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Abstract

A new approach to evaluate different conditional variance information specifications is presented by
Engle and Colacito (2006) using an economic loss function. They choose portfolio weights according

to the popular minimum variance criterion (see Markowitz (1952)). They test for relative
performance of different covariance specifications based on the work of Diebold and Mariano. To

extend this research, we look at an alternative weighting criterion which minimizes expected
shortfall instead of portfolio variance. We repeat the same tests with the alternative weights and

find that for both methods the Diagonal BEKK conditional covariance specification performs best.



1 Introduction

Covariance matrix forecasts are an important tool in financial risk- and portfolio management. Covari-
ance estimates are used to construct portfolio weights to optimally allocate capital over different assets.
Today there is a wide variety of time series models for covariance matrices. The most commonly used
conditional variance models are GARCH specifications. But explicit comparisons between these models
have been hindered by the wide variety of metrics to use in forming the comparisons. Most conditional
volatility comparisons just consider the mean squared error between future realized volatility and model
forecasts. However, because the realized volatility has a skewed distribution, the mean is only one way
to measure the centre. The mean is also only a statistical measure without an economic meaning.

There have been several approaches to develop economic loss functions in the univariate case. West
and Cho (1995) used a mean variance utility maximizer choose between a risky and a riskless asset
and argued that the best model would be the one with the highest utility for its investor. Engle et al.
(1996) let investors use different volatility models to price options and see which strategy ends up with
positive profits. By taking long/ short positions on strategies with higher/ lower volatilities, over a
long period the best volatility forecast should take money from the inferior ones.

In the classical asset allocation framework, investors aim to choose portfolio weights which minimize
variance subject to a required return constraint. Different volatility and return forecasts will lead to
different weights which result in different portfolios. Low portfolio returns could be the result of failure
of the volatility or the return forecast, so it is important to distinguish between these cases. Because
it is impossible to know the true expected returns, we are left with the question of how to compare
covariance matrices. Elton and Gruber (1973) examined the problem of comparing the effectiveness
of different static covariance matrices in asset allocation. They were the first to use ex-post means in
the comparison. Subsequently Cumby et al. (1994) and Fleming et al. (2001) followed this direction.
Because expected returns are not the same as realized mean returns, this method does not avoid the
problem.

This paper is a natural extension to univariate forecast evaluation. We look at an asset allocation
perspective to measure the value of covariance information introduced by Engle and Colacito (2006).
They have shown that correctly specified covariance matrices lead to minimization of realized volatility,
for any vector of expected returns. The increase in required return that could be achieved for a fixed
volatility level will be used to measure the value of correct covariance information. This is an economic
value expressed in normalized volatility ratios used to compare different covariace model specifications.
Also, tests based on the work of Diebold and Mariano (2002) are used for examining the relative per-
formance of covariance matrices. In these tests, the difference in squared excess returns is used to test
the equality of two models. A case study using time series data of two financial assets is performed to
estimate the models with and apply the proposed tests to.

We find that the Diagonal BEKK model specification scores best at both the Diebold and Mariano Tests
and the volatility ratios. The difference in volatility ratio between the Diagonal BEKK specification
and an unconditional constant volatility model shows that for these assets a 4.7 higher required return
could have been achieved using this model specification. According to the DM tests, the Diagonal
BEKK model outperforms almost all models significantly.

The mean variance approach for asset allocation is only one way to construct portfolio weights. An-
other increasingly popular optimization criterion for weights is Value at Risk and Conditional Value at
Risk (Powell and Allen (2009)). CVaR, also called Mean Excess Loss, Mean Shortfall, or Tail VaR, is
considered to be a more consistent measure of risk than VaR (Rockafellar et al. (2000)). As a matter
of fact, optimizing weights for CVaR has attractive mathematical features (Rockafellar et al. (2000)),
in terms of convexity. Rockafellar et al. (2000) show how the optimization for CVaR can be formulated
as a linear optimization problem. To extend the research of Engle and Colacito (2006) we implement
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this formulation to construct an alternative set of portfolio weights for all models. The aim of this
extension is to examine the value of correct covariance information in a CVaR optimization context.
Using the new portfolio weights we gain new in sample portfolio returns. These returns are then used
to perform the same comparison tests. We then compare and interpret the new test results with the
results of the original asset allocation framework.

