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Abstract

In this study the economic value of dynamic conditional correlations in a multivariate frame-

work is evaluated with an economic loss function. Data on 65 assets in seven different asset

classes over the period 2003-2018 is employed to construct mean-variance optimised portfolios

based on predetermined expected returns and covariance estimates from different models. In

addition to traditional multivariate GARCH models used by Engle and Colacito (2006), a Block

Dynamic Equicorrelation and a Dynamic Factor GARCH model are used to benefit from high

model parsimonity and a Combination model is used to exploit model complementarities. Using

the testing procedure of Barendse and Patton (2018) with 1000 expected return simulations,

the Scalar BEKK model outperforms all other models. On average, traditional multivariate

GARCH models yield required returns that are respectively 2 and 3.3 times higher compared

to required returns from portfolios constructed by the Block Dynamic Equicorrelation and the

Dynamic Factor GARCH model.
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1 Introduction
One of the key challenges that every individual investor faces is how to allocate wealth over a

large set of assets. Based on the advice of DeMiguel et al. (2007), the first rule of thumb every

beginner learns is ‘not to put all your eggs in a single basket’. In other words, never invest all your

capital in a single financial asset, but instead divide it over multiple assets. This rule of thumb is

not only relevant to beginners, but also remains at the centre of principles for professional asset

managers. Therefore, it is of great importance for asset managers that they have a well-established

rule to optimally construct their portfolios.

The foundations for modern portfolio theory were laid by Markowitz (1952), from which the

Capital Asset Pricing Model, as proposed by Sharpe (1964) and Lintner (1965), later followed. In

the latter model, a rational investor constructs a portfolio of financial assets, including a risk-free

asset, by optimising a mean-variance trade-off. In this framework, expected return is estimated by

a function of past returns and anticipated variance is given by the covariance matrix of historical

returns of this portfolio. As such, investors with different expected returns forecasts and different

covariance forecasts hold different portfolios. To accurately estimate the standard deviation of the

optimal portfolio, a proper estimator of the variances and correlations of all available assets is

needed. However, poor portfolio performance could also be due to a poor estimate of the expected

return. Merton (1980) finds that there is a considerable amount of noise in estimates for the

expected return. Hence, it is essential to be able to disentangle the loss of performance from

wrongly estimating the expected return on the one side and the covariance structure on the other

side.

The paper of Bollerslev et al. (1988) marked the start of a stream within the literature which

investigated the application of the time-varying covariances in portfolio theory. Ever since, many

models for estimating time-varying covariances and assessing its value have been introduced. One

straightforward way to estimate multivariate time-series models is the orthogonal generalised au-

toregressive conditional heteroscedasticiy (GARCH) (Alexander, 2000), which constructs the co-

variance matrix by making estimates for univariate GARCH models for linear combinations of asset

returns. The vec representation of a multivariate GARCH model as presented by Bollerslev et al.

(1988), in which the conditional covariance matrix is vectorised and estimated accordingly, poses

an alternative to estimate the covariance structure in a Vector Autoregressive (VAR) setting. As

discussed by Engle (2002), the Baba, Engle, Kraft and Kroner (BEKK) representation of the mul-

tivariate GARCH can provide useful restrictions to the vec representation. A more recent type of
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multivariate GARCH models is the Dynamic Conditional Correlation (DCC) model, introduced by

Engle (2002). The DCC first estimates volatilities for each asset, then computes the standardised

residuals and finally estimates the covariances using Maximum Likelihood estimation. Cappiello

et al. (2006) introduce a variation on the DCC model which allows for an asymmetric effect of the

correlation when both returns are either increasing or decreasing.

In assessing the contribution to economic performance in a multivariate framework, the aca-

demic literature first focused static covariance matrices. In this setting, Elton and Gruber (1973)

were the first to use ex-post mean return for comparison and many other authors followed (e.g.

Cumby et al., 1994; Fleming et al., 2001). However, using ex-post mean returns does not isolate

the performance of the covariance matrix, as ex-post mean returns are not the same as expected

returns. Other approaches focused on minimum variance portfolios or portfolios that have min-

imum variance compared to a benchmark (e.g., Chan et al., 1998), but this approach effectively

made the unattractive assumption that all assets have the same expected return. Later, Fleming

et al. (2001, 2003) and Engle and Colacito (2006) introduced methods to evaluate the economic

performance of time-varying covariances.

Based on the work of Diebold and Mariano (2002), Engle and Colacito (2006) develop tests for

the relative performance of two covariance matrices. The work of Chopra and Ziemba (1993) proves

why it is important to isolate expected return estimation, since the authors argue that estimating

the expected return correctly is about ten times as important as estimating the covariance structure

correctly. Therefore, it is essential to create an expected return-free framework to prevent the noise

from expected return estimations from blurring the results of covariance value. For this reason, the

tests are applied to a number of predetermined time-invariant vectors of expected returns. Engle

and Colacito (2006) develop a metric that gives an economic value to correct covariance information.

They find that correct dynamic correlations are worth about 6% of the required return and correctly

forecasting dynamic correlations is particularly important when the assets are highly correlated.

Building on previously mentioned literature, this study aims to answer the following research

question:

“To what extent can the economic value of covariance estimation be improved with more parsi-

monious multivariate GARCH models compared to traditional multivariate GARCH models in a

multi-asset allocation framework?”

With this research question, I aim to fill several gaps in the existing literature. The major

innovation lies in the extension to a multivariate framework with a large number of assets. This



4 Heeringa, M.A.C., 412507 June 30, 2018

extension results in two additional complications compared to the bivariate setting of Engle and

Colacito (2006), which I first replicate. Firstly, the number of parameters in traditional multi-

variate GARCH models grows quickly with the number of assets, which means that the results

are subject to substantial estimation error. To reduce the estimation error, I use the Block Dy-

namic Equicorrelation model of Engle and Kelly (2012) and the Dynamic Factor GARCH model

of Santos and Moura (2014), which aim to increase the model parsimonity. Furthermore, I use

the Combination model of Caldeira et al. (2017) to benefit from complementarities of several other

models. Secondly, as Engle and Colacito (2006) notice, it is cumbersome to carry out their test in

a multivariate setting, as the parameter space grows substantially. The solution of this issue lies in

the implementation of a novel testing procedure by Barendse and Patton (2018).

In the bivariate setting, the results are largely in line with Engle and Colacito (2006), except that

the Scalar BEKK model outperforms the Diagonal BEKK model. Furthermore, due to the use of the

Composite Likelihood estimator – typically used in large systems – in the DCC-type models, these

models perform significantly worse than the BEKK-type models. In the multivariate setting, a clear

block structure between asset classes in the sample correlation matrix is visible, presenting tentative

evidence that the assumption of constant correlations within each asset class holds. However,

the results of the statistical tests show that the Block Dynamic Equicorrelation model performs

significantly worse than traditional multivariate GARCH models and the Dynamic Factor GARCH

model underperforms all models including the Block Dynamic Equicorrelation model. Due to

the use of weights based on the Sharpe ratio, the performance of the Combination estimator is

negatively influenced by the performance of the Block Dynamic Equicorrelation and the Dynamic

Factor GARCH models, resulting in significant underperformance compared to the traditional

multivariate GARCH models. As a conclusion, investors should be cautious with implementing

more parsimonious models in their portfolio construction routine, as it could lead to target returns

that are 2 or even 3.3 times lower compared to the case where a traditional multivariate GARCH

model is used.

The remainder of this paper is structured as follows. A literature review on the influence of

multivariate GARCH models in portfolio theory is carried out in Section 2. Section 3 discusses

the multivariate GARCH models, corresponding estimation techniques and statistical testing pro-

cedures to assess model performance. In Section 4, a description about the employed data is given.

Section 5 presents estimation and testing results. Finally, Sections 6 and 7 discuss the findings,

conclude the paper and provide suggestions for further research.
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2 Literature Review
Markowitz (1952) is seen as the father of modern portfolio theory. His original paper on the

subject outlined modern portfolio theory for the first time. He formulated the portfolio construction

problem as a choice of the mean and variance of a portfolio of assets and he proved that an investor,

holding variance constant, should maximise expected return or, equivalently, for a given expected

return, the investor should minimise portfolio variance, which later was deemed the fundamental

theorem of mean-variance portfolio theory. These two principles led to the formulation of an efficient

frontier of portfolios from which the investor could choose depending on his individual risk-return

preferences. The important notion was that an investor could not select assets only based on the

characteristics that are unique to that security, but the investor also would have to consider how

each asset co-moves with other assets.

In reality, there are more moments than the mean and variance of a security that an investor

can consider to get a better view on the return distribution. Various researches investigated alter-

native portfolio theories that included more moments such as skewness (see Lee, 1977; Kraus and

Litzenberger, 1976) or were accurate for more realistic representations of the return distribution

(see Fama, 1965; Elton and Gruber, 1974). Nevertheless, mean-variance theory has remained the

cornerstone of modern portfolio theory, since there is no convincing evidence that adding more

moments improves the desirability of the portfolio selected and both the implications and use of

mean-variance theory have an intuitive appeal.

The single-period framework of Markowitz (1952) was later extended by various researchers to a

multi-period problem. Papers by Fama (1970), Hakansson (1975, 1974), Merton (1990) and Mossin

(1968) have all analysed this problem under various assumptions. However, they all found that

under several sets of assumptions, the multi-period problem can be solved as a sequence of single-

period problems. The optimal portfolio would be different from the one in a single-period setting,

since the utility function in the multi-period setting takes into account the utility in multiple future

time periods. The difference arises from the assumption that in a single-period setting the investor

maximises his utility for only one period.

Another stream withing the academic literature has been concerned with the study of the

separation theorem. This theorem states that if an investor has access to a risk-free asset, the

choice of the optimum portfolio of risky assets is unambiguous and independent of the investor’s risk

return preferences. It has two important implications. Firstly, the theorem restates the portfolio

construction problem to a problem of finding the tangency portfolio to the efficient frontier which
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can be connected by a line through the risk-free asset in a mean-volatility diagram. Consequently,

the tangency portfolio is the portfolio that maximises the ratio of expected return minus the risk-

free rate to the standard deviation. Secondly, it leads to the mutual fund theorem, which states

that all investors can create their desired portfolio out of two mutual funds: the risk-free asset

and the tangency portfolio. Even though there is abundant theoretical research on the separation

theorem, a reconciliation between and theory and practice still lacks.

