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Abstract

We study the impact of intergenerational risk-sharing on the pension results of an

individual pension contract. In this contract equity risk is shared across di↵erent gener-

ations by means of a collective bu↵er. This bu↵er enables investing more in risky assets,

without pension plan participants being exposed to high equity risk. The individual

pension contract with bu↵er o↵ers participants of the pension fund the possibility to

choose (and change) their own level of risk-aversion. We examine the e↵ect of varying

investment policies and the additional e↵ect of the collective bu↵er on the pension re-

sults. Monte Carlo simulations lead to pension distributions for the di↵erent designs

of the pension contracts. We find in general that the bu↵er lowers but stabilizes the

pension outcomes on average. However, when we can accurately predict the stock re-

turn distribution and we apply this distribution in the way we construct the contracts,

some individual pension contracts with a collective bu↵er outperform the individual

contracts without a bu↵er. We perform the analysis both for fixed and variable pen-

sion contracts. Compared to fixed pensions, variable pensions lead on average to higher

pension outcomes.
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1 Introduction

The Netherlands is widely regarded for having one of the strongest and most sophisticated

occupational pension system in the world. However, after economically bad years the weak-

nesses of the Dutch pension system became apparent. As a result, during recent years,

many work has been done on investigating a new optimal common pension design. This has

finally resulted in an announced shift to another commonly used pension system. This shift

is included in a paragraph of the last Dutch government policy accord (’regeerakkoord’)

released on the 10th of October 2017. The new contract, called the ‘4C-pension contract’,

will be introduced in 2020.

The 4C-contract is an extension of the so-called Individual Defined Benefits (IDC) con-

tract. An IDC-contract is characterized by the fact that every participant has its own

accrued pension capital, and this pension capital is invested according to an individual-

specific life-cycle asset mix. Hence, all the investment risks are borne by the participants in

this contract. There is no solidarity element included. The 4C-contract di↵ers in this way

from the IDC-contract. Although the 4C-contract is also still mainly an individual contract,

there is also a risk-sharing component included by means of a collective bu↵er for equity re-

turns. This collective bu↵er is designed to distribute extreme equity returns across di↵erent

periods. In times of high equity returns, a part of the returns flows into the collective bu↵er.

On the other hand, in times of low equity returns, a part of the negative returns flows from

the collective bu↵er to the individual pension capital of the participants. In this way the

stock returns, and therefore the portfolio returns on the individual pension capital of the

participants should be stabilized. In this thesis we will scrutinize the e↵ect of the inclusion

of the collective bu↵er in the Individual Defined Benefits contract. Therefore, the research

question is as follows:

Do individual pension contracts with a risk-sharing component lead to better pension

outcomes than the pension outcomes in a Defined-Contribution contract?

In this thesis we perform a simulation study to answer this question. In this way we

obtain distributions for pension outcomes of the several contracts that we examine. With

these distribution we can measure the performance of the pension contracts. The word

’better’ in the main question means that we want high median outcomes of the contracts,

but also favorable pension outcomes in worse economic scenarios since the contracts need

to provide stable pension outcomes.

We test a large number of variants of both the IDC-contract and the 4C-contract. The

general conclusion we find is that the pension outcomes are lower for the IDC-contracts with

a collective bu↵er (the 4C-contracts), but the spread between the outcomes in this contract

is also lower.

As we mentioned, in an IDC-framework the individual participants are able to choose an
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individual life-cycle asset mix. This asset mix is applied to their individual pension accrual.

In this thesis we determine asset mixes for di↵erent types of investors. We examine the e↵ect

of varying the asset mixes on the pension outcomes. We find that it is rewarding to choose a

risk-seeking investment style, especially when we incorporate the stabilizing collective bu↵er

in the pension contracts.

In an usual IDC-framework the participant has a fixed pension contract. This means

that he has to buy an annuity at his retirement age for the pension capital he has accrued.

Consequently, he locks his future pension incomes. In the Netherlands, there is also a

possibility to choose for a variable pension contract since 2015. In contrast to the fixed

pension contract, the participant withdraws only a part of his pension capital each year. The

remaining of the pension capital will be re-invested. In this way the participant does not

lock all his future pension pay-o↵s and can consequently have gains of equity premiums, also

during retirement. We find that it is favorable to opt for a variable pension, especially when

we choose the 4C-contract. The collective bu↵er lowers the equity risk during retirement in

this variable contract, which stabilizes the pension outcomes in turn.

Furthermore, we investigate how to design the optimal bu↵er. In an optimal world, there

is always some capital in the bu↵er. Along these lines, the bu↵er prevents the individual

pension capitals from large losses by means of very negative stock returns. On the other

hand, the bu↵er may not contain too much capital. This would imply that the participants

are more harmed by the bu↵er than that they have gains from it, since they are only

contributing to the bu↵er.

We find that if we can accurately predict the distribution of the real stock returns, we

can clearly take advantage of the bu↵er. When the boundaries of the bu↵er are set in such a

way that the bu↵er a↵ects the stocks returns of the portfolios in 90% of the times on average,

we find favorable results for the 4C-contract. These specific 4C-contracts outperform the

IDC-contracts, regarding higher median pension results and also higher 5th percentile results.

In general, when it is not possible to accurately predict the distribution of the stock re-

turns, including a bu↵er mainly lowers the pension incomes. Consequently, we can generally

conclude that the solidarity aspects the bu↵er should provide negatively a↵ects the pension

outcomes of the IDC-contract.

For the simulations of the pension results, we need to construct life-cycle asset allocations

for the individuals suiting their risk-profiles. In many papers about life-cycle investment

optimization problems, only a stock index and a risk-free asset are incorporated in the asset

mix. Sangvinatsos and Wachter (2005) show for a portfolio with both long-term and short-

term bonds, that the allocation on long-term bonds increases with the investment horizon.

We apply this idea in the way we construct our portfolios. Therefore, we also incorporate a

5-year government bond in our asset mixes, besides the ’usual’ stock index and the nominal

cash free account.
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For solving the optimal asset allocation problems we use the framework of Koijen et al.

(2009) (hereafter: KNW). In this technical framework we analyze the life-cycle asset mixes of

investors with di↵erent risk-profiles. The algorithm we use can determine the optimal asset

mixes for n risky assets. Hence, this method suits our asset mix including both a risky bond

and a stock-index. In the KNW-method, the investor obtains utility from both his terminal

wealth and consumption during his work life. This terminal wealth and consumption are

both incorporated in the value functions that have to be optimized in the algorithm. In

this algorithm the Endogenous Grid-Point method of Carroll (2006) is applied in order to

optimize the value functions for a large number of grid-points. The value functions in this

algorithm are optimized with respect to the asset allocations and the consumption strategy of

the investor. We follow Brandt et al. (2005) by approximating the conditional expectations

in this algorithm by cross-sectional regressions. Applying this approximation saves us a lot

of computation time. The algorithm finally results in life-cycle asset allocations that we use

for both a fixed pension investor and a variable pension investor. We find that the riskier

the investor, the more the asset mix is dominated by stocks. The 5-year-bond allocation is

increasing in time, and the cash account is only part of the portfolios in the last couple of

years before retirement.

As input for both the asset allocation optimizations and the pension models, we need

to simulate a large amount of paths of a financial market. Each of these paths includes

simulations of a stock index, an inflation rate, an instantaneous short rate and bond yields.

