
Replicator Neural Networks for Anomaly

Detection

by

Bart Lammers

Thesis supervisor: Dr. Andreas Alfons

Co-reader: Dr. Flavius Fr sincar

A thesis submitted in partial ful�lment for the degree of

Master of Science in Econometrics & Management Science

Business Analytics & Quantitative Marketing

at the

Department of Econometrics

Erasmus School of Economics

Erasmus Universiteit Rotterdam

April 19, 2018





Abstract

Identifying anomalies in large data sets is an area of research with many practical applications.

Auto-associative neural network architectures, such as autoencoders and replicator neural net-

works, identify anomalies by modeling normality and detecting deviations from the normal state.

In contrast to autoencoders, the mechanisms that drive the ability of replicator neural networks

to detect anomalies are not well understood. In this research, we provide the same explanation

of replicator neural networks that currently exists for autoencoders. By analyzing the recon-

struction manifolds of both techniques, we formulate several advantages and disadvantages of

replicator neural networks over autoencoders. These theoretical advantages and disadvantages

are then evaluated in a simulation study, where we show that, while the autoencoder is superior

in most scenarios, the replicator neural network performs especially well for certain types of

anomalies in data that contain clear segments. The methods are empirically compared using

three publicly available datasets.
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Chapter 1

Introduction

Anomalies often indicate interesting events and their detection is a topic of research that has

been investigated since the 19th century (Chandola et al., 2009). We follow Hawkins (1980) and

de�ne an anomaly to be an �observation which deviates so much from other observations as to

arouse suspicions that it was generated by a di�erent mechanism�.

In many applications, these di�erent mechanisms are more interesting than the normal data

generating process. An example is the analysis of credit card transactions, where anomalies

might identify cases of fraud. Another is detecting faulty components by monitoring technical

systems. In both cases, an observation can be anomalous in many di�erent ways and methods

that learn to detect speci�c cases based on annotated data might not be able to identify new

types of fraud or mechanical defect.

Also, an annotated data set of su�cient size is often not available and impractical to obtain.

In monitoring nuclear power plants, for instance, it is not feasible to sabotage a reactor in order

to obtain an anomalous sample. A less extreme example is in the detection of credit card fraud,

where the expected bene�ts of investigating a speci�c transaction might not exceed the required

expenditures.

In this thesis, we research the ability of several unsupervised reconstruction based techniques

to detect anomalies. More speci�cally, we investigate the di�erences between the auto-associative

neural network architectures commonly referred to as autoencoders and replicator neural net-

works (RNNs). Both methods perform a form of compression that allows only structural varia-

tion to persist. Anomalous samples, in general, contain relatively more non-structural variation

than normal observations and are less well reproduced after compression. These samples receive

a high reconstruction error, on the basis of which both methods discriminate between normal

observations and anomalous ones.

We show that these methods model normality using a reconstruction manifold that captures

the noise free state of the training data. Also, we show fundamental di�erences between their

respective reconstruction manifolds and explain that these follow from alternative activation

functions in the middle hidden layer. Using simulation, we assess the ability of autoencoders

and RNNs to detect several types of anomalies. These anomalies are constructed to highlight

the di�erences between the models. We show that the RNN is better in detecting anomalies that

speci�cally occur in segmented data but that the autoencoder yields more stable and superior

performance on other anomalies. This is con�rmed using three data sets on intrusion detection,

credit card fraud and malignant breast tumors. In addition, we investigate an alternative acti-

vation function and show that the resulting neural network has speci�c characteristics of both

1



2 Chapter 1 Introduction

autoencoders and RNNs. In practice, this activation function competes with the autoencoder

and outperforms the RNN.

1.1 Related work

RNNs were initially proposed in the context of data compression by Hecht-Nielsen in 1995.

Years later, Hawkins et al. (2002b) were the �rst to apply the method to anomaly detection. In

their work, the authors apply RNNs to two data sets with known anomalies and achieve high

accuracy. Dau et al. (2014) report an improvement on the same data and apply the method on

�ve other data sets. These data sets vary in contamination level and in the number of dimensions.

Between data sets, the obtained results vary substantially. Unfortunately, the authors do not

provide reasons for these variations.

Tóth and Gosztolya (2004) apply RNNs in the context of segmental speech recognition to

detect anomalous segments and achieve similar performance to methods more commonly used in

this area of research. This leads them to conclude that the RNNs provide a promising alternative

to the usual way of detecting anomalies in speech: through tedious annotation in combination

with supervised learning.

A comparative study is performed by Hawkins et al. (2002a), the same authors that proposed

RNNs for anomaly detection. They examine the performance of the method in comparison to

three other anomaly detectors on four data sets, of which one contains simulated data. The

RNN yields superior performance on one of the data sets and satisfactory results for both small

and large data sets.

In explaining why RNNs are able to detect anomalies, all authors resort to the heuristic

argument initially given by Hawkins et al. (2002b): �common patterns are more likely to be

well reproduced by the trained RNN so that those patterns representing outliers have a higher

reconstruction error�. Furthermore, the added value of the activation function of the RNN

over the autoencoder is explained as follows: �this activation function has the e�ect of dividing

continuously distributed data points into a number of discrete valued vectors, providing the data

compression that RNNs are known for� (Hawkins et al., 2002a).

Although both arguments hold true, they give little insight in the mechanisms that underlie

the ability of RNNs to detect anomalies. For the autoencoder, the theory that justi�es the

application to anomaly detection is largely given in the work of Kramer (1992). Interestingly

enough, this paper only discusses dimensionality reduction and does not contain a single notion

on anomaly detection. However, the same valuable interpretation of the reconstruction manifold

is given in relation to anomaly detection, albeit very concisely, by Thompson et al. (2002).

In the writing of this thesis, we have mainly built on the work of Kramer on autoencoders

(Kramer, 1991, 1992). Also, the work of Vincent et al. on denoising autoencoders has been very

helpful.

1.2 Contribution

Our main contribution to the literature is the extension of the theory that motivates the appli-

cation of RNNs to anomaly detection. Going beyond the heuristic explanation, we formulate

two reasons that drive the ability of RNNs to detect anomalies. We describe the reconstruction
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manifold of RNNs and compare it to the reconstruction manifold of the autoencoder. This allows

us to formulate two theoretical advantages and disadvantages of the RNN over the autoencoder.

Using these advantages and disadvantages, we construct anomaly types that exemplify the

expected practical di�erences in a simulation study. The practical value of the methods is further

assessed by benchmarking them on three publicly available data sets and comparing them to two

state-of-the-art anomaly detection techniques.

To the best of our knowledge, we are the �rst to formulate this theoretical explanation of

RNNs and their reconstruction manifold. Also, we are not aware of any research that has

empirically compared the e�ect of the di�erent activation functions relative to the autoencoder.

Lastly, we provide an implementation of the techniques in scope in the accompanying R package

ANN2.

1.3 Objectives and outline

In this research, we try to answer our main research question: �under what circumstances is

the RNN better at detecting anomalies than the autoencoder?�. The circumstances under con-

sideration are both arti�cially de�ned, using simulation, and based on realistic data. In order

to structurize our answer, we have identi�ed the following sub-questions, that serve the main

question:

1: what drives the ability of RNNs and autoencoders to detect anomalies?

2: what are the theoretical di�erences between RNNs and autoencoders?

3: what are the practical di�erences between RNNs and autoencoders?

The remainder of this thesis is organized as follows. In Section 2 we develop the necessary

theory on neural networks and end with a discussion on autoencoders and RNNs. This section

forms the answers to sub-questions 1 and 2. Section 3 presents the accompanying R package

ANN2. In Section 4, we �rst analyze the compression of hand-written digits in order to build

intuition about the methods. Then, in order to formulate more decisive statements, we conduct

a simulation study that answers sub-question 3. We �nalize by benchmarking the methods using

three publicly available data sets. In Section 5, we formulate our conclusions and answer our

research question. Lastly, Section 6 contains limitations of the current work and suggestions for

further research.





Chapter 2

Methods

2.1 Neural networks

The ideas that formed neural networks as we currently know them are loosely inspired by the

biological nervous system. Although the technique has evolved considerably over time, we believe

that understanding these original ideas helps in grasping the fundamental dynamic modeled in

modern neural networks.

2.1.1 Biological origin

Figure 2.1 shows a schematic visualization of a biological neuron as found in the nervous systems

of most organisms. The neuron roughly consists of a cell body, dendrites and an axon with axon

terminals attached. In the nervous system, the neuron is part of a structure of around 85 billion

neurons that communicate with each other through the use of neurotransmitters (Williams and

Herrup, 1988). The neurons are placed such that the axon terminals of one neuron are connected

to the dendrites of another.

When a neuron receives through its dendrites enough electrochemical stimuli from the axon

terminals belonging to the neurons it is connected with, such that a certain threshold is surpassed,

the neuron �res a signal along its axon towards subsequent neurons in the structure. It is this

conditional �ring, more commonly referred to as activation, that is modeled in arti�cial neural

networks (Winston, 2010). Since some of the �rst architectures, such as perceptrons, studied by

Rosenblatt (1962) and multi-layer version of the ADALINE network by Widrow and Ho� (1960),

many adjustments have been made.

Dendrites Cell body

Axon

Axon terminals

Figure 2.1: Biological neuron

5



6 Chapter 2 Methods

Hidden
layer

Input
layer

Output
layer

Figure 2.2: A diagram of a neural network with a single hidden layer.

An arti�cial neural network consists of an input layer, output layer, and one or more hidden

layers. In Figure 2.2, we see a schematic example of a network with a single hidden layer. Each

layer consists of a number of nodes, depicted by circles. In the current example, the input layer

contains three nodes, corresponding to the number of input variables. The second layer is the

hidden layer and contains four nodes. The �nal layer is the output layer and contains two nodes,

as determined by the number of dependent variables the model tries to explain.

The analogy between the biological nervous system and its arti�cial counterpart is that bio-

logical neurons correspond to nodes in the hidden layers which activate conditional on the input

it receives from nodes in previous layers, similar to the way neurons �re when the stimulation

surpasses a certain threshold.

2.1.2 Multi-layer architectures

More formally, a neural networks consisting of L layers takes as input P numeric variables xp,

where p = 1, ..., P and produces K numeric values yk, for k = 1, ...,K. The outputs of the nodes

in the (l−1)th layer serve as input to the nodes in the lth layer, for l = 2, ..., L. This is visualized

in Figure 2.2, where we see that each node in the network is connected to all nodes in adjacent

layers by directed edges but not to nodes within the same layer. At these edges, the output of

the rth node in the (l − 1)th layer, denoted by a
(l−1)
r , is multiplied by some weight ω

(l)
s,r, and

serves as input, together with a bias term b
(l)
s , for the sth node in the lth layer.

Within the nodes, the weighted output of the nodes in the previous layer and the bias term

are summed. After this summation, a transformation g(·) is applied and the result is de�ned as

the activation of the node, a
(l)
s . This results in the following expression for the activation of the

sth node of the lth layer:

a(l)s = g(

R∑
r=1

ω(l)
s,ra

(l−1)
r + b(l)s ), (2.1)

where R denotes the number of nodes in the (l − 1)th layer.

Activation function The transformation g(·) is de�ned by an activation function, which

should be speci�ed by the researcher. In the case of sign-function activation, we obtain the

traditional binary �ring where the bias term b
(l)
s can be interpreted as the threshold which

should be surpassed by the stimuli, corresponding to
∑R
r=1 ω

(l)
s,ra

(l−1)
r . Due to the computational

issues that arise from the non-continuous nature of this function, it is not often used in practice.
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Figure 2.3: Three commonly used activation function in the hidden layers.

Common choices for the activation function in the nodes of the hidden layers are the sigmoid,

hyperbolic tangent and recti�er functions, with speci�cations σ(x) = 1/(1 + e−x), tanh(x) =

2σ(2x)− 1 and ReLU(x) = max(0, x), respectively. These activation functions are visualized in

Figure 2.3.

The choice of activation function in the output layer, denoted by g̃(·), is twofold and pre-

scribed by the task of the network. In case of regression, the linear activation function should

be used, resulting in the network output z
(L)
k =

∑R
r=1 ω

(L)
k,r a

(L−1)
r + b

(L)
k , for k = 1, ...,K. Note

that the linear activation function simply performs the identity mapping.

However, if the task is classi�cation, we would like to be able to interpret the network outputs

as probabilities corresponding to class memberships. In this case, minimum requirements to the

activation function in the output layer are that its produced activations are on the interval [0, 1]

and that their sum is equal to one. The softmax activation meets these requirements and ensures

the correct interpretation, as argued by Bridle (1990) and con�rmed by Jacobs et al. (1991). It

can produce linear decision boundaries and is de�ned as

g̃k(z
(L)) =

exp(z
(L)
k )∑K

h=1 exp(z
(L)
h )

, (2.2)

where g̃k(·) denotes the kth element of the output of g̃(·) and z(L) = (z
(L)
1 , · · · , z(L)K ).

x2 Σ g
Activation

ŷ1

x1

x3

ŷ2

b
(2)
1

ω
(2)
1,1

ω
(2)
1,2

ω
(2)
1,3

ω
(3)
1,1

ω
(3)
2,1

Figure 2.4: A schematic neural network with three inputs, two outputs and a single
hidden layer containing one node. The bias-term belonging to the sth in the lth layer
is denoted by b

(l)
s and the weight going to the sth node in the lth layer, coming from

node r in the previous layer is denoted by w
(l)
s,r.
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Single layer example In the network depicted in Figure 2.4, the activation of the node in

the single hidden layer is equal to a
(2)
1 = g(

∑3
i=1 ω

(2)
1,i xi + b

(2)
1 ) and the activations of the nodes

in the output layer are g̃k(ω
(3)
k,1a

(2)
1 + b

(3)
k ), for k = 1, 2. For regression, activation function g̃(·)

performs the identity mapping and the output of this simple network becomes

ω
(3)
k,1g

( 3∑
p=1

ω
(2)
1,pxp + b

(2)
1

)
+ b

(3)
k , for k = 1, 2.

Matrix notation The preceding speci�cation of neural networks can be expressed in a matrix

notation that allows convenient interpretation of the networks internal transformations. More-

over, it forms the basis for computationally e�cient implementations because it allows one to

use linear algebra libraries, which are often highly optimized.

Looking at equation (2.1), we observe that the activations results from the outputs of the

previous layer by a number of transformations. More speci�cally, the outputs of the previous layer

undergo a scaling by the weights, a translation by the bias terms and a non-linear transformation

by the activation function.

The scaling by the weights can be expressed as
∑R
r=1 ω

(l)
s,ra

(l−1)
r = ω

(l)T

s a(l−1), where ω
(l)
s

is a vector of weights and a(l−1) is the vector of activations of the previous layer. Since this

scaling is performed at all nodes of the lth layer, the vector a(l−1) is multiplied by S di�erent

vectors ω
(l)T

s , where S is the number of nodes in the lth layer. If we de�ne the weight matrix

Ω(l) = (ω
(l)
1 , · · · ,ω(l)

S )T , we can express the joint multiplication as Ω(l)a(l−1). In Figure 2.5, we

visually explore the construction of this weight matrix Ω(l) and see that the element in the sth

row and the rth column corresponds to the weight ω
(l)
s,r. It follows that the weight matrix has S

rows and R columns, the number of nodes in the (l − 1)th layer.

After scaling a(l−1) by the weights, a bias term b
(l)
s speci�c to each node is added. Again,

using matrix notation we can express this in a compact form: z(l) = Ω(l)a(l−1) + b(l), where b(l)

is the S dimensional vector with elements b
(l)
s .

Lastly, this resulting term serves as input for the activation function g(·). If we impose that
this function acts on the elements of the S dimensional vector z(l) separately, we arrive at the

compact expression for the activations of the nodes in the lth hidden layer:

a(l) = g
(
Ω(l)a(l−1) + b(l)

)
.

