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Abstract

This paper presents solution methods for tramp ship routing and scheduling problems with trans-
shipment possibilities. It presents formulations which are able to find optimal solutions for relatively
small instances and heuristics which can determine low-cost solutions when the problem instances
become larger. Furthermore, parameter estimation methods are presented which can be used to
determine efficient parameter settings for the different heuristics. Finally, nine different sets of
parameters are provided which can be adopted for different types of problems, dependent on their
characteristics.

For all methods the benchmark instances as provided by Hemmati et al. (2014) are used to
estimate performance. Out of the 240 problem instances provided there, new optimal values were
found or confirmed for 15 instances and improved solutions were found for 59 instances. Finally,
by including transshipment possibilities in the model, a cost decrease was found for 144 of the
problems. In some cases, this corresponded to cost savings of well over ten percent.
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Chapter 1

Introduction

1.1 Background

In 2016, over ten billion tons of goods have been shipped overseas. This corresponds to about
1.4 tons of goods for every single individual. The value of these goods amounted to over seventy
percent of the total global trade. Altogether, over 700 million containers have been handled on
ports worldwide for the transportation of these goods (UNCTAD, 2017).

In general, there are two ways of assigning these containers to the ships which can transport
them. In the first case, the ships follow given schedules. That means that for each cargo, an optimal
route should be picked, given the available schedules and ship capacities. The other option is to
allow more flexible ship routing, where the ships follow the available demand. In general, the first
option is referred to as liner shipping, while the second is either referred to as industrial shipping
or tramp shipping (Lawrence, 1972). In industrial shipping, the cargo owner also owns the ships,
whereas with tramp shipping, the ship owners generally set up contracts with the cargo owners.
These contracts specify which cargoes should be shipped and include some time windows indicating
when the pickup and delivery of the cargoes should take place.

This paper focuses on tramp shipping, investigating means of routing the ships to pick up and
deliver a given set of cargoes. The relatively small problem instances are solved to optimality using
mathematical formulations. For the larger problem instances, solving to optimality takes too long,
so an adaptive large neighbourhood search (ALNS) heuristic is implemented. In order to speed up
this heuristic, parameter estimation methods are described.

1.2 Problem Description

In order to transport a cargo to its destination, two options are available. The cargo can either be
transported by one of the available vessels or by using the available spot charters. It is assumed
that the ship owner owns a heterogeneous fleet of vessels which may have different capacities, sailing
speed, transportation costs, and different starting positions and starting times. Furthermore, some
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1.3. Literature review Chapter 1. Introduction

cargoes and vessels might not be compatible.
If a cargo is assigned to one of the available vessels, it should be picked up and delivered within

certain time intervals, while not exceeding ship capacity. If none of the vessels is used to transport
this cargo, it should be transported by a spot charter at a given, fixed cost.

The cargoes can be brought to their destinations by a single vessel, but in some cases it is
economically more efficient to use multiple vessels in handling a single cargo load. If that happens,
the containers will have to be shipped from one vessel to another at some port. This is known
as transshipment. If such a transshipping operation is performed, some costs are incurred at the
relevant port and some time is spent during this operation.
The problem can be summarized using the following research question:

How can low-cost solutions be derived for tramp ship routing and scheduling problems with
transshipment possibilities?

Regarding this research question, we assume that it will be possible to develop mathematical for-
mulations which can be used to find optimal solutions for problems of relatively small size, but
which will not be able to come up with optimal solutions, or even low-cost solutions for larger
problems. For these larger problem instances, we assume that heuristic approaches will manage to
find solutions which are better than those found by using the mathematical formulation.

In summary, this paper aims to find efficient formulations and heuristics for tramp ship routing
with and without transshipment.

1.3 Literature review

1.3.1 Tramp Shipping Research

Inspired by solution approaches which turned out very successful in other industries, some of the
first solution methods used in the tramp shipping industry have been introduced by Appelgren,
solving the ship routing problem with time windows using the Dantzig-Wolfe decomposition method
(Appelgren, 1969; Dantzig, 1963) and using branch-and-bound techniques (Appelgren, 1971; Land
& Doig, 1960). In his first paper, he determines a solution to the problem, which might not satisfy
integrality constraints and in his second paper he describes how this solution can be converted to
a feasible integer solution. For extensive discussion of subsequent literature, we refer the interested
reader to the review papers brought out at a ten year interval (Ronen, 1983, 1993; Christiansen et
al., 2004; Pantuso et al., 2014). We just note that most of the subsequent literature investigates
how to improve the current solutions with more advanced solution methods, or how the current
problems can be extended to include more real-life characteristics. The same holds for this paper,
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1.3. Literature review Chapter 1. Introduction

attempting to improve the solution methods that are known to date and including transshipment
possibilities, but using some simplifications to keep the model simple, thereby leaving room for
further extensions.

1.3.2 Extensions to Suit Real Life Characteristics

As mentioned, some simplifications are used throughout this paper. First of all, vessel speed is
assumed to be constant. In reality, this need not be, as vessel speed is subject to a natural trade-
off between transportation time and fuel cost. This natural trade-off is the ground for a field of
research regarding speed optimization (Norstad et al., 2011). Here, time windows may not be fixed,
but might be subject to more flexible bounds (Yu et al., 2017). Finally, fleet size is taken constant.
In reality, this is a strategical decision and only really constant in the short-run. In the long-run,
decisions need to be made about whether to add additional vessels to the available fleet (Xinlian et
al., 2000).

As an alternative to transshipment operations, one might like to split up the cargo into smaller
sizes, and transport all these ‘subcargoes’ using multiple vessels (Korsvik et al., 2011).

1.3.3 Benchmark Suites

Most of the literature in operations research is focused on finding new solution methods or improv-
ing existing solution methods for the problem under consideration. Without benchmark problem
instances, the academic relevance of these papers would be smaller, as someone interested in the
best solution approach for his problems would have to compare all possible methods before knowing
which would work well. This is not necessary, as for most operations research problems and other
mixed integer programming problems benchmark problem instances are given, which can be used
to compare the performance of different solution methods.

Extensive libraries with benchmark instances can be found in Koch et al. (2011) for general
mixed integer problems and Beasley (1990) for operational research benchmark suites.

Although benchmark suites are widely provided for most of the programming problems in op-
erations research, none of these included problem instances which could directly be used for in-
vestigating solution methods regarding tramp ship routing and scheduling. Therefore, Hemmati et
al. (2014) provided a benchmark suite to fill this gap and to inspire future research in this area of
literature. The goal is to allow for a standardized comparison of solution methods and to inspire
future research in this area of literature.

1.3.4 Developing the ALNS Heuristic

Oftentimes, a single heuristic is used throughout the entire solution method, or multiple heuristics
are used sequentially in a multiple-stage approach. However, Ropke & Pisinger (2006) introduced
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1.4. Relevance Chapter 1. Introduction

the so-called Adaptive Large Neighbourhood Search (ALNS), where multiple heuristics are used
simultaneously and weighted according to their performance in previous iterations.

In every iteration of the ALNS heuristic, some cargoes are removed from the current solution,
and reinserted at certain positions. This is known as a k-interchange or k-opt method (Croes,
1958; Lin, 1965) and is known to have strong performance in many fields (Lin & Kernighan, 1973),
including routing problems with time windows (Potvin & Rousseau, 1995).

The most basic k-interchange methods rely on local search. Generally, this procedure takes
many small steps like interchanging two cargoes or moving a cargo between two vessels (Bräysy
et al., 2004) and (Brønmo et al., 2007). These methods are able to visit many possible solutions
in a short amount of time, but they might get stuck in a local minimum. To overcome this, some
more advanced methods can be used, such as tabu search (Garcia et al., 1994) or branch and bound
(Shaw, 1997), by temporarily visiting some infeasible solutions (Cordeau et al., 2001), or by taking
larger steps. The last option is known as Large Neighbourhood Search (Shaw, 1997) and is the
basis of the ALNS heuristic.

1.4 Relevance

The main contribution of this paper is that it provides methodology which can be used to derive low-
cost solutions for industrial and tramp ship routing problems with time windows while allowing for
transshipment. Generally, methods developed for solving routing problems without transshipment
fall short for solving transshipment problems, as they do not account for dependencies between
vessel schedules (Drexl, 2013).

In 2016, over 25 percent of liner shipping throughput consisted of transshipment containers
(UNCTAD, 2017). However, for industrial and tramp shipping, transshipment is much less preva-
lent. Accordingly, research on transshipment operations in the liner shipping industry has come
up with efficient options for including transshipment in the models (Wang & Meng, 2012), but for
industrial and tramp shipping this is not the case. This paper aims to fill this gap in research by
providing a mathematical formulation which allows for transshipment of containers and extending
the ALNS heuristic to allow for transshipment. The ALNS heuristic enables determining low-cost
solutions for problem instances where optimal solutions cannot be found within reasonable time.

Finally, a local search heuristic is presented to estimate the necessary parameters. Knowledge of
what parameter values work well in which situations will help derive low-cost solutions very quickly.
Nine different sets of parameters are provided which can be used depending on the characteristics
of the problem at hand.