For the specification of the financial market processes, we use the financial market spec-

ification of Koijen et al. (2009) and Sangvinatsos and Wachter (2005). For the underlying

process of these simulated financial market processes, we apply the three-factor model of

Hamilton and Wu (2012) (hereafter: ’HW’). For the estimation of the structural form pa-

rameters of the financial market processes, we apply the method of HW. They introduce the

Maximum-Chi-Square Estimation (MSCE) technique to extract the structural-form param-

eters from the estimated reduced-form parameters of the model. In this technique, we split

the original highly dimensional MLE problem in smaller optimization problems. This trick

enables us to find relative fast the desired structural form parameters. Therefore, we circum-

vent the usual complicated high-dimensional maximum likelihood optimization of non-linear

functions to extract the structural form parameters from the reduced form parameters of

the financial market models (Sangvinatsos and Wachter (2005), Koijen et al. (2009), Dai

and Singleton (2000)).

The 4C-contract is also investigated by van Riel (2016). In this paper he sketched

a theoretical framework of the pension contract and included the results of a numerical

analysis. The technical analysis is omitted for the reader. This paper forms a good ’manual’

for the new pension system, and present the theoretical reasoning behind the characteristics

of the model. Also some anomalies are sketched.
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In contrast to the theoretical exploration of van Riel (2016), we approach the new pen-

sion framework in a more technical way. This master thesis can be seen as the underlying

framework of the results that are presented in the theoretical exploration paper. For prac-

titioners this yields useful insights. Moreover, this master thesis extends the exploration

papers of van Riel (2016) in the sense that we incorporate multiple risky assets in our asset

mixes, instead of only a ’return portfolio’ and a ’matching portfolio’. In the framework we

construct, we can quite easily extend the asset mixes by more assets.

The entire simulation study is performed in MATLAB. The code for the dynamic pro-

gramming analysis I have made without any other sources. Also the pension fund model I

coded myself. For the estimation of the a�ne term structure model I used parts of existing

code (Hamilton, 2012). Also the GMM-estimation I performed myself.

The content of this thesis is as follows. We start with outlining the current Dutch

pension system. We explain here the current DB-system, its anomalies, and what the

requirements are for a new system. Thereafter we explain our pension fund-model, and

how the pension capital of the individual participants develops over time in both the IDC-

and the 4C-framework. After that, we outline the specification of the financial market, the

corresponding estimation techniques, and the estimation results of this financial market.

Then we discuss how we obtained the data we need for estimating the structural form

parameters of the financial market, and the summary statistics of these data. After that the

technical dynamic programming analysis of KNW will be explained. Thereafter, we present

the pension results that we obtained, followed by the conclusions of our analysis. We end

with discussing some shortcomings of the analysis, and finally some recommendations for

further research.

2 Setting

In this section we first give an introduction of the Dutch pension system, and thereafter we

present the motive for a new pension system. Then we will explain the Defined Benefits

contract (DB), the Defined Contributions (DC) and the 4C-contract. We will finally outline

the strengths and weaknesses of both a fixed and a variable pension contract.

There are three main pillars in the Dutch pension system. The pillars are designed to

have a guaranteed pension income and an additional pension income for people who have

worked during their working life.

Pillar 1. The first pillar provides a basic income during retirement for every Dutch indi-

vidual. This pillar is called the AOW (Dutch: ‘Algemene Ouderdomswet’). The system is

designed to prevent poverty among older individuals. The AOW is financed according to
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a Pay-As-You-Go-Principle (PAYG).1 The amount of AOW-pension that a citizen receives,

depends on the number of years he has lived in the Netherlands between the age of 15 and

68, and on his marital status.

Pillar 2. This pillar contains a supplementary pension for employees. Both employees

and employers have to accrue some additional capital to ensure an supplementary income

above the AOW-income from pillar one for the employees. The accrued capital is managed

by pension funds and insurance companies. Every year employees have to pay a certain

premium of their wage to the pension fund. Asset managers invest the accrued pension

capital in order to let the participants maintain their purchasing power during retirement.

Pillar 3. The third pillar is a voluntary one. If an individual wants to accrue more

pension than the sum of the first two pillars, he could buy an extra pension product (for

example an annuity). People who do not work for a company with a collective pension, like

independent entrepreneurs, use this form of pensions. Insurance companies provide these

types of products.

2.1 The Defined Benefits contract and its anomalies

This thesis has to do with the supplementary pension scheme for employees (so the second of

the three pillars we described). There are several types of supplementary pension contracts

o↵ered. The most popular contract worldwide is the Defined Benefits-contract (DB). In a

DB-system every active participant pays the same percentage of his or her salary to the

pension funds each year. In the Netherlands, this percentage is set in such a way, that the

yearly expected pension payments to the participants are about 70% of their average wage.

The pension fund invests all the accrued pension capital collectively in this DB-setting. In

this way investment risk is shared by all the participants of the fund.

There are several disadvantages of this DB-system. Figure 1 shows the first problem:

the low current level of interest rates. The calculations of the appropriate premiums in the

past are based on higher interest rates than the low current interest rate. Interest rate risk

is the largest risk that the pension fund faces. The interest rate determines how much the

future payments to the participants can be discounted, in order to determine the liabilities

of the pension fund. With a low interest rate, these future payments are barely discounted.

Consequently, the liabilities of the fund can tremendously increase 2. This leads in turn to

a lower funding ratio. The funding ratio represents the ratio of the assets over the liabilities

1A PAYG-scheme is characterized by a working generation that contributes part of their wagers, through

taxation, to retirees. The working generations trust the system to provide for them when they are retired
2As example: The nominal pay-o↵s of 1 euro in the coming ten years imply a liability of 8.53 euros now,

when we calculate with an interest rate of 3.0%. The same ten nominal pay-o↵s imply a liability of 9.47

euros when we have a 1% interest rate: a liability that is 11% higher
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of the fund. It is the key statistic of a pension fund.

Figure 1: Globally we have decreasing trend in the 10-year government bond yields

1989 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2011 2013 2015 2017
-2

0

2

4

6

8

10

12

Another problem is about the actuarial value of the pension accrual. Each year both

young and old participants have to pay an equal premium to the pension fund, but the

accrued euro of a young person can have benefits of equity premiums for a longer period.

This implies that the actuarial value of 1 accrued euro of a young employee is higher than

1 accrued euro of a participant that will almost retire.

When market conditions are bad (e.g. low interest rates) and the funding ratio conse-

quently decreases, the DB-premium in some year can be collectively increased in order to

maintain equal pension rights for the participants and let the funding ratio increase. In this

way, the younger participant is a↵ected more by the increased premium, because his extra

contributed premium has a higher actuarial value.

Also the aging of the population is a problem. The premiums the participants of some

age-cohort X have paid 40 years ago, are based on a life-expectancy that was used in that

time. However, nowadays the participants of age-cohort X have a higher life-expectation

than 40 years ago. This means the liabilities that have to be saved for this age-cohort X

have increased, compared to the premiums they accrued. As a result of that the funding

ratio lowers. New generations have to contribute to ’repairing’ this decreased funding ratio.

Another solution for the increased liabilities is cutting the pension rights of the partic-

ipants in the fund. Both increasing the premiums and cutting the pension rights lead to

lower pension pay-o↵s of the participants.

In the DB-contract both employers and employees have to contribute to recover the

funding ratios. Employers do not want to take the risks belonging to this changing funding

ratio, because this could strongly impact the results of the company. The employer prefers

that the employees bear the risks where the pension fund is subject to, and does not want

to be ‘risk sponsors’ for their employees.

Goudswaard et al. (2016) describe the DB-system as an ’one-size-fits-all’-approach, in

which the accrued pension capital of all participants is investment according to the same

asset mix. Moreover, the premiums the participants have to contribute are equal. As a

result, the DB-system is a very collective system in which solidarity to other participants
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is crucial. Negative market developments and an aging society have led to a demand for a

new system. This new pension system has to provide solutions for the shortcomings of the

common DB-system.

