.028 0.094 0.058 0.098 0.060
500 0.120 0.033 0.101 0.068 0.105 0.066
750 0.121 0.035 0.094 0.062 0.096 0.065
1000 0.119 0.036 0.091 0.059 0.087 0.064
1250 0.114 0.038 0.089 0.061 0.086 0.064
1500 0.106 0.038 0.086 0.061 0.085 0.063
Chi-squared critical value 2.706 2.706 2.706 4.605 4.605 6.251

Using simulated test statistics computed with sample size 50,000
250 0.139 0.063 0.193 0.108 0.152 0.123
500 0.115 0.071 0.187 0.102 0.156 0.130
750 0.121 0.076 0.178 0.099 0.143 0.134
1000 0.116 0.081 0.164 0.099 0.135 0.126
1250 0.112 0.077 0.162 0.094 0.130 0.118
1500 0.097 0.082 0.158 0.097 0.121 0.118
Simulated critical value 2.788 1.510 1.669 3.759 3.838 4.750

Note. This table assesses the size properties of the relevant tests by generating random VaR sequences that satisfy the
null hypothesis. In the upper panel of this table, ‘chi-squared asymptotic critical values’, the size is calculated based
on the rejection frequency of 10,000 replications using asymptotic critical values from a chi-squared distribution. In
the lower panel, the same random VaR estimates are assessed using simulated critical values which are calculated
using separate i.i.d. Bernoulli hit sequences and NGARCH VaR regressors that are independent of the simulated
hit sequence. The empirical distribution of the asymptotic test statistic is generated using 10,000 replications of
sample size 50,000. ‘UC’ stands for unconditional coverage test, ‘Dind’ for duration independence test, ‘Vind’ for
VaR independence test, ‘Geom’ for Geometric test, ‘VaR’ for VaR test and ‘GV’ for Geometric-VaR test. See text
for further details regarding procedures.

inclusion of the global financial crisis in the relevant sample as it is especially important that risk

models are tested during challenging conditions.

6 Simulation Studies for the Geometric-VaR Test
6.1 Test Size

As the test of PW16 is relatively new and has hence not been adopted by other papers, it is of

interest to reassess its effectiveness before applying it to test the HEAVY models. This research does

so by attempting to replicate the results of the original paper. In addition, the test is benchmarked

against more established backtesting procedures. This subsection will investigate the size7 properties

of the Geometric-VaR test, whereas the next subsection examines the power of the test. Size is

investigated by testing how often correctly specified VaR estimates are rejected, whereas power is

examined by means of rejections of falsely specified VaR estimates. Both exercises are conducted

using Monte Carlo simulation.
7The term ‘size’ is used to denote the probability of a type I error throughout the rest of this paper. Hence, the
terms ‘oversized’ and ‘undersized’ denote rejection frequencies that are above and below their theoretical values
respectively.
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To compute reliable 𝑝-values and control the size of the tests, PW16 relies on Dufour’s (2006)

Monte Carlo technique. This research validates the necessity of the approach by generating fic-

tional returns by means of the NGARCH process described by (25) and (26). In particular, the

same model parameters for the NGARCH return process as in PW16 are used: {𝑑, 𝜃, 𝛽, 𝛼, 𝜔} =

{10, 0, 0.93, 0.05, 0.21}. Following PW16, the ‘true’ VaR estimates that perfectly satisfy the null

hypothesis are computed using (27) with a coverage rate set to equal 1% and 5% respectively. The

VaR ‘estimates’ are evaluated at a 10% significance level and the size of each test is hence given by

the empirical rejection rate over 10,000 replications. The test size based on the asymptotic critical

values of the chi-squared distribution is reported in the upper panel of Table 2 for 5% VaR. Even

at 10,000 replications, notable variation in the obtained size values is observed over different trials.

Taking this into account, the results are qualitatively and quantitatively similar to PW16. Indeed,

basing the test on the chi-squared asymptotic values yields mostly undersized test statistics except

for the test of unconditional coverage. Of interest are the values of the VaR independence test

which show very similar values for the larger samples as in PW16. However, for smaller samples a

slightly lower test sizing compared to the values reported in PW16 can be observed. Clearly, the

exact implementation of the testing procedure has an effect on the values obtained. In addition,

the initialisation of for instance the NGARCH process has a measurable effect on the size of the

VaR independence test for small samples. Logically, the difference in VaR independence values for

small samples feeds into the VaR and Geometric-VaR test.