We see that for the alternative weights, again the Diagonal BEKK specification outperforms the other
models when looking at the volatility ratios. The Diagonal BEKK also performs better than the other
models according to the Diebold and Mariano test. However, these differeces do not seem to be signif-
icant.

This paper is organized as follows. Section 2 contains the techniques and models we use to do our
research with. We analyze two aspects of multivariate systems. First, we provide a utility and ex-
pected return-free framework to assess the importance of volatility and correlation timing. Engle and
Colacito (2006) have done this by developing a metric which gives an economic value to correct covari-
ance information. Secondly, they offer a comparison between the relative performance of alternative
methods of dynamic covariance modeling. Section 3 describes the data sets that are used for empirical
analysis. In section 4, the results of our analysis are displayed and interpreted. Section 5 extends our
research by looking at an alternative weighting criterion and compares the results acquired by these
new weights with the results of the weights which resulted from the original asset allocation problem.
Finally we conclude our research in section 6.

2 Methodology

2.1 Asset Allocation Problem

For the modelling of the different conditional variance models, we define the asset returns ri,t as
described in (1). Here ri,t denotes the log return of asset i on time t. We use settlement price data to
compute the log returns of assets in the following way:

ri,t = ln(Pi,t/Pi,t−1) (1)

We formulate the variance minimization problem subject to a required return in the following way:

minwt w′tHtwt

subject to w′tµ = µ0
(2)

Let n denote the number of different assets to allocate our capital to, excluding the risk free asset. Here
wt is the n× 1 vector of portfolio weights for time t chosen at time t− 1, Ht is the n× n conditional
covariance matrix of a vector of excess returns for time t. Here, µ = [µSP ;µDOW ] is the assumed vector
of excess returns with respect to the risk-free asset, and µ0 > 0 is the required return. The solution to
the optimization problem is

wt =
H−1t µ

µ′H−1t µ
µ0 (3)

The derivation of the expression in (3) can be found in the appendix section 8.1. The elements of the
weight vector wt = (w1,t, . . . , wn,t)

′, where weight wi,t is the share on asset i at time t, generally do not
add up to 1. This means that we denote 1−

∑n
i=1wi,t as the share in a risk-free asset.

2



2.2 Estimators

This paper focuses on four conditional covariance models. We look at the Orthogonal GARCH, Di-
agonal BEKK, DCC and Asymmetric DCC volatility models. Orthogonal generalized autoregressive
conditional heteroscedasticity (GARCH) (Alexander (2000)) models are a simple approach for esti-
mating multivariate models. This procedure relies on the construction of unconditionally uncorrelated
linear combinations of the series of returns. First, a univariate GARCH model is estimated for the first
asset (SP500). Then a second univariate GARCH model is estimated for the second asset (Dow), but
with the returns of the first asset (SP500) taken as a regressor in the mean specification.

Then we can define the conditional covariance estimates Ht as follows.

Ht =

[
h1,t ω1h1,t
ω1h1,t ω2

12h1,t + h̃2,t.

]
(4)

Here h1,t and h̃2,t are the conditional covariance series of the two GARCH models, ω1 is the intercept
of the first variance specification and ω12 is the coefficient of the SP500 return regressor in the mean
specification of the second GARCH model.

We also estimate the BEKK representation as discussed by Engle and Kroner (1995) and Engle (2002).
This model can provide the constraint that the long-run covariance matrix is the sample covariance
matrix. The first order case of this model can be written as described in (5). In this paper we consider
a special case where A and B are diagonal matrices. We refer to this model as the Diagonal Bekk
model.

Ht = Ω + A(rt−1r
′
t−1)A

′ + BHt−1B
′. (5)

Furthermore we look at the DCC model. This is a multivariate GARCH model that is particularly
convenient for big systems. This method first estimates volatility’s and standard deviations for each
asset. Then it estimates covariances between these using a ML criterion and one of several models for
the correlations.

yt = H
1/2
t ξt (6)

Ht =

[
h1,t ρt

√
h1,th2,t

ρt
√
h1,th2,t h2,t

]
, (7)

where
h1,t = ω1 + α1y

2
1,t−1 + β1h1.t−1, (8)

and

h2,t = ω2 + α2y
2
2,t−1 + β2h2.t−1, (9)

Besides the standard DCC model with mean reversion (DCC-MR) this paper also uses asymmetric
DCC (Asy-DCC) introduced by Cappiello et al. (2006). Asy-DCC contains an additional term that
allows correlation to increase more when both returns are falling than when they are both rising. Here
the conditional variance terms contain additional dummie terms.

h1,t = ω1 + α1y
2
1,t−1 + β1h1.t−1 + γ1d1,t−1y

2
1,t−1, (10)

and

h2,t = ω2 + α2y
2
2,t−1 + β1h2.t−1γ2d2,t−1y

2
2,t−1, (11)

Lastly, we look at a constant volatility model. Here we model Ht as the sample covariance matrix of
the return data.

