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Abstract This paper extends on the methods provided by Pelletier & Wei (2015).

In the first part of the paper, we replicate the simulation-driven results where we

extend with empirical research in the second part. Opposed to the Historical Simu-

lation method used in Pelletier & Wei (2015), we create a set of risk specifications

derived from Wong et al. (2016). These specifications are exploited using two dis-

tinct methods of innovations inspired by the findings of Bao et al. (2007). We empir-

ically show that the Geometric-VaR test possesses high power against alternatives

within the framework for our empirical specifications. Additionally, we show that

parametrized GARCH specifications lead to better specified Value-at-Risk estima-

tions than the Historical Simulation approach does. Lastly, we show that GARCH

specifications with skewed innovations generally lead to better-specified Value-at-

Risk estimations than specifications that use a Filtered Historical Simulation instead.
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1 Introduction

In managing risk on daily returns it is useful to introduce certain terminology as a widely ac-

cepted measurement of risk. In light of the 1996 Risk Amendment in Basel, VaR (Value-at-Risk)

has become the general used toolkit to cope with measuring risk. It is defined as the maximum

loss that will not be exceeded over a period of time with a certain probability. Mathematically

it can thus be treated as a quantile of the conditional daily returns. For example, given a VaR

of 5% on returns for the next day, the probability that the realized daily return of the next day

will fall below this VaR value is equal to 5%.

These Value-at-Risk forecasts can be computed using a various set of estimation methods. In

back-testing these specifications, the ex-ante Value-at-Risk are compared with the ex-post daily

returns for each observation. If an actual realized daily return falls below the corresponding

Value-at-Risk forecast, it is denoted as a violation. The Value-at-Risk forecasts with coverage

rate p are said to be correctly specified if and only if the sequence of violations consist of in-

dependent and identically distributed Bernoulli random variables that share the same coverage

rate.

In formally testing whether these assumptions are harmed by the computed Value-at-Risk es-

timates, Pelletier & Wei (2015) provides us with a framework of tests on these properties and

assumptions. Within the framework, these assumptions can be tested both individually and

jointly. This testing framework is inspired by econometric literature from Christoffersen (1998),

Haas (2005), Candelon et al. (2010) and Berkowitz et al. (2011). Pelletier & Wei (2015) extends

to existing literature with the Geometric-VaR test, that tests both the Geometric- and the VaR

test jointly.

To calculate Value-at-Risk forecasts over a certain period, various methods have been provided

by common literature. The method that is most often used is Historical Simulation, as has been

shown in Pérignon & Smith (2010) where 73% of European Banks utilize Historical Simulation

as their method to calculate Value-at-Risk estimates. Besides the wide applicability, the method

of Historical Simulation is non-parametric and thus easy to implement. For these reasons, this

method is utilized by Pelletier & Wei (2015) in conducting their results. However, the method of

Historical Simulation implicitly assumes independence and identical distribution among returns.

These are assumptions that often do not hold.

We extend to other methods apart from the Historical Simulation that require parameter esti-

mation. Wong et al. (2016) provides a selection of risk specifications in order to obtain better-

specified Value-at-Risk estimates. We provide a selection of models that are inspired by these risk

specifications. The innovations of the parametrized risk models follow the skewed t-distribution

introduced by Hansen (1994).
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In addition to the specifications that possess skewed innovations, we utilize the same speci-

fications with another method that utilizes the Filtered Historical Simulation approach. This

method is inspired by Bao et al. (2007), that states that models with skewed innovations generally

perform better than models with non-skewed innovations. This finding is exploited in creating

two distinct methods. In addition to the method that utilizes the skewed t-distribution, we also

propose a method that utilizes Filtered Historical Simulation.

We obtain data from the Realized Library of the Oxford Man Institute of Quantitative Finance.

For the Swiss SMI, the Japanese NIKKEI and the American S&P500 we obtain daily returns

dating from the beginning of 2005 until the last daily observation of 2017.

With these data, we show that the Geometric-VaR test possesses higher power against a set

of various alternatives for our parametrized specifications. The parametrized risk specifications

lead to much better-specified Value-at-Risk estimation than the Historical Simulation method,

which is shown both graphically and using the methods provided by Dufour (2006). In addition

to these findings, we show that the Value-at-Risk estimation with skewed innovations lead to

better-specified Value-at-Risk estimation than the models with non-skewed innovations as in the

Filtered Historical Simulation approach.

The paper is built as follows. Section two walks through the methodology that is used in Pelletier

& Wei (2015) and can be read as a general walk-through. The third section further specifies the

testing framework and how the log likelihood is constructed for each test. In the fourth chapter

we provide information on the Simulation Studies. It provides an overview on how the data is

generated and how the Value-at-Risk forecasts are estimated in the replication of Pelletier &

Wei (2015). The fifth chapter gives a brief overview on the most important simulation-based

replications from the paper. The sixth section provides our empirical extension to the paper,

with corresponding graphs and tables in the appendix. The last chapter draws a conclusion out

of both the replication and our empirical addition to Pelletier & Wei (2015). It also provides

some recommendations for further research.

2 Methodology

2.1 Testing Framework

In this research we solely focus on one-step-ahead forecasts in estimating the Value-at-Risk. To

be more thorough an one-day-ahead Value-At-Risk with coverage rate p denotes a quantile for

which the actual realized daily return of the respective day is equal or less than this threshold

value with probability p. One-day-ahead Value-at-Risk forecasts are then denoted as follows.
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P[−∞ ≤ rt ≤ VaRt(p)|It−1] = p (1)

Here It−1 denotes the information set that captures all available information up until time t−1.

If equation (1) holds, the VaR forecast VaRt(p) is said to be efficient. After calculating the

Value-at-Risk estimates, we want to check for so-called violations. Violations occur when the

actual daily return is lower than the corresponding Value-at-Risk forecast for that respective

observation. Stated differently, we denote the violations such that:

It =

1, if rt ∈ (−∞,VaRt(p))

0, if rt /∈ (−∞,VaRt(p))
(2)

To extend the idea of efficiency, a Value-at-Risk forecast is efficient if and only if the violations

are independent and identically distributed Bernoulli random variables with coverage rate p.

Pelletier & Wei (2015) suggests to obtain durations such that the i-th duration is given as

Di = ti − ti−1, where ti denotes the time on which the i-th violation occurs. Under the null

hypothesis that the Value-at-Risk forecast is correctly specified, it follows that a sum of Bernoulli

distributed variables follows a geometric distribution.

P[Di = d] = p(1− p)d−1 (3)

Furthermore, Pelletier & Wei (2015) utilizes hazard functions for their testing framework. An

hazard function is denoted as:

λid =
f i(d)

Si(d)
(4)

Hence λid denotes the hazard function, f i(d) denotes the probability density function and Si(d)

denotes the survival function. For our binary results of violations we can write that:

f i(d) = P[Di = d] = λid(1− λid−1)...(1− λi1) (5)

Si(d) = P[Di ≥ d] = (1− λid−1)...(1− λi1) (6)

Combining both expressions for the probability density- and the survival function we obtain the

following expression for the hazard function.

λid = P(Iti+d = 1|Iti+d−1 = 0, ..., Iti+1 = 0, Iti+d−1) (7)

The hazard function is constant and equal to coverage rate p, if and only if both the Value-at-

Risk forecast is efficient and it has correct unconditional coverage.

The framework in Pelletier & Wei (2015) consists of the Correct Unconditional Coverage-, Du-

ration Independence-, VaR Independence-, Geometric-, VaR-, and the Geometric-VaR test. The

Geometric-VaR test is the extension of the paper to common literature. It utilizes the following

hazard function.
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λid = adb−1e−cVaRti+d (8)

Note that the Value-at-Risk estimates in the hazard function are positive. This hazard function

is sequentially implemented in the methodology after which we test on Correct Unconditional

Coverage, Duration Independence and VaR independence jointly. These tests can be evaluated

solely as well. The bounds on the parameters are given by 0 ≤ a < 1, 0 ≤ b ≤ 1 and c ≥ 0.