As mentioned in PW16, the asymptotic critical values based on the chi-squared distribution

do not take into account the effect of testing parameter values at the boundary of the parameter

space. Hence, asymptotic critical values that are robust to this effect are also generated by means of

simulation. In particular, simulate 10,000 VaR sequences by means of the NGARCH process, setting

the sample size equal to 50,000. In addition, generate 10,000 i.i.d. Bernoulli ‘hit sequences’ of length

50,000. Empirical 10% critical values are then obtained using the 90% percentile of the empirical

test statistic distribution over the 10,000 trials which are exhibited in Table 2. As expected, these

simulated critical values are different from their chi-squared based counterparts and are in line with

the values obtained by PW16 although the value found for duration independence is about 6%

lower.

Again, let us assess the size of the duration-based tests, but now using the simulated critical

values instead of the chi-squared critical values as in the upper panel of Table 2. Except for the test of
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unconditional coverage, which was oversized in the chi-squared setting, all undersized tests increase

in size. Again, taking into account variability across simulation runs, results are quantitatively

similar to PW16. Interestingly, although the simulated critical value for duration independence is

lower than reported in PW16, size remains unaffected and is close to the values found in PW16. As

was the case for the chi-squared test values, lower statistics for small samples in the case of the VaR

independence tests are observed when compared to PW16 which again transpires into the VaR and

Geometric-VaR test statistics. Clearly, using asymptotic critical values for testing finite samples

leads to incorrectly sized test values. The use of simulated asymptotical critical values does not

solve this problem – all tests remain oversized, with the exception of duration independence which

is undersized compared to the desirable 10% level. A similar exercise conducted for 1% VaR yields

qualitatively similar results. Evidently, the test statistics are (1) not exactly chi-squared distributed

and (2) test statistics obtained for finite samples differ considerably from their asymptotic values.

This indeed supports the application of Dufour’s (2006) Monte Carlo technique.

6.2 Test Power

Having established the necessity of the method of Dufour (2006), let us look at the power of

the Geometric-VaR test in case of purposely misspecified VaR estimates. Following PW16, random

return series of size 𝑇 + 𝑇𝑒 with 𝑇𝑒 = 250 and 𝑇 ∈ {250, 500, 750, 1000, 1250, 1500} are generated

using the NGARCH process described in (25) and (26) and using parameters estimated from real-

world business lines taken from PW16 and shown in Table 3. VaR forecasts are then computed based

on the Historical Simulation method using a rolling window of size 𝑇𝑒 which is known to provide

incorrect estimates. Specifically, 5,000 series of returns with corresponding HS VaR estimates are

generated. The relevant test statistics are computed and 𝑝-values are obtained using the empirical

distribution of LR statistics and the method of Dufour (2006) using 9,999 trials. The power of each

test is defined as the rejection frequency of the 5,000 replications at significance level 𝑝, which is

chosen to be 10% for comparison purposes.

Table 3: Parameters of NGARCH simulations for the four business lines

Parameter Business Line 1 Business Line 2 Business Line 3 Business Line 4

d 3.808 3.318 6.912 4.702
𝜃 -0.245 0.503 -0.962 0.093
𝛽 0.749 0.928 0.873 0.915
𝛼 0.155 0.052 0.026 0.072
𝜔 0.550 0.215 0.213 1.653
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Table 4: Power of duration-based tests and the CaViaR test, 5% VaR, 10% significance

Sample size UC Dind Vind Geom VaR GV CaViaR

Business Line 1
250 0.147 0.473 0.321 0.351 0.290 0.442 0.441
500 0.064 0.671 0.650 0.482 0.470 0.686 0.514
750 0.036 0.791 0.796 0.615 0.605 0.838 0.597
1000 0.028 0.861 0.867 0.711 0.732 0.918 0.703
1250 0.018 0.907 0.902 0.781 0.781 0.957 0.772
1500 0.017 0.939 0.949 0.842 0.861 0.977 0.854
Business Line 2
250 0.344 0.448 0.436 0.493 0.521 0.599 0.584
500 0.233 0.715 0.675 0.611 0.646 0.790 0.633
750 0.193 0.830 0.742 0.754 0.708 0.890 0.665
1000 0.182 0.899 0.779 0.813 0.772 0.940 0.735
1250 0.170 0.938 0.811 0.864 0.830 0.964 0.761
1500 0.171 0.955 0.830 0.905 0.845 0.980 0.832
Business Line 3
250 0.053 0.136 0.407 0.066 0.120 0.141 0.295
500 0.012 0.144 0.713 0.047 0.324 0.264 0.403
750 0.007 0.159 0.861 0.055 0.513 0.475 0.445
1000 0.003 0.163 0.922 0.047 0.668 0.617 0.515
1250 0.003 0.160 0.962 0.045 0.802 0.743 0.593
1500 0.002 0.164 0.978 0.054 0.859 0.818 0.724
Business Line 4
250 0.346 0.505 0.393 0.522 0.501 0.614 0.591
500 0.223 0.765 0.657 0.665 0.640 0.818 0.629
750 0.182 0.878 0.733 0.785 0.714 0.903 0.696
1000 0.174 0.934 0.797 0.855 0.783 0.952 0.741
1250 0.157 0.961 0.821 0.912 0.824 0.976 0.788
1500 0.166 0.979 0.859 0.940 0.863 0.989 0.859