Ht = ΣSP,DOW = Cov(rSP , rDOW ) (12)
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Note that the two expressions on the right side of (12) have no subscript t and therefore it is an un-
conditional variance model.

2.3 Tests

To test the equality of two models we propose a test based on the work of Diebold and Mariano (2002).
For two different time series of covariance matrices {Hj

t}2j=1, a set {µk}Kk=1 of hypothesized vectors of

expected returns divided by the required excess return µ0 and portfolio weights wj,k
t we can denote

portfolio return by
πj,kt = (wj,k

t )′(rt − r̄), (13)

We can now construct the difference in squared return from the first and second portfolio as follows

ukt = (π1,kt )2 − (π2,kt )2, t = 1 , . . . , T. (14)

Dividing u by its standard deviation improves the efficiency of the mean estimation. This results in

vkt = ukt [2(µk ′(H1
t )
−1µk)(µk ′(H2

t )
−1µk)]1/2. (15)

We can test whether covariance methods 1 and 2 are equal by doing a joint test for all k. Define

Ut = (u1t , . . . , u
k
t )
′ (16)

and
Vt = (v1t , . . . , v

k
t )′; (17)

then using GMM with a Newey-West vector Heteroscedasticity and Autocorrelation Consistent (HAC)
covariance matrix to estimate

Ut = βuι+ εu,t (18)

and
Vt = βvι+ εv,t (19)

The null of this test is H0 : βu and βv = 0. This null hypothesis states that there is no difference
between the models. The alternative hypothesis states that the model in the row is better than the
one in the column.

We do not analyze the results of all vectors of µ, instead we look at the expected return vector that
comes closest to the true unconditional averages of stocks and bonds in the sample that we consider. To
choose the expected return vector we look at the observed ratio of mean returns, which is 9.43

7.53 = 1.2520
(using our sample statistics in table 1). The [µSP ;µDOW ] vector that comes closest to this ratio is
[0.59;0.81]. The bottom panel reports the results of the joint Diebold-Mariano test. In this test all of
the assumed vectors of expected returns are taken into account. Just like with the univariate test; a
positive number means that the row is better than the column.

2.4 Volatility ratios

After we have estimated the coefficients of the models we can estimate covariance matrices and use them
to construct optimal weights according using (3). Having estimated these weights, we can calculate the
portfolio returns according to (13). Engle and Colacito (2006) show that for a portfolio constructed to
optimize (2) with standard deviation σ∗t , and for an arbitrary portfolio with standard deviation σt, the
following inequality holds:

E[
1

T

T∑
t=1

(σ∗t )
2] ≤ E[

1

T

T∑
t=1

(σt)
2] (20)
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Therefore, (20) offers a strategy to compare the covariance matrices Ht based on the idea of choosing
covariance estimates that minimize portfolio variance. By computing the standard deviations of these
πj,kt ’s we can therefore compare the resulting volatility’s of the different models. The lowest standard
deviation will be normalized to 100.
Let J denote the number of different models we consider in our analysis. Then the volatility ratio’s
VRi,k can be expressed as in (21).

VRi,k =
σ(πi,k)

min[σ(π1,k), . . . , σ(πJ,k)]
(21)

Note that the πi,k are the portfolio return vectors as defined in (13). Here VRi,k denotes the volatility
ratio of model i and for the k’th expected return vector.

3 Data

To estimate the proposed models described in section 2 we use price data from Yahoo! finance for
SP500 and Dow Jones Industrials indices. The samples of both time series range from 2/4/1993 to
7/22/2003. Table 1 reports some summary statistics of the log returns.