For some tests, we restrict certain parameters such that the hazard function will change. These

derivations are given later on in Section 3.

As the name already suggests, The Geometric-VaR is built on the Geometric- and the VaR test.

If the Geometric-VaR test is rejected, we can sequentially investigate whether its components

hold or not. If one of these two are rejected, we take a step further in the tree given in Figure

1 and see which of the properties do not hold. This results in an iterative framework.

Figure 1: Graphical insight in iterative testing procedure

Geometric-VaR Test

Geometric Test

Unconditional

coverage

Duration

Independence

VaR Test

VaR

independence

Unconditional

coverage

Note: This tree can be interpreted as an iterative testing procedure. The Geometric-VaR tests is built out of components

such as the Geometric Test and the VaR test. Sequentially, if the Geometric-VaR test is rejected we can iteratively check

which of its components are rejected. Each component consists of other components in a next, deeper layer until the third

one.

3 Test evaluation

It seems likely that the hit sequence does not start with a violation. Ignoring the first duration

is not the optimal choice, since this duration is informative in terms of the survival function and

the sample size is relatively small. If the sequence does not start with a violation, we know that

the first duration consists of at least the amount of observations until the first hit. Similarly,

if the the hit sequence does not end with a violation the last duration consists of at least the

amount of observations between the last violation and the end of the hit sequence. These dura-

tions are said to be left- and right censored respectively.

Assume that we have N durations. The sequence of durations is denoted by {Di}Ni=1. Apart from

the durations we conduct a sequence of censored durations {Ci}Ni=1. These censored durations are
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binary and equal to one if a duration is indeed censored. Only the first and the last observation

can be censored. We ultimately get the following likelihood function:

(9)

logL(D|Θ) = C1 logS1(D1) + (1− C1) log f1(D1)

+

N−1∑
i=2

log f i(Di) + CN logSN (DN ) + (1− CN ) log fN (DN )

Here, both the probability density function and the survival function are filled in using equations

(5) and (6) respectively. Θ contains all parameters [a, b, c, d] out of equation (8) or a subset of

those.

Given the null hypothesis of each test, we calculate the likelihood both under the null- and the

alternative hypothesis. A general form of the likelihood is then given by LR = −2(logL(D|Θ̂R)−
logL(D|Θ̂UR)). ΘR denotes set of constrained estimated parameters and ΘUR denotes the set

of unconstrained estimated parameters.

These LR tests are assumed to asymptotically follow chi-squared distributions. Pelletier & Wei

(2015) however, only uses relatively small samples. For a sample consisting of 500 observations

with Value-at-Risk coverage rate equal to one percent, we expect to only obtain five violations

under the null hypothesis of correct specification. Thus we expect to get such a small amount

of durations, that asymptotic properties do not seem to hold.

To cope with this difficulty, Pelletier & Wei (2015) opts to use the Monte Carlo simulation

techniques as introduced in Dufour (2006). We generate a large amount of data replications

under the null hypothesis, to create simulated distributions for each test. Critical values are

sequentially deducted from these simulated distributions. Thus we calculate p-values according

to Dufour (2006), given by:

p̂N (LR0) =
NĜ(LR0) + 1

N + 1
(10)

ĜN (LR0) is given by the following formula:

ĜN (LR0) = 1− 1

N

N∑
i=1

1(LRi ≤ LR0) +

N∑
i=1

1(LRi = LR0)1(Ui ≥ U0) (11)

LRi denotes the test statistics of the i-th replication under the null hypothesis, LR0 denotes

the test statistics from the sample and 1(∗) denotes an indicator function. If the test statistic

of the i-th replication is equal to the sample test statistic, we draw an uniform number Ui and

compare it to the uniform number drawn at the sample test statistic U0. This contribution is

denoted in the last part of the formula in equation (11).
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3.1 Brief Overview

In the following section we provide a summary on how the log-likelihood is evaluated in terms

of the hazard function for each test. These hazard functions are derived from equation (4).

3.1.1 Correct Unconditional Coverage

With the Correct Unconditional Coverage test, we test H0 : a = p vs. Ha : a 6= p. We assume

that b = 1 and c = 0, such that the hazard function simplifies to λ = a. We drop the subscripts

i and d here. The log-likelihood is given by LRUC = −2(logL(D|a = p, b = 1, c = 0) −
logL(D|â, b = 1, c = 0)).

3.1.2 Duration Independence

To test for Duration Independence, we set H0 : b = 1 vs. Ha : b < 1. We assume that c = 0.

The hazard function simplifies to λd = adb−1 such that log-likelihood can be computed with

LRDind = −2(logL(D|â, b = 1, c = 0)− logL(D|â, b̂, c = 0)).

3.1.3 VaR Independence

For VaR-Independence we test H0 : c = 0 vs. Ha : c > 0. We make no further assumptions

about the parameters, such that the hazard function is evaluated such as in equation (8). The

test statistic is sequentially evaluated as LRVind = −2(logL(D|â, b̂, c = 0)− logL(D|â, b̂, ĉ)).

3.1.4 Geometric Test

For the Geometric test, the null hypothesis H0 : a = p AND b = 1 is tested against the al-

ternative hypothesis of Ha : a 6= p OR b < 1. The corresponding test statistic is given by

LRG = −2(logL(D|a = p, b = 1, c = 0) − logL(D|â, b̂, c = 0)). This corresponds to the sum

of its third layer components, such that LRGV = LRUC + LRDind + LRVind.

3.1.5 VaR test

For the VaR test, we assume Duration Independence amongst the durations such that b = 0.

Specifically, the hypothesis H0 : a = p AND c = 0 is tested against the alternative of Ha : a 6=
p OR c > 0. The corresponding test statistic is obtained by LRV = −2(logL(D|a = p, b =

1, c = 0)− logL(D|â, b = 1, ĉ)).

3.1.6 Geometric-VaR test

The final test within the framework of Pelletier & Wei (2015) is used to evaluate the Geometric-

and VaR test jointly. We test the null hypothesis H0 : a = p AND b = 1 AND c = 0 against

the alternative hypothesis such that H0 : a 6= p OR b < 1 OR c > 0. Thus the test statistic

can be evaluated such that LRGV = −2(logL(D|a = p, b = 1, c = 0) − logL(D|â, b̂, ĉ)). This

corresponds to the sum of its three components, namely LRGV = LRUC + LRDind + LRVind.
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4 Simulation Studies

4.1 Data Generating Process

Pelletier & Wei (2015) utilizes NGARCH-t(d) specifications according to past literature, on

which it executes its testing framework. The NGARCH-t(d) process allows for the leverage

effect, volatility clustering and more extreme returns by using a t-distribution instead of a

standard normal function. To be more precise, the data is generated using the following set of

equations:

Rt+1 = σt+1

(d− 2

d

)1/2
zt+1 (12)

σ2t+1 = ω + ασ2t

((d− 2

d

)1/2
zt − θ

)2

+ βσ2t (13)

zt follows the t(d)-distribution. The unconditional variance is given by ω(1− α(1 + θ2)− β)−1,

while α(1+θ)2+β denotes the volatility persistence. In other words, the volatility persistence is

interpreted as the memory in volatility. High persistence results in future volatility that strongly

depends on previous values of volatility. Pelletier & Wei (2015) distinguishes four business lines

with their corresponding parameters. They are given in the table below:

Table 1: Business Lines provided by Pelletier & Wei (2015)

Business Line 1 Business Line 2 Business Line 3 Business Line 4

d 3.808 3.318 6.912 4.702

θ -0.245 0.503 -0.962 0.093

β 0.749 0.928 0.873 0.915

α 0.155 0.052 0.026 0.072

ω 0.550 0.215 0.213 1.653

Note: In this table each column represents the parameters of each theoretical business line.

d denotes the degrees of freedom. θ is used to implement the leverage effect. If θ is positive,

future volatility is stronger caused by negative returns than it is by positive ones.