Note. This table shows the power of each test at significance level 10% by generating random returns using NGARCH-
t(d) models that have the same parameters as the four business lines specified in PW16 and shown in Table 3. 5%
VaR estimates are then computed using Historical Simulation with a rolling window of size 250. The simulated power
of each test is the rejection frequency from 5,000 replications. ‘UC’ stands for unconditional coverage test, ‘Dind’ for
duration independence test, ‘Vind’ for ‘VaR’ independence test, ‘Geom’ for Geometric test, ‘VaR’ for VaR test and
‘GV’ for Geometric-VaR test. ‘CaViaR’ is a regression-based test. See text for further details regarding procedures.

In order to examine the performance of the Geometric-VaR test compared to other more estab-

lished backtesting procedures, the power of the following tests is computed in similar fashion: the

proportion of failures test of Kupiec (1995), the conditional coverage independence (CCI) test and

conditional coverage mixed test (CC) of Christoffersen (1998), the time between failures indepen-

dence test (TBFI) and time between failures test (TBF) of Haas (2001) and the CaViaR test of

Engle and Manganelli (2004). Note that again the method of Dufour (2006) is employed to control

the sizing of these tests for small samples. Due to spacing considerations, results for 5% VaR are

presented in condensed fashion in Table 4 for the Geometric-VaR test and the CaViaR test. Table

C1 and C2 in Appendix C show results for all investigated tests for 5% and 1% VaR respectively.

Again, this research finds quantitatively similar results to PW16. As in the original paper, the
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power of the UC test proves to be low in practice for 5% VaR and 1% VaR – especially for the larger

sample sizes. Specifically the power for Business Line 3 which exhibits relatively small volatility

persistence is very low. PW16 claim performance of the UC test is expected to be similar to the

POF test of Kupiec (1995) but leave aside the necessary evidence to back up this claim. Indeed, the

results in Table C1 and C2 provide support for this assertion. Note also that although the power of

the UC test presented in PW16 is similar, it is consistently lower than that of Kupiec’s POF test

in case of 5% VaR.

With regards to violation independence we can observe particularly good performance of the

Duration independence test of PW16 compared to the CCI test of Christoffersen (1998) and the

TBFI test of Haas (2001) for both 5% and 1% VaR. Although PW16 remark its relatively mediocre

performance for Business Line 3 because of the opposite leverage effects in these series, the test

still performs better than the CCI and TBFI test for this Business Line. Indeed, the power of the

Duration Independence test of PW16 is higher in all business lines investigated.8 Looking at the

Geometric test of PW16, however, provides a notable contrast to this image. As the Geometric test

is a combination of the UC and Duration independence tests, the test statistic is provided by the

sum of the LR test statistics of the two tests. Hence, the low power of the UC test for Business

Line 1 and Business Line 3 severely affects the power of the Geometric test for these business lines.

Indeed, for 5% VaR, observe that the Geometric test of PW16 is outperformed in terms of power by

the TBF test of Haas (2001) for Business Line 1 and 3 and by the CC test of Christoffersen (1998)

in Business Line 3 for the majority of the sample sizes. In business lines 2 and 4, the Geometric

test still provides superior performance for 5% as well as for 1% VaR.

As in the earlier size investigation, we observe a lower rejection frequency for the VaR inde-

pendence test for the smaller samples compared to PW16. With regards to testing all hypotheses

at once, it is worth noting that the Geometric-VaR test outperforms the competing CaViaR test

in most, but not all cases − specifically for the smaller sample sizes for 1% VaR in general and

Business Line 3 for 5% VaR. As seen before, it appears that the Geometric test component pro-

vides suboptimal power in case of negative leverage effects which feeds into the Geometric-VaR test.

Clearly, one must exercise caution when relying on the Geometric-VaR test in case return processes

exhibit low volatility persistence and negative leverage effects in small sample settings. However, in

line with PW16, the results obtained illustrate that the Geometric-VaR test provides good power
8One exception is the observation for 1% VaR in Business Line 3 for sample size 1500, which can most likely be
attributed to randomness in simulations.
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properties against various forms of misspecification that might be present in VaR estimates.

7 Empirical Results
7.1 Full Sample - Geometric-VaR Test

Having revisited the properties of the Geometric-VaR test, let us proceed by investigating the

performance of the HEAVY models. The next sections provide empirical results of model per-

formance. In particular, this subsection investigates the merit of models the over the full sample

using the Geometric-VaR test. The next subsection provides an economic interpretation. The last

subsection covers empirical performance specifically during the period of the global financial crisis.