4



1.5. Outline Chapter 1. Introduction

1.5 Outline

Next, In Chapter 2 the problem instances that were used in this paper are described. After that,
Chapters 3 and 4 explain the mathematical formulation and ALNS heuristic used to solve the
problem without transshipment. Then, in Chapter 5 and 6 these are extended to allow for trans-
shipment. Afterwards, in Chapter 7 parameter estimation methods are discussed. Next, in Chapter
8 the results are presented. Finally, Chapter 9 concludes this paper.
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Chapter 2

Data

In their 2014 paper, Hemmati et al. present 240 problem instances by means of which the implemen-
tation and performance of solution methods can be tested in terms of objective value and running
time. These instances are used to represent multiple types of problems.

First of all, a distinction is made between deep sea and short sea shipping problems. In the
first case, many of the cargoes are transported over one of the big oceans, implying that average
sailing times are relatively long. In short sea shipping problems, the operations are only regional
and correspondingly, average sailing times are short.

Secondly, the data distinguishes between full load problems, for which only a single cargo fits
in the vessels, and mixed load problems, where the ships can hold multiple (smaller) cargoes.

Together, these two distinctions imply four different types of problems. By using different
numbers of cargoes and ships, sixty problem instances are provided for each of these four types.
So, altogether, 240 benchmark problem instances are given1. These include data on the vessels,
cargoes, and ports based on real life values (Fagerholt et al., 2000).

Firstly, for each vessel, its starting port and corresponding starting time are given, as well as
its capacity and a list of cargoes which it can transport. Secondly, for each cargo, the origin and
destination port, size, relevant spot charter cost and time windows are given. Furthermore, for
each possible trip between two ports, the transportation time and cost are given for each vessel2.
Finally, for each port, the cost of using this port and the time induced in doing so are given per
vessel.

The number of cargoes which need to be transported range between 7 and 130, the number
of available vessels range between 3 and 50, and the number of ports are 39 and 86 for short sea
and deep sea shipping problems, respectively (although not all ports are relevant for the smaller
problem instances).

1The problem instances can be found at http://home.himolde.no/~hvattum/benchmarks/.
2It is important to note that the transportation time and cost in the datasets do not satisfy the triangle inequality.

This implies that when moving between two ports, it may be cheaper to stop at an intermediate port rather than
moving straight from one port to the other. This option is only exploited by the formulation in Chapter 5 and
therefore, solutions obtained there could be cheaper than what other methods might find.
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Chapter 3

Tramp ship routing

This chapter presents a mathematical formulation which can be used to solve the basic problem to
optimality. The formulation is taken from Hemmati et al. (2014).

3.1 Problem Description

For now, transshipment options are disregarded. The goal is to minimize the sum of transportation
costs, port costs and spot charter costs, while satisfying vessel flow constraints, weight constraints,
time constraints and precedence constraints.

3.1.1 Notation

Let the set of vessels be denoted as V , the set of loading and unloading nodes be denoted as Np

and the set of nodes which vessel v can visit be denoted as Nv. Let Np
v denote the intersection of

Np and Nv and let Av denote the set of arcs which vessel v can traverse. Let n denote the number
of cargoes. Next, let Kv be the capacity of vessel v, and o(v) and d(v) denote the origin node and
artificial destination node of vessel v. Furthermore, let the cost and travel time of sailing from node
i to j with vessel v be denoted as Cijv and Tijv, respectively. Let the time window of node i be
bound by T i and T̄i and let the size of the relevant cargo for node i be denoted by Qi. Then, let
xijv be a binary variable equal to one if vessel v sails from node i to node j. Also, let yc be a binary
variable equal to one if cargo c is transported by a spot charter and let CS

i be the associated cost.
Finally, let liv and tiv be the weight on board of vessel v after node i and the time at which it
arrives there, respectively.

3.1.2 Formulation

Using the notation as explained before, the problem can be formulated as follows:

min
∑
v∈V

∑
(i,j)∈Av

Cijvxijv +
∑
i∈Np

CS
i yi (3.1)

7



3.1. Problem Description Chapter 3. Tramp ship routing

subject to ∑
v∈V

∑
j∈Nv

xijv + yi = 1, i ∈ NP , (3.2)

∑
j∈Nv

xo(v)jv = 1, v ∈ V, (3.3)

∑
j∈Nv

xijv =
∑
j∈Nv

xjiv, v ∈ V, i ∈ Nv\{o(v), d(v)}, (3.4)

∑
j∈Nv

xjd(v)v = 1, v ∈ V, (3.5)

liv +Qj − ljv ≤ Kv(1− xijv), v ∈ V, j ∈ NP
v , (i, j) ∈ Av, (3.6)

liv −Qj − l(n+j)v ≤ Kv(1− xi(n+j)v), v ∈ V, j ∈ NP
v , (i, n+ j) ∈ Av, (3.7)

0 ≤ liv ≤ Kv, v ∈ V, i ∈ NP
v , (3.8)

tiv + xijvTijv − tjv ≤ T̄i(1− xijv), v ∈ V, (i, j) ∈ Av, (3.9)∑
j∈Nv

xijv =
∑
j∈Nv

x(n+i)jv, v ∈ V, i ∈ Np
v , (3.10)

tiv + Ti(n+i)v − t(n+i)v ≤ 0, v ∈ V, i ∈ Np
v , (3.11)

T i ≤ tiv ≤ T̄i, v ∈ V, i ∈ Nv, (3.12)

xijv ∈ {0, 1}, v ∈ V, (i, j) ∈ Av, (3.13)

yi ∈ {0, 1}, i ∈ NC , (3.14)

Constraints (3.2) ensure that every cargo is either transported by one of the available vessels or the
spot-charter. Constraints (3.3) – (3.5) describe the vessel routing. Constraints (3.6) – (3.8) ensure
that cargo weights are updated correctly and do not exceed vessel capacity. Constraints (3.9),
(3.11), and (3.12) update the time variables and keep them within the required bounds. Next,
Constraints (3.10) look after the precedence requirements. Finally, Constraints (3.13) and (3.14)
set the binary requirements.

8



Chapter 4

ALNS Heuristic

To find low-cost solutions for problem instances which are too large to solve to optimality within
reasonable time the ALNS-heuristic as developed by Ropke & Pisinger (2006) is used.

4.1 Procedures

First, an initial solution is generated. This is done by assigning all cargoes to the available spot
charters. Next, the following steps are repeated until a certain stop-criterion is met. They will be
explained in more detail throughout Sections 4.2 – 4.5.

First, a removal and insertion heuristic are selected. Then, using these heuristics, a certain
number of cargoes are removed and then reinserted in the current solution. After reinsertion, if the
acceptance-criterion is met, the current solution is updated and if the objective value corresponding
to the new solution is better than the previous best, the best solution is updated as well.

Finally, after a predefined running time, the best solution found is returned.

4.2 Removal of Cargoes

In every iteration, q cargoes are removed, where q is a random number between four and min(100, ξn),
with n being the number of cargoes and ξ a parameter between zero and one. For the removal of
cargoes, the Shaw removal heuristic, random removal, and worst removal are used.

4.2.1 Shaw Removal Heuristic

The Shaw removal heuristic depends on the similarity between cargoes (Shaw, 1997). To find q

cargoes for removal, a random cargo is selected, together with q − 1 similar cargoes. The intu-
ition behind this is that it might be easier to interchange the positions of similar cargoes between
solutions, rather than very different cargoes. In the latter case, only the original positions and
expensive positions might be possible.

9



4.2. Removal of Cargoes Chapter 4. ALNS Heuristic

Similarity is determined based on several characteristics. First of all, the minimal travel cost
between the origin and destination of cargoes and the difference between arrival times are considered.
This is done because cargoes which are close to one another (geographically) and are being picked
up and delivered at similar times might be more easily interchanged. Secondly, the differences in
size and the sets of vessels which can transport the cargoes are taken into account. This is done
because interchanging the cargoes should yield a feasible solution and similarities in these regards
increase the probability that this is the case.

Altogether, the similarity between two cargoes is calculated with the following equation, where
a lower value of R(i, j) implies more similarity between cargoes i and j.

R(i, j) =ϕ(Co(i),o(j) + Cd(i),d(j)) + χ(|To(i) − To(j)|+ |Td(i) − Td(j)|)

+ ψ|Qi −Qj |+ ω

(
1− |Vi ∩ |Vj |

min{|Vi|, |Vj |}

)
(4.1)

with Ca,b the traveling cost between a and b, o(c) and d(c) the origin and destination port of cargo
c, Ta the time at which node a is visited, Qc the size of cargo c and Vc the set of vessels which can
transport cargo c.

In order to make the absolute value of the parameters more meaningful, all terms are normalized
by scaling the relevant variables such that they take values between zero and one. So, the value of
R(i, j) ranges between 0 and 2ϕ+ 2χ+ψ+ω. Note that the values of Ta are not given for cargoes
which are transported using the available spot charters, so these are set to be the average of the
lower and upper bounds to give an as accurate as possible representation of what they might have
been.

