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Abstract

In this paper new evidence will be provided about the consensus that the output gap

can predict excess bond returns. Also I investigate how the predictability of the output

gap changes across economic expansions and recessions. Because of the persistence of the

variables and the serial correlation of the error term, I find no evidence for the statistical

significance of the output gap, even when the regression is conditioned on the business

cycle. In general, the business cycle gives different coefficients for the predictors with a

different statistical significance. Because of the lack of observations in recessions, it is

hard to make conclusions about the significance of the business cycle on the predictability

of excess bond returns.
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Introduction

How does the output gap affect the excess return on bonds? Can this variable add to the

predictive power of the yield curve towards bond excess returns, and does this depend on

the business cycle? Given that the current yield of the 10-year U.S. treasury bond is very

low, it is very important to find the reasons and different factors behind the level of the

yield curve, and whether this differs across economic expansions and recessions. Namely,

this way strategies for investing and monetary policy can be improved. Also the impact

of the financial crisis in 2008 can be better understood.

For a very long time it has been recognized that most information that is useful

for predicting interest rates or bond returns is contained in the yield curve. Also from

previous research there is evidence that the information contained in the yield curve can

be summarized into the first three principal components, which are commonly labelled

the level, slope, and curvature. For example, Heidari and Wu (2001) have shown that

three factors capture 99.5% of the variation in the yield curve. When regressing the yields

on the first three principal components, I indeed find a value for R2 that is very close to

1.

The consensus of the yield factors having a large impact on interest rates and bond

returns is usually put forward as the spanning hypothesis, which states that the first three

principal components of the yield curve contain all information that is useful for forecast-

ing future interest rates and bond returns. From a finance perspective this would be very

convenient, because this would mean that someone that is interested in the behavior of

bond returns would only have to look at the yield curve. However, even though it is clear

that the yield curve factors explain most of the cross-sectional variance of yields, it is not

clear whether they capture all the information that is relevant for forecasting yields and

bond risk premia.

There are several predicting variables that can potentially add to the predictive power,

such as for example the output gap. The output gap is an indicator of the difference be-

tween the output of the economy and the maximum potential output of the economy

expressed as a fraction of GDP. Therefore a negative output gap is an indication of an

underperforming economy, while a positive output gap indicates an economy that outper-

forms expectations. As the output gap is a good indicator of how the economy is doing,

it can tell us something about bond excess returns. According to Cooper and Priestley
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(2008) (CPR) the output gap can predict next year’s excess returns on U.S. government

bonds. This would imply that there is information that is useful for predictions that

is not captured by the level, slope, and the curvature of the current yield curve, and

thereby it would reject the spanning hypothesis. Other studies like Joslin et al. (2014),

Ludvigson and Ng (2010) and Cochrane and Piazzesi (2005) have found that measures

of economic growth and inflation, factors inferred from a large set of macro variables,

and the fourth and fifth principal component of yield, respectively, help predict excess

bond returns. Nevertheless, in this paper I will focus on the output gap as additional

explanatory variable.

To improve the forecasts of bond returns I want to know if the output gap variable has

additional value to the first three principal components, and whether or not this depends

on the business cycle. In all the studies that find evidence against the spanning hypothesis

the key evidence comes from future yields or excess returns that have predictive variables

that are very persistent and give a good summary of the information in the yield curve.

Therefore in general these predictors are correlated with the lagged forecast errors. I

will investigate what influence these characteristics can have on the conclusion that the

output gap has additional predictive power. To do this I analyse the regression model

that shows the relationship between the bond returns and the set of explanatory variables

that contains the first three principal components and the output gap. I will look at the

properties of this regression model that might explain some of the results that can be

obtained from testing the spanning theory, both by looking at previous research and by

carrying out a simulation study.

Then, the spanning hypothesis will be tested by generating bootstrapped samples

of the returns and comparing the t-statistic with the t-statistic of the actual data. To

determine if the spanning hypothesis holds with regard to the variable output gap, a

number of regressions is carried out all containing a combination of the variable output

gap and the principal components. This way a conclusion can be made on whether the

output gap is a relevant factor in predicting the bond returns.

This also brings us back to the business cycle and the influence it has on bond returns.