Significant effort has been invested in research on how the effect of transaction costs and pa-

rameter uncertainty can affect portfolio rebalancing. Goldsmith (1976) was one of the first to

implement transaction costs in the framework of portfolio construction and both Magill and Con-

stantinides (1976) and Davis and Norman (1990) implemented transaction costs in the work of

Merton (1990) and concluded that the introduction of transaction costs leads to certain no-trade

intervals. Gârleanu and Pedersen (2013) show that the assumption of quadratic transaction costs

is more tractable and they provide closed-form expressions for the optimal portfolio policies. From

the viewpoint of parameter uncertainty, attempts have been carried to characterise the importance

of parameter uncertainty out with many approaches. In addition to robust optimisation tech-

niques (e.g. Garlappi et al., 2006) and shrinkage approaches (Ledoit and Wolf, 2008), examples

include Bayesian approaches with different priors such as diffuse priors (Klein and Bawa, 1976),

priors based on asset pricing models (Pástor, 2000) and priors based on economic objectives (Tu

and Zhou, 2010). Finally, DeMiguel et al. (2015) combined both quadratic transaction costs and

parameter uncertainty in a portfolio construction setting.

After mean-variance portfolio theory was introduced, a significant part of the academic world

focused on estimating the inputs: expected returns and covariances. Before the introduction of

multivariate GARCH models, index models were the principal tool for estimating covariance ma-

trices. This was first discussed by Markowitz, but developed and popularised by Sharpe (1963).

Important aspects for this model were that the number of estimates was low, the type of inputs

needed were easy for an analyst to understand and the accuracy of portfolio optimisation was high.

Elton and Gruber (1973) show that using an index model to estimate the covariance structure is

more accurate than using the regular covariance estimator.

Multivariate GARCH models have become more common to be implemented as covariance

estimators in the academic literature. There are many multivariate GARCH models, each with

their own advantages and disadvantages. In many cases, the design of a multivariate GARCH model

boils down to the flexibility-parsimonity trade-off. On the one hand, it is desirable that a model



7 Heeringa, M.A.C., 412507 June 30, 2018

is able to capture the correlation dynamics in a setting with many different assets. On the other

hand, the number of parameters increases quickly with the complexity of the model, potentially

leading to instable or unfeasible estimation and difficult interpretation of the parameter estimates.

In addition, all models must guarantee in some way that the covariance matrix is positive definite.

For some models, a set of conditions is specified to guarantee positive definiteness, while in other

models positive definiteness is inherent to the model specification. Multivariate GARCH models

can be divided into five categories: 1) direct estimation models, 2) factor models, 3) modelling of

conditional variances and correlations, 4) semi- and non-parametric models, and 5) multivariate

stochastic volatility models. The first four models are briefly described and the reader is referred

to Chib et al. (2008) for a elaborate review of multivariate stochastic volatility models.

The first multivariate GARCH model is the so-called vec model introduced by Bollerslev et al.

(1988), belongs to the first class where the conditional covariance matrix is directly estimated, and

is a relatively straightforward generalisation of the univariate GARCH model. In this model, every

conditional variance and conditional covariance parameter, organised in a vectorised matrix, is a

function of all lagged conditional variances and conditional covariances, as well as lagged squared

and cross-product returns. The advantage of this model is that it is very flexible. However, due to

the large amount of parameters, estimation is difficult and, perhaps even more concerning, there

exist only sufficient and quite restrictive conditions to ensure positive definiteness of the conditional

covariance matrix. In the same paper, Bollerslev et al. (1988) also specify a more parsimonious

version of the vec model, where the parameter matrices are assumed to be diagonal, where no inter-

action between the conditional covariances and conditional variances is allowed and each equation is

estimated separately. Another restricted version was introduced by Engle and Kroner (1995), which

is commonly referred to as the Baba-Engle-Kraft-Kroner (BEKK) representation. This model has

the benefit that it is positive definite by construction, but interpretation of the parameters is not

easy. Similar to the vec model, different variations on the BEKK representation exist, where the

parameter matrices are reduced to either diagonal matrices (Diagonal BEKK) or scalars (Scalar

BEKK). Even though estimation of the BEKK model is less difficult than estimation of a vec model,

it still requires some heavy computations.

The second class of multivariate GARCH models consists of factor models. This class aims at

increasing the model parsimonity and hence targets easier estimation. Engle et al. (1990) were

the first to introduce a factor GARCH model. In this model, the observations are generated by

a number of underlying factors, which follow a GARCH-type process themselves. This approach
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greatly reduces the dimensionality when the number of factors is small compared to the amount

of assets in the investment universe. In their paper, Engle et al. (1990) choose a two-factor model,

where the factors are the risk-free asset and value-weighted stock index returns. Another type of

factor model, the Generalised Orthogonal GARCH model, was introduced by Van der Weide (2002)

as an extension to the Orthogonal GARCH model of Alexander (2000). In this model, it is assumed

that the returns are generated by a number of uncorrelated, conditionally heteroscedastic factors,

which unconditional variance is restricted to be the identity matrix. The matrix that transforms the

factors to the returns is assumed to be invertible, but does not need to be orthogonal. A drawback

of the Generalised Orthogonal GARCH approach is that it requires at least as many factors as

assets. Other related factor models are the Full Factor GARCH model of Vrontos et al. (2003)

and the Generalised Orthogonal Factor GARCH model by Lanne and Saikkonen (2007). Later,

Santos and Moura (2014) used the concept of a factor GARCH model and introduced dynamic

factor loads, which are estimated via the Kalman Filter.

Thirdly, the type of models where the variances and correlations are estimated based on a de-

composition of the conditional covariance matrix is perhaps the most commonly used type of mul-

tivariate GARCH models. The simplest multivariate correlation model that is nested in the other

conditional correlation models, is the Constant Conditional Correlation (CCC) model by Boller-

slev (1990). In this model, the conditional covariance matrix is decomposed into a time-varying

diagonal matrix with standard deviations as entries and a time-invariant conditional correlation

matrix. Consequently, univariate GARCH(p, q) models are estimated for the individual returns,

where the parameter matrices for the conditional covariances are assumed to be diagonal. Later,

Jeantheau (1998) relaxed the assumption of diagonal parameter matrices in the CCC model, such

that past squared returns and variances of other assets could influence the conditional covariance of

a particular asset. Since the correlation matrix is time-invariant, estimation via a Maximum Like-

lihood technique is relatively easy, as it needs only one matrix inversion per iteration. Even though

the CCC model is attractive to use, empirical studies have shown that the assumption of constant

correlation is too restrictive. At the cost of easy estimation, Tse and Tsui (2002) introduced the

Varying Correlation (VC) model, in which the correlation matrix is assumed to be a function of

the correlations in the previous period and a set of estimated correlations.

Engle (2002) introduced the Dynamic Conditional Correlation model, in which the correlation

matrix is obtained by rescaling a matrix process that is similar to the VC model of Tse and

Tsui (2002), but differs in the fact that it uses standardised errors of univariate GARCH-type
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processes instead of a sample estimate of the correlations. Even though this model allows for

relatively easy estimation, as the loglikelihood can be split into a variance and correlation part,

the drawback of this model is that it imposes the same dynamic structure on all assets. Billio

et al. (2006) attempted to overcome this problem in their Quadratic Flexible DCC GARCH model

by imposing a BEKK structure on the conditional correlations and adding extra restrictions to

ensure covariance stationarity. In addition, due to the increased number of parameters, this model

is unfeasible in large systems. Other variations to the DCC model are the Asymmetric DCC

model by Cappiello et al. (2006), which allows for different sensitivities to increases or decreases

in correlations, the cDCC model by Aielli (2013), which is more feasible with large systems, the

Smooth Transition Conditional Correlation model by Silvennoinen and Teräsvirta (2005), where

the conditional correlation matrix varies smoothly between two extreme states, and the Regime

Switching Dynamic Correlation model by Pelletier (2006). Lastly, Engle and Kelly (2012) introduce

the (Block) Dynamic Equicorrelation model, which allows for assumptions on equal correlations

within a predetermined block of assets.

The last class of multivariate GARCH models contains the semi- and non-parametric models.

The advantage of this approach is that it does not impose a particular structure on the data, which

might potentially be misspecified. In addition, most semi-parametric models succeed in retaining

the interpretability of the model parameters and non-parametric models are robust to distributional

misspecification. However, as pointed out by Stone (1982), non-parametric models suffer from the

‘curse of dimensionality’: due to the lack of data in all directions of the multidimensional space,

the performance of the local smoothing estimator deteriorates quickly as the dimension of the

conditioning variable increases. In the semi-parametric model of Bauwens et al. (2007), the data

is generated by a parametric multivariate GARCH model and the error distribution is unspecified

and estimated non-parametrically. However, an approach like this might make it hard to verify

whether the correct multivariate GARCH model is used, since the non-parametric error distribution

might absorb some of the misspecification. Long and Ullah (2005) introduce an approach similar

to the approach of Bauwens et al. (2007) in the sense that the model is based on some parametric

multivariate GARCH model. After estimating the parametric model, the estimated standardised

residuals are extracted. When the model is not correctly specified, these residuals may have some

structure in them, and non-parametric estimation is applied to extract this information. In the

Semi-Parametric Conditional Correlation GARCH model of Hafner et al. (2006), the conditional

variances are modelled parametrically by a univariate GARCH model. The conditional correlations
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are then estimated using a transformed Nadaraya-Watson estimator.

Engle and Colacito (2006) analyse the economic value of correct conditional covariance infor-

mation. In their paper, they compare a Scalar BEKK, Diagonal BEKK, DCC, Asymmetric DCC,

Orthogonal GARCH models and the conventional covariance estimator in a setting with two assets.

In the case where the two assets have a high sample correlation, the required return could be 2% to

5% lower when using the conventional covariance estimator compared to the case where a multivari-

ate GARCH model is used. These values are even higher in the case where the sample correlation is

closer to 0. Results from a Diebold-Mariano-type test on a quadratic economic loss function show

that the conventional covariance estimator performs significantly worse compared to the multivari-

ate GARCH models. Therefore, Engle and Colacito (2006) show that there is significant added

value in using multivariate GARCH models over the conventional covariance estimator.

The last element in portfolio theory is the evaluation of the portfolio that is constructed by

the various models. Not only do evaluation models follow naturally from portfolio construction

theory, it is only by employing evaluation measures that a portfolio manager can assess which

technique adds the most value. Surprisingly, one of the earliest studies on performance evaluation

was done before the seminal work of Markowitz. It was Cowles (1933) who compared the average

performance of a set of managed portfolios to a passive portfolio. His conclusion was that the

managed portfolios underperformed the passive benchmark. Although Cowles (1933) was ahead of

his time, he only considered return as a measure for performance and thereby ignoring any measure

of risk.