For all models, 5% VaR estimates9 are obtained for all 21 equities over the period January

2000 - December 2017 (for further details, see Section 5: Data). In particular, VaR estimates

are computed using a rolling window size 𝑇𝑒 of 250, 1000 and 1500 respectively. Note that for

𝑇𝑒 = 250 and 𝑇𝑒 = 1000 the first 1,250 and 500 VaR estimates are truncated respectively to get

the same effective sample period across the different rolling window sizes (January 2006 - December

2017). The Geometric-VaR test is then utilised to evaluate the estimates. The null hypothesis of all

tests is evaluated at a 10% level and consequently the number of equity indices for which the null

hypothesis of correct model performance is not rejected is computed for each relevant test. Results

are presented in Table D1 in Appendix D.

First, notice that model performance is poor for the smallest rolling window size. Although a

window size of 250 days is sufficient to provide correct unconditional coverage (7 models achieve

correct coverage for either 20 or 21 out of 21 equity indices), independence of VaR estimates is

lacking with the best performing model (gGN) not rejecting the null hypothesis of independence in

only 8 out of 21 cases. Logically, this transpires in the Geometric-VaR test which it does not reject

the null hypothesis of correct VaR estimates for only 5 out of 21 indices for the best performing

model. Clearly, the Geometric-VaR test suggests a rolling window size of 250 days is insufficient

to provide VaR estimates that satisfy the relevant conditions. The Historical Simulation method

which is prevalent amongst practitioners scores well in terms of unconditional coverage, but fails to

pass the Geometric-VaR test in all cases and is hence clearly insufficient – especially with respect

to duration independence.

For a rolling window size of 1,000 days, a substantial increase in performance can be observed
9Because of computational limitations, only the case of 5% VaR is investigated. Assessing model performance in case
of 1% VaR is left as an avenue for further research.
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for most models compared to the case of 𝑇𝑒 = 250. In particular, the increased estimation window

causes the 𝑝-values for duration independence and VaR independence to increase substantially. In

terms of overall performance, notice that the models that incorporate the Filtered Historical Sim-

ulation approach outperform their fully-parametric counterparts. Although some HEAVY models

perform quite well (notably HFk and gHFk), they are outperformed by asymmetric GARCH specifi-

cations. Most notably, the GJR-GARCH model combined with Filtered Historical Simulation (gGF)

passes the Geometric-VaR test for all but one index investigated and is clearly the best performing

model, both in terms of number of passed tests as well as average 𝑝-value. Although this model

appears to score best by means of the Geometric-VaR test, it must be noted that it does not always

pass its sub-tests. Most notably, the gGF model seems to have relatively mediocre performance

in terms of VaR independence – a test competing parametric specifications pass to a considerably

higher degree. Again, notice the particularly poor performance of Historical Simulation.

Increasing the rolling window size to 𝑇𝑒 = 1500 does not seem to yield a particular increase in

performance and underscores the issue of VaR independence for the gGF model. In fact, model

performance decreases in terms of the number of indices where it passes the test. Indeed, increased

rolling window sizes might prohibit flexibility in case of structural breaks which leads to worse model

performance. However, increasing the rolling window size does appear to improve VaR independence

performance for some of the models investigated.

Note that for the HEAVY models, the fully parametric approach seems to work best with

realised variance data, whereas the FHS method performs better with the realised kernel estimator.

In addition, the adoption of an asymmetric specification in the form of GJR-HEAVY does not

necessarily improve performance.

Two things become clear: (1) The HEAVY models do not outperform their asymmetric GARCH

counterparts; (2) the Filtered Historical Simulation approach leads to better performance than a

fully-parametric approach for all models investigated.

Considering the models across all rolling window sizes, it is clear that the GJR-GARCH model

in combination with Filtered Historical Simulation provides superior performance over competing

specifications. Minimum rolling window sizes of 1,000 must however be maintained in order for the

specification to deliver adequate estimates as especially violation independence of VaR estimates

seems to be an issue for smaller rolling window sizes.
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Figure 1: Economic statistics of VaR estimates over 24 January 2006 - 5 December 2017
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(a) Mean Value-at-Risk across indices
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(b) Standard deviation of Value-at-Risk across indices

Panel (a) shows the mean VaR estimates in % across time and indices per model. Panel (b) shows the mean of the
standard deviation of the VaR estimates in % points across indices. Colors correspond to different model classes
(HS, realised variance based HEAVY, realised kernel based HEAVY and GARCH respectively). ** denotes the best
performing model in the respective rolling window length. * denotes second best performing model.

