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1 Introduction

The importance of understanding patterns in media behaviour for planning of mar-
keting campaigns is difficult to overestimate. It allows to target desirable audiences
more accurately, avoid reaching the same people more times than companies wish, or
efficiently use multiple advertising channels.

Scientific research offers useful insights into general trends or typical behaviours
in TV watching or Internet browsing (such as Kim, 2002; Liu, 2010 and Mora, 2010).
While valuable for high-level strategies and adjusting marketing plans to general
changes in consumer habits, these methods are not well suited for answering very
detailed questions regarding specific demographic groups and their consumption of
particular TV programs or websites. Such in-detail investigation, based on as up-to-
date data as possible, is often required for a day-to-day marketing planning. Published
research is often too general or based on not the latest data for these needs.

This gap is filled by companies such as Nielsen, which offers tools, allowing its
clients to perform detailed analysis of consumer media consumption adjusted to their
needs. This is possible by utilization of respondent level data. Nielsen collects data on
TV viewing and Internet usage patterns for an extensive set of respondents, along with
very detailed demographic information about them. This data are then preprocessed
and made accessible to the clients in a form, which allows for efficient exploration.

Most important metric of interest for companies is a reach of a TV program/website.
Reach is defined as the percentage of people in certain (sub)population (e.g. males
over 21 years old, or simply whole country population), which has been exposed to
a particular media content. With use of respondent-level data reach is estimated
by filtering a set of respondents belonging to a subpopluation of choice, and than
calculating percentage of them exposed to a TV program/website.

Simply filtering respondents’ level data to obtain insights is not flawless. Firstly, it
offers no statistical verification of differences in reach between subpopulations, which
may lead to perception of some randomly occurring dependencies of reach on other
variables as true ones. Secondly, assessing an impact of multi-channel campaigns re-
quires consumption patterns for all media being available for all respondents. This is
often not the case as gathering such detailed information for every respondent would
not be easy. That is why the Internet and traditional media behaviour are often col-
lected on separate sets of respondents, typically only with a small overlap. Such set of
respondents for which full media consumption is available is too small to be reliable,
especially for very specific subpopulations. At the same time separate datasets for In-
ternet and traditional media do not offer information on full media consumption of all
respondents. To deal with this issue Nielsen performs a data fusion based on linking
respondents by their demographic profiles - e.g. Internet behaviour of one respondent
is assigned to a similar (the same age and gender) person’s TV viewing pattern. Nev-
ertheless, the company experience to-date shows limited effectiveness of this method.
Strong assumption that Internet browsing and TV watching behaviour can be linked
solely on the basis of a person’s demographic profile seems to lower its accuracy. Last
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but not least, storing and sharing with clients respondent-level datasets is becoming
more and more difficult from the technical point of view, due to their increase in size.
As a result, more and more powerful computational infrastructure is required, both
on client’s and Nielsen’s side.

All these challenges motivate the search for an efficient method of representing
media consumption patterns in a way which combines at least some statistical veri-
fication of the dependencies in the data and ease of their distribution among clients
typical for econometric models, with flexibility with which respondent level data can
be used to answer quickly even very specific questions of managers without econo-
metric or statistical knowledge. To our best knowledge no research addressing this
issues directly exists. Literature on recommender systems shows some similarities
to our problem, but developed methods are not designed nor tested for delivering
flexible insights on media reach among different subpopulations. Also, specific to our
case data structure causes difficulties with the use of most of the existing methods.
To address these shortcomings we assess Bayesian networks (Koller and Friedman
(2009)) usefulness for this purpose.

Bayesian networks (BN) are probabilistic graphical models, which allow for effec-
tive representation and inference on joint distributions over a set of random variables.
It is possible by utilizing graphical representation of relationships between random
variables and exploiting conditional independencies between them. They are suc-
cessfully used for a variety of purposes e.g. in bioinformatics (Friedman et al., 2000),
medicine (Uebersax, 2004), image processing (Kolekar and Sengupta, 2015) and many
others. They have also been widely adapted for recommender systems, which often
requires data similar to ours.

Our goal is to create a network containing socio-demographic variables, as well
as media content variables, which we define as ones indicating if a person has been
”reached” by particular TV program or website. Such network can be used as an
efficient inference engine for determining how socio-demographic characteristics or
consumption of some media content influences chances of being exposed to any other
TV program or website included in the model. The complexity of our problem,
especially the fact of dealing with only partially overlapping datasets and a high
number of variables means that existing in the literature solutions to learning Bayesian
networks are inadequate. Also, little has been done so far to establish Bayesian
networks ability to explain media consumption with socio-demographic variables.
Connections between Internet usage and TV viewing are as well a sparsely researched
topic.

In an attempt to fill this gap a new framework for learning the Bayesian net-
works on two, only partially overlapping datasets with a high number of variables
is proposed. In our case one dataset consists of the TV viewing behaviour of some
respondents, and second of Internet browsing behaviour of another set of respondents.
Some subset of overlapping respondents can be found in both. We suggest a step-wise
approach. It uses well-established methods of learning Bayesian networks on a single
dataset, and aims to learn network with variables from both datasets while maximiz-
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ing use of information contained both in an overlapping and non-overlapping parts
of the data. At the same time, we propose a new method, based on earlier research,
but tailored to our problem, to learn a network with high number of variables. We
explore three alternative ways of conducting it. In the process, we also assess the gen-
eral ability of Bayesian networks to explain consumers media consumption with their
socio-demographic characteristics. We note that none of known to us methods can
simultaneously learn model based on two only partially overlapping datasets using
information contained in both overlapping and non-overlapping parts of data, and be
computationally efficient on a dataset with high number of variables.

The thesis is structured as follows - firstly we review existing literature on use of
Bayesian networks for capturing media consumption. Then, we describe data on TV
and online media consumption, provided by Nielsen, which we use for empirical testing
of our framework. In the next chapter we introduce necessary theoretical background
on Bayesian networks, and present our proposed learning framework. Finally, we
partially apply it to the reduced dataset of only most-watched TV programs and
visited websites, to establish some best practices of learning Bayesian networks on
our data and to compare three alternative approaches with which we propose to deal
with high number of variables. Establishing best practices and testing alternative
approaches is necessary taking into consideration limited literature on the topic. Use
of reduced dataset makes it computationally feasible. We continue by presenting
results of the framework application to the full data. We end with a summary of the
findings and suggestions for further research.

2 Literature review

Bayesian networks were employed for representing consumer behaviour in various set-
tings, among them, modelling consumer complaint process (Blodgett and Anderson,
2000), predicting a purchasing behaviour online (Kooti et al., 2016) and in-store (Zuo
et al., 2015), or modelling consumers loyalty towards online retailers (Jaronski et al.,
2001).

They are, however, most widely used for recommender systems, for both web-
sites and viewing content. Näıve Bayes classifiers, which are restricted version of
a Bayesian network, proved to be particularly effective and popular for this task
(Catherine and Cohen, 2016). Recommender systems seek to predict a preference of
an user regarding some item. Such predictions can be based either on the behaviour
of similar users (collaborative filtering) or similarity of items to previously consumed
content (content-based filtering). These approaches are also often combined in hybrid
recommender systems (Adomavicius and Tuzhilin, 2005).

In one of the first applications of Bayesian networks to collaborative filtering they
are shown to outperform several other methods (Breese et al., 1998). For comparison
authors use independently three datasets – EachMovie containing users’ ratings of
films, MS Web composed of visits to various websites and Nielsen television data
of ratings regarding network programs. The last two of them closely resemble ours
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data. They use a variant of Bayesian network, that instead of explicit variables
distributions contains a decision tree in each node, which is not a common solution.
It seems, however, to perform well in this setting. Noteworthy, authors underline not
only accuracy as important advantage of Bayesian networks but also the feasibility of
delivering it to a user – many other collaborative filtering methods (mostly memory
based ones) require making available not only a model but also at least part of the
database. It is not the case for Bayesian networks. While it applies to any statistical
models Bayesian networks seemed at the time to be the best suited one for the task.

Partially building on the previous paper, Heckerman with colleagues (Heckerman
et al., 2000) introduces application of dependency networks (DN) to collaborative
filtering task. DNs are models based on Bayesian networks, but allowing for cycles
in the graph. Being less statistically efficient, which results in lower accuracy, DNs
are less computationally expensive for training and inference. Their effectiveness is
compared to similar variant of Bayesian networks as in (Breese et al., 1998) on three
datasets – two based on websites visits (MS.COM and MSNBC), and one about
whether or not users watched five or more minutes of network TV shows aired during
a two-week period in 1995. The paper discusses as well usefulness of graphical models
as BN or DN for visualization of predictive relationships on an example of internet-use
data paired with demographic variables from Media Metrix.

Computational problems related to training and inference in fully connected net-
works, especially in business practice (Baldi et al., 2003), quickly motivated re-
searchers to switch to restricted versions of Bayesian networks as Näıve Bayes classi-
fiers or Tree-Augmented-Networks (Su and Khoshgoftaar, 2009). Strong restrictions
on structure of a network in these models eliminate almost entirely a need of struc-
ture learning, which is the most complicated learning task. The downside of such
approaches is that discovery of relationships between variables is lost on behalf of an
imposed structure. Also, such models can typically explain a probability of exposure
to only one media content variable at once, which creates a need to learn multiple
separate models, one for each item. These simplified classifiers proved, however, to
be very effective, which lead to their wide usage, such as in (Miyahara and Pazzani,
2000, 2002; Su and Khoshgoftaar, 2006).

The popularity of simplified classifiers does not mean that the usage of more
complex networks has been abandoned. They have been successfully used e.g. to
create hybrid recommender systems (De Campos et al., 2010) by representing both
users and items as nodes in a net or to include time component into prediction (Lee
et al., 2011). All these solutions do not address the main issues we are faced with
- learning a network on only partially overlapping datasets with a high number of
variables.

While the earliest uses of Bayesian networks for recommender systems closely re-
flect the problem we are concerned with, further research moves away from it, which
is to be expected taking into consideration that its goals are different. However, even
early work is insufficient in our case. First of all, it focuses only on evaluation of
predictive accuracy, ignoring statistical validation of fit the distribution with means
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of likelihood evaluation, which is suggested for purpose of domain knowledge dis-
covery (Koller and Friedman, 2009), with which we are also concerned. Secondly,
despite the fact that the usefulness of representing both TV and Web data is tested,
representation of both medias in one network, which is one of ours primary goals,
is not conducted. Also, demographic variables are included in only one case, and
their exploratory power with respect to media consumption is not deeply explored 1.
Last but not least, the size of used datasets is also significantly smaller (the biggest
reaching 1000 items and 41.000 users) in comparison to the dataset we are faced with
(over 10.000 items and 180.000 users). All these shortcomings motivate the need for
further research.

3 Data

The original dataset provided by Nielsen for U.S. households is used as the basis for
this thesis. It consists of two panels of respondents – one with TV viewing behaviour
and second with Internet sites visits. Each time a respondent turns on a TV precise
date, channel, program and watching time is recorded. Each program is classified
into one of 141 categories. Similarly, visits to websites, which are also categorized
into 95 classes, are stored.

For the purpose of the analysis, we use data from the first week of October 2016.
For this period there are around 80.000 respondents in the TV panel, and 180.000
in the Internet panel. Around 20.000 respondents are present in both panels. We
aggregate viewing events to obtain the time spend watching a particular program or
visiting a particular website during this week. The total number of programs aired
during the considered period amounts to about 5000, while the number of sites is
much bigger and is equal to around 100.000. The size of the Internet panel poses a
serious difficulty, even for our proposed framework. However, since top 5.000 websites
are responsible for around 96% time spent online, we decide to use only this subset for
further analysis. Such reduction makes computations feasible. At the same time its
impact on results is, in our opinion, limited. Number of websites kept in the data is
still high enough to assess the effectiveness of the proposed solutons on big datasets.
Also from business point of view all most important sites (ones with highest reach)
are retained in the data.

