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Abstract

This paper looks into different approaches at solving the routing and schedul-
ing problem present in industrial and tramp maritime shipping. Using
benchmark instances, solutions are provided by a solver for a mathematical
formulation of the problem and by an adaptive large neighborhood search
heuristic. In addition, a layer of realism is added by introducing choices for
speed tiers into the existing problem. The extended problem is also fed to
a solver using the same benchmarks, and its results are analyzed in order
to determine whether this is a meaningful addition to more sophisticated
solving techniques in the future. These three approaches are compared with
regards to performance for each of the benchmark instances. From this,
conclusions are drawn on which type of approach is suitable for which type
of instance. Ultimately, recommendations are made for future research into
improving the approaches at solving the routing and scheduling problem
that are discussed here.
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1 Introduction

In the current world of growing globalism, consumers and industries expect
products and services to be available as and when they desire. As a result,
the demand for maritime transportation has increased worldwide. In any
growing business, competition is high and therefore costs should be as low
as possible. In addition, an increasing number of people voice their concerns
over how large-scale transportation is affecting our planet and expect ship-
ping companies to do something about it. This paper gives an insight in
how these costs are derived in two types of maritime transportation, that
are distinguished as tramp and industrial shipping.

Tramp shipping can be seen as a taxi service for cargoes, where ships pick
up both mandatory cargoes that are determined in contracts and optional
cargoes that are available for transport, much like a regular taxi service. In
industrial shipping, the company owns the ships and the cargoes and tries
to minimize the costs of performing all their required deliveries. An impor-
tant part of minimizing costs and fuel consumption is found in the so-called
ship routing and scheduling problem. In Hemmati et al. (2014), this op-
timization is executed with an approach based on solving a mathematical
formulation of the problem and an approach that uses an Adaptive Large
Neighborhood Search (ALNS). In addition to this, this paper introduces an
approach that makes use of a realistic choice in tiers of ship sailing speed in
order to further reduce fuel consumption and costs.

The problem introduced above is one that should be able to be solved rela-
tively quickly and adequately, providing a good solution within an accept-
able time frame. This paper implements and compares different approaches
to the ship routing and scheduling problem, answering the question which
approach is best suited to which situation. To this end, the paper includes
benchmark instances that allow for proper comparison. It also does research
into a meaningful and realistic implementation of varying sailing speeds and
does suggestions with regards to improving this implementation.

In Section 2, previous research is reviewed and its relevance to this paper is
explained. Section 3 introduces the data that will be used in this research. In
this section the benchmark instances are discussed and the implementation
of speed tiers is conceived. In Section 4, the methodology of this research is
given, in which all three approaches to the problem are fleshed out. Section
5 presents the result of the computational experiments and comments on
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those. In addition, it analyzes the relevance of the choice in sailing speed.
Section 6 summarizes the report and Section 7 provides recommendations
for future research.

2 Literature Review

The question posed at the beginning of this research consists of a union
between the field of maritime shipping, in particular tramp and industrial
shipping, and the field of mathematical programming. It therefore bases it-
self on earlier work in these fields, which in turn is a culmination of previous
research. This paper combines the findings from some of these works and
extends upon them. Within maritime transportation, it is common to define
three modes of operation, liner, industrial and tramp shipping (Lawrence,
1972). In this paper only industrial and tramp shipping are considered.

Because this paper aims to compare several the effectiveness of different
solving methods on different problems, it is important that relevant and
meaningful comparisons can be made. It has been established that in or-
der to compare certain methods of mathematical programming based on
their performance, it is important that several benchmark instances are
used (Malliappi, Bennell, & Potts, 2011). These benchmarks are taken from
Hemmati et al. (2014), and will be expanded upon in the Data section.

The foundations for the mathematical formulation are also found in Hem-
mati et al. (2014), where a formulation with constant sailing speed is given.
An alternative formulation with the addition of speed alterations is provided
in Norstad et al. (2011). It should be noted that the problems provided in
these works are both NP-hard. In response, both papers propose heuristic
methods to determine solutions that are adequate and reached within an
acceptable time limit.

In Hemmati et al. (2014) an ALNS method was used as an alternative to
the use of a solver for a mathematical formulation of the problem. It con-
cluded that, although the solver was faster in solving to optimality for small
instances, the ALNS method almost always also found these optimal values.
In addition, the ALNS method was noticed to scale well for instances where
more ships and cargoes were concerned. For some of the heuristics used in
the ALNS procedure we refer to their relevant papers in Section 4.
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Norstad et al. (2011) attempted to define the adaptive speed problem with
an approach where sailing costs were approximated as a quadratic function
of sailing speed. This led to a focus on solving optimal speeds for a ship with
a given route using several additional algorithms, which proved very useful
for that certain problem. This continuous function proved to be very costly
to implement in our problem. How the choices in speed were eventually
implemented is discussed in the following section on data.