2.2 Requirements for a new system

The discussion of a new optimal pension design was set up by Boelaars et al. (2014). They

created several conditions that the new system has to meet. They conclude that the new

schedule has to meet four main requirements: i) sustainability, ii) creating transparency, iii)

providing flexibility and customization (tailor-made schedules) and iv) providing solidarity

to other participants. We will briefly elaborate on these requirements.

1) Sustainability

The contract has to be sustainable. This means we want stable pension outcomes for af-

fordable premiums under varying economic circumstances. Furthermore, the participants

need an optimal spread of consumption. E.g. this means they want to consume a larger

proportion of their wealth when they are young, because their wage is lower in this period

so a high pension accrual is unfavorable during this period. Providing sustainability is the

main target of the new pension schedule.

2) Creating transparency

Enforcing confidence in the new system by incorporating more transparency about individual

property rights. Participants need insight in how much pension capital is reserved for them,

and how this capital changes on a yearly basis. This prevents the participants from feeling

that there is no money reserved for them when they retire. In the current DB-system

there have been many cuts in the past few years, and for the participants it is di�cult to

understand why these cuts occur (a lack of clarity).

3) Providing customization and flexibility

The system has to provide more flexibility and customization. Customization means that

the pension schedules suit the several phases of the life-cycles of the participants. Flexibility

means that participants can opt for changing their risk-profile or pay-o↵ scheme when macro-

economic conditions change. This can improve their pension outcomes.

4) Providing a collective approach

A sustainable pension system has to provide solidarity between participants. This aspect

can be incorporated by means of obligating the participants to share risks. In a collective
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approach risks can be shared in many ways. Sharing risks will lead to more stable pension

outcomes.

2.3 Defined Contribution -contracts

Some occupational pension funds already o↵er another contract than the common DB-

contract: the Defined Contribution contract (DC). Each year all the participants pay a

defined amount of premium in this contract. In contrast to the DB-system, these premiums

are not equal for the active participants. The premium for an individual participant can

depend on age for example. Another di↵erence with the DB-system is that all risks of

changing pension incomes are borne by the plan participants, instead of the employers. E.g.

bad investment results don’t have to be compensated by the employer in this way.

Table 1 shows the premiums that the participants have to pay over their wage in a DC

contract. The premiums are determined such that, given the long term interest rates, the

expected pension incomes of a DB-contract equal the expected pension incomes in a DC-

contract. E.g., if the participant wants to accrue each year 1.875% of his income in a DB-

contract, he has accrued 75% of his average income after 40 years. The lower (higher) this

DB-accrual percentage of 1.875%, the lower (higher) the premium c

X that the participant

of age-cohort X has to contribute in an IDC-contract in order to receive an equal expected

amount of pension income. The dynamics of changing DB-premiums is beyond the scope of

this thesis.3

In the di↵erent DC-premiums we see the concept of the actuarial value of the premiums:

younger participants contribute lower premiums than older participants. Furthermore, we

see that when we have a higher long term interest rate, we can contribute a lower premium

in order to receive an equal pension outcome. We explained this concept in section 2.1.

3For a more detailed explanation of how the corresponding premiums are determined for these DB-

accruals, I refer to appendix F. For now it is important to note that the DB premium and the DB-accrual

per year are di↵erent concepts here
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Table 1: The di↵erent age-depending premiums in percentages for DC-models, linked to

accruals of DB-models. The premiums di↵er per long-term interest rate that is used, because

with a higher interest rate, the participant have to accrue a lower premium in order to

receive the same pension pay-o↵ (as explained in section 2.1). The ’DB-accrual’-column

represents the amount of premium that has to be accrued for each year during retirement.

The corresponding premium for this ’DB-accrual’ is much higher than this ’DB-accrual’

itself, because the accrual has to be made for the entire retirement period.

Long-term DB- Age

interest rate accrual 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-68

4%

1.875 4.8 5.9 7.1 8.7 10.6 13.0 16.0 19.9 23.3

1.788 4.6 5.6 6.8 8.3 10.1 12.4 15.3 19.0 22.2

1.701 4.4 5.3 6.5 7.9 9.6 11.8 14.5 18.1 21.1

3%

1.875 7.8 9.0 10.5 12.2 14.2 16.5 19.4 23.0 26.0

1.788 7.4 8.6 10.0 11.6 13.5 15.8 18.5 21.9 24.8

1.701 7.0 8.2 9.5 11.0 12.8 15.0 17.6 20.8 23.6

There are several variants of the DC-contracts. We describe two important variants. In

the first variant, the Collective Defined Benefit (CDC) contract, assets of participants are

collectively owned and invested. The advantage of an CDC-contract is that it has, similar to

the DB contract, an intergenerational-risk-sharing component included. Therefore, shocks

can be smoothed out over a longer period.

Another DC-contract is the Individual Defined Contributions contract (IDC) . Every

participant has its own accrued pension capital in this contract. This capital is invested

according to an individual-specific life-cycle asset mix. Individuals can choose the level of

risk-aversion that is attained in the asset mixes. Therefore, there is a customization aspect

in this pension contract. A disadvantage of the IDC-contract is the lack of solidarity in the

contract.

2.4 The 4C-contract

In the contract we investigate in this thesis, we want to use the right elements of the

di↵erent contracts in order to compose an appropriate pension contracts. On the one hand, a

customized contract with actuarial fair premiums is desired, like in the IDC contract. On the

other hand, a solidarity element (sharing risks) has to be satisfied, like in the DB-contract.

Combining these two requirements leads to the 4C-contract. This contract implies a pension

accrual according to the DC-premiums for all the active participants. Providing solidarity

to fellow-participants is incorporated in this IDC-contract by means of a collective bu↵er.

Hereby excess (negative) returns flows into (out) a collective bu↵er when the equity returns
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are above (below) a maximum (minimum) threshold value. The collective bu↵er stabilizes

the equity returns and therefore the portfolio returns, as the equity returns typically have

the highest volatility within the portfolios of the participants.

2.5 Fixed and variable pension contracts

We have now explained the motivation for a new pension system, and we continue with the

IDC-contract in the remaining of the thesis. Again, within this IDC- contract the pension

capital will be accrued according to a individual-specific life-cycle asset allocation. When

a participant turns into his retirement-age, he usually buys an annuity with the accrued

individual pension capital. He fixes his pension pay-o↵s in this sense. Therefore it is called

a ’fixed’ contract. In contrast to the fixed contract, there is also a possibility to choose for

varying pension pay-o↵s. We will describe in this subsection the di↵erence between a fixed

and a variable pension, and the corresponding risks of both types of pension contracts.

First we describe the fixed pension contract and its risks. Again, the pay-o↵s during

retirement are fixed in a IDC-contract, because the participant buys an annuity when he

retires. The value of this annuity (so the height of the fixed pay-o↵s during retirement)

strongly depends on the interest rates at the conversion moment. This bears extra risks.

When the interest rates are low, the participants receive lower cash-flows in the future in

exchange for their accrued pension capital. To reduce this interest rate risk, the interest

rate is hedged by pension funds by means of interest rate swaps. Hedging the interest rate

brings extra costs.

Another disadvantage of the fixed DC-contract concerns the fact that the pay-o↵s are

fixed. In this way participants do not benefit from risk premiums during retirement. How-

ever, they (hopefully) live for a really long period, so they can have lots of investment returns

on their accrued pension capital.