In our analysis we are interested in reach of media content - percentage of the
people in the population, who have been exposed to a particular TV program or
website. We assume a person has been reached by TV program if she watched it at
least for 2 minutes in the analyzed time period. For a website the threshold is set
to 10 seconds. We note that the data are sparse. Only around 17% of TV programs
and around 2% of websites have reach over 1% (ie. are watched by more then 1% of

1Usefulness of employing Bayesian networks along with other algorithms to model link between
browsing behaviour, and demographic variables has been studied in (Pereira, 2015), with Bayesian
networks reaching competitive results. However, small sample size causes the study to be inconclu-
sive.
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people in the USA). This poses challenges for the analysis, as, despite the fact that
the sample size is big, number of respondents reached by certain TV programs or
websites in some subpopulations can be low.

For each respondent in TV panel, 98 socio-demographic variables are available,
covering a broad range of information on a respondent herself and her household.
For the online panel this number is lower and equals to 34. Several variables are the
same or very similar for both panels, however, differences in their definitions (e.g.
differently specified education ranges) cause that only age and gender can be exactly
matched. Full list of variables can be found in Appendix A. As a result of such data
structure, we obtain, in fact, three datasets. TV data - containing socio-demographic
variables from TV panel and information on each respondent if she has watched or
not listed TV programs. Online dataset - principally similar, but based on the online
panel and with information on visited websites. Finally, for an overlapping set of
respondents present in both panels, we have socio-demographic variables from both
and complete (TV and online) media consumption patterns. Values coding for even
very similar variables is not exactly the same in TV and online panel. Because of
this, in the joint data, we keep variables from both panels, rather than using only
one from a selected dataset. We use all these three datasets in a network’s learning
process.

Respondents have weights assigned to them, expressing part of the population
they are supposed to represent. Weights are adjusted daily and are independent for
both panels. Assigning weights on a daily basis implies that we have more than one
for each respondent. To obtain a single weight for the week-long period, we take an
average of weights for each respondent. For overlapping set of respondents we use
TV panel weights. Respondents are also being included (are ”in tab”) or excluded
from the panels on a daily basis. As our analysis covers the span of a week it happens
that respondent were not included for the whole time. In the analysis we consider
only individuals, which were in tab for at least 4 days. Such restrictions exclude
only several respondents, whose appearance in the panel can be attributed to some
irregularities, and because of it has little to no impact on the results.

4 Methodology

4.1 Bayesian networks

Basic concepts Bayesian networks belong to the family of probabilistic graphical
models, which employs graph representation of probabilistic relationships between
variables to represent knowledge about some domain. We speak about a Bayesian
network if the graph is directed and acyclic (DAG). Such graphs consist of nodes rep-
resenting random variables and arcs which show probabilistic dependencies between
them. Graphs of Bayesian networks can be understood in two strongly equivalent
ways: as a structure providing compact, and factorized representation of a joint dis-
tribution as well as compact representation of conditional independence assumptions
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about a distribution (Koller and Friedman, 2009).
Connections in a graph can be interpreted as follows: connecting random variable

X1 with another one X2 by an arc directed from the first one to the latter is equivalent
to stating that variable X1 “influences” X2. Following that variable X1 is called a
“parent” and variable X2 becomes its “child”. Extending this logic each variable
which can be reached from Xi by the directed path in a graph (a set of arcs) is
treated as its “descendant” (Pearl, 1998). If variables are not connected we assume
they are not directly dependent on each other. They, however, still can influence
each other through other variables. More formally it can be formulated as Markov
property which states that each variable is independent of its nondescendants given
their parents or, equivalently, every random variable depends directly only on its
parents (Korb and Nicolas 2004, section 2.2.4).

To fully represent a joint probability distribution (PDF) we need not only set of
independencies - a graph, but also its parameters. Using Markov property, we can
specify a so-called chain rule (which is based on the Bayes theorem, whence the name
of the networks) (Koller and Friedman, 2009).

P (X = x) =
n∏
i=1

P (Xi = xi|Pa(Xi) = pa(Xi)) =
n∏
i=1

p(xi|pa(Xi)), (1)

where X = (X1, ..., Xn), P (X = x) denotes realization of global probability distribu-
tion, Pa(Xi) stands for vector of parents of variable Xi an pa(Xi) for its realizations.

Chain rule allows to factorize the joint PDF into a set of smaller local PDFs for
each node in the network. Each of them involves only variables associated with a
given node and its parents. Fundamentally any representation of probability distri-
bution can be employed as local PDFs. In the thesis, we focus solely on discrete
data and employ multinomial distributions represented with contingency tables or
conditional probability tables (CPTs). We limit ourselves to use of discrete Bayesian
networks as it is necessary for keeping computations feasible, because learning process
of continuous networks, especially non-Gaussian ones (which would be needful due
to the nature of our data) is far more complex. An example of a simple Bayesian
network can be found in the Figure 1.

Although Bayesian networks are often constructed on the basis of expert’s knowl-
edge about a domain, learning them from data is also possible. Learning process
reflects the dual nature of the BNs and consists of learning network’s parameters
(CPTs) and a structure (DAG).

Parameter learning Learning parameters provided that a structure is known
can be done with maximum-likelihood estimation or within the Bayesian estimation
framework. In both cases central to the parameter learning is the fact that thanks
to assumed independencies and the chain rule we may decompose the global PDF to
local ones, e.g. a likelihood function for a Bayesian network can be decomposed to a
product of likelihoods for individual variables. (Koller and Friedman, 2009).
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Figure 1: Example of a simple Bayesian network with crucial relationships described

In the thesis, we make use of Bayesian estimation as, this is one of techniques,
that allows, thanks to priors, for non-zero probabilities for even zero occurrences of
some sequences in the training data and adaptation of CPDs with new information
available. In the analysis we assume uniform prior on the parameters, strength of
which is typically expressed as an imaginary sample size (iss). Iss symbolizes the
hypothetical number of observations, which are equally divided into all possible states
of combinations of parents and a node variables for each node. For example, if node
A can take values 1 and 2, and has one parent - node B (also binary), there are
4 possible combinations of states. If iss is chosen to be equal to 4, for each state 1
observation is added in the parameter learning process. Details on parameter learning
as well as formal definitions can be found in Appendix B.1.

Structure learning Determining a network structure from data poses a much big-
ger challenge. The problem has been shown to be NP-hard (Chickering, 1996), which
resulted in series of heuristic algorithms being developed. They can be roughly clas-
sified into the constraint-based and score-based approaches with some hybrid ones
developed as well. Constrained-based algorithms attempt to construct a structure
from series of independencies between variables established with the use of statistical
tests, whereas score-based approaches tackle the task as optimization problem con-
ducting a search through structures’ space maximizing network score. In the thesis
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we use tabu algorithm with BIC score as representation of score-based approaches
and fast.IAMB for constrained-based ones. We compare their effectiveness within
our proposed framework. For details on specific algorithms refer to Appendix B.2.

Concluding parts on Bayesian networks learning we note that respondents in our
data have weights assigned to them. In order to adjust for that we implement a trivial
change in formulas used for both parameter learning and scoring. Instead of using
counts of observations we use sum of weights for respective respondents.

Inference Obtaining knowledge on variable distributions from a network requires
conducting inference procedures. Probably the most common inference task per-
formed on Bayesian networks is conditional probability query (CPQ). It allows us to
learn a distribution of variable Xi under some evidence - conditioned on some subset
of the rest of the variables in the network taking specific values. For example knowing
that variable (node) A, in the network in Figure 1, takes value 1 (evidence), we want
to know probability of variable (node) D taking value 0 (event). The problem of in-
ference in a network is in general NP-hard - both exact and approximate (Dagum and
Luby, 1993). Despite that, it often can be dealt with efficiently, especially in a simple
network, or ones with imposed specific structure. In our case, as we deal with large
networks with only some restrictions on their structure, exact inference still proves to
be unfeasible, thus we utilise an approximate one. We employ likelihood weighting
approach being a variant of importance sampling for Bayesian networks. For details
we refer to (Koller and Friedman, 2009).

4.2 Proposed framework

The main aim of this thesis is to obtain a network capturing influence of socio-
demographic variables and consumption of particular media content on probability
of being exposed TV programs or websites. Simplified example of such network can
be found in Figure 2.

Learning such network, considering our data, proves to be not easy. There are
two main problems. First of all, we do not have a single dataset with complete socio-
demographic variables set and TV/online media consumption for all respondents.
Instead, we have two separate panels with only partial overlap in respondents. In
order to obtain a network including both TV and Web behaviour, we might use only
overlapping respondents. However, it seems unreasonable to exclude information
contained in non-overlapping parts of datasets. To overcome this issue we propose to
learn the network structure in steps - firstly learn structures of networks containing
only TV panel and online panel variables, and then combine the structures performing
structure learning on the joint dataset of overlapping respondents, using structures
previously learned on single-datasets as starting points. Parameters of such network
are learned based on joint datasets and then, calibrated using single TV and online
panels, aiming to utilize as much of available information as possible.

Second problem concerns learning the structures itself. Complexity of all men-
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Figure 2: Simplified, artificially created example of desired network.

tioned structure learning algorithms increases drastically with growing number of
variables in a network. Hence, simply learning a structure with over 10.000 or even
5.000 (considering only single dataset) nodes is not feasible.

Typically, such problem is solved by introducing additional ”hidden” nodes and
imposing a specific structure on a network. The idea is based on assumption, that we
can summarize information contained in variables, by a smaller number of artificially
created ”summary” variables. In the next steps only they are used in structure
learning, while the original nodes remain connected to respective summary nodes
permanently. Example of simple structure, based on one presented above, with an
additional ”layer” of summary nodes, can be found in Figure 3.



Figure 3: Simplified, artificially created example of desired network with extra layer of summary nodes.



We unify proposed solutions to both described above problems into one frame-
work, steps of which can be seen in Figure 4. With respect to creating summary
nodes we explore three alternative approaches - one based on categories assigned to
TV programs and websites, one based on matrix factorization, and one based on Hi-
erarchical Bayesian networks approach. More detailed description of each, as well as
details on framework’s steps can be found in following sections.

Figure 4: Schematic representation of the proposed algorithm.

In Nielsen’s experience adding variables representing total media consumption to
the models can be very beneficial for their quality. That is why we propose adding one
additional summary node, regardless of used summary variable creation technique.
Extra variables, which will be referred to as cumulative media consumption nodes
(CC-nodes), are created both for TV and online panels, by summing total time spend,
respectively watching TV or browsing Internet by respondent. We enforce links from
CC-nodes to all TV programs/websites variables. Connections to other nodes are
learned in the same fashion as for other summary nodes. Schematic representation
of a joint network we aim to obtain, with framework steps and alternative addition
of CC-nodes, can be found in Figure 5.



Figure 5: Schematic representation of the final network’s structure along with steps of the proposed algorithm.



4.2.1 Summary variables creation

In the first step, we learn summary variables for TV and Web datasets separately. For
creation of summary nodes only media content variables (TV programs or websites
ones) are used, socio-demographic variables are added later in the process. We explore
three alternative approaches of creating summary variables.

Aggregation based on content categories In the Nielsen database, each TV
program or website is assigned to a category based on its subjects. We propose
to create summary nodes based on this classification. In this setting, each basic
media content node is connected to a node representing its category. A graphic
representation of such structure can be found in Figure 6. Values of these summary
nodes are created as the sum of exposure to all media variables, in a given category and
then discretized, on the basis of deciles. Research shows that it is difficult to indicate
one best approach for conducting the discretization process (Nojavan et al., 2017) in
Bayesian networks. We decide for the decile-based method as it is computationally
inexpensive and turns out to perform well in our setting.

A significant advantage of using content based summary nodes is simplicity of
their creation and thus little time and computational power necessary to perform it.
It also captures a structure, which almost certainly reflects some relationships in the
data. It does not force us to infer it by ourselves. Last but not least, the structure
created in such way is relatively stable over time. It allows for easier extension of the
proposed framework by a time component. Naturally the simplicity of this method
has its flaws. It assumes that reach of a particular TV program or a website is
independent from other variables if a reach of its content category is known. It is
unlikely to be completely true.

Figure 6: Example of network with categories as summary nodes.