The ALNS as described in Hemmati et al. (2014) is built up from several
smaller heuristics that work together to finally provide an adequate solution.
In following research, it was found that only one area of this larger framework
could be improved by removing randomness (Hemmati & Hvattum, 2017).
As further research has already been performed by the original author, this
paper will not elaborate on improving the ALNS.

3 Data

In this section, the data that are used during this research are discussed.
The benchmark instances are looked at in detail, and the derivation for the
implementation of speed tiers is described.

3.1 Benchmark Instances

The importance of benchmarks was mentioned earlier, along with the promise
to elaborate on these as a part of this section. For these benchmarks we look
to Hemmati et al. (2014), whose authors created an instance generator and
used this to determine several benchmarks. For additional information on
the creation of these benchmarks, we refer the reader to the paper from
which they stem, however, there are a few important aspects that will be
elaborated upon here. Each instance contains the following data:

Port The port and its name, where ships can pick up and deliver cargoes.

Vessel Each vessel is specified using the following characteristics:

Index The index of the vessel.

Home Port The port from which the vessel starts.

Starting Time The time at which the vessel becomes available.

Capacity The maximal load that the vessel can carry.

Cargo List A list of all cargoes that can be transported by the ship.

Cargoes Each cargo is specified using the following characteristics:
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Index The index of the cargo.

Origin Port The port where the cargo must be picked up. This also has
an earliest possible pickup time and a latest possible pickup time.

Destination Port The port where the cargo must be delivered. This also
has an earliest possible delivery time and a latest possible delivery time.

Size The size of the cargo.

Charter Cost The cost that the shipping company incurs when the cargo
is not transported by their fleet.

Voyages The voyages that vessels could take between ports. Each voyage is spec-
ified using the following characteristics:

Vessel Index The index of the vessel that this voyage concerns.

Origin Port The port from which the vessel leaves for this voyage.

Destination Port The port at which the vessel arrives from this voyage.

Travel Time The time that this vessel takes to make this voyage.

Travel Cost The fuel costs that this vessel incurs on this voyage.

Loading and Unloading Specifics For each vessel, for each cargo, certain vari-
ables come into play when that vessel picks up that cargo:

Loading Time The time it takes to load the cargo onto the vessel at its
origin port.

Unloading Time The time it takes to unload the cargo from the vessel at
its destination port.

Port Costs Both the origin and destination port have certain costs that a
vessel needs to pay when it wants to enter the port.

It should be noted that the Triangle Inequality holds. This means that for
any three ports i, j, k it holds that cij ≤ cik + ckj and tij ≤ tik + tkj , where
cij and tij denote the travel costs and travel time for any voyage between
ports i and j, respectively.

These instances are created with several different characteristics. The set
of ports can be either in a close vicinity of one another in the so-called
Short Sea set, or in a larger distance from one another - the Deep Sea set.
Additionally, there is a distinction between full load cargoes and mixed load.
Instances with full load cargoes have vessels with a capacity that is equal
to the size of each cargo. Instances with mixed load cargoes do not have
this, and might therefore have several cargoes in the hold of a vessel at any
given time. The instance generator also leaves the option to choose a specific
number of vessels and cargoes, allowing the user to decide on the size of the
benchmark instance created. We do not create new benchmarks, but simply
use the ones that are used in Hemmati et al. (2014).
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3.2 Speed Tiers

It should be noted that these benchmark instances have a given travel time
and travel cost on each voyage. Part of these times and costs are incurred
in the ports and can be explained by harbor fees and (un)loading times.
Seeing how these will not be altered due to a change in sailing speed, we
only consider the influence of speed on the rest of the time and costs, that
are specific to the voyage. Our research aims to implement varying speed
on a voyage, which demands additional data transformations. To find what
speeds could be included in this research, it is necessary to find at what
speed the vessels are sailing in the benchmark instances and at what speed
interval vessels are capable of sailing.

In the benchmark instance, the travel time (this is excluding loading times)
from Rotterdam to Bilbao for one of the ships is given as 55 hours. Using
the SEA-DISTANCES website1, we found that this travel time corresponds
to a vessel speed of 14 knots. The name given to this ship is Handysize-
BulkCarrier 1, which is a middle-sized type of bulk carrier. Research found
that the maximum service speed for the Handysize is 15 knots2, which is the
speed the ship can maintain for daily operation. This is roughly 7% higher
than the current speed that is used. For our research we therefore define
five different speed tiers, with steps of 7%.

The fuel consumption increase (and with it, the travel cost increase), is
derived from the function given in Norstad et al. (2011) which is given as

c(v) = 0.0036v2 − 0.1015v + 0.8848,

where c(v) is the fuel consumption in tonnes per nautical mile as a function
of the speed v in knots. Because this function is defined for a larger and
faster vessel, with a sailing speed between 14 and 22 knots, an adaptation
was made for our Handysize vessel which led to the following characteristics
for our varying tiers of speed.