As a result of these two disadvantages of the fixed pension contract, the variable pension

contract has been designed. Participants in some Dutch pension funds can already opt for

such a variable pension. The first advantage of a variable contract concerns the fact that the

pension capital can be invested in risky assets, also after the retirement age. Consequently,

the participant can have gains of equity premiums, also during retirement. The second

advantage the variable contract o↵ers has to do with the lower dependence of economic

situation at the conversion moment. Each year the participant receives a pay-o↵ based on

several factors, like the long-term interest rate at that moment. This long-term interest rate

is re-evaluated each year. In this way the risk of a low interest rate at the conversion time

is lowered, because each year the retiree withdraws only a small proportion of his pension

accrual based on this unfavorable interest rate. The remaining of his pension capital will

be re-invested. We will clarify the risks of the fixed and variable contracts some more in

section 3.2.
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Regarding the requirements introduced by Boelaars et al. (2016), it seems that both the

fixed and variable contract perform better than the DB-contract regarding the transparency

requirement. For the fixed contract this is trivial (because the pay-o↵s are locked so it is clear

for the participants what they will receive). Within the variable contract, the participants

can exactly see how much of their pension accrual is withdrawn as pension pay-o↵ each year,

and how much is re-invested. The participants can even choose how this remaining capital

is invested, which makes the system both transparent and customized.

3 The pension fund model

In this section we sketch the cash-flows of the pension fund, and how the individual pension

capital of the di↵erent age-cohorts develops over time. We start by specifying the population

of the pension fund and thereafter we discuss the wage process of the participants. After

that we discuss the valuation of annuity factors, which are crucial in determining the pay-

o↵ scheme of both the fixed and variable pension contract. Then we continue with the

investment policies of both the IDC- and 4C-contracts, and explain the dynamics of the

collective bu↵er in this setting. This sections ends with the explanation of the measure we

will use to test the performance of the several pension contracts: the certainty equivalent.

The population

We assume that we have a population with an age ranging from age

min

= 25 until age
max

= 100.

The size of the di↵erent age-cohorts between 25 and 100 is directly linked to the survival

probabilities of the age cohorts. We normalize the number of participants aged 25 to 1. This

means that we have a probability 1 of reaching age 25. Every year in our simulation model

there enters 1 person of age 25 the model. The probability of reaching the age 26 is p26, so

there are 1⇥ p26 person aged 26 each year in the model. In general, the number of persons

of a fixed age of X years in the model, is defined by

N

X

=

8
><

>:

1 if X = 25,
Q

X

i=25 pi if X = 26, 27, ..., 100.
. (1)

The survival rates are assumed to be constant over time and consequently the number of

participants of age 25 until 100 in the fund is constant over time. For the mortality rates we

take the average of men and women from the ’AG-2016’ mortality tables in the Netherlands.

Table 1 in appendix A shows the survival rates that we apply in our fund. Again, these

survival probabilities equal the sizes of the di↵erent age cohorts in the fund over time.

We mention that in this specification we used the term age-cohort that represent the set

of participants that are born in the same year. In our model the cohort aged X actually
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acts as one person of size N

X . For notational convenience we use the terms ’investor’ and

’participant’ in the remaining of the text, while these terms actually represent the whole

age-cohort.

Wages

We follow Cocco et al. (2005) with specifying the wage process y(t). They use an exogenous

income process. This income process is defined by

y(t) = exp (g(t) + v

t

+ "

t

) , (2)

where t represents the age t of the participant. The function g is a third order polynomial

function, given by g(t) = ↵0 + ↵1t + ↵2t
2
/10 + ↵3t

3
/100. Additional to the deterministic

function g, we add a temporary shock "

t

and a consistent shock v

t

in the wage specification

in (2). The temporary shock is normally distributed with expectation zero and variance �

2
"

,

so "

t

⇠ N (0,�2
"

). For the persistent shock we have v

t

= v

t�1 + u

t

, with u

t

⇠ N (0,�2
u

).

Cocco et al. (2005) estimated the parameters ↵

i

for di↵erent types of groups. We use the

parameters belonging to an individual with high-school education, but without a college

degree. This type of person is the ”high-school” individual in Cocco et al. (2005). The

corresponding parameters in the function g are set as ↵1 = 0.1682, ↵2 = �0.0323, and

↵3 = 0.0020. The variance of the transient shock equals �2
u

= 0.0738 and the variance of the

permanent shocks equals �2
✏

= 0.0106

In figure 10 and figure 11 in Appendix A we show how the permanent (v) and temporary

(") shocks influence the deterministic income-streams g. These two figures show that the

level of income is far from deterministic in our model. As a consequence, the 5% best or 5%

worse income streams can deviate about 20% from the average income stream. Of course,

this has a large impact on the pension outcomes of the participants.

3.1 Explanation IDC policy

We start by specifying the pension accrual process in an Individual Defined Contribution

contract, because the pension accrual in the 4C-contract is almost similar.

Every year t, the investor from a fixed age cohort X has an initial Financial Wealth

FW

X

t

. When this person is still working (so between age 25 and age 68), he contributes a

certain premium c

X

t

of his wage W

X

t

which is added to his financial wealth. If the person

is already retired, his financial wealth will be reduced because he withdraws some pension

income (PI

X

t

) in that year (in the case of a variable pension). After these two operations

(adding premium or distracting pension income), the new financial wealth will be invested

in an individual specific portfolio p

X

t

. This portfolio yields some return r

X

p,t+1 one period

later, and the remaining financial wealth grows (or decreases) to a new level FW

X

t+1. In
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formula form, this is the same as

FW

X

t+1 =
�
FW

X

t

� PI

X

t

68XT

+ 25X68c
X

t

W

X

t

� �
1 + r

X

p,t+1

�
, (3)

where the indicator function
A

equals one when the condition A is satisfied and zero else.

This formula holds in case of a variable pension. This means that when the retirement age

is reached, we do not lock the pension income into an annuity. Instead, we withdraw each

year only PI

X

t

of the pension capital and the remaining capital we re-invest. In this way,

we keep on having gains from the investments.

Recall from section 2.2 that the premiums c

X

t

for the participants of age X depend on

multiple factors. In table 1 we presented the dynamics of the DC-premiums when we change

the DB-accruals or the long-term interest rates. We use the premiums c

X

t

corresponding

to long-term interest rate that we use (3.0%), and a 1.875% DB-pension accrual. We keep

these premiums constant throughout the entire simulation study.

3.2 The valuation of annuity factors

As we mentioned, annuity factors are crucial for the pension incomes in both a fixed and

a variable pension contract. For determining these values of the annuities, we take the

survival probabilities and long term interest rates into account. The value of an annuity for

age cohort X at time t is given by

a

X

t

=
100�xX

s=max(68�x,0)

N

s

⇥ 1

(1 + r

t

(s))s
. (4)

This annuity factor determines how many (deferred) nominal annuities the investor with age

X can buy at retirement, when we assume that during retirement there is an yearly payment

of 1. This means that one age-cohort participant receives 1 unit of money each year during

retirement. For the age cohort this 1 unit of money is corrected for the sizes of the age-cohort

at that moment, and discounted with future interest rates. The age-cohort accrual pattern

is determined in such a way that the living participants in a specific year in the retirement

period, receive the one unit of money each year during retirement. Hence, the fund needs

to reserve only N

X

⇥ 1 instead of 1 unit of money for the age-cohort X. Consequently this

implies that within this contract the participants can have mortality gains. In other words,

they can have benefits from the accrued pension capital of fellow participants from the same

age-cohort that have died. The mortality chances are taken into account by setting the

premiums, so if the population becomes older than expected, the individual participants

receive less than the expected one unit pension outcomes they accrued.