Mean-variance performance measures were introduced much later. Sharpe (1966) introduced a

performance measure defined as the ratio of the average return of the constructed portfolio minus

the return of the risk-free asset to the standard deviation of the constructed portfolio. This ratio

has become very popular among practitioners and is now commonly known as the Sharpe Ratio.

Treynor (1965) proposed to evaluate the performance of a portfolio manager by calculating a ratio

where average return of the constructed portfolio minus the risk-free rate is divided by the beta of

the constructed portfolio. Unlike the Sharpe ratio, the Treynor ratio incorporates the view that risk

is inherent to the entire market and hence must be removed. Next, Jensen (1968, 1969) introduces a

measure to determine the abnormal return of the constructed portfolio over the theoretical expected

return.

In addition to the previously mentioned performance measures, which are popular among prac-

titioners to compare performance, researchers often use economic loss functions with a statistical
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testing procedure for inference. Fleming et al. (2001, 2003) and Marquering and Verbeek (2004)

analyse the economic value of volatility timing for a mean-variance investor with a quadratic utility

loss function for different risk aversion parameters. Engle and Colacito (2006) use tests inspired by

Diebold and Mariano (2002) to test whether performance of various bivariate multivariate GARCH

models is statistically significant from zero, where they use the difference in squared portfolio re-

turns as the loss function. Finally, DeMiguel et al. (2007) uses differences in certainty equivalent

returns of portfolio construction strategies for mean-variance investors to make inferences about

performance.

3 Methodology
This section first gives an introduction into the classical asset allocation problem and then

describe the statistical tests in order to assess the value of correct conditional covariances. Next, the

multivariate GARCH models and corresponding estimation techniques is further explained. This

paper distinguishes between two settings: a bivariate and a multivariate setting. In the bivariate

setting, the same models as in Engle and Colacito (2006) are used: the Diagonal BEKK, Scalar

BEKK, Orthogonal GARCH, DCC and Asymmetric DCC models. Since estimation of these models

gets cumbersome in a large multivariate framework and the previously mentioned models cannot

allow for any structure in the correlation matrix, two other models that are designed to solve this

issue are introduced: the Dynamic Equicorrelation model and the Dynamic Factor GARCH Model.

For the latter model, Kalman Filter estimation with diffuse priors is used, while the Composite

Likelihood estimator is used for all DCC-type models. Finally, this paper uses a Combination

estimator introduced by Caldeira et al. (2017) that combines the estimates for the conditional

covariance matrix of all previously mentioned models.

3.1 Classical Asset Allocation Problem

The classical asset allocation problem is concerned with minimising the variance of a portfolio

of assets subject to a required return constraint. This problem can be formulated as follows:

min
wt

w′tHtwt, s.t. w′tµ = µ0 (1)

where wt is the N × 1 vector of portfolio weights for time t chosen at time t − 1, Ht is the

estimated conditional covariance matrix of a vector of excess returns for time t by some model, µ

is the assumed vector of excess returns with respect to the risk-free rate, and µ0 ≥ 0 is the required

return. Then, the solution to the problem in (1) is wt =
H−1

t µ

µ′H−1
t µ

µ0. Generally,
∑N

i=1wi,t does not

need to be equal to 1, wi,t is the weight on asset i for time t and 1−
∑N

i=1wi,t is the weight attached
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to the risk-free asset.

The above problem constitutes the classical portfolio construction problem, in which an optimal

weight is attached to the market portfolio – also known as the tangency portfolio – and the rest of

the capital is allocated to the risk-free asset. Then, the optimal risk-return trade-off is represented

by the set of linear combinations of the risk-free asset and the market portfolio. Engle and Colacito

(2006) prove that the variance obtained from an incorrect estimate of the covariance matrix is always

greater than the variance obtained from the true covariance matrix. To do so, they introduce the

true covariance matrix Ωt and the vector of optimal weights from this covariance matrix w∗t =

Ω−1
t µ

µ′Ω−1
t µ

µ0. This results in two conditional standard deviations which can be compared:

σt
µ0

=

√
Et−1[w′t(rt − Et−1rt)]2

µ0
=

√
w′tΩtwt

µ0
=

√
µ′H−1

t ΩtH
−1
t µ

µ′H−1
t µ

(2)

σ∗t
µ0

=

√
w∗t
′Ωtw∗t
µ0

=

√
1

µ′Ω−1
t µ

(3)

where Et[·] is the conventional expectation operator. Engle and Colacito (2006) prove that the port-

folio standard deviation defined in Equation 2, σt, is greater than the realised standard deviation

defined in Equation 3, σ∗t , and σt = σ∗t when µ is an eigenvector of ΩtHt.

3.2 Statistical Testing Procedures

3.2.1 Testing in the bivariate setting

Engle and Colacito (2006) develop a testing procedure to test the equality of two models, which

is adopted in this research. Define {Hj
t}2j=1 as two different time-series of covariance matrices

obtained from two different models and {µk}Kk=1 a set of hypothetical vectors of expected returns

divided by the required excess return µ0. In each time period, a set of portfolio weights, wj,k
t , can

be calculated from the estimated covariance matrix and an expected return. Denote the portfolio

return as:

πj,kt = wj,k
t
′(rt − r) (4)

where wj,k
t =

(Hj
t )−1µk

(µk)′(Hj
t )−1(µk)

. Consequently, the squared portfolio return is calculated and let the

difference of the squared returns be denoted as ukt . Then, ukt is defined as:

ukt = (π1,k
t )2 − (π2,k

t )2, t = 1, . . . , T (5)

In the test of equality between the two models, the null hypothesis is that the mean of u is 0 for

all k. Ignoring parameter uncertainty, the Diebold-Mariano test would examine each u time-series
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separately by regressing on a constant and using Newey and West (1986) standard errors. In general,

the covariance matrix should correct the standard t-test for heteroscedasticity, autocorrelation and

non-normality, the null hypothesis of equal variance is simply a test that the mean of u equals 0.

However, the test is less powerful due to the amount of heteroscedasticity present. Hence,

dividing u by its standard deviation could improve the efficiency of the estimation. A natural

adjustment, vkt , is obtained by dividing by the geometric mean of the two variance estimators,

since the true covariance matrix is not observed and two estimators are compared. Since this

correction factor is known and positive, the null hypothesis is not changed. Then, vkt is obtained

as follows:

vkt = ukt [2(µk ′(H1
t )
−1µk)(µk ′(H2

t )
−1µk)]1/2 (6)

Since it could be the case that the above adjustment does not improve the sampling properties

of the test such that v is not an independent, identically distributed series, the test must also

be carried out with a Heteroscedasticity and Autocorrelation Consistent (HAC) covariance matrix

of Newey and West (1986), which is the case for ukt . Therefore, the Diebold-Mariano test must

be carried out for the v series as well as for the u series for all k. Define U t = (u1
t , . . . , u

k
t )
′ and

V t = (v1
t , . . . , v

k
t )′. Then, a Generalised Method of Moments (GMM) with a vector HAC covariance

matrix estimation is applied to jointly estimate:

U t = βuι+ εu,t, V t = βvι+ εv,t (7)

where ι is a k × 1 vector of ones and βu and βv are scalars. Under the null hypothesis, βu and βv

are both equal to 0.

3.2.2 Testing in the multivariate setting

Barendse and Patton (2018) extend the DM test to evaluate the null hypothesis of equal expected

loss over a large Euclidean parameter space instead of one element from this space. They show

that their approach can increase power over local tests and provide robustness against rejections of

the null hypothesis at specific points in the parameter space. Barendse and Patton (2018) develop

their procedure for an out-of-sample testing exercise, but, since Engle and Colacito (2006) use

an in-sample testing method, this test is also performed in-sample. Possible consequences of this

approach are further discussed in Section 7.

Let L(Wt;µ) = ut(µ) = (π1
t (µ))2 − (π2

t (µ))2 be the loss difference function, where πjt (µ) is

defined as in Equation 4 and µ ∈ M , M = {µ : µ1, . . . , µN ∈ [0, 1]} is a N × 1 vector of expected
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returns. Then, the null hypothesis is as follows: H0 : E[L(Wt;µ)] = 0, ∀µ ∈M .

Next, two robust test statistics are introduced to test this hypothesis: sup tm,n = supµ∈M t2m,n(µ)

and ave tm,n =
∫
M t2m,n(µ)dJ(µ). In this study, we choose the weighting function J over M to

be uniform on the interval [0,1] and independent for all elements of µ. The choice of this interval

is based on the fact that in the bivariate setting, the set of expected return combinations is also

between 0 and 1. Furthermore, t2m,n are individual Diebold and Mariano (2002) test statistics at

µ:

t2m,n(µ) =
√
n

Z̄m,n(µ)

σ̂m,n(µ,µ′)
(8)

where Z̄m,n(µ) = 1
n

∑T
t=1 Zt(µ), Zt(µ) = L(Wt;µ) and σ̂m,n(µ,µ′) is the HAC estimator of

σm(µ,µ′) = Cov(
√
nZ̄m,n(µ),

√
nZ̄m,n(µ′)). Barendse and Patton (2018) show how to obtain

critical values using a a simulation procedure similar to the dependent wild bootstrap procedure

introduced by Shao (2010), which preserves the dependence structure of the data.

3.3 Correlation Models

3.3.1 Models for the bivariate framework

The first conditional correlation model that is used is the Baba, Engle, Kraft and Kroner (BEKK)

representation of the vec model introduced by Engle and Kroner (1995). Both Engle and Kroner

(1995) and Engle (2002) discuss the BEKK representation extensively. The general representation

uses the following specification for the conditional covariance matrix, Ht:

Ht = Ω +A(rt−1r
′
t−1)A′ +BHt−1B

′ (9)

This study employs two special representations of A and B: one where both matrices are diagonal

(Diagonal BEKK) and one where both matrices are reduced to scalars (Scalar BEKK).