ω1,1

ω1,2

ω 1
,3

ω
2,1

ω2,2
ω2,3

Ω =

[
ω1,1 ω1,2 ω1,3

ω2,1 ω1,2 ω2,3

]

Figure 2.5: On the left we see a two layers neural network and on the right we see
the corresponding weight matrix. The superscripts denoting layer number have been

omitted for notational simplicity.
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General de�nition In mathematical terms, using the introduced matrix notation, the above

speci�cation leads to the following concrete de�nition, adopted from Friedman et al. (2001) but

adjusted to the more general case of multiple hidden layers:

a(l) = g
(
z(l)
)
, l = 2, ..., L− 1, where,

z(l) =

Ω(2)x+ b(2), if l = 2

Ω(l)a(l−1) + b(l), otherwise,

f(x|θ) = g̃
(
z(L)

)
,

(2.3)

where θ is a parameter vector containing the weights and bias terms.

2.1.3 Representation learning

In neural networks, input variables are propagated through the network towards the nodes of the

output layer, undergoing a series of transformations as they pass each layer. As we now know,

these transformations consist of a multiplication by a weight matrix, followed by the addition of

a bias vector and lastly a non-linear element-wise transformation by the activation function.

Using these transformations, the network forms new representations of the input data as they

pass each layer. In this process, the network derives features from the data at increasing levels of

abstraction. It is this automatic feature creation that gives neural networks their power. Bengio

et al. (2013) even go one step further by making the statement that �The success of machine

learning algorithms generally depends on data representation�.

This behavior clearly presents itself in image classi�cation using neural networks where the

�rst layer typically learns to detect the presence or absence of straight or curved lines. The

second layer then detects motives in the relative locations of these lines and the third layer

combines these into parts that correspond to a certain part of the object to be classi�ed (LeCun

et al., 2015).

Layer transformations In order to understand the di�erent representations a neural network

can produce, it helps to inspect the transformations applied at each layer. In the leftmost plot

of Figure 2.6, we see two groups of points and a non-linear decision boundary that separates

them in two-dimensional input space. The second plot shows how the input space is transformed

by the �rst set of weights and bias terms. The multiplication by the weight matrix is a linear

transformation that can perform the high-dimensional equivalents of rotating, scaling, shearing
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Figure 2.6: From left to right we see how the input space is transformed as it moves
through a neural network with a single hidden layer containing two nodes with

hyperbolic tangent activations. This visualization is based on an animation included
in a blog post of Olah (2016).
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or re�ecting the data. The subsequent addition of the bias vector corresponds to a translation.

In the third plot, we see how the resulting space is transformed by the point-wise hyperbolic

tangent. This non-linear activation function transforms its input to the interval (−1, 1). The

sigmoid and recti�er functions map to the intervals (0, 1) and [0,∞), respectively. The rightmost

plot shows the �nal transformation by another weight matrix and bias vector. Note that the two

groups of points can now be separated by a linear decision boundary in the transformed space.

If we realize that neural networks perform an arbitrary number of these transformations

subsequently, as determined by the number of layers, we begin to appreciate their �exibility.

In case of classi�cation tasks, the layer-wise transformations are used to project the input data

on a space where they are linearly separable. If limits due to the network architecture or to

practical issues that arise during training do not allow the network to project onto this space,

the projection will be onto the space that allows to separate the classes as best as possible. If

the task is regression, the network projects the input data on a space, in the last hidden layer,

that allows to produce the desired output variables after linear transformations by the weight

matrix and bias vector.

2.1.4 Fitting neural networks

In equation (2.3), we see that, given the weights and bias terms, a neural network can be seen

as a function that takes as input a vector of explanatory variables, x, and produces a �tted

value, ŷ, in the solution space of y, where y is the K-dimensional vector of dependent variables.

During training, we try to �nd optimal values for these weights and bias terms that generalize

well to previously unseen observations.

Loss function The question arises as to what constitutes optimal values. This is determined

by the loss function that we try to minimize during training. Loss functions compare the observed

values, denoted by yi, to the �tted values, denoted by f(xi|θ) according to equation (2.3), for

i = 1, · · · , N . The choice of loss function is manifold and an important modeling decision to

be made by the researcher. A common choice for regression problems is the sum-of-squares loss

which is de�ned as

R(θ) =
1

N

N∑
i=1

K∑
k=1

α2
i,k, (2.4)

where N is the number of observations and the error associated with the kth dependent variable

of the ith observation is denoted by αi,k = yi,k − fk(xi|θ).
This loss function is heavily a�ected by observations with large errors due to its quadratic

nature. From an anomaly detection perspective, this can be seen as an unwanted property.

Possible anomalies that are present in the training data will have large e�ects on the parameter

values and might thereby reduce the networks ability to detect similar outliers in the future.

A loss function that prevents this is the absolute loss function which provides a linear relation

between the magnitude of the error and the loss and is de�ned as follows:

R(θ) =
1

N

N∑
i=1

K∑
k=1

|αi,k|. (2.5)

This loss function is less sensitive to aberrant observations and is therefore considered to be

robust.
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Another robust1 loss function which combines quadratic and absolute loss is the Huber loss

function:

R(θ|δ) = 1

N

N∑
i=1

K∑
k=1

α̃i, where α̃i =

αi,k, if |αi,k| ≤ δ,

δ(|αi,k| − 1
2δ), otherwise,

(2.6)

where δ is a scalar parameter to be set by the researcher. In this loss function, the relation

between the error and the loss is dependent on the magnitude of the error.

While these loss functions are also applicable in the case of classi�cation, a far more common

choice for this task is the log loss function. This measures the cross-entropy between the discrete

density of the dependent variable yi, and the density as de�ned by the probabilities provided by

the network, f(xi|θ). Its speci�cation is

R(θ) = − 1

N

N∑
i=1

K∑
k=1

yi,klog
(
fk(xi|θ)

)
, (2.7)

which simpli�es to − 1
N

∑N
i=1 log

(
fτ (xi|θ)

)
, where τ denotes the index belonging to the element

of yi that is equal to one. This simpli�cation reveals the equivalence to maximum likelihood

estimation and is due to the one-hot coding scheme of class membership, which corresponds to

a discrete density with all probability mass on a single element (Karpathy, 2016a).

Regularization In general, we cannot explain our dependent variables perfectly because our

data contain random variation and we might not have access to all explanatory variables. Of-

tentimes, the proposed neural networks architecture has more �exibility than strictly required

for the general pattern in the data that we try to describe. Therefore, the parameter values

associated with the global minimum of the loss function correspond to an over�tted solution

that explains more variation than our explanatory variables allow, and thus lead to poor gener-

alization performance (Choromanska et al., 2015).

By adding a regularization term to the loss function, we discourage the network to �nd

parameter values that lead to over-complex relations between the input and output variables.

This principle is often motivated by the principle of Occam's razor, which implies that one should

prefer the simpler of two solutions if they provide comparable results.

One possible way to impose this preference for simplicity is L2 regularization which includes

the sum of the squared weights in the loss function:

R∗(θ) = R(θ) + λ

L∑
l=2

R(l)∑
r=1

S(l)∑
s=1

ω(l)
s,r

2
, (2.8)

where S(l) and R(l) denote the number of nodes in the lth layer and the preceding layer, re-

spectively. Parameter λ controls the degree of regularization and should be speci�ed by the

researcher at values greater than or equal to zero.

1Note that some robust loss functions, such as Tukey loss, are not applicable to neural networks because their
derivative goes to zero for larger errors. Due to the use of gradient based optimization methods, this property
leads to issues in the �rst epochs where it is likely that many observations have a large error. These observations
would have no e�ect on training because they result in a zero-valued derivative of the loss function and any
information that they contain is therefore lost.
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An alternative is L1 regularization, where we replace the squared weights by their absolute

values:

R∗(θ) = R(θ) + λ

L∑
l=2

R(l)∑
r=1

S(l)∑
s=1

|ω(l)
s,r|. (2.9)

Both forms shrink the weights towards zero. Since L2 regularization involves the squared

values, this form yields stronger shrinkage for weights with absolute values greater than one but

smaller shrinkage for other values. Furthermore, L1 regularization is known to lead to sparser

models since its shrinkage does not decay for small values, setting some weights to zero.

Another notable form of regularization is early stopping. In this approach, we initialize the

weights such that they correspond to a simple relation between the explanatory variables x, and

the model output f(x|θ). We then stop training prematurely and thereby shrink the weights

towards their initial values (Friedman et al., 2001). Note that these adjustments do not a�ect

the bias terms.

2.2 Learning procedure

In the previous section we saw that, in order to �nd weights and bias terms that generalize well

to previously unseen data, we need to �nd values that minimize the regularized loss function

R∗(θ). For a network with L layers, of which each layer consists of S(l) nodes, for l = 1, ..., L,

this comes down to �nding values for
∑L
l=2 S

(l) bias terms and
∑L
l=2 S

(l−1)S(l) weights. In other

words, we have to �nd the minimum of the error surface de�ned by R∗(θ) in
∑L
l=2(S

(l−1)+1)S(l)

dimensional space.

The di�culties that arise in this optimization problem, have been one of the main reasons

for the late adoption of the technique. It was not until 1986, approximately 40 years after their

discovery, that a paper by Rumelhart and McClelland, popularized neural networks by proposing

a practical learning algorithm (Demuth et al., 2014).

2.2.1 Gradient descent

One of the elements that complicated training neural networks was the credit assignment problem.

This problem is due to the multi-layered architecture of neural networks and is clearly phrased by

Bishop (1995): �If an output unit produces an incorrect response when the network is presented

with an input vector, we have no way of determining which of the hidden units should be regarded

as responsible for generating the error, so there is no way of determining which weights to adjust

or by how much.�.

A solution to this problem is provided by gradient descent optimization and requires a neural

network speci�cation with di�erentiable loss and activation functions. Using the chain rule of

calculus, we can determine the partial derivatives of the loss function with respect to each weight

and bias, by exploiting the layered structure of the network.

If put together in a vector, these partial derivatives constitute the gradient of the loss func-

tion, denoted by ∇θR∗(θ), which points to the direction where the error surface is steepest.

Consequently, in order to minimize loss, we should take small steps in the opposite direction of

the gradient. This gives rise to the following parameter update:

θ∗ = θ − γ∇θR∗(θ), (2.10)
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where γ is the learning rate parameter which determines the size of the parameter update step

and should be chosen between zero and one.

Looking at the speci�cations of the loss functions, in for instance equations (2.4) and (2.7),

we see that obtaining an exact value for their gradient would involve an average over the errors

associated with all samples in our training data. This method, called batch-learning, often results

in slow learning due to the large computational task required for a single parameter update.

In practice, our datasets can become very large and we therefore do not use the exact gradient

in the parameter updates but instead use an approximation based on a subset of the observations,

called a mini-batch. In one iteration through the training data, commonly referred to as an epoch,

multiple approximate updates are performed, each based on a di�erent mini-batch.

Note that, while gradient descent is the dominant approach to training neural network, it is

a greedy method that constructs updates using only �rst order derivative information. Methods

that include higher order information should provide better parameter updates but, in general,

are computationally more demanding. We refer the interested reader to Bishop (1995), chapter

7 and Demuth et al. (2014), chapter 9.

Momentum An adjustment to gradient descent that often yields faster convergence but re-

quires only a small increase in computational complexity per parameter update (Wiegerinck

et al., 1994) is the momentum update

vj = λvj−1 − γ∇θR∗(θ)

θ∗ = θ + vj ,
(2.11)

where vj is a vector with the same dimension as θ and λ is the scalar-valued momentum-

coe�cient.

This update method introduces the concept of velocity, denoted by vj , which can be inter-

preted as the change in location of the parameters in the weight space at update step j. As we

can see, the gradient does not update the parameters directly but rather invokes changes to the

velocity vector. If the gradient points to the same direction in consecutive steps, momentum is

accumulated in that direction resulting in a larger next step. This results in faster convergence

to the minimum.

This improvement is especially apparent for highly non-spherical loss surfaces (LeCun et al.,

2012). To understand why, we inspect Figure 2.7, where we see an example of such a loss surface

with four parameter updates depicted. The parameter values are in the vicinity of the optimum

in dimension ω2, whereas the di�erence with the desired values is larger for dimension ω1. Ideally,

ω1

ω2

Figure 2.7: Illustration of an error surface, depicted by the elliptic contour lines,
with di�erent curvatures along its two dimensions. Four steps of a hypothetical

gradient descent trajectory are depicted in red.
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we would increase the steps in the direction of ω1 while we decrease steps in the direction of

ω2. Momentum achieves exactly this since along the dimension with the largest curvature, in

this case ω2, the direction of the steps tends to oscillate around the optimum, whereas the steps

taken in the ω1 dimension have the same direction. Therefore, momentum will accumulate in

the direction of ω1, while the steps taken in the ω2 dimension are comparable to unadjusted

gradient descent steps and we achieve the desired behavior.

The amount of momentum retained after each step is regulated by the parameter λ. Similar

to the learn rate, this parameter should be on the interval (0, 1). Since momentum allows us to

incorporate information regarding the change of the gradient, it is somewhat similar to including

second order information but does not require the expensive calculation of the Hessian.

2.2.2 Backpropagation

We have seen that gradient descent allows us to minimize the loss function by iteratively updating

the parameters using the gradient. This gradient consists of the partial derivatives of the loss

function, R∗(θ), with respect to the weights and bias terms. The process by which we calculate

these partial derivatives is called backpropagation and comes down to recursive application of

the chain rule of calculus.

Composite function Using the chain rule of calculus, we exploit the layer-wise structure of a

neural network by viewing it as a composite function. Looking at equation (2.3), each layer of the

network can be seen as a function a(l) = g(z(l)), where z(l) = Ω(l)a(l−1)+b(l) for l = 2, ..., L− 1

and where a(l−1) = x if l = 2. Furthermore, recall that the quality of the network output is

determined by the loss function R∗(θ), which compares the output to the target value y.

If the partial derivatives of R∗(θ) with respect to a(l) are known, we can use the chain rule

to obtain the partial derivatives with respect to a(l−1):

∂R∗(θ)

∂a(l−1) =
∂R∗(θ)

∂a(l)

∂a(l)

∂a(l−1)

=
∂R∗(θ)

∂a(l)

∂g(z(l))

∂a(l−1)

=
∂R∗(θ)

∂a(l)

∂g(z(l))

∂z(l)
∂z(l)

∂a(l−1)

=
(∂R∗(θ)
∂a(l)

◦ g′(z(l))T
)
Ω(l),

(2.12)

where operator ◦ denotes the Hadamard product and it must hold that R∗(·) and g(·) are

di�erentiable functions. The element-wise derivative of g(·) is denoted by g′(·). Note that

∂R∗(θ)/∂a(l−1) is a row vector.

The last equality in equation (2.12) holds true because element j of activation vector a(l)

is only a�ected by element k of vector z(l) if j = k. Therefore, ∂g(z(l))/∂z(l) is a matrix with

diagonal elements equal to the elements of g′(z(l)) and all others equal to zero. We can thus

rewrite the multiplication of vector ∂R∗(θ)/∂a(l) with diagonal matrix ∂g(z(l))/∂z(l) using the

Hadamard product and vector g′(z(l)).

Equation (2.12) implies a recurrence by which the errors are propagated backwards through

the network, hence the name backpropagation (LeCun et al., 2012). Note, however, that in order

to obtain the partial derivatives of R∗(θ) with respect to a(l−1), we not only need ∂R∗(θ)/∂a(l)

but also the values of g′(·) evaluated at z(l), and the weight matrix Ω(l).
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Parameter updates Using the same logic, we can obtain the partial derivatives of the loss

function with respect to Ω(l) and b(l) given ∂R∗(θ)/∂a(l). However, it turns out to be more

convenient to decompose the gradient into the partial derivatives of the loss function with respect

to z(l), and the partial derivatives of z(l) with respect to the weights and bias terms. In order

to do so, we de�ne the partial derivatives of the loss function with respect to z(l) as the error of

the lth layer:

δ(l)
T

=
∂R∗(θ)

∂z(l)

=
∂R∗(θ)

∂a(l)

∂g(z(l))

∂z(l)

=
∂R∗(θ)

∂a(l)
◦ g′(z(l))T ,

(2.13)

where we add a superscript T to the error vector to make explicit that it is row-oriented.