Matrix factorization Output of various dimension reduction techniques has been
previously used in Bayesian networks. Most often employed technique remains Pric-
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ipal Component Analysis (PCA). It has been used mainly for image processing ap-
plications (Abbasnejad and Teney, 2015; Park and Aggarwal, 2004), but it was also
employed in other contexts, often with good results (Sturlaugson and Sheppard, 2013).
Nevertheless, it is vital to note, that in our context the PCAs variance reduction ratio
may be limited, due to sparsity and size of the data. It will leave too many nodes, even
though the assumption of Independence and thus no connections between principal
components significantly restrains the search space in a structure learning task.

To address these issues we choose to use matrix factorization instead of PCA. It
is a technique developed mainly for recommender systems. Its aim is to decompose
ratings matrix Rm×n, which contains, in our case, time spend by an n-th user being
exposed to m-the TV program/website. As a result of matrix factorization such
matrix is represented as a product of two lower dimensional ones - Pk×m and Qk×n.
First one may be interpreted as a TV programs/websites hidden ”qualities” matrix,
second as a grid of consumer ”attitudes” towards them. A number of latent features
k is typically subject to a parameter tunning. Matrix factorization has proved to
perform very well in numerous studies (Bell and Koren, 2007; Dror et al., 2012) and
it can be a very computationally efficient technique. We believe that being designed
for data closely resembling ours, it is the best suited for the task. It is useful also in
the next proposed approach to dimensionality reduction. For details on the method
itself, refer to Appendix C.1.

We use extracted latent features in the Q matrix as summary variables. We dis-
cretized their values. In a network structure we impose direct links from all summary
nodes to all TV programs/websites variables. An example of such structure can be
found in Figure 7.

Figure 7: Example of network with 2 latent features identified by matrix factorization
as summary nodes.

Matrix factorization at least partially overcomes shortcomings of the previous ap-
proach. It allows for more complex relationships between TV programs or websites
and attempts to capture deeper patterns in the data. Nevertheless, we have to ac-
knowledge the downsides of this method. Dense structure of network connections
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limits number of latent nodes and their cardinality, as size of a conditional probabil-
ity table (CPT) of a node in a network representing its local probability distribution
(PDF) increases rapidly with number of parents and their cardinality. Assuming all
parents and a variable itself can take 2 values, CPT for variable with k parents will
have 2k+1 cells.

Hierarchical latent class Bayesian Networks Hierarchical latent class models
have been developed extensively in bioinformatics to deal with highly dimensional
genetic data. Examples of proposed algorithms are Daly et al. (2001); Kimmel and
Shamir (2005); Greenspan and Geiger (2004); Gyftodimos and Flach (2004); Mourad
et al. (2011). The idea is based on creating layers of latent nodes summarizing 2 or
more nodes from the lower layer. Typically observed variables are treated as first layer.
They are grouped by a criterion reflecting their similarity; then each group is being
connected to one latent node. Learning observations values for a new latent node
can be typically perceived as learning class-memberships in multinational mixture
models, for which the Expectation-Maximization algorithm is employed. For details
refer to Appendix C.3. Learned values are next treated as known, in the next step
procedure is repeated for a new layer. At some point, the procedure is stopped. Then
the nodes from the last layer are used for further analysis, e.g. to train connections
between them (normally, creation of connections between nodes in a given layer is
not permitted).

Figure 8: Example of hierarchical latent class network.

Algorithms successfully used in genomics cannot be directly employed in our case
due to the differences in data structure. Researchers in this field typically face so-
called wide data - a low number of observations and much higher number of variables.
In our case, despite a high number of variables, the number of respondents surpasses
it distinctly. This difference causes two main problems.

Firstly, with a low number of observations, separate EM-algorithms require rela-
tively short time which allows running many of them and as a result learning substan-
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tial number of latent nodes in a short time. Our situation is more challenging. We
have high number of respondents and thus training one hidden variable can be very
time-consuming. To deal with it, we limit ourselves to only one layer of latent vari-
ables. Each latent variable summarizes directly a group of TV programs or websites
variables. Finding such groups is the second problem, which needs to be solved.

In mentioned algorithms, grouping of variables can be conducted easily by treat-
ing observations in the data as dimensions and finding clusters of variables in such
space. In our case, such space would be higher-dimensional than number of TV
programs/websites variables which can be clustered. We address this problem by
first reducing dimensionality by matrix factorization, and then grouping variables by
means of hierarchical clustering. Relevant theory overview on clustering can be found
in Appendix C.2.

An example of such structure, with only one layer of 2 hidden variables can be
seen in Figure 8.

Successful applications in genomics, postulated ability to capture complex rela-
tionships, and the fact of being embedded in the Bayesian networks framework are
significant advantages of this approach. The proposed changes are necessary. Lim-
ited number of layers may harm the accuracy of the network, but it does not defy the
underlying idea of the algorithm. Altered clustering method should not affect net-
works performance, as research on GWAS algorithm (Mourad et al., 2011) suggests,
that as long as clusters identified resemble patterns in data, algorithms performance
is not impaired (Phan et al., 2015). The biggest downside of this approach is its
computational cost, which even with proposed restrictions can relatively be high.

4.2.2 Learning networks with demographic and summary variables

Obtained summary variables are used together with demographic variables, to train
networks structures separately for TV and online panels.

We compare performance of tabu and fast.IAMB algorithms introduced in Sec-
tion 4.1 as well as structures with and without CC-nodes. For practical implemen-
tation we employ the package bnlearn (Scutari, 2010) from R environment (R Core
Team, 2016) along with some custom modifications. We use the same methods for
both TV and web datasets.

For both trained structures we learn parameters as well to make their evaluation
possible (more on evaluation techniques can be find in Section 4.2.5). In both struc-
ture and parameter learning, the formulas are adjusted to accommodate for the fact
that each respondent has a weight assigned to her. Unless specified otherwise, for pa-
rameter learning we use imaginary sample size equal to 1. This assumption extends
to all cases of parameter learning in the proposed approach.

4.2.3 Learning joint network

Having obtained networks for TV and Web variables we proceed with learning of a
joint network. For this purpose we utilize the dataset of respondents present simul-
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taneously in both panels, for whom a complete set of variables is known. The same
learning algorithms as for single datasets structures are used. To take an advantage
of earlier obtained knowledge we use networks for TV and online data as joint staring
point, making sure that similar variables in both datasets are connected, however
without determining direction of such arcs. We include CC-nodes only if they im-
prove accuracy of a TV or online network. We then let algorithm learn new arcs or
adjust existing ones.

In that way we obtain a structure containing socio-demographic variables, sum-
mary nodes and TV programs/website nodes from both panels. Then we learn param-
eters for such structure and evaluate networks quality using overlapping respondents
set for both of these tasks.

4.2.4 Calibrating joint network’s parameters

Although the overlapping dataset provides us with useful information on relationships
between variables of both sets, it is less accurate with respect to distributions over
variables included in each of them separately. As we are interested in obtaining as
reliable estimates as possible, particularly concerning the reach of TV programs and
websites, we propose to calibrate the parameters of the joint network using datsets
with all respondents from TV and online panel respectively.

For the calibration, we make use of imposed independence structure of the net-
work. We note that each TV program/website node is dependent only on the sum-
mary node(s). It means that in order to estimate parameter values for it we need
observations of the variable and summary node(s) only. These, in each case, are avail-
able in separate datasets for both TV and online panel. Thus, we replace parameter
values of media item’s nodes, learned based on overlapping dataset, by these obtained
from TV/online datasets.

We extend the above described calibration procedure to all nodes which parents set
belongs exclusively to one separate dataset. It allows us to calibrate values not only
for TV programs/websites nodes but also for multiple other ones, which in learning
procedure had not been linked to variables from other panel.

Final network structure, along with marked algorithm steps can be found in Figure
5.

4.2.5 Evaluation

The evaluation of an obtained network is crucial at every step of the process. First
of all, we want to able to assess if obtained network really captures the underlying
distribution in general. Secondly, it is particularly important, from a business per-
spective, how accurately it reflects marginal distributions, which may be interesting
from the point of view of Nielsen’s clients.

For the sake of evaluation in both cases, we split all three used datasets (TV,
online and one containing variables from both, with only subset of respondents) into
training and testing set in a proportion 80/20.
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Firstly we compare trained network structure for training and test datasets by
means of its likelihood values per observation. The absolute difference between these
values should be relatively small. We also perform goodness of fit test as described in
(Koller and Friedman, 2009). We draw samples from the estimated network and cal-
culate likelihoods of the structure using them for parameter learning. In the following
way, we obtain the simulated distribution of likelihood values for the structure. The
calculated likelihood on the training data should be within the 95% of probability
mass of the simulated distribution. We perform such testing at each step of the net-
work learning. We note that likelihood value for data given structure is dependent on
the number of respondents. Thus to get a score comparable to the one for training
set, for drawn data we would need to get a sets of samples of the size of the sum
of all respondents weights - around 300 million. This is unfeasible because of poten-
tial computational cost. To deal with this problem, we draw a smaller sample and
compare likelihood value per respondent instead.

To assess prediction performance of the final network, we propose our own ap-
proach. It is designed to resemble closely the actual situations in which the network
can be used by Nielsen’s clients. First, we sample set of TV programs/websites for
which potential client can be interested in knowing the probability of reaching some
group of people. Then for each of them, we sample a set of conditions to specify
this subpopulation (e.g. gender: ”male” and age: ”between 18-19”). Then we es-
timate from the network the expected probability of respondent being reached by
a TV program/website. We make here use of the fact, that not all values of vari-
ables in Bayesian network need to be specified to obtain predictions. It allows to
take into consideration uncertainty in values of not specified variables and compere
networks with slightly different set of variables. We compare probability inferred
from a network to one calculated from training and test data. In both later cases we
calculate reach by selecting only respondents belonging to subpopulation of interest,
and then computing percentage of them, which were exposed to particular media
content. Ideally, they all predictions (from a network and both datasets) should be
the same. We note, however, that some randomness is impossible to avoid. At the
same time, it is hard to assess how large variation should be acceptable. Thus, to get
a benchmark, we compare differences between network and data results to differences
between training and test set and treat them as such benchmark and baseline for
randomness. Differences between reach inferred from a network and one calculated
from data can be seen as prediction errors. The comparison is conducted based on
root mean square error (RMSE), median average error (MAE) and Jensen-Shannon
divergence (Lin, 1991) with natural logarithm as base, which can be expressed as:

JS(P,Q) = H(
P +Q

2
)− H(P ) +H(Q)

2
, (2)

where P (x) and Q(x) are probability distributions and H(P ) = −
∑

x P (x)logP (x)
is a Shannon entropy.

We also closely investigate prediction errors.
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5 Application

We proceed with applying the proposed framework to real-life data. Firstly, we select
a reduced dataset of top 100 watched TV programs and top 100 visited websites.
Such number of variables allows us to establish the best approaches and practices
while keeping computational time reasonable. We start with learning the networks
based only on the observed variables themselves, without introducing any summary
nodes. It helps to find general best guidelines in learning networks on our data and
results may serve as reasonable baseline for approaches with summary variables. We
continue by applying the first three steps of the framework on the reduced datasets in
order to compare proposed summary nodes creation techniques and assess networks
general quality. Using best solutions identified in earlier steps we test quality of joint
network and effectiveness of its calibration. Finally, using best approach and earlier
findings, we model full dataset and evaluate the results.

5.1 Baseline results for reduced dataset

We start with learning separate networks on ”reduced” TV and online datasets con-
sisting of 100 top consumed items in each as well as demographic variables. Then
using the overlapping set of respondents and earlier obtained nets as a starting point
we learn the network for both media, to which we refer as joint network.

For learning, we use and compare score-based and constraint-based algorithms
mentioned in Section 4.1. Number of arcs in each network divided into several types
can be seen in Table 1.

Score-based Constraint-based
TV Online Joint TV Online Joint

Total 944 680 1375 30 28 63
Between socio-dem. variables 234 128 435 25 21 47
Between media content 402 261 495 5 7 14
From socio-dem. varbiables
to media content

308 291 445 0 0 0

Between datasets - - 100 - - 2

Table 1: Number of arcs by type in specified networks learned with use of score-based
and constraint-based algorithms.