Chapter 7 explains how the values of the weighting parameters can be determined.

4.2.2 Random Removal

Random removal is much simpler than Shaw removal, selecting q cargoes at random. The advantage
of this method is that it runs faster than the Shaw removal method and does not require any
parameter estimation. However, it relies on luck to find good solutions and therefore might not be
as good at converging to an optimum. For this reason, random removal is likely to perform better
at early stages of the ALNS heuristic (in terms of time) but might be outperformed later on.

4.2.3 Worst Removal

The last removal heuristic, worst removal, removes q cargoes, which are set at high cost positions.
To measure this, the cost of the current solution, with and without this cargo is taken and the

10



4.3. Reinsertion of cargoes Chapter 4. ALNS Heuristic

difference is calculated. Then, the cargo for which this difference is largest, is removed, and the
process is repeated until q cargoes are removed from the current solution.

Intuitively, the difference between the Shaw removal method and worst removal, is that Shaw
removal focuses on cargoes which can easily be interchanged, while worst removal focuses on cargoes
which might be put at the wrong position. Furthermore, because worst removal has a tendency to
remove the spot chartered cargoes first, it might outperform Shaw removal (in terms of objective
value) at early stages of the ALNS heuristic.

4.3 Reinsertion of cargoes

For the insertion of cargoes, a basic greedy heuristic and a regret-k heuristic are used.

4.3.1 Greedy Reinsertion Heuristic

The basic greedy insertion heuristic inserts one cargo at a time, such that the lowest cost cargo is
inserted first every time. That is, for every cargo, the insertion costs at all possible positions are
calculated and the minimum of these values is computed. Then, the cargo for which this minimum
is lowest, is inserted first. This implies that at every step, we choose the least costly option of all
possible insertions. However, the risk of this heuristic is that for the last cargoes to be inserted,
only very costly options remain. This shortcoming is the basic idea used in the next heuristic.

4.3.2 Regret heuristics

Regret heuristics try to avoid being left with very costly cargoes after inserting some cheaper ones.
Intuitively, we try to select the cargo which we might regret if it wouldn’t be selected now. For this,
the regret-k value is calculated for all cargoes which are not yet being served by one of the vessels.
This regret-k value is defined as the sum of differences between the cost of inserting the cargo at
its best position and inserting it at the second best, third best, ..., and k-th best position (Tillman
& Cain, 1972). Then, the cargo with the highest regret value is inserted at the cheapest position.
If two cargoes have the same regret value, the one with the lowest insertion cost is chosen.

If a cargo cannot be inserted at k different positions, its regret value is set at infinity. When
multiple cargoes have an infinite regret value, the one with the least feasible insertion points is
chosen. When there are multiple cargoes which have the same number of insertion points, the one
with the lowest insertion cost is chosen.

11



4.4. Heuristic Selection Chapter 4. ALNS Heuristic

4.4 Heuristic Selection

So far, multiple removal and reinsertion heuristics have been presented. To explore a region which
is as large as possible, all possible combinations should be allowed in every iteration. In order to
do so, let a weight wi be given for every heuristic and let the probability of selecting heuristic i
be equal to wi. To be as flexible as possible, the removal and insertion heuristics are selected and
weighted separately.

In order to determine the weights of the heuristics, they will get a score πi based on their
previous performance. This score will increase most when they manage to find a new best solution.
Secondly, their scores will receive a medium increase when a new solution is found which improves
upon the current solution, but not on the best known solution. Finally, the relevant scores will
increase a small bit when a new solution is found and accepted which does not increase the current
solution. This is done to reward heuristics which manage to explore new regions of the solution
space. From experiments we found that scores of 10, 4 and 1, respectively, work well and therefore
these scores have been used throughout this paper.

To update the heuristic weights, dependent on their scores, the entire search is divided into
separate segments. Between the different segments, the weights of the different heuristics are
adjusted and the scores are reset. First, the scores are normalized by dividing them by the number
of times they have been used in the previous segment, θis. Then, the weights in the next segment,
wi,s+1 are determined by balancing the previous weights and the relevant scores according to a
constant parameter r:

wi,s+1 = (1− r)wis + r
πi
θis

(4.2)

The parameter r determines how important the previous weights are. If r is set at zero, the initial
weights are kept throughout the entire search and if r is set at one, the new weights are determined
entirely through the scores in the previous segment. Finally, the weights are scaled such that they
sum to one.

4.5 Acceptance Criterion

To determine whether a new found solution should be accepted or rejected, an acceptance criterion
based on simulated annealing (Kirkpatrick et al., 1983) is used.

First of all, if the new solution yields a cost reduction compared to the current solution, it is
always accepted.

Next, if the new solution is worse than the current solution, it might still be accepted. The
probability of acceptance equals e(fnew−fbest)/(Tsfbest). Here, fsolution is the objective value corre-
sponding to the new solution or best solution found so far. Furthermore, Ts is the current cooling
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temperature and T is the starting temperature. In every segment s, Ts is calculated as Ts = cT ,
where c equals the total number of segments divided by the current segment number. For example,
when halfway through the heuristic, Ts would equal 2T . In our research, ten segments are used. In
summary, the probability of acceptance, depends on how much more expensive the current solution
is than the current best and how far we are along the entire search.

A problem with this approach is that after getting down to a reasonably good objective value,
the heuristic might struggle finding improvements, and therefore start accepting worse solutions
faster than finding improvements. In this case, the heuristic might keep jumping upwards, just
after we arrived at a cost similar to the best one found so far and not be able to improve any
further.

To circumvent this problem, one could set T at a very large value, in order to avoid jumping up
too often. However, this might make the probability of acceptance so small that hardly any worse
solutions will be accepted, thereby taking away the advantage of simulated annealing. Therefore, a
different approach is taken here.

Whenever a new global best solution is found, the possibility of accepting a worse solution will be
taken away for n iterations. By doing so, the heuristic will get to search through the neighbourhood
of this solution before possibly jumping back up to a worse solution. Secondly, the number of times
a worse solution can be accepted, before finding a better solution will be fixed by a given parameter
d. This helps to avoid situations where many steps to worse solutions are taken in quick succession.
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Chapter 5

Tramp ship routing with transshipment

5.1 Problem description

Now, the problem is extended by allowing a single cargo to be shipped by multiple vessels before
reaching its destination. In order to do so, the problem instances are extended to incorporate the
time it takes to transfer a certain cargo from one ship to another and the costs obtained from
doing so. Intuitively, this will have different effect depending on the number of cargoes, vessels and
ports, the size of cargoes and vessels and the time and cost associated with transferring cargoes.
Therefore, some additional problem instances are generated which differ in these regards.

Once again, a mathematical formulation and heuristic approach are described and implemented
for small and large problem instances, respectively.

5.2 Notation

In order to allow multiple vessels to be used for the transportation of a single cargo, some new
variables and parameters are required, and some changes need to be made to the formulation from
Chapter 3 and the heuristic from Chapter 4.

First of all, letK denote the set of cargoes and let o(k) and d(k) denote the origin and destination
of cargo k. Let Vk denote the set of vessels which can transport cargo k and let Kv be the set of
cargoes which vessel v can transport. Also, let Nuv denote the intersection of Nu and Nv. Then, let
zijkv be equal to one if vessel v transports cargo k over arc (i, j), and zero otherwise and let wikuv

be one if cargo k is switched from vessel u to vessel v at node i and zero otherwise. Next, let taiv
and tdiv be the arrival and departure time of vessel v at node i, respectively and let T l

ikv and Tu
ikv

be the loading and unloading time of cargo k by vessel v at node i, respectively. Note that T l
ikv

and Tu
ikv were included in Tijv in Chapter 3, but they need to be treated separately here because

not all loading and unloading happens at the origin and destination nodes anymore. Finally, let
Cikuv be the cost associated with transshipping cargo k at node i using vessels u and v, where u
is the vessel transporting k to i and v is the vessel transporting k from i. Here, these costs are
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5.3. Formulation Chapter 5. Tramp ship routing with transshipment

taken as the sum of the two port costs associated with the two vessels and port i. That is, the costs
correspond to the costs incurred by the two separate vessels when performing an operation at port
i and it is assumed that these costs cover storage costs if the pickup vessels arrives later than the
time at which the delivery vessel finishes unloading. Note that the port costs were included in Cijv

in Chapter 3, but are actually provided separately from Cijv in the datasets provided by Hemmati
et al. (2014).