4.2 Value-at-Risk Estimation

Unless stated differently, the method of Value-at-Risk estimation on which the tests are back-

tested is the Historical Simulation approach. As mentioned before, Historical Simulation has the

advantage of being non-parametric and thus easy to implement. In calculating one-step-ahead

Value-at-Risk forecasts, we calculate the value of the p-th quantile over a rolling window. Thus,

the estimate for the one-step-ahead forecast is given by the following formula. Te denotes the

length of the rolling window.

VaRHS
t+1 = quantile({Ri}ti=t−Te+1, p) (14)
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5 Replication

5.1 Size of the Duration-based Tests

This section in Pelletier & Wei (2015) shows why the simulation method in Dufour (2006) is de-

sired to control the size of the duration-based tests. We generate data following a NGARCH-t(d)

process with parameters equal to [d, θ, β, α, ω] = [10, 0, 0.93, 0.05, 0.21]. Using these estimated

returns and variances, we estimate Value-at-Risk estimates using the conditional distribution of

the returns. Thus, the Value-at-Risk estimates are obtained using the following equation.

VaRt = σt

(√
d− 2

d

)
zt (15)

σt denotes the conditional standard deviation of the NGARCH-t(d) process,
√

d−2
d is used to

scale the estimates to the corresponding degrees of freedom of the t(d)-distribution. After ob-

taining the Value-at-Risk estimates and the generated returns, we compute the corresponding

violations using framework 2.

The results are given in Table 2, where we test on 10% Duration-based tests. The table provides

two sets of critical values. The asymptotic chi-squared critical values are given by χ2
(1−α),ν .

ν denotes the respective degrees of freedom per test and α is equal 0.10 to obtain the desired

quantile. The first three tests asymptotically have one degree of freedom, the Geometric and the

VaR test have two degrees of freedom and the Geometric-VaR test has three degrees of freedom.

The simulated critical values are obtained somewhat differently and sequentially show the need

for Dufour (2006). For T = 50, 000 we generate a sequence of independent and identically dis-

tributed Bernoulli random variables with parameter p being equal to the Value-at-Risk coverage

rate. Additionally, we generate Value-at-Risk estimates out of an independent NGARCH-t(d)

process with the parameters as described above. The asymptotic chi-squared critical value is

calculated as the 90% percentile out of 10,000 replications.
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Table 2: Size of 10% Duration-based tests applied to 5% VaR

Sample UC Duration VaR ind. Geometric VaR GV

Size ind.

Using chi-squared asymptotic critical values

250 0.146 0.027 0.047 0.063 0.083 0.048

500 0.118 0.033 0.052 0.071 0.086 0.050

750 0.127 0.037 0.049 0.059 0.076 0.053

1000 0.101 0.035 0.053 0.062 0.074 0.042

1250 0.105 0.035 0.051 0.062 0.078 0.046

1500 0.102 0.039 0.052 0.059 0.069 0.051

Using simulated test statistics T = 50, 000

250 0.146 0.066 0.217 0.105 0.157 0.144

500 0.118 0.072 0.195 0.109 0.152 0.130

750 0.100 0.075 0.181 0.095 0.137 0.136

1000 0.101 0.073 0.168 0.110 0.134 0.128

1250 0.105 0.790 0.164 0.104 0.129 0.122

1500 0.102 0.081 0.156 0.097 0.125 0.120

Simulated critical value

2.716 1.601 1.662 3.763 3.820 4.774

Asymptotic chi-squared critical value

2.706 2.706 2.706 4.605 4.605 6.251

Note : We generate Bernoulli i.i.d. and an independent NGARCH process to

calculate Value-at-Risk estimates. The entries in the table correspond to the

rejection frequency of each test out of 10,000 replications. The first part uses the

asymptotic chi-squared value as critical value. The second part uses the simulated

critical value as the critical value of the rejections.

As can be concluded from the results in Table 2, the test statistics are not chi-squared under

the null. The respective critical values differ from the chi-squared distribution and this problem

can be solved by using the Monte Carlo method of Dufour (2006).

5.2 Finite sample power of each test

In this respective section of Pelletier & Wei (2015), the paper mimics the finite sample power of

each test when the Value-at-Risk is misspecified using Historical Simulation. This procedure is

executed for each theoretical business line provided in Table 1 and for each sample size, where

the sample size varies from 250 to 1500. In using Historical Simulation we utilize a rolling win-

dow consisting of Te = 250 observations.

For each entry, we generate T + Te returns using the parameters of the corresponding business
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line. The Value-at-Risk estimates are obtained using Historical Simulation. We obtain test

statistics LR0 out of the sample and add the CaViaR test of Engle & Manganelli (2004) with

a logistic distribution for the error terms. Its respective regressors are given by a constant, the

lagged hit and the lagged Value-at-Risk estimate.

We generate independent and identically distributed Bernoulli random variables and Value-at-

Risk estimates of an independent NGARCH-t(d) process with the same parameters such that

we obtain the test statistics {LRi}9999i=1 . These are to be held constant. Additionally, we calcu-

late sample test-statistics LR0 using Historical Simulation. We calculate p-values in line with

equation 10, such that the entries in the table correspond to the rejection frequency of p-values

that fall below 10% significance on 5000 replications.

The results are given in 6 and 7 respectively. On the 10% Duration Tests on 5% Value-at-Risk

estimates we get fairly similar results and the same conclusions hold as in Pelletier & Wei (2015).

For the 1% Value-at-Risk estimates on 10% Duration Tests we get more volatile results. For

larger sample sizes, the obtained values are close. For smaller sample sizes, the values can differ.

This could be due to the limited amount of simulations that we do. Whereas Pelletier & Wei

(2015) does 5000× 9999 simulations, we execute 5000 + 9999 simulations.

6 Extension

Besides the theoretical findings of Pelletier & Wei (2015) we want to give a more tangible, em-

pirical extension on real-life data. As Pérignon & Smith (2010) states that Historical Simulation

only shows very little information about future volatility, we would like to investigate whether

the Geometric-VaR test shows high power for other Value-At-Risk specifications. If so, can

we sequentially choose better-specified Value-at-Risk estimation methods than the approach of

Historical Simulation. In selecting the best specified model, we use the framework provided by

Pelletier & Wei (2015).

6.1 Models

Besides the Historical Simulation approach, we provide a selection of models out of common

econometric literature. These models are specified according to the following framework.

1. rt = εt

2. σ2t = σ2(V|It−1)

3. εt = σtzt, zt ∼ skT(0, 1; ξ, ν)

V represents the corresponding set of parameters conditional on the information set on time
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t−1. The standardized innovations zt follow the skewed t-distribution first proposed by Hansen

(1994). The probability density function of the skewed t-distribution is as follows.

f(zt; ξ, ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√
π(ν − 2)

( 2s

ξ + ξ−1

)(
1 +

szt +m

ν − 2
ξ−dt

)−(ν+1)/2
(16)

Here ξ denotes the asymmetry parameter, ν denotes the tail thickness and Γ(∗) represents the

gamma function. Note that in equation (16) dt = 1 if zt ≥ −m/s and dt = −1 otherwise. m and

s respectively represent the mean and the variance of the distribution where the corresponding

formulas are given below.

m =
Γ((ν + 1)/2)

√
ν − 2

Γ(ν/2)
√
π

(ξ − ξ−1), s =
√
ξ2 + ξ−2 − 1−m2 (17)

We implement two methods on the the parametrized risk specifications. First we execute the

following procedure. The first step is, given our rolling window {rt−i}ti=t−Te+1, to approximate

the parameters (V(t), ξ(t), ν(t)). These are used to obtain the one-step-ahead forecast of the

conditional variance σ̂2t+1|t. We then compute the Value-at-Risk forecast using the following

formula.

VaR
(1−p)
t|t−1 = fp(zt; ξ

(t), ν(t))σ̂t+1|t (18)

σ̂t+1|t denotes the estimated conditional standard deviation and fp(zt; ξ
(t), ν(t)) corresponds to

the p-th quantile of the skewed t-distribution with estimated parameters equal to ν(t) and ξ(t).

Secondly we also introduce another method to calculate Value-at-Risk estimates. We utilize a

Filtered Historical Simulation method on the parametrized GARCH specifications, which are to

be described in Section 6.1.1. For each rolling window, we utilize the standardized residuals.