What becomes immediately clear is, that the choice of algorithm heavily impacts
the resulting network. Score-based approach produces highly connected graphs with
a lot of arcs within socio-demographic or content variables as well as between these
sets. For a network on both datasets this method effectively ”discovers” connections
between relevant demographic variables in TV and online datasets, as, e.g. education
ranges. Most of the learned arcs in the networks are reasonable from the common
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sense point of view, like, e.g. dependence of income on age, working hours on oc-
cupation, visits to certain internet sites on internet speed or viewing of certain TV
programs on access to paid channels. Such high number of connections also results
in less obvious, and sometimes suspicious dependencies as, e.g. certain TV program
viewing on having a dog. Nonetheless, these are the minority of connections learned.
We note that viewing of TV programs is in vast majority influenced by variables
related to age, place of living, income, the presence of children or access to cable or
pay channels. Variables related to site visits in network on online data show similar
dependencies with most often appearing visits dependencies on income or other socio-
economic status variables. Variables that in the network for TV panel depended on
TV access in this network depend on Internet speed. Multiple relationships directly
between media content variables are shown as well. For network learned on both
datasets also some connections between TV programs and websites are discovered.

Networks learned with use of constraint based algorithm provide a completely
different picture. Within demographic variables only the most clearly existing depen-
dencies are learned. Graph suggests as well that socio-demographic variables do not
influence media viewing at all. What is alarming in case of network learned on both
datasets multiple relationships, which we expect should exist are not discovered.

To some extend, sparsity of networks learned with constraint-based algorithm
should be anticipated. Generally, score-based algorithms tend to produce less sparse
networks. They assess a set of independencies at once rather them considering them
separately as statistical tests conducted in constraint-based approaches do (Koller
and Friedman, 2009). Constraint-based approaches are sensitive to failures of single
independence tests - connections in a network are added based on sequentially con-
ducted tests. Each test in the sequence is conditioned on earlier added connections,
thus wrongly adding or omitting one can result in a reorganization of a whole net-
work structure. This stops us from lowering significance level in order to obtain more
connected networks. Such a notable difference between results between the two used
algorithms is, nevertheless, surprising. On the one hand, it might suggest, that there
is indeed little influence of socio-demographic variables on media consumption and
score-based approach highly overfits the network. On the other hand, it is possible
that constraint-based method simply fails to produce an accurate model for our data.
We investigate it by looking at data and model likelihoods, goodness of a fit test and
predictive results, as describe in Section 4.2.5.

Log-likelihoods values per person for both training and test datasets and bound-
aries of goodness of fit test (GoF) can be found in Table 2. Goodness of fit values are
based on 100 samples, each equal to the number of respondents in the training set.

Firstly, we note that log-likelihoods for networks learned with the constraint-
based approach are clearly lower. This is to be expected, as adding arcs to a network
increases its likelihood. Interestingly, in all cases, log-likelihood for test data is higher
than for training one. It is a good sign. Supposedly, test data, due to its smaller size
has less observations in it which differ from standard patterns. Smaller log-likelihood
for network on test data suggest that these true patterns are captured well. We note
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Score-based Constraint-based
TV Online Joint TV Online Joint

Training -56.3 -28.0 -63.0 -106.2 -52.3 -136.9
Test -49.5 -23.1 -52.0 -106.1 -51.7 -136.3
GoF - lower bound -54.8 -27.8 -60.2 -108.2 -52.4 -139.1
GoF - upper bound -55.0 -27.9 -60.5 -108.3 -52.4 -139.4

Table 2: Log-likelihood values for networks with parameters learned on specified
datasets. Bootstrapped boundaries of 95% goodness of fit interval.

that the difference between log-likelihoods is bigger for networks learned using score-
based algorithm. Ideally we would like both log-likelihood values to be contained
within the GoF test boundaries. For both approaches, in all cases, training log-
likelihood values are outside of them. However, while for score-based approach these
GoF test boundaries are higher than training data log-likelihood, for constraint-based
they are lower.

We also compare accuracy performance of the networks. In each case, we per-
form 5,000 conditional probability queries as described in Section 4.2.5. In each
query, we evaluate the probability of a person being reached by chosen at random
TV program/website, assuming that she has certain characteristics, e.g. has a dog,
or has watched some particular TV show. Always two variables are randomly se-
lected for characteristics of choice. As an impact of socio-demographic variables on
reach is more interesting for us, we assign 70% probability of variable being chosen
from socio-demographic variables set and respectively 30% for the choice of media
content variable. Their values are chosen randomly as well, with equal probability
assign to each possible state. We use only two restricted variables in each query as
choosing more results often in too few or no respondents with desired characteris-
tics. Such situation causes reached estimates based on data to be too volatile and
untrustworthy.

Each query is performed on the network, and training and test data, to get a reach
probability resulting from them. Resulting probabilities are compared, with training
or test data serving as ”true” values and network’s results or test data as estimates.
Prediction errors comparison based on such paradigm, by means of the root mean
square error (RMSE), median absolute error (MAE), and average Jensen-Shannon
divergence (JS), can be found in Table 3. The comparison is, as earlier, preformed
for networks leaned on TV and web data, as well as the joint network learned using
the overlapping set of respondents.

In all cases, for TV and joint datasets, networks learned using score-based clearly
outperform constraint-based ones. Importantly, it is a case for comparison with both
training and test dataset. It might suggest that the latter algorithm underfits. For
online data, however, MAE and JS suggest that constraint-based algorithm performs
slightly better. Closer examination of the results suggests that it is only illusory.

In the Figure 9 we can see scatter plot of estimated reach values for all performed
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Score-based Constraint-based
TV Online Joint TV Online Joint

RMSE
BN/Training 0.0289 0.0556 0.0303 0.0589 0.0860 0.0493
BN/Test 0.0390 0.0682 0.0436 0.0645 0.0904 0.0573
Test/Training 0.0311 0.0603 0.0423 0.0311 0.0603 0.0423

MAE
BN/Training 0.0182 0.0330 0.0160 0.0316 0.0328 0.0206
BN/Test 0.0229 0.0392 0.0224 0.0345 0.0341 0.0258
Test/Training 0.0147 0.0224 0.0184 0.0147 0.0224 0.0184

JS
BN/Training 0.0015 0.0060 0.0018 0.0039 0.0071 0.0031
BN/Test 0.0025 0.0083 0.0036 0.0049 0.0080 0.0046
Test/Training 0.0014 0.0044 0.0030 0.0014 0.0044 0.0030

Table 3: Reach predictions comparison based on differences between reach from spec-
ified datasets and one inferred from a Bayesian network. Networks learned on the
reduced dataset.

conditional probability queries. values inferred from training dataset are marked on
the x-axis. On y-axis we map values resulting from test data or from the network.
In ideal situation all dots will lay on the y = x line. It is, however, not the case and
we observe some deviations. We can clearly see that the constraint-based network
indeed might perform better if desirable reach value is small and similar to one for
whole population (without any restrictions). Results from score-based algorithm show
more variance in this region. If, however, the impact of restricted variables becomes
apparent and reach differs from one for the population, more sparse network starts
to become increasingly inadequate to the task.

Figure 9: Scatter plot of reach inferred from BN and test data plotted against one
from training dataset.

Based on results presented above we may conclude that score-based algorithm is
better suited to learn networks in our case, even assuming that it might slightly overfit
the models. We suspect the reason for this behavior can be found in the relationships
structure in our domain. From networks learned by score based algorithm we can
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see that several nodes are responsible for most of the connections, e.g. parents and
children set of age variable in TV network consists of 122 nodes. Such situation is
impossible to reconstruct in constraint-based algorithm, as number of observations
per cell in conditional probability tables drops visibly with each variable added to its
parents and children set and tests quickly becomes unreliable, preventing addition of
new nodes. Pairing it with more strict requirements for adding an arc leads in our
case to learning very sparse networks. It could be prevented by increasing the number
of observations in the data, which is not feasible. Therefore, both empirical results
and characteristics of the domain points towards using score-based algorithm.

Having decided to use the score-based algorithm, we assess general quality of
networks learned using it. As a benchmark, we use differences between probabilities
inferred from training and test datasets. With respect to reflecting training datasets
networks perform relatively well, especially for the joint data. This is probably due
to the fact, that using a reduced number of overlapping respondents means some
extreme categories (e.g. people with high number of children or very specific, rarely-
occurring education status), which are prone to be linked to untypical behaviour, are
not being included in testing due to insufficient number of observations for them.
Results obtained by comparison of predictions to training data are visibly worse.
The difference is, however, not drastic and may be deemed acceptable for practical
purposes. Nevertheless, it might indicate some overfitting of the model.

One more concern may be raised by failed goodness of fit tests. With respect to it,
we observe that log-likelihood of a network (based on a data sampled from it depends
directly on imaginary sample size (iss). Increasing it, we may lower a network’s log-
likelihood. As log-likelihood of a network calculated using data does not depend on
iss, and network’s log-likelihood calculated using samples from it is typically higher,
by increasing iss we may ”force” network’s log-likelihood to be closer to data’s one.
A dependency of network’s sampled log-likelihood on iss is shown in Figure 10.

Figure 10: Dependence on iss of lower and upper bounds of 95% interval for log-
likelihood of data sampled from a TV network with training data. Log-likelihood
marked as horizontal line.
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We can see that interval values drop linearly. In order to contain training data
log-likelihood in their boundaries iss needs to be set to around 11,500. It may suggest
that such network would actually be a better fit. To some extend it might be logical
as higher iss results in higher probabilities of rare states of nodes, which due to
sparsity of the data can be underestimated by us. Comparison of relevant metrics
of predictive accuracy for TV networks, learned with score-based algorithm can be
found in Table 4.

RMSE MAE JS

BN (iss = 1) - Training 0.0295 0.0185 0.0014
BN (iss = 11500) - Training 0.0313 0.0201 0.0016
BN (iss = 1) - Test 0.0381 0.0230 0.0024
BN (iss = 11500) - Test 0.0391 0.0238 0.0026
Test - Training 0.0315 0.0153 0.0015

Table 4: Reach predictions comparison of Bayesian networks learned with different
imaginary sample sizes.

We observe that increasing iss worsens predictive results in all considered cases.
For other networks similar relationship has been found. Thus, we decide to use
iss=1 in all considered cases, despite goodness of fit test results, which may suggest
otherwise.

5.2 Application to reduced dataset

We continue analysis by testing suggested methods of creating summary nodes and al-
ternative network structures with cumulative media consumption nodes (CC-nodes).
We apply it to the reduced dataset as describe above. For each summary nodes cre-
ation technique we train networks for TV and online data both with and without
CC-nodes. Than we train networks for both jointly using best combinations of struc-
tures (eg. with CC-node for TV and without for online). We compare results for
all obtained networks to better understand the overall ability of our models to cap-
ture patterns in the data. Finally using these findings we construct a joint network,
calibrate its parameters and asses its final quality and effectiveness of calibration.

5.2.1 Category summary nodes

We begin with using category variables as summary nodes. Top 100 TV programs
belong to 24 different categories, top 100 websites to 36 categories. In case of TV data,
5 categories contain only one program. For online data 17 categories account for only
one website. A summary node for each respondent is created by adding exposition
time to media content in every respective category and discretising by using deciles.

The learned networks are relatively dense, but with reasonable arcs, strongly
resembling the ones learned earlier, The only difference is replacement of content
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variables nodes by summary ones. This similarity extends to the full network for
joint variables sets. Network on joint datasets is learned without using the CC-node
for TV and online, as this configuration gave the best empirical results.

The goodness of fit tests results can be found in Table 5. We observe that in
all cases networks log-likelihood calculated using simulated data is higher than one
obtained using training dataset. Networks log-likelihoods on training and test data
differ visibly. Networks with and without cumulative media consumption nodes be-
have similarly.

TV Online Joint
w/o CC with CC w/o CC with CC

Training -55.26 -57.05 -31.23 -28.73 -78.92
Test -48.90 -50.23 -26.26 -23.65 -67.40
GoF - lower bound -53.85 -55.49 -30.54 -27.72 -75.78
GoF - upper bound -53.98 -55.63 -30.69 -27.82 -76.42

Table 5: Log-likelihood values for networks with parameters learned on specified
datasets. Bootstrapped boundaries of 95% goodness of fit interval. Networks learned
on reduced dataset with category-based summary nodes.