7.2 Full Sample - Economic Evaluation

In addition to having theoretically sound VaR estimates in the sense that they satisfy the con-

ditions of (1) correct unconditional coverage; (2) independent violations; (3) violations independent

of information up to and including 𝑡−1, practitioners need to make sure that the VaR estimates are

optimal from an economic perspective as well. That is, as capital requirements are determined based

on estimated VaR, it is of interest to keep them as low as possible in order to minimise opportunity

costs presented by retaining excess reserve capital.10 Let us assess the economic implications of the

VaR models by means of two simple statistics: the average level of VaR and the variability of VaR

(as measured by its standard deviation). Although capital requirements in practice depend in a

nonlinear fashion on the estimated levels of VaR, let us assume for feasibility that they are strictly
10Although regulations are migrating from using VaR as a means to calculate capital requirements to Expected
Shortfall (Basel Committee on Banking Supervision, 2013), the minimisation of VaR remains relevant as Expected
Shortfall is defined as the expected loss beyond VaR and hence VaR serves as a boundary from which to calculate
the Expected Shortfall.
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increasing with VaR. The statistics are computed as an average over time and across models. Note

that again for 𝑇𝑒 = 250 and 𝑇𝑒 = 1000 the first 1,250 and 500 VaR estimates are truncated respec-

tively to get the same effective sample period across the different rolling window sizes. Statistics

are presented in Figure 1 and Table D2. A few important observations can be made. In addition to

providing the best VaR estimates from a Geometric-VaR testing perspective, using a rolling win-

dow of 1,000 days leads on average to lower average VaR estimates compared to both 𝑇𝑒 = 250 and

𝑇𝑒 = 1500. Moreover, the variability of the estimates is lowest for this length of estimation window,

making it desirable from a capital allocation perspective as frequent changes in the level of capital

reserves bring along extra costs. An obvious exception is the Historical Simulation method which

by construction produces higher average VaR estimates when estimation windows increase, while

the variability of these estimates decreases. When comparing competing model specifications, we

observe that the choice of GARCH versus HEAVY does not have a notable effect on the average

VaR levels estimated. However, the variability of the estimates appears to be slightly lower for

some GARCH specifications compared to their HEAVY counterparts. Across the board, Filtered

Historical Simulation produces VaR estimates that are both higher and more volatile in nature

than the fully-parametric approaches. Apparently, the superior performance as measured by the

Geometric-VaR test for the FHS approach comes at the economic expense of higher capital buffers,

which presents a clear trade-off for practitioners.

7.3 Global Financial Crisis of 2008 - Geometric VaR Test

Clearly, having adequate risk models in place is especially important during adverse market

conditions. However, historically banks tend to underestimate Value-at-Risk in periods of recessions

(Bank for International Settlements, 2009). Hence, examining model performance during periods

of financial distress is of particular interest. Consequently, let us re-examine the performance of

the HEAVY models during the global financial crisis of 2008. As the exact starting point of the

recession is open to interpretation, this paper takes a safe testing window of two years spanning July

2007 - June 2009. An illustration of the relevant period including several risk models is provided

in Figure 2. Using the same approach as in earlier sections, the Geometric-VaR test is carried out

for all models on the relevant window. Testing outcomes are presented in Table D3. The results

differ markedly from those obtained for the full sample. For all rolling window sizes, the HEAVY

specifications outperform their GARCH counterparts considerably, suggesting that the addition of

realised measures is of value in this period of distress. Note that again, the use of Filtered Historical

Simulation provides better estimates than the fully-parametric approach for all models investigated.
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Figure 2: S&P 500 Returns with various VaR estimates and VaR violations during the financial
crisis of 2008 (𝑇𝑒 = 1000)

Surprisingly, the asymmetric gHFk model for 𝑇𝑒 = 250 and symmetric HFk model for 𝑇𝑒 = 1500

perform similar in terms of rejection rates. Rather than for the full sample a clearly favoured rolling

window size is not apparent. Indeed, the short estimation size of 250 days that was found to be

inadequate in the full sample may help in providing essential flexibility during this sudden period

of aberrant volatility. Examining Figure 2 provides some further insights. As found in Shephard

and Sheppard (2010), there is some evidence that at the height of the financial crisis, the GARCH

models are behind the curve, while the HEAVY models adjust rapidly. Additionally, it appears as if

the GARCH models estimate volatility as unnecessarily elevated compared to the HEAVY models

during December 2008 and the model does not allow for conditional volatility to fall rapidly enough.

Although the HEAVY models incorporating FHS perform well compared to their GARCH coun-

terparts during the financial crisis, it must be noted that the best model still only fails to be rejected

for 15 out of 21 indices, suggesting evident room for further improvement.