We then compute the one-step-ahead forecast of the Value-at-Risk using the following equation.

VaR
(1−p)
t|t−1 = σt|t−1quantile({ẑi}ti=t−Te+1, p), ẑi =

ri
σ̂i

(19)

6.1.1 Specifications of Conditional Variance

The one-step-ahead forecast of the conditional variance in (18) is estimated using a diverse set

of methods inspired by the models proposed in Wong et al. (2016). We denote the following

specifications for the conditional variance in Table 3.
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Table 3: GARCH Specifications of Conditional Variance

Model Specification of σ2t

RiskMetrics σ2t = 0.06ε2t−1 + 0.94σ2t−1

IGARCH(1,1) σ2t = ω + αε2t + (1− α)σ2t−1

GARCH(1,1) σ2t = ω + αε2t + βσ2t−1

EGARCH(1,0,1) σ2t = exp{ω + αzt−1 + γ(|zt|−E[zt]) + βln(σ2t−1)}
TGARCH(1,1,1) σ2t = ω + αε2t−1 + γ1(εt−1 < 0)ε2t−1 + βσ2t−1

Note : This table contains all specifications for the conditional variance used in the

Extension. Further details on each model are provided in the text.

The RiskMetrics approach has been introduced by Morgan et al. (1996), with fixed short-memory

parameters [α, β] = [0.06, 0.94]. Its conditional variance can be obtained recursively by formula

σ̂2t = λσ̂2t−1+(1−λ)(rt−1− r̄t)2. The first part of the formula denotes the persistence in volatility

and the second part denotes the update in the first factor and the reaction in the second factor.

r̄t = 1
Te

∑Te
i=1 rt−i denotes the mean return over the rolling window.

The other models are all derivations of the GARCH model as proposed by Bollerslev (1986). The

sum of the short-memory parameters of the GARCH model is less than 1, such that the process

is covariance stationary. The IGARCH model is defined such that the sum of the short-memory

parameters is equal to 1, but they are able to move freely within this constraint. The RiskMet-

rics approach falls within the scope of the IGARCH models. The EGARCH(1,0,1) proposed

by Nelson (1991) automatically takes the leverage effect into account. The model allows for

asymmetric effects for both negative and positive shocks due to the logarithmic transformation.

Besides, the EGARCH model has the advantage of not needing further restrictions in obtaining

positive estimates of the conditional variance. Lastly, the TGARCH(1,1,1) model extends to

the GARCH model with taking the leverage effect into account as an extra dependent variable

1(εt−1 < 0)ε2t−1. The model is covariance stationary if the (α+ γ)/2 + β < 1.

6.2 Empirical Data

In showing whether the Geometric-VaR test shows more power and to see which method performs

best, we analyze daily returns on the Japanese NIKKEI-225 index, the American S&P-500 index

and the Swiss SMI index. The daily data is obtained out of the Realized Library of the Oxford

Man Institute of Quantitative Finance. Out of the obtained data from the Realized Library we

compute the daily returns using the following formula. Note that Pt corresponds to the closing

price of day t.

rt = 100× ln
( Pt
Pt−1

)
(20)

The first in-sample date for the rolling window starts at the first available observation in 2005.

The size of the rolling window we obtain is given by Te = 1000 for the GARCH specifications,

which is compared to the Historical Simulation method with a rolling window consisting of 250
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observations. The out-of-sample period roughly starts at the end of 2008, until the last available

observation of 2017. This out-of-sample period is divided in a 2008-2013 sample, which we refer

to as the crisis period, and a 2013-2017 sample. This latter period is referred to as the post-crisis

period. Lastly, we take the whole sample altogether. Table 4 contains the summary statistics

for the three indices.

Table 4: Summary statistics on daily returns

Mean Standard Skewness Kurtosis Jarque-Bera Observations

Deviation

2008-2017

SMI 0.023 1.004 -0.598 8.774 3286.119 2268

NIKKEI 0.046 1.394 -0.433 7.626 2018.772 2187

S&P500 0.049 1.041 -0.295 8.235 2626.063 2271

2008-2013

SMI 0.028 1.076 -0.232 5.752 368.116 1134

NIKKEI 0.052 1.463 -0.617 7.506 995.114 1094

S&P500 0.054 1.271 -0.250 6.694 657.695 1136

2013-2017

SMI 0.019 0.926 -1.163 13.723 5688.659 1134

NIKKEI 0.041 1.322 -0.182 7.623 980.751 1093

S&P500 0.045 0.743 -0.405 6.155 501.908 1135

Note: This table contains the summary statistics the Swiss SMI index, the Japanese NIKKEI-225

index and the American S&P500 on the range of data given in the text. Stylized facts of returns seem

to hold, since we have negative skewness and excess kurtosis. Normality among the daily returns does

not hold.

6.3 Results

To provide empirical insights in the section of data, we follow the methods provided in the

Extension section. For the SMI index we obtain the following summary statistics on the Value-

at-Risk estimates in Table 5.
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Table 5: Summary statistics 5% Value-at-Risk estimates

UWMA EWMA IGARCH GARCH EGARCH TGARCH

(1,1) (1,1) (1,0,1) (1,1,1)

SMI Skewed t-distribution

Mean -1.797 -1.673 -1.672 -1.628 -1.622 -1.616

St. Dev. 0.726 0.698 0.696 0.640 0.613 0.736

Violations 102 109 108 118 113 106

Coverage rate 0.045 0.048 0.048 0.052 0.050 0.047

Filtered Historical Simulation

Mean .. -1.676 -1.675 -1.671 -1.657 -1.622

St. Dev. .. 0.710 0.709 0.659 0.637 0.751

Violations .. 110 110 105 107 103

Coverage rate .. 0.049 0.049 0.046 0.047 0.045

Note: This table denotes the mean, standard deviation, the amount of violations and the coverage rate for

each model proposed in the Models section and for each dataset as has been proposed in the Data section for

the 5% Value-at-Risk estimates. The first part of the table denotes the results for the methods that involve the

skewed t-distribution. The second part denotes the results for the methods that utilize the Filtered historical

simulation method. UWMA denotes the Historical Simulation method and EWMA denotes the RiskMetrics

approach.

Summary statistics on both the NIKKEI and the S&P500 index can be found in the appendix

at Table 9 and 10 respectively. Besides the summary statistics on each index, we also provide

plots on the Value-at-Risk methods and plots of the mean coverage rate in the appendix. For

the Value-at-Risk plots, the first subplot corresponds to the Historical Simulation method. The

blue line corresponds to the daily returns and the red line corresponds to the Value-at-Risk

estimated by Historical Simulation. For the other five subplots per index, the blue line corre-

sponds to the daily returns, the red line corresponds to the respective method that involves the

skewed t-distribution and the yellow line corresponds to the corresponding method that utilizes

the Filtered Historical Simulation method.

We can clearly see how the Value-at-Risk methods correspond to the movement in daily returns.

The lines of the skewed t-distribution and the Filtered Historical Simulation slightly coincide,

since they roughly follow the same track. It is clear that the parametrized GARCH specifications

seem to better capture volatility than the Historical Simulation method does. They thoroughly

follow the silhouette of the daily returns. The Historical Simulation method however, fails to

follow the movement on the daily returns and therefore seems to fail in capturing the daily

volatility properly.

This finding is further illustrated with the provided plots of the mean coverage rate, given in the

appendix. All subplots on the left side show the mean coverage rate of the skewed t-distribution
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methods. The subplots on the right side show the mean coverage rate of the filtered Historical

Simulation methods. The results of the Historical Simulation approach correspond to the navy

line in each graph, where the other lines correspond to the respective parametrized GARCH

specifications. We can clearly see that the Historical Simulation method provides the least sta-

ble mean coverage rate, and only slowly converges to values close to 5% coverage.

Apart from these findings, we conduct the method provided in Dufour (2006). We analyze for 5%

Value-at-Risk estimates, where we follow a similar procedure as in the section of Finite Sample

power. To emulate independent Value-at-Risk estimates, we utilize a bootstrap method on the

Value-at-Risk estimates from the sample. Each bootstrap has a length equal to five observations,

which corresponds to one week of trading. We opt to bootstrap sequential observations instead

of a singular bootstrap method to allow for volatility clustering.