If we choose a fixed pension at age 68, we can determine the yearly pension outcomes of
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a participant following the next two equations.

FW

68
t

= a

68
t

⇥ PI

68
t

, (5)

PI

68
t

=
FW

68
t

a

68
t

. (6)

In words: the pension capital has to be divided by the value of annuity, and in this way the

values of the future pension incomes equal the value of the current financial wealth.

Like we mentioned, the conversion moment is crucial for the pension incomes of a partic-

ipant in a fixed contract. If the financial wealth of a participant is locked by a high annuity

value (high survival probabilities and low interest rates), the pension cash flows will be lower.

Choosing for a variable pension reduces the dependence of the conversion moment. With a

variable pension the pension income is locked for only one year. Consequently, the economic

and demographic conditions are less crucial for the future cash flows. In the variable pen-

sion case only a fraction of the pension capital is withdrawn by the retiree each year during

retirement. Each year the long-term interest rate and mortality chances are re-evaluated.

With these two variables, we can re-calculate each year the value of the annuity factor aX
t

like we did in equation (4). Dividing the remaining pension FW

X

t

capital of the individual

participant by this annuity factor a

X

t

results in the pension income PI

X

t

for a participant

with a variable pension.

3.3 Investment allocations IDC-contract and 4C-contract

We note that until now we have mainly focused on the IDC-contract in the explanation of the

models. The only extension of the existing IDC-contract that we investigate in this thesis is

the inclusion of the collective bu↵er. An important feature of the IDC-contract is that this

contract can be tailor-made for the di↵erent individual participants. This means that every

participant can choose an appropriate investment mix that is applied to his pension capital.

The chosen investment mix follows a life-cycle. In our life-cycle asset mixes we include a

stock index, a 5-year bond and a nominal cash account. The asset allocations depend on the

investment horizon of the investor and the level of risk-aversion of the investor. The longer

the period until retirement, the more the asset allocation is dominated by stocks. The part

that is invested in fixed income (5-year-bond and the nominal cash account) increases over

time. Within the fixed income part of the portfolios, the long term bond dominates the

nominal cash account. The nominal cash account is only part of the portfolio in the last

couple of years before retirement. In the way we construct the portfolios we can keep having

gains of risk premia, while the risk-profile lowers as the investor is nearing his retirement

age.

In section 6 we discuss in detail how we determine the life-cycle asset mixes for di↵erent

types of investors. We investigate how the di↵erent investment styles a↵ect the pension

incomes. For a fixed pension we investigate three types of investing: risk-seeking (’Ag-
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gressive’), risk-neutral (’Neutral’) and risk-averse (’Averse’). With a variable pension the

investor can choose at retirement age which of the three investment style he wants to apply

in his investment mix for the remaining of his life. He can switch his attitude towards risk

in this way. He can for example invests aggressive until retirement, and averse after retire-

ment (we call this variable pension investor ’Aggressive-Averse’). This implies that we have

3⇥ 3 = 9 investment styles that the investor can attain in the case of a variable pension.

3.4 The collective bu↵er

We already explained how the pension capital of the age cohort X develops over time, and

that each year t this money is invested in a portfolio p

X

t

, with some return r

X

p,t

. In the

portfolios, the investor allocates his money to a portfolio of a nominal cash account, a 5-

year bond and a stock index. The weights of these three assets are denoted by ↵

X

Rf,t

, ↵X

B5Y,t

and ↵

X

St,t

. The three asset weights sum up to one and the asset weights larger or equal than

zero. In an usual IDC- contract the return of the portfolio is a linear combination of the

asset weights and their corresponding returns. The di↵erence with an IDC-contract and

a 4C-contract is that we manipulate the returns on stocks. This manipulation is done by

means of the collective bu↵er. If the return on stocks r

St,t

is too high (low), the collective

bu↵er will be used. We define the ’new’ stock return of the age cohort as

r̃

St,t

=

8
>>>><

>>>>:

r

St,t

if lb  r

St,t

 ub

ub if ub < r

St,t

lb if r

St,t

< lb

, (7)

where ub denotes the upper-bound of the collective bu↵er where the equity returns are cut,

and lb the lower-bound. The question rises what appropriate values are for the upper-bound

ub and the lower-bound lb. This is one of the questions that we answer in this thesis. On the

one hand we want a high value ub such that the bu↵er does not lower the high stock returns

too much. On the other hand, we want to have enough capital in the collective bu↵er such

that the bu↵er can protect the pension capital against very negative stock returns.

With the defined stock return r̃

St,t

, we have the following return for the 4C-portfolio p̃

X

t

:

r̃

X

p,t

= ↵

X

St,t

r̃

St,t

+ ↵

X

B5Y,trB5Y,t + ↵

X

Rf,t

r

Rf,t

. (8)

We plug these modified stock returns in the financial wealth process of the IDC-investor

that we specified, and obtain the 4C financial wealth process ˜
FW

X

t

that is specified by

˜
FW

X

t+1 =
⇣

˜
FW

X

t

� PI

X

t

68XT

+ 25X68c
X

t

W

X

t

⌘ �
1 + r̃

X

p,t+1

�
.. (9)

The only di↵erence between the financial wealth of the 4C-contract ( ˜
FW

X

t

) and the finan-

cial wealth of the IDC-contract (FW

X

t

) lies in the di↵erent portfolio return caused by the

modified stock returns.
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The capital in the collective bu↵er changes when the stock return is above upper-bound

ub or below lower-bound lb. The excess return above ub flows into the bu↵er. In the same way

the excess negative return below the lower-bound lb flows from the bu↵er to the individual

pension capitals. Consequently, the excess return is measured by the change between the

IDC stock return and the 4C-returns: (r
St,t

� r̃

St,t

).

We define the change in the collective bu↵er caused by age cohort X in year t as

�CB

X

t

= ↵

X

St,t

FW

X�1
t�1 (r

St,t

� r̃

St,t

) . (10)

In words, the change in the collective bu↵er is calculated as the product of the pension

capital and the excess return on stocks of the portfolio for a given age cohort. Note that

when the stock returns is in the range between the the lower-bound and upper-bound, then

we have r

St,t

= r̃

St,t

. This implies �CB

X

t

= 0 for all age-cohorts X at time t.

We obtain the total change of all the age cohorts of the collective bu↵er for moment t

by summing over all the age-cohorts in the fund:

�CB

t

=
100X

i=25

�CB

i

t

. (11)

Finally, the total size of the collective bu↵er at moment t is measured by the sum of the

previous changes, so

CB

t

= CB

t�1

�
1 + r

CB

t

�
+�CB

t

, (12)

where CB0 is the initialization step. The return of the portfolio in which the capital of

the bu↵er is invested, is denoted by r

CB

t

. We allocate 40% of the capital to the stock

index and 60% to the risk-free cash account, since in a DB-system the assets are usually

invested according to this asset mix. Note that the summation in equation (11) runs until

the maximum age of 100 in our model. If we invest also after retirement age, the bu↵er is

also active for participants in the draw-down period. With a fixed pension we do not invest

after retirement age, so in this case the summation in equation (11) runs until age 68.

Upper- and lower-bounds bu↵er

We emphasize that we also need to specify an upper-bound UB

t

and a lower-bound LB

t

for

the maximum amount of capital that the bu↵er may contain. In formulas, we have to satisfy

CB

t

2 [LB
t

, UB

t

]. The explanation of these bounds has to with the fact that the bu↵er

needs to act as an stabilizing mechanism. E.g., when the bu↵er is filled with some capital

that equals 100% of the accrued pension capital of the participants, then the upper-bound

for the stock returns ub is not realistic. There is too much wealth transferred to the future

in this situation. This is not fair for the generations who contributed to filling this bu↵er.