5.3 Formulation

Using this notation, the complete mathematical formulation becomes:

min
∑
v∈V

∑
(i,j)∈Av

Cijvxijv +
∑
i∈Np

Ciyi +
∑
k∈K

∑
u∈Vk

∑
v∈Vk\{u}

∑
i∈Nuv

Cikuvwikuv (5.1)

subject to
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∑
j∈Nv

xo(v)jv = 1, v ∈ V, (5.2)

∑
j∈Nv

xijv −
∑
j∈Nv

xjiv = 0, v ∈ V, i ∈ Nv\{o(v), d(v))}, (5.3)

∑
j∈Nv

xjd(v)v = 1, v ∈ V, (5.4)

∑
v∈Vk

∑
j∈Nv

zo(k)jkv + yk = 1, k ∈ K, (5.5)

∑
v∈Vk

∑
j∈Nv

zijkv −
∑
v∈Vk

∑
j∈Nv

zjikv = 0, k ∈ K, i ∈ N\{o(k), d(k))}, (5.6)

∑
v∈Vk

∑
j∈Nv

zjd(k)kv + yk = 1, k ∈ K, (5.7)

∑
k∈Kv

zijkvQk − xijvKv ≤ 0, v ∈ V, (i, j) ∈ Av, (5.8)

∑
j∈Nu

zjiku +
∑
j∈Nv

zijkv − wikuv ≤ 1, k ∈ K,u ∈ Vk, v ∈ Vk\{u}, i ∈ Nuv, (5.9)

tdiv + xijvTijv − tajv − T̄i(1− xijv) ≤ 0, v ∈ V, (i, j) ∈ Av, (5.10)

tdiv + Ti(n+i)v − ta(n+i)v ≤ 0, v ∈ V, i ∈ Np
v , (5.11)

T i < taiv ≤ T̄i, v ∈ V, i ∈ Nv, (5.12)

taiu +
∑

v∈Vk\{u}

wikuvT
u
iku ≤ tdiu, u ∈ V, i ∈ Nu, k ∈ Ku, (5.13)

taiu + wikuv(Tu
iku + T l

ikv) ≤ tdiv, k ∈ K,u ∈ Vk, v ∈ Vk\{u}, i ∈ Nuv, (5.14)

taiv +
∑

u∈Vk\{v}

wikuvT
l
ikv ≤ tdiv, v ∈ V, i ∈ Nv, k ∈ Kv, (5.15)

wikuv ∈{0, 1}, k ∈ K,u ∈ Vk, v ∈ Vk\{u}, i ∈ Nuv, (5.16)

xijv ∈{0, 1}, v ∈ V, (i, j) ∈ Av, (5.17)

yk ∈{0, 1}, k ∈ K, (5.18)

zijkv ∈{0, 1}, v ∈ V, k ∈ Kv, (i, j) ∈ Av, (5.19)

Constraints (5.5) – (5.7) ensure that every cargo is brought from origin to destination, either by the
available vessels or by the spot charter, while satisfying the flow conditions. Constraints (5.8) make
sure that the load on board of vessel v does not exceed its capacity. Furthermore, they ensure that
if a vessel does not traverse a certain arc, no cargoes can be shipped by that means. Constraints
(5.9) state that a cargo can only be shifted from one vessel to another if both are present at the
respective port. Constraints (5.10) update the time between departure and arrival. Constraints
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(5.11) enforce the precedence requirements. Time windows are imposed through Constraints (5.12).
Constraints (5.13) – (5.15) impose that arrival times and departure times account for the time spent
unloading and loading the cargoes. Finally, binary requirements are set by Constraints (5.16) –
(5.19).

5.3.1 Solving Problems Without Transshipment

Note that by fixing wikuv to be zero, this formulation can also be used to solve problems without
transshipment possibilities. This is not very efficient in terms of running time, though. However,
by including the following additional contraints, the efficiency is greatly increased.

xo(k)jv = zo(k)jkv, v ∈ V, k ∈ Kv, j ∈ Nv (5.20)

xid(k)v = zid(k)kv, v ∈ V, k ∈ Kv, i ∈ Nv (5.21)

Including these constraints will actually allow full cargo load problem instances to be solved faster
than by the original problem formulation from Chapter 3. This approach requires more computer
memory though, so problem instances with 100 or more cargoes can no longer improve upon the
trivial solution of transporting every cargo with the spot charters without running out of mem-
ory anymore1. Problems of such size are better left to heuristic approaches regardless of what
formulation is being used, so we do not consider this to be a very serious drawback.

Furthermore, this adapted formulation will be used to obtain starting solutions. That is, first
wikuv will be fixed to zero to solve the problem without transshipment. Then, wikuv will become a
binary variable again to solve the problem with transshipment and the final solution obtained from
when wikuv was zero will be used as a starting solution for this problem. Using this approach will
save considerable amounts of running time.

A final advantage of this adapted formulation arises in problem instances for which the triangle
inequality does not hold with regards to transportation time and cost2. In this case, it may be
advantageous to omit equations 5.20 and 5.21 to remove any restrictions on xijv. In Chapter 3,
xijv was restricted by forcing a delivery or pickup when moving to a port. Similarly, in Chapter 4,
the solutions do not allow for intermediate ports to be visited. This also holds for the heuristic in
Chapter 6. We have not investigated how severe this effect is, but like to note that a few percent
decrease in objective value is not rare. To solve these problems, we suggest that any trips for which
the triangle inequality does not hold would have their transportation time and cost replaced by the
relevant (cheaper and faster) alternatives. An analysis of the correct approach in situations where
either the transportation time or the transportation cost (but not both) is lower when moving
through an intermediate port is left to future research3.

1Using a computer with 16 GB RAM.
2As noted before, this is the case for some of the ports which are provided by Hemmati et al.
3This may for example happen when a shorter route might be available, but would require a fee.
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Chapter 6

ALNS heuristic with transshipping

To include transshipments during the ALNS heuristic, an insertion method will be introduced,
which will insert a given cargo by using a transshipment operation at the cheapest position and
will pass the cargo on to one of the other insertion methods if no feasible positions exist.

6.1 Transshipment Insertion

First, two vessels will be selected which can pick up the cargo and deliver it, such that the pickup
time is before the delivery time minus the shortest route from the pickup point to the delivery
point. We will refer to these as the pickup vessel and the delivery vessel. Next, a feasible position
will be selected where the pickup and delivery of the cargo will take place by the relevant vessel.
Then, for both vessels, a position on their current route will be selected where the transshipment
should take place and could take place when taking weight limits into account.

Given these vessels and positions, the costs of all ports at which the transshipment operation
could take place given time window constraints are considered, and the port with the minimum
cost is chosen. Note that these costs include the cost of picking up and delivering the cargo at its
origin and destination port, respectively.

This process is repeated for all vessel combinations and positions on their routes. Finally, the
vessel combination with the minimum cost is chosen and the transshipment operation is inserted
at the positions and port corresponding to this lowest cost option. If no feasible insertion points
exist, the cargo will be inserted by one of the other insertion methods.

6.2 Further Adjustments

Note that by including transshipment operations in the route of a given vessel, also changes the
feasibility check of inserting normal cargoes. Therefore, it is recommended to keep track of which
vessels have a transshipment operation in their schedule and which vessels are used in this operation,
as transshipping introduces an interdependency between vessels regarding feasibility.
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Because the transshipment insertion can only find transshipment possibilities for a single cargo
at a time, it is quite expensive in terms of running time. Furthermore, all feasibility checks that
happen after a transshipment operation has been inserted will also become more cumbersome.
Therefore, this insertion heuristic will be selected on a different basis than the other heuristics. In
every iteration, at most a single, random cargo will be inserted using transshipment insertion and
this will always be done after all removed cargoes are served again. This is done because it will
avoid an early inefficient transshipment insertion which would increase the cost of the subsequent
insertions.

In every iteration, the probability of attempting a transshipment operation is set at 1−c/10 with
c the total number of segments divided by the current segment number. This is done to make the
insertion of early transshipment operations less likely, as they take longer to perform and increase
the running time of the subsequent iterations when successful.
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Chapter 7

Parameter estimation

7.1 Shaw Removal Parameters

To determine the weights that should be used for the Shaw removal heuristic, note that the absolute
values of the parameters do not matter, just their size compared to each other. Therefore, the values
of these parameters can be standardized to sum up to one. Furthermore, note that the weights of
individual removal heuristics also sum up to one. Therefore, the initial weights to be used in the
Shaw removal heuristic can be determined by splitting it up into four separate removal heuristics,
one for each component weighted by one of the parameters and then running the entire heuristic
using only these removal heuristics. The weights of the different components can then be used as
parameter values.

However, there might still be room for improvement. Because the weight of the different com-
ponents only indicates how often a certain heuristic should be used, this yields limited information
on how large the relative values of these components should be within the original heuristic. For
example, it might be that a certain component is very important, so it receives a high weight.
However, when setting the relating parameter to this weight value its effect might still be limited
because the absolute value is not large enough. Therefore, the previous procedure will be repeated,
but with the complete Shaw removal heuristic with the new weights as additional removal heuristic.
Now, all components will have a twofold effect on which cargoes are chosen. First of all, they will
have a direct effect as a separate removal heuristic. Secondly, they will also have an effect through
the full Shaw removal heuristic.