Results of testing networks accuracies (Table 6) offer a clearer overview of models
quality. Firstly, we observe that both in case of TV and online nets addition of
CC-node worsens network’s predictive quality. Secondly, we note that overall results
are relatively good. It is a bit surprising considering simplicity of the approach.
Probably, at least partially, it can be attributed to high ratio of summary nodes to
summarized ones, and the fact that many of them represent actually only one TV
program/website.

TV Online
Joint

w/o CC with CC w/o CC with CC

RMSE
BN/Training 0.0365 0.0427 0.0499 0.0525 0.0342
BN/Test 0.0447 0.0501 0.0629 0.0666 0.0463
Test/Training 0.0311 0.0603 0.0423

MAE
BN/Training 0.0205 0.0259 0.0202 0.0221 0.0152
BN/Test 0.0245 0.0295 0.0264 0.0287 0.0218
Test/Training 0.0147 0.0224 0.0184

JS
BN/Training 0.0018 0.0025 0.0033 0.0038 0.0018
BN/Test 0.0027 0.0034 0.0053 0.0060 0.0035
Test/Training 0.0014 0.0044 0.0030

Table 6: Reach predictions comparison based on differences between reach from spec-
ified datasets and the one inferred from a Bayesian network. Networks learned on
reduced dataset with category-based summary nodes.
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5.2.2 Matrix factorization summary nodes

We continue by using matrix factorization output as summary nodes. Hyperparame-
ters for matrix factorization are for both TV and online datasets determined with use
of 5-fold cross-validation and extensive grid search over hyperparameters space with
RMSE as loss function. A number of latent variables is determined to be equal to
15 for TV and 10 for the online dataset. We note that matrix factorization by itself,
both in case of TV and online data, gives relatively good predictions, supporting the
opinion on usefulness of this technique for media consumption modelling.

The output is discretized based on the median. Choosing other methods (mean
or cut-off set at media consumption time equal or greater than 0) yielded similar final
results. Unfortunately using more than two classes is not feasible. As we connect
each summary variable to each node, size of conditional probability tables represent-
ing local probability distributions for content variables increases exponentially with
number of classes in summary nodes. It causes a conditional probability table to
quickly exceed reasonable size (for TV with 15 latent variables, and 2 classes in each
it is equal to 215).

Resulting networks are similar to earlier mentioned ones, also when it comes to
relatively high number of connections between summary nodes, which might compli-
cate inference as each of them is then connected to all content nodes. Joint network
for both datasets is learned without CC-nodes.

Results of goodness of fit test, which are presented in Table 7 seem to be promising.
Difference between training and test log-likelihoods continues to be relatively big,
however, TV networks without CC-nodes, online with CC-nodes, and the one for
joint datasets variables pass goodness of fit test.

TV Online Joint
w/o CC with CC w/o CC with CC

Training -60.25 -55.72 -31.07 -30.62 -66.35
Test -51.60 -46.53 -26.68 -25.77 -53.56
GoF - lower bound -60.13 -55.07 -30.31 -30.53 -65.62
GoF - upper bound -60.40 -55.40 -30.41 -30.72 -66.41

Table 7: Log-likelihood values for networks with parameters learned on specified
datasets. Bootstrapped boundaries of 95% goodness of fit interval. Networks learned
on reduced dataset with matrix factorization-based summary nodes.

Results of prediction performance evaluation can be see in Table 8. Unfortunately,
they clearly indicate that networks are badly fitted. All indicators, for all networks
are much higher than thus for test/training, which we use for benchmark. Only the
network for online variables is slightly better. Adding CC-nodes worsens accuracy
even more both for TV and online data.

There can be multiple reasons for such results. Firstly, creating summary nodes
in proposed way might not reflect any actual structure of the data. Secondly, matrix
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factorization might not be a preferred summary nodes creation technique. Good
results of prediction of matrix factorization itself and the fact that attempts to use
the Principal Component Analysis yielded even worse results, suggests that, finding
better technique may be difficult. General density of the network, resulting from
a high number of connection between summary nodes, and connecting all summary
nodes to each TV program/website node may be to blame as well. Nonetheless,
attempts to restrict connections between summary nodes did not result in any notable
improvements. Last, but not least, discretization of matrix factorization output into
only two categories may be too drastic, but it is necessary.

TV Online
Joint

w/o CC with CC w/o CC with CC

RMSE
BN/Training 0.1154 0.1907 0.0711 0.1529 0.1112
BN/Test 0.1188 0.1927 0.0796 0.1584 0.1149
Test/Training 0.0311 0.0603 0.0423

MAE
BN/Training 0.0873 0.1601 0.0312 0.0885 0.0743
BN/Test 0.0893 0.1613 0.0363 0.0928 0.0771
Test/Training 0.0147 0.0224 0.0184

JS
BN/Training 0.0137 0.0320 0.0065 0.0248 0.0147
BN/Test 0.0149 0.0331 0.0085 0.0275 0.0168
Test/Training 0.0014 0.0044 0.0030

Table 8: Reach predictions comparison based on differences between reach from spec-
ified datasets and the one inferred from a Bayesian network. Networks learned on
reduced dataset with matrix-factorization based summary nodes.

The poor performance of networks constructed using matrix factorization sum-
mary nodes is surprising, especially taking into consideration relatively good results
of matrix factorization itself. It can be probably attributed to to the big sizes of con-
ditional probability tables for media content nodes. They translate to high number of
parameters in the network and low number of observations used to learn each of them.
Despite the significant size, our dataset turned out to be too small. Use of continuous
Bayesian networks could improve models accuracy, as number of parameters in such
networks would be lower. However, this is outside the scope of this thesis.

5.2.3 Hierarchical Bayesian networks

The third possible approach to creation of summary nodes is one based on hierarchical
Bayesian networks framework. We use the obtained earlier output of matrix factor-
ization in order to group TV program/website variables using hierarchical clustering.
We utilize cosine distance as dissimilarity measure. Examination of dendrograms and
elbow plots for clustering of both TV programs and websites data suggests that in
both cases we can distinguish five clusters. We note that almost equally likely we
could decide respectively for 11 and 9 groups, but we choose a lower number, to
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better resemble ratio of summary nodes to TV programs/ websites variables which
is feasible for the full datasets. For TV the grouping is rather balanced with three
groups containing around 25 programs and two of them with around ten. For online
dataset there is one visibly bigger group with almost half of the websites and remain-
ing groups are balanced. Values of latent nodes are learned with E-M algorithm.
Number of classes in each node is chosen as 0.1 × q + 2, where q is the number of
nodes summarized by a latent variable. To avoid local minima we use multistart with
so-called small EM - after random start 5 iterations of the algorithm are performed.
The one, which delivered the best results measured by BIC criterion is used as start-
ing point for actual EM run with convergence criterions set as 500 iterations or less
than 0.001 difference between BIC of subsequent iterations.

We proceed with learning networks assuming the existence of hidden variables.
Networks structures with respect to connections between demographic variables re-
semble closely ones learned earlier. Also, as before, main direct arcs to summary
nodes come from age, gender, or income variables. Both TV and online latent nodes
are densely interconnected as well. In the joint network connections between sum-
mary nodes from both datasets exist. Additionally, multiple reasonable connections
between demographic variables can be found.

The goodness of fit test results, presented in Table 9, are relatively good. Differ-
ences between the training and tests data log-likelihoods are quite small, particularly
for networks created on the online dataset. These are also almost in the boundaries of
the goodness of fit test (for online with CC-node and for networks for both variables
sets within).

TV Online Joint
w/o CC with CC w/o CC with CC

Training -59.79 -60.85 -38.38 -38.45 -68.62
Test -56.00 -56.81 -38.29 -37.85 -59.98
GoF - lower bound -60.13 -61.17 -38.67 -38.54 -68.33
GoF - upper bound -60.30 -61.38 -38.80 -38.69 -68.83

Table 9: Log-likelihood values for networks with parameters learned on specified
datasets. Bootstrapped boundaries of 95% goodness of fit interval. Networks learned
on reduced dataset with clustering-based summary nodes.

Conclusions on the quality of networks are supported by predictive accuracy re-
sults, which can be seen in Table 10. Both for TV and online networks introduction
of CC-nodes improves their quality. For a TV data network, all metrics for the
Bayesian network - training dataset comparison are close to our benchmark. Predic-
tive performance on out-of-sample set is worse, but still reasonably good - it does not
drastically differ from the differences in reach from test and train data. For network
on joint dataset both in-sample and out of sample, performance is better than the
chosen baseline of differences between training and test set. Model learned on the
overlapping set of respondents shows good results against training set (better than
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the train/test benchmark), and generalizes onto test set relatively well.

TV Online
Joint

w/o CC with CC w/o CC with CC

RMSE
BN/Training 0.0317 0.0285 0.0490 0.0409 0.0320
BN/Test 0.0409 0.0391 0.0610 0.0557 0.0448
Test/Training 0.0311 0.0603 0.0423

MAE
BN/Training 0.0192 0.0179 0.0198 0.0177 0.0169
BN/Test 0.0236 0.0228 0.0246 0.0235 0.0232
Test/Training 0.0147 0.0224 0.0184

JS
BN/Training 0.0016 0.0013 0.0029 0.0024 0.0021
BN/Test 0.0026 0.0024 0.0046 0.0042 0.0039
Test/Training 0.0014 0.0044 0.0030

Table 10: Reach predictions comparison based on differences between reach obtained
from specified datasets and one inferred from a Bayesian network. Networks learned
on reduced dataset with clustering-based summary nodes.

5.2.4 Comparison of summary nodes creation techniques

Applying different summary nodes creation techniques to reduced datasets yields
several interesting observations. First of all, networks with summary nodes based on
matrix factorization clearly perform poorly. The difference between structures with
latent variables based on clustering and the ones obtained using content categories are
not that apparent. Good results for the category-based summary nodes structure are
a bit surprising. For online data, approach with content categories clearly performs
worse, however, for the rest of the networks the differences are not that clear. Their
comparability to hierarchical Bayesian networks approach can be explained by much
higher number of summary nodes used in the first method. This difference cannot
be maintained for the full dataset, as the number of content categories is limited,
whereas a number of latent variables can be increased relatively freely. That is why
for application of the framework to the full dataset we chose hierarchical Bayesian net-
works approach. Nevertheless, we note that good results for category-based approach
suggest that it can be an appealing alternative for analysis, in case the computational
resources are very limited.

It is hard to assess if, in general, using a structure with cumulative media con-
sumption nodes is beneficial. Results show that it depends both on an employed
methodology and on datasets themselves. We decide to test both alternatives on full
datasets and only after that conclude if introduction of CC-nodes is beneficial.

We also note that log-likelihood and goodness of fit tests seems to be not a good
indicator of networks performance, and can be easily manipulated by changing the
imaginary sample sizes. As performing the tests is computationally expensive and
gains are limited we decide to not use them for assessing the full dataset application.
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Finally, we observe that accuracy of models with summary nodes (trained using
the approach based on hierarchical Bayesian networks) is not worse than for networks
learned without them. For TV and joint networks the results are very close to the
ones obtained without summary nodes. For online network we observe a visible
improvement after introducing summary nodes. It suggests that introducing hidden
variables is not only a necessary move used in order to make computations feasible,
but it might actually reflect underlying structure in the data.

5.2.5 Full model performance

Having established general ability of Bayesian networks to represent media consump-
tion behaviour on single datasets and best practices in learning networks with large
number of variables, we assess the final quality of a joint network - one containing vari-
ables both from online and TV datasets. To create it we use networks created within
hierarchical Bayesian networks framework, with CC-nodes, as they have proven to
deliver the best results in earlier stages.

In earlier sections, we evaluate the quality of the joint network using only the
dataset of overlapping respondents and without conducting the final step of the frame-
work - calibration. In the calibration step we replace the parameters learned using
only overlapping set of respondents, by these learned on full dataset (TV or online
one) for all variables is it possible to do (variables which have all parents belonging
to one dataset). We also looked at single networks (containing just TV and online
variables) evaluated against datasets they were learned on. This is sufficient to assess
the quality of summary nodes creation techniques and establish best practices for net-
works learning, as these steps are mainly performed only on single source networks.
In order to draw final conclusions, we need to evaluate the ability of the joint network
to represent marginal probabilities from full, single datasets, rather than only smaller
one of the overlapping respondents. To do so, we follow evaluation procedures as de-
scribed earlier, inferring probabilities of watching particular media content item from
the network and single source dataset, respectively for TV and online. We compare
the network’s results before and after parameter calibration and with the performance
of single networks as described in Section 4.2.5. The comparison of relevant metrics
can be found in Table 11.