1https://sea-distances.org/
2https://www.quora.com/Merchant-Navy-What-is-the-average-speed-of-a-ship
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Table 1: Speed tiers for Handysize vessel

Tier Speed increase Speed in knots Cost increase

5 + 7% 14.98 15.3%
4 0% 14.00 0.0%
3 -7% 13.02 -13.3%
2 -14% 12.04 -24.5%
1 -21% 11.06 -33.7%

Although not all vessels have the same speed in the instances, we assume
that the percentages in each speed tier remain the same for each vessel.
Using these tiers, additional data was generated for each voyage, which
means there are now five possible choices for a pair of travel time and travel
costs within each voyage. This means that the instance description for a
voyage now reads:

Voyages The voyages that vessels could take between ports. Each voyage
is specified using the following characteristics:

Vessel Index The index of the vessel that this voyage concerns.

Origin Port The port from which the vessel leaves for this voyage.

Destination Port The port at which the vessel arrives from this voy-
age.

Speed Tier One of five tiers with associated travel time and costs.

Travel Time The time that this vessel takes to make this voyage
at this speed.

Travel Cost The fuel costs that this vessel incurs on this voyage
at this speed.

Having described all the required data, it is now possible to introduce the
methods in which they are used.

4 Methodology

As stated before, the aim of this paper is to compare three different approach
of solving a ship routing and scheduling problem. The first approach that
will be examined is through the fixed speed approach, where the problem is
captured in a mathematical formulation and run through a so-called solver.
This solver attempts to solve the problem to optimality, a process that takes
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exponentially longer as the problem becomes larger. The second approach
is similar to the first, but relaxes the problem to allow for different sailing
speeds. With this relaxation a new mathematical formulation is derived
which is also run through a solver. The final method is an Adaptive Large
Neighborhood Search (ALNS), which employs several methods that remove
and add cargoes to the current solution, starting at a feasible but suboptimal
initial solution.

4.1 Mathematical Formulation with Fixed Speed

We consider shipping companies with heterogeneous fleets, which means
that each ship may differ with regards to which cargoes they are equipped
to carry, and with regards to specifications such as hold capacity, speed and
cost. In addition, each ship has a given starting point and a given start-
ing time at which previous assignments have been fully finished. When a
cargo is not carried by a ship in the fleet, so-called charter costs are incurred.

Ultimately, the decision lies in what cargoes will be assigned to which ship
in the fleet, and what cargoes will not be carried by any ship in the fleet. For
this we define the set of ships by V , where each ship v ∈ V has a capacity
Kv. There are n given cargoes, where cargo i originates from its loading
port node i, and needs to be delivered to its unloading port node n+ i. In
addition, the volume of cargo i is given as Qi. The sets of loading and un-
loading nodes are denoted by NP and ND, respectively. Because not every
ship can visit every port, we define the set of nodes that can be visited by
ship v as Nv. This set of nodes includes the initial position o(v) and the
(yet to be decided) final position d(v). From this set Nv we derive the set of
voyages that can be made by each ship v and call it Av. We also define the
set of loading nodes that can be visited by ship v as NP

v = NP ∩ Nv, and
the set of unloading nodes that can be visited by ship v as ND

v = ND ∩Nv.

Having defined all necessary sets, the next step is to identify what choices
are available with which we can search for optimality. For each cargo i we
define the binary variable yi that is equal to 1 when this cargo is picked up
by a spot charter in the industrial case or not carried in the tramp case,
and 0 otherwise. For each ship v we decide on binary variables xijv that
are equal to 1 when the ship sails directly from node i to node j, and 0
otherwise. The cost incurred by not having cargo i shipped by your own
fleet is given as CSpot

i . The cost of sailing from port i to port j with ship
v is given as Cijv, and the associated travel time is Tijv. Each node has a
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time window [Ti, Ti] in which cargoes can be picked up or delivered. This
time at which service starts for ship v at node i is tiv and the load onboard
after completing service is liv. Given these definitions, the mathematical
formulation as given in Hemmati et al. (2014) becomes as follows:

min
∑
v∈V

∑
(i,j)∈Av

Cijvxijv +
∑
i∈NP

CSpot
i yi (1)

subject to ∑
v∈V

∑
j∈Nv

xijv + yi = 1, i ∈ NP , (2)

∑
j∈Nv

xo(v)jv = 1, v ∈ V, (3)