If we now combine equations (2.12) and (2.13), we obtain the following backward recurrence,

expressed in terms of δ(l):

δ(l−1)
T

=
∂R∗(θ)

∂a(l−1) ◦ g
′(z(l−1))T

=
(∂R∗(θ)
∂a(l)

◦ g′(z(l))T
)
Ω(l) ◦ g′(z(l−1))T

= δ(l)
T

Ω(l) ◦ g′(z(l−1))T .

(2.14)

As z(l) = Ω(l)a(l−1) + b(l), obtaining expressions for the partial derivatives with respect to

Ω(l) and b(l) is now easy. The partial derivatives with respect to the elements of weight vector

become:

∂R∗(θ)

∂ω
(l)
s,r

=
∂R∗(θ)

∂z
(l)
s

∂z
(l)
s

∂ω
(l)
s,r

= δ(l)s
∂
∑R
k=1 ω

(l)
s,ka

(l−1)
k + b

(l)
s

∂ω
(l)
s,r

= δ(l)s a(l−1)r ,

(2.15)

where δ
(l)
s denotes the sth element of δ(l) and R denotes the number of nodes in the (l − 1)th

layer. The partial derivatives with respect to the full weight matrix can therefore e�ciently be

calculated as ∂R∗(θ)/∂Ω(l) = a(l−1)δ(l)
T

.

The partial derivatives with respect to the bias vector b(l) are de�ned as follows:

∂R∗(θ)

∂b(l)
=
∂R∗(θ)

∂z(l)
∂z(l)

∂b(l)

= δ(l)
T

,

(2.16)

since ∂z(l)/∂b(l) is equal to the identity matrix.
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Backpropagation equations When we combine equations (2.14), (2.15) and (2.16), we ar-

rive at the backpropagation equations, which we adopt from Nielsen (2015), with some small

adjustments in notation:

δ(L)
T

=
∂R∗(θ)

∂a(L)
◦ g′(z(L))T ,

δ(l−1)
T

= δ(l)
T

Ω(l) ◦ g′(z(l−1))T ,
∂R∗(θ)

∂Ω(l)
= a(l−1)δ(l)

T

,

∂R∗(θ)

∂b(l)
= δ(l)

T

.

(2.17)

With these equations, we can determine the partial derivatives of the loss function with respect

to Ω(l) and b(l), for l = 2, ..., L. These can subsequently be used to compose the gradient of the

loss function ∇R∗(θ), which is the main component of the gradient descent updates in equations

(2.10) and (2.11).

Forward and backward pass Although the term backpropagation strictly only refers to the

propagation of errors backwards through the network in order to evaluate the gradient, it is

often used to refer to the whole process of gradient descent with backpropagation-based gradient

evaluations (Goodfellow et al., 2016). As such, the algorithm is divided into two passes through

the network that yield an improvement in computational e�ciency relative to when we consider

the steps separately.

During the forward pass, the weights and bias terms are considered �xed and the input

variables corresponding to one observation xi, are propagated forwards towards the nodes of the

output layer. In this process, the activations of the nodes of the hidden layers are computed and

stored, since they are also needed in the backward pass. At the end of this pass, the activations

of the nodes in the output layer compose the �tted value ŷi.

In the backward pass, the loss function compares ŷi to the target value yi, resulting in a

distance between the two. By recursive application of the backpropagation equations, the partial

derivatives of this loss function with respect to the weights and bias terms are determined. Thus,

the weights and bias terms are now considered adjustable. Since we have already calculated the

activations of the hidden layers in the forward pass, this backward propagation comes down to

several subsequent matrix multiplications and Hadamard products, as shown in equation (2.17).

The partial derivatives indicate how we should adjust the weight and bias terms in order to

decrease the distance between ŷi and yi.

2.2.3 Practical considerations

Although gradient descent with backpropagation is conceptually not di�cult to understand, it

can be hard to use in practice. The training process is in general strongly a�ected by the training

parameters, starting values and other initialization steps to be made by the researcher. Here we

discuss several guidelines that often yield faster and more reliable convergence.

Learning rate The value for the learning rate, γ, is an important parameter to tune since

it has a large e�ect on the training process. If set too large, the algorithm will not converge,

whereas, if set too small, the training process will require many parameter updates and will

therefore be unnecessarily time-consuming.
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A tuning procedure that is often applied in practice is to manually �nd the minimal learning

rate that causes the algorithm to diverge and then set γ to a slightly smaller value (Karpathy,

2016a).

However, in the vicinity of the minimum, small values for γ help the algorithm to narrow

in on the optimum while large values tend to �overshoot� (Zeiler, 2012). In general, we would

therefore like to make larger steps in the early stages of training, when we are far removed from

the optimum, and gradually decrease the step size as training proceeds. This process is called

annealing of the learning rate.

A simple annealing method is to use a schedule that speci�es the learning rate to be used

in di�erent stages of training, as determined by the training epoch. An example of a more

sophisticated approach is to monitor the training loss and anneal the learning rate by a certain

factor when the decrease in loss has not surpassed a certain threshold for a number of consecutive

steps (Vogl et al., 1988). Many approaches exist, for an overview, see George and Powell (2006).

Normalization of inputs The scaling of the input variables e�ectively determines the scaling

of the weights in the input layer (Friedman et al., 2001). If one variable has a larger variance

than others, the connected weights learn faster since the network becomes more sensitive to the

values of these weights. By normalizing the inputs such that their variances are all equal, we

therefore ensure that the associated weights learn at equal rates.

Next to scaling, centering the input variables around zero also bene�ts the training process

since it leads to more �exible weight updates. To see why, observe in equation (2.17), that

∂R∗(θ)/∂ω
(2)
s,r = δ

(2)
s xr since a

(l−1)
r = xr if l = 2. Note that the partial derivatives with respect

to the weights between the input nodes and the sth node of the �rst hidden layer are therefore

equal to δsx, and thus calculated using the same value δs. If we consider the case where all

elements of input vector x are positive, we can now clearly see that the weights connecting them

to the same nodes in the �rst hidden layer can only be updated in the same direction. This is

not optimal because, as LeCun et al. mention: �if a weight vector must change direction, it can

only do so by zigzagging which is ine�cient and thus slow�. By demeaning, elements of the input

vector that were initially strictly positive can have di�erent signs.

Choice of activation function In Figure 2.3, the sigmoid, hyperbolic tangent and recti�er

activation functions were introduced. Although the sigmoid has historically been popular, the

hyperbolic tangent is nowadays always preferred over the sigmoid (Karpathy, 2016b). The main

reason is that the sigmoid maps its inputs strictly to positive numbers, whereas the hyperbolic

tangent maps onto the interval (−1, 1).
This is favorable because we would like the input to the nodes of all layers to have unequal

signs, for the same reason that we want the elements of the input vector to have unequal signs.

Since the activations of the nodes in one layer serve as input to the next, we want the outputs

of the activation function to be around zero. The hyperbolic tangent achieves this purpose since

it is symmetric about the origin.

A weakness that both share, is that they can cause node saturation. This is due to the slopes

of the functions, which go to zero when their absolute inputs increase, as can be seen in Figure

2.3. Concretely, if the derivative of the activation function in the sth node of the lth hidden layer

is equal to zero, that is g′(z
(l)
s ) = 0, then δ

(l)
s = 0, since δ

(l)
s = ∂R∗(θ)/∂a

(l)
s ◦ g′(z(l)s ). According

to equation (2.17), the partial derivatives with respect to b
(l)
s and the elements of the sth row

of Ω(l) must then also be zero. Hence, the gradient descent updates leave the corresponding
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weights and bias unchanged and the node remains saturated2. Furthermore, since the error of a

saturated node is close to zero, the node does not propagate errors further backwards through

the network.

This can lead to problems during training because, if many nodes become saturated, the

weights and bias terms in the lowest layers are rarely updated. This phenomenon is called

the vanishing gradient problem and is enhanced by the fact that the sigmoid and hyperbolic

tangent have a maximum derivative of 0.25 and 1, respectively. Due to the recursive nature

of the backpropagation equations, as shown in equation (2.14), the errors are multiplied by an

evaluation of g′(·) at each layer. Since the output of g′(·), for the sigmoid and hyperbolic tangent,

is a number smaller than or equal to 1, the learning rate of the �rst layers is reduced even further.

The vanishing gradient problem is especially evident in the case of networks with many

hidden layers, in the literature referred to as �deep� neural networks (Glorot et al., 2011). The

recti�er function is currently the most popular among practitioners of these networks since it

partly overcomes this issue (LeCun et al., 2015). Its de�nition, being ReLU(x) = max(0, x),

motivates the distinction of two states in which a node can be: active or inactive. When x is

smaller than zero, the corresponding node is inactive since the partial derivative of the recti�er

is equal to zero. For values of x larger than zero, the partial derivative is one and the node is

active. This binary behavior leads to paths of active nodes that propagate activations forwards

and errors backwards, while the inactive nodes do neither since their activations and gradient

are zero.

For a given set of weights and bias terms, each input vector activates the nodes in a di�erent

way, dependent on the values of its elements, and the network will therefore choose the path

it takes for each observations separately. Networks of this kind are often called sparse and are

said to resemble the behavior of biological neurons more closely than networks with sigmoid or

hyperbolic tangent activations (Glorot et al., 2011). Furthermore, along paths of active neurons,

saturation will not occur since the gradient is equal to one and thus does not decay for larger

inputs (Maas et al., 2013).

Lastly, the calculation of the recti�er requires a simple truncation at zero and is less expensive

than the sigmoid and hyperbolic tangent that involve the evaluation of exponentials. Practice

has shown that certain deep neural networks can train up to six times faster by use of recti�er

activations (Krizhevsky et al., 2012).

However, the recti�er also has its disadvantages. For example, if the learning rate is set too

high, the weight and bias terms can update in such a way that some nodes can �die� and become

inactive for all observations in the sample (Karpathy, 2016b). At these nodes, the weighted input

resulting from all observations activate the node in the �at, zero-values area of the activation

function. Also, note that the recti�er function can only produce positive values and therefore

su�ers from the same problem as the sigmoid. Furthermore, conditional on a certain path of

active nodes through the network, the network can be seen as a linear function and therefore

lacks some �exibility in the transformations it can apply. For instance, if we would have used

recti�er activations in the network used in Figure 2.6, we would not have been able to achieve

linear separability.

Initial weights and bias terms Related to the concept of saturation are the initial values

for the weights and bias terms. These should be chosen such that the activation functions

2Note that, although g′(z
(l)
s ) = 0 must hold for all possible mini-batches for the nodes to truly get stuck, the

case where the gradient is small due to near-zero values of g′(z
(l)
s ) is also referred to as saturation.
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are primarily activated in their near-linear regions (LeCun et al., 2012). As such, they are far

from causing the nodes to saturate and therefore lead to fast learning. Furthermore, since all

activation functions are near-linear, the network can be seen as an approximately linear model.

As training proceeds, nodes can introduce non-linearities where needed by moving towards the

parts of the activations functions with more curvature (Friedman et al., 2001). It is therefore

advisable to initialize the weights and bias terms at small random values around zero.

Setting the initial values exactly to zero leads to symmetry problems because this will lead

to equal weighted inputs for all nodes in the same layer. It follows that the error corresponding

to these nodes must also be equal and the gradient descent updates of the parameters associated

to these nodes are restricted to be equivalent. The weights and bias are therefore not able to

move relative to other weights and bias terms in the same layer (Karpathy, 2016b).

Also, zero-valued weights would prohibit the propagation of errors in the backward pass

during the �rst epochs of training. To see why, observe in equation (2.14) that δ(l−1)
T

=

δ(l)
T

Ω(l) ◦ g′(z(l−1))T . Therefore, δ(l−1) = 0 if Ω(l) is a matrix of zeroes.

Mini-batch selection As discussed earlier, the choice between batch and mini-batch learning

involves a trade-o� between speed and exactness. In mini-batch learning, the gradient is based

on a subset of the observations, and is therefore a less expensive, but noisy, approximation of the

exact gradient. As it turns out, this noise is actually bene�cial in the training process because it

can prevent getting stuck in a local minimum. If one would use the exact gradient, the algorithm

would not be able to �jump� out of local minima.

Related to this concept is the statement from LeCun et al. (2012) that �networks learn the

fastest from the most unexpected sample�. This gives rise to the question as to how we select

the subsets of observations that constitute the mini-batches. It is possible to use emphasiz-

ing schemes, similar to the sampling schemes used in boosted decision trees, such that higher

probability is placed on observations that result in a large error, given the current parameter

values.

However, this can be seen as hazardous since it can amplify the e�ect of anomalies that

might be present in the training data. When used for anomaly detection, we therefore argue

against using emphasizing schemes but instead recommend shu�ing the samples prior to each

new epoch. Doing so will lead to more variation in the updates, which decreases the probability

of getting stuck in local minima, without increasing the in�uence of outliers.

2.3 Auto-associative neural networks

The neural networks discussed thus far are trained in a supervised manner. Using a number of

annotated samples, the weights and bias terms are determined that provide small errors between

the targets and their �tted values. Alternatively, we can train the network to learn an identity

mapping such that it reconstructs the input vector. As such, no dependent variables are required

and the network is trained unsupervised.

2.3.1 Autoencoders

The identity mapping is a trivial task for a neural network with enough �exibility, since the

network can learn a set of weights that activate the nodes in the near-linear regions of their

activation functions. For the sigmoid and hyperbolic tangent this will be when their inputs are
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Figure 2.8: A diagram of an autoencoder with encoding and decoding steps
depicted.

around zero. This allows the formation of P non-overlapping paths between each input and

output pair, where P is the dimension of the input (and output) vector.

By imposing the restriction that Mc < P , where Mc denotes the dimension of the middle

layer, the network is, in general, not able to retain all information included in the P input

variables and must perform a compression to Mc values. The middle layer is therefore often

referred to as the compression layer. From these Mc compressed values, the network then tries

to reconstruct the input variables, such that the error between the input vector, x, and the

network output, x̂, is small.

These compression and decompression steps motivate the distinction between two operations

that are performed: encoding and decoding. The �rst layers of the network, up to and including

the middle layer, perform the encoding step. The middle layer and all higher layers perform the

decoding step. Note that the middle layer is included in both steps.

Following Kramer (1992), we de�ne an autoencoder to have three hidden layers with the

linear activation function in the compression layer and non-linear activations in the other hidden

layers. For the nodes in the output layer we specify the linear activation function. In Figure 2.8,

we see a visualization of an autoencoder with the encoding and decoding steps depicted.

An advantage of the linear activation function in the compression layer is that it does not

contribute to the vanishing gradient problem because its derivative is equal to one on its entire

domain. Autoencoders, according to our de�nition, are therefore essentially not more di�cult

to train than a neural network with two hidden layers. However, since both the encoding and

decoding steps contain a hidden layer with non-linear activations, both steps can perform non-

linear mappings.

Although we specify no formal method of selecting the numbers of nodes in the �rst and

third hidden layer, denoted by M1 and M3, respectively, we note that they should be chosen

su�ciently large, such that both the encoding and decoding step have enough �exibility to

produce the required non-linear transformations. As a lower bound, M1 > Mc and M3 > Mc

should hold for the compression to actually take place in the compression layer. Furthermore, as

a rough upper bound, Kramer (1991) proposes M1 +M3 � N , where N denotes the number of

observations. For simplicity, we impose that M1 =M3, although this restriction serves no other

practical purpose.

Relation to principal components Autoencoders are often said to be a non-linear general-

ization of principal components (Kramer, 1992). In fact, Bourlard and Kamp (1988) have shown
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that auto-associative networks with a single hidden layer give the same low dimensional repre-

sentation as the �rst Mc principal components, regardless of the type of non-linear activation

function used. Furthermore, the result of Baldi and Hornik (1989) states that this equivalence

also holds for auto-associative networks with only linear activations and an arbitrary number of

hidden layers. Both results assume squared error loss. Like principal components, these auto-

associative networks therefore provide an optimal linear encoding by taking linear combinations

of the input variables, in the sense that they achieve a minimal reconstruction error.