After running the complete ALNS heuristic for this second setting, the parameter values should
be adjusted again. Here, we suggest to take the estimated effect of the relative component on
the previous heuristic. With weights ws and wc of the Shaw removal heuristic and the heuristic
regarding component c respectively. The new parameter value p̂c of component c can be computed
as p̂c = wspc +wc, with pC the previous parameter value of component c. It can easily be checked
that the new parameter values sum up to one, so this procedure can be repeated until a certain
degree of convergence is attained. To get a more robust estimate, this procedure is repeated several
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times, and the average values of the parameters are taken, scaling them afterwards to sum up to
one. Due to the random nature of the ALNS heuristic, there is little guarantee about the time until
convergence and the resulting optimality of the parameter values. Therefore, the final parameter
values can be refined with local search methods. The next section discusses an approach based on
grid search to perform such a local search, which will be used to fine-tune all parameters necessary
in the ALNS heuristic.

7.2 Local Search

To fine-tune the parameter values using local search, a subset S of the problem instances is selected.
Nine different subsets are used, depending on the size of the problem instances and whether or not we
are dealing with a short sea or deep sea shipping problem and mixed or full cargo loads. Regarding
size, we differentiate between three different cases. Firstly, there are small problem instances. For
these, the ALNS heuristic almost always finds the optimal solution within a few seconds as long as
the parameter values are reasonably good. Therefore, considering these instances, no difference is
made between the other characteristics (short sea or deep sea shipping and full or mixed cargo loads)
of the problem at hand. Here, problem instances with at most twenty cargo loads are considered to
be small. Furthermore, there are average and large problem instances. Average problem instances
contain at most fifty cargo loads. The remaining problem instances are considered to be large.

This way, every average or large subset contains fifteen or twenty problem instances. Out of
these, forty percent of the subset (six or eight problem instances) is used to estimate the best
parameter settings and the remaining problem instances are used to evaluate how well the ob-
tained parameter setting perform compared to the starting values. Per subset, the parameters are
estimated separately.

For all parameters used in the ALNS heuristic, the current value is kept track of, as well as a
lower and upper bound, and a step size. In order to improve the parameter values, in every step
of the local search heuristic one parameter will be selected which may be changed if this yields an
improvement in performance of the ALNS heuristic. First, the performance will be tested with the
original value. Secondly, the same will be done with the original value decreased by the current step
size, while staying above the lower bound. Thirdly, this will be repeated with the original value
increased by the current step size, while staying below the upper bound.

To estimate the performance of current parameter values, the problem instances from the rel-
evant subset are run for a certain running time, after which the best objective value is returned.
It is important to note that the choice of running time is quite important. If it is too short, ran-
dom effects will be more important than the small difference in parameter values. However, if the
running time is too long, the objective value is expected to converge towards the optimal objective
value and we might not be able to differentiate between the performance of the different settings.
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Also, the total running time of one iteration might become too large. Therefore, we suggest that it
is generally more useful to add more problem instances or iterations than to increase the running
time. However, if time is not an issue, increasing the running time might turn out to yield a positive
effect. In our estimations, the running time is set to be x seconds, where x is the number of cargo
loads which should be transported.

After running the ALNS heuristic for all relevant problem instances and parameter settings,
the average of the objective values is taken. This yields three mean values: one for the original
parameter values, and one for the given parameter increased or decreased by the step size. The
performance of a given setting is considered to outperform another setting if its average objective
value is ε percent lower than the other. Again, the choice of ε is quite important. If it is too small,
the local search might become more of a random walk (albeit somewhat in the right direction) as
too many changes are accepted. However, if ε is too large, the neighbourhood might become too
small to find any improvements. In our estimations ε is put at 0.05 percent.

Depending on the obtained mean values, several cases can be distinguished. If only one of the
new settings outperforms the original setting, the relevant parameter value is changed to the new
value. If both parameters outperform the original value, the one with the lowest objective value
will be chosen.1 If the original parameter value outperformed the other two, no step will be taken.

Every time a step is taken in a certain direction, another step will be taken in the same direction
for as long as this keeps yielding an improvement in average objective value. To save time, only the
mean value of the newest setting will be determined by running the ALNS heuristic. For the others,
the mean value which was previously found, will be reused. This also avoids that many successive
steps in the same direction will be taken, thereby keeping the search local and saving more time.

At this point, it is assumed that no further improvements can be made with the current step
size, so it will become twice as small (rounded upwards for parameters which can only take integer
values). Due to random effects, this is not necessarily true, but an analysis of the effect of this
simplification is left to future research. We suffice to say, that if the starting parameter values are
accurate enough, these random effects will have limited consequences.

If none of the previously described cases apply, that is, none of the settings outperforms the
other two significantly, the value of the parameter and the step size will remain at their original
values.

Table 7.1 presents the starting values, lower and upper bound and step sizes of all parameters
relevant for the ALNS heuristic. For convenience, it also mentions the (sub)section where the
relevant parameter is explained. Besides the Shaw removal weights, whose starting values are
determined as explained in Section 7.1, all values presented in Table 7.1 are obtained by observation
and trial-and-error approaches and therefore there should be plenty of room for improvement.

1This should not happen too often as long as ε is large enough. If it does happen often, consider increasing ε.
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Table 7.1: Parameter values, bounds and step sizes

Parameter ξ ϕ χ ψ ω K r T n d

Starting value 0.7 0.35 0.44 0.14 0.07 6 0.2 2500 50 2
Lower bound 0 0 0 0 0 1 0 1 0 0
Upper bound 1 1 1 1 1 15 1 10000 1000 6
Step size 0.1 0.1 0.1 0.1 0.1 1 0.1 200 10 1
Section 4.2 4.2.1 4.2.1 4.2.1 4.2.1 4.3.2 4.4 4.5 4.5 4.5

All values used in the local search heuristic. Presented are for each parameter, its starting value, the
lower and upper bound set for this parameter, and the step size which was used. Also mentioned is the
section where the purpose of the parameter is explained.
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Chapter 8

Results

8.1 Mathematical Formulation Without Transshipment

First, all 240 problem instances were solved using the formulation in Chapter 3 for mixed cargo loads
and the formulation in Chapter 5 adjusted as in Section 5.3.1 for full cargo loads. The maximal
running time was set at one hour. The results of this are summarized in Table 8.1. There, for
the different problem instances the average gap of the five relevant problems are presented, as well
as the average running time in seconds. The gap is calculated with respect to the individual best
solutions as in Panels (a) of Appendix A.
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Table 8.1: Average gap and total running time of the formulation without transshipment

Shortsea full Deepsea full Shortsea mixed Deepsea mixed
C V Gap Sec. Gap Sec. C V Gap Sec. Gap Sec.
8 3 0.00 0.30 0.00 1.01 7 3 0.00 0.40 0.00 0.21
11 4 0.00 5.64 0.00 0.78 10 3 0.00 1.51 0.00 0.67
13 5 0.00 11.79 0.00 0.90 15 4 0.00 107.90 0.00 158.35
16 6 0.00 60.25 0.00 2.28 18 5 0.24 1773.80 0.00 1449.37
17 13 0.00 25.85 0.00 4.23 22 6 2.14 3388.69 0.08 1886.54
20 6 0.00 7.13 0.00 4.75 23 13 5.04 3663.28 0.06 1489.58
25 7 0.00 77.60 0.00 12.76 30 6 8.62 3627.95 0.79 3627.68
35 13 0.00 166.60 0.00 751.80 35 7 54.10 3607.72 19.57 3604.39
50 20 1.53 3911.89 0.00 1766.01 60 13 211.32 3605.35 140.53 3604.43
70 30 177.54 3609.37 3.76 3611.20 80 20 251.48 3613.72 200.79 3610.63
90 40 278.41 3643.99 4.88 3623.62 100 30 347.72 3626.63 326.71 3629.05
100 50 272.54 3641.96 6.06 3638.04 130 40 345.72 3674.03 360.15 3689.98

Summary of the results obtained by running the formulations for solving tramp ship routing problems without
transshipment possibilities as explained in Chapters 3 and 5. Presented are for the specified number of cargoes (C)
and vessels (V) the average gap to the best solutions known in percentages for the five problems with these number
of cargoes and vessels and the average running time in seconds.

From Table 8.1 it can be seen that full cargo load problems can be solved to optimality for
problem instances of up to 35 cargo loads. For problem instances with 50 cargo loads, optimal
solutions where found for all deep sea shipping problems. Also, solving deep sea shipping instances
with up to 100 full cargo loads can be solved reasonably well. We believe this is due to the fact
that the feasible region of these problems is significantly smaller than those of the others.

For mixed cargo load problems, optimality is proven for all but one instances of up to 18 cargo
loads. It can be seen that full cargo load problem instances can be solved much more easily than
mixed cargo load problems. This is most likely due to the difference in size of the feasible regions,
as many more solutions are possible for mixed cargo load problems. Still, we believe that future
research may reveal more promising methods in solving mixed problems as well.
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8.2 ALNS Heuristic Without Transshipment

Next, the parameter estimation methods as explained in Chapter 7 were performed. This was done
for the eight subsets mentioned earlier (not the one with the smallest cargo loads). The results
of the local search are summarized in Table 8.2. It is advised to use the average value for each
parameter whenever using the ALNS heuristic for problem instances which have only mediocre
similarity to the eight subsets used here.