We observe that in comparison to both TV and online networks the joint one
without calibration performs visibly worse. The difference is big enough to under-
mine conclusions about the usefulness of networks to represent media consumption
behaviour. Fortunately, application of calibration procedure helps to improve the re-
sults. In all cases, single networks still perform better in terms of predictive accuracy
on single dataset, but the results of the calibrated joint network are acceptable, and
their deterioration seems to be worth obtaining the model with full media behaviour.
We also note, that the calibrated, joint network shows smaller differences between
performances against training and test set, which suggests better robustness against
potential overfitting.

In addition to comparison of accuracy measures only, to better assess the model
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TV Online

Single net
Joint net

Single net
Joint net

not cal. cal. not cal. cal.

RMSE
BN/Training 0.0277 0.0300 0.0283 0.0401 0.0571 0.0514
BN/Test 0.0361 0.0376 0.0362 0.0553 0.0662 0.0611
Test/Training 0.0301 0.0582

MAE
BN/Train 0.0173 0.0190 0.0176 0.0171 0.0247 0.0217
BN/Test 0.0212 0.0227 0.0214 0.0231 0.0284 0.0259
Test/Training 0.0145 0.0213

JS
BN/Train 0.0014 0.0016 0.0014 0.0023 0.0044 0.0036
BN/Test 0.0022 0.0024 0.0022 0.0042 0.0059 0.0050
Test/Training 0.0015 0.0042

Table 11: Reach predictions comparison based on differences between reach from
specified datasets (TV or online) and ones inferred from the calibrated (cal.) and not
calibrated (not cal.) joint Bayesian networks. Network learned on reduced dataset
with clustering-based summary nodes.

quality, we also look at the behaviour of differences between reach inferred from the
joint, calibrated BN and ones coming from data. In Figure 11 we can see scatter
plots of reach inferred from the BN and calculated from test data plotted against
one observed in the training set. Results show evaluation against respectively full
TV and online datasets. Ideally, all results should be equal and thus lie on the
black lines. Of course, some deviations are to be expected. Unfortunately, observed
deviations for BNs in both cases show a systematical bias, which can be seen from
fitted linear regressions. For higher reach values, both for TV and online variables
networks slightly underestimate the reach. In case of TV, we also observe minimal
overestimation for small reach values. The bias is visible, but not drastic and appears
mainly for very small and very large reach values, which are rather extreme cases. It
does not completely negate general advantages of the model, however, further research
aimed to eliminate it, is recommended.

Both for online and TV variables the joint calibrated network performs slightly
worse than the benchmark based on differences between reach in training and test
sets. This advantage of the benchmark may be not stable in all cases. Size of the
deviation between reach calculated from training and test dataset differs for different
conditional probability queries. If a query is very specific, number of respondents in
a subgroup defined by it may be low, e.g. there will be more males who are over 18
years old than men who have a dog and bought a car last year. It is important as the
lower number of respondents the less precise reach estimates based on them are and
thus variation of differences between reach from training and test set is higher.

In the Figure 12 we can see absolute differences between reach inferred from the
network or test dataset and ones from training data for TV (for online variables we
observe very similar behaviour), plotted against logarithm (base 10; applied in order
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Figure 11: Scatter plot of reach inferred from the joint BN and test data plotted
against reach calculated from training dataset.

to make discussed below differences more visible) of number of observations in test
set for each query. Based on fitted linear trends we observe that both networks and
test data follow the pattern described above - the smaller number of observations,
the bigger average error. What is interesting, for smaller samples (up to around
102.3 or 200 respondents) the network shows better average performance. Only above
this value, its quality deteriorates. It suggests, that as long as errors for bigger
subpopulations are on the acceptable level, Bayesian networks may be a useful tool
for delivering more accurate reach estimates for very precise target groups, which
so far had too small number of respondents in the panels for obtaining estimates of
reasonable quality. We note, that in extreme cases with the use of BN we may even
infer reach for people with characteristics which we do not observe in a panel - the
testing of accuracy of such estimates is obviously impossible.

In summary, we conclude that the joint network trained using our framework per-
forms relatively well. It shows worse results that single networks, however, parameters
calibration helps to reduce the differences and proves to be beneficial. The results
seem to be slightly biased, but the size of the bias is acceptable. Moreover, the model
seems to perform relatively well for small subpopulations, what is promising for the
planning of more precisely targeted campaigns. All in all there are shortcomings and
room for improvement both of the concept and the learning framework exists. But
initial results are promising.

5.3 Full dataset application

As the next step, we aim to create a model on full dataset, with all considered TV
programs and websites, using findings and good practices from earlier sections. We
follow the hierarchical Bayesian networks approach.

Similarly as earlier we perform a matrix factorization in order to obtain a basis
for clustering. We repeat it for TV and online datasets. In both cases tuning of
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Figure 12: Scatter plot of absolute error with respect to test dataset of TV data
plotted with logarithmic scale of number of observations in test dataset for restrictions
in each conditional probability query.

hyperparameters is done by grid search in 5-fold cross-validation setting. Number of
latent features for TV data is determined to be equal to 40 and for online to 35.

On the basis of the obtained latent features, we conduct clustering of media con-
tent items - TV programs and websites respectively. In both cases we aim to define
250 groups, as with demographic variables this amount adds up to a number of vari-
ables with which we can still learn a network in reasonable time. The grouping of
websites is fairly unbalanced - the biggest cluster of websites contains 970 items (out
of 5000), while in the smallest we can find only 4. Most of the clusters are small,
with the median of number of websites in each equal to 12. For TV the cluster sizes
are more balanced. The biggest one consists of 131 TV programs (out of 5136), the
smallest one of 4, with the median equal to 15. In both cases, we observe existence of
a big cluster containing rarely consumed items. For online data a similar phenomenon
is also observed on the reduced dataset, while for TV it is something new.

For learning values of hidden nodes, the same approach is taken as for reduced
datasets. We use EM algorithm with multistart based on ”small EM” with BIC
criterion. The number of classes of each latent variable is set to 0.1 × q + 2, with,
q equal to a number of media content variables summarized by each latent one.
Algorithms for all latent notes from both datasets converge. Unfortunately learning
the networks with latent variables proves to be time-consuming - TV network takes
around 50 hours to learn. Most of this time - 38 hours is taken by EM algorithms. For
training we use the standard 36-cores Amazon AWS machine. Learning the online
network takes even longer - around 87 hours, 72 of which is consumed by learning
values of the hidden nodes.
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TV Online
w/o CC with CC w/o CC with CC

RMSE
BN/Training 0.0021 0.0071 0.0097 0.0106
BN/Test 0.0027 0.0073 0.0257 0.0264

MAE
BN/Training 2.94E-04 9.75E-04 2.28E-03 2.64E-03
BN/Test 3.85E-04 1.06E-03 3.72E-03 4.06E-03

JS
BN/Training 5.12E-05 2.86E-04 6.00E-04 7.04E-04
BN/Test 7.34E-05 3.09E-04 1.10E-03 1.23E-03

Table 12: Accuracy comparison based on differences between reach from specified
datasets (TV or online) and ones inferred from the single-source Bayesian networks.
Networks learned on the full datasets with clustering-based summary nodes.

As discussed earlier we were not able to establish if introducing cumulative con-
tent consumption variable (CC-node representing is beneficial to a network structure.
Because of this we learn, for both datasets, networks with and without it in order
to compare results, using the same as earlier approach with 5000 randomly gener-
ated conditional probability queries. Results for accuracy comparison can be seen in
Table 12.

We can clearly see that both for TV and online network introducing the CC- node
worsens results for all considered metrics. Thus, we continue learning process without
this extra variable.

Following the framework steps, we use single-source networks as starting points
and the set of overlapping respondents as input data to learn a network containing
all variables. Final network has 1768 nodes and 2839 arcs. For the sake of clarity
we exclude in summary media content variables (TV programs and websites) and
arcs between them and summarizing latent variables, as these connections are based
on clustering, which was briefly discussed above. These are also not considered in
structure learning, but enforced at the beginning of it. Structure learning applies
directly to 632 variables - 250 latent ones for both TV and online media content
and 132 socio-demographic variables, 98 from TV dataset and 34 from online one.
Between these variables 1703 connections are discovered. In Table 13 we present a
quantitative summary of them in a split into connections within TV and online data
and in total in the network.

We observe that the network is not extremely dense, with each node being on av-
erage connected to 2.7 others. The density is unequal. Socio-demographic variables
coming from TV dataset are relatively densely connected, while these from online
data not. It is caused mainly by multiple connections from TV dataset’s variables to
online ones. Many variables from the latter dataset are connected only to TV ones
- often very similar (e.g. age ranges or geographic locations). Latent variables in
both datasets are equally well connected, interestingly there exists no direct connec-
tions between online and TV summary variables - all interactions between datasets
are through socio-demographic nodes. It is different from what we observed on the
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TV Online Both

Total 1038 488 1703
Between socio-dem. variables 368 32 452
Between latent variables 395 349 744
From socio-dem. varbiables
to latent ones

275 107 507

Between datasets - - 177

Table 13: Number of arcs by type within variables from specified datasets, excluding
connections from summary variables to media content ones.

reduced dataset and might signalize some problems in the learning process - e.g. too
high number of latent variables resulting in too many nodes in the network with
respect to the number of observations.

In general discovered connections seem to be reasonable from common sense point
of view. Most of them can be easily justified (as, e.g. relationships between Spanish
background and language spoken in a household, or Internet speed and visits to
certain groups of websites). With such a high number of arcs, we also observe some
connections which cannot be easily explained (like, e.g. owning a foreign vehicle and
visiting certain sites, not related to cars, or use of bottled water and number of TV
sets), but these are in the vast minority.

After learning the structure of the joint network, we perform the calibration of
parameters using full datasets of TV and online respondents in order to calibrate
respective nodes. Such network is then evaluated in the same manner as the one
in the Section 5.2.5 - we separately generate sets of conditional probability queries
containing variables from TV dataset, online dataset and both datasets. Each query
returns a reach of media content variable, which is then compared to value obtained
from the training and tests sets. Differences between reach returned by network, and
reach calculated from data are treated as Such oion errors.btained prepredictdiction
errors are compared to the differences between reach calculated from test and training
datasets. They serve as a randomness baseline, which we treat as a benchmark. Also,
we include a naive prediction of a reach inferred from training datasets. We define
the naive prediction as reach of a TV program/website in the whole population. It
is compared to a reach from training dataset, calculated for a subpopulation defined
by a query. Accuracy results can be seen in Table 14.

It can be seen that in all cases the network performs worse than the naive pre-
diction. It is surprising taking into consideration relatively good results for smaller
networks. However, we need to bear in mind that modelling of the full data - with
significantly higher number of variables, and with only a few respondents actually
consuming a media content in many of them, is a challenging task. We also observe
that for online and joint comparisons naive prediction seems to perform better than
the differences between test and training data treated as benchmark. It is partially
illusory - bad accuracy of the benchmark is caused by high variance, while naive pre-
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TV Online Both

RMSE

BN/Training 0.0025 0.0080 0.0040
BN/Test 0.0031 0.0262 0.0016
Test/Training 0.0015 0.0253 0.0039
Naive/Training 0.0024 0.0104 0.0013

MAE

BN/Training 3.35E-04 1.41E-03 5.06E-04
BN/Test 4.20E-04 2.96E-03 8.03E-04
Test/Training 2.51E-04 2.45E-03 5.17E-04
Naive/Training 3.11E-04 1.47E-03 3.37E-04

JS

BN/Training 6.48E-05 3.16E-04 1.19E-04
BN/Test 8.80E-05 9.27E-04 1.99E-04
Test/Training 3.53E-05 7.48E-04 1.20E-04
Naive/Training 5.69E-05 3.16E-04 7.56E-05

Table 14: Reach predictions comparison based on differences between reach from
specified datasets (TV or online or joint) and ones inferred from the joint Bayesian
network. Network learned on the full dataset with clustering-based summary nodes.

diction shows visible bias, with low dispersion for lower reach predictions (in cases
when introducing a restriction on socio-demographic variables values changes the
reach only slightly). The network results are less biased then naive ones, which is a
good sign. We can see it on the scatter plot (Figure 13) showing test, the network’s
and naive prediction plotted against reach in the training set, for online data.