However, calculation of the principal components using a singular value decomposition is to be

preferred over training a neural network with gradient descent. The latter requires speci�cation

of the number of compressed values, Mc, beforehand whereas a singular value decomposition

provides all components at once. The optimal level of compression can then be determined with

the squared eigenvalues using, for instance, a scree plot or the Kaiser criterion. Furthermore,

the singular value decomposition is in general less computationally demanding.

The equivalence of a single hidden layer auto-associative networks and principal components

implies that, in order to capture non-linear relationships between variables, we need an extra

layer of nodes with non-linear activations in both the encoding and the decoding step. These

layers allow an arbitrary mapping from the input space to the compressed values and from the

compressed values to the reconstruction space.

Encoding In the encoding step, the autoencoder projects the input data on a low-dimensional

space from which they can be well reproduced. Not all information present in the input vectors

can be preserved and the autoencoder is forced to discard some features of the data. In doing

so, the autoencoder should distinguish between random variation and variation that is more

structural.

Structural variation, such as correlations between elements of x, can be used to derive higher

level features that explain multiple elements up to some extent and thereby allow for a dimen-

sionality reduction. Random variation, although equally penalized by the loss function if not

reproduced accurately, cannot be generalized in the same manner and should be discarded �rst.

In the left plot of Figure 2.9, we see the line corresponding to x2 = x21 + x31 and a number of

points generated according to the same relation with some added random noise. If we learn the

structural variation that is due to the relation between x1 and x2, and we know the value of x1,

we are able to determine the location of x = (x1, x2), up to some random noise. Therefore, if an

autoencoder is able to learn the dependency of x2 on x1, it can discard the value of x2 and still

reconstruct the original vector with high accuracy from the value of x1.

This concept is closely related to the intrinsic dimensionality of the data. Formally, the

intrinsic dimensionality is the dimensionality of the the subspace that completely contains the

data (Bishop, 1995). However, we will conform to the characterization by Kramer (1991), who

states that the intrinsic dimensionality is �the number of independent variables underlying the

signi�cant non-random variations in the observations�.

In general, an autoencoder with a value for Mc equal to the intrinsic dimensionality of the

data, and M1 and M3 set su�ciently large, has enough �exibility to capture the structural

variation in the data but cannot also preserve variation due to random noise. It follows that

this autoencoder, provided that it is properly trained, produces low-dimensional representations

of the input vectors that are free of noise. For this reason, autoencoders are said to have a

denoising property.
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Figure 2.9: In both plots, we see the black line depicting the mean of x2 given x1
and points generated according to the same relation with added random noise. In the

right plot, the orange line corresponds to the reconstruction manifold of an
autoencoder with M1 =M3 = 5 and Mc = 1. The reconstructions are projections
onto this reconstruction manifold. Note that the projections are not made directly,

but rather through the compressed values.

Decoding In the decoding step, the autoencoder attempts to reconstruct the input variables

from the low-dimensional representation in the compression layer. Although the reconstructed

vectors are P -dimensional, they are by de�nition completely contained in aMc-dimensional sub-

space. This sub-space is called the reconstruction manifold and is equivalent to the range of the

decoding step, given some set of weights and bias terms.

The right plot of Figure 2.9 provides a geometric interpretation of the reconstruction manifold,

depicted as an orange line. Particularly, notice that this manifold results from the coordinate

system de�ned by the compression layer, a number line since Mc = 1, by a non-linear transfor-

mation that maps each point on the number line to a unique point in two-dimensional space.

More generally, we can think of the reconstruction manifold as a P -dimensional non-linear gen-

eralization of the Mc-dimensional coordinate system de�ned by the nodes in the compression

layer.

This plot also shows that most3 observations are projected orthogonally onto the reconstruc-

tion manifold. This is due to the fact that, during training, the weights and bias terms are

optimized by minimizing a loss function. For the squared error loss function, as used in the

construction of Figure 2.9, this comes down to minimizing the sum of the euclidean distances

between the original input vectors and their reconstructions. As a result, the reconstructions are

located on the points of the manifold that are closest to the original observations and correspond

to orthogonal projections.

Lastly, we see that the reconstruction manifold closely follows the noise-free relation between

x1 and x2. This is in part due to the denoising property that ensures no persistence of noise

in the low-dimensional representation of the compression layer. However, the encoding step

cannot also reduce the random variation present in the target values during training. Possible

anomalies in the training set can therefore still a�ect the weights and bias terms in the decoding

step, such that the reconstruction manifold is biased towards reconstructing a small sub-set

3More speci�cally, the points in the top-right corner are not reconstructed at the closest point on the manifold.
A reason might be that these observations are not well represented in the training data. In this case, the
autoencoder has not learned to reconstruct them well.
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of aberrant observations with low error. This can be prevented by proper regularization and

su�cient training data.

The combination of these characteristics of the reconstructions gives rise to the statement

of Kramer (1992) that, for observations that are well represented in the training data, their

reconstruction is �the closest consistent noise-free state for the given input�.

Anomaly detection The motivation for the ability of autoencoders to detect anomalies is

based on two observations on reconstructions and anomalies. First, all reconstructions must lay

on the reconstruction manifold and this manifold follows the noise-free relations in the data.

Second, anomalies are rare and deviate from the general pattern in the data.

Using these we can formulate the following main reasons that drive the ability of autoencoders

to detect anomalies:

1) anomalies are not projected orthogonally onto the reconstruction manifold,

2) anomalies often have a larger distance to the reconstruction manifold than normal obser-

vations.

The �rst reason holds because anomalies are in general not well represented in the training

data and the autoencoder has therefore not learned to map them to the closest point on the

reconstruction manifold. The projection to the closest point corresponds to an orthogonal pro-

jection. In general, the projections of anomalies on the reconstruction manifold will thus not be

orthogonal.

The second holds for anomalies that do not conform to the general pattern in the data in

that they deviate more from the noise-free relations between the variables, compared to normal

observations. Because the reconstruction manifold does follow these relations, the anomalies

have a larger distance to the reconstruction manifold than normal observations.

Both reasons lead to a high reconstruction error, which forms the basis of the outlier factor,

the metric used to distinguish normal observations from aberrant ones. Following Hawkins

et al. (2002b), we de�ne the outlier factor of the ith observation to be the average squared
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Figure 2.10: Again, we see points generated by the same model but now six
anomalous points are also depicted, along with their reconstructions.

Reconstructions of normal points have been omitted for clarity.



24 Chapter 2 Methods

reconstruction error over all P features:

OF i =
1

P

P∑
p=1

(xi,p − fp(xi|θ))2. (2.18)

In Figure 2.10, we see an example of an autoencoder applied for anomaly detection. The

six anomalies, depicted as blue points, have a larger distance to the reconstruction line than

normal points because they show large deviation from the noise-free relations between x1 and

x2. Moreover, the projections onto the manifold are not orthogonal, indicating that the learned

identity mapping is not optimal in a least-squares setting for these observations.

The length of the line that connects each point to its reconstruction in euclidean space is the

reconstruction error. These reconstruction errors are larger for anomalies in comparison with

normal observations and can thus be used to identify anomalies, where large errors indicate that

a data point might be corrupted.

Imputation device In the case of missing attributes of an observation, trained autoencoders

can be used to construct an imputation using the non-missing attributes. Let xm and x−m

denote the sets corresponding to the missing and non-missing elements of the input vector,

respectively. If we have a reasonable idea of the domain of xm, we can employ a grid search to

�nd values that minimize the loss associated with the imputed input vector, given the values of

x−m (Kramer, 1992). These values are the most consistent with the noise-free relations between

the variables, as observed in the training data, conditional on the non-missing set, x−m.

Geometrically, this amounts to �nding the values of xm that result in the smallest distance

between the imputed vector and its reconstruction. Note that the number of missing values

should be smaller than the number of nodes in the compression layer to avoid identi�cation

problems.

2.3.2 Replicator neural networks

RNNs are similar to autoencoders but di�er in the activation function used in the compression

layer. Particularly, the linear activation function is replaced by a step function. This step

function induces a clustering of the low-dimensional representations into a number of discrete

points. In the context of anomaly detection, this clustering can aid in discriminating between

normal observations and anomalies, for reasons explained below.

Step function We adopt the functional form of Hecht-Nielsen (1995), that allows to adjust

the number of treads and the smoothness of the step function with the parameters H and κ,

respectively:

gs(x) =
1

2
+

1

2(H − 1)

H−1∑
j=1

tanh
(
κ
(
x− j

H

))
. (2.19)

This function is visualized in Figure 2.11 for multiple values of κ. The values for H and κ

are parameters to be set by the researcher. Note that large values for κ lead to a less smooth

activation function with large �at regions, corresponding to the treads of the step function. As κ

increases, a larger part of the domain of gs(x) maps to one of the treads and more observations

are therefore placed on treads. Activations that result from the same tread are equally valued
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Figure 2.11: Step function in as shown in (2.19) for H = 5 and varying values of κ.

and the step function therefore produces H discrete outputs: 0, 1
H−1 ,

2
H−1 , · · · , 1 (Hawkins et al.,

2002b).

Clustering Assuming that all observations are placed on one of H treads, for each of the Mc

nodes in the compression layer, the number of possible combinations is equal to HMc . Generally

N � HMc , and multiple observations are placed on the same combination of treads. These obser-

vations together form a cluster and are compressed to identical low-dimensional representations

and therefore have equal reconstructions.

The range of possible reconstructions thus consists of HMc points, in the following referred to

as reconstruction points. However, rather than viewing the reconstruction space as being discrete,

we can interpret the reconstruction points as points that lay on the continuous reconstruction

manifold and contain all observation that are placed in the same cluster.

We see this visualized in Figure 2.12. To minimize loss, the network must �nd a mapping, in

the encoding step, that places similar observations together in a cluster. Then, in the decoding

step, the low-dimensional representation belonging to this cluster must be generalized to a re-

construction point that provides a good �t for all observations in the cluster. The reconstruction

points will therefore in general be located in regions of high density.

Anomaly detection This way of making reconstructions presents a di�erence between autoen-

coders and RNNs in the way that they distinguish between anomalies and normal observations.

Whereas the autoencoder models the noise-free relations between variables using the reconstruc-

tion manifold, and identi�es anomalies by detecting deviations from these relations, the RNN

identi�es regions of high density in the input space. A large distance from these regions indicates

that a point is aberrant.

Despite this fundamental di�erence, the two main reasons that drive the anomaly detection

capabilities of the autoencoder also hold for RNNs, albeit with small modi�cations. In the

case of reason 1), there is no such thing as an orthogonal projection onto a point in space. In

this context, it is more meaningful to think about cluster assignment rather than projections

onto the continuous manifold. Following the same argumentation as before, we can state that

the assignment of observations to clusters has been optimized for normal points, that are well

represented in the training data. Anomalies are rare and the encoding step has not been trained

to assign them to the cluster that leads to the smallest reconstruction error.

The modi�cation to reason 2) is that we make explicit that the distance is now measured

with respect to several reconstruction points on the manifold. This modi�cation is minor but
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useful, since it underlines the discreteness of the reconstructions and the fundamental di�erence

between the methods.

This brings us to the following reasons that drive anomaly detection by RNNs:

1) cluster assignment is less optimized for anomalies than for normal observations,

2) anomalies have a larger distance to the reconstruction points than normal observations.

The di�erences with the autoencoder are clear. For the autoencoder, we consider orthogo-

nality of projections and deviation from the noise-free relations between the variables as discrim-

inating factors between anomalous and normal observations. For the RNN, these are replaced

by cluster assignment and distance to high density regions.

Advantages of clustering These di�erences, among others, allow us to identify a number of

advantages to the application of anomaly detection that result from the clustering. Advantages

of clustering are:

a) a bounded manifold,

b) isolation of reconstruction points.

Both require explanation. Advantage a) is due to the fact that the step function is bounded

below and above by the bottom and upper tread, respectively. The linear activation function

used in the compression layer of the autoencoder does not have this property.

During training, in the attempt to discriminate between observations that are considered

distinct, the encoding step will often push observations onto the bottom and upper tread. In

practice, the clusters associated with these treads are therefore almost always populated, and

larger than those corresponding to intermediate steps.

Since the decoding step is trained to give low reconstruction errors, the reconstruction points

associate with these clusters will be mapped to regions of the input space with high density.

Furthermore, due to the ordering of the treads of the step function, these reconstructions points

correspond to the extremes of the reconstruction manifold. We can observe this in Figure 2.12.

Given that the RNN has been properly regularized, the weights and bias terms are shrunk

towards zero such that irregularities in the reconstruction manifold are smoothed out. Deviations
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Figure 2.12: Again, we see points generated by the same model but now six
anomalous points are also depicted, along with their reconstructions.

Reconstructions of normal points have been omitted for clarity.
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from the path between the reconstruction points corresponding to the bottom and upper tread

will therefore not occur, unless it is justi�ed by the patterns in the data.

Although this argumentation does not form a universal proof, it does provide reason to believe

that the reconstruction manifold is, in general, bounded to areas of the input space that contain

training data.

This does not hold for the autoencoder since the linear activation function in the compression

layer is not bounded. For a given set of weights and bias terms, the reconstruction manifold

of the autoencoder can continue inde�nitely. As a result, anomalies that are located at a far

distance from normal observations might still lay in the vicinity of the reconstruction manifold.

The reconstruction errors associated with such anomalies will be misleadingly small. A bounded

manifold overcomes this limitation.

Advantage b) mainly holds for data sets that contain segments with non-contiguous densities.

The reconstruction manifold must connect all reconstruction points and therefore also resides in

the low-density regions in between the corresponding segments. In case of the autoencoder, an

anomaly that is also located in this region might receive a small reconstruction error because its

distance to the reconstruction manifold is small. The autoencoder will not be able to identify

this anomaly.

Isolated reconstruction points mitigate this risk. If we know the number of segments, we

can specify a RNN such that the number of reconstruction points is equal. Assuming that the

segments each have a single associated reconstruction point, located near their centers, the RNN

only maps to these reconstruction points, and not to the areas of the reconstruction manifold in

low-density regions. The reconstruction error corresponding to anomalies located in low-density

regions in between segments will therefore be larger.

Disadvantages of clustering The clustering also has the following disadvantages:

a) masking of subtle anomalies near clusters,

b) speci�cation of H and κ.

Disadvantage a) often shows for segments that have a component of variance that is small

relative to another. In this setting, an observation can be aberrant in its direction of deviation

but still have a small euclidean distance to the center compared to normal observations. This

anomaly will not receive the largest outlier factor of the observations in the segment and will

thus be masked.

We can observe an example of this disadvantage by comparing the reconstructions of the

observations in the top-right corner of Figure 2.10 and Figure 2.12. Here we see several normal

points and a single anomaly. Note that the reconstruction of the anomaly is approximately equal

for both methods and the reconstruction errors therefore roughly correspond. Also note that

the reconstruction errors associated to some normal observations are larger for the RNN than

for the autoencoder.

Where the autoencoder projects near-orthogonally onto the reconstruction manifold, the

RNN projects to a single point. This single reconstruction point is more restrictive and cannot

provide a good �t for all observations in the cluster. The �exibility of the autoencoder allows a

tighter �t to all observations in the region and does not su�er from this de�cit.

Disadvantage b) is of a more practical nature. The RNN, compared to the autoencoder,

depends on two additional tuning parameters: H and κ.
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H is commonly set to a value around 5 in the literature (Hawkins et al., 2002b; Hecht-Nielsen,

1995). Ideally, we would choose H based on information about underlying segments that are

present in our data such that HMc is approximately equal to the number of segments. In many

applications, the data does not contain clear segments or this information is not available to us.

For �xed Mc, in case H is set too large, either the observations will be divided over a

larger number of clusters or the reconstruction manifold will contain many �empty� clusters.

The �rst scenario will, in general, lead to a tighter �t with more observations and therefore

have a moderating e�ect on disadvantage a). The empty clusters form the risk of diminishing

advantage b). The reconstruction points associated to the empty clusters can be located at

arbitrary points on the reconstruction manifold. There, they might facilitate low reconstruction

errors for anomalies that reside in these low-density regions.

However, setting H too small ampli�es disadvantage a) because it restricts the number of

reconstruction points. With fewer reconstruction points, the size of clusters will on average be

larger and the reconstruction points must form a rougher approximation to a larger number of

observations. The reconstruction errors will increase and anomalies will be harder to distinguish

from normal points.