DCC-type methods use a multi-step approach to estimating the conditional covariance matrix,

Ht and decomposes Ht as:

Ht = DtRtDt (10)

where Dt = diag{
√
hi,t}, hi,t are univariate conditional volatilities estimated in a GARCH-type

setting during the first step, and Rt is the time-varying conditional correlation matrix. In the

second step, a GARCH(1, 1) model is estimated for the conditional correlations, Rt, where εi,t are

the standardised residuals from the univariate GARCH estimations in the first step, defined as

εi,t = yi,t/
√
hi,t and S is the unconditional correlation matrix of the standardised residuals:

Rt = Q∗t
− 1

2QtQ
∗
t
− 1

2 , Qt = S(1− α− β) + α(εt−1ε
′
t−1) + βQt−1 (11)
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where Q∗t is a diagonal matrix where its entries are the elements on the diagonal of Qt. As long as

α + β < 1, the model is mean-reverting. In the case where α + β = 1, the model ends up being a

exponential smoothing model where Qt = (1 − λ)(εt−1ε
′
t−1) + λQt−1. As Engle (2002) indicates,

this version of the DCC model can be extended to a version where the parameters are matrices

instead of scalars. This version is referred to as the full DCC model and can be written as follows:

Qt = S ◦ (ιι′ −A−B) +A ◦ (εt−1ε
′
t−1) +A ◦Qt−1 (12)

where ι is a vector of ones and ◦ denotes the standard Hadamard product, which is performed by

element-wise multiplication. Moreover, Ding and Engle (2001) show that if A, B and S ◦ (ιι′ −

A−B) are positive semidefinite, then Q will also be positive semidefinite.

Inspired by asymmetric univariate GARCH models, Cappiello et al. (2006) introduced the

Asymmetric DCC (ADCC) model with scalar and matrix parameters, which is obtained by modi-

fying Qt:

Qt = S(1− α− β − γ) + α(εt−1ε
′
t−1) + βQt−1 + γ(ηt−1η

′
t−1) (13)

Qt = (S −A′SA−B′SB −G′NG) +A′(εt−1ε
′
t−1)A+B′Qt−1B +G′(ηt−1η

′
t−1)G (14)

where ηt = I[εt < 0]εt in Equation 13, ηt = I[εt < 0] ◦ εt in Equation 14 and I[·] is the standard

indicator function.

All DCC-type models are estimated with Composite Likelihood estimation, on which is elab-

orated in Section 3.4.1. Even though BEKK-type models can be estimated with Composite Like-

lihood, this study employs the regular Maximum Likelihood estimation routine. Details for all

previously mentioned models in a bivariate setting can be found in Appendix A.

3.3.2 Additional models for the multivariate setting

In addition to the models used by Engle and Colacito (2006), this paper includes other models that

have been introduced after Engle and Colacito (2006) published their paper in the multivariate

setting. Firstly, the Dynamic Factor multivariate GARCH, referred to as DFGARCH, model by

Santos and Moura (2014) is employed, which reduces the dimensionality of the problem. They

specify a factor model with observable factors and time-varying factor loadings for the asset returns:

yi,t = f tβi,t + εi,t (15)

where εi,t ∼ N(0, hi,t). Next, Santos and Moura (2014) estimate two different state-space equations

with a Diffuse Kalman Filter for the unobservable factor loadings: a Random Walk and a Learning
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model, where Bi can be interpreted as the long-run mean of the factor loadings, βi,t, and φ ∈

(−1, 1). As an extension, a VAR(1) specification is added:

βi,t = βi,t−1 + ui,t (16)

βi,t = (1− φ)Bi + φβi,t−1 + ui,t (17)

βi,t = (I−Φ)αi + Φβi,t−1 + ui,t (18)

where ui,t ∼ N(0,Σui). Then, the conditional covariance matrix of the asset returns can be

calculated as follows:

Ht = βtΩtβ
′
t + Ξt (19)

where Ωt is the conditional covariance matrix of the factors and Ξt is a diagonal covariance matrix

of the residuals from the factor model in Equation 15. Finally, Ωt is estimated with a DCC model.

The DFGARCH model extends previous econometric specifications in two directions. Firstly, it

achieves greater flexibility by allowing alternative econometric specifications for the common factors

and individual assets. In particular, the model allows for a parsimonious multivariate specification

for the covariances among factors based on a conditional correlation model instead of modelling the

conditional covariance matrix for all assets, which could reduce the effect of parameter uncertainty.

Secondly, the factor loads are time-varying, since the factors are observed.

The second model that is employed is the Dynamic Equicorrelation (DECO) model as proposed

by Engle and Kelly (2012). The main assumption in this model is that in every time period, all

pairwise correlations are equal, which results in easy estimation of large covariance matrices. It uses

a similar estimation method as the DCC model, but uses a different specification for the correlation

matrix, Rt, which is called the equicorrelation matrix:

RDECO
t = (1− ρt)In + ρtJn (20)

where ρt is the equicorrelation, In is the n-dimensional identity matrix, and Jn is a n× n matrix

of ones. Consequently, the DECO model sets ρt equal to the average pairwise DCC correlation:

ρt =
ι′RDCCt ι− n
n(n− 1)

=
∑
i<j

2qcDCCi,j,t

n(n− 1)
√
qcDCCi,i,t qcDCCj,j,t

(21)

where qi,j,t is the i, j-th element of the conditional covariance matrix in the cDCC model specified

by Aielli (2013).

However, there is reason to make less restrictive assumptions on the conditional correlation

matrix structure, since it is not likely that all assets have the same correlation. In fact, it is likely
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that the correlation matrix has a particular block structure across asset classes. In this case, the

Block DECO (BDECO) model can be applied, such that a more flexible model than the DECO

model is obtained. Correspondingly, an I-block equicorrelation matrix, RBDECOt is formed:

RBDECO
t =


(1− ρ1,1,t)In1 0 · · ·

0
. . . 0

... 0 (1− ρI,I,t)InI

 +


ρ1,1,tJn1 ρ1,2,tJn1×n2 · · ·

ρ2,1,tJn2×n1

. . .

... ρI,I,tJnI

 (22)

where ρl,m,t = ρm,l,t for all l,m ∈ {1, . . . , I}.

Block DECO specifies that, conditional on the past, each variable is standard normally dis-

tributed and correlations taking the structure in Equation 22. The return vector rt is partitioned

into I subvectors, where each subvector rm contains nm returns. This structure allows the correla-

tion matrix to have I unique diagonal processes and I(I − 1)/2 distinct off-diagonal blocks. Blocks

on the diagonal have equicorrelations ρl,l,t where off-diagonal blocks have equicorrelation ρl,m,t as

follows:

ρl,l,t =
1

nl(nl − 1)

∑
i∈l,j∈l,i 6=j

qi,j,t√
qi,i,tqj,j,t

, ρl,m,t =
1

nlnm

∑
i∈l,j∈m

qi,j,t√
qi,i,tqj,j,t

(23)

where qi,j,t is the i, j-th element in Qt of Equation 11. Even though the Block DECO correlations

are calculated as the average DCC correlation within each block, the DCC-parameters, α and β,

are the same for each block, since Equation 11 remains the underlying model.

The last approach is based on the work of Caldeira et al. (2017) and makes convex combinations

of the M previously mentioned models into one estimator for the conditional covariance matrix,

HComb
t , as follows:

HComb
t = λ1,tH

1
t + · · ·+ λM,tH

M
t (24)

where
∑M

m=1 λm,t = 1 and λm,t ≤ 0, ∀ m. Moreover, similar to Caldeira et al. (2017), λm,t are

chosen based on historical Sharpe ratios of portfolios constructed by the individual models. Details

on the exact calculation of λm,t can be found in Appendix B. Caldeira et al. (2017) find that their

model outperforms all other individual candidate models, which is due to the fact that the model

exploits complementarities of all individual correlation models.

3.4 Estimation techniques

3.4.1 Composite Likelihood

Engle and Colacito (2006) estimate the multivariate GARCH models with an estimator that is

subject to the constraint that the long-run covariance matrix is the sample covariance matrix. This
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approach differs from (Quasi-)Maximum Likelihood only in finite samples (see Engle and Mezrich,

1996). Maximum Likelihood estimation has been the common estimation method for multivariate

GARCH models. Engle (2002) formulates the DCC model as the following specification:

rt|t−1 ∼ N(0,DtRtDt), D2
t = diag{ωi}+ diag{κi} ◦ rt−1r

′
t−1 + diag{λi} ◦D2

t−1

εt = D−1
t rt, Qt = S ◦ (ιι′ −A−B) +A ◦ (εt−1ε

′
t−1) +A ◦Qt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1

(25)

Consequently, the loglikelihood can be written as follows, where | · | is the determinant operator:

L = −1

2

T∑
t=1

(nlog 2π + log |Ht|+ r′tH−1
t rt)

= −1

2

T∑
t=1

(nlog 2π + 2 log |Dt|+ r′tD−2
t rt − ε′tεt + log |Rt|+ ε′tR−1

t εt)

(26)

Now, let the parameters in D be denoted by θ and the remaining parameters in R be denoted by

φ. Then, the loglikelihood can be split into a part with only volatility parameters, LV (θ), and a

part with both volatility and correlation parameters, LC(θ,φ):

L(θ,φ) = LV (θ) + LC(θ,φ) (27)

LV (θ) = −1

2

T∑
t=1

(nlog 2π + 2 log |Dt|+ r′tD−2
t rt) = −1

2

N∑
i=1

T∑
t=1

(nlog 2π + log hi,t +
r2
i,t

hi,t
) (28)

LC(θ,φ) =
1

2

T∑
t=1

(log |Rt|+ ε′tR−1
t εt − ε′tεt) (29)

Newey and McFadden (1994) give sufficient conditions for the consistency and asymptotic normality

of the estimators for θ and φ in a two-step maximisation algorithm. In the first step, the volatility

part in Equation 28 is the sum of the individual univariate GARCH likelihoods, which are jointly

maximised by separately maximising each term: θ̂ = arg max{LV (θ)}. In the second step, the

second part of the likelihood is used to estimate the correlation parameters, where the estimates of

the volatility parameters are from the first step: φ̂ = arg maxφ{LC(θ̂,φ)}.

However, Engle et al. (2009) show that computational challenges arise when fitting a large-

dimensional model and propose a Composite Likelihood (CL) estimator in the second step to ease

the computational burden of estimating the correlation parameters. The idea is to first introduce

a data array Y t = {Y 1,t, . . . ,Y N,t} which is composed out of the returns rt according to some

deterministic selection matrix Sj , such that the submodel Y j,t is defined as Y j,t = Sjrt.
1 Let

1In this research, a pairwise selection like in Engle et al. (2009) is used
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Ft−1 denote the information set containing all information up to and including time t − 1, then

E(Y j,t|Ft−1) = 0 and Var(Y j,t|Ft−1) = Hj,t = SjHtS
′
j , where Ht is as defined in Equation 10.