Table 1: Sample Statistics (SP500 and Dow)

SP500 Dow Jones

Mean 7.53 9.43
Variance 1.25 1.20
Kurtosis 3.47 4.31
Skewness -0.11 -0.26
Correlation 0.939

Note that the mean returns have been annualized

The sample mean and standard deviation seem similar, and the average correlation is high. Figure
1 shows the graphs of the time series of these assets. We standardize both time series with respect
to their starting values at time 2/4/1993 to make them visually more comparable. The steep drop in
1998 was caused by frantic selling which pounded Wall Street Monday, which sent the Dow industrials
512 points lower. We can link the drop in prices between 2001 and 2002 to the terrorist attack on the
World Trade Centre on 9/11. We can also see the stock market crash in 2002.
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Figure 1: SP500 Futures and Dow Jones Index

Figure 2 displays the dynamic correlations estimated using the Diagonal BEKK model. In figure 2 we
can again see the high correlation between the two time series. Engle and Colacito (2006) show that
highly correlated assets are interesting in this analysis because they can demonstrate bigger differences
in efficiency between conditional and unconditional estimators.
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Figure 2: Dynamic correlations computed with the Diagonal BEKK model

4 Results

Table 2 displays the estimated parameters of the different models. We can see that the variance
parameters of the Orthogonal GARCH and DCC-MR are very close to being equal.
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Table 2: Parameter Estimates (SP500 and Dow)

S&P500 variance parameters Dow Jones variance parameters Correlation parameters

Models ω1 α1 β1 γ1 ω2 α2 β2 γ2 ω12 θ1 θ2 θ3

Diagonal BEKK 0.222 0.972 0.227 0.971
(0.020) (0.005) (0.023) (0.006)

Orthogonal GARCH 0.005 0.068 0.931 0.003 0.092 0.887 0.952
(0.001) (0.006) (0.006) (0.001) (0.007) (0.010) (0.006)

DCC-MR 0.005 0.067 0.931 0.009 0.084 0.912 0.042 0.954
(0.003) (0.016) (0.015) (0.004) (0.019) (0.017) (0.008) (0.011)

Asy-DCC 0.012 0.002 0.923 0.138 0.016 0.018 0.913 0.119
(0.004) (0.005) (0.018) (0.032) (0.005) (0.009) (0.017) (0.030) (0.030) (0.017) (0.035)

.

The numbers in parentheses are standard errors.

After estimating the parameters of the models, we made forecasts Ht of conditional covariance matrices.
We use these volatility forecasts to construct minimum variance portfolios and calculate the portfo-
lio returns. Taking the standard deviations of these return vectors and normalizing for the smallest
standard deviation results in the volatility ratios in table 3.

Table 3: Comparison of Volatilities (SP500 and Dow)

µSP µDOW Diagonal BEKK DCC-MR Orthogonal GARCH Asy-DCC Constant

1.00 0 100.540 101.644 100.944 101.015 100.000
0.99 0.16 100.356 101.364 100.358 100.537 100.000
0.95 0.31 100.319 101.143 100.000 100.375 100.684
0.89 0.45 100.049 100.567 100.000 100.492 102.516
0.81 0.59 100.000 100.405 101.757 100.972 105.937
0.71 0.71 100.000 100.294 101.189 100.195 100.046
0.59 0.81 100.000 100.633 100.829 100.406 104.770
0.45 0.89 100.000 100.168 101.957 100.504 104.969
0.31 0.95 100.000 100.467 102.354 101.273 103.774
0.16 0.99 100.000 100.672 102.515 101.635 102.806
0 1 100.000 100.815 102.522 101.779 102.087

The volatility ratios in table 3 do not vary much between the different conditional variance estimators.
A number like 102.516 for the constant model and µ = [.89, .45]′ can be interpreted as a 2.516% higher
required return than might have been required had we known the true covariance matrix. The Diagonal
BEKK specification usually performs best. We can see that the constant model produces the highest
volatility ratios, indicating that higher returns could be realized using conditional variance models. The
Diagonal BEKK also seems to perform best for the expected returns that are most likely to be the true
ones.
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Table 4: Diebold and Mariano Test (SP500 and Dow)