The second tuning parameter, κ, determines the smoothness of the step function, where large

values result in a less smooth function with large treads. In practice, the choice for κ is problem

speci�c. Setting κ in the range 30 to 100 is safe in the sense that the step function does not

become discontinuous, but still has clear treads with derivatives equal to zero.

During backpropagation, the zero-valued derivatives of the step function at the treads prohibit

the propagation of errors beyond the compression layer. When κ → ∞, the derivative of the

step function is zero or unde�ned on its entire domain and the weights and bias terms in the

encoding step remain unaltered during training.

For less extreme values of κ, only the observations that activate the step function in between

the treads, where the derivative is non-zero, contribute to learning in the encoding step. This

results in an arbitrary selection of observations that determine the parameter updates, which is

largely dependent on the initial weights and bias terms. As a results, the obtained solutions can

vary substantially between training runs.

Another risk of setting κ too large is the large derivative in between the treads. These can

lead to irregular �jumps� in the gradient descent updates and thereby unstable learning.

The converse, setting κ too low is in general less harmful and leads to non-strict clusters,

with many reconstructions on the manifold in between reconstruction points.

Ramp function An alternative to the step function is the ramp function, as shown in the left

plot of Figure 2.13. Although initially proposed by Hecht-Nielsen (1995) in the context of data

compression, it was later adopted by Tóth and Gosztolya (2004) for anomaly detection.

This activation function contains two treads, corresponding to the �at regions on the intervals

(−∞, 0) and (1,∞). Similar to the step function, observations that are placed on the same tread

produce equal activations. On the sloped part of the function, corresponding to the interval

[0, 1], the ramp function is identical to a linear activation function, and the RNN behaves like

an autoencoder. We can therefore see the RNN with ramp activation as a combination of an

autoencoder and a RNN with step function, performing a clustering of the observations that are

mapped onto the treads but providing a continuous �t to observations in between.

Regarding the identi�ed advantages and disadvantages of the clustering by the step function,

we can state that advantage a) also holds for the ramp function. Observations that are placed
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Figure 2.13: The left plot shows the ramp activation function. In the right plot we
see the reconstructions given by an RNN with ramp activation function. Note that

the reconstruction manifold is bounded.

onto the treads are mapped to identical reconstruction points, and the reconstruction manifold

is therefore bounded.

However, in between of the bounds, the reconstructions can be placed at any point on the

reconstruction manifold, and not only to a �nite number of isolated reconstruction points. Thus,

advantage b) does not apply.

The linearly sloped part of the ramp function enables a continuous �t and thereby mitigates

disadvantage a): the risk of masking of subtle anomalies near clusters. This disadvantage is not

completely eliminated because it still applies to the clusters at the bounds of the manifold.

Lastly, speci�cation of tuning parameters H and κ is not required for the ramp function and

disadvantage b) does not persist.

Two additional advantages of the ramp function are of a more practical kind. Firstly, the

ramp function is computationally less demanding than the step function. The latter requires the

evaluation of H − 1 hyperbolic tangents whereas the ramp function merely involves a truncation

at zero and one. The derivative of the ramp function compared to the step function is equally

less expensive.

The second additional advantage is that the ramp function leads to more stable training.

This is in part explained by our discussion of the choice for parameter κ: the large derivative of

the step function in between of the treads can lead to irregularities in the parameter updates and

the zero valued derivative on the treads hinders training in the encoding step. The ramp function

has a maximum derivative of one and is sloped on a larger part of its domain. It therefore does

not su�er from the same de�cits.

2.4 Benchmark

We compare the autoencoder, RNN with ramp activation function and RNN with step activation

function to each other based on three publicly available data sets. As a point of reference, we

also include the performances of two widely known anomaly detection methods. We now brie�y

discuss these methods.
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2.4.1 Isolation forest

Proposed by Liu et al. in 2008, isolation forest is an ensemble learning method that uses recursive

random partitioning to isolate observations. Isolation, according to the de�nition by the authors,

means �separating an instance from the rest of the instances�.

Growing trees Each partition is made by randomly selecting an attribute and randomly

selecting a split value in between its minimum and maximum. Since each split results in two

subsets, the recursive partitioning can be represented by a binary tree. Each tree is grown until

its nodes contain one or zero instances, or until a maximum number of partitions is reached.

Isolation forest thus isolates all observations, rather than isolating only anomalous instances

from normal ones. In detecting anomalies, the method exploits that anomalous samples require

fewer partitions to be isolated since they have aberrant attribute values and are located in low-

density regions. Normal observations are, in general, more similar to one another, are located in

high density regions and therefore require a relatively large number of partitions to be isolated.

However, in case of large data, it may become di�cult to isolate each instance. Anomalies,

although still rare relative to the normal observations, might occur in small dense clusters,

making them di�cult to isolate. Rather than growing the individual trees on the full data,

isolation forest therefore performs a sampling step in its training procedure and grows each

tree on its own random sub-sample. Tuning parameter ψ determines the size of this random

sub-sample.

Anomaly score The number of partitions required to isolate a speci�c instance by a tree is

de�ned as the path length of the instance. The path length is equal to the number of edges in

between the root of the tree and the terminal node that contains the sample in question. On

average, the path length of an anomalous sample is smaller than the path length corresponding

to a normal observation since anomalous samples are isolated using a relatively small amount of

partitions.

Individually, the trees are not able to reliably distinguish anomalies from normal observations

since they contain a lot of randomness. The path length to a normal observation might be, by

chance, substantially shorter than the path length to an anomaly. However, together, many

independent trees provide a good image of the susceptibility to isolation of an observation.

The anomaly score used in isolation forest therefore combines the individual trees by taking

an average of the path lengths assigned to a single observation, and is de�ned as:

s(x, ψ) = 2−
∑T
t=1 ht(x)

Tc(ψ) ,

where T denotes the number of trees, ht(x) is the path length corresponding to observation x

for the tth tree, and c(ψ) is a normalization term dependent on the sub-sampling size ψ.

Tuning Isolation forest requires tuning parameters T and ψ, which specify the number of trees

and the sub-sampling size, respectively.

The sub-sampling size should be kept small. According to the authors, this leads to better

isolation of observations by controlling the size of the data used to grow each tree. Also, it

leads to a form of specialization, in the sense that each tree detects di�erent types of anomalies.

Values of ψ around 256 are known to give good results. The value for ψ implicitly determines

the tree depth limit, such that the speci�cation of this parameter is not required.
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The value for T governs the variability in the anomaly score. Values larger than 100 are

recommended to ensure that the average path length has converged and the anomaly score

contains low variation.

2.4.2 Local outlier factor

The Local Outlier Factor (LOF) is an anomaly detection technique developed by Breunig et al.

(2000). It estimates the local density in a small area around each observation and marks obser-

vations with a relatively low local density compared to its neighbors as being anomalous.

Local density The local density of an observation x is determined by its k-nearest neighbors

using the concepts of the k-distance of x and the reachability distance of x with respect to

another observation q for given k.

The set of k-nearest neighbors of x, denoted by Nk(x), are the k closest observations to x.

If multiple observations are at exactly the same distance to x, and are together the kth nearest

neighbors, they are all included in the set. The k-distance of x, denoted by k-distance(x), is the

largest distance between x and any element in Nk(x).

The reachability distance of x from q for given k, denoted by reach-distk(x, q), is the maximum

of the k-distance of q and the distance between x and q. In other words, it is the distance between

x and q unless x is in Nk(q), then it is the k-distance of q. Since k-distance(x) and k-distance(q)

can have di�erent values, the reachability distance is asymmetric, and therefore does not conform

to the mathematical de�nition of distance.

Now, we de�ne the local reachability density of observation x, denoted by lrdk(x) as the

inverse of the average reachability distance to the elements in Nk(x):

lrdk(x) = 1/
( 1

|Nk(x)|
∑

q∈Nk(x)

reach-distk(x, q)
)
,

where |Nk(x)| denotes the cardinality of the set of k-nearest neighbors of x.

Anomaly score With the concept of the local reachability density, we formulate an anomaly

score that compares the local density of each observation to the local density of its k-nearest

neighbors. This score is the local outlier factor:

LOFk(x) =
1

|Nk(x)|
∑

q∈Nk(x)

lrdk(q)

lrdk(x)
.

The LOF of x given k can be interpreted as the average of the local densities of the k-nearest

neighbors of observation x, relative to the local density of observation x. If the local density of

observation x is small compared to its k-nearest neighbors, the LOF will be large and x is most

likely not anomalous. Normal observations will have an LOF around 1.

Tuning The LOF requires a single tuning parameter: the number of nearest neighbors, denoted

by k. According to the authors, this number governs the sensitivity of the LOF to variations in

the distances of observation x to its nearest neighbors. For large k, the reachability distance is

very similar for observations that are close together. As k gets smaller, the reachability distance

becomes more sensitive to variations in the distances between x and its k-nearest neighbors.

Parameter k can therefore be interpreted as a smoothing parameter.





Chapter 3

R implementation

The techniques in scope are implemented in an R package which is publicly available on CRAN

under the name ANN2. It contains compiled C++ code for increased speed. All results are obtained

using this package.

3.1 Vectorization

In batch and mini-batch learning, parameter updates are based on multiple observations. Using

matrix multiplication, we can perform the required forward and backward pass without iterating

over the observations separately. This can provide substantial e�ciency gains due to highly

optimized matrix algebra libraries. In the case of the current implementation, we use the library

RcppArmadillo.

Forward pass The vectorized form of the forward pass follows from our general de�nition of

neural networks in equation (2.3) after some small modi�cations:

A(l) = g
(
Z(l)

)
, l = 2, ..., L− 1, where,

Z(l) =

Ω(2)XT + b(2)ιT , if l = 2

Ω(l)A(l−1) + b(l)ιT , otherwise,

f(X|θ) = g̃
(
Z(L)

)T
,

where ιT is a B-dimensional column vector consisting of ones and B denotes the batch size.

Instead of the column vectors x, z(l) and a(l) that result from a single observation, we

now have matrices XT , Z(l) and A(l), all with B columns. Each column corresponds to one

observation. The number of rows of the transposed input matrix is equal to the number of input

variables P , whereas the number of rows of matrices Z(l) and A(l) vary per layer, dependent on

the number of nodes in lth layer. Activation functions g(·) and g̃(·) take as input a matrix and

act on all elements separately.

Note that we transpose the result of the output layer in order to obtain an output f(X|θ)
with rows corresponding to the rows of the input matrix X. The matrices Z(l) and A(l) are

stored to be used in the backward pass.
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Backward pass In the backward pass, the errors that result from B observations can collec-

tively be propagated backwards through the network as such:

∆(L) =
∂R∗(θ)

∂A(L)
◦ g̃′(Z(L))T ,

∆(l−1) = ∆(l)Ω(l) ◦ g′(Z(l−1))T ,

where g′(·) and g̃′(·) denote the derivatives of the activation functions of the output layer and

hidden layers, respectively. Note that ∆(l) is a matrix with B rows and the number of columns

equal to the number of nodes in the lth layer. The term ∂R∗(θ)/∂A(L) denotes the partial

derivatives of the loss function with respect to the network output A(L) and can easily be

determined since we only use di�erentiable loss functions. Note that these derivative functions,

which take matrices as inputs, also act on all elements of the matrices separately.

The calculation of the gradient now involves an average over the B rows of the error matrix

∆(l). Given the errors matrices in each layer, the gradients with respect to the weight matrices

and bias vectors can be determined as follows:

∇Ω(l)R∗(θ) =

B−1XT∆(l), if l = 2,

B−1A(l−1)∆(l), otherwise,

∇b(l)R∗(θ) = B−1ιT∆(l).

3.2 User interface

The package provides a function neuralnetwork() that allows to train general neural networks

for classi�cation and regression. To clearly distinguish between the autoencoder and the RNN,

separate functions autoencoder() and replicator() are included.

For objects that result from the auto-associative neural network functions, the function

encode() computes the low-dimensional representation given by the compression layer. Us-

ing decode(), the user can obtain the reconstructed values of the input data from the low-

dimensional representation. If the user is not interested in the intermediate compressed values,

the function reconstruct() can be used to calculate the reconstructions immediately. This is

the equivalent of the predict() function, that only acts on objects created by neuralnetwork(),

but has some additional features speci�c for anomaly detection.

Function plot() acts on general and auto-associative neural networks objects and shows the

loss during training on the training data and an optional validation set. For trained RNN objects

with step activation function, the placement of observation on the treads in the compression layer

can be plotted using plotStepFunction().

The functions neuralnetwork(), autoencoder() and replicator() all call the same gra-

dient descent function but slightly di�er in the required arguments. We give an overview of these

arguments in Table 6.1 of Appendix A.

Lastly, optional loss functions are squared, absolute, Huber and pseudo-Huber loss and the

package includes recti�er, sigmoid, hyperbolic tangent, linear, ramp and step activation func-

tions. For a complete description of the package we refer the reader to http://cran.r-project.

org/web/packages/ANN2/ANN2.pdf.

http://cran.r-project.org/web/packages/ANN2/ANN2.pdf
http://cran.r-project.org/web/packages/ANN2/ANN2.pdf


Chapter 4

Results

In order to compare the autoencoder and RNN, we �rst apply them to a data set consisting of

hand-written digits. This allows us to gain intuition about the techniques and the clustering

induced by the step function, speci�cally. Then, we simulate arti�cial data that highlight the

identi�ed theoretical di�erences. Lastly, we benchmark the methods by applying them on three

data sets that contain anomalies.

4.1 MNIST

The MNIST data set is a collection of 70.000 annotated images of handwritten digits originally

collected by the United States National Institute of Standards and Technology. The data set is

well known in the �eld of image recognition and machine learning in general. It contains clear

segments, corresponding to the digits 0 to 9, making it suitable for testing the clustering of the

RNNs. To limit computation time, we construct a training and test set consisting of random

subsets of 10,000 and 5,000 images, respectively. The images are treated as vectors of 784 pixels,

where each pixel forms a separate feature. The images are sized normalized such that they

consist of 28× 28 pixels.

4.1.1 Image compression

We compare the image compression capabilities of Principal Components Analysis (PCA), au-

toencoders and RNNs, with step and ramp activation functions, for various levels of compression.

We denote the level of compression by v. This number corresponds to the number of components

used in PCA and the value for Mc in the neural network based techniques. We set v equal to 2,

4, 7, 20 and 50.

The �rst level, v = 2, is chosen for visualization reasons. The second is optimal for the binary

clustering of the ramp function, in the sense that v = 4 is the minimal number of bits required

to represent ten categories in a binary coding scheme. According to the scree plot, as shown in

Figure 6.1 in Appendix B, v = 7 is optimal for PCA. The last two levels are arbitrarily chosen

at increasing numbers. We set H = 5 in all experiments.

Compression We visualize the compressed values for v = 2 in the biplots of Figure 4.1. Look-

ing at the two leftmost plots, we see similarities in the structure of the compressions produced by

PCA and the autoencoder. In both plots, we distinguish rough clusters of homogeneous digits,
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Figure 4.1: Biplots of the �rst two principal components and the autoencoder and
replicators with Mc = 2. Note that some random noise has been added to the points
in the replicator plots such that they do not perfectly overlap. We refer the reader to
Figure 6.2 in Appendix B for a biplot of an autoencoder trained on the complete

MNIST set.

where the digits zero and one are placed at opposite sides in the two most distinct clusters. The

general placement of the clusters corresponding to the other digits also roughly corresponds.

Note that these techniques are trained unsupervised and have inferred the segments from the

training data.

The autoencoder is much better at discriminating between segments and clearly show several

distinct areas that contain the same digits. We expect this di�erence to be due to �exibility of

the autoencoder compared to PCA. Where PCA is limited to compression by making linear com-

binations of the inputs, the autoencoder can perform non-linear transformations in the encoding

step.

Inspecting the biplot of the autoencoder, we see that some digits are better distinguishable

than others. In the upper region of the plot, the majority of fours, sevens and nines are placed

in an overlapping area. This also holds for the middle region of the plot, containing the digits

three, �ve, six and eight. The clusters corresponding to the zeroes, ones and twos are most

clearly distinguishable.