8 Conclusion
This research studies how Value-at-Risk (VaR) models can be backtested and subsequently ap-

plies this knowledge to study VaR models based on high-frequency data. The starting point of this

paper is to replicate the work of Pelletier and Wei (2016) (PW16), who introduce the Geometric-

VaR test. By taking a duration-based approach to testing VaR, they show that VaR estimates

can be backtested by modelling the duration between violations as geometrically distributed with a

flexible hazard function. The framework allows simultaneous, as well as separate testing of uncon-

ditional coverage, duration independence and VaR independence. This paper has four particular

contributions to existing literature. Firstly, it replicates results of PW16 and thus validates the
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conclusions drawn by PW16 about the power of the test. This is of essence as the test has not yet

been adopted in other research. Secondly, benchmarking of the Geometric-VaR test is conducted

by comparing the power of the test to not only the CaViaR test of Engle and Manganelli (2004), as

is done in PW16, but a wide range of commonly employed backtesting frameworks. Thirdly, this

paper is the first to investigate the high-frequency based volatility (HEAVY) models of Shephard

and Sheppard (2010) in the context of VaR estimation using a Filtered Historical Simulation (FHS)

approach. Lastly, an asymmetric adaptation of the standard HEAVY model is introduced to the

literature.

The lion’s share of the replication results is similar to those presented in PW16. Indeed, exam-

ining the Geometric-VaR test with simulated data shows that its test statistic is not asymptotically

chi-squared distributed and that small samples lead to sizing issues. Both problems are mitigated

using the method of Dufour (2006) which provides robust 𝑝-values for the test. Simulations based

on real business line returns demonstrate good power properties against various forms of misspec-

ification of VaR estimates. However, this paper finds slightly lower power for smaller sample sizes

compared to PW16, in particular for the VaR independence component of the test. Likely reasons

for this deviation include the exact technical implementation of the test as well as the initialisation

of the NGARCH processes. Detailed considerations are provided in the next section, ‘Discussion’.

The Geometric-VaR test mostly provides better power than competing established backtesting pro-

cedures, but it appears that one must exercise caution if return processes exhibit low volatility

persistence and negative leverage effects as in this case the Geometric test component provides

suboptimal power for small sample sizes which feeds into the Geometric-VaR test.

Subsequently, the Geometric-VaR test is employed to investigate the HEAVY model in the

context of VaR estimation, using Historical Simulation and a family of GARCH models as a bench-

mark. Both a fully-parametric approach using Normal and Student’s t distributions, as well as a

semi-parametric approach based on Filtered Historical Simulation are examined, which, in total,

leads to 19 different specifications. VaR estimates are computed for a broad universe of 21 equity

indices with data ranging from 2000 to 2017. Using the full sample, this paper finds no evidence

that the HEAVY models outperform their GARCH counterparts in terms of being able to pass

the Geometric-VaR test. Indeed, the GJR-GARCH model combined with FHS provides the best

results. This result is surprising as realised measures should theoretically improve conditional vari-

ance forecasts and thus VaR estimates. Hence, one could expect the HEAVY models, which are
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based on realised measures, to provide better performance than their GARCH counterparts. A clear

explanation for this unexpected result is not readily apparent. An important observation is the fact

that the application of FHS improves VaR estimates considerably for both HEAVY and GARCH

models compared to fully-parametric approaches, but leads to a higher level of VaR estimates on

average, which can be a disadvantage for practitioners.

This paper also considers the HEAVY models specifically during the global financial crisis as

having adequate risk model performance is especially important during adverse market conditions.

The results provide a stark contrast to those of the full sample. Interestingly, the HEAVY specifica-

tion appears to work particularly well during this period of unusual volatility, beating the GARCH

counterparts. Again, the application of FHS works best for all specifications considered.

In conclusion, this paper assesses the merit of the Geometric-VaR backtesting procedure of

PW16 and provides insights about VaR estimates based on high-frequency data. The Geometric-

VaR test is confirmed to be a valuable addition to VaR backtesting methods. Contradictory findings

between normal times and the global financial crisis challenge a conclusive answer as to whether

HEAVY models provide accurate VaR estimates. However, results indicate that HEAVY models

are adept in periods of unusual volatility and could hence be a valuable addition to a risk manager’s

toolkit during times of recession.

9 Discussion
The fact that this study was bounded by time and computational capabilities gives rise to several

limitations that are discussed in detail in this section. First, the results obtained in Table 2, 4, C1

and C2 are based on simulated processes that are subject to a degree of precision varying with

trial size. In particular, note that the values in Table 2 are obtained using 10,000 replications as

in PW16. Although it is difficult to give an exact quantification of the degree of variation, several

runs with replication size 10,000 demonstrate that the obtained results can still vary up to the

second decimal figure. In particular, this appears to be the case for the power replications of the

different business lines where only 5,000 replications are used. Hence, caution must be exercised

when interpreting the results in PW16 and this paper as ‘true values’. Taking this uncertainty

into account, however, there are differences in the results obtained that cannot be ascribed to

randomness introduced by a finite number of simulations. In particular, the VaR independence test

provides lower rejection frequencies than reported in PW16 for the smaller sample sizes. A logical
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explanation for this observed difference is the exact implementation of the testing procedure.11 In

addition, the initialisation of the NGARCH process has a measurable effect on the sizing of the

VaR independence test for small sample sizes. This paper initialises the NGARCH process at its

unconditional mean and in addition truncates the first 1,000 simulations as a ‘burn-in’ sample. The

approach taken by Pelletier and Wei (2016) remains unspecified and is hence difficult to replicate.