The high number of media content variables with low reach, causes additional dif-
ficulties in assessing the model. Low reach translates into low number of respondents
consuming these TV programs/websites, and thus higher randomness of the results.
To get an idea of network’s performance on more stable target variables and compare
the network accordingly to earlier models trained on the reduced dataset, we perform
an additional evaluation, in which we select as target variables only media content
variables present in reduced datasets. Rest of the procedure is identical to the ones
used earlier. Results of such evaluation scheme are presented in Table 15.

After taking into consideration only most popular media content, we can see that
network performance is still bad. Nevertheless, in all cases, the network (as well as
the benchmark) is better than naive prediction. It shows (in combination with lower
bias of network than naive predictions for a standard evaluation) that the model is
not as bad as one might expect from results based on using all media content variables
as target ones.

The accuracy of the network on the full dataset is disappointing. Despite the fact
that we can reasonably conclude that it is better than naive predictions, high variance
and a visible bias of the results deems it unusable for any practical purpose. To some
extend it can be attributed to the general, randomness of consumption behaviour
with respect to low-reach content. Bad results of the full model, also for only more
popular TV programs/websites, in comparison to relatively good results obtained for
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Figure 13: Scatter plot of reach inferred from the joint BN and test data plotted
against the online training dataset.

the model on reduced data, suggest that proposed framework may be insufficient for
the full data with such high number of variables. These experiences are not negating
the validity of the general concept of using Bayesian networks for the analyzed task.
Possibly some extensions of the proposed framework, like including more layers of
hidden nodes, might help to improve accuracy of used model.

6 Conclusion

As the goal of this thesis we test the usefulness of Bayesian networks for efficient
modelling of a reach of TV programs and websites. Such models should be able
to replace typically used logic of simply filtering respondent-level data in delivering
insights for advertisement planning and other related tasks. We believe, that the
Bayesian networks combine the advantages of statistical models - low-memory usage
and statistical verification of dependencies, with flexible inference characteristic for
respondent-level approaches.

In order apply the Bayesian networks for the described task we need to overcome
two main problems - learning networks on the basis of two only partially overlapping
datasets, and learning networks with a high number of variables. In this thesis, we
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TV Online Both

RMSE

BN/Training 0,0329 0,0702 0,0389
BN/Test 0,0408 0,0796 0,0337
Test/Training 0,0267 0,0595 0,0300
Naive/Training 0,0435 0,0902 0,0411

MAE

BN/Training 0,0126 0,0285 0,0127
BN/Test 0,0159 0,0324 0,0154
Test/Training 0,01 0,0215 0,0109
Naive/Training 0,0144 0,0342 0,0122

JS

BN/Training 0,0021 0,0054 0,0023
BN/Test 0,0029 0,0067 0,0029
Test/Training 0,0014 0,0037 0,0017
Naive/Training 0,0029 0,0075 0,0025

Table 15: Reach predictions comparison based on differences between reach from
specified datasets (TV or online or joint) and the ones inferred from the joint Bayesian
network. Evaluation using only top 100 watched TV programs and top 100 visited
variables.

propose a consistent, based to some extent on earlier research in different domains,
framework to deal with these issues. We also test its different variants and general
best practices in modelling media content reach with Bayesian networks.

We test the concept of applying Bayesian networks for media reach modelling on
reduced data of 100 most watched TV programs and 100 most vised websites, as well
as on full dataset consisting of over 10.000 media content variables. Model accuracy
on reduced dataset shows good performance. Importantly application of proposed
framework helps not only to produce the joint model for all variables based on only
partially overlapping data, but also improves the quality of individual models trained
on single datasets. All of this suggest that proposed solutions could be successfully
used in business practice.

Obtaining the network for both TV and online variables allows us to discover sub-
stantial evidence of the existence of relationships between socio-demographic variables
and TV programs/websites reach. We also, observe direct (not explainable purely by
socio-demographic characteristics) relationships between consumption of TV and on-
line content.

Good results of the small-scale model on reduced datasets do not translate into
a performance of the network containing all media content variables. Its accuracy
being better than naive predictions remains insufficient for any practical use. This
conclusion does not undermine usefulness of Bayesian networks for modelling data
with lower number variables concluded above.

As our research are to big extend precursory, both with respect to analyzed data
and proposed methodology our research is subject to various limitations. The relative
simplicity of the approach expressed mainly by the use of discrete (not continuous)
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Bayesian networks and only one layer of latent nodes based on clustering. We believe
both simplifications were necessary at this stage of the research. Techniques of learn-
ing mixed, non-Gaussian continuous Bayesian networks (which would be necessary
in our case) are far more complex than these used for discrete models. Given lim-
ited computational resources it would not be feasible for us to handle this additional
complexity. Limitations in computational resources also influenced the decision to
create only one layer of hidden variables, learning of which already took a significant
amount of time.

Big difference in the quality of the results both on reduced as well as full dataset
suggests that our solutions might indeed be too simplistic. Addressing suggested
limitations might sufficiently improve the model performance. Especially increasing
number of hidden layers may be the optimal model development strategy, as it can
be done within our framework, even without complex adjustments (e.g. a structure
of new layers can be built on the basis of already performed hierarchical clustering).

We also note that several other elements of the proposed approach could be im-
proved as well. Nevertheless, we suspect improvement in these additional areas would
not have as big impact as these mentioned earlier. We see most promising areas to be:
an approach to networks structure learning, defining clusters of variables for latent
nodes creation and improvements in learning parameters of latent nodes. Knowledge
discovery by learning network’s structure is always a difficult task. Optimizing struc-
ture learning, both with respect to choice of an algorithm and a score, as well as
the incorporation of expert’s knowledge could potentially have a beneficial impact on
the model. The proposed method of clustering the media content variables based on
the use of matrix factorization output could be modified as well, in order to perform
dimensional reduction and clustering at once, minimizing the chances of potential
errors. Two-mode clustering could be used for this purpose (e.g. (van Dijk et al.,
2009)). Finally, improvements in EM algorithm, which is prone to finding local min-
ima could be implemented, e.g. by use of smart staring points. It could also improve
the convergence time. With respect to learning latent nodes, choice of the number of
classes of latent variables could also be optimized.

Further research, in addition to focusing on improving suggested framework, could
also focus on extending it for a wider problem formulation. Example of such direc-
tions might be inclusion of a time component in the model (possibly by using dynamic
Bayesian networks) or developing techniques of tuning Bayesian networks parameters
with use of additional information from extra data sources. We note that not necessar-
ily the Bayesian networks, but also other probabilistic graphical models or generative
models in general can be considered useful for the researched task.

We believe that, despite problems and shortcomings, which are hard to avoid in
early stages of development, both postulated use of Bayesian networks for delivering
insights into the reach of media content, and proposed framework for learning such
models are promising. In our opinion, relatively good results on reduced datasets and
existing visible directions for improvement of a model learning process prove it to be
an interesting area for further research.
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Appendix

A Socio-demographic variables used

Short name Full name

agerange Age
gendercode Gender
principalshopper Household principal shopper indicator
languageclasscode Language used
workinghours Working hours
ladyofhouseholdflag Lady of the household indicator
headofhouseholdflag Head of the household indicator
relationshiptoheadofhouseholdcode Relationship status of head of the

household
nielsenoccupationcode Occupation
worksoutsideofhomeflag Working outside home indicator
principalmoviegoerflag Principal movie goer
educationranges Education
internetusagehome Internet usage at home
internetusagework Internet usage at work
territorycode Territory code
timezonecode Timezone code
countysizecode County size code
headofhouseholdrace Head of the households race
householdlanguage Main household language
children Children indicator
childrenunder2 Children under 2 indicator
childrenunder3 Children under 3 indicator
children2to5 Number of children 2-5 years old
childrenunder6 Number of children under 6
children6to11 Number of children 6-11 years old
children12to17 Number of children 12-17 years old
numberofchildrenunder3 Number of children under 3
numberofchildren Number of children
numberofadults Number of adults in the household
householdsizecode Household size code
householdincomecode Household income
numberofincomes Number of incomes
headofhouseholdagebreak Head of the household age
headofhouseholdeducation Head of the household education
headofhouseholdoccupation Head of the household occupation
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ladyofhousepresentflag Lady of the household present indica-
tor

ladyofhouseoccupationcode Lady of the household occupation
wiredcable Wired cable connected
paychannels Access to pay-channels
cableplus Cable plus
alternatedeliverysystem Alternative TV provider
wireddigitalcable Digital cable wired
dbsowner DB owned
dvdowner DVD reader owned
presenceofdvr DVR owned
numberoftvsets Number of TV sets
numberoftvsetswithpay Number of TV sets with pay channels
numberoftvsetswithwiredcable Number of TV sets with wired cable
numberoftvsetswithwiredcableandpay Number of TV sets with wired cable

and pay channels
numberofvcrs Number of VCRs
videogameowner Video games owner
headofhouseholdorigincode Head of the household origin
headofhouseholdhispanic Head of the household Hispanic eth-

nicity
numberofdvrs Number of DVRs
householdwithcableservicesviatelco Household with cable from TelCo
numberofcars Number of cars
numberoftrucks Number of trucks
newcarprospectlast3years New car bought in last 3 years
newcarprospectlast5years New car bought in last 5 years
newtruckprospectlast3years New truck bought in last 3 years
newtruckprospectlast5years New truck bought in last 5 years
domesticvehicleindicator Domestic vehicle owned
foreignvehicleindicator Foreign vehicle owned
dogindicator Dog indicator
catindicator Cat indicator
pcaccesshomeindicator Access to PC at home
pcaccesswithinternetaccesshomeindicator Access to PC with Internet at home
householdincomerangesdetailed Household income range
householdincomeamount Household income amount
householdincomenonworking Household income from working
headofhouseholdgender Gender of head of the household
headofhouseholdworksoutsidehome Head of the household working outside

home
meteredmarketflag Metered market
homeownershipstatuscode Homeownership status
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homestructuretype Home structure type
homeownershipsecondaryhomestatus Homeownership status secondary

home status
beverageusagebottledwater Beverage usage bottled water
beverageusagecoffeeortea Beverage usage bottled coffee/tea
beverageusagesoftdrinks Beverage usage soft drinks
beverageusagetablewine Beverage usage table wine
nsimarketrankranges NSI market rank
telephonestatuscode Telephone status
collegestudentaway College student away
hdcapablehome HD cable
hdcapablereceivablehome HD cable receivable
hdtvdisplaycapable HD TV
householdinternetconnectionspeed Household Internet connection speed
householdtelephonecapability Household telephone capacity
numberofoperablecomputerscode Number of operable computers
numberofoperablelaptopscode Number of operable laptops
numberofoperabledesktopscode Number of operable desktops
numberofoperablecomputerswindowsoscode Number of operable computers with

Windows
numberofoperablecomputersmacoscode Number of operable computers with

Mac OS
numberofoperablecomputersotheroscode Number of operable computers other
broadbandonlyhousehold Broad band only indicator
asianhouseholdindicator Asian household
workingwomenflag Working women indicator
moviegoer Movie goer

Table 16: Full list of socio-demographic variables for respondents in TV panel.
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Short name Full name

age Age
gender id Gender
education id Education
race id Race
hispanic origin id Hispanic origin indicator
web access locations Location of web access
working status id Working status
occupation id Occupation
industry group id Employment industry
org size id Size of employer
life stage id Life stage
department type id Department of employment
purchase influence id Purchasing influence
members 2 11 count Household members 2-11 years old
members 12 17 count Household members 12-17 years old
household size id Household size
income group id Income group
property type id Type of owned property
web access computers id Number of computers with web access
primary isp id Primary Internet service provider
web conn speed id Internet speed - supposed
web conn speed metered Internet speed - measured
county size id County size
census region id Census region
census division id Census division
usage rank id Rank of Internet usage
hoh flag Head of the household indicator
prompt status id Property status
spanish lang dominance Spanish dominance
primary language Primary language
is mobile phone Access to mobile phone
is internet mobile Access to mobile Internet
use internet mobile Usage of mobile Internet
hh landline ph Phone landline in household

Table 17: Full list of socio-demographic variables for respondents in online panel.
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B Bayesian networks - theory

B.1 Parameter learning

For parameter learning in the thesis we make use of Bayesian framework. We assume
a multinomial distribution for our data. The Bayesian approach requires additionally
to specify priors for parameters in the Bayesian network. To effectively do so we
assume global and local parameter independence. These are widely used and not very
restrictive assumptions, true for vast majority of the domains (Koller and Friedman,
2009). Global parameter independence states that parameters θXi|PaXi

for eachXi are
independent from each other. Local parameter independence extends it to parameter
independence from variables parents as well, such that if variable parents set is P =
PaXi, and Pj, Pk ∈ PaXi than θXi|Pj

and θXi|Pk
are also independent.