Diagonal BEKK DCC-MR Orthogonal GARCH Asy-DCC Constant

µ = [.59, .81]
Diagonal BEKK 2.291 2.481 1.506 4.302

(-1.599) (2.784) (1.207) (3.821)
DCC-MR -2.291 0.792 0.192 4.133

(-1.599) (0.336) (-0.465) (3.250)
Orthogonal GARCH -2.481 -0.792 -0.784 3.417

(-2.784) (-0.336) (-0.919) (3.132)
Asy-DCC -1.506 -0.192 0.784 4.238

(-1.207) (0.465) (0.919) (3.866)
Constant -4.302 -4.133 -3.417 -4.238

(-3.821) (-3.250) (-3.132) (-3.866)
Joint test

Diagonal BEKK 3.038 2.341 2.081 2.376
DCC-MR -3.038 0.199 0.759 1.962
Orthogonal GARCH -2.341 -0.199 -0.936 4.677
Asy-DCC -2.081 -0.759 0.936 1.897
Constant -2.376 -1.962 -4.677 -1.897

The top panel of table 4 displays the t-values of the univariate Diebold-Mariano test. Here we use the expected return
vector µ = [0.59; 0.81]. The numbers in parentheses refer to the unweighted version of the test. The bottom panel reports
the results of the joint Diebold-Mariano test. Positive numbers indicate that the model in the row outperforms the model
in the column.

We can see from the t-values of the joint tests in table 4 that the Diagonal BEKK specification outper-
forms all other models at a 5% significance level. The negative signs and magnitude of the t-statistics of
the Diagonal BEKK column provide evidence for the model’s good performance. These results confirm
the findings of the volatility ratios found in table 3. The two different DCC specifications do not seem
to be significantly different. The large negative t-values in the rows of the constant model support the
findings of the volatility ratio performance of the constant model in table 3 as well.

5 Extension

Besides variance minimization, another popular optimization criterion is expected shortfall. Expected
shortfall is a risk measure which is defined as the average of all losses which are greater or equal than
VaR, in other words the average loss in the worst (1 − β)% cases, where β is the confidence level.
Expected shortfall is also called Conditional Value at Risk (CVaR).

ESβt = E[rt|rt < V aRβt ] (22)

To extend Engle and Colacito (2006) we look at how the results from minimizing expected shortfall
compare to the results obtained by minimizing variance. To optimize Conditional Value at Risk we use
a method proposed by Rockafellar et al. (2000). They show that expected shortfall minimization has
attractive mathematical features compared to for example minimizing Value at Risk. Optimizing for
Conditional Value at Risk is a convex problem, which is useful for optimization (Boyd and Vandenberghe
(2004)).

The optimal weights are approximated using Monte Carlo simulated random return series. For each
time t we simulate Q random return vectors r∗t,q. Here r∗t,q is q’th simulated random return vector for
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time t.
r∗t,q = (r∗1,t,q, . . . , r

∗
n,t,q) t = 1, . . . , T and q = 1, . . . , Q (23)

For the generation of random elements in r∗t,q we use Monte Carlo simulation. Let hi,t denote the
conditional variance of asset i ∈ {1, 2} at time t. Then by generating random normal shocks ε∗i,t,q we
can generate the q’th random return at time t of asset i as follows:

r∗i,t,q =
√
hi,tε

∗
i,t,q (24)

After we have simulated Q random return vectors for time t, we use them in the linear optimization
problem presented by Rockafellar et al. (2000) in (25) to gain the optimal weights for time t. We solve
(25) for each time t to find the optimal weights for time t.

minimize(αt,wt) αt + 1
Q(1−β)

∑Q
q=1 ut,q

subject to ut,q ≥ 0 q = 1, . . . , Q
wT
t r∗t,q + α+ ut,q ≥ 0 q = 1, . . . , Q

wi,t ≥ 0 i = 1, . . . , n∑n
i=1wi,t = 1

wT
t yk ≥ µ0

(25)

Here the decision vector wt represents a portfolio of financial instruments in the sense that wt =
(w1,t, . . . , wn,t)

′, with wi,t being the position in instrument i at time t. Here αt is the unconditional
Value at Risk of the portfolio, and β is the confidence level for which the Conditional Value at Risk
will be determined. ut,q is constructed as an auxiliary variable. Q is the number of simulated return
vectors used for the simulation at time t. The computation of the optimal weights at time t is time
consuming, and our data set consists of more than 2000 time observations. Besides that, we estimate
all weights for all times t for 5 different models. That’s why, for computational purposes, I set Q equal
to 50. Furthermore we denote µ0 as the required return in the same way as described earlier in this
paper. The third restriction avoids short positions in all assets. The fourth restriction makes sure all
capital is invested. This is a small difference compared to the original asset allocation problem, where
the excess capital was invested in a riskless asset. The last restriction makes sure that the resulting
portfolio return meets the required return µ0. The optimization problem described above is a linear
optimization problem which can be solved for (αt,wt). After we have constructed the new weights we
construct volatility ratios to compare the relative performance of the CVaR method with the models
of the paper. This is done the same way as explained in section 2.4.