One might expect different outcomes for regressions on economic variables in economic

expansions as opposed to recessions. This can have an influence on both the first three

principal components of the yield curve and the output gap. To see if there’s a difference in
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bond risk premia across expansions and recessions, a model is estimated that differentiates

between expansions and recessions using indicator functions. This way we get different

coefficients for expansions and recessions. I will use a modified Campbell-Shiller regression

to show the influence of the business cycle on the predictability of the excess returns.

Several of these regressions are done that can contain the output gap variable and the

principal components.

1 Data

1.1 Variables and regression setup

For the research that tests the spanning hypothesis the regressions that are done are of

the following form:

yt+h = β0 + β′1x1t + β′2x2t + ut+h. (1)

Here yt+h is the dependent variable that represents the h-period excess return on a multi-

period bond of month t. For the empirical studies that are performed the focus lies

on the one-year excess returns of the five-year bond, so yt+h with h = 12. ut+h is the

forecast error, and x1t and x2t are the vectors containing the predictors at time t. x1t

contains the variables that represent the information in the yield curve, which are the

first three principal components of the observed yield, i.e., the level, slope and curvature,

respectively:

x1t = (PC1t, PC2t, PC3t)
′, (2)

while x2t contains the predictor output gap of which I would like to test whether it has

additional predictive power:

x2t = gapt, (3)

The output gap is the deviation of the actual GDP from the potential GDP, where poten-

tial GDP is defined as the maximum sustainable output estimated based on a neoclassical

production function (Cooper and Priestley (2008)). The variable output gap is lagged one

month, and is measured as the deviation of the Feds Industrial Production series from a

quadratic time trend. In CPR the measure of the output gap is lagged by one month to

account for the publication lag of the Feds Industrial Production data. The data of the
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different dependent and explanatory variables run from 1952 until 2003 and consist of 618

observations.

To test whether the variable output gap adds predictive power to the regression in

(1), the following null hypothesis is used

H0 : β2 = 0, (4)

which says that the information in the yield curve that is contained by x1t spans the

relevant predictive information, and that the other variable x2t has no additional predictive

power.

1.2 Autocorrelated predictors

The serial correlation of the predictors can have a substantial influence on the results

that can be obtained from the research that is done. In the case that x1t and x2t are very

persistent and the error term is serially correlated, which is the case for overlapping bond

returns, a substantial increase in R2 is very likely when x2t is added to the regression even

if this variable has no significant additional predictive power.

The persistence of the different random variables can be measured as the autocor-

relation of the respective variables and is shown in table 1 below along with the serial

correlation of the error term. The table contains the autocorrelation of the first three

principal components, the output gap and the error term at lags of 1, 3, 6 and 12 months.

Table 1: Levels of autocorrelation of the predictors and

the error term

Predictor
ACF(l)

1 3 6 12

PC1 0.986 0.956 0.917 0.841

PC2 0.939 0.830 0.711 0.527

PC3 0.587 0.469 0.258 0.147

output gap 0.975 0.893 0.750 0.475

error term 0.866 0.678 0.425 -0.069

output gap · error term 0.881 0.638 0.376 -0.021
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Table 1 shows that the variables in x1t have a very high autocorrelation, especially

the first two principal components, which have autocorrelations larger than 0.9 for the

one month lag. This means that the level and slope of the yield curve are very persistent,

which is a well known characteristic of interest rates. The first principal component is

most persistent as the autocorrelation decreases much slower than the autocorrelation of

the other principal components. The output gap x2t is also very persistent, as the first

autocorrelation is 0.975. The autocorrelation of the error term is also quite substantial,

which is a well known characteristic for multi-period bond returns. These results can make

it more difficult to interpret the fit of models including the output gap. It is clear that

our data exhibit autocorrelation properties that are similar to those of general interest

rates.

2 Implications of autocorrelated predictors

2.1 R2-bias

In small samples the serial correlation in the residuals can increase the bias and the

variance of the R2 of the regression Carrodus and Giles (1992). To see how much the

R2 increases when the variables in x2t are added we need to look at the behavior of the

difference between the R2’s of the regressions with and without the variable output gap

R2
2−R2

1. Here R2
2 and R2

1 are the regression R2’s of the regressions with and without x2t,

respectively. Therefore R2
2 − R2

1 can be interpreted as the increase in the goodness of fit

that is caused by adding the variable output gap.