Following this reasoning we specify the upper-bound UB

t

as follows:

UB

t

=
100X

i=25

⇧
max

FW

i

t

, (13)
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where ⇧
max

2 {0.1, 0.2, 0.3} . We do not want that the bu↵er has more capital than some

proportion of the sum of all the financial wealth of the participants of the fund.

For the lower-bound we choose LB

t

= 0. This means that we do not allow for negative

amount of capital in the bu↵er. A negative bu↵er is a kind of debt that currently active

and future generations have to pay back later. Consequently, this implies that future active

participants have to pay for bad results in the past (van Riel, 2016). This way of sharing

risks is one of the motivations to renounce the current DB-system. We can easily prevent

this way of moving risks forward by setting the lower-bound of the bu↵er, LB
t

to 0.

Intergenerational risk-sharing

One requirement for the bu↵er is that it may not frequently hit its lower-bound LB

t

or upper-

bound UB

t

. We already remarked that the bu↵er can act as a mechanism to distribute

wealth over di↵erent periods. When the upper- or lower-bound is hit the bu↵er will be

switched o↵. When the bu↵er is switched o↵, the 4C-contract is (temporarily) an usual

IDC-contract, until the bu↵er will be switched on again. This is not fair. We illustrate this

unfair situation with an example. Imagine the situation when the upper-bound is reached

at some time t

⇤, because there is too many capital in the bu↵er. Consequently, the bu↵er

is switched o↵. This is beneficial for the active participants of the fund at time t

⇤
. Their

additional stock returns above the upper bound lb does not flow into the collective bu↵er.

The additional returns will be added to their own pension capital now. Imagine that we are

two years later, at time t

⇤ + 2, in a recession and we have to deal with extremely negative

stock returns. The bu↵er will shrink and will be switched on again. Meanwhile, there

are some young participants who have entered the fund. These new participants have less

advantage in times of extreme positive returns because the bu↵er is working again. We can

apply a similar reasoning in the case the bu↵er reaches its lower bound. Negative returns

are not hedged for the active generations, while this can be the opposite case some years

later.

We conclude that we want a working bu↵er as often as possible for an optimal distribution

of wealth over time. Nevertheless, the idea behind intergenerational risk-sharing is that there

can be times that some generations su↵er more from some bad economic circumstances than

other generations. In this way we can argue that a bu↵er that is switched-o↵ is unfavorable

for some active generations, but contributes to the intergenerational risk-sharing element.

The initialization step of the bu↵er

We keep the idea of an active bu↵er in mind by setting the initialization of the bu↵er.

First we run the pension models by starting with an empty bu↵er, so CB0 = 0. Then we

determine the average size of the bu↵er over all the simulations. This average size is the new

initialization of the bu↵er. It turns out that both the pension outcomes and the number of
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times that the bu↵er is full or empty, are barely a↵ected by the two di↵erent initialization

steps. In order to have equal gains of the bu↵er of all the generations, we start with a bu↵er

that is filled for 50% of the long-run average of capital in the bu↵er. We mention that this

can’t be done in reality because you transfer some of the initial pension capital of the active

participants to the bu↵er. However, in order to examine the isolated impact of the bu↵er on

the pension results this is a favorable choice. Moreover, the transition issues of the pension

contracts (so creating a fair initialization mechanism of the bu↵er) is beyond the scope of

this thesis.

The Certainty Equivalent

In both the fixed and variable pension cases, we calculate the pension incomes for the

di↵erent age cohorts. In the variable pension case the pension incomes di↵er also each year,

because they depend on the investment results during retirement. Consequently, we obtain

a stochastic series of pension incomes in the variable pension contract. We want to capture

the performance of such a series of stochastic pension incomes in a single statistic. The

certainty equivalent is a powerful statistic in order to measure this performance. We define

V

68
t

as the utility value of a pension contract for moment t as

V

68
t

=
100�68X

s=0

N68+s

�

s

�
PI

68+s

t+s

/ Ȳ

t,68

�(1��)

1� �

. (14)

Here Ȳ68,t is the average income of an individual during his working life. The pension incomes

are stochastic, which makes the utility level stochastic as well. The terms PI

68+s

/ Ȳ68,t

denote the replacement ratios for future pension pay-o↵s. We follow KNW and choose

� = 0.97, which represents a subjective discount factor. The parameter � represents the

relative risk-aversion.

From the stochastic utility specification in equation (14) we can extract the Certainty

Equivalent (CEQ). This is the fixed level of pension income that gives an individual the

same satisfaction level according to the utility function as the equivalent stochastic income

streams. In formula form this is the same as

V

CEQ = E[V68] =
T�68X

s=0

N68+s

�

s

�
CEQ / Ȳ

t,68

�(1��)

1� �

. (15)

The CEQ is a powerful measure which can catch the welfare of the di↵erent pension series

in one single statistic. We remark that the CEQ strongly depends on the chosen utility

function.

3.5 The simulation of the results

The pension fund model that we construct runs from 2018 until 2093. We present in the

results section only the pension results of age-cohort 1993. This age-cohort enters the fund
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at age 25 and all the participants of this age-cohort will be death in 2093, in our model.

Therefore, this age-cohort runs through the entire simulation and starts with a pension

capital of zero.

For the initialization of the pension capital of the participants of all the other age-cohorts,

we use a risk-neutral investor that has an IDC-contract. This investor has some specific

individual life-cycle asset allocations. We run 500 simulations of the wealth equations over

time following this life-cycle mix. We take the average of these 500 wealth levels for each

year, such that we obtain an average wealth of the participants from age 25 until 68. This

is the initialization of the pension capital for the age-cohorts that are already active in the

fund, so the age-cohorts 1950 until 1992. We assume that the participants that are already

retired do not participate in the fund anymore for this simulation study, so they do not

contribute to the bu↵er.

For each simulation, we obtain for each pension contract exactly one certainty equivalent.

We assume that if we have for example a risk-neutral investor with an IDC-contract, that

all the participants apply this investment style in the pension fund throughout the entire

simulation of this contract. Note that for each pension contract we specified, we run N

simulations yielding N certainty equivalents for the age-cohort 1993. In this way we obtain

distributions of the pension outcomes of the di↵erent pension contracts. We can compare

the distributions of these Certainty Equivalents among the di↵erent contracts to measure

the performance of the di↵erent contracts.

4 Financial market

For the simulation study we simulate N = 500 di↵erent paths of the financial market as

input. The paths have length T = 75, the duration of our pension model. Per path

we need to simulate multiple processes, e.g. a stock index, a short-term nominal interest

rate, bond returns and an inflation rate. In this section we first outline the dynamics of

the processes that describe the financial market. After that, we explain the underlying

a�ne term structure model of Hamilton and Wu (2012) (HW) that drives the financial

market processes. Finally, we describe the estimation techniques we apply for estimating

the structural form parameters that describe the financial market.

4.1 Financial market processes

We adapt the financial market model that is described in Koijen et al. (2009), but we use a

three-factor model as underlying process of the financial market simulations, instead of the

two-factor model in KNW. This underlying process is the underlying latent process of the

bond yields of di↵erent maturities. By choosing a term-structure of the yields with three

terms we follow Dai and Singleton (2000), Du↵ee (2002) and Sangvinatsos and Wachter
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(2005) .