Then, a valid quasi-loglikelihood function for ψ off the j-th submodel can be formulated as:

Lj(ψ) =
T∑
t=1

lj,t(ψ), where lj,t(ψ) = log f(Y j,t;ψ) = −1

2
log |Hj,t| −

1

2
Y ′j,tHj,tY j,t (30)

More information about ψ can be obtained by averaging the same operation of many submodels

and summing over all time periods t = 1, . . . , T , the Composite Likelihood function is obtained:

CL(ψ) =
1

N

T∑
t=1

N∑
j=1

log Lj,t(ψ) (31)

Finally, the parameters ψ are found by maximising CL(ψ) with a numerical maximisation routine.

For fixed N , as T approaches infinity, ψ̂ has well-known asymptotic properties, since the Composite

Likelihood estimator is a particular case of a quasi-likelihood. For further details about the CL

estimator in a multivariate GARCH setting, refer to Engle et al. (2009).

3.4.2 Exact initial Kalman Filter

In this research, Kalman Filter estimation is used to estimate the factor loads in the DFGARCH

model. The Kalman filter is an estimation algorithm that tracks a time-series – in this case the

asset returns – and simultaneously estimates the parameters of the underlying model. Equations

15 and 16 together form our observation process and our state space process, respectively, and are

repeated:

yi,t = f tβi,t + εi,t, εi,t ∼ N(0, hi) (32)

βi,t = Fβi,t−1 + Sui,t, ui,t ∼ N(0,Σui) (33)

where f t are the time-varying factors, βi,t represents the time-varying factor loadings, which are

treated as unobserved states. Transition matrix F makes sure that the states evolve according to

the Random Walk, Learning and VAR models specified in Equations 16 - 18 and S is a selection

matrix containing zeros and ones. See Appendix C for detailed specifications of F , βi,t, f t and

S and refer to Adrian and Franzoni (2009) for a complete derivation of the specification of these

matrices.

Let βi,t|t−1 be the expectation of βi,t conditional on yi,1, . . . , yi,t−1 with mean square error

matrix P t|t−1. When observation yi,t is observed, the prediction error, vi,t, the covariance matrix
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of the prediction error, ∆t, and the Kalman gain, Kt can be calculated:

vi,t = yi,t − f ′tβi,t|t−1, ∆t = f ′tP t|t−1f t + hi,t, Kt = P t|t−1f
′
t∆
−1
t (34)

Then, after observing yi,t and for given values of βi,t|t−1 and P t|t−1, a more accurate inference of

βi,t|t and P t|t can be made:

βi,t|t = βi,t|t−1 +Ktvi,t, P t|t = P t|t−1 − P t|t−1f
′
t∆
−1
t f tP t|t−1 (35)

Lastly, an estimate of the state vector and its covariance matrix in period t+ 1 conditional on

yi,1, · · · , yi,t is given by the prediction step:

βi,t+1|t = Fβi,t|t, P i,t+1|t = FP i,t|tF
′ + SΣuiS

′ (36)

Usually, the Kalman Filter computations are carried out recursively for t = 1, · · · , T for a given

time-series yi,1, · · · , yi,T . However, since the equation for βi,t is non-stationary, the initialisation

is implemented using the exact initial Kalman Filter introduced by Koopman (1997), which uses

diffuse priors. Details of the exact initial Kalman Filter can be found in Appendix D.

The parameters in the covariance matrix Σui are treated as unknown coefficients and are col-

lected in the parameter vector ψ. Estimation of ψ is done by executing the numerical quasi-Newton

maximisation algorithm on the loglikelihood function, l(ψ), which is constructed by the prediction

error decomposition:

l(ψ) = −T
2

log 2π − 1

2

T∑
t=1

log |∆t| −
1

2

T∑
t=1

v′t∆
−1
t vt (37)

4 Data
For the purpose of performing analysis in a bivariate setting, identical data as Engle and Colacito

(2006) used is employed. This data set consists of daily closing prices for the S&P 500 Index and

the Dow Jones Index are obtained from Yahoo! Finance. The data range in this case is 8/26/1988

- 8/26/2003 (2635 observations). Consequently, returns are calculated as the differences in the

natural logarithm of the prices. Panel A of Table 1 displays summary statistics for the returns of

these two assets.

In practice asset managers can choose divide their capital over more asset classes. Therefore it

is interesting to extend the bivariate setting of only the S&P 500 Index and the Dow Jones Index to

a multivariate framework, where an investment universe of multiple assets is constructed. In this

multivariate setting, two variations on Engle and Colacito (2006) with regards to the data are used.
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Table 1: Summary statistics for returns in the bivariate and multivariate settings

Panel A: Bivariate setting Panel B: Multivariate setting
S&P Dow Alt. Equities Currencies Credit Commodities Real Gov.
500 Jones Assets Estate bonds

Mean 7.53 9.43 4.80 6.95 -0.51 6.18 -1.38 9.33 5.46
Variance 1.25 1.20 0.98 1.58 0.51 0.52 1.48 1.07 0.53
Kurtosis 6.46 7.30
Correlation 0.939

In Panel A, summary statistics for the returns of the S&P 500 Index and the Dow Jones Index for the period 8/29/1988 -
8/26/2003 are presented. Panel B displays summary statistics for the returns of each asset class used in the multivariate setting
for the period 4/1/2003 - 4/30/2018. The mean returns have been annualised with a factor of 252.

Firstly, the data range is changed to the period 4/1/2003 - 4/30/2018 (3771 observations). In this

way, models can be estimated over more periods of different volatility and correlation levels that

smoothly transition into each other. Secondly, 65 indices from seven different asset classes are used

to capture different mean-variance profiles. Based on the work of Doeswijk et al. (2014), the seven

selected asset classes are (1) Equities, (2) Government bonds, (3), Corporate bonds – for brevity

referred to as Credit, (4) Commodities, (5) Currencies, (6) Real estate, and (7) Alternative assets.

For asset classes (1) and (2), various indices that differ in geographical exposure on country level

are used, as constructed by FTSE All-World and DataStream, respectively. In asset class (3), next

to a distinction between investment grade and high-yield corporate bonds, indices for European,

American and Emerging Market Debt are selected. In order to get a diversified representation of

the Commodities asset class, multiple product-specific indices as constructed by Bloomberg are

used. The DXY Index is considered as a representative index for the Currencies asset class, as

it reflects the value of the U.S. Dollar against a basket of various different currencies. For asset

class (6), a global property index constructed by S&P, which is considered as representative for the

entire asset class, is used. Lastly, one Private Equity index and one Hedge Fund index are used to

form the Alternative Asset class. All price data is converted to Euro and, with the exception of the

Government bond indices, for which data is obtained from DataStream, all data is obtained from

Bloomberg. For a list of Bloomberg Tickers and DataStream RICs, refer to Figure E1 in Appendix

E. Returns are again obtained as the differences in the natural logarithm of the asset prices. Panel

B of Table 1 displays summary statistics for the returns of the seven asset classes.

From Panel A in Table 1 it is clear that the S&P 500 Index and the Dow Jones Index have

similar mean-variance characteristics and are in line with the findings of Engle and Colacito (2006).

Contrary to the standard rule of thumb, the S&P 500 Index has a higher variance compared to

the Dow Jones Index, while having a lower mean return. The sample correlation is extremely high:
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0.939. Engle and Colacito (2006) argue that the importance of correct estimation of correlations is

higher in this setting compared to a setting with a low correlation.

Panel B shows that the different asset classes indeed have different mean-variance characteristics

over the entire sample period. For example, Real estate has the highest mean return, but has a

lower standard deviation than Equities and Commodities. Currencies have the lowest variance

accompanied by a poor mean return and Government bonds have the best mean-variance ratio.

Figure F1 in Appendix F shows the complete correlation matrix of all indices over the entire sample

period. In this picture, a clear block-structure is visible between the various asset classes. While the

correlations within each asset class are quite positive, correlations across asset classes can become

quite negative (e.g. -0.43 for the pair Italian Equities - German Government Bonds). During this

sample period, the correlation between the S&P 500 Index and the Dow Jones Index was 0.980.

Lastly, in order to implement the Dynamic Factor GARCH model, the factor returns of the

3-factor model as proposed by Fama and French (1993) are used. This approach is similar to

the approach of Santos and Moura (2014). All factor returns are obtained from the web page of

Kenneth French.2 See Fama and French (1993) for details regarding the construction of these factor

portfolios.

5 Results

5.1 Bivariate setting

The price of the S&P 500 Index, the Dow Jones Index and the correlations estimated by

the Asymmetric DCC model over the sample period are shown in Figure G1 in Appendix G. The

correlation between the two assets has been close to 1 over the majority of the sample period, which

indicates that the potential loss of efficiency between conditional and unconditional estimators could

be considerable. Starting in 1998, the correlation dropped to a value slightly below 0.6. However,

this brief decrease is no reason to cast doubt on the results. These outliers might even provide

useful information due to increased variability in the correlation regimes.

Table 2 shows the estimates for the parameters of the Scalar BEKK, Diagonal BEKK, DCC,

Asymmetric DCC, Orthogonal GARCH models as described in Section 3. Due to slight differences

in estimation techniques for different models, the parameters differ slightly compared to the esti-

mates that Engle and Colacito (2006) report. A particularly notable difference is in the correlation

parameters for the Asymmetric DCC model. While Engle and Colacito (2006) reported values of

0.053, 0.938 and 0.004 for θ1, θ2 and θ3, respectively, values of 0.031, 0.948 and 0.034 are found here.

2The web page can be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 2: Parameter Estimates for the bivariate setting

S&P 500 Dow Jones
variance parameters variance parameters Correlation parameters

Models ω1 α1 β1 γ1 ω2 α2 β2 γ2 ω12 θ1 θ2 θ3

SBEKK .073 .222 .973 .072 .222 .973 .029
(.015) (.022) (.005) (.015) (.022) (.005) (.006)

DBEKK .222 .973 .227 .971
(.019) (.005) (.022) (.006)

OG. .005 .068 .931 .003 .098 .877
(.001) (.006) (.006) (.001) (.008) (.011)

DCC .005 .067 .931 .009 .084 .912 .042 .954
(.003) (.016) (.015) (.004) (.019) (.017) (.008) (.010)

ADCC .012 .002 .923 .138 .016 .018 .913 .119 .031 .948 .034
(.004) (.002) (.016) (.033) (.005) (.009) (.016) (.030) (.031) (.016) (.036)

This table shows the parameter estimates and corresponding standard deviations in brackets of the Scalar BEKK (SBEKK),
Diagonal BEKK (DBEKK) Orthogonal GARCH (OG.), DCC and Asymmetric DCC (ADCC) models. The sample period is
4/1/2003-4/30/2018. Returns have been multiplied by 100 to improve numerical performance of the estimation routines.