∑
j∈Nv

xijv −
∑
j∈Nv

xjiv = 0, v ∈ V, i ∈ Nv\{o(v), d(v)},

(4)∑
j∈Nv

xjd(v)v = 1, v ∈ V, (5)

liv +Qj − ljv ≤ Kv(1− xijv), v ∈ V, j ∈ NP
v , (i, j) ∈ Av, (6)

liv −Qj − l(n+j)v ≤ Kv(1− xi(j+n)v), v ∈ V, j ∈ NP
v , (i, n+ j) ∈ Av,

(7)

0 ≤ liv ≤ Kv, v ∈ V, i ∈ NP
v , (8)

tiv + Tijv − tjv ≤ (Ti + Tijv)(1− xijv), v ∈ V, (i, j) ∈ Av, (9)∑
j∈Nv

xijv −
∑
j∈Nv

x(n+i)jv = 0, v ∈ V, i ∈ NP
v , (10)

tiv + Ti(n+i)v − t(n+i)v ≤ 0, v ∈ V, i ∈ NP
v , (11)

Ti ≤ tiv ≤ Ti, v ∈ V, i ∈ Nv, (12)

yi ∈ {0, 1}, i ∈ NC , (13)

xijv ∈ {0, 1}, v ∈ V, (i, j) ∈ Av. (14)

This formulation is given to the solver, which tries to minimize the cost
function (1) whilst making sure all other restrictions are upheld. Restric-
tions (2) makes sure that every cargo is either picked up once or handled
by a charter. Restrictions (3), (4) and (5) form the flow of each ship, mak-
ing sure that each ship leaves its origin once, leaves a port as often as it
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arrives at that port, and also reaches its final destination once. The load on
board of each ship is regulated by restrictions (6) and (7) for loading and
unloading ports respectively, and restrictions (8) ensure for each ship that
the load on board is never more than the capacity of that ship. Restrictions
(9) make sure that service times are possible with respect to travel times
between ports. Restrictions (10) ensure that a cargo that is picked up by a
certain ship is also delivered by that same ship. Cargoes cannot be delivered
before they are picked up because of restrictions (11), and restrictions (12)
give time windows for service times. Finally, restrictions (13) and (14) give
binary meaning to decision variables xijv and yi.

4.2 Mathematical Formulation with Varying Speeds

With the addition of speed tiers, the problem formulation becomes slightly
more complex. Speed tiers are defined as s ∈ S, where S = {1, 2, 3, 4, 5}. A
new decision variable zijvs is introduced that is equal to 1 when ship v sails
directly from node i to node j at speed tier s, and zero otherwise. The cost
of sailing from port i to port j with ship v at speed tier s is defined as Cijvs

with associated travel time Tijvs. With these additions, several restrictions
are also modified. First of all, objective function (1) now becomes:

min
∑
v∈V

∑
(i,j)∈Av

∑
s∈S

Cijvszijvs +
∑
i∈NP

CSpot
i yi. (15)

The relation between xijv and zijvs is given as:∑
s∈S

zijvs = xijv, v ∈ V, (i, j) ∈ Av, (16)

which should be added as a new restriction. Restrictions (9) and (11) become

tiv + Tijvs − tjv ≤ (Ti + Tijvs)(1− zijvs), v ∈ V, (i, j) ∈ Av, s ∈ S, (17)

and

tiv + Ti(n+i)v5 − t(n+i)v ≤ 0, v ∈ V, i ∈ NP
v , (18)

respectively. In restrictions (17) the service times are now made feasible
with regards to the new speed. Restrictions (18) make sure that cargoes
are picked up before being delivered, for which they now use the shortest
possible travel time (with subscript 5). Finally, the new decision variables
should always be binary, which gives the last additional constraint:

zijvs ∈ {0, 1}, v ∈ V, (i, j) ∈ Av, s ∈ S. (19)
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The mathematical formulation of the problem including variable sailing
speed consists of objective function (15), subject to restrictions (2)-(8), (10),
(12)-(14) and (16)-(19). The problem defined in Section 4.1 is a special case
of the problem defined here, in that it sets the speed tier to be tier 4, which
means that the varying speeds give a relaxation of the original problem.
Because of this, the objective value when solved to optimality of the vary-
ing speeds problem will always be less than or equal to that of the original
problem.

4.3 Adaptive Large Neighborhood Search

The Adaptive Large Neighborhood Search (ALNS) heuristic makes use of
certain semi-random combinations of insertion and removal techniques that
operate on a provided feasible solution. Each iteration the algorithm re-
moves a certain number of cargoes from the current solution and reinserts
them differently. This algorithm is described in Algorithm 4.1. The algo-
rithm takes an initial solution S which is the equivalent of having all cargoes
be transported by spot charters. Solutions are represented as a sequence of
integers for each ship, including one sequence for an artificial spot charter
ship. The first time an integer is encountered in a sequence means that the
cargo with that index has been picked up by that ship and the second time
an integer is encountered in a sequence means that the cargo with that index
has been delivered by that ship.
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Algorithm 4.1: ALNS(S)