The results of the Historical Simulation Dufour (2006) p-value approach are provided in Table

11. The results of the parametrized models are given in Table 12 until 17 for both the skewed-t

distributed- and Filtered Historical Simulation models. The entries behind a ’I’ in these tables

correspond to the respective sample test statistics, where the entries behind a ’II’ correspond to

the respective Dufour (2006) p-values of the corresponding method.

For the Historical Simulation approach, we see that the Correct Unconditional Coverage test

is only rejected twice at a 5% significance level. This is caused by the slow convergence of

the empirical mean coverage rate to the desired rate. However, the method scores poorly on

the other tests within the framework. The Duration Independence- and the Geometric test are

rejected in all cases, where the Value-at-Risk Independence and the VaR test hold only three

and two times respectively. The Geometric-VaR test shows most power of the tests within the

framework, with all p-values below 5%. As a result of this finding, we can conclude that the His-

torical Simulation leads to misspecified Value-at-Risk estimates for all indices. The CaViaR test

holds twice, which only contradicts the conclusion of misspecified Value-at-Risk in two occasions.

First we analyze the SMI index. The Correct Unconditional Coverage Test is never rejected,

neither for the skewed-t distributed methods nor for the Filtered Historical Simulation methods.

The same holds for the Duration Independence test. Testing both properties jointly on the

Geometric Test also leads to zero rejections. The VaR Independence test is only rejected for a

few samples where the RiskMetrics approach (EWMA) is executed. The same scenario holds for

the VaR Test. The Geometric-VaR does not reject for any model specification that has not been

rejected yet by one of the other tests of the framework in Pelletier & Wei (2015). It even holds

for all RiskMetrics specifications in the Crisis and Post-Crisis period, which were rejected on

the VaR Independence test or the VaR Test. Hence, the Geometric-VaR test does not uniformly

show most power in all samples. The CaViaR p-values are lower in all cases, resulting in the

CaViaR test showing more power than the Geometric-VaR test. A similar analysis can be made
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for both the NIKKEI and the S&P500 index.

Secondly, the NIKKEI index. In contrast to the results on the SMI index, most Dufour (2006)

p-values for the skewed t-distributed methods are higher than the ones of the respective methods

that utilize Filtered Historical Simulation. The Geometric-VaR shows most power in most cases,

but occasionally generates higher p-values in some cases where it is undermined by the Duration

Independence Test and the VaR Independence test. The Geometric-VaR test is rejected for all

methods over the whole sample. The Geometric-VaR test fails to reject when tests in the third

layer in Figure 1 are rejected for the small samples. However, the Geometric-VaR test never

holds if one of its components in the second layer in Figure 1 are rejected. In contrast to the

SMI index, the CaViaR Test uniformly generates higher p-values than the Geometric-VaR test

and therefore conducts less power.

Lastly the S&P500 index. As with the NIKKEI index, the p-values for the skewed t-distributed

methods are in general higher than the ones of the respective Filtered Historical Simulation

methods. The property of correct unconditional coverage is only rejected once. For the skewed

t-distributed methods, the Geometric-VaR Test is only rejected during the Post-Crisis period for

the RiskMetrics approach. In contrast to the NIKKEI, we find a case where the Geometric-VaR

tests holds even though one of its second-layer components is rejected. This is for the GARCH

model in the Post-Crisis period. This is also the case with the Filtered Historical Simulation

TGARCH model in the Crisis period. Furthermore, the Geometric-VaR test is rejected for

most methods that utilize the Filtered Historical Simulation approach. The Geometric-VaR

test uniformly shows more power than the CaViaR test, with all p-values falling below the

p-values of the respective CaViaR test.

7 Conclusion and Recommendations

Value-at-Risk is the common used measurement of risk by practitioners, institutions and aca-

demics. The back-testing framework however, was limited. In relatively old literature by

Christoffersen (1998), we could only tests for Duration Independence and Unconditional Cover-

age. This testing framework was rapidly extended. Pelletier & Wei (2015) ultimately provides a

framework where properties could be tested jointly in combination with the property of Value-

at-Risk independence.

In the first part of this paper we replicated the Monte Carlo methods Pelletier & Wei (2015)

which utilizes the framework provided by Dufour (2006). In most cases the Geometric-VaR test

seems to conduct more power than other tests within the framework. It even shows more power

than tests such as the CaViaR test proposed in Engle & Manganelli (2004).

In addition to the above, we conducted an empirical research as extension to the paper. We
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analyzed the Swiss SMI, the Japanese NIKKEI and the American S&P500 index. With this

research we showed that the Geometric-VaR test indeed possesses high power against various

alternatives. In general, it shows most power in back-testing the Historical Simulation method,

which scores abysmal on the tests within the framework. This can also be observed by a lacking

ability to follow the silhouette of the daily returns and a generally slowly convergence of the

mean coverage rate.

We further extended on several other methods to see whether the Geometric-VaR test would still

conduct high power or not. We introduced parametrized models inspired by the risk framework

in Wong et al. (2016), where the innovations follow a skewed t-distribution. The methods were

further extended with a Filtered Historical Simulation approach, inspired by the findings in Bao

et al. (2007). This paper states that methods with skewed innovations in general score better

than methods that do not possess skewed innovations.

In terms of containing most power, the Geometric-VaR test shows high power when one of its

second-layer components of Figure 1 is rejected. When either the VaR Test or the Geometric

Test is rejected, the Geometric-VaR Test is rejected as well in most cases. The Geometric-VaR

Test however fails to reject sometimes, when one of its third-layer components is rejected. How-

ever, the Geometric-VaR test generally possesses high power and the results are in line with

both the theoretical- and empirical findings of Pelletier & Wei (2015).

For the Japanese NIKKEI and the American S&P500, we can conclude that the methods that

utilize skewed innovations indeed perform better in general. For the SMI we were not able to

draw such a strong conclusion about which innovation-driven set of methods scored better. In

choosing an optimal model for obtaining the Value-at-Risk, Historical Simulation does not seem

adequate. Within the set of parametrized methods, the RiskMetrics approach scores the worst

in general. Among the other methods we can not find an inferior method.

As recommendations for further research, one could investigate whether the implementation of

intra-day data leads to better-specified Value-at-Risk estimates than the model specifications

we exploited do. One could also investigate other methods of estimating Value-at-Risk, where

normality or a general t-distribution holds amongst the standardized innovations.

As other recommendations to our research, one could use another set of explanatory variables

in fulfilling the CaViaR test and see whether this provides different results or not. Another

suggestion would be to include other explanatory variables in the hazard function of each test.

We could also differ the approach of how we look at Value-at-Risk. For example, we only look at

violations where the actual daily return falls below the Value-at-Risk estimation. However, the

magnitude of exceedance can also be informative of how Value-at-Risk specifications perform.
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Lopez (1997), Berkowitz (2001) and Colletaz et al. (2013) propose research on this topic which

could also be used for further research.

19



Appendix

Table 6: Power of 10% Duration Test applied to 1% VaR estimates

Sample UC Duration VaR ind. Geometric VaR GV. CaViaR

Size ind.