In addition, the standard errors reported in Table 2 are considerably higher than those reported

in Engle and Colacito (2006), which can be explained by subtle differences in estimation methods.

Finally, note that the covariance stationarity condition 1− α− β > 0, α, β > 0 is not satisfied for

the Scalar BEKK and Diagonal BEKK model.

Table 3 reports the in-sample volatility ratios of all correlation models. These ratios are obtained

by first calculating for each model the sample standard deviation of the portfolio returns for time

t = 1, . . . , T as defined in Equation 4, after which the standard deviation of the model with the

lowest standard deviation is normalised to 100 and the other ratios are adjusted accordingly. A

value such as 105 can be interpreted as follows: an investor would get a 5% higher required return

when using the better covariance model than might have been required had he or she used the worse

covariance matrix. Hence, if an investor has a target return of 10% by using the wrong covariance

Table 3: Comparison of volatility ratios

µSP µDow Scalar BEKK Diagonal BEKK DCC OGARCH ADCC Constant

1.00 0.00 100.473 100.525 101.637 101.303 101.002 100.000
0.99 0.16 100.265 100.327 101.337 100.783 100.506 100.000
0.95 0.31 100.000 100.063 100.883 100.273 100.117 100.479
0.89 0.45 100.000 100.049 100.569 100.548 100.495 102.585
0.81 0.59 100.000 100.053 100.461 102.120 101.029 106.041
0.71 0.71 100.000 100.020 100.312 101.274 100.228 100.085
0.59 0.81 100.000 100.056 100.696 101.262 100.464 104.825
0.45 0.89 100.000 100.022 100.196 102.694 100.533 104.985
0.31 0.95 100.000 100.011 100.484 102.744 101.291 103.770
0.16 0.99 100.000 100.009 100.687 102.616 101.649 102.794
0.00 1.00 100.000 100.008 100.831 102.500 101.791 102.070

This table presents the normalised standard deviations of minimum variance portfolios subject to a required return of 1. Each
row of the table shows the results of the pair of expected returns of the corresponding two columns. The lowest standard devi-
ation is normalised to 100.
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matrix, this investor could have required a return of 10.5% had he known the better covariance

matrix. Contrary to Engle and Colacito (2006), who find that the Diagonal BEKK model is usually

the best model, Table 3 shows that the Scalar BEKK model is usually the best model. In addition,

the constant estimator is considerably worse than other models except for the cases where the S&P

500 Index has a much larger expected return relative to the Dow Jones Index or when the expected

returns are equal. The latter phenomenon was also found by Engle and Colacito (2006), who gave

a mathematical foundation for it and called it the ‘costless mistake’.

The results from the weighted Diebold-Mariano joint test in Table 4 confirm the findings from

Table 3. With the exception of the Scalar BEKK model, the implications of the results are similar

to the implications of the results of Engle and Colacito (2006), even though the magnitude of the

test statistics does not correspond. The Scalar BEKK model outperforms all other models here,

but is only significantly better than the DCC and Constant estimator at a 5% significance level.

Furthermore, the constant estimator is significantly worse than all models except the ADCC model.

Since the ratio of mean returns in the sample is about 1.25, the univariate weighted Diebold-Mariano

test is performed for µ = [0.59; 0.81] and similar results as in the joint test are obtained.

5.2 Multivariate setting

In the multivariate setting, the Block Dynamic Equicorrelation (BDECO), Random Walk Dy-

namic Factor GARCH (DFGARCH)3 and Combination (Comb) models are added to the set of

models analysed in the bivariate setting, where the Orthogonal GARCH model is discarded due to

its poor performance. The BDECO model is estimated based on the assumption of equal corre-

lation within each of the seven asset classes, such that a 7-Block Dynamic Equicorrelation matrix

is obtained. For the Combination model, scaling parameters of δ = 0.9 and η = 2 are used.4

Next, K = 1000 vectors for µ are generated where each element in µ is obtained from a uniform

distribution over the unit interval. Like in the bivariate case, the target return µ0 is set to 1.

Table 5 shows the summary statistics of the volatility ratios as defined in Section 5.1. Sur-

prisingly, the Scalar BEKK model seems to outperform all other models, as it has on average the

lowest volatility ratio and the lowest maximum volatility ratio. In addition, the Scalar BEKK

model is in 98.1% of all draws of µ the best model in the sense that the portfolio returns attain the

lowest volatility. The Diagonal BEKK, DCC and Asymmetric DCC model follow relatively closely,

3Due to the size of the systems, the estimates of the Learning and VAR DFGARCH models are instable and hence

not trustworthy. Results for these models are therefore not reported.
4A robustness check has been carried out over the sets ∆ = [1, 0.9, 0.8, 0.7] and H = [0, 2, 6, 8] for δ and η

respectively. The results were similar to the findings of Caldeira et al. (2017).
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Table 4: Diebold-Mariano Test statistics

SBEKK DBEKK DCC OGARCH ADCC Constant

Joint Test
SBEKK 0.069 2.210* 1.561 1.668 2.383*
DBEKK -0.069 2.543* 1.607 2.122* 2.406*
DCC -2.210 -2.543 0.737 0.788 1.990*
OGARCH -1.561 -1.607 -0.737 -1.126 3.160*
ADCC -1.668 -2.122 -0.788 1.126 1.931
Constant -2.383 -2.406 -1.990 -3.160 -1.931

µ = [.59, .81]
SBEKK 0.986 2.415* 2.741* 1.496 4.252*
DBEKK -0.986 2.297* 2.643* 1.514 4.356*
DCC -2.415 -2.297 1.429 0.186 4.191*
OGARCH -2.741 -2.643 -1.429 -1.268 3.133*
ADCC -1.496 -1.514 -0.186 1.268 4.300*
Constant -4.252 -4.356 -4.191 -3.133 -4.300

The top panel reports the t-statistics for the Diebold-Mariano test for the joint weighted test, where all assumed vectors of ex-
pected returns are taken into account. The bottom panel shows the same test for the vector of expected returns µ = [0.59, 0.81].
A positive number means that the model in the corresponding row outperforms the model in the corresponding column. * de-
notes that the t-statistic is significant at a 5% significance level.

although the required return is on average 5 to 6% higher than for the Scalar BEKK model and

are 0.1%, 1.5% and 0.3% of the cases the best model, respectively.

Contrary to expectations, the two more parsimonious models, the Block Dynamic Equicorrela-

tion and the Dynamic Factor GARCH models, perform worse than the conventional multivariate

GARCH models. As a matter of fact, the average volatility ratio are a factor 2 and 3.3 larger for

the BDECO and DFGARCH models, respectively. Thus, if an investor has a required return of

10% when using the BDECO and DFGARCH models, this target return would be approximately

20.4% and 32.8% when using the best performing model, respectively. This is an early indication

that the restrictions or assumptions imposed on the models do not hold in this framework.

Even though Caldeira et al. (2017) find similar perofrmance for the BDECO model, the results

for the Combination estimator do not correspond. On average, the volatility of the portfolio created

by the Combination estimator is 15% higher than the portfolio created by the best performing

model. In addition, the Combination estimator is never the best performing model.

A more detailed insight into model performance can be obtained from considering Table 6,

where the entries are the percentage of draws for µ in which the model in the corresponding row

has a lower volatility ratio than the model in the corresponding column. The Scalar BEKK outper-

forms all models close to 100% of the cases and the BDECO and DFGARCH models perform worse

than all other models in all cases, where the DFGARCH model is the worst of these two parsimo-

nious models. Finally, the DCC model and Asymmetric DCC model have a similar, but slightly

worse portfolio volatilities than the Diagonal BEKK model, while the DCC model outperforms
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its Asymmetric counterpart. As expected from the results in Table 5, the Combination estimator

performs worse than the traditional multivariate GARCH models in most cases. The Scalar BEKK

model outperforms the Comb model in 100% of the cases and this percentage is around 5% for the

Diagonal BEKK, DCC and Asymmetric DCC models. These results are confirmed by the pairwise

scatter plots of the portfolio volatilities, which can be found in Appendix H.

The inferences from the previous paragraph on Table 6 can be tested formally with the sup tm,n

and ave tm,n statistics described in Section 3. The results are shown in Table 7, where the sup tm,n

statistics are in the upper triangle and the ave tm,n statistics are in the lower panel. Unlike the

t-statistics in the bivariate case, the statistics in Table 7 do not indicate which of the two models

is better, but only test the equality in portfolio variance of the two respective models. Since all

statistics are significantly different from 0 at a 1% significance level, one can conclude that all

models have a significantly different performance over the set of expected return vectors M .

Combining these results with the insights from Table 6, the Scalar BEKK model produces

significantly better conditional covariance estimators than all other models considered. One has

to be careful about making conclusive statements about the runner-up models, as the results in

Table 5 and 6 do not indicate that one of the DBEKK, DCC or ADCC models is clearly better.

For example, the DCC model has the lowest volatility ratio more often than the Diagonal BEKK

model, but the average volatility ratio is higher and it has a higher portfolio volatility than the

Diagonal BEKK model in over half of the cases. However, there seems to be enough evidence that

the DCC model is better at capturing correlation dynamics than the ADCC model. Furthermore,

there is abundant evidence to conclude that the BDECO and the DFGARCH models are inferior

to all other models. Finally, the Combination estimator is significantly better than the BDECO

and DFGARCH models, but significantly worse for the traditional multivariate GARCH models.

Even though the two more parsimonious models perform worse than the traditional multivariate

Table 5: Volatility ratio summary statistics

SBEKK DBEKK DCC ADCC BDECO DFGARCH Comb

Average 100.03 105.11 105.72 106.48 204.47 328.97 115.14
Supremum 104.20 111.64 112.66 114.46 352.04 473.79 141.96
Infimum 100.00 100.00 100.00 100.00 141.48 217.26 100.63
Lowest ratio (% of all µ draws) 98.1 0.1 1.5 0.3 0.0 0.0 0.0

This table displays summary statistics for the K = 1000 volatility ratios as defined in the bivariate case. In particular, the
average, supremum and infimum of the volatility ratios and the % of draws that the respective model has the lowest ratio are
displayed. The models are the Scalar BEKK (SBEKK), Diagonal BEKK (DBEKK), DCC, Asymmetric DCC (ADCC) Block
Dynamic Equicorrelation (BDECO), Dynamic Factor GARCH (DFGARCH) and the Combination models (Comb).
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Table 6: Model comparison of volatility ratio

SBEKK DBEKK DCC ADCC BDECO DFGARCH Comb

SBEKK 99.9 98.2 98.7 100.0 100.0 100.0
DBEKK 0.1 59.4 68.6 100.0 100.0 95.4
DCC 1.8 40.6 93.4 100.0 100.0 96.2
ADCC 1.3 31.4 6.6 100.0 100.0 95.1
BDECO 0.0 0.0 0.0 0.0 100.0 0.0
DFGARCH 0.0 0.0 0.0 0.0 0.0 0.0
Comb 0.0 4.6 3.8 4.9 100.0 100.0

This table displays the % of draws for µ ∈ M that the model in the row has a lower volatility ratio than the model in the
column. The models are the Scalar BEKK (SBEKK), Diagonal BEKK (DBEKK), DCC, Asymmetric DCC (ADCC) Block
Dynamic Equicorrelation (BDECO), Dynamic Factor GARCH (DFGARCH) and the Combination models.