Input: S, initial feasible solution

Output: Sbest, final solution

Sbest ← S
while Stopping criteria are not met

S′ ← S
select removal and insertion heuristics based on search parameters
select the number of cargoes to remove and insert, q
remove q cargoes from S′

reinsert removed cargoes into S′

if f(S′) < f(Sbest)
then Sbest ← S′

else if S′ gets accepted by acceptance criterion
then S ← S′

update search parameters
return (Sbest)

In each iteration in Algorithm 4.1, q cargoes are removed from the current
solution and subsequently inserted to form a new (but not necessarily dif-
ferent) solution. These cargoes are removed and inserted using removal and
insertion heuristics, respectively. If the new-found solution is better than
the previous solution, the algorithm starts a new iteration with the new
solution. When the new solution is not better, however, it might also be
accepted in order to visit new neighborhoods in search of better solutions.
Insertion and removal heuristics are randomly chosen each iteration using
adaptive weights based on their performance. Every set number of itera-
tions, in our case 100, these weights are redetermined. We will describe all
these methods in more detail in the following paragraphs.

Removal Heuristics Each iteration, cargoes are removed using one of
three methods. First of all, the number of cargoes that need to be removed
needs to be determined. For this we choose randomly q in [4,min(100, ξn],
where n is the total number of cargoes and ξ is a constant parameter which
we set at 0.85. If this parameter ξ is too large, an entire solution might be
removed. Is it too small, however, iterations would have little effect. The
randomness ensures that the number of cargoes that are removed in each
iteration varies, which gives us different neighborhood sizes. The q cargoes
are selected by means of one of three heuristics. We employ the Shaw re-
moval, the random removal, and the worst removal heuristics.
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The Shaw removal heuristic makes use of the relatedness of cargoes. It
selects one cargo at random and removes that cargo, along with its q − 1
closest related other cargoes. This relatedness is defined based on proximity,
on relatedness in delivery time limit, on size, and based on the vessels that
can be used to transport the cargoes. The full formulation is as follows:

R(i, j) = φ(dA(i),A(j) + dB(i),B(j)) + χ
(
|TA(i) − TA(j)|+ |TB(i) − TB(j)|

)
+ψ(Qi −Qj) + ω

(
1− |Ki ∩Kj |

min{|K − I|, |Kj |}

)
.

The pickup and delivery locations of a cargo i are denoted by A(i) and B(i)
respectively. The traveling costs between two locations i and j is given as
di,j , the last moment at which a location i can be visited is denoted by Ti
and Qi describes the size of cargo i. The set of vessels that are capable of
transporting cargo i is given as Ki.

The parameters φ, χ, ψ and ω each give a weight to each of the measures
of relatedness. For the parameters we take the following values that focus
heavily on removing cargoes on the same ship and that are near one another,
and less so on size and time windows: φ = 0.75, χ = 0.1, ψ = 0.1, and ω = 1
(Shaw, 1997).

The random removal heuristic is very simple in that it removes q randomly
chosen cargoes from the solution.

The worst removal heuristic selects cargoes that are the largest burden on
costs. It calculates for each cargo what the saving would be if it was removed
from the solution completely, and does so every time the most expensive
cargo is removed until q cargoes are removed from the solution.

Insertion Heuristics The cargoes that were removed also need to be
reinserted. For this we employ two insertion heuristics, a greedy heuristic
and a regret-k heuristic.

The basic greedy heuristic tries to find the cheapest feasible way in which
any of the cargoes can be inserted in the solution. This cheapest cargo is
inserted in this cheapest way, and the heuristic searches for the next cheap-
est feasible way to insert a cargo. This is continued until all cargoes are
inserted. Note that cargoes can also be picked up by a spot charter when
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no other feasible insertions are available.

The regret-k heuristic calculates the so-called regret value for each cargo.
This regret value is the sum of inserting this cargo in its best location, in
its second best location and so on until the k-th best location. This regret
value indicates how hard it is to fit this cargo into the solution. Cargoes
that are harder to fit have a higher regret value and the cargo with the
highest regret value is inserted at its best position. These regret values are
calculated for the new solution and the process is repeated until all cargoes
are represented in the solution. Each time this heuristic is called, the value
of parameter k is chosen randomly in [2, 4] (Hemmati & Hvattum, 2017).
This randomness helps ensure that multiple neighborhoods for the solution
are visited.

Adaptive Weight Adjustment During the ALNS heuristic, scores are
being awarded to each of the heuristics employed. Whenever a heuristic is
chosen and the solution is accepted by either being better than the previ-
ous solution or because of the acceptance criterion, their score is increased.
Whenever a heuristic is selected, it also gets an increase in its appearance
counter. After each set of 100 iterations the new weights are calculated and
the score and appearance counters are reset. The weight for the n-th set of
iterations for heuristic i is calculated as follows:

wi,n = wi,n−1(1− r) + r
πi
θi
,

where πi and θi denote the score and the appearance counter, respectively,
for heuristic i. The parameter r influences how much of the new weight
should be based on the old weight. In our case, r was set conservatively at
r = 0.8. In the first set of iterations all weights are equal.