The two rightmost plots show the compressed values corresponding to the RNNs with step

and ramp activation functions. We clearly see that the activation functions yield a discretization

of the compressed space.

Clustering Almost all observations are at the bottom and upper treads of the activation

functions. For the step function, 1.56% is placed on intermediate treads with tuning parameter

κ = 60. This percentage did not increase for other values of κ and alternative random initial
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0-0 0-1 1-0 1-1

Step function 0.389 0.289 0.096 0.226

Ramp function 0.247 0.323 0.106 0.324

Table 4.1: The proportion of digits in each cluster, for the step and ramp activation
functions.

weights and bias terms. The ramp function assigns 2.66% of all observations an intermediate

activation for one of two nodes.

Visually inspecting these digits, of which a random subset is shown in Figure 6.3 of Appendix

B, we do not �nd evidence that these digits are anomalous. We observe some digits with strange

characteristics: interrupted or unusually thick or thin pen strokes. However, a large part of the

digits seems normal. Unfortunately, since we do not have a strict de�nition of anomalies in this

data, we cannot test if the proportion of anomalies is signi�cantly higher in this subset.

We continue by analyzing the contents of four clusters corresponding to the bottom and

upper treads for both methods. In Table 4.1, we see the relative sizes of these clusters, which

vary substantially. Figure 4.2 depicts the composition of clusters given by the RNN using ramp

and step activation functions. Observe that the clustering induced by the methods are very

similar. In accordance to the biplot of the autoencoder, the zeroes are better distinguishable

than other digits and form the largest part of the smallest cluster, for both step and ramp

activation. The ones are largely contained in cluster 0-1 and are less spread out over the clusters

than the remaining digits. Interestingly enough, digits four, seven and nine together form the

greater part of cluster 1-1. This is in agreement with the observation that these digits together

occupy the upper region of the biplot of the autoencoder and largely overlap. The remaining

digits are more spread out over clusters. Similar cluster compositions were obtained for di�erent

random starting values, albeit with di�erent cluster labels.

Using Figure 4.3, we take a di�erent perspective and inspect the division of digits over

clusters. Again, both look similar. The ramp function is slightly more consistent in the cluster

assignment of digits four, seven and nine, in the sense that these digits are largely contained in a

single cluster. However, the step function is more consistent with respect to digits two, six and

eight. Therefore, for v = 2, we cannot identify large di�erences between the methods regarding

cluster assignment.
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Figure 4.2: Barcharts showing the compositions of the four clusters given by the
RNN with step and ramp activation functions and Mc = 2.
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Figure 4.3: Barcharts showing the division of digits over the four clusters given by
the RNN with step and ramp activation functions and Mc = 2.

For larger values of v, the clusters become harder to analyze because the number of clusters

increase exponentially. Figure 4.4 shows the cumulative proportion of digits plotted against the

clusters, on the horizontal axis, in decreasing order of size. Note that, in order to make this plot,

we have assigned each observation to the closest cluster. The reason for this is that, for v = 20

and v = 50, many observations activate the ramp function at an intermediate value for at least

one of v nodes. These observations strictly do not belong to a cluster. The step function is less

susceptible to this problem and places almost all observations on treads.

The �rst observation we make is that the clusters seem to decrease in size when v increases.

This is to be expected since the number of clusters increase with v and the observations can

therefore be divided over a larger number of clusters.

Secondly, we observe that the step function leads to a more concentrated assignment of digits

than the ramp function, for almost all values of v. This is surprising because step function

produces a larger number of possible clusters. We expect this e�ect to be due to the less stable

learning associated with the step function. Observations that are placed on the steep parts of

the function lead to large derivatives. These can cause the parameters to update such that many

observations are mapped to more extreme parts of the domain of the function.

For v = 50, the pattern does not hold. The step function places each observation on a unique

combination of treads and the corresponding line is therefore straight. We expect this is due

to the extremely large number of clusters implied by the step function. Theoretically, for 5,000
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Figure 4.4: The proportion of digits included plotted against the number of clusters
in decreasing order of size.
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v = 2 v = 4 v = 7 v = 10 v = 20

Step 0.388 0.524 0.684 0.778 0.883

Ramp 0.428 0.545 0.723 0.783 0.934

Table 4.2: The average maximum proportion of digits in the clusters for the step
and ramp activation function and multiple compression levels. These �gures are

based on the subset of clusters that contains more than �ve observations. Note that
v = 50 has been omitted since each observation formed its own �cluster�.

observations, the assignment of every observation to a unique cluster is possible for all values of

v larger than 6 and 13 for the step and ramp activation function, respectively.

In Table 4.2, we see the average of the maximum proportion of the digits in all clusters. In

other words, nearly all clusters have one digit that dominates the cluster. Table 4.2 shows the

mean proportion of this dominating digit relative to all digits in the cluster and therefore provides

a measure of the homogeneity of the clusters. For both the step and ramp activation function,

the average maximum proportions increase with v. Also, the proportions are on average larger

for the ramp function in comparison to the step function.

Combining these with the observations based on Figure 4.4, we can state that both larger v

and the ramp function lead to smaller, more homogeneous clusters.

Reconstruction In Figures 4.5 and 4.6, we see some examples of reconstructed images after

compression. Logically, the quality of the reconstructions increase with v for all four methods.

Looking at Figure 4.5, we see that the autoencoder provides better reconstructions than

PCA, this di�erence is most evident for small values of v. This is most likely due to to the

fact that the autoencoder can perform non-linear transformations whereas PCA is limited to

linearity. For the autoencoder, we can correctly distinguish most digits when v = 7. PCA needs

more components to provide reasonable reconstructions and the digits only become recognizable

when v > 20.

For the autoencoder, we see that, for some low values of v, the reconstruction of one digit

closely resembles another. For instance, for v = 2, the reconstructions of the zero and eight

have a lot in common with a six and three, respectively. This suggests that the autoencoder

has developed a notion of the types of digits and is reconstructing the digits using rough clas-

si�cation. More speci�cally, in the encoding step, observations are mapped to the part of the

(a) PCA (b) Autoencoder

Figure 4.5: Reconstructed digits by PCA and the autoencoder. From top to bottom
we have v = 2, 4, 7, 20, 50. The bottommost row corresponds to no compression.



40 Chapter 4 Results

(c) Step (d) Ramp

Figure 4.6: Reconstructed digits by the replicator neural network with step and
ramp activation functions. From top to bottom we have v = 2, 4, 7, 20, 50. The

bottommost row corresponds to no compression.

two-dimensional compression space from which the decoding step can perform a low-error recon-

struction. In order to do so, this space is divided in a number of regions that roughly correspond

to one or more digits, as we have seen in Figure 4.1. Both pairs of digits, zero-six and eight-three,

are placed in adjacent regions and are partly overlapping.

This exempli�es the di�erence between PCA and the autoencoder. The autoencoder is able

to base large variation in reconstruction, for example the di�erence between a zero and six,

on small variations in the low dimensional space. Linearity is too restrictive for these subtle

sensitivities and this kind of mix-up could therefore never occur.

Both RNNs, in comparison to the autoencoder, provide reconstructions of lower quality. This

is due to the step and ramp activation functions that are more restrictive than the linear function

used in the compression layer of the autoencoder. In comparing the reconstructions of both

RNNs, we see that the ramp function provides better reconstructions. A possible explanation

for this is that the step function is more irregular than the ramp function. Besides unstable

training, this can result in a loss function with more local minima that prohibit the network to

learn the optimal weights and bias terms for encoding and decoding.

In the reconstructions by both RNNs, we see the discreteness of their outputs especially when

v = 2 but also when v = 4. For v = 2, the number of distinct reconstructions is four but only

two are used in both cases. For v = 4, the number of distinct reconstructions is equal to 16 but

still some reconstructions recur, especially for the step activation function.

Looking at all levels of compression, we see con�rmed that digits three, eight and �ve are often

mixed-up, as well as digits four, seven and nine. Note that between some levels of compression,

although v increases, the quality of the reconstruction seems to decrease. This happens, for

instance, to the reconstruction of digit nine by the step RNN between v = 7 and v = 10. This

can be explained by local minima and the fact that each level of compression corresponds to

separately trained neural networks. In this sense PCA has a clear advantage over the neural

network based methods since it does not su�er from local minima and therefore deterministically

provides the optimal linear compression.

4.1.2 Anomalous digits

The MNIST data set contains clear segments corresponding to the digits. As we have seen, some

digits are more easily reconstructed than others. In Figure 4.7, this is con�rmed by a boxplot of
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the outlier factors. Digit one stands out for its low reconstruction errors, followed by nine and

seven. All methods perform the least well at reconstructing twos.

These di�erences should not be disregarded when we use the outlier factor to distinguish nor-

mal observations from anomalies. Otherwise, we would not be able to detect a single anomalous

one because these would all be masked by twos with moderately high reconstruction errors.

Therefore, we investigate the top three images with highest outlier factor per digit, for all

four methods in Figure 4.8. We observe that PCA primarily marks digits with unusually thick

pen strokes as anomalies. Some digits also have unusual shapes, such as the three which is given

the highest outlier factor for all levels of compression. Many other also have normal shapes.

The autoencoder picks up more diverse patterns of irregularity. Some images have points

that do not seem related to the digit such as the one for v = 2 and v = 7 and the six for v = 2

and v = 4. These points might be the remainders of a colon that was mistakenly included in the

image. Other digits are hardly recognizable, for instance some of the fours and the rightmost

eight for v = 4. We also see digits that are primarily aberrant in their rotation, such as the

eights for v = 50.

Many of these digits are also picked up by the RNNs. Comparing the RNNs with step and

ramp activation functions, we see that they seem to �ag the same digits as outliers. We see that

they both mark an image of a six with missing pixels in the lower region of the image. These

pixels might be missing due to a scanning mistake. Also, both pick up some images that have

irregular points not related to the digit itself. In Figure 4.8 we see this occurring for some of the

zeros, ones, twos, fours, sixes and nines.

For all neural network based methods, we see a bias towards thicker pen strokes for lower

levels of compression. This seems to decrease when v gets larger. Overall, the results look

promising. The majority of digits look aberrant and the neural network based methods �ag a

more diverse range of patterns. We are not able to distinguish large di�erences between both

RNNs and between the autoencoder and the RNNs.

v = 2 v = 4 v = 10
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Figure 4.7: Boxplot showing the outlier factors for the autoencoder and RNNs with
ramp and step activations for multiple digits and values of v. Outlier factors by PCA

have been omitted for clarity and were on average two times larger than those
corresponding to the autoencoder.
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4.2 Simulation Study

In order to formulate more decisive statements on the di�erences between the methods in scope,

we simulate data that contain di�erent types of anomalies. These anomalies have been con-

structed with the identi�ed advantages and disadvantages of the clustering in mind and have

characteristics that theoretically bene�t the RNN or the autoencoder. We perform our exper-

iments for both segmented and unsegmented data, in order not to favor one method over the

others.

Anomaly types We construct four types of anomalies. All types are depicted in Figure 4.9.

Type a anomalies are located near the bulk of the data but separated from the majority of

the data in the direction of the component with the smaller variance. In light of disadvantage

a) of RNNs, we expect this type to be better detected by the autoencoder since the clustering

can theoretically mask subtle anomalies near a reconstruction point.

Type b anomalies are constructed with advantage a) in mind, and should show the di�erence

between the bounded and unbounded reconstruction manifold. This type is constructed such

that the anomalies conform to the relations between the variables and are thus located along the

model line, only in a low-density region. We expect the RNNs to be superior for type b.

Type c anomalies form the control group and are not motivated by a theoretical di�erence

between the methods. They are scattered randomly around the bulk of the data.

Type d anomalies are only contained in the segmented data. They are located along the

model line in a low-density region in between two clusters. Advantage b) of the clustering should

lead the RNNs to better distinguish these anomalies by isolated reconstruction points in high

density regions.

Simulation set-up In Figure 4.10, we see a scatter plot of the segmented and unsegmented

data in the plots below and above the diagonal, respectively. The segmented data contain four

distinct segments that are more clearly visible in some bi-variate plots than in others. Both data

sets consist of four variables, depicted by x1, x2, x3 and x4.

Contours of the densities corresponding to anomaly types a, b and d are also included in

the scatter plot. The variances of these types are small relative to the uncontaminated data

because we want these anomalies to occur at speci�c locations, in order to accurately assess the
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Figure 4.9: Plots depicting the general placements of the four anomaly types
relative to the densities of the uncontaminated data. The densities are visualized
using their contour lines for unsegmented and segmented data in the left and right
plot, respectively. Note that anomaly type d is only applicable to segmented data.
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Figure 4.10: Simulated data with densities of the di�erent types of anomalies
depicted.

theoretical expectations on which they are based. Anomalies of type c have a large variance

relative to the normal data and the corresponding density has been omitted in Figure 4.10 for

clarity.

In each simulation run, we generate 2,000 observations to train our models. This training data

is contaminated only by type c anomalies. The small variance of the remaining types would lead

to anomalies that are similar to one another and therefore no longer rare. The auto-associative

neural network would learn to reconstruct these anomalies with low error, making it harder to

distinguish them from normal observations. Anomalies of type c have a larger variance and can

therefore still be considered rare events relative to the normal data, provided that they occur

in small numbers. The test data also consist of 2,000 observations but is contaminated with

anomalies of all types. For both training and test set, the contamination level is approximately

5%1. Anomalies are distributed equally among the types.

To reduce the risk of obtaining a sub-optimal solution due to local minima, we train each

method 5 times with di�erent random starting values and select the training run that yields the

smallest sum-of-squares loss on the training data. Using the selected model, we produce and

store an outlier factor for all observations in the contaminated test data. This outlier factor

forms the basis of our comparison of the methods in scope. We repeat this procedure 1,000

times, both for segmented and unsegmented data.

Regarding the tuning of the models, we set Mc = 2 and M1 = M3 = 5. Preliminary

experiments have shown this to be a good speci�cation that does not seem to favor a speci�c

method. In order to assess the sensitivity of the RNN to the number of treads of the step function,

we estimate models for H = 3, 4, 5. We �nd that κ = 90 is reasonable for all three values of H

and do not vary this tuning parameter. We do not regularize since preliminary experiments show

1This contamination level might be considered small in the statistical literature, but is common in the �data
mining� approach to anomaly detection (Hawkins et al., 2002a).
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Figure 4.11: Average recall on the y axis against the proportion of digits with the
highest outlier factor. In the rightmost plot, anomaly type d has been discarded.

no signs of over�tting with the current neural network speci�cations. All methods are trained

for 500 epochs using the Huber robust loss function, as speci�ed in equation (2.6) in subsection

2.1.4.

Overall performance Following (Hawkins et al., 2002a), we compare the performance of the

methods by plotting the average recall, along the y-axis, against the proportion of observations

with the highest outlier factors in Figure 4.11. Recall is also known as the true positive rate and

measures the fraction of positive instances, in our case anomalies, that have been identi�ed by

the model (Davis and Goadrich, 2006).

The leftmost plot shows that the RNN with ramp activation is superior for unsegmented

data, followed by the autoencoder. The performance of the three RNNs with step activation

yield comparable results and perform the least well.

In the middle plot, we see that the step function is, as expected, more suitable to segmented

data. Surprisingly, the step function with H = 3 is superior and outperforms the step function

with H = 4. Based on the four segments in the data, we expected H = 4 to give the best

results since this would allow each segment to have a single associated reconstruction point.

Furthermore, the di�erences with the plot from the unsegmented data seem large. A closer look

indicates that change in performance is primarily driven by anomaly type d. By omitting this

type, in the rightmost plot, the results become very similar for both types of data.

In all cases, the step function with H = 5 is among the worst performers. Combined with the

observation that H = 3 performs well in some settings, this suggests that an overspeci�cation of

the number of treads is more harmful than an underspeci�cation. However, more experiments

are needed to make decisive statements on this subject. These results are con�rmed by the

median performance plots, as shown in Figure 6.7 in Appendix C.