Business Line 1

250 0.103 0.368 0.232 0.217 0.273 0.238 0.433

500 0.039 0.360 0.511 0.214 0.311 0.415 0.524

750 0.033 0.496 0.674 0.255 0.409 0.564 0.632

1000 0.086 0.560 0.768 0.367 0.549 0.739 0.713

1250 0.109 0.700 0.828 0.476 0.674 0.826 0.795

1500 0.128 0.738 0.892 0.547 0.763 0.882 0.840

Business Line 2

250 0.180 0.309 0.201 0.257 0.239 0.284 0.477

500 0.094 0.487 0.440 0.294 0.301 0.441 0.529

750 0.103 0.609 0.603 0.431 0.424 0.615 0.606

1000 0.186 0.669 0.664 0.486 0.561 0.737 0.663

1250 0.230 0.745 0.715 0.559 0.616 0.808 0.722

1500 0.277 0.791 0.774 0.651 0.711 0.874 0.792

Business Line 3

250 0.051 0.157 0.376 0.070 0.052 0.086 0.344

500 0.013 0.152 0.654 0.038 0.138 0.158 0.399

750 0.008 0.158 0.802 0.049 0.396 0.346 0.502

1000 0.025 0.151 0.868 0.045 0.537 0.519 0.604

1250 0.031 0.148 0.922 0.042 0.684 0.679 0.704

1500 0.041 0.151 0.952 0.058 0.796 0.773 0.773

Business Line 4

250 0.178 0.333 0.197 0.164 0.243 0.272 0.522

500 0.100 0.556 0.455 0.350 0.322 0.479 0.555

750 0.124 0.679 0.588 0.498 0.433 0.658 0.631

1000 0.223 0.752 0.686 0.585 0.582 0.791 0.721

1250 0.283 0.821 0.746 0.648 0.701 0.873 0.773

1500 0.296 0.843 0.789 0.716 0.738 0.881 0.820

Note: This table provides the results of the Duration tests of Pelletier & Wei (2015) for 1%

Value-at-Risk estimates out of Historical Simulation. How each entry is determined is clarified

in the text.
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Table 7: Power of 10% Duration Test applied to 5% VaR estimates

Sample UC Duration VaR ind. Geometric VaR GV. CaViaR

Size ind.

Business Line 1

250 0.155 0.475 0.313 0.349 0.267 0.423 0.423

500 0.062 0.679 0.646 0.472 0.462 0.693 0.510

750 0.037 0.783 0.796 0.612 0.625 0.842 0.598

1000 0.024 0.860 0.856 0.703 0.716 0.913 0.692

1250 0.019 0.908 0.911 0.790 0.794 0.954 0.771

1500 0.016 0.938 0.943 0.825 0.854 0.978 0.859

Business Line 2

250 0.351 0.452 0.358 0.506 0.506 0.579 0.578

500 0.227 0.706 0.614 0.622 0.626 0.776 0.651

750 0.182 0.828 0.698 0.746 0.700 0.876 0.667

1000 0.170 0.895 0.753 0.809 0.751 0.934 0.720

1250 0.158 0.933 0.800 0.860 0.797 0.963 0.767

1500 0.153 0.962 0.813 0.907 0.836 0.983 0.824

Business Line 3

250 0.059 0.133 0.399 0.075 0.135 0.138 0.289

500 0.015 0.147 0.709 0.050 0.295 0.271 0.374

750 0.005 0.152 0.857 0.056 0.475 0.447 0.443

1000 0.004 0.155 0.922 0.045 0.674 0.638 0.531

1250 0.002 0.164 0.957 0.048 0.778 0.726 0.617

1500 0.002 0.178 0.979 0.051 0.861 0.819 0.832

Business Line 4

250 0.343 0.504 0.361 0.519 0.488 0.595 0.579

500 0.216 0.760 0.638 0.660 0.643 0.814 0.627

750 0.176 0.865 0.719 0.782 0.713 0.901 0.698

1000 0.159 0.928 0.774 0.864 0.769 0.953 0.737

1250 0.155 0.961 0.835 0.905 0.831 0.976 0.801

1500 0.145 0.977 0.850 0.943 0.877 0.987 0.845

Note: This table provides the results of the Duration tests of Pelletier & Wei (2015) for 5%

Value-at-Risk estimates of Historical Simulation. How each entry is determined is clarified in

the text.
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Table 8: Feasibility proportion for each test

VaR Sample Geometric Geometric-VaR

Coverage Size Test Test

Rate

Business Line 1

1% 250 0.8054 0.6144

1% 500 0.9932 0.9756

1% 750 0.9998 0.9996

5% 250 0.9996 0.9986

Business Line 2

1% 250 0.7386 0.5768

1% 500 0.9864 0.9554

1% 750 0.9998 0.9982

5% 250 0.9890 0.9770

Business Line 3

1% 250 0.7952 0.6106

1% 500 0.9984 0.9890

1% 750 1.0000 1.0000

5% 250 1.0000 1.0000

Business Line 4

1% 250 0.7604 0.5858

1% 500 0.9880 0.9574

1% 750 0.9992 0.9982

5% 250 0.9932 0.9832

Note: This table denotes the fraction of feasibility for each

test. The selection criteria that have been chosen are more

than two durations for the Geometric test and more than three

durations for the Geometric-VaR test.
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Table 9: Summary statistics 5% Value-at-Risk estimates NIKKEI

Historical RiskMetrics GARCH EGARCH TGARCH IGARCH

Simulation (1,1) (1,0,1) (1,1,1) (1,1)

NIKKEI Skewed t-distribution

Mean -2.475 -2.386 -2.385 -2.317 -2.299 -2.277

St. Dev. 0.919 0.871 0.870 0.771 0.680 0.839

Violations 89 97 102 100 101 96

Coverage rate 0.041 0.044 0.047 0.046 0.046 0.044

Filtered Historical Simulation

Mean .. -2.398 -2.396 -2.373 -2.353 -2.255

St. Dev. .. 0.883 0.882 0.810 0.723 0.846

Violations .. 94 98 94 93 99

Coverage rate .. 0.043 0.045 0.043 0.043 0.045

Note: This table denotes the mean, standard deviation, the amount of violations and the coverage rate for each model

proposed in the Models section and for each dataset as has been proposed in the Data section for the 5% Value-at-Risk

estimates.

Table 10: Summary statistics 5% Value-at-Risk estimates S&P500

Historical RiskMetrics IGARCH GARCH EGARCH TGARCH

Simulation (1,1) (1,1) (1,0,1) (1,1,1)

S&P500 Skewed t-distribution

Mean -1.905 -1.700 -1.697 -1.669 -1.674 -1.679

St. Dev. 1.114 0.873 0.869 0.849 0.862 0.945

Violations 94 99 101 102 105 102

Coverage rate 0.041 0.044 0.045 0.045 0.046 0.045

Filtered Historical Simulation

Mean .. -1.774 -1.772 -1.770 -1.762 -1.737

St. Dev. .. 0.986 0.982 0.962 0.951 1.002

Violations .. 96 96 89 92 95

Coverage rate .. 0.042 0.042 0.039 0.041 0.042

Note: This table denotes the mean, standard deviation, the amount of violations and the coverage rate for each model

proposed in the Models section and for each dataset as has been proposed in the Data section for the 5% Value-at-Risk

estimates.
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Table 11: Empirical Results: Historical Simulation on three indices

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

SMI

2008-2017
I 1.457 50.893 16.650 52.349 32.218 68.990 39.1000

II 0.217 0.000 0.000 0.000 0.000 0.000 0.000

2008-2013
I 0.128 34.929 22.509 35.056 40.850 57.565 38.952

II 0.729 0.000 0.000 0.000 0.000 0.000 0.000

2013-2017
I 2.226 17.296 1.741 19.522 6.011 21.263 11.020

II 0.148 0.000 0.092 0.000 0.038 0.000 0.005

NIKKEI

2008-2017
I 4.648 29.406 12.177 34.054 19.316 46.230 23.900

II 0.035 0.000 0.000 0.000 0.000 0.000 0.000

2008-2013
I 2.790 21.968 14.847 24.758 27.182 39.604 26.992

II 0.099 0.000 0.000 0.000 0.000 0.000 0.000

2013-2017
I 2.293 8.505 0.737 10.798 2.341 11.535 4.105

II 0.138 0.000 0.199 0.003 0.234 0.005 0.129

S&P500

2008-2017
I 4.124 36.572 7.471 40.695 17.836 48.166 20.005

II 0.045 0.000 0.003 0.000 0.000 0.000 0.000

2008-2013
I 3.788 21.069 11.683 24.857 24.232 26.540 21.575

II 0.053 0.000 0.000 0.000 0.000 0.000 0.000

2013-2017
I 1.137 15.383 0.029 16.520 1.137 16.549 3.808

II 0.311 0.000 0.439 0.000 0.445 0.000 0.297

Note: This table denotes the Monte Carlo p-values of the Historical Simulation method out of Dufour (2006) for

three indices and three distinct periods. For further description of the table, see the corresponding results section.
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Table 12: Empirical results skewed t-distribution SMI