For full cargo loads the value of ϕ has no meaning as the cargo sizes are always the same.
However, the values are not set at zero, because then the values of the other Shaw parameters would
not be comparable between mixed and full cargo load problems (together, the Shaw parameters
sum up to one) and consequently, their averages would not be accurate. So, they are set at the
average of the four mixed cargo load instances. Then, the Shaw parameters of the full cargo load
problems are scaled so that the sum is one and all parameter values are comparable.

Table 8.2: Final parameter values per subset

Subset ξ ϕ χ ψ ω K r T n d

SM22–35 0.675 0.391 0.355 0.190 0.063 6 0.150 2100 20 1
SM60–130 0.650 0.261 0.391 0.116 0.232 4 0.250 2900 1 3
SF25–50 0.650 0.388 0.183 0.186 0.244 6 0.200 3200 82 1
SF70–100 0.600 0.337 0.382 0.186 0.096 5 0.250 2500 60 2
DM22–35 0.750 0.368 0.368 0.175 0.088 6 0.175 2600 20 0
DM60–130 0.675 0.299 0.374 0.262 0.065 6 0.200 2700 30 0
DF25–50 0.625 0.366 0.380 0.186 0.069 7 0.119 2200 93 1
DF70–100 0.663 0.396 0.287 0.186 0.132 2 0.125 2300 50 1
Average 0.661 0.351 0.340 0.186 0.124 5 0.184 2563 45 1

Final values of the parameters used in the ALNS heuristic after running the local search heuristic
for the different subsets. Also provided are the averages of these values. Subsets are denoted
depending on whether they include shortsea (S) or deepsea (D) shipping problems, full (F) or
mixed (M) cargo loads, and the number of cargoes (lowest number of cargoes in subset – highest
number of cargoes in subset). The average value of ϕ (indicated by an asterisk) is taken over only
the mixed cargo load instances.

For all subsets, the average objective value of the final parameter setting was compared to the
average objective value of the starting parameter values. It was found that the average cost decrease
was about 539,000 euros per problem instance. This accounted to a decrease of about 1.11 percent.

After determining the final parameter values, the problem instances which had not been used for
estimating the parameters were run using the ALNS heuristic for the relevant parameter values from
Table 8.2 as explained in Chapter 4. For the small problem instances (up to 18 mixed cargo loads and
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20 full cargo loads) it was assumed before that any reasonable parameter settings would generally
lead to the optimal value being found. Therefore, for these problems, the average parameter values
as in Table 8.2 were used. In every run, the total running time was set at 5x, where x is the number
of cargoes plus the number of vessels in that problem. The results of this are summarized in Table
8.3, where the gap to the best solution is presented, and the time at which the last improvement
occurred. The values are taken as an average over ten runs. For problem instances which were
used for parameter estimation, the average parameter values as in Table 8.2 are taken. This is done
to avoid using these problem instances to estimate the parameters and then use these parameters
to run the same problems. Doing so would mean that the problem instances would need to be
known before parameter estimation, whereas we assume that the parameter estimation is based on
historical data1.

Table 8.3: Average gap and total running time of the ALNS heuristic without transshipment

Shortsea full Deepsea full Shortsea mixed Deepsea mixed
C V Gap Sec. Gap Sec. C V Gap Sec. Gap Sec.
8 3 0.00 0.01 0.00 0.00 7 3 0.00 0.05 0.00 0.00
11 4 0.00 3.75 0.00 0.66 10 3 0.00 0.01 0.00 0.01
13 5 0.00 1.56 0.00 0.03 15 4 0.00 3.17 0.00 3.26
16 6 0.00 5.44 0.00 1.94 18 5 0.00 5.22 0.00 12.15
17 13 0.00 16.02 0.00 4.33 22 6 0.20 17.75 0.03 18.98
20 6 0.00 17.69 0.00 1.52 23 13 0.23 35.65 0.00 5.63
25 7 0.02 11.97 0.00 21.53 30 6 1.39 35.73 0.67 42.73
35 13 0.04 60.25 0.47 51.77 35 7 1.95 69.94 0.56 68.95
50 20 0.23 177.11 0.15 132.73 60 13 1.59 209.11 2.37 180.61
70 30 0.58 349.93 0.17 366.43 80 20 1.24 338.66 1.93 370.68
90 40 0.44 503.99 0.35 578.48 100 30 1.16 484.87 1.59 549.09
100 50 0.33 634.83 0.38 677.70 130 40 1.52 687.08 3.19 743.89

Summary of the results obtained by running the ALNS heuristic for solving tramp ship routing problems
without transshipment possibilities as explained in Chapter 4 ten times. Presented are for the specified
number of cargoes (C) and vessels (V) the average gap to the best solutions known in percentages and the
average running time in seconds until the last improvement.

From Table 8.3 it can be seen that the heuristic manages to find reasonably strong solutions for
all problem instances. For almost all problem instances with more than 50 full cargo loads, new
best solutions are found in at least one of the ten iterations. For mixed problem instances, this is

1Although the average parameter values also depend on these problem instances, we assume that the overall effect
of this on the final objective values is negligible in comparison to random effects.
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the case for about half of them. Altogether, the ALNS heuristic found 59 solutions which yielded
an improvement with respect to the previously best known objective values.

8.3 Mathematical Formulation With Transshipment

Next, all 240 problem instances were solved using the formulation in Chapter 5. First, the problems
are solved using the adjusted approach as explained in Section 5.3.1 for full cargo loads. This way,
a solution is found which does not allow for transshipment. Then, this solution is used as an
initial solution for the transshipment problem. The maximal running time is set at one hour for
both approaches. The final results are summarized in Table 8.1. There, for the different problem
instances the average gap of the five relevant problems is presented, as well as the average running
time in seconds. The gap is calculated with respect to the individual best solutions as in Panels
(b) of Appendix A.

Table 8.4: Average gap and total running time of the formulation with transshipment

Shortsea full Deepsea full Shortsea mixed Deepsea mixed
C V Gap Sec. Gap Sec. C V Gap Sec. Gap Sec.
8 3 0.00 757.18 0.00 19.01 7 3 0.00 32.54 0.00 35.58
11 4 0.22 3079.56 0.14 3721.74 10 3 0.54 3285.75 0.00 64.65
13 5 6.99 3610.02 0.19 2363.25 15 4 9.45 5021.43 6.82 3244.43
16 6 5.35 3617.76 5.19 3611.85 18 5 4.74 6811.00 11.32 4721.57
17 13 2.30 3649.84 0.59 3619.01 22 6 10.80 7228.94 14.26 5806.22
20 6 1.35 3634.48 1.93 3618.58 23 13 9.92 7230.48 19.78 5108.68
25 7 3.60 3768.10 2.80 3680.12 30 6 15.06 7259.35 9.33 6634.47
35 13 0.82 4100.58 2.61 4571.13 35 7 57.30 7255.71 29.18 7210.98
50 20 1.62 7257.73 1.09 6498.55 60 13 208.45 7274.60 144.54 7284.50
70 30 147.70 7276.48 4.79 7263.23 80 20 250.76 7322.83 200.74 7317.89
90 40 284.82 7321.44 4.81 7332.86 100 30 278.73 7291.85 323.43 7314.70
100 50 280.61 7339.26 5.96 7308.60 130 40 342.66 7361.18 277.60 7332.75

Summary of the results obtained by running the formulations for solving tramp ship routing problems without
transshipment possibilities as explained in Chapter 5. Presented are for the specified number of cargoes (C) and
vessels (V) the average gap to the best solutions known in percentages and the average running time in seconds.

At first it may seem that the objective values in Table 8.4 are slightly worse than those in Table
8.1 as the average gap tends to be somewhat larger. However, this gap is taken with respect to
objective values which are usually significantly lower than those of the original problem. In fact,
because of the two stage approach taken here, the final objective value in this section are almost
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always lower than those which were obtained when solving the problem without transshipment.
In terms of running time, the results in Table 8.4 are clearly a lot worse than those in Table 8.1.

In fact, even for most small problems, no optimal solutions are being found, so the running time is
generally at least an hour. Therefore, we recommend to stick with the two stage approach adopted
in this paper. First, the original problem should be run until an optimal solution is found, or the
optimality gap is small enough. Then, using this solution as a starting point, the transshipment
formulation should be run for the remaining time.

Note that the choice of whether or not to include transshipment operations in the model mostly
depends on the available running time. If only limited time is available, it is advised to exclude
transshipment possibilities and focus on fine-tuning the available solution methods for the simpler
model. However, if time is not much of an issue, significant decreases in shipping costs can be found
by including transshipments, so this should be the preferred option.
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8.4 ALNS Heuristic With Transshipment

Finally, the ALNS heuristic was run while including transshipment operations as explained in
Chapter 6. For all problem instances, the average parameter values as in Table 8.2 have been used.
In every run, the total running time was set at 10x, where x is the number of cargoes plus the
number of vessels in that problem. The results of this are summarized in Table 8.5, where the gap
to the best solution is presented, and the time at which the last improvement occurred. The values
are taken as an average over ten runs.