If the null hypothesis is true (β2 = 0), when x1t, x2t and ut+h are stationary and satisfy

standard regularity conditions, and the additional predictor is uncorrelated with each of

the other predictors, then, as is explained by Bauer and Hamilton (2017), the increase

in R2 in probability converges to zero. The correlation between the output gap and the

first three principal components of the yield curve is indeed very small. Only the second

principal component, the slope of the yield curve, exhibits a substantial correlation with

the output gap. The reason for this is that the slope of the yield curve can be a good

indicator of the business cycle, which is directly linked to the output gap. When regressing

the output gap on the slope of the yield curve, the R2 is still very small. Therefore for

this research we can assume the correlation between x1t and x2t to be negligible.
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However, due to the serial correlation, adding the output gap to the regression can

still lead to an increase in R2 even if it does not belong in the regression. If x2tut+h has a

positive serial correlation, R2
2−R2

1 has a higher expected value and a higher variance com-

pared to situations when it is not (Bauer and Hamilton (2017)). This serial correlation in

x2tut+h, that can be seen in table 1, contributes to larger values for R2
2 − R2

1 on average

and to a larger variability in R2
2 − R2

1 across different samples. Therefore including x2t

can substantially increase the R2 even if the spanning hypothesis (equation (4)) holds true.

2.2 small-sample distortions of the t-test

Alongside with the R2-bias the persistence of the explanatory variables can lead to size

distortion of the tests that are used to assess the spanning hypothesis with respect to

the output gap. The OLS t-test of β2 = 0 asymptotically has a standard normal distri-

bution if the standard first-order asymptotic approximation is used. The fact that the

standard errors of the estimates of β2 are inaccurate leads to the distortion of standard

inference. The cause of the problem can be shown using the following setting where the

OLS estimation of (1) in the case of h=1 is considered:

yt+1 = β0 + β1x1t + β2x2t + ut+1, with (5)

x1,t+1 = ρ1x1t + ε1,t+1. (6)

x2,t+1 = ρ2x2t + ε2,t+1. (7)

In this setting x1t and x2t are very persistent scalars with serial correlation coefficients ρ1

and ρ2 close to 1. The error terms ε1t, ε2t, ut follow martingale difference sequences. A

variable is a martingale difference sequence if its expectation conditional on the past is

zero, which is something that naturally applies to error terms. The errors terms jointly

have the following variance matrix:

V = E


ε1t

ε2t

ut

[
ε1t ε2t ut

]
=


σ2

1 0 δσ1σu

0 σ2
2 0

δσ1σu 0 σ2
u

 . (8)

The error terms ε1t, ε2t, ut have variances σ2
1, σ2

2, and σ2
u, respectively. δ is the correlation

coefficient. The matrix V shows that the coefficient δ needs to be zero for the variables
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in x1t to be strictly exogenous. This means that in general the correlation between the

dependent variable and the predictors δ leads to endogeneity of the variable x1t. The

product between the output gap and the error term for the excess returns x2tut+1 is

serially uncorrelated no matter what the value of δ is.

If the error term ut is correlated with x2t, and the predictors x1t and x2t are very

persistent, the null hypothesis β2 = 0 will be rejected too often when a standard t-test is

applied in small sampled data (Bauer and Hamilton (2017)). The OLS estimation of the

parameter of the output gap β2 can give some intuition to this result. The output gap is

regressed on the variable x1t containing the principal components, while the bond excess

returns are regressed on the principal components. The residuals of the first regression are

regressed on the residuals of the second regression. When x1t and x2t are very persistent,

the small-sample properties of the first regression will be different. As x1t is not strictly

exogenous this can make a big difference for the small-sample distribution of the OLS

estimate of β2.