Table 5: Comparison of Volatilities (SP500 and Dow)

µ0 Diagonal BEKK DCC-MR Orthogonal GARCH Asy-DCC Constant

1 100.000 100.164 100.191 100.173 100.171

If we look at the results of the new volatility ratio’s constructed by weights which minimize expected
shortfall, we see again that the Diagonal BEKK specification scores best. The Orthogonal GARCH
model performs worst, and is shortly followed by the Asymmetric DCC model. The new weights are
not optimized for volatility minimization, so perhaps it would be more interesting to construct new
ratios which examine realized expected shortfall instead of return volatility’s. If we define ES∗t as the
resulting expected shortfall of the optimal solution of 25, and ESt as the resulting expected shortfall
of an arbitrary portfolio, then the following inequality holds:

E[
1

T

T∑
t=1

ES∗t ] ≤ E[
1

T

T∑
t=1

ESt] (26)

Therefore, 26 offers a strategy to compare the covariance matrices Ht based on their resulting expected
shortfall values. If we take the mean of the realized expected shortfalls at all times t and again normalize
the lowest expected shortfall to 100, we get the results displayed in table 6.
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Table 6: Comparison of Expected shortfall (SP500 and Dow)

Diagonal BEKK DCC-MR Orthogonal GARCH Asy-DCC Constant

100.343 100.983 102.971 100.000 107.056

At this relative performance comparison an interesting finding is that the Asymmetric DCC model out-
performs the Diagonal BEKK specification. This suggests that for the purpose of minimizing shortfall,
the Asy-DCC model would be most suitable. Again, we see that the constant volatility model performs
worst.

We run the same univariate Diebold & Mariano test again and see in table 7 that the Diagonal BEKK
outperforms the other models, but not at a significant level. As a matter of fact, all models do not
significantly outperform or are not outperformed by any other model.

Table 7: Diebold and Mariano Test(SP500 and Dow) for CVaR weights

Diagonal BEKK DCC-MR Orthogonal GARCH Asy-DCC Constant

Diagonal BEKK 0.628 0.492 0.652 0.581
DCC-MR -0.628 0.167 0.390 -0.327
Orthogonal GARCH -0.492 -0.167 0.153 -0.426
Asy-DCC -0.652 -0.390 -0.153 -0.446
Constant -0.581 0.327 0.426 0.446

6 Conclusion

In this paper we showed an innovative approach to evaluate correct covariance information in a mul-
tivariate framework. Portfolio weights were constructed using a variance minimization criterion. We
looked at different model specifications to estimate Ht series of condition covariance matrices. We
evaluated the relative performance of the models by constructing volatility ratios of the portfolio re-
turns. These ratio’s can be interpreted as the additional return an informed portfolio manager could
have achieved using correct covariance information. The differences in these ratio’s are not big; they
differ on average just a few basis points in annualized terms. However, we do see that the models using
time-varying information perform better than the models using constant estimators. The Diagonal
BEKK scored best for most of the expected return combinations. This suggests that the inclusion of
the diagonal structure conditions for the A and B in (5) are valuable.

Furthermore Diebold-Mariano tests were performed to test the equality of the different model speci-
fications. We performed the univariate test using the expected returns vector which comes closest to
the true return vector. The results for these tests showed that Diagonal BEKK performs better than
the other estimators, but the difference is not always significant. At the joint test, which included all
expected return specifications, the Diagonal BEKK model significantly outperformed all other model
specifications.

To extend Engle and Colacito (2006) we examined how choosing a different weighting criterion would
affect the ratio and test results. We alternatively computed our portfolio weights according to an
expected shortfall minimization criterion. Again we observed the good performance of the Diagonal
BEKK model.

Because variance minimization and expected shortfall minimization are such popular weighing cri-
teria, knowing that the Diagonal BEKK performs so well is valuable. On the other hand, in this paper
we limit ourselves to a combination of highly correlated assets. Engle and Colacito (2006) showed that
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for less correlated assets the Asymmetric DCC model showed the best results. So we must be careful
not to draw generalized conclusions.