We implement the model of HW for the latent factors that drive the yields. The three

factors in the HW-paper can be interpreted as the level, slope and curvature of the term

structure of the yield curve. The three underlying latent factors F

t

follow the stochastic

di↵erential equation given by

dF

t

= �F

t

dt+ ⌃
F

dZ, (16)

where  is 3⇥ 3 matrix4 and dZ is a 5⇥ 1 vector of standard Brownian motions under the

physical measure. Furthermore, ⌃
F

is specified as [I3 03⇥2] .

We assume the instantaneous risk-free rate r

t

to be an a�ne function of the three un-

derlying factors F
t

. Therefore, this process is described by

r

t

= �0 + �

T

1 Ft

. (17)

with �0 2 R and �1 2 R3⇥1
.

We assume that we have a time-varying market price of risk. This price of risk is linear

in the underlying factors F
t

, so

⇤
t

= ⇤0 + ⇤1Ft

, (18)

where ⇤0 2 R3⇥1 and ⇤1 2 R3⇥3
. When ⇤1 = 03⇥3, the risk premia are constant and we

obtain the multifactor version of Vasicek (1977) .

We denote P (t, t+ n) as the nominal price of a bond at time t with maturity t+ n and

a nominal pay-o↵ of 1. This nominal bond has an exponential a�ne structure in the state

variables,

P (t, t+ n) = exp
�
A

n

+B

0
n

F

t

�
, (19)

where B
n

2 R3⇥1 represent the factor loadings of the yields with maturity n. It follows that

the corresponding yield is given by

y

n

t

= a

n

+ b

n

F

t

, with a

n

= �A

n

n

, b

n

= �B

n

n

, (20)

By applying Ito’s lemma and using the theorem of no-arbitrage pricing we can derive

that the bond price dynamics are given by

dP

P

= (r
t

+B

0
n

⌃
F

⇤
t

) dt+B

0
n

⌃
F

dZ, (21)

where dZ represents the same 5⇥ 1 standard normal Brownian motion as in equation (16).

This formula implies that we have a time-varying risk premium in bonds, since ⇤
t

is not

4 The discrete-time specification of equation (16) is Ft+1 = c + ⇢Ft + ⌃Fwt+1, where we have c = 0,

⇢ = exp(� dt) and wt+1 is a 5 ⇥ 1-vector of independent standard normal variables. This is exactly the

discrete time specification of HW, the factor model that we plug into the KNW model under the physical

measure. The only di↵erence is that the HW-discrete time specification has 3 factors instead of two in the

original KNW-specification, so we have an extra risk factor compared to the KNW-model
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constant. Further we define an expected inflation which is also a�ne in the state variables

F

t

:

⇡

t

= ⇠0 + ⇠

0
1Ft

(22)

with ⇠1 2 R3⇥1
. The realized inflation is obtained by the expected inflation and an additional

stochastic term:

d⇧
t

⇧
t

= ⇡

t

dt+ �

0
⇧dZ, with �⇧ 2 R5⇥1

, (23)

with ⇡

t

the instantaneous expected inflation. The dynamics of the stock prices is given by

dS

t

S

t

= (r
t

+ ⌘

s

)dt+ �

0
S

dZ with �

S

2 R5⇥1
, (24)

where ⌘

S

represents the equity risk premium. We follow Sangvinatsos and Wachter (2005)

and Koijen et al. (2009) assume that the equity risk premium is constant over time in our

model. With this specification of the financial market, we have five independent risk drivers.

We assume that the volatility matrix stacking ⌃
F

, �
S

and �

⇡

is lower triangular.
0

BB@

⌃
F

�

0
S

�

0
⇧

1

CCA =

0

BB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

�

S1 �

S2 �

S3 �

S4 0
�

⇡1 �

⇡2 �

⇡3 �

⇡4 �

⇡5

1

CCA (25)

4.2 A�ne Term Structure Model

In this subsection we further investigate the A�ne term structure model of HW. We recall

from equation (16) that we have three latent variables F
t

which are driven by the Gaussian

vector auto-regression model. This continuous time process is defined under the physical

measure. We can write the discrete-time specification of the continuous time stochastic

di↵erential equation in 16 is given by

F

t+1 = c+ ⇢F

t

+ ⌃u
t+1,

with c = 0, ⇢ = exp(� dt), ⌃ = I3 and u

t+1 a (3 ⇥ 1) vector of independent standard

normal variables. This specification implies that F
t+1|Ft

, F

t�1, · · · , F1 ⇠ N (µ
t

,⌃⌃) , where

µ

t

= c+ ⇢F

t

. (26)

When we take r
t

as the nominal risk-free rate and when F

t

contained all the information

that is relevant to the investor, the price of a discounted asset has to be a function of the

current state vector P
t

(F
t

). Consequently, risk-neutral investors want to pay

P

t

(F
t

) = exp(�r

t

)E
t

(P
t+1(Ft+1)) . (27)

For risk-averse investors, we have that

P

t

(F
t

) = E

t

(P
t+1(Ft+1)Mt,t+1) , (28)
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where M

t,t+1 represents the pricing kernel. In this model the pricing kernel equals

M

t,t+1 = exp [�r

t

� (1/2)⇤0
t

⇤
t

� ⇤
t

u

t+1] . (29)

When we rewrite the conditional expectations in 28 and 29 as integrals, we derive that the

expected price for a risk-neutral investor is µ
t

. For a risk-averse investor this expected price

equals

µ

Q

t

= µ

t

� ⌃⇤
t

. (30)

As a result we see that risk-averse investors have another conditional mean of F

t+1,

with this specification of the pricing kernel. This implies a di↵erence between the market

valuation and the risk-neutral valuation of assets. We can interpret ⇤
t

as the market price

of risk.

Rearranging equations (18), (26) and 30 gives that the conditional mean under the risk-

neutral measure Q is given by

µ

Q

t

= c

Q + ⇢

Q

F

t

, (31)

where

c

Q = c� ⌃⇤
t

(32)

⇢

Q = ⇢� ⌃⇤
t

. (33)

We can conclude that risk-averse investors characterize the VAR of the factors by the Q-

measure VAR, given by

F

t+1 = c

Q + ⇢

Q

F

t

+ ⌃uQ

t+1. (34)

Here is uQ

t+1 a vector of independent standard normal variables under the Q-measure.

We want to translate this term structure to the term structure of the yields, in order to

estimate the model. Ang and Piazzesi (2003) show that we can write the yield of a risk-free

n-period pure discounted bond as

y

n

t

= a

n

+ b

0
n

F

t

, (35)

where

b

n

=
1

n

⇥
I3 + (⇢Q) + . . .+ (⇢Q)n�1

⇤
�1 (36)

a

n

= �0 +
�
b

0
1 + 2b02 + . . .+ (n� 1)b0

n�1

�
c

Q

/n (37)

� (b01⌃⌃
0
b1 + 22b02⌃⌃

0
b2 + . . .+ (n� 1)2b0

n

⌃⌃0
b

n

)/2n. (38)

When we know the values of cQ, ⇢Q, �0 and �1, then we can iteratively predict the coe�cients

b

i

and a

i

for the di↵erent maturities i = 1, . . . , n. In this way we can predict the yields of

di↵erent maturities when we know the factors F

t

in equation (34). We remark that the

specification of a
n

and b

n

is important in the estimation of the structural-form parameters.
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4.3 Estimation techniques

In the a�ne Gaussian term structure models we often have to deal with translating the

parameters of a simple VAR model (the reduced-form parameters) to the parameters that

describe the financial market (the structural-form parameters). Sangvinatsos and Wachter

(2005) describe an a�ne term structure model (ATSM) where Quasi Maximum Likelihood

estimation is applied to extract the structural form parameters from the reduced-form pa-

rameters. This technique brings a lot of problems. The ATSM-model has a di�cult non-

linear maximum likelihood surface. This makes finding a global maximum a di�cult task.