3 Simulation studies

3.1 Theoretical simulation

The effect of the persistence of the explanatory variables can be shown using a simulation

study, that does not involve any economic data. It can be seen that the persistence of

the predictors leads to size distortions of the t-tests. These t-tests are done to examine

the relevance of an artificial variable x2t for predicting an artificial dependent variable

yt. The simulation study generates 50,000 artificial data samples as replacements for the

excess bond returns and explanatory variables that will be used later to test the predicting

power of the output gap, and is also used in Bauer and Hamilton (2017). Each sample

is created and is used for a regression using the following steps. The variables x1t and

x2t are generated recursively using the equations (6) and (7), starting with the initial

values x1,0 = x2,0 = 0. Here the error terms ε1t and ε2t are serially independent Gaussian

random variables with variance equal to one. Then to create values for the dependent

variable yt the just generated values of the explanatory variables are used. This can be

seen in the following equation, that is an adjusted version of equation (5) with parameters
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β0 = β2 = 0 and β1 = ρ1:

yt+1 = ρ1x1t + ut+1, with (9)

ut = δε1t +
√

1− δ2vt (10)

with vt ∼ N(0, 1) an i.i.d. random variable, and the parameter δ now representing the

correlation between ε1t and ut. The variances of the error terms σ1, σ2, and σu are equal

to one as the covariance between ε1t and ε2t is considered to be zero. This simulation is

done for different values for the degree of endogeneity δ, the persistence of the predictors

ρ with ρ1 = ρ2 = ρ, and the sample size T . This is done to investigate whether the

theoretical influence of these parameters can be seen in this simulations study. Now that

an artificial sample with values for yt, x1t, and x2t has been generated, the regression in

equation (5) is done with OLS, to get the t-statistic of the parameter β using standard

errors of the OLS estimation. This means that for each sample i out of the total number

of 50,000 a t-statistic is obtained that is denoted as ti. This value will be compared with

t the two-sided 5% critical value of a t-distribution with T − 3 degrees of freedom. The

test sizes are then defined as the fraction of samples in which the t-statistic of sample i

is larger in absolute value than the 5% critical value t, so the fraction in which |ti|> t

holds. The size distortion is the difference between the just calculated (true) size and the

nominal size of 0.05. This means that if the size distortion is very small, the true size

should be very close to 0.05. The sizes for the simulations using different values for the

parameters δ, ρ, and T are shown in table 2.

The first thing that becomes clear from table 2 is that the values for the different com-

binations of T , δ, and ρ are all not too far distant from the nominal size of 0.05 and are all

below 0.11. The sizes seem to increase when the persistence of the regressors ρ increases,

and we can speak of size distortions in cases when ρ > 0.9, and the sizes increase when ρ

increases. δ does not have a significant effect on the size distortions. The size distortions

are decreasing when the sample size T increases and ρ is smaller than 1. In the case of

ρ = 1 the sample size seems to have no effect on the true size of the test. The largest

value in table 2 is 0.1051, which means that the t-test would reject the null hypothesis

more than twice as often as it should. The reason behind the size distortions is the fact

that the OLS standard errors substantially underestimate the sampling variability of the

OLS estimates of β1 and β2 (Bauer and Hamilton (2017)).
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3.2 Empirical simulation

Empirical research will be used in the form of a bootstrap procedure as an alternative of

conventional tests. The inference of the research is based on the small sample distributions

of the test statistics using a parametric bootstrap under the null hypothesis H0 : β2 = 0.

According to Horowitz (2001) and Hall and Wilson (1991) using bootstraps under the null

hypothesis makes it possible to find out the small-sample size of the conventional tests,

and is therefore preferred to bootstrapping under an alternative hypothesis. Furthermore

using bootstraps under the null hypothesis leads to more accuracy and more powerful

tests compared to making use of bootstraps under alternative hypotheses.

The spanning hypothesis H0 : β2 = 0 will be tested by generating bootstrapped

samples under this null hypothesis. First the bond excess returns are regressed on the

first three principal components of the yield curve to obtain the weighting vector ŵ for the

bond excess returns, that gives weight to each of the principal components for explaining

the variation in the bond excess returns:

yt+h = ŵx1t + ût, (11)

Also a VAR(1)-model for x1t is estimated with OLS:

x1t = φ̂0 + φ̂1x1,t−1 + e1t t = 1, ..., T. (12)

The VAR(1)-model captures the linear interdependence, the dynamic development, and

the cross-sectional dependence of the yields even though it does not impose absence of

arbitrage. A model in this simple form therefore fits and forecasts the behavior of the

yield curve very well (Duffee (2011) and Hamilton and Wu (2011)).