Heuristic Selection With the weights previously assigned, the ALNS
procedure picks two heuristics independently in each iteration. These are
selected using a roulette wheel based on the weights of that type of heuristic.
For example, the probability of selecting the Shaw removal heuristic is

pshaw =
wshaw

wshaw + wworst + wrandom
.

This is done similarly for all five heuristics.
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Acceptance and Stopping Criteria A new solution constructed as a
result of the removal and insertion procedures is not always accepted. Solu-
tions that are better than their predecessor are always accepted, and solu-
tions that are worse are accepted with probability e−|f−fnew|/T . Here T > 0
is the so-called temperature, which is implemented as it is given in (Crama
& Schyns, 2003). The ALNS procedure is terminated as it reaches 3000
iterations.

With all three approaches thoroughly defined, the next section performs the
computational study in which the approaches are compared to one another.

5 Computational Study

The computational study consists of two parts. The first part is where
the approaches are evaluated for each of the benchmark instances, and the
second part is where the solutions of the extension with varying speed are
further examined.

5.1 Approach Performance Comparison

This paper aims to compare the performance of the different approaches pre-
sented in Section 4 to the ship routing and scheduling problem, for which
comparison by means of a computational study is of paramount importance.
We solve the MIP formulations of the problem with fixed speed and of the
problem with varying speeds using CPLEX 12.6.3 in Java 8. The ALNS
heuristic is also executed in Java 8, and consisted of a maximum of 3000
iterations. The systems on which the approaches were tested were identical
and used a 3.5 GHz GPU with 16.0 GB of RAM and a 64-bit operating
system. For each of the approaches we allowed a computation time of one
hour. This hour included all the time required to initialize the program, with
tasks such as reading data and presolving amongst others. In the following
tables the best known results for each of the methods are presented as their
objective values, along with the time at which these results were found. It
should be noted that these results are not always the optimal values, but
are the best results that were found in the allotted time.

Not all benchmarks that were described in Section 3.1 were actually used.
Instead, only the first instance of each problem size was used in order to cut
down on the total computational time. This choice is justified by the fact
that the computational study of earlier research showed limited difference
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in results between the different instances (Hemmati, Hvattum, Fagerholt,
& Norstad, 2014). In addition to this, several of the larger problem in-
stances failed to produce any results, either not finishing the presolve phase
in CPLEX or not finishing the initialization of the ALNS heuristic. Because
of this, all of the larger instances were not included in the tables as none of
them produced any results. These larger instances are 100/30 and 130/40
for mixed load cargoes and 90/40 and 100/50 for full load cargoes, where
a/b denotes an instance with a cargoes and b ships. Some of the results
of the other larger problems are presented as a dash (-), indicating that no
results were found in the available time. The best results for each instance
are printed in bold.

Fixed Speed ALNS Varying Speeds
# of # of Objective Running Objective Running Objective Running

Cargoes Ships Value Time Value Time Value Time

7 3 1,476,444 0.48s 1,477,429 0.13s 1,319,166 0.22s
10 3 2,083,976 0.56s 2,083,976 0.34s 1,811,614 2.39s
15 4 1,959,153 348.79s 1,959,153 0.84s 1,589,154 392.25s
18 5 2,374,420 2206.18s 2,374,420 15.57s 2,170,525 3570.52s
22 6 4,008,619 734.59s 4,501,362 29.18s 3,475,420 3399.39s
23 13 2,420,298 2723.70s 2,277,598 1.98s 5,046,022 2523.69s
30 6 6,796,334 1945.89s 5,261,561 25.70s 11,152,400 3292.17s
35 7 6,614,270 3170.35s 5,096,837 335.33s 15,251,900 1447.18s
60 13 38,147,200 1067.45s 8,570,796 3549.03s 35,285,800 2658.12s
80 20 46,770,300 1046.47s 11,642,187 2855.82s - -

Table 2: Best found results for short sea shipping instances with mixed cargo sizes

Table 2 presents the best found values when solving each short sea mixed
load instance using each of the three approaches. In the smaller instances,
the third approach solves to optimality and is therefore better than the
other two approaches. Even when it does not solve to optimality, it still
outperforms the other approaches. However, as problems get larger, the
ALNS often finds a better solution more quickly than the other two.
In Table 3, the best found results for each short sea full load instance for
each approach are given. In all of the smaller instances, the varying speeds
approach gives the best results despite not solving to optimality. As the
instances get larger, the ALNS approach becomes more effective.