Under this assumption we can treat each parameter of local PDF of variable Xi,
conditioned on its parents configuration and values, independently (Heckerman et al.,
1995).

As Dirichlet distribution is conjugate prior for multinomial one, we assume our
parameters follow it. Under this and previous assumptions the prior distribution over
the set of parameters p of a Bayesian network can be written as:

P (p|G) ∝
n∏
i=1

qi∏
j=1

ri∏
k=1

p
αijk−1
ijk

Γ(αijk)
, (3)

where αijk stands for hyperparmeters, and it is equal to number of cells in local PDF
table of Xi for parent set expressed by qi, such that αij =

∑ri
k=1 αijk, k = 1, ..., ri.

Since we use conjugate prior, the posterior also follows the Dirichlet distribution.
It is:

P (p|G,D) ∼ Dir(Nij1 + αij1, Nij1 + αij1, ..., Nijri + αijri) (4)

Typically, in applied setting for Bayesian networks, we do not investigate full pos-
terior distributions of parameters but use only their modes. Based on that parameter
estimate for i-th variable, for j-th parent variable taking h-th value is equal to:

p̂ijk =
αijk +Nijk

αij +Nij

. (5)

In the analysis, we assume a uniform prior over each node’s parameters. This
means that in each case αijk = αij/ri. Parameter αij in that setting is often referred
to as imaginary sample sizes and determines the strength of the prior.

B.2 Structure learning

Scored-based learning Central for scored-base algorithms is choice of a score,
which determines goodness of fit of the network. We focus on Bayesian information
criterion (BIC) as an approximation of a networks Bayesian score, which can be
expressed as:
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BIC(G,D) = logP (D|p̂, G)− d

2
logN (6)

d =
n∑
i=1

qi(ri − 1), (7)

with ri equal to number of bins in local PDF of Xi for parent set expressed by qi.
BIC has several desirable properties, most importantly it asymptotically (with

number of observations going to infinity) favours structure, which exactly fits depen-
dencies in the data (consistency), it gives the same values for all structures encoding
the same set of independencies (score equivalence), and it is decomposable – an be
computed for each variable separately (Koller and Friedman, 2009). The latter is par-
ticularly important in the learning process as it allows to assess a change in the score
caused by change of one arc by recalculating only decomposed scores for variables
under consideration without doing it for the whole network.

For the actual structure search, we utilise tabu algorithm (Scutari, 2010), which is
essentially a greedy hill climbing search with additional restrictions. Beginning with
some starting structure, it scores each possible operation on the graph. These oper-
ations are - between each pair of variables, if the arc exists – removing or reverting
it; if it does not exist – adding one. Scoring operations separately is possible due to
mentioned earlier score – decomposability. After obtaining the scores, it performs op-
eration, which gives the biggest improvement in the network score and iterates further
up to the point where the score cannot be improved. Tabu algorithm additionally
prevents the operations performed in the last n iterations to be reversed, improving
convergence speed. As every greedy approach tabu algorithm is prone to converge to
the local optimum, which can be at least partially prevented by using multi-start.

Constraint-based learning The main focus in constraint-based algorithms is put
on learning variables Markov blanket - a set of variables which render it independent
from all others; in Bayesian networks, it is equivalent to variables children and parents
of variables itself and its children. To efficiently discover Markov blanket for each
variable we utilize fast-IAMB algorithm (Yaramakala and Margaritis, 2005).

The fast-IAMB algorithm consists of two phases - growing and shrinking one.
In the growing phase, variables are added to the Markov blanket of given variable.
Multiple variables can be added in each iteration. The first number of independence
tests is conducted. Then variables are sorted based on tests significance, and being
included in the Markov blanket as long as a number of instances in the contingency
table is big enough for the test to be reliable (with suggested number equal to 5).
When this limit is reached to move to shrinking phase, in which we remove from the
Markov blanket all variables, which has become insignificant after adding new ones.
The procedure is repeated until there are no variables are removed in the second
phase.
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Having Markov blanket for each variable roles (being a child or parent) of other
ones in it are determined by comparing p-values of relevant tests. Then the network
is constructed based on it.

As the independence test we use suggested by authors of the algorithm mutual
information test, based on information-theoretic distance measure expressed as (Kull-
back, 1959):

MI(X, Y |Z) =
R∑
i

C∑
j

L∑
k

nijk
n
log

nijkn..k
ni.kn.jk

(8)

where X, Y are the variables we test independence of, Z is in our case current Markov
blanket, and {nijk, i = 1, ..., R; j = 1, .., C; k = 1, ..., L} are respective observed fre-
quencies. MI is proportional to the log-likelihood ratio. For implementation details
we refer to (Scutari, 2009). In the thesis we also learn networks with latent variables.
The details on our approach to that cna be found in Section C.3.
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C Supporting techniques

C.1 Matrix factorization

Matrix factorisation is a popular and efficient method used especially in fields where
one has to deal with high-dimensional and sparse data, like text mining, image pro-
cessing or recommender systems. It proved to be robust to noise in the data, com-
putationally efficient and deliver sparse and meaningful latent features (Gillis, 2014).
Discovered latent variables have also been successfully used for later clustering (Xu
et al., 2003).

The main idea behind matrix factorization is decomposition of matrix Rm×n,
which consists of observations for n users for m variables. We aim to approximately
represent such matrix as a product of two lower dimensional ones - Pk×m and Qk×n.
In this representation value for user i of j-the variable is predicted by vectors product
p′iqj (Koren et al., 2009). In recommender systems or similar setting matrix, P
can be interpreted as latent characteristics of media content and matrix Q as users
preferences towards them.

The task of finding proper values for lower-dimensional matrices is typically posed
as an optimization problem, expressed as (Chin et al., 2016):

min
P,Q

∑
i,j∈R

[(ri,j − p′iqj)
2 + µp ‖pi‖1 + µq ‖qj‖1 +

λp
2
‖pi‖22 +

λq
2
‖qj‖22], (9)

where vector norms are added as regularization terms and µp, µq, λp, λp are treated
as hyperparameters. The number of latent dimensions k along with these hyperpa-
rameters is typically determined by standard parameter tuning.

Finding a solution for such stated optimization problem is not trivial. Many
methods have been proposed to solve it, e.g. (Lee and Seung, 2001; Koren et al.,
2009; Balan et al., 2011), probably most popular ones being based on stochastic
gradient (SG) approach. Its main idea is randomly selecting one ri,j, calculating
gradient for it and updating corresponding pi, qj. The procedure is repeated until
convergence. In the thesis we employ parallelized variation on this algorithm - Fast
Parallel Stochastic Gradient (FPSG) (Chin et al., 2015) in the implementation by
(Qiu et al., 2017).

As our data are non-negative we use a variant of the algorithm, which constraints
search space to non-negative values.

C.2 Hierarchical clustering

The main aim of clustering is grouping objects into such groups that objects clustered
together are more similar to each other than to ones in other groups. Many methods
have been proposed to archive this objective, in the thesis, we make use of hierarchical
clustering.

Hierarchical clustering is based on iterative approach. Firstly, we assume all ob-
jects are separate clusters. Then, in each step we merge two, the most similar to
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each other, clusters into one. Similarity is based on distance matrix, with most of-
ten Euclidean distance used as dissimilarity measure. Cluster merging is followed
by updating the distance matrix, replacing rows and columns of merged groups by
joined one, with recalculated distances. General formula for updated distance can be
expressed as follows (Lance and Williams, 1967):

dA+B,C = α× dC,A + β × dC,B + γ × dA,B + δ × |dC,A − dC,B|, (10)

where A, B, C symbolize clusters, di,j distance measure between clusters i and j, and
α, β, γ, δ are parameters depending on choice of particular method. In the thesis
we employ Ward’s method, which aims to minimize inter-group variance. It tends to
produce relatively balanced classes and is rather resistant to chaining (subsequently
adding all variables to one class). Mentioned above parameters take values (Ward Jr,
1963):

α =
nA + nC

nA + nB + nC
, β =

nB + nC
nA + nB + nC

, γ =
−nC

nA + nB + nC
, δ = 0, (11)

where ni stands for size of cluster i.
Hierarchical clustering algorithm ends with all observations being contained in

one cluster. It is researchers role to decide into how many clusters split the data
using algorithms output - list of subsequent merging steps and distances between
merged clusters at each steps (heights). These are often visualized with so-called
dendrogram. A number of clusters is then often chosen based on elbow plot of heights
or by finding local maximum of ratios of subsequent heights. Alternatively measures
of quality of obtained groups as Calinski-Harabasz index (Caliński and Harabasz,
1974) or Silhouette width (Rousseeuw, 1987) can be used.

C.3 Learning hidden variables

Introducing hidden variables to a network can substantially complicate already com-
plex learning tasks, especially if a number of hidden nodes, their placement or car-
dinality are not known. Hierarchical latent class framework simplifies the problem.
The network structure is imposed based on external evidence – in our case with the
use of clustering. Nodes in each layer are assumed to be independent of each other
and are treated as known variables for further learning steps. Also, observed variables
connected to one node are assumed to be independent given this node.

All these assumptions allow us to treat task of learning each hidden variable values
individually. Thus, for each hidden node, we are faced with Näıve Bayes-like structure
with unknown class node. Distributions of all observed variables connected to it are
conditioned on its value. It means we can perceive learning its values as classification
task expressed as mixture model for multinomial distributions. The mixture model
for respondent i can be expressed as (Everett, 2013):
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f(xi|θ) =
K∑
k

πk × h(xi|αk), (12)

where xi is set of observed values for respondent i, θ is vector of parameters of
mixture model, K equals to number of latent classes, πk are latent classes proportions,
with

∑K
k πk = 1, and αk is class specific vector of parameters. Function h(xi|αk) for

mixture of multinomials becomes:

h(xi|αk) =
m∏
j=1

dj∏
h=1

(αkjh)
xijh , (13)

where m is the number of observed variables, and dj the cardinality of j-th one.
Identifiability of such formulated model has to be considered. The number of

parameters is equal to K ×
∑

j(mj − 1) + (K − 1) and it has to be lower then
number of observations or the number of combinations of possible values for observed
variables. We note the parameters number depends heavily on cardinality of latent
variable, choice of which is a problem of its own. We decide on number of latent
classes by using heuristic approach proposed by (Mourad et al., 2011). Cardinality
of hidden node depends on m and is equal to a×m + b, where 0 < a < 1, b > 1 are
parameters of our choice.

Parameters of the model are estimated by maximizing log-likelihood function:

f(xi|θ) =
n∑
i=1

ln
K∑
k

πk

m∏
j=1

dj∏
h=1

(αkjh)
xijh . (14)

It proves to be difficult task. Popular solution for finding parameters estimates
is Expectation-Maximization (EM) algorithm (Dempster et al., 1977). It is iterative
method consisting of Expectation (E) and Maximization (M) steps. E-step creates
an expectation function for log-likelihood under assumption of non-stochasticity of
current parameter estimates (only class affiliations are treated stochastically). M-
step switches the roles and maximizes obtained expected log-likelihood function to
find parameter estimates.

In the thesis we use EM implementation by (Langrognet et al., 2016). Authors
use slightly different formulation of the model function, introduced by (Celeux and
Govaert, 1991). It aims to improve identifiability of the model by making it easier
to impose restrictions on parameters. We note that for unrestricted models both
formulations are equivalent. For details we refer to (Biernacki et al., 2008).
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