Type speci�c performance Using Figure 4.12, we interpret the ability of the methods to

detect the types of anomalies separately. These plots are generated using segmented data, the

unsegmented results lead to the same �ndings and are shown in Figure 6.7 in Appendix C.

Firstly, type a anomalies are best distinguished by the autoencoder and the RNN with ramp

activation function, indicated by the overlapping lines in the top-left corner. The performances

of the three RNNs with step activation are slightly worse and similar to one another. This is

in line with the expected masking of these anomalies by normal observations that have a long

distance to the reconstruction point in the direction of the largest component of variance.
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Figure 4.12: Anomaly type speci�c mean performance for segmented data.

In the second plot, we see that the results for type b anomalies are also as expected. The RNNs

with step activation function lead to superior results due to a bounded manifold, regardless of

the number of treads. Theoretically, the ramp function also has this property and follows closely

in performance. The autoencoder has more di�culty with this type.

However, for the control group, type c anomalies, the autoencoder is superior, followed by

the RNN with ramp activation function. Again, the RNNs with step activation function perform

very similar.

Thus far, the speci�cation of H does not seem to have a large e�ect and the lines correspond-

ing to the RNNs with step function overlap almost perfectly. This does not hold for anomalies

of type d. In the rightmost plot, we see that the step function with H = 3 outperforms the

remaining speci�cations by a large amount. In comparison to the other types, type d is the most

di�cult to detect and some methods barely surpass the 45 degree line, corresponding to random

class assignment.

Figure 4.13 provides a di�erent perspective and shows the median recall as a line and the

range in between the 10th and 90th percentile as shaded areas. The large areas for the RNN with

step activation and H = 4 and H = 5 indicate a high variance in the quality of the obtained

solutions between simulation runs, caused by random variations in the simulated data and the

initial values of the weights and bias terms. The solutions of the autoencoder and RNN with

ramp activation and step with H = 3 are more stable and the corresponding 10th and 90th

percentiles lay closer to the median lines. This con�rms that the RNN with step activation and

H = 3 consistently detects anomalies of type d better than the other methods.

However, these results also show the sensitivity of the RNN with step activation to the

speci�cation of H. Even though the data contains four segments, H = 4 results in solutions

that vary substantially in quality. The variation in quality of the solutions for both H = 4 and
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Figure 4.13: Median recall is depicted as lines for anomaly type d. The shaded
areas contain the 10th to 90th quantiles.

H = 5 is larger than the variation in solutions given by the autoencoder and the RNN with ramp

activation. We ascribe this instability to the irregularity of the step function which increases the

risk of local minima.

For the current dimensions and size of the data set, the instability of the step function might

not be a large problem. We can easily assess a solution by visually inspecting the �t of the

reconstruction manifold to the input data. Also, performing multiple training runs is not too

computationally demanding. However, for higher dimensional and larger data, it can become

troublesome to address this issue.

Single simulation run We analyze the reconstructions given by the methods in a single

simulation run. For simplicity, we only interpret the autoencoder, the RNN with ramp function

and the RNN with step activation function with H = 4 for a selection of two variables. We refer

the reader to Figures 6.4, 6.5 and 6.6 in Appendix C for the reconstructions in all dimensions.

In Figure 4.14 we see the original and reconstructed unsegmented data with the relevant

anomaly types depicted. We observe that the autoencoder and the RNN with ramp function

provide a continuous �t and thereby a much tighter reconstruction to many individual observa-

tions. The reconstruction errors given by the RNN with step activation function are in general

larger, for both normal and anomalous data points. This can lead to masking of anomalies that

are located in the vicinity of a reconstruction point. For instance, comparing the reconstruction

errors assigned to type a anomaly for the RNNs with ramp and step functions, we see that the
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Figure 4.14: Reconstructions of the segmented data given by the methods in scope
in two selected dimensions.
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reconstruction errors given by the step function are slightly larger. However, since all recon-

struction errors resulting from the step function are on average larger, it may be more di�cult

to distinguish these anomalies.

The e�ects of the bounded manifold are clearly visible for anomaly type b for both RNNs

compared to the autoencoder, especially in case of the step function. The two nodes in the

compression layer allow the RNN to form a grid which is con�ned to the same area as the data.

For the autoencoder, the reconstruction manifold continues outside of the high density region

and the reconstruction error assigned to this type of anomaly are much smaller relative to the

RNNs. The step function seems to be more strongly bounded to the area inhabited by the input

data than the ramp function.

In the reconstructions of type c anomalies, we see a large resemblance between the autoen-

coder and the RNN with ramp activation. Combined with the observation that reconstruction

manifold of the latter is more bounded, this con�rms that the RNN with ramp function behaves

like an autoencoder in the high density regions, where the ramp will be activated on the sloped

region, but resembles the RNN with step function at the bounds of the data.

For the segmented data, we see roughly the same in Figure 4.15. The autoencoder and ramp

provide a continuous �t whereas the step function produces a number of discrete reconstructions.

The step function again is more bounded to the input data than the ramp function which is in

turn more bounded than the autoencoder.

Here we clearly see that the number of reconstruction points is much smaller than HMc =

42 = 16, indicating many empty clusters. Some reconstruction points are clearly associated to a

segment, whereas others are also placed in intermediary regions. These reconstruction points can

lead to low reconstruction errors for anomalies in low density regions and are therefore unwanted.

For the current solution, this does not prohibit the RNN with step activation to detect

anomalies of type d. As we see, these anomalies are mapped to isolated reconstruction points

and not onto the continuous manifold that runs in between. For the autoencoder and RNN with

ramp activation, this is the case and these anomalies are reconstructed with low errors.
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Figure 4.15: Reconstructions of the segmented data given by the methods in scope
in two selected dimensions.
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4.3 Benchmark

We take a practical perspective and apply our methods to three data sets that contain a rela-

tively small amount of known anomalies. To enable fair comparison, we set important tuning

parameters, such as the number of nodes in each hidden layer, equal for all methods. These

are chosen such that they provide good performance on all methods on a validation set. Other

tuning parameters, such as the learning rate, are chosen individually. Like in reality, we leave

anomalies in the training data. We consider contamination levels up to 10% in order to satisfy

the assumption that anomalies are rare events relative to the normal observations. We also

compare the methods to isolation forest and the LOF.

4.3.1 Intrusion detection

The NSL-KDD data set is an improved version of the intrusion detection data set used for the

competition of the KDD conference in 1999. Proposed by Tavallaee et al. (2009), it does not su�er

from some of the shortcomings of the original set identi�ed by McHugh (2000). It contains a total

of 22,030 observations of connections to a computer system in a simulated environment. Among

the observations are an approximately equal number of normal connections and connections that

are part of an attack to the system. We de�ne the latter as being anomalous and investigate the

ability of the methods to detect these.

The explanatory categorical variable service is considered to be one of the most important

ones and divides the data into a number of segments, of which many contain only attacks and

no normal connections (Yamanishi et al., 2004). To arrive at data that are more realistic in the

number of anomalies, we discard most of the 66 categories and select four that are among the

largests and contain a varying proportion of anomalies, as depicted in Table 6.3 in Appendix

D. After removing incomplete observations, this subset consists of 11,075 observations of which

approximately 7.1% is anomalous.

Most of the 41 variables either have zero variance or are categorical and are therefore dis-

carded, including variable service. For an overview of the included seven variables, we refer to

Table 6.2 in Appendix D.

We construct a test and validation set of 2,500 observations each. The remaining instances

are used to train the model. We tune our models to provide the best performance on the

validation set and visually assess this performance by plotting the recall against the percentage
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Figure 4.16: Mean recall against the proportion of observations with the highest
outlier factor for the credit card fraud data set.
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of observations with the highest outlier factor. This procedure leads to the parameter values as

shown in Table 6.4 in Appendix D.

We continue to apply the tuned models to the test set and arrive at the results as depicted in

Figure 4.16. All performance lines are not smooth and show certain bumps around 0.3 recall. We

expect this is due to the nature of the data. Computer attacks are often performed using pieces

of software that exploit certain known vulnerabilities in systems. Attacks that target the same

vulnerability will often show a distinct pattern with little variation. In the current application,

the methods are therefore likely to pick up all anomalies of the same type at once.

We observe that the autoencoder and both RNNs perform well and include nearly all anoma-

lies in the 0.25 observations with the highest outlier factor. The RNN with step function performs

the least well whereas the RNN with ramp activation shows the best performance. Unfortunately,

based on these results, we cannot formulate a clear preference for one method over the others

as the di�erences in performance are small and might be due to random variation. We can,

however, state that all three methods clearly outperform isolation forest and the LOF.

4.3.2 Credit card fraud

This data set is obtained from the website Kaggle2 and consists of 284,807 credit card transac-

tions. For reasons of anonymity, the contributors of the data do not supply all original variables

but instead the derived 28 principal components. Two original variables that measure the trans-

action amount and whether the transaction was fraudulent have been included. We use the

latter to denominate the fraudulent transactions anomalous. The data is highly unbalanced:

only 0.172% are known cases of fraud. See Table 6.5 in Appendix D for an overview of the data.

We construct a test and validation set of 90,000 observations each and a training set con-

sisting of the remaining observations. Tuning based on the validation set results in the training

parameters as shown in 6.6, also shown in Appendix D.

The performance of the trained models on the test set are visualized in Figure 4.17. Of the

auto-associative neural networks, the autoencoder yields the best performance, followed by the

RNN with ramp activation function. The RNN with step activation function performs the least

well. Overall, isolation forest yields the best results. Both reference models, isolation forest and

the LOF, outperform the autoencoder and the RNNs.

2Kindly provided by Dal Pozzolo et al. (2015).
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Figure 4.17: Mean recall against the proportion of observations with the highest
outlier factor for the credit card fraud data set.
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4.3.3 Breast cancer

The Wisconsin breast cancer data set is obtained from the UCI Machine Learning Repository

and is created by three researchers from the surgery and computer science departments of the

University of Wisconsin(Lichman, 2013). It contains the mean, standard deviation and worst

measured value of ten di�erent features of cell nuclei that were collected from breast tumors, as

shown in Table 6.7 in Appendix D. The de�nition of the worst measured value is feature speci�c.

Furthermore, it includes a variable that captures the nature of the tumor: benign or malignant.

We designate malignant tumors as being anomalous.

The anomalous and normal observations are roughly balanced in this data and to imitate a

more realistic anomaly-scenario, we undersample the malignant observations such that we arrive

at a ratio of roughly nine to one. Compared to the previous data sets, the breast cancer data

set is small. After undersampling, it contains only 393 instances.

We construct a random validation set of roughly 25% of the observations and using 10 fold

cross validation, we tune the models in scope. The remaining 75% will serve as both test and

training data.

In these preliminary training runs, the variation in quality of the obtained solutions is large.

Knowing that the outcomes must be interpreted cautiously, we perform rough tuning and proceed

with the parameters as shown in Table 6.8 in Appendix D.

However, we expect the variation between obtained solutions to persist, even when we train

on the larger training set. This will likely prohibit us to interpret the di�erences between the

methods with certainty using the metrics employed for the previous data sets. The variation

between training runs is a result from the random fold assignment in the cross validation and

the random initialization of the weights and bias terms.

In order to assess this uncertainty, and eventually make statements on aggregate statistics, we

draw 1,000 bootstrap samples based on the test data. On each bootstrap sample, we perform 5

fold cross validation, selecting the best model out of 5 training runs, and obtain an outlier factor

for all observations. Note that, while cross validation is often used to set tuning parameters,

we have already chosen appropriate values for these parameters and merely use it to obtain an

outlier factor for all observations in the bootstrap samples.

Since the LOF does not require training, we apply it directly to the bootstrap sample. The

LOF is therefore not included in the cross-validation procedure. Isolation forest, however, does

require training and is therefore also included in the cross-validation. Unlike the neural networks,

isolation forests does not su�er from local minima and is trained in a single training run, instead

of the best of �ve.

The results are shown in Figure 4.18. In the upper-left plot, we see that the mean recall of the

RNN with ramp function slightly surpasses the other methods. The RNN with step activation

function and the autoencoder yield approximately equal performances. On the current data set,

we can state that the RNN with ramp function yields the best performance of the neural networks

based techniques. The LOF and isolation forest show mean recall lines that are very similar to

one another. Both reference methods surpass all of the auto-associative neural networks in

performance.

The remaining plots provide insight into the uncertainty using the 10th, 50th and 90th per-

centiles. We observe no substantial di�erences between the neural network based methods re-

garding variation in quality of the solutions. Isolation forest shows the most stable results and

therefore gives the best overall performance on the Wisconsin breast cancer data set.
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Figure 4.18: Mean recall against the proportion of observations with the highest
outlier factor on the x-axis in the leftmost plot. The other plots show the median

recall as a line and the range in between the 10th and 90th percentile as shaded areas.
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Conclusion

We have shown that the autoencoder has a denoising property and therefore models the noise-

free relations in the training data in its reconstruction manifold. All reconstructions lay on this

manifold and are therefore also consistent with the noise-free state of the training data.

Combined with the observations that anomalies are rare and deviate from the normal pat-

tern in the data, we can partly answer sub-question 1 as follows. Autoencoders discriminate

anomalies from normal observations using non-orthogonal projections onto the reconstruction

manifold. Normal observations are often near-orthogonally reconstructed and therefore receive

a smaller outlier factor. Additionally, observations that are anomalous in the relation that they

exhibit between the variables are located further from the reconstruction manifold and are also

reconstructed with larger errors. Focusing on the RNNs, we showed that the step function per-

forms a clustering of the reconstructions into a �nite number of reconstruction points located in

areas of high density. The ability of RNNs to detect anomalies is driven by the larger distance

that anomalies have to these areas and the sub-optimal assignment of anomalies to clusters.

Both lead to higher outlier factors in comparison to normal observations.

Continuing to answer sub-question 2, we have identi�ed the following theoretical di�er-

ences between autoencoders and RNNs. First, autoencoders capture relations between variables,

whereas RNNs model regions of high density. Second, for the RNN we consider cluster assign-

ment to be a discriminating factor and for the autoencoder orthogonality of projections. These

di�erences have lead us to identify two advantages and two disadvantages of the clustering of the

RNN compared to the autoencoder. The RNN bene�ts from a bounded manifold and isolated

reconstruction points. Disadvantages are the possible masking of subtle anomalies and the need

to specify two additional tuning parameters.

In answering sub-question 3, we have used these theoretical advantages and disadvantages

to construct four types of anomalies. Using simulation, we have shown that the RNN is better

at detecting anomalies that occur along the model line and in between clusters, but also su�ers

from masking. The autoencoder does not su�er from masking and performs better on the control

group. This largely con�rms the identi�ed theoretical di�erences. Overall, the autoencoder

outperforms the RNN and gives more stable solutions. On three publicly available data sets, the

autoencoder outperforms the RNN with step activation in one case. On the other two data sets,

no method is clearly better.

With the answers to these sub-questions, we can formulate our answer to the main research

question of this thesis: the RNN with step activation function is better at detecting anomalies

than the autoencoder in data that contain clear segments if the anomalies are located at speci�c
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locations relative to the segments. This is due to the identi�ed theoretical di�erences between

the reconstruction manifolds of the two techniques and veri�ed in a simulation study.

However, if we compare the RNN with step activation function to the autoencoder on general

performance, the autoencoder is superior. The situations in which the RNN detects anomalies

better are speci�cally constructed with the theoretical di�erences between the methods in mind.

On the control group in the simulation study, and on the benchmarking data, the autoencoder

yields superior performance. Since we �nd these situations more realistic, we have a preference

for the autoencoder over the RNN with step activation function.

A notable alternative to the RNN with step activation function is the RNN with ramp

activation function. It is more stable than the RNN with step function and yields performance

akin to the performance of the autoencoder. Its bounded reconstruction manifold can be an

advantage over the autoencoder, especially for data that contain segments. We therefore argue

that the RNN with ramp activation should be preferred for data that contain clear segments,

for other data, we favor the autoencoder.

Lastly, we have shown that auto-associative neural networks outperform the current state of

the art on one of three publicly available data sets and therefore form a valuable addition to the

anomaly detection methodology.
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Discussion

Critically looking back at our research, we identify some research decisions that can be seen

as arbitrary. These might form interesting topics for future research. In addition, we suggest

several other subjects that fell out of the scope of this research.