Tables 2 and 3 covered the short sea problem instances, which consists of
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Fixed Speed ALNS Varying Speeds
# of # of Objective Running Objective Running Objective Running

Cargoes Ships Value Time Value Time Value Time

8 3 1,391,997 0.34s 1,391,997 0.34s 1,175,972 4.54s
11 4 1,052,463 2.51s 1,052,463 0.49s 909,439 25.36s
13 5 2,034,184 4.38s 2,034,184 8.12s 1,587,865 261.66s
16 6 3,577,005 12.40s 3,612,552 3.00s 3,039,096 324.67s
17 13 2,265,731 735.44s 2,268,009 8.25s 1,861,184 3342.57s
20 6 2,991,891 1322.84s 2,973,381 20.04s 2,503,918 3124.11s
25 7 3,910,308 3199.72s 3,900,951 15.96s 4,462,483 2976.56s
35 13 3,623,460 2342.96s 3,010,548 257.82s 5,490,537 2335.51s
50 20 11,493,500 2327.25s 7,370,100 2688.74s 17,058,700 1932,18
70 30 23,431,100 1972.52s 10,965,966 1270.98s - -

Table 3: Best found results for short sea shipping instances with full load cargoes

many ports close to one another. As a result, a relatively large part of the
travel times and costs is made up of harbor costs and loading times. This
means that the saving made possible by allowing varying speeds is expected
to be smaller in the short sea than in the deep sea instances. The results of
the deep sea instances will be covered in Tables 4 and 5.

Fixed Speed ALNS Varying Speeds
# of # of Objective Running Objective Running Objective Running

Cargoes Ships Value Time Value Time Value Time

7 3 5,233,464 0.14s 5,233,464 0.61s 3,751,347 1.25s
10 3 7,986,248 0.17s 9,983,848 0.87s 6,107,111 0.81s
15 4 13,467,090 10.98s 13,467,090 3.58s 11,562,392 2169.94s
18 5 43,054,055 493.21s 43,197,288 2.91s 33,593,500 2986.84s
22 6 41,176,986 192.79s 41,176,986 9.76s 33,182,200 3569.80s
23 13 41,002,992 3241.90s 41,599,591 29.90s 36,352,200 2167.95s
30 6 20,212,000 3414.41s 19,229,713 986.32s 17,352,000 3539.43s
35 7 106,329,000 2197.77s 65,923,641 1136.86s 111,797,000 1059.15s
60 13 357,600,000 1400.84s 89,158,268 1815.15s 331,270,000 2804.86s
80 20 340,682,000 3413.12s 83,094,686 1268.28s 340,682,000 3072.83s

Table 4: Best found results for deep sea shipping instances with mixed load cargoes

The best found results in Table 4 confirm what we have seen in earlier in-

19



stances, which is that the approach with varying speeds is better for smaller
instances but that ALNS outperforms all other approaches once the in-
stances get large enough.

Fixed Speed ALNS Varying Speeds
# of # of Objective Running Objective Running Objective Running

Cargoes Ships Value Time Value Time Value Time

8 3 9,584,863 0.05s 9,816,881 0.66s 6,279,584 0.17s
11 4 34,854,819 0.16s 34,854,819 5.77s 27,957,396 5.35s
13 5 11,629,005 0.33s 12,490,851 2.00s 9,013,226 42.31s
16 6 51,127,590 4.57s 51,127,590 2.66s 41,310,188 512.17s
17 13 17,316,720 2.79s 17,316,720 22.26s 15,147,150 1331.58s
20 6 16,406,738 7.97s 16,406,738 90.88s 12,437,029 495.71s
25 7 22,773,158 32.62s 22,811,855 315.83s 17,508,100 2003.80s
35 13 88,853,100 2671.10s 88,620,858 2196.04s 72,376,000 944.125s
50 20 43,088,500 1791.27s 42,432,039 2748.42s 37,368,700 3281.91s
70 30 150,829,000 3423.88s 152,507,132 1557.88s 159,016,000 3431.61s

Table 5: Best found results for deep sea shipping instances with full load cargoes

The results in Table 5 once again that the model with varying speeds can
also outperform ALNS even when the solver does not manage to reach op-
timality. Only for the largest instance the fixed speed approach produced
the best result, albeit with slim margins.

From these tables we find that the approach with varying speeds is always
better when solved to optimality. This should not come as a surprise, as it
is a relaxation of the definition of the problem of the other two approaches.
For instances up to 20 cargoes and sometimes even larger, the varying speed
approach outperforms the other two approaches even when it does not solve
to optimality. It is interesting to see that the varying speed approach seems
to perform better in the deep sea instances and the full load cargoes, rather
than in short sea instances and mixed load cargoes. For larger instances,
the ALNS approach produces the best solutions. It should be noted that the
ALNS generally finds its best solution much quicker than the model with
varying speeds. However, as this computational study was set up with a
computation time of an hour, the best result found is more important than
the time it took to reach that solution.
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5.2 Speed Tier Analysis

For the sake of possible further research, it is of interest to know how the
new possibilities that come with the relaxation provided by the model with
varying speeds are utilized. If, for example, only the highest speed tier
is utilized, it might mean that the penalty for a higher speed is too low
compared to its decreased travel time. To this end, we collected the data
with regards to choice of speed for the instances that managed to solve to
optimality, which are presented in Table 6.