Also, in the expected shortfall extension we restrict ourselves to a normal distribution in the return
shocks. It would be interesting to examine different shock densities like the skewed t distribution.
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8 Appendix

8.1 Derivation solution asset allocation problem

min
wt

w′tHtwt s.t. w′tµ = µ0

Proof: From the Lagrangean
w′

tHtwt

2 − λ1(w′tµ− µ0) we obtain the first order conditions

Htwt − λ1µ = 0,

w′tµ = µ0.

The first condition gives wt = λ1H
−1
t µ. Substituting in the second condition (written as µ′wt = µ0)

gives

λ1 =
1

µ′H−1t µ
µ0

Substituting this in wt = λ1H
−1
t µ produces the expression for the minimum variance portfolio weights

wt =
H−1t µ

µ′H−1t µ
µ0

8.2 Orthogonal GARCH with ARCH Estimates of Components

We start with making a univariate GARCH estimation for y1,t as follows:

y1,t =
√
h1,tεt,

h1,t = ω1 + α1y
2
1,t−1 + β1h1.t−1.

For the second GARCH model we include y2,t as a regressor in the mean specification:

h2,t = ω12 · y1,t +

√
h̃2,tεt,

h̃2, t = ω2 + α2y
2
2,t−1 + β2h̃2,t−1

This leaves us with constructing the conditional covariance matrix as follows:

Ht =

[
h1,t ω1h1,t
ω1h1,t ω2

12h1,t + h̃2,t.

]

8.3 DCC-MR

DCC-MR follows the process:

yt = H
1/2
t ξt

Ht =

[
h1,t ρt

√
h1,th2,t

ρt
√
h1,th2,t h2,t

]
,

where the conditional variances are specified as:

h1,t = ω1 + α1y
2
1,t−1 + β1h1.t−1,

and
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h2,t = ω2 + α2y
2
2,t−1 + β2h2.t−1,

and ρt = h12,t/
√
h∗1,th

∗
2,t comes from:

h∗1,t = (1− θ1 − θ2) + θ1ε
2
1,t−1 + θ2h

∗
1,t−1,

h∗2,t = (1− θ1 − θ2) + θ1ε
2
2,t−1 + θ2h

∗
2,t−1,

and
h12,t = φ12(1− θ1 − θ2) + θ1ε1,t−1ε2,t−1 + θ2h12,t−1,

with φ12 equal to the average sample correlation of returns. Also, ε1,t = y1,t/
√
h1,t and ε2,t = y2,t/

√
h2,t.

8.4 ASYMMETRIC DCC

Asymmetric DCC follows the following process:

yt = Ht
1/2ξt

Ht =

[
h1,t ρt

√
h1,th2,t

ρt
√
h1,th2,t h2,t

]
,

where the conditional variances are specified as:

h1,t = ω1 + α1y
2
1,t−1 + β1h1.t−1 + γ1d1,t−1y

2
1,t−1,

and

h2,t = ω2 + α2y
2
2,t−1 + β1h2.t−1γ2d2,t−1y

2
2,t−1,

and ρt = h12,t/
√
h∗1,th

∗
2,t comes from:

h∗1,t = (1− θ1 − θ2 −
θ3
2

) + θ1ε
2
1,t−1 + θ2h

∗
1,t−1 + θ3d1,t−1y

2
1,t−1,

h∗2,t = (1− θ1 − θ2 −
θ3
2

) + θ1ε
2
2,t−1 + θ2h

∗
2,t−1 + θ3d2,t−1y

2
2,t−1,

and

h12,t = φ12 · (1− θ1 − θ2)− φ3θ3 + θ1ε1,t−1ε2,t−1 + θ2h12,t−1 + θ3(d1,t−1ε1,t−1)(d2,t−1ε2,t−1),

The variables d1,t and d2,t are dummies for y1,t and y2,t and are 1 when these variables are negative and 0
otherwise. The coefficient θ3

2 relies on the assumption that ε1 and ε2 have a symmetric distribution. The
parameters φ12 and φ3 are the average correlation of returns and the average asymmetric components
(d1,t−1ε1,t−1) and (d2,t−1ε2,t−1), and ε1,t and ε2,t are defined as before.
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