GARCH models, the more parsimonious versions in the latter class outperform the more flexible

counterparts. Table 7 confirms earlier findings that the Scalar BEKK model is significantly better

than the Diagonal BEKK model and that the DCC model is significantly better than the Asymmet-

ric DCC model. Hence, increasing model parsimonity can benefit the performance of the models

to some extent, but it can come at the cost of flexibility.

It is interesting further investigate the differences between the DFGARCH, BDECO and Com-

bination models on the one side and the traditional multivariate GARCH models on the other side.

Figure 1 displays the average weights, as defined in Equation 4, over the K = 1000 vectors of gen-

erated expected returns given to three assets from the Equity, Credit and Government Bond asset

classes by the DFGARCH and Scalar BEKK models. Graphs for other asset classes can be found in

Appendix I. The two models give similar weights to the Hong Kong Index in the Equity asset class,

but the weights differ substantially in the specific examples for the Credit and and Government

Bond asset classes. Therefore, the DFGARCH model might give more weight to assets that do not

perform well, which in turn negatively affects the performance of the DFGARCH model.

Additionally, Figure 2 displays the correlations between the indices in the Alternative Asset

Table 7: Robust test statistics

SBEKK DBEKK DCC ADCC DECO DFGARCH Comb

SBEKK 55.1* 43.3* 33.9* 760.9* 651.6* 228.1*
DBEKK 10.1* 60.2* 57.4* 707.3* 647.4* 178.8*
DCC 2.9* 8.1* 39.4* 553.7* 567.5* 219.2*
ADCC 3.3* 6.4* 6.4* 559.7* 561.2* 197.9*
DECO 366.2* 324.4* 248.5* 253.4* 609.4* 696.0*
DFGARCH 521.0* 479.1* 368.5* 379.3* 375.3* 669.2*
Comb 64.3* 24.4* 51.4* 45.9* 344.6* 541.1*

This table displays the sup tm,n (upper triangle) and ave tm,n (lower triangle) statistics for the Scalar BEKK (SBEKK), Diag-
onal BEKK (DBEKK), DCC, Asymmetric DCC (ADCC) Block Dynamic Equicorrelation (BDECO), Dynamic Factor GARCH
(DFGARCH) and the Combination models. * denotes that the two models in the corresponding row and column are signifi-
cantly different from each other at a 1% significance level.
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(a) Equities: Hong Kong Index (b) Credit: U.S. High Yield Index (c) Government Bonds: Germany

Figure 1: Weights given to particular assets by the SBEKK and DFGARCH models.

and Credit asset classes as estimated with the DCC model and the correlation between the two

asset classes as estimated by the Block Dynamic Equicorrelation model. Even though the BDECO

correlation seems to represent the average pairwise DCC correlation, the dispersion around this

average is substantial. Around time period 2150, the BDECO correlation is about 0.18, while the

DCC correlations range from 0.9 to almost -0.6. This makes the assumption of equal correlation

within each asset class questionable.

Finally, the weights, λt,m, given to each model m in the Combination estimator over time are

presented in Figure 3. As expected the Combination estimator gives most of the time more weight to

the best performing models, such as the SBEKK and DCC models. Interestingly, the weight given to

the ADCC model is relatively large in the first third of the sample period compared to the rest of the

sample period. The most important result from this figure is that sometimes considerable weights

are allocated to the BDECO and DFGARCH models, despite their poor individual performance.

This might also explain the poor performance of the Combination estimator.

Figure 2: Correlations between Alt. Assets
and Credit asset classes for DCC (dashed) and
DECO models (solid)

Figure 3: Model weightings in the Combination
estimator
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6 Conclusion
In this paper, the economic importance of dynamic conditional covariances is investigated.

Specifically, to what extent recently developed parsimonious multivariate GARCH models can im-

prove the economic value of conditional correlation in a multi-asset framework. A multi-asset

universe is constructed out of 65 assets from seven asset classes, being equities, government bonds,

corporate bonds, currencies, commodities, real estate and alternative assets. The summary statis-

tics for the returns over the period 4/1/2003 - 4/30/2018, show that many different mean-variance

profiles are represented. In addition, the correlation table shows clearly that the asset classes form

blocks in which correlations are similar. To test the economic value of conditional correlations,

the bivariate framework of Engle and Colacito (2006) is extended to a multivariate setting. In

this framework, Engle and Colacito (2006) use a predetermined set of expected returns for every

asset to prevent any noise from estimating the expected returns and test whether the economic

loss difference of two models equals zero by using a test statistic based on the work of Diebold

and Mariano (2002). Since the number of expected return combinations gets large for increasing

number of assets, it becomes unfeasible to reliably test, present and interpret the results of all tests

for every set of expected returns. Instead, the testing procedure of Barendse and Patton (2018) is

used, which allows for testing over a bounded Euclidean parameter space.

In the bivariate case, price data for the S&P 500 Index and the Dow Jones Index for the period

2/4/1993 - 7/22/2003 is used to estimate five multivariate GARCH models: Scalar BEKK, Diagonal

BEKK, DCC, Asymmetric DCC and Orthogonal GARCH. While Engle and Colacito (2006) use a

Maximum Likelihood estimator for the DCC-type models, this study uses the Composite Likelihood

estimator to retain comparative power between the bivariate and multivariate frameworks. In

environments with a small number of assets, the Maximum Likelihood estimator is preferred, but

the Composite Likelihood is proven to have better properties in the a multivariate setting. Except

for the fact that the Scalar BEKK model outperforms the Diagonal BEKK model in this study,

the results are largely in line with the findings of Engle and Colacito (2006). The DCC-type

models perform significantly worse compared the BEKK-type models at a 5% significance level,

which is likely due to slight differences in estimation techniques. Lastly, the Constant estimator is

significantly outperformed by all models, except for the Asymmetric DCC model.

In addition to the five models used in the bivariate case, two parsimonious models, the Block

Dynamic Equicorrelation and the Dynamic Factor GARCH models, and a Combination estimator

are introduced in the multivariate case. The performance of both parsimonious models, measured
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by the volatility ratio and statistically tested with the procedure of Barendse and Patton (2018),

is significantly worse compared to the traditional multivariate GARCH models. In the case of the

Block Dynamic Equicorrelation model, this could be an indication that the assumption of constant

correlations within the blocks of asset classes is too restrictive. In the case of the Dynamic Factor

GARCH model, it is likely that the factors are not able to capture the dynamics in the assets,

but an inaccurate Kalman estimation procedure could also provide an explanation. The model

with the best performance is the Scalar BEKK model, like in the bivariate setting. Even though

the differences seem small with other traditional correlation models, they are significantly different

from zero. In fact, an investor could see the required return decrease by on average 5% and in

worst cases by even 10% when switching from the a traditional multivariate GARCH model to

the Scalar BEKK model. Due to the use of weights based on the Sharpe ratio, the performance

of the Combination estimator is negatively influenced by the performance of the Block Dynamic

Equicorrelation and the Dynamic Factor GARCH models.

This research shows that the economic value of correct conditional covariance information is

not improved by using more parsimonious models. The implementation of the Block Dynamic

Equicorrelation or Dynamic Factor GARCH model can lead to a required return that is 2 or even

3.3 times lower compared to a traditional multivariate GARCH model. Hence, portfolio managers

and other practitioners should be cautious when implementing models that aim to increase the

model parsimonity in a multi-asset framework.

7 Discussion & Further Research
The fact that this study was bounded by time and computational capabilities gives rise to

several limitations that are discussed in detail in this section. Firstly, the statistical tests in both

the bivariate and the multivariate case are performed only in-sample. In an in-sample setting,

for example when using a Likelihood-Ratio test, more flexible models have an advantage over

more parsimonious models, as the number of parameters matters less. Engle and Colacito (2006)

devote minimal attention to the out-of-sample evaluation and potential problems that arise from

the nestedness of the models. Typically, one would expect that more flexible models have a benefit

in-sample and more parsimonious models benefit more in an out-of-sample setting. However, the

simpler versions of the traditional multivariate GARCH models outperform their more flexible

counterparts in this in-sample study and therefore function as counterexample to the previously

stated ‘rule’. As the test of Barendse and Patton (2018) has more power in an out-of-sample setting,

further research could use a similar approach to evaluate the out-of-sample performance.
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Secondly, other assumptions for the Block Dynamic Equicorrelation and the Combination mod-

els can be made. The Block Dynamic Equicorrelation model is estimated based on the assumption

that correlations of assets within the same asset class have the same correlation with other asset

classes. This choice is defended by the apparent block structure in the sample correlation matrix.

However, further research could attempt to analyse other assumptions on the correlation structure,

such as constant correlation across assets with similar geographical location within asset classes,

to further improve model performance. In addition, other criteria than the Sharpe ratio, such as

equal-weighting or the Treynor ratio, could be used to determine the weights given to the individual

models in the Combination model.

Thirdly, one could argue that there is a mismatch between the constructed investment universe

and the choice of factor model, which might lead to weak estimation results in the Kalman Filter.

The investment universe consists of many different asset classes, whereas the factor returns are based

on equity portfolios. Since investment managers typically have access to a global universe consisting

of various asset classes, it is of most interest to them to study the economic value of conditional

covariances in a setting with many different asset classes. Further research could attempt to either

study alternative factors or investigate settings where the three-factor model of Fama and French

(1993) is appropriate, such as an investment universe consisting of equity industries.