Using the just calculated estimates of the parameters w, φ0, and φ1, 5000 artificial

yield data samples with length T = 618, the size of the original sample, are generated. The

starting values for the recursion are drawn from the unconditional distribution implied

by the estimated VAR for x1t. The iterations starting with the just calculated starting

values are done with equation (12) using parameter estimates φ̂0 and φ̂1:

x∗1t = φ̂0 + φ̂1x
∗
1,t−1 + e∗1t. (13)

The bootstrap residuals for the bootstrap variables e∗1t are drawn from the empirical

distribution of e1t. In a similar way a bootstrap for the other predictor x∗2t is made.
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Then, the artificial returns are obtained with equation(11) using the artificial values for

the variable x1t and the parameter estimate ŵ:

y∗t+h = ŵx∗1t + û∗t , (14)

The bootstrap residuals û∗t are drawn from a normal distribution with mean zero and

variance σ2
u. The standard deviation of the errors, σu, is equal to the sample standard

deviation of the fitting errors ût. This simulation creates artificial samples of returns y∗t+h

that have dynamics that are very similar to those of the observed returns. For example

the recursion gives values for yt+h for which only the first three principal components have

predictive power, which is also the case for actual bond returns for which the spanning

hypothesis holds. This means that for this bootstrap the yield curve contains all the

information necessary to forecast future returns.

With the help of a t-test I can test the spanning hypothesis using our just created

bootstraps. The t-test tests whether the parameter for the output gap is significantly

different from zero. The t-statistic in the data is denoted by t and the t-statistic in

bootstrap i by t∗i . The true size of a conventional t-test is estimated as the fraction of

samples in which |t∗i | exceeds the usual asymptotic critical value. This value is equal to

0.0406, which is quite close to 0.05. Unfortunately, we cannot really draw a conclusion

from this results as the method that is used is not valid. Namely the distribution of

the test statistic depends on ρ1 and ρ2 through local-to-unity parameters that cannot be

estimated consistently Bauer and Hamilton (2017). The parameters that are used in the

VAR-equations are only estimates, while only the true values for these parameters would

give a right sized test. Therefore, the bootstrap gives a test of H0 that does not have a

size of five percent. A solution to this problem is to use the Monte Carlo simulation, that

is mentioned in section 3.1.

The Monte Carlo simulation applied to the empirical framework will generate 5000

samples using the following steps. For each sample i that is simulated , I calculate

the t-statistic (t̃i) for testing the null hypothesis (β2 = 0), estimate the autoregressive

models for the predictors using OLS, generate a bootstrap simulation using the estimated

autoregressive coefficients and estimate a regression on the simulated bootstrap:

y∗t+h = φ̂1x
∗
1.t−1 + v∗t . (15)

Here the values for v∗t are drawn from the distribution of the residuals in a regression of
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yt on x1,t−1, and is jointly drawn with the errors ε∗1t and ε∗2t to keep the same correlation

as in the data. After the regression of the bootstrap I calculate the t-test of H0 : β2 = 0

(t∗i ). With these t-values the value c is calculated such that |t∗i |> c holds in five percent

of the samples. This value is reported in table 3. For each sample the null hypothesis is

rejected if the original t-value is larger than this number c, so if t̃i > c. The true size of

the bootstrap procedure applied to the model is the fraction of samples for which this is

the case. The calculated size is equal to 0.047, the value from table 3, which is slightly

below five percent, and therefore gives a small size distortion. This means that if the

bootstrap procedure applied to this model does not reject the spanning hypothesis, it is

save to say that the evidence against the spanning hypothesis is not persuasive.

4 The effect of the output gap in expansions and re-

cessions

4.1 The effect of the output gap independent of the business

cycle

To further elaborate on the simulation inference in determining the extent to which the

output gap is useful for predicting excess bond returns, I make a number of predictive

regressions with the dependent variable excess bond return on the five-year bond yt+h

and the independent variables output gap and the first three principal components. All

regressions that are done contain a combination of the variable gap and the first three

principal components, and they all contain a constant. From these regressions the coeffi-

cients of the output gap variable are obtained from which we can for example see whether

it has a positive or negative influence on the excess bond returns. I have also calculated

the OLS t-statistics and HAC t-statistics and performed the bootstrap method described

in section 3.2 to see if the coefficients for the output gap variable are significant. For the

HAC t-statistics Newey-West is ued with 22 lags as described by CPR.