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

SMI 2008-2017

EWMA
I 0.265 0.806 6.372 1.071 5.220 7.442 8.987

II 0.609 0.160 0.006 0.419 0.050 0.029 0.010

IGARCH
I 0.375 0.122 1.264 0.497 1.248 1.761 1.779

II 0.556 0.322 0.135 0.625 0.429 0.423 0.098

GARCH
I 0.126 2.349 1.351 2.474 0.408 3.825 2.117

II 0.710 0.054 0.129 0.196 0.726 0.152 0.086

EGARCH
I 0.016 0.280 0.824 0.296 0.442 1.120 0.959

II 0.887 0.267 0.197 0.715 0.712 0.566 0.106

TGARCH
I 0.655 0.001 0.160 0.655 0.815 0.815 0.708

II 0.415 0.774 0.604 0.560 0.555 0.657 0.111

2008-2013

EWMA
I 0.007 0.032 4.320 0.039 3.935 4.359 5.323

II 0.920 0.375 0.019 0.903 0.101 0.120 0.061

IGARCH
I 0.106 0.453 1.474 0.558 0.978 2.032 0.543

II 0.765 0.208 0.127 0.593 0.526 0.381 0.211

GARCH
I 0.736 1.187 2.235 1.923 1.944 4.158 1.479

II 0.407 0.115 0.071 0.254 0.303 0.136 0.177

EGARCH
I 0.352 0.111 0.475 0.463 0.629 0.937 0.604

II 0.572 0.323 0.285 0.626 0.645 0.636 0.206

TGARCH
I 0.352 0.001 0.268 0.352 0.620 0.620 0.699

II 0.578 0.655 0.480 0.679 0.646 0.737 0.205

2013-2017

EWMA
I 0.602 1.524 2.637 2.127 2.140 4.764 11.901

II 0.460 0.082 0.056 0.233 0.004 0.098 0.010

IGARCH
I 1.815 0.001 0.386 1.815 2.201 2.201 4.471

II 0.181 0.910 0.326 0.282 0.264 0.345 0.075

GARCH
I 0.246 1.258 0.078 1.504 0.246 1.581 2.802

II 0.628 0.101 0.817 0.325 0.894 0.467 0.111

EGARCH
I 0.842 0.193 0.916 1.035 1.368 1.951 4.343

II 0.373 0.291 0.183 0.432 0.407 0.388 0.071

TGARCH
I 3.738 0.001 0.172 3.738 3.910 3.910 3.953

II 0.051 0.771 0.720 0.094 0.111 0.156 0.086

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods with skewed

innovations on the Swiss SMI index.

29



Table 13: Empirical results Filtered Historical Simulation SMI

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

SMI 2008-2017

EWMA
I 0.174 0.224 6.713 0.398 5.900 7.111 9.122

II 0.670 0.277 0.006 0.652 0.037 0.034 0.009

IGARCH
I 0.174 0.035 0.923 0.208 0.870 1.131 1.375

II 0.676 0.388 0.175 0.757 0.531 0.567 0.100

GARCH
I 0.825 0.472 0.251 1.297 0.860 1.548 1.935

II 0.366 0.217 0.363 0.374 0.537 0.462 0.100

EGARCH
I 0.506 0.277 1.738 0.783 1.631 2.521 2.023

II 0.493 0.267 0.098 0.519 0.349 0.288 0.093

TGARCH
I 1.226 0.001 1.303 1.226 2.528 2.528 2.656

II 0.267 0.719 0.133 0.394 0.210 0.289 0.086

2008-2013

EWMA
I 0.003 0.001 4.547 0.003 4.402 4.550 5.293

II 0.981 0.888 0.017 0.990 0.087 0.116 0.063

IGARCH
I 0.527 0.255 1.342 0.781 1.397 2.123 1.147

II 0.464 0.263 0.140 0.509 0.410 0.366 0.193

GARCH
I 0.036 0.381 0.875 0.417 0.460 1.292 0.215

II 0.881 0.221 0.201 0.629 0.738 0.534 0.224

EGARCH
I 0.036 0.195 1.356 0.231 0.973 1.587 0.548

II 0.854 0.279 0.131 0.751 0.535 0.470 0.211

TGARCH
I 0.128 0.001 1.208 0.128 1.336 1.336 1.248

II 0.729 0.805 0.149 0.809 0.420 0.522 0.188

2013-2017

EWMA
I 0.602 0.844 2.800 1.446 2.537 4.246 11.523

II 0.448 0.150 0.046 0.350 0.212 0.125 0.003

IGARCH
I 2.226 0.001 0.302 2.226 2.528 2.528 4.764

II 0.154 0.772 0.427 0.228 0.222 0.297 0.068

GARCH
I 2.684 0.112 0.001 2.795 0.268 2.795 5.279

II 0.104 0.314 0.964 0.157 0.204 0.261 0.055

EGARCH
I 1.815 0.093 0.932 1.908 2.432 2.840 4.542

II 0.173 0.324 0.185 0.248 0.227 0.249 0.067

TGARCH
I 1.815 0.001 0.454 1.815 2.269 2.269 2.263

II 0.200 0.555 0.310 0.271 0.259 0.339 0.115

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods following Filtered

Historical Simulation on the Swiss SMI index.
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Table 14: Empirical results skewed t-distribution NIKKEI

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

NIKKEI 2008-2017

EWMA
I 1.761 4.297 2.870 6.058 2.403 8.928 5.193

II 0.187 0.016 0.049 0.031 0.221 0.016 0.088

IGARCH
I 0.672 1.499 4.212 2.171 2.467 6.383 2.145

II 0.436 0.097 0.020 0.234 0.208 0.042 0.181

GARCH
I 1.044 3.731 4.842 4.775 2.306 9.617 2.130

II 0.321 0.021 0.014 0.053 0.228 0.009 0.175

EGARCH
I 0.847 3.517 5.051 4.365 2.399 9.416 1.351

II 0.372 0.025 0.013 0.067 0.215 0.009 0.241

TGARCH
I 2.043 0.743 4.027 2.786 3.506 6.812 3.478

II 0.150 0.164 0.022 0.160 0.122 0.035 0.120

2008-2013

EWMA
I 1.885 0.870 3.408 2.756 3.860 6.163 5.274

II 0.170 0.144 0.038 0.170 0.114 0.052 0.080

IGARCH
I 1.503 0.023 3.099 1.526 4.007 4.615 4.170

II 0.230 0.382 0.043 0.324 0.106 0.112 0.116

GARCH
I 2.314 0.246 2.739 2.560 3.990 5.299 4.217

II 0.147 0.260 0.050 0.177 0.101 0.075 0.112

EGARCH
I 1.503 1.656 5.653 3.159 4.431 8.812 3.995

II 0.228 0.078 0.010 0.137 0.086 0.015 0.124

TGARCH
I 3.314 0.006 1.962 3.320 4.590 5.282 4.172

II 0.070 0.411 0.091 0.119 0.081 0.081 0.113

2013-2017

EWMA
I 0.411 3.855 0.359 4.266 0.411 4.625 1.285

II 0.531 0.016 0.301 0.065 0.723 0.097 0.291

IGARCH
I 0.006 2.195 1.269 2.201 0.071 3.470 0.025

II 0.904 0.054 0.133 0.227 0.963 0.179 0.389

GARCH
I 0.006 4.347 1.583 4.353 0.015 5.936 0.046

II 0.948 0.013 0.104 0.067 0.984 0.056 0.385

EGARCH
I 0.047 1.778 0.488 1.825 0.047 2.313 0.793

II 0.837 0.072 0.256 0.274 0.971 0.317 0.320

TGARCH
I 0.127 1.033 1.392 1.161 0.283 2.553 0.343

II 0.735 0.126 0.127 0.395 0.802 0.289 0.362

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods with skewed innovations

on the Japanese NIKKEI index.
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Table 15: Empirical results Filtered Historical Simulation NIKKEI