Finally, several concessions had to be made in order to retain feasible computation times and

parameter stability. One such measure has been the assumption of homoscedasticity of the errors in

the observation equation in the Dynamic Factor GARCH model as this increased computation times

rather drastically and without the bounds of possibility for this research. Conventional Maximum

Likelihood estimation for the state-space parameters is unfeasible to estimate the Learning and

VAR variants for the Random Walk in the state space equation. A variant with an optimised,

time-varying variance of εi,t would be a possible topic for further research. More importantly, this

study used the conventionally employed Maximum Likelihood. Approximations of the conventional

Kalman Filter, like the approximation similar to the one of Doz et al. (2011), who introduce a two-

step Generalised Least Squares approach, or a multi-step estimator, where first an AR(1) model

is estimated with the assumption that εt are independent and identically distributed and then a

GARCH model is estimated, could enable analysis of other state space equation specifications.
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Appendix A: Correlation models in a bivariate setting
Bivariate Mean-reverting DCC (DCC-MR)

The DCC-MR follows the following process:

yt = H1
tξt

H t =

 h1,t ρt
√
h1,th2,t

ρt
√
h1,th2,t h2,t


where the conditional variances estimated by a GARCH-type model are specified as

h1,t = ω1 + α1y
2
1,t−1 + β1h1,t−1, h2,t = ω2 + α2y

2
2,t−1 + β2h2,t−1

and ρt = h12,t/
√
h∗1,th

∗
2,t is calculated by

h∗1,t = (1− θ1 − θ2) + θ1ε
2
1,t−1 + θ2h

∗
1,t−1

h∗2,t = (1− θ1 − θ2) + θ1ε
2
2,t−1 + θ2h

∗
2,t−1

h12,t = φ12 · (1− θ1 − θ2) + θ1ε1,t−1ε2,t−1 + θ2h12,t−1

where φ12 is the average sample correlation of the returns and ε1,t and ε2,t are the standardised

residuals.

Bivariate Asymmetric DCC

The Asymmetric DCC model gives higher tail dependence for the upper tail of the multi-

period joint density compared to the symmetric DCC. The Asymmetric DCC follows the

following process:

yt = H1
tξt

H t =

 h1,t ρt
√
h1,th2,t

ρt
√
h1,th2,t h2,t


There are two important difference to the mean-reverting DCC model. Firstly, the univariate

conditional volatilities are estimated with the GJR-GARCH(p, q) model of Glosten et al.

(1993), which allows for asymmetric effects of positive and negative returns on the conditional

volatility, instead of a regular GARCH(p, q) model. This yields:

h1,t = ω1+α1y
2
1,t−1+β1h1,t−1+γ1d1,t−1y

2
1,t−1, h2,t = ω2+α2y

2
2,t−1+β2h2,t−1+γ2d2,t−1y

2
2,t−1



38 Heeringa, M.A.C., 412507 June 30, 2018

Secondly, the specification of ρt = h12,t/
√
h∗1,th

∗
2,t changes to:

h∗1,t = (1− θ1 − θ2 −
θ3

2
) + θ1ε

2
1,t−1 + θ2h

∗
1,t−1 + θ3d1,t−1ε

2
1,t−1

h∗2,t = (1− θ1 − θ2 −
θ3

2
) + θ1ε

2
2,t−1 + θ2h

∗
2,t−1 + θ3d2,t−1ε

2
2,t−1

h12,t = φ12 · (1− θ1 − θ2)− φ3θ3 + θ1ε1,t−1ε2,t−1 + θ2h12,t−1 + θ3(d1,t−1ε
2
1,t−1)(d2,t−1ε

2
2,t−1)

where d1,t and d2,t are dummies that assume value 1 whenever y1,t and / or y2,t are negative,

respectively, θ3/2 relies on the assumption that ε1 and ε2 have a symmetric distribution, φ12

and φ3 are the average correlation of returns and the average of the asymmetric component

(d1,t−1ε
2
1,t−1)(d2,t−1ε

2
2,t−1).

Bivariate scalar BEKK

A scalar BEKK model is specified as:

yt = H1
tξt

H t =

 h1,t h12,t

h12,t h2,t


where

h1,t = ω1+αy2
1,t−1+βh1,t−1, h2,t = ω2+αy2

2,t−1+βh2,t−1, h12,t = ω12+αy2
1,t−1y

2
2,t−1+βh12,t−1

Bivariate scalar BEKK with Variance Targeting

When variance targeting is introduced, the entries ofH t in the bivariate scalar BEKK model

should be changed to

h1,t = φ1(1− α2
1 − β2

1) + α2
1y

2
1,t−1 + β2

1h1,t−1

h2,t = φ2(1− α2
2 − β2

2) + α2
2y

2
2,t−1 + β2

2h2,t−1

h12,t = φ12(1− α1α2 − β1β2) + α1α2y
2
1,t−1y

2
2,t−1 + β1β2h12,t−1

where

φi =
1

T

T∑
t=1

y2
i,t, i ∈ {1, 2}, φ12 =

1

T

T∑
t=1

y1,ty2,t

Orthogonal GARCH with ARCH Estimates of Components

The conditional covariance matrix in the Orthogonoal GARCH model is constructed as

H t =

 h1,t ω12 · h1,t

ω12 · h1,t ω2
12 · h1,t + h̃2,t


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where h1,t and h̃2,t are extracted from two univariate GARCH estimations: one for y1,t and

one for y2,t with y1,t includes as a regressor in the mean equation:

y1,t =
√
h1,tεt,

h1,t = ω1 + α1y
2
1,t−1 + β1h1,t−1

and

y2,t = ω12 · y1,t +

√
h̃2,tεt,

h̃2,t = ω2 + α2y
2
2,t−1 + β1h̃2,t−1
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Appendix B: Calculation of λm,t in the Combination estimator
First, two performance metrics are calculated, namely the average portfolio return of the

portfolio µ̂m,t and its variance σ̂m,t as follows:

µ̂m,t =
1

t− 1

t∑
k=2

δt−kπmk , σ̂m,t =
1

t− 1

t∑
k=2

δt−k(πmk − µ̂m,t)2 (38)

where πmk is the portfolio return at time k = 1, . . . , t for model m = 1, . . . ,M defined as in

Equation 4 and δ is a discount parameter, as introduced by Stock and Watson (2004).

Then, λm,t is calculated as follows, where η is a scaling parameter that gives more weight

to portfolios with a higher ratio of µ̂m,t to σ̂m,t:

λm,t =
(µ̂m,t/σ̂m,t)

η∑M
m=1(µ̂m,t/σ̂m,t)η

(39)
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Appendix C: Specification of state-space matrices for the Kalman

Filter
Let β̃i,t and f̃ t be the transformed factor loadings and factor returns that are used in the

Kalman Filter.

For the Random Walk, the transformed matrices are specified as follows, where In is the

regular n× n identity matrix:

β̃i,t = βi,t, f̃ t = f t, F = I3, S = I3 (40)

For the Learning model, the transformed matrices are specified as follows, where F i
1,− =

1− F i
1:

β̃i,t =



Bi
1

Bi
2

Bi
3

βit,1

βit,2

βit,3


,F =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

F i
1,− 0 0 F i

1 0 0

0 F i
1,− 0 0 F i

1 0

0 0 F i
1,− 0 0 F i

1


,S =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


,f ′t =



0

0

0

f it,1

f it,2

f it,3


(41)

For the Learning model, the transformed matrices are specified as follows, where F i
j,− =

1− F i
j :

β̃i,t =



Bi
1

Bi
2

Bi
3

βit,1

βit,2

βit,3


,F =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

F i
1,− 0 0 F i

1 0 0

0 F i
2,− 0 0 F i

2 0

0 0 F i
3,− 0 0 F i

3


,S =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


,f ′t =



0

0

0

f it,1

f it,2

f it,3


(42)
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Appendix D: Exact initial Kalman Filter
In this method, β1 and P 1 are initialised with diffuse priors. This method is based

around the decomposition of the initial state vector, β1 mean square error matrix P t|t−1 and

the covariance matrix of the prediction error, ∆t:

β1 = Aδ +R0u0, u0 ∼ N(0,Σu) (43)

P t|t−1 = κP∞,t|t−1 + P ∗,t|t−1 +O(κ−1), ∆t|t−1 = κ∆∞,t|t−1 + ∆∗,t|t−1 +O(κ−1) (44)

where Σu is treated as known, certain restrictions hold for A and R0, δ ∼ N(0, κI), P∞,t|t−1

and P ∗,t|t−1 do not depend on κ and κ → ∞. Koopman (1997) show that the influence of

P∞,t|t−1 disappears after d iterations and derives the value for d for some state-space models.

The value of d for the models described in Equations 16 - 18 can be determined analytically,

but doing so is out of the scope of this research. In addition, knowing the exact value for d

is not necessary, since Koopman and Durbin (2003) shows that after d iterations, the exact

initial state filtering equations given below collapse into the regular updating equations of

the Kalman Filter given by Equations (35) - (36):

βi,t+1|t = Fβt|t +K∞,tvt (45)

P∞,t+1|t = FP∞,t|tL
′
∞,t, P ∗,t+1|t = FP ∗,t|tL

′
∞,t −K∞,t∆∞,t|t−1K

′
∞,t + SΣuiS

′ (46)

where

K∞,t = FP ∗,t|tf
′
t∆
−1
∞,t|t−1, K∗,t = (FP ∗,t|tf

′
t +K∞,t∆∗,t)∆

−1
∞,t

vi,t = yi,t − f ′tβi,t|t−1, L∞,t = F −K∞,tf t

∆∞,t = f tP∞,t|tf
′
t, ∆∗,t = f tP ∗,t|tf t + hi,t

(47)

with initialisations x1 = δA, P∞,1 = I3 and P ∗,1 = 0.
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Appendix E: Complete list of tickers used

Figure E1: Overview of the assets that are used in this research. The column for Government Bonds contains

DataStream RICs and the other columns contain Bloomberg Tickers.
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Appendix F: Sample correlation matrix in multi-variate setting

Figure F1: Sample correlations between all indices
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Appendix G: Correlations from the ADCC model in the bivariate

case

Figure G1: Time-series plot of the S&P 500, Dow Jones Index and the correlation estimated by the ADCC model.
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Appendix H: Volatility ratio scatter plots

Figure H1: Scatter plots of volatility ratios for all draws, k = 1, . . . , 1000 of µ for the Scalar BEKK

(SBEKK), Diagonal BEKK (DBEKK), DCC, Asymmetric DCC (ADCC), Dynamic Equicorrelation

(DECO), Dynamic Factor GARCH (DFGARCH) and Combination (Comb) models.
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Appendix I: Weights for other asset classes

(a) Currencies: U.S. Dollar Index (b) Real Estate: Global Property Index

(c) Commodities: Precious Metals Index (d) Alternative Assets: Private Equity Index

Figure I1: These figures present the weights given to particular assets by the SBEKK and DF-

GARCH models.