Logically, the difference in VaR independence values for small samples feeds into the VaR and

Geometric-VaR test. Although this paper must conclude that the results of PW16 for smaller

sample sizes cannot be replicated exactly, it does not affect the results obtained in the rest of this

research as the figures obtained in the empirical part of the paper rely on sample sizes that are

sufficiently large. In addition, it is found that the test provides mediocre power properties in case of

low volatility persistence and negative leverage effects. Estimating NGARCH parameters on the 21

indices provided no evidence of such effects being present in the data used for the empirical study

and hence this shortcoming of the test is not expected to affect the outcomes.

Secondly, the fact that the HEAVY models are found to underperform their GARCH counter-

parts over the full sample period is surprising as it contradicts results presented in Shephard and

Sheppard (2010). However, different sample periods, as well as the fact that Shephard and Sheppard

(2010) assess conditional volatility directly, rather than VaR – one specific point on the left-tailed

distribution of the returns – may help to explain differences.

Further research could investigate specifically under which conditions HEAVY models gener-

ate good and bad VaR estimates respectively. Additionally, combining forecasts in order to exploit

particular model strengths could be investigated in, for instance, a Markov switching setting. More-

over, this paper recognises that estimation risk is a relevant issue in the context of VaR backtesting.

Although the critical values obtained by the method of Dufour (2006) were found robust to estima-

tion risk presented by the NGARCH process12, estimation risk within the VaR models themselves

provides further uncertainty. A resampling approach such as suggested by Escanciano and Olmo

(2010) could mitigate such issues. Adoption of such an approach was considered, but this proved

to be computationally unfeasible to conduct for all models. Hence, this is left for future research.
11A clear answer on any exact difference of test implementation can come from the authors of PW16. Although the
author of this paper has politely reached out to both Denis Pelletier and Wei Wei, they have not yet responded at
the time of writing this paper. Clearly, this case reiterates the merit of providing transparent code along with one’s
publication for replication purposes.

12Specifically, a Bayesian approach with non-informative priors was adopted to estimate the NGARCH parameters,
rather than maximum likelihood. The empirical parameter distribution was then used as input to simulate the
NGARCH return series in the Dufour process. No significant difference was observed in the critical values obtained
by adopting such an approach.
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Appendix A: Included Indices in the Dataset

Table A1: Included Indices in the Dataset

Symbol Name Earliest Available Latest Available

.AEX AEX index 1/3/2000 12/05/2017

.AORD All Ordinaries 1/4/2000 12/05/2017

.BVSP BVSP BOVESPA Index 1/3/2000 12/05/2017

.DJI Dow Jones Industrial Average 1/3/2000 12/05/2017

.FCHI CAC 40 1/3/2000 12/05/2017

.FTMIB FTSE MIB 6/1/2009 12/05/2017

.FTSE FTSE 100 1/4/2000 12/05/2017

.GDAXI DAX 1/3/2000 12/05/2017

.GSPTSE S&P/TSX Composite index 5/2/2002 12/05/2017

.HSI HANG SENG Index 1/3/2000 12/05/2017

.IBEX IBEX 35 Index 1/3/2000 12/05/2017

.IXIC Nasdaq 100 1/3/2000 12/05/2017

.KS11 Korea Composite Stock Price Index (KOSPI) 1/4/2000 12/05/2017

.MXX IPC Mexico 1/3/2000 12/05/2017

.N225 Nikkei 225 2/2/2000 12/05/2017

.NSEI NIFTY 50 1/3/2000 12/05/2017

.RUT Russel 2000 1/3/2000 12/05/2017

.SPX S&P 500 Index 1/3/2000 12/04/2017

.SSMI Swiss Stock Market Index 1/4/2000 12/05/2017

.STI Straits Times Index 1/3/2000 12/05/2017

.STOXX50E EURO STOXX 50 1/3/2000 12/05/2017

Note. All dates are shown using American timing notation convention (mm/dd/yyyy)
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Appendix B: Summary Statistics for the Employed Indices