Table 8.5: Average gap and total running time of the ALNS heuristic with transshipment

Shortsea full Deepsea full Shortsea mixed Deepsea mixed
C V Gap Sec. Gap Sec. C V Gap Sec. Gap Sec.
8 3 0.00 0.59 0.00 1.30 7 3 0.00 0.45 0.00 0.91
11 4 0.01 0.63 0.99 1.19 10 3 0.00 1.57 0.06 7.59
13 5 0.31 0.12 0.00 2.32 15 4 2.34 4.55 1.63 17.93
16 6 1.23 5.80 1.08 1.00 18 5 0.94 31.53 2.33 11.41
17 13 0.07 19.40 0.06 0.44 22 6 2.69 130.05 4.00 134.55
20 6 0.00 20.34 0.53 48.01 23 13 1.73 154.10 3.36 182.54
25 7 0.41 108.92 0.50 83.44 30 6 3.17 155.23 3.98 191.21
35 13 0.22 130.02 1.47 286.15 35 7 4.14 202.58 6.07 195.89
50 20 0.30 268.79 0.46 285.32 60 13 3.12 505.48 6.18 450.19
70 30 1.84 637.27 0.46 665.51 80 20 3.35 654.81 4.02 689.12
90 40 1.47 951.99 0.48 982.49 100 30 3.28 887.74 4.53 928.15
100 50 1.49 1092.60 0.57 1087.58 130 40 3.09 1215.69 6.13 1388.66

Summary of the results obtained by running the ALNS heuristic for solving tramp ship routing problems
with transshipment possibilities as explained in Chapter 6 ten times. Presented are for the specified number
of cargoes (C) and vessels (V) the average gap to the best solutions known in percentages and the average
running time in seconds.

From Table 8.5, it can be seen that the heuristic manages to find reasonably good solutions for
most problem instances. Compared to Table 8.3, there are more problem instances for which the
gap is more than zero percent. However, the corresponding objective values still tend to be at least
as good as those presented there. Note that the last improvement usually happens quite well in
advance of the maximum allowed time, indicating that the heuristic tends to get stuck in (local)
optima. To increase performance, one might like to try tweaking the parameters (especially those
which are most relevant when running time increases: r, T , n, and d.) by local search methods as
in Chapter 7 using a higher running time, or increasing the number of segments. Altogether, by
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using transshipment operations, improvements in objective value have been found for 144 out of
240 problem instances. In some cases, this led to cost reductions of well over ten percent.

Note that for some problem instances, this cost reduction might not require transshipment
operations. First of all, only the transshipment formulation managed to benefit from detours
for which the triangle inequality did not hold2. Secondly, the transshipment heuristic might be
able to find solutions which the original heuristic did not find, even though these did not include
transshipment. This could for example happen when the transshipment heuristic would avoid
getting stuck in a local optimum by temporarily including transshipping solutions. Finally, as the
heuristic uses random approaches to determine its solutions, it might be that the transshipment
heuristic would benefit from having a different random number stream leading to some ‘lucky finds’.

2Note that this can be easily circumvented by ensuring that the triangle inequality does hold for all problem
instances. For example, when Cijv > Cikv + Ckjv for some i, j, k, v, we can set Cijv = Cikv + Ckjv without loss of
generality (one could always just sail past a certain port).
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8.5 Model Recommendations

Four different models have been used in this paper. First of all, a mathematical formulation was
used to solve tramp shipping problems without transshipment. Generally, this model managed to
find good solutions of problems with up to 50 cargo loads. We advice that this model should be
used for smaller firms which do not have access to the most advanced software or need to make
their decisions on a more real-time basis. For example, when orders are not known a priori, but
come in as a continuous flow, time may be a serious issue, and therefore this simple model might
be the best choice.

Secondly, a heuristic approach was presented to efficiently solve larger problems without trans-
shipment. This model managed to find good solutions for all problems at hand, regardless of their
size. We advice that this model should be used for larger firms which need to make their decisions
on a real-time basis, or are time-constrained for other reasons.

Thirdly, the tramp shipping and scheduling problem with transshipment was solved with another
mathematical formulation. Using the model without transshipment as an initial solution, this
approach found reasonably good solutions for problems with up to 50 cargo loads. However, it can
not guarantee optimality of the objective values which are being found, except for the smallest of
problem instances. Therefore, we advice that this model should only be used by small firms which
have a lot of time to determine the best solutions.

Finally, the extended problem was solved with a heuristic approach. As this model only requires
a moderate adjustment to the heuristic without transshipment, it generally manages to find solutions
which are just as good as those found by the original model. We suggest that large firms which have
a reasonable amount of time, should stick with this option. However, even when time is an issue,
this model should be considered. For example, by decreasing the probability of a transshipment
insertion, or by only allowing transshipment insertions after a given amount of running time, this
model can be used to run almost as fast as the previous model. Only when running time is extremely
limited, or when problem instances become very large, will this lead to significantly worse objective
values.
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Chapter 9

Conclusion

9.1 Summarizing Remarks

Throughout this paper, mathematical formulations and heuristical approaches were used to solve
tramp ship routing and scheduling problems with and without transshipment possibilities.

Regarding the problems without transshipment possibilities, it was found that optimal solutions
can be determined for problems with smaller numbers of cargo loads, but that trying to solve the
problem to optimality with larger numbers of cargo loads (more than 50), tends to cause very long
running times. For these cases, the presented heuristic provides much better solutions.

By including transshipment operations, this problem became even more severe, generally only
finding optimal solutions for the smallest of problem instances. Once again, the adjusted heuristic
manages to find reasonably good solutions even for the largest of instances.

Regarding the parameter values necessary to run these heuristics, nine different sets of param-
eters have been provided, which have been shown to perform well at deriving low-cost solutions.
Furthermore, a simple local search heuristic has been presented, which can be used to fine-tune
these parameter settings to the problems at hand.

Altogether, this paper has determined or confirmed new optimal values for 15 problem instances
and found improved solutions for 59 problem instances. Also, by including transshipment possibili-
ties in the model, an improvement in costs was found for 144 problem instances. In some cases, this
corresponded to cost savings of well over ten percent. The final objective values that were deter-
mined in this paper can be used as a benchmark to estimate future solution approaches regarding
tramp shipping problems with or without transshipment possibilities.

9.2 Simplifications and Future Research Possibilities

As already mentioned in Section 1.3.2, this paper has assumed that vessel speed is constant, that
time windows and fleet sizes are fixed, and that cargoes can not be split over multiple vessels.
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This need not be in reality, so future research should be performed to develop models suitable for
including these kinds of features in the models presented in this paper.

Furthermore, this paper has not performed an exhaustive investigation of including transship-
ment in the ALNS heuristic. More sophisticated insertion and removal methods might be available,
or two stage approaches which do not allow transshipment at the first stage might turn out to
outperform the methodology presented here. The results obtained in this paper can serve as a
benchmark for this sort of research.

Finally, full cargo load problems were solved with much more efficiency than mixed cargo load
problems. To a certain extent, this is inherent to the structure of the problems, as full cargo
loads allow for a much smaller feasible region. However, it may be possible to tweak the presented
formulations such that they manage to perform well for these type of problems as well.

We hope future research will shed light on these matters.
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A.1 Short Sea Shipping With Mixed Cargo Loads

Table A.1: Individual best known results for short sea shipping problems with mixed cargo loads

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
7 3 1,476,444 1,134,176 1,196,466 1,256,139 1,160,394
10 3 2,083,965 2,012,364 1,986,779 2,125,461 2,162,453
15 4 1,959,153 2,560,004 2,582,912 2,265,396 2,230,861
18 5 2,374,420 2,987,358 2,301,308 2,400,016 2,813,167
22 6 3,928,483 3,683,436 3,264,770 3,228,262 3,770,560
23 13 2,276,832 2,255,469∗ 2,362,503 2,250,110 2,325,941
30 6 4,958,542 4,549,708∗ 4,106,293 4,449,449∗ 4,528,514
35 7 4,893,734∗ 4,533,265∗ 4,433,847 4,580,935 5,511,661
60 13 8,202,138 8,055,970 7,651,685 8,593,410 8,950,046
80 20 10,376,392 10,387,253 9,763,401 11,440,433∗ 10,968,104∗

100 30 12,763,888∗ 13,057,536 12,088,444 13,772,836∗ 13,442,180∗

130 40 16,524,192 16,713,067 15,862,154 17,305,841 18,533,293

(a) Results without transshipment

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
7 3 1,476,444 1,134,176 1,033,363 1,256,139 1,160,394
10 3 2,083,965 2,012,364 1,934,340 2,125,461 2,162,453
15 4 1,936,608 2,360,492 2,328,306 2039618 2,050,572
18 5 2,235,790 2,938,697 2,218,157 2,400,016 2,536,775
22 6 3,518,821 3,203,696 3,127,321 3,154,561 3,448,296
23 13 2,141,795 2,182,939 2,258,687 2,146,753 2,233,245
30 6 4,544,156 4,347,257 4,047,325 3,984,392 4,386,450
35 7 4,698,306 4,465,485 4,407,901 4,572,472 5,232,303
60 13 8,202,138 8,055,970 7,651,685 8,579,722 8,950,046
80 20 10,376,392 10,387,253 9,730,948 11,319,367 10,964,239
100 30 12,763,888 13,057,536 12,088,444 13,772,836 13,442,180
130 40 16,524,192 16,713,067 15,862,154 17,305,841 18,533,293