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

NIKKEI 2008-2017

EWMA
I 2.674 3.775 4.840 6.449 4.668 11.289 5.297

II 0.010 0.022 0.013 0.023 0.066 0.004 0.083

IGARCH
I 1.500 4.454 7.044 5.954 3.933 12.998 3.099

II 0.218 0.012 0.004 0.028 0.091 0.002 0.139

GARCH
I 2.674 5.561 5.756 8.235 3.950 13.991 3.003

II 0.104 0.007 0.008 0.009 0.096 0.001 0.146

EGARCH
I 3.023 4.440 7.606 7.463 6.033 16.069 3.670

II 0.086 0.015 0.003 0.014 0.034 0.001 0.120

TGARCH
I 1.261 2.106 3.752 3.367 2.046 7.092 1.740

II 0.264 0.058 0.025 0.118 0.271 0.032 0.202

2008-2013

EWMA
I 6.702 0.026 2.259 6.728 8.489 8.987 7.944

II 0.101 0.382 0.074 0.016 0.010 0.010 0.028

IGARCH
I 5.189 0.256 2.403 5.441 6.481 7.847 5.998

II 0.025 0.264 0.063 0.038 0.031 0.024 0.062

GARCH
I 8.440 0.160 0.486 8.600 8.584 9.086 7.658

II 0.005 0.304 0.281 0.007 0.010 0.012 0.028

EGARCH
I 7.524 0.847 4.135 8.389 9.692 12.524 8.279

II 0.008 0.146 0.026 0.011 0.007 0.003 0.023

TGARCH
I 5.918 0.041 1.677 5.959 6.846 7.636 6.145

II 0.016 0.368 0.103 0.028 0.024 0.025 0.054

2013-2017

EWMA
I 0.004 4.532 1.120 4.356 0.032 5.656 0.314

II 0.957 0.012 0.150 0.062 0.984 0.062 0.365

IGARCH
I 0.114 4.362 2.538 4.477 0.374 7.015 0.289

II 0.754 0.011 0.060 0.067 0.752 0.033 0.367

GARCH
I 0.114 5.351 2.326 5.465 0.215 7.791 0.230

II 0.768 0.007 0.069 0.039 0.856 0.025 0.366

EGARCH
I 0.004 2.695 1.344 2.699 0.064 4.043 0.286

II 0.993 0.039 0.131 0.177 0.966 0.143 0.373

TGARCH
I 0.373 1.784 0.321 2.157 0.373 2.478 0.693

II 0.570 0.072 0.329 0.233 0.750 0.300 0.315

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods following Filtered Historical

Simulation on the Japanese NIKKEI index.
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Table 16: Empirical results skewed t-distribution S&P500

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

S&P500 2008-2017

EWMA
I 2.317 1.062 1.648 3.379 3.132 5.027 2.921

II 0.139 0.134 0.100 0.118 0.152 0.087 0.410

IGARCH
I 1.745 0.053 2.035 1.798 3.344 3.833 2.936

II 0.188 0.368 0.080 0.276 0.132 0.150 0.415

GARCH
I 1.491 1.849 1.040 3.340 1.683 3.379 1.948

II 0.234 0.075 0.155 0.120 0.319 0.117 0.574

EGARCH
I 0.851 0.025 0.579 0.877 1.287 1,456 1.609

II 0.346 0.398 0.213 0.470 0.387 0.451 0.665

TGARCH
I 1.491 0.001 1.656 1.491 3.147 3.147 3.836

II 0.226 0.495 0.100 0.332 0.147 0.206 0.289

2008-2013

EWMA
I 0.009 0.101 1.992 0.110 1.684 2.102 1.653

II 0.920 0.327 0.083 0.826 0.331 0.343 0.651

IGARCH
I 0.009 0.181 3.219 0.190 2.481 3.409 2.885

II 0.930 0.285 0.037 0.780 0.209 0.177 0.421

GARCH
I 0.002 0.304 2.167 0.305 1.479 2.472 2.439

II 0.967 0.242 0.072 0.703 0.372 0.279 0.493

EGARCH
I 0.097 0.001 2.101 0.097 2.198 2.198 3.275

II 0.748 0.689 0.077 0.838 0.243 0.318 0.352

TGARCH
I 0.054 0.001 2.852 0.054 2.906 2.906 2.992

II 0.808 0.668 0.042 0.882 0.164 0.223 0.401

2013-2017

EWMA
I 5.014 0.973 2.836 5.987 6.299 8.823 8.206

II 0.027 0.132 0.046 0.029 0.034 0.014 0.045

IGARCH
I 3.763 0.001 1.701 3.763 5.319 5.464 6.076

II 0.051 0.785 0.104 0.092 0.050 0.070 0.129

GARCH
I 3.763 1.543 0.766 5.306 3.767 6.072 3.484

II 0.055 0.083 0.200 0.044 0.109 0.054 0.339

EGARCH
I 3.210 0.295 0.530 3.505 3.319 4.035 2.927

II 0.069 0.249 0.239 0.110 0.134 0.136 0.406

TGARCH
I 2.705 0.001 0.389 2.705 3.094 3.094 3.061

II 0.097 0.612 0.281 0.164 0.154 0.213 0.399

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods with skewed innovations

on the American S&P500 index.
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Table 17: Empirical results Filtered Historical Simulation S&P500

Uncond. Duration VaR Geom. VaR Geom. CaViaR

Cov. Ind. Ind. Test VaR

S&P500 2008-2017

EWMA
I 3.335 0.806 5.218 4.141 7.607 9.359 7.747

II 0.068 0.158 0.012 0.076 0.013 0.010 0.052

IGARCH
I 3.718 0.142 3.934 3.861 7.000 7.795 5.773

II 0.059 0.321 0.025 0.092 0.021 0.022 0.129

GARCH
I 6.491 0.607 2.505 7.098 8.101 9.603 6.924

II 0.013 0.195 0.059 0.016 0.012 0.009 0.076

EGARCH
I 5.002 0.112 2.331 5.113 6.881 7.444 5.578

II 0.027 0.333 0.064 0.043 0.021 0.025 0.141

TGARCH
I 3.718 0.001 3.606 3.718 7.324 7.324 6.688

II 0.051 0.568 0.030 0.099 0.014 0.027 0.086

2008-2013

EWMA
I 3.234 0.338 2.216 3.572 4.928 5.788 4.583

II 0.069 0.237 0.069 0.098 0.058 0.057 0.230

IGARCH
I 2.266 0.123 3.123 2.389 4.794 5.512 3.617

II 0.138 0.323 0.039 0.197 0.065 0.068 0.310

GARCH
I 2.727 0.006 2.519 2.732 4.959 5.251 3.775

II 0.110 0.411 0.055 0.161 0.062 0.074 0.302

EGARCH
I 2.727 0.001 2.320 2.727 4.951 5.047 3.796

II 0.104 0.790 0.065 0.171 0.063 0.089 0.303

TGARCH
I 1.151 0.001 4.722 1.151 5.873 5.873 4.564

II 0.297 0.574 0.014 0.407 0.034 0.052 0.235

2013-2017

EWMA
I 0.854 0.456 4.468 1.311 3.844 5.779 7.427

II 0.359 0.205 0.019 0.361 0.111 0.066 0.069

IGARCH
I 1.832 0.055 2.130 1.887 3.273 4.017 4.051

II 0.183 0.355 0.078 0.258 0.137 0.138 0.277

GARCH
I 4.364 1.102 1.569 5.466 4.681 7.036 4.908

II 0.036 0.117 0.112 0.036 0.068 0.028 0.208

EGARCH
I 2.705 0.377 0.601 3.082 2.824 3.683 2.443

II 0.103 0.226 0.227 0.141 0.177 0.165 0.496

TGARCH
I 3.210 0.001 0.707 3.210 3.917 3.917 3.831

II 0.066 0.527 0.215 0.119 0.103 0.146 0.298

Note: This table denotes the Dufour (2006) p-values and test statistics for the methods following Filtered

Historical Simulation on the American S&P500 index.
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