The results are shown in table 3.The first regression only contains the lagged output

gap x2t:

yt+h = β0 + β′2x2t + ut+h. (16)

It becomes clear that the variable hardly has an impact on the regression results. In this
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regression the variable output gap has a negative coefficient that is very close to zero,

that is not significant. Both the OLS and HAC t-statistic are very close to zero, which

results in a very high p-value. This means that the variable output gap is insignificant at

the 5% level.

The second regression only contains the first three principal components in x1t as

explanatory variables.

yt+h = β0 + β′1x1t + ut+h. (17)

This regression makes clear that the principal components of the yield curve are very

important for predicting the excess returns on bond returns. The coefficients are highly

significant as the OLS and HAC t-statistics are very large, and the HAC p-values are

practically zero. The one thing that can be concluded from this is that the principal

components of the yield curve are indeed very important for the prediction of excess

returns on bonds.

The third specification includes the first three principal components of the yield curve,

and is therefore most interesting as it shows how the output gap relates to the principal

components with respect to their predictive value:

yt+h = β0 + β′1x1t + β′2x2t + ut+h. (18)

The bootstrap method is applied for this specification to see how the result of this test

differs from the HAC t-statistic. Namely, the size of the HAC t-test is substantially dis-

torted, because the true size is more than 21 %, as can be seen in table 3. However, the

size of the bootstrap is very close to 5% as was discussed in 3.2. The regression shows

results that are very similar to the first two specifications. The output gap variable is

still statistically very insignificant, while the principal components are statistically very

significant in the regression. The bootstrap critical value is significantly larger than the

HAC t-statistic, which again leads to the conclusion that the HAC t-test is substantially

oversized. The bootstrap p-value is very close to 50 %, which means that we can conclude

that the output gap is insignificant for predicting the excess bond returns, as the size of

the test is not seriously distorted. After carrying out these regression I have not found

any evidence that the output gap can help predict the excess bond returns, both from

the HAC t-test and the bootstrap test, and so there is no reason to reject the spanning

hypothesis with respect to the output gap.
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4.2 The business cycle dependent effect of the output gap

There is reasonable amount of evidence that the business cycle has an influence on the

behavior of interest rates. Studies like Hamilton (1988) and Gray (1996) have shown

that interest rates are more persistent in expansions than in recessions and that two-state

models describe interest rate dynamics much better than single-state models. I would

like to see how the predictability of the excess bond returns compares between expansions

and recessions. This can be done by using a regression that is conditional on the business

cycle, so variables get separate coefficients for expansions and recessions.

Firstly, a modified regression that is based on the following regression from Campbell

and Shiller (1991) is used:

yt+m,k−m − yt,k = αk + βk
m

k −m
(yt,k − yt,m) + ut+m,k, (19)

where yt,k refers to the k-period bond yields in period t. The modified Campbell-Shiller

regression conditions on the state of the business cycle, and therefore has dummies to

check for expansions and recessions:

(20)
yt+m,k−m − yt,k = αEXP

k 1{zt≥c} + βEXP
k

m

k −m
1{zt≥c}(yt,k − yt,m) + αREC

k (1− 1{zt≥c})

+ βREC
k

m

k −m
(1− 1{zt≥c})(yt,k − yt,m) + ũt+m,k.

Here 1{zt≥c} is an indicator function that has a value of one for expansions if zt ≥ c and

a value of zero for recessions if zt < c. To identify recessions the variable zt is used. This

variable refers to the Purchasing Managers’ Index (PMI), where c = 44.5 is the threshold

value from Berge and Jorda (2011) that is used to differentiate between recessions and

expansions. The PMI is a well known indicator of business cycle activity. The advantage

of using PMI is that it is available in real time without any publication lags or subsequent

data revision. Christiansen et al. (2014) make clear that the PMI is the best recession

indicator among a large number of economic variables. When applying this indicator

it turns out that 544 of the 618 observations are from expansions, while the other 74

observations are from recessions.

The regression is run for m = 3 and k = 60, because we are dealing with five-year

bonds. The results of this regression are shown in table 4 below.