6.1 Limitations

Categorical variables Our de�nition of autoencoders speci�es the linear activation function

for the nodes of the output layer. Therefore, the possible output of each of these nodes is the

set of real numbers and the autoencoder is able to reconstruct any numerical value.

With some small modi�cations, the autoencoder is also able to reconstruct categorical vari-

ables. Using a one-hot encoding scheme, we can transform each variable into a number of binary

features. Data that consist of multiple categorical variables will be encoded to a vector that

contains multiple groups of features. Within each group, only one of the features can take the

value one, while the others are zero.

However, the linear activation function does not take this structure into account. For an au-

toencoder that reconstructs categorical data, the softmax activation function would therefore be

a more appropriate option. Not only does it account for the mutually exclusiveness of categories

in the same variable, but its output is also limited to the interval [0, 1].

If the softmax activation function is used in the output nodes of the autoencoder, the question

arises whether the squared-error loss function is still the optimal metric to minimize. In this

case, the log loss function would be more appropriate.

Then, if we use the log loss function during the training of the autoencoder, we should also

question if the outlier factor is still an appropriate measure to distinguish anomalies from normal

observations.

While these issues can all be addressed if the data consist of either numerical or categorical

data, the solutions become less clear when both types are included in the same data. Further-

more, in making these choices, for instance between the squared-error loss and the log loss, it

becomes di�cult to not favor categorical or numerical variables over the other.

We are not aware of any method that allows to combine numerical and categorical data in an

auto-associative neural network in a statistically sound way. In the current research, we therefore

did not consider neural networks that reconstruct both categorical and numerical data.
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However, while the theory required to apply auto-associative neural networks to categorical

data is available, this thesis has mainly focussed on numerical data. This can be seen as a

limitations of our research.

Individual tuning In our experiments, we have individually tuned the methods but this was

restricted to tuning parameters related to the training process. Parameters that govern the more

general speci�cation of the neural networks, such as the number of nodes in the hidden layer,

were set to equal values in order not to favor a speci�c method.

However, one could argue that the step and ramp function of the RNNs are inherently more

restrictive than the linear activation function of the autoencoder. In turn, the step function is

more restrictive than the ramp function. Therefore, it might be more fair to allow a di�erent

number of nodes among the methods. This would require speci�c experimentation and careful

motivation of parameter choices.

Robustness We have not given much attention to the robustness of the methods in scope. It

is possible that one technique is more sensitive to anomalies than the others during training and

this can be seen as a clear weakness of the method.

Since we trained the models using contaminated data, any sensitivity to anomalies in the

training data will, most likely, lead to poorer performance. Indirectly, the sensitivity to anomalies

is therefore included in our comparison.

However, it would be preferred to clearly know the reason why a method is not performing

well. A good starting point for more insight would be a robustness analysis.

6.2 Suggestions for further research

Clustering consistency The paper of Dolnicar and Leisch (2010) describes a method to assess

the consistency of a clustering method. It involves the bootstrap and the adjusted rand index,

a measure for similarity which is invariant to label switching. Using the adjusted rand index,

the similarity between the clustering solutions that result from di�erent bootstrap samples is

determined. High similarity indicates a stable solution.

In their paper, the application is to the speci�cation of the number of clusters in k-means

clustering. However, this could also be applied to compare the obtained clustering solution

between training runs of the RNN with step function. Also, one could employ this method to

investigate the e�ect of the smoothness of the step function on the consistency of the clustering.

Consistency, in this case, referring to the extent to which observations are repeatedly placed in

the same cluster together.

Mahalanobis distance The outlier factor used to distinguish anomalies treats errors on all

variables equally. However, even if the variables are standardized prior to training, and the

variables are thus roughly on the same scale, large errors might still be more common for some

variables than others.

The Mahalanobis distance is calculated using an estimated covariance matrix and corrects

for di�erences in variation between dimensions. This distance would therefore be able to take

di�erences in magnitude of errors between variables into account and thereby possibly mitigate

the risk of masking subtle anomalies near clusters for the RNN.
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The accompanying R package already contains functionality to calculate elementwise Maha-

lanobis distances using a MCD robust covariance matrix (Rousseeuw, 1985). Furthermore, the

R package contains a plotting function for assessing the �t to a chi-square distribution.

Possible research directions are to test whether this improves the detection of anomalous

samples. Also, it would be of interest to test if the Mahalanobis distance makes the assumption

of normality, required to do inference using the chi-square distribution, more reasonable than for

the raw errors. Another direction might be to investigate whether anomaly detection is improved

by determining the Mahalanobis distance per identi�ed cluster of the RNN. This would require

the calculation of the same amount of robust covariance matrices as there are su�ciently large

clusters. See Surace et al. (1998) for related research.

Pre-training of RNN The RNN with step function is di�cult to train due to the irregularity

of the step function. This can prohibit the propagation of errors beyond the compression layer.

As a result, weights and biases in the encoding step might barely be trained.

In the area of deep learning, the vanishing gradient problem leads to a similar phenomenon

where the gradients in early layers of the deep networks are close to zero. This also leads to slow

learning of the weight and biases in these early layers.

To overcome this problem, Bengio et al. (2007) propose to individually pre-train each layer in

a greedy-wise manner by subsequently adding layers and training these layers to reconstruct their

inputs. Each layer is thus pre-trained in a single hidden layer autoencoder setting. The weight

and bias terms that result from this pre-training serve as initial weights and bias terms for the

supervised training and this has been shown to improve the chances of convergence substantially.

Similar to this approach, we propose to pre-train an RNN with step function as an autoen-

coder. As such, we would train an autoencoder on some data. When training is complete, we

replace the linear activation function in the compression layer of the autoencoder by the step

function. The learned weights and biases are unaltered. Then, we perform a new training run

on the same data.

The weight and biases learned by the autoencoder thus serve as better starting values for the

RNN. The second training run serves to ��ne-tune� the weights and biases.

Additionally, during training, the weights and bias terms could be tracked using Hinton

diagrams as they are updated (Hinton and Shallice, 1991). This will provide insight into whether

the rate of learning is di�erent for the autoencoder compared to the RNN.
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A R Implementation

Argument neuralnetwork() autoencoder() replicator()

X × × ×
y × - -

hiddenLayers × × ×
lossFunction × × ×
dHuber × × ×
linearLayers × × -

recti�erLayers × × ×
sigmoidLayers × × ×
stepLayers - - ×
nSteps - - ×
smoothSteps - - ×
rampLayers - - ×
standardize × × ×
learnRate × × ×
maxEpochs × × ×
batchSize × × ×
momentum × × ×
L1 × × ×
L2 × × ×
validLoss × × ×
validProp × × ×
verbose × × ×
earlyStop × × ×
earlyStopEpochs × × ×
earlyStopTol × × ×
lrSched × × ×
lrSchedEpochs × × ×
lrSchedLearnRates × × ×
robErrorCov - × ×

Table 6.1: Arguments for the functions in package ANN2. Arguments with × are
optional or required whereas - indicates that an argument is not applicable for the
function. Note that smoothSteps and nSteps correspond to κ and H of the step

function, respectively. For a full description of these arguments and default values,
see http://cran.r-project.org/web/packages/ANN2/ANN2.pdf.

http://cran.r-project.org/web/packages/ANN2/ANN2.pdf
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Figure 6.1: PCA scree plot.
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Figure 6.2: Biplot of compression by autoencoder trained using the highly
optimized deep learning library TensorFlow on the complete set of MNIST images for
500 epochs. Training took more than 11 hours to complete on a 2.20GHz dual-core

processor. 5.000 digits depicted.

(a) Step (b) Ramp

Figure 6.3: Random subset of digits that were mapped to an intermediate cluster
or region of the step and ramp activation function of the RNN.
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C Simulation
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Figure 6.4: Reconstructions of simulated data by the autoencoder for segmented
and unsegmented data below and above the diagonal, respectively.
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Figure 6.5: Reconstructions of simulated data by the RNN with step activation
function for segmented and unsegmented data below and above the diagonal,

respectively.



64 Appendix C

segmented

unsegmented

segmented

unsegmented

segmented

unsegmented

segmented

unsegmented

x1 x2 x3 x4

x
1

x
2

x
3

x
4

-150 -100 -50 0 -20 0 20 -140 -120 -100 -80 0 10 20 30 40

-150

-100

-50

0

-20

0

20

-140

-120

-100

-80

0

10

20

30

40

Type a
Type b
Type c
Type d

Figure 6.6: Reconstructions of simulated data by the RNN with ramp activation
function for segmented and unsegmented data below and above the diagonal,

respectively.
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Figure 6.7: Reconstruction matrix plot of simulated data along with their
reconstructions depicted as orange points. The legend of d) has been omitted but is

the same as the remaining legends.
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D Benchmark

Variable N Mean St. Dev. Min Median Max

duration 11,075 7.682 179.149 0 0 5,066

src_bytes 11,075 15,794.110 206,956.900 0 240 5,135,678

dst_bytes 11,075 5,718.620 120,607.800 0 401 5,150,836

srv_count 11,075 28.037 56.983 1 7 325

dst_host_count 11,075 146.638 102.528 0 154 255

dst_host_srv_count 11,075 198.977 84.778 0 255 255

attack 11,075 0.071 0.257 0 0 1

Table 6.2: Descriptive statistics of the KDD intrusion detection data set. Note that
variable attack is used as our class variable and is not included in the models

domain_u ftp_data http smtp

Size 1583 1217 7004 1271

Number of attacks 1 343 394 50

Proportion attacks 0.000 0.282 0.056 0.039

Table 6.3: Descriptive statistics on the segments in the KDD intrusion data given
by variable service.

Tuning parameter Autoencoder RNN step RNN ramp Isolation forest LOF

Hidden layers 5-3-5 5-3-5 5-3-5 - -

κ - 100 - - -

H - 4 - - -

L1 0.0001 0.0001 0.0001 - -

L2 0.001 0.001 0.001 - -

Learning rate 0.0005 0.0001 0.0001 - -

Momentum 0.6 0.2 0.2 - -

Epochs 500 500 500 - -

T - - - 300 -

ψ - - - 150 -

k - - - - 47

Table 6.4: Tuning parameters for the KDD intrusion detection data set.
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Variable N Mean St. Dev. Min Median Max

PC_1 284,807 0.000 1.959 −56.408 0.018 2.455

PC_2 284,807 0.000 1.651 −72.716 0.065 22.058

PC_3 284,807 0.000 1.516 −48.326 0.180 9.383

PC_4 284,807 0.000 1.416 −5.683 −0.020 16.875

PC_5 284,807 0.000 1.380 −113.743 −0.054 34.802

PC_6 284,807 0.000 1.332 −26.161 −0.274 73.302

PC_7 284,807 0.000 1.237 −43.557 0.040 120.589

PC_8 284,807 0.000 1.194 −73.217 0.022 20.007

PC_9 284,807 0.000 1.099 −13.434 −0.051 15.595

PC_10 284,807 0.000 1.089 −24.588 −0.093 23.745

PC_11 284,807 0.000 1.021 −4.797 −0.033 12.019

PC_12 284,807 0.000 0.999 −18.684 0.140 7.848

PC_13 284,807 0.000 0.995 −5.792 −0.014 7.127

PC_14 284,807 0.000 0.959 −19.214 0.051 10.527

PC_15 284,807 0.000 0.915 −4.499 0.048 8.878

PC_16 284,807 0.000 0.876 −14.130 0.066 17.315

PC_17 284,807 0.000 0.849 −25.163 −0.066 9.254

PC_18 284,807 0.000 0.838 −9.499 −0.004 5.041

PC_19 284,807 0.000 0.814 −7.214 0.004 5.592

PC_20 284,807 0.000 0.771 −54.498 −0.062 39.421

PC_21 284,807 0.000 0.735 −34.830 −0.029 27.203

PC_22 284,807 0.000 0.726 −10.933 0.007 10.503

PC_23 284,807 0.000 0.624 −44.808 −0.011 22.528

PC_24 284,807 0.000 0.606 −2.837 0.041 4.585

PC_25 284,807 0.000 0.521 −10.295 0.017 7.520

PC_26 284,807 0.000 0.482 −2.605 −0.052 3.517

PC_27 284,807 0.000 0.404 −22.566 0.001 31.612

PC_28 284,807 0.000 0.330 −15.430 0.011 33.848

Amount 284,807 88.350 250.120 0.000 22.000 25,691.160

Fraudulent 284,807 0.002 0.042 0 0 1

Table 6.5: Descriptive statistics of the Kaggle credit card data set.

Tuning parameter Autoencoder RNN step RNN ramp Isolation forest LOF

Hidden layers 40-20-40 40-20-40 40-20-40 - -

κ - 60 - - -

H - 5 - - -

L1 0.0001 0.0001 0.0001 - -

L2 0.001 0.001 0.001 - -

Learning rate 0.0002 0.0001 0.0002 - -

Momentum 0.6 0.2 0.5 - -

Epochs 500 500 500 - -

T - - - 300 -

ψ - - - 200 -

k - - - - 32

Table 6.6: Tuning parameters for the Kaggle credit card fraud data set. For all
methods, the learn rate is decreased with a factor ten for the last 50 epochs.
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Variable N Mean St. Dev. Min Median Max

radius_mean 393 12.701 2.644 6.981 12.360 28.110

texture_mean 393 18.230 4.072 9.710 17.670 33.810

perimeter_mean 393 81.923 18.015 43.790 79.080 188.500

area_mean 393 518.018 247.620 143.500 467.800 2,499.000

smoothness_mean 393 0.093 0.014 0.053 0.093 0.163

compactness_mean 393 0.085 0.040 0.019 0.077 0.283

concavity_mean 393 0.057 0.059 0.000 0.040 0.426

concave_points_mean 393 0.032 0.027 0.000 0.025 0.182

symmetry_mean 393 0.176 0.026 0.106 0.173 0.274

fractal_dimension_mean 393 0.063 0.007 0.052 0.061 0.096

radius_se 393 0.323 0.213 0.112 0.270 2.873

texture_se 393 1.225 0.583 0.360 1.111 4.885

perimeter_se 393 2.272 1.534 0.757 1.955 21.980

area_se 393 27.341 33.167 6.802 20.350 525.600

smoothness_se 393 0.007 0.003 0.002 0.006 0.022

compactness_se 393 0.022 0.016 0.002 0.017 0.106

concavity_se 393 0.027 0.032 0.000 0.019 0.396

concave.points_se 393 0.010 0.006 0.000 0.009 0.053

symmetry_se 393 0.021 0.007 0.008 0.019 0.061

fractal_dimension_se 393 0.004 0.003 0.001 0.003 0.030

radius_worst 393 14.172 3.428 7.930 13.600 32.490

texture_worst 393 23.997 5.680 12.020 23.190 47.160

perimeter_worst 393 92.481 23.534 50.410 88.130 214.000

area_worst 393 649.846 378.985 185.200 564.200 3,432.000

smoothness_worst 393 0.126 0.020 0.071 0.127 0.201

compactness_worst 393 0.197 0.108 0.027 0.177 0.758

concavity_worst 393 0.191 0.166 0.000 0.153 1.252

concave_points_worst 393 0.084 0.049 0.000 0.080 0.291

symmetry_worst 393 0.275 0.048 0.156 0.271 0.577

fractal_dimension_worst 393 0.080 0.014 0.055 0.077 0.149

malignant 393 0.092 0.289 0 0 1

Table 6.7: Descriptive statistics of the Wisconsin breast cancer data set.

Tuning parameter Autoencoder RNN step RNN ramp Isolation forest LOF

Hidden layers 24-4-25 24-4-25 24-4-25 - -

κ - 80 - - -

H - 5 - - -

L1 0 0 0 - -

L2 0.001 0.001 0.001 - -

Learning rate 0.003 0.005 0.004 - -

Momentum 0.5 0.3 0.5 - -

Epochs 300 300 300 - -

T - - - 200 -

ψ - - - 5 -

k - - - - 15

Table 6.8: Tuning parameters for the Wisconsin breast cancer data set.
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