(b) Results with transshipment

This table presents the best known objective values for the individual problem instances regarding short sea
shipping instances with mixed cargo loads. For the given number of cargoes (C) and vessels (V), Panel A.1a
presents the results without transshipment possibilities and Panel A.1b presents the results with transshipment
possibilities. Known optimal values are indicated with bold face font. Objective values for the model without
transshipment which were not known before are indicated with an asterisk.
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A.2 Short Sea Shipping With Full Cargo Loads

Table A.2: Individual best known results for short sea shipping problems with full cargo loads

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
8 3 1,391,997 1,246,273 1,698,102 1,777,637 1,636,788
11 4 1,052,463 1,067,139 1,212,388 1,185,465 1,310,285
13 5 2,034,184 2,043,253 2,378,283 2,707,215 3,011,648
16 6 3,577,005 3,560,203 4,081,013 3,667,080 3,438,493
17 13 2,265,731 3,154,165 2,699,378 2,806,231 2,910,814
20 6 2,973,381 3,206,514 3,197,445 3,342,130 3,156,378
25 7 3,833,588 3,673,666 4,238,213 4,260,762 4,069,693
35 13 2,986,667 3,002,973∗ 3,084,339 3,952,461 3,293,086
50 20 7,258,266∗ 7,468,471∗ 6,938,306 8,933,847∗ 7,324,910∗

70 30 10,055,496∗ 10,503,191 10,254,939∗ 10,875,943∗ 10,901,313∗

90 40 13,435,834∗ 13,924,937∗ 12,698,188∗ 14,463,335∗ 13,650,213∗

100 50 13,858,105∗ 14,704,972∗ 13,200,886∗ 14,909,717∗ 14,092,518∗

(a) Results without transshipment

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
8 3 1,229,641 1,246,273 1,698,102 1,777,637 1,636,788
11 4 1,052,463 1,066,216 1,212,388 1,185,465 1,296,163
13 5 1,964,747 2,039,953 2,378,283 2,286,767 2,660,730
16 6 3,374,308 3,552,909 3,683,011 3,512,373 3,263,892
17 13 2,265,731 3,127,954 2,699,312 2,806,231 2,630,810
20 6 2,973,381 3,003,860 3,197,445 3,342,130 3,156,378
25 7 3,577,044 3,673,666 3,887,696 4,200,414 4,054,946
35 13 2,986,667 3,002,973 2,979,011 3,945,020 3,281,337
50 20 7,258,266 7,429,425 6,933,707 8,933,847 7,324,795
70 30 9,733,077 10,355,251 10,064,810 10,722,498 10,567,126
90 40 13,060,273 13,872,407 12,493,428 14,098,963 13,508,880
100 50 13,723,843 14,398,494 12,853,611 14,498,729 13,786,822

(b) Results with transshipment

This table presents the best known objective values for the individual problem instances regarding short sea
shipping instances with full cargo loads. For the given number of cargoes (C) and vessels (V), Panel A.2a
presents the results without transshipment possibilities and Panel A.2b presents the results with transshipment
possibilities. Known optimal values are indicated with bold face font. Objective values for the model without
transshipment which were not known before are indicated with an asterisk.
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A.3 Deep Sea Shipping With Mixed Cargo Loads

Table A.3: Individual best known results for deep sea shipping problems with mixed cargo loads

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
7 3 5,233,464 6,053,699 5,888,949 6,510,656 7,220,458
10 3 7,986,248 7,754,484 9,499,357 8,617,192 8,653,992
15 4 13,467,090 12,457,251 12,567,396 11,764,241 10,833,640
18 5 43,054,055 25,068,287 29,211,238 32,281,904 40,718,028
22 6 41,176,718 37,236,363 38,215,238 34,129,809 46,379,332
23 13 41,002,992 28,014,147 29,090,422 33,685,274 38,664,843
30 6 19,227,093 16,802,142∗ 21,183,928∗ 21,076,728 24,490,671
35 7 65,082,675 54,836,748∗ 56,243,874∗ 61,354,812∗ 63,930,423∗

60 13 81,709,586 75,787,340∗ 92,585,918 90,465,188∗ 88,769,627∗

80 20 72,019,446 74,476,462 78,918,099 76,459,495 75,378,149
100 30 153,747,613 153,603,159∗ 152,338,747 156,960,390∗ 162,084,771
130 40 239,877,031 234,909,061 244,239,529 228,680,203 246,883,618

(a) Results without transshipment

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
7 3 5,233,464 6,053,699 5,888,949 6,510,656 7,220,458
10 3 7,986,248 7,754,484 9,402,796 8,617,192 8,653,992
15 4 13,110,773 11,215,880 12,567,396 11,398,082 10,833,640
18 5 39,942,617 22,218,783 27,114,309 32,281,904 40,477,390
22 6 37,753,588 33,616,022 35,943,245 31,401,361 42,026,770
23 13 36,304,032 24,796,616 27,613,634 28,693,963 34,347,973
30 6 17,483,566 15,597,111 19,154,274 18,872,426 21,435,290
35 7 58,144,707 52,343,630 51,737,427 54,580,329 55,227,235
60 13 79,833,749 75,787,340 89,020,981 87,875,772 87,737,359
80 20 71,966,996 74,476,462 76,387,945 76,459,495 75,378,149
100 30 153,747,613 153,603,159 152,338,747 156,510,180 162,084,771
130 40 239,877,031 234,909,061 244,239,529 228,680,203 246,883,618

(b) Results with transshipment

This table presents the best known objective values for the individual problem instances regarding deep sea
shipping instances with mixed cargo loads. For the given number of cargoes (C) and vessels (V), Panel A.3a
presents the results without transshipment possibilities and Panel A.3b presents the results with transshipment
possibilities. Known optimal values are indicated with bold face font. Objective values for the model without
transshipment which were not known before are indicated with an asterisk.
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A.4 Deep Sea Shipping With Full Cargo Loads

Table A.4: Individual best known results for deep sea shipping problems with full cargo loads

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
8 3 9,584,863 9,369,654 4,596,681 6,899,730 6,815,253
11 4 34,854,819 25,454,434 29,627,143 33,111,680 28,175,914
13 5 11,629,005 11,820,655 9,992,593 12,819,619 10,534,892
16 6 51,127,590 44,342,796 45,391,842 39,687,114 42,855,603
17 13 17,316,720 12,194,861 12,091,554 12,847,653 13,213,406
20 6 16,406,738 16,079,401 17,342,200 16,529,748 17,449,378
25 7 22,773,158 20,206,329 19,108,952 22,668,675 23,036,603
35 13 86,951,609 83,422,071 83,898,591 91,970,481 91,123,040∗

50 20 41,310,946∗ 37,784,994∗ 39,841,724∗ 43,941,098 41,947,437∗

70 30 142,752,237∗ 135,180,647∗ 162,812,826∗ 155,947,901∗ 157,007,780∗

90 40 191,302,974∗ 190,305,108∗ 211,396,320∗ 211,046,180 198,557,461∗

100 50 206,463,427∗ 208,105,662∗ 217,952,003∗ 221,093,259∗ 224,011,198∗

(a) Results without transshipment

C V Instance #1 Instance #2 Instance #3 Instance #4 Instance #5
8 3 9,584,863 9,351,269 4,596,681 6,899,730 6,815,252
11 4 34,603,069 25,454,434 29,265,506 33,111,680 28,175,913
13 5 11,521,266 11,802,270 9,992,593 12,819,619 10,534,892
16 6 44,349,354 44,249,373 42,809,297 39,190,807 41,416,201
17 13 17,316,719 12,194,861 12,091,554 12,607,670 13,073,810
20 6 16,044,137 16,042,592 17,214,206 16,243,080 16,525,126
25 7 20,955,087 20,206,329 19,108,952 21,620,713 22,929,054
35 13 86,190,351 79,001,666 81,536,565 89,348,906 90,446,500
50 20 41,310,946 37,545,541 39,253,054 42,526,120 41,947,437
70 30 136,245,501 135,103,989 162,621,840 155,947,901 156,982,669
90 40 191,302,974 190,142,522 211,396,320 211,046,180 198,487,194
100 50 206,420,024 208,105,662 217,952,003 221,093,259 224,011,198

(b) Results with transshipment

This table presents the best known objective values for the individual problem instances regarding deep sea
shipping instances with full cargo loads. For the given number of cargoes (C) and vessels (V), Panel A.4a
presents the results without transshipment possibilities and Panel A.4b presents the results with transshipment
possibilities. Known optimal values are indicated with bold face font. Objective values for the model without
transshipment which were not known before are indicated with an asterisk.
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