The first thing of interest is if the conditional Campbell-Shiller regression has a better

goodness-of-fit than the standard regression, by checking if the R2 has increased. The R2
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of the standard regression is equal to 0.027 and the R2 of the model that is conditioned on

the business cycle is equal to 0.105. This means that the R2 increases substantially when

we condition on the business cycle. When comparing the coefficients across the regressions

it becomes clear that coefficients that are specific for recessions or expansions are not

statistically more significant than their general counterparts in the standard regression.

In the standard regression the coefficient for the constant is significant as the p-value

is much smaller than 0.05. In the conditional regression the coefficient for the constant

during expansions and recessions is still statistically significant. The coefficient of the slope

in expansions is statistically significant, but its counterpart in recessions is statistically

very insignificant at the 5% level.

Secondly, I can test whether the coefficients are significantly different across expansions

and recessions. In other words, I test whether α∆
k = αREC

k −αEXP
k and β∆

k = βREC
k −βEXP

k

are large. This should give a good indication of the importance of the business cycle for

predicting bond returns with the yield curve. I find that the coefficients are statistically

significantly different at the 5% level. Therefore it becomes clear that the business cycle

is very important for predicting bond yields.

To now further expand on this notion a regression for the bond excess returns is done

that contains the first three principal components and the output gap as explanatory

variables, and is conditioned on the business cycle. This regression is the transformation

of (18) to make it fully dependent on the business cycle. For each parameter in this

specification there are now two parameters for expansions and recessions, respectively.

(21)yt = βEXP
0 1{zt≥c} + βREC

0 (1− 1{zt≥c}) + βEXP
1 1{zt≥c}x1t

+ βREC
1 (1− 1{zt≥c})x1t + βEXP

2 1{zt≥c}x2t + βREC
2 (1− 1{zt≥c})x2t + ut,

The results of the regression in (21) are shown in table 5.

The R2 of this specification is equal to 0.275, which is substantially higher than the

R2 of the unconditional regression of which the results are shown in table 3, which is

0.232. Most of the coefficients are statistically more significant in expansions compared

to recessions, which might be related to the difference in the number of observations

between expansions and recessions. The HAC and bootstrap tests give similar results

for this specification compared to the regression that is not dependent on the business

cycle. Again the size of the HAC t-test is substantially distorted, while this is not the case

for the bootstrap test. Both test indicate statistical insignificance for the output gap in
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both expansions and recessions. The business cycle does have a substantial influence on

the bond excess returns, as the coefficients of the principal components are substantially

different across expansions and recessions. The coefficients of the output gap both for

expansions and recessions are statistically insignificant at the 5% level. So even if we

condition the regression on the business cycle we still find no evidence that the output

gap has significant predictive power with respect to the excess bond returns.

5 Conclusion

With the different techniques used in this paper the work of previous research has been

challenged and extended. The spanning hypothesis, that states that all the information

that is required to predict interest rates or risk premia is contained by the yield curve, is

applied to the additional variable output gap. Because of the persistence of the explana-

tory variables and the serial correlation of the error terms, an increase in R2 after adding

the variable output gap does not have to mean that this variable has additional predictive

power. Also because of the persistence of the variables the size of the t-test for testing

the spanning hypothesis are distorted, as is shown by the simulation studies.

Using the Campbell-Shiller regression I find that the predictability of the bond yields

increases when the regression is made conditional on the business cycle, as I find different

coefficients for expansions and recessions that are statistically more significant than the

coefficients for the unconditional regression. This influence of the business cycle also

becomes clear when I regress the excess bond returns on the principal components of the

yield curve and the output gap. For expansions and recessions I find different coefficients,

but the coefficients for the output gap are statistically insignificant. In general we find

somewhat higher values for R2 when the regression is conditioned on the business cycle,

which can be explained by the persistence in the explanatory variables and the serial

correlation of the error terms.