Table B1: Summary statistics for the employed indices

SP500 FTSE2 N2252 GDAXI2 RUT2 AORD2 DJI2 IXIC2 FCHI2 HSI2 KS11

Realised Kernel

Mean 0.011 0.008 0.011 0.017 0.010 0.005 0.010 0.013 0.014 0.009 0.013
Std 0.025 0.015 0.019 0.031 0.021 0.008 0.025 0.026 0.023 0.016 0.024
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.931 0.326 0.384 0.643 0.643 0.156 0.913 0.667 0.455 0.446 0.648
Kurt 441.7 107.0 115.9 120.7 223.0 90.7 422.0 153.3 99.2 312.6 188.4
Skew 15.2 8.0 8.8 8.5 11.1 7.6 15.4 9.1 7.8 14.2 9.9
#obs 4481 4505 4346 4538 4484 4484 4484 4487 4568 4150 4410

Realised Variance

Mean 0.011 0.008 0.011 0.017 0.011 0.005 0.011 0.013 0.014 0.009 0.013
Std 0.025 0.016 0.017 0.030 0.021 0.008 0.027 0.023 0.023 0.016 0.023
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001
Max 0.775 0.463 0.323 0.588 0.585 0.153 0.862 0.430 0.512 0.437 0.594
Kurt 233.17 202.97 104.10 98.39 179.43 94.66 310.48 86.12 133.74 257.38 153.53
Skew 11.32 10.69 8.28 7.57 10.02 7.67 13.59 7.17 8.85 12.68 9.07
#obs 4481 4505 4346 4538 4484 4484 4484 4487 4568 4150 4410

Returns

Mean 0.010 -0.035 -0.033 -0.029 0.009 0.000 0.022 -0.018 -0.037 -0.047 -0.043
Std 1.159 0.929 1.157 1.297 1.400 0.802 1.114 1.353 1.198 0.994 1.176
Min -9.351 -5.760 -10.563 -9.412 -11.053 -6.438 -8.405 -8.046 -8.124 -11.616 -11.779
Max 10.220 7.044 11.658 9.993 7.776 3.891 10.754 14.908 7.282 12.155 8.758
Kurt 11.16 7.54 14.03 8.07 7.46 6.88 11.84 10.70 7.37 16.13 9.11
Skew -0.17 -0.15 -0.56 -0.10 -0.26 -0.49 -0.01 0.11 -0.15 0.07 -0.35
#obs 4481 4505 4346 4538 4484 4484 4484 4487 4568 4150 4410

Note. This table shows summary statistics for all employed indices. Full names and date ranges for the index tickers
can be found in appendix A.
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Appendix B: Summary Statistics for the Employed Indices Cont.

Table B2: Summary statistics for the employed indices cont.

AEX SSMI IBEX2 NSEI MXX BVSP GSPTSE STOXX50E FTSTI FTSEMIB

Realised Kernel

Mean 0.012 0.008 0.015 0.014 0.006 0.023 0.005 0.016 0.006 0.013
Std 0.021 0.014 0.021 0.032 0.011 0.038 0.014 0.032 0.009 0.020
Min 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000
Max 0.396 0.280 0.477 1.011 0.301 0.836 0.355 1.092 0.277 0.430
Kurt 70.8 86.7 116.4 326.3 202.1 137.1 185.1 354.5 283.4 113.6
Skew 6.6 7.3 8.1 14.1 10.7 9.5 11.2 13.8 12.0 7.9
#obs 4567 4490 4533 3901 4486 4388 3897 4543 3879 4524

Realised Variance

Mean 0.012 0.009 0.015 0.015 0.009 0.022 0.006 0.017 0.006 0.013
Std 0.020 0.016 0.021 0.043 0.018 0.035 0.015 0.033 0.009 0.021
Min 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000
Max 0.362 0.420 0.551 1.883 0.521 0.676 0.360 1.083 0.211 0.527
Kurt 65.55 159.41 155.21 926.50 259.78 126.35 193.61 312.79 180.63 140.69
Skew 6.40 9.53 9.14 24.42 12.55 9.29 11.63 13.08 10.29 8.69
#obs 4567 4490 4533 3901 4486 4388 3897 4543 3879 4524

Returns

Mean -0.042 -0.019 -0.050 0.023 0.037 0.003 -0.018 -0.026 -0.034 -0.056
Std 1.150 0.971 1.255 1.194 1.279 1.711 0.867 1.326 0.908 1.250
Min -8.416 -9.731 -7.585 -13.382 -8.262 -15.921 -7.717 -9.346 -7.706 -9.194
Max 9.237 8.681 13.037 7.130 9.953 13.251 6.476 8.267 9.472 8.231
Kurt 9.88 11.62 8.48 14.01 8.29 8.16 12.25 7.83 12.11 7.01
Skew -0.21 -0.31 -0.04 -1.01 0.00 -0.17 -0.62 -0.20 0.38 -0.27
#obs 4567 4490 4533 3901 4486 4388 3897 4543 3879 4524

Note. This table shows summary statistics for all employed indices. Full names and date ranges for the index
tickers can be found in appendix A.
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