# of # of Speed Tier
Instance type Cargoes Vessels 1 2 3 4 5

Short sea, mixed cargo 7 3 11 1 0 0 1
Short sea, mixed cargo 10 3 15 0 1 1 4
Deep sea, mixed cargo 7 3 14 0 0 0 3
Deep sea, mixed cargo 10 3 18 0 0 0 3

Short sea, full cargo 8 3 10 3 0 0 4
Short sea, full cargo 11 4 17 4 3 2 0
Short sea, full cargo 13 5 20 1 2 2 6
Deep sea, full cargo 8 3 11 2 0 0 4
Deep sea, full cargo 11 4 17 0 1 0 4
Deep sea, full cargo 13 5 19 2 2 2 4

Total 79 8 5 4 16

Table 6: Number of times each speed tier was used in optimal solutions

From this table, we learn that the lowest speed tier is used most often. The
next most commonly used speed tier is the highest tier, and the three middle
tiers are used approximately the same. From this we can conclude that lower
speeds are very popular for reducing costs on voyages that allow it and that
higher speeds are sometimes used to squeeze in a cargo that would otherwise
be picked up by a spot charter. While these results seem promising for at
least some further research, it should be noted that the cost structure used
is by no means exact but rather an approximation based on assumptions on
the current cost structure and on vessel capabilities.
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6 Conclusion

This paper reacts to a growing market for global maritime transportation,
in addition to a larger concern for ecological well-being in all industries. It
does so by considering the cargo ship routing and scheduling problem as it
occurs in industrial and tramp shipping. Three different approaches were
taken in order to solve these problems, and they were compared with regards
to performance in objective value and solving speed. For a fair comparison,
this paper made use of benchmark instances presented in earlier research in
this field.

The first approach to the routing and scheduling problem was solving a
mathematical formulation with a solver. Expanding on this formulation, the
second approach was presented which extended upon the original formula-
tion by introducing different speed tiers at which voyages could be made.
This second approach solves a new extended mathematical formulation us-
ing the same solver as the first approach. The third approach made use of
an adaptive large neighborhood search (ALNS) heuristic.

The benchmark instances have been solved by all three approaches, and
the best solutions found within a certain time limit have been recorded. In
cases where the second approach reached optimality, it outperformed the
other two approaches. However, this approach also produced the best re-
sults when optimality was not reached for instances up to 20 cargoes and
sometimes more. The varying speed approach remained superior over the
other approaches for longer as instances became larger in the case of deep sea
instances and of instances with full load when compared to the cases of their
counterparts. For larger instances, the ALNS outperformed or matched the
other approaches consistently.

The addition of speed tiers created a more complex, but also more realis-
tic and more rewarding problem. Optimal solutions for this problem often
included very low and high speeds, which - in addition to the reduced ob-
jective values - indicates that this extension is not trivial. Solving the cargo
ship routing and scheduling problem with the help of variable sailing speeds
helps reduce fuel consumption without sacrificing profit, and could prove to
be a lucrative consideration in the future of maritime transportation.

22



7 Recommendations

During this research, several points of interest arose that would warrant
further research. One of the limitations of this research is that the cost
structure of the voyages and their speed tiers is built on several assump-
tions. One of these assumptions is that the costs incurred on a voyage solely
consist of fuel costs and harbor fees. In reality, other factors might be at
play that could be further researched with the help of actual shipping com-
panies. Another assumption is that the proposed tiers with their associated
percentages increase in costs and speed are identical for every type of ship.
Both of these assumptions are made in this research in order to investigate
whether the addition of speed tiers would be interesting, and now that it has
proven to be so, these assumptions could themselves be further researched.

Another promising opportunity for further research lies in implementing an
ALNS for the model with varying speeds. The ALNS approach used in this
paper already produces better results than the solver of the same model,
which means that an ALNS heuristic for the extended model could prove to
be superior to the approach taken in this research.

In summary, adding a choice of speed to the existing routing and scheduling
problem brings about lower fuel consumption and higher profits for the
maritime shipping industry. This effect could be enhanced by creating a
more realistic structure between sailing speed and costs based on empirical
data from shipping companies. In addition, clever (ALNS) heuristics could
be devised for this extension and tailored to the addition of speed tiers,
further unlocking the potential of this new-found flexibility.
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