In both the simulation study and the regressions the output gap showed no significant

predictive power, even when I differentiate between expansions and recessions. Therefore

we cannot reject the spanning hypothesis. The business cycle has a positive influence on

the predictability of the excess returns, as it makes the predictors more explanatory and

in general provides a better fit. If we want to predict bond excess returns the output gap
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does not have to be used as an additional predictor to the yield curve, and it is better to

condition the predictions on expansion and recessions.
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6 Appendix

Table 2: Simulation study: true sizes of conventional t-tests

T
δ = 0 δ = 0.8 δ = 1

ρ = 0.9 ρ = 0.99 ρ = 1 ρ = 0.9 ρ = 0.99 ρ = 1 ρ = 0.9 ρ = 0.99 ρ = 1

50 0.0694 0.0963 0.1019 0.0685 0.0948 0.0994 0.0703 0.0952 0.0987

100 0.0627 0.0911 0.0989 0.0630 0.0880 0.0941 0.0630 0.0904 0.0973

200 0.0608 0.0934 0.1052 0.0550 0.0903 0.0972 0.0569 0.0914 0.0990

500 0.0502 0.0793 0.1051 0.0511 0.0769 0.1038 0.0512 0.0776 0.1057

The true size, as a fraction, of a conventional t-test of the null hypothesis H0 : β2 = 0

with nominal size equal to 5%, in simulated small samples. The correlation coefficients,

that represent the persistence of the predictors, are set to ρ1 = ρ2 = ρ, which means that

they are the same for x1t and x2t. δ determines the degree of endogeneity, which is the

correlation of x1t with the lagged error term ut.
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Table 3: Results of the regressions

constant output gap PC1 PC2 PC3

Coefficient 0.008 -0.126

OLS t-statistic 3.832 -3.225

HAC t-statistic 1.226 -1.080

HAC p-value 0.221 0.281

Coefficient -0.031 0.001 0.035 -0.062

OLS t-statistic -5.445 4.564 11.323 -3.429

HAC t-statistic -3.005 1.666 5.459 -2.057

HAC p-value 0.003 0.096 0.000 0.040

Coefficient -0.035 0.147 0.001 0.043 -0.067

OLS t-statistic -6.125 3.523 4.377 11.496 -3.693

HAC t-statistic -3.120 1.235 1.595 4.881 -2.282

HAC p-value 0.002 0.217 0.111 0.000 0.023

Bootstrap 5% c.v. 1.976

Bootstrap p-value 0.499

HAC size 0.214

Bootstrap size 0.047

The table contains the results of the different regressions done with

the one-year excess return on five-year bonds. In the regressions

the set of explanatory variables contains either the output gap that

is lagged one month, the first three principal components of the

yield curve, or all four of these variables. The HAC t-statistic and

the HAC p-value are calculated using the HAC standard errors,

that are based on the Newey-West estimator with 22 lags. The

bootstrap 5% critical value is calculated in 3.2
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Table 4: Results of the Campbell-Shiller regressions

α5 β5 αEXP
5 αREC

5 βEXP
5 βREC

5

Coefficient 0.001 -1.954 0.002 -0.005 -2.993 0.097

OLS t-statistic 2.203 -3.750 4.774 -5.131 -5.439 0.072

HAC t-statistic 2.478 -5.059 2.893 -5.837 -5.583 0.053

HAC p-value 0.014 0.000 0.040 0.000 0.000 0.958

The table contains the results of the Campbell-Shiller regressions

with on the left the results of the unconditional Campbell-Shiller

regression and on the right the results of the regression condi-

tioned on the business cycle.

Table 5: Results of the conditional regression

βEXP
0 βREC

0

βEXP
1 βREC

1
βEXP

2 βREC
2

pc1 pc2 pc3 pc1 pc2 pc3

Coefficient -0.032 -0.026 0.001 0.048 -0.078 0.003 0.007 0.027 0.212 0.070

OLS t-statistic -5.398 -1.616 2.264 12.302 -4.083 4.545 0.641 0.555 4.449 0.786

HAC t-statistic -2.407 -1.536 0.931 4.588 -2.852 1.554 0.402 0.573 1.581 0.418

HAC p-value 0.016 0.125 0.352 0.000 0.005 0.121 0.688 0.567 0.114 0.676

Bootstrap 5% c.v. 1.952 1.938

Bootstrap p-value 0.495 0.493

HAC size 0.116 0.682

Bootstrap size 0.047 0.047

The table contains the results of the regression conditional on the business cycle with the ex-

planatory variable x1t containing the first three principal components (pc1, pc2, pc3) and x2t

containing the output gap.
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