Furthermore, the models include many parameters. Finding good starting values for the

optimization turns out to be very hard, which makes convergence of the parameters even

harder. HW introduced a method that enables us to circumvent these highly dimensional

complex optimization problems. In order to do this, they first derive a VAR model of ob-

served yields. With this VAR-specification, we can link the reduced form parameters of the

VAR-model to the structural form parameters cQ, ⇢, ⇢Q, �0 and �1 by splitting the optimiza-

tion into smaller problems. These ’smaller’ problems can be estimated with the so-called

Minimum Chi-Square Estimation (MSCE). We apply this method in order to avoid the dif-

ficult QMLE technique. In the appendix we have a technical explanation of this estimation

method.

Given the estimated structural form parameters that describe the underlying latent fac-

tors of the economy, we continue with estimating the structural form parameters of the

stock and inflation processes. Shen (2015) derived GMM-conditions for estimating these

structural form parameters. We apply perform this GMM-estimation too. This technique

is also presented in appendix B1.

5 Data and estimation results

5.1 Data

For calibrating the financial market we use U.S. data. For the estimation of the term

structure of the yields we use data obtained from from Gürkaynak et al. (2007).5 This data-

set includes yields that are measured on a daily basis data from June 1961 until October

2017. For the estimation we use government bond yields for four di↵erent maturities: 1-

year, 2-year and 3-year and 6-year government bond yields. We pick every last business day

of the month. For the inflation rates we use monthly data from the Federal Reserve Bank of

St. Louis of ’consumer price indices for all urban customers, and on all items, with seasonal

adjustment’. For this proxy of the inflation rate process, we use data from January 1982

until September 2017.

5
https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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For the stock index we use the market proxy of the Fama-French 3-factor model, obtained

from the data library of French (2013) 6. This dataset includes monthly observations, and

we use the observations from January 1982 September 2017. For the mortality (or survival)

tables we use the AG-2016 tables from the Netherlands.

Summary statistics

We see in our dataset the average yields increasing when the maturity increases. The

volatility of the bonds increase as well as the maturity of the bonds increases. This has to

with the increasing risk-premia when the maturities increase. The monthly stock return is

really high, but the stock returns are also very volatile.

Table 2: The annualized sample means of the annualized yields of bonds of di↵erent matu-
rities, and their corresponding standard deviation. The stock returns and inflations are on
a monthly basis.

mean std
3 month yield 4.03% 3.16%
3 year yield 4.91% 3.25%
5 year yield 5.32% 3.62%
10 year yield 5.98% 3.85%

monthly stock return 0.68% 4.34%
monthly inflation 0.22% 0.26%

Table 3: The sample correlations between annualized bond returns of di↵erent maturities,
monthly stock returns and the monthly inflation of the data-set

3 month 3 year 5 year 10 year Stock Inflation
3 month bond return 1
3 year bond return 0.972 1
5 year bond return 0.955 0.996 1
10 year bond return 0.920 0.977 0.991 1
monthly stock return 0.290 0.287 0.283 0.278 1
monthly inflation 0.039 0.038 0.032 0.021 -0.020 1

The correlation table shows that the correlation between yields with di↵erent maturities

is really high. On the other hand, the correlation between the stock returns and yields is

low. The higher the maturity, the lower the correlation between the stock and the bond.

The correlation between the inflation and the assets is negligible small.

6
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 4: The estimated parameters of the latent factor model in panel A), and the estimated
parameters from the financial market processes in panel B). The standard errors of the
estimation are displayed between the round brackets

PANEL A: Estimated latent factor parameters process

P- and Q-parameters F
t

process implied � representations
c

Q 0.0462 0.0428 0.0949 � -0.0462 -0.0428 -0.0949
(0.0272) (0.0840) (0.1462)

⇢

Q 0.9983 ⇤ -0.0375 0.0390 0.0181
(0.0019) 0.0210 -0.0623 0.0472
0.0181 0.9618 -0.0096 -0.0117 0.0070
(0.0158) (0.0134)
-0.0149 0.0913 0.9177
(0.0637) (0.0363) (0.0190)

⇢ 0.9608 0.0390 0.0181
(0.0219) (0.0195) (0.0356)
0.0391 0.8995 0.0472
(0.0448) (0.0378) (0.0451)
-0.0245 0.0796 0.9247
(0.0419) (0.0232) (0.0420)

⌃
E

7.18E-05
(2.45E-06)

PANEL B: Financial market processes

Nominal short rate r

t

+ �0 + �

0
1Ft

�0 4.97%
(1.33%)

�1 0.14% 0.14% 0.53%
(0.15%) (0.23%) (0.10%)

Exptected inflation rate ⇡

t

= ⇠0 + ⇠

0
1Ft

⇠0 3.25%
(0.20%)

⇠1 0.05% 0.28% -0.07
(0.01%) (0.13%) (0.12%)

Stock return process dSt
St

= (r
t

+ ⌘

s

)dt+ �

0
S

dZ

⌘

S

4.38%
(0.52%)

�

S

-0.46% 3.10% -3.39% 14.47%
(0.72%) (0.40%) (0.38%) (0.20%)

Realized inflation process d⇧t
⇧t

= ⇡

t

dt+ �

0
⇧dZ

�

⇡

0.59% -0.06% 0.03% 0.01% 0.03%
(0.04%) (0.02%) (0.01%) (0.03%) (0.37%)
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5.2 Estimation results

Table 4 presents the estimated structural form parameters of the financial market, and their

corresponding standard errors. We see both the results of the dynamics of F
t

(following

from the HW-estimation in panel A) and the financial market processes (from the GMM-

estimation in panel B).

We note that the estimated expected short term interest �0 equals 4.97% based on the

historical data. For the simulations we lower this constant to �0 = 3.0%, which is a more

reliable long-term interest rate for the future. Moreover, the premiums the participants

have to contribute are also based on a 3.0% long-term interest rate. Further we see that the

expected yearly inflation rate ⇠

o

equals 3.25%. We choose ⇠0 = 2.0%. This is currently a

more realistic long-term inflation rate than the quite high inflation rate that we estimated

(based on the data). The equity premium from the market proxy of the Fama-French 3-

factor model is estimated as 4.38%. We apply this equity premium for the stock process

simulation in the future, as it is a realistic equity premium for our simulation process.

Figure 12 and 13 show that the factor representation does a good job in estimating the

short-term (1-year) yield. Also the 5-year bond is estimated quite accurately, although the

estimation errors are larger than the errors in the estimation of the short-term rate.

Figure 15 shows for di↵erent maturities the factor loadings B of the factors F
t

. We see

that the di↵erent factors loadings have a comparable shape as the factors loadings in the

Nelson-Siegel model.

We mention that the elements of �
S

, the volatility of the stock return process, are really

high compared to the volatility parameters of the other processes. In this way, we add a lot

of noise to the stock process.

Simulating the financial market

After we have estimated the financial market parameters, we are able to simulate the financial

market. Therefore we have to draw N ⇥ T times a 5 ⇥ 1 vector of independent standard

normal variables. These vectors are the input for the financial market processes we specified.

The other financial market processes (e.g. stock returns, bond returns, inflation) follow by

plugging in these random innovations in the formulas that specify the financial market in

section 4.1.

6 Dynamic portfolio analysis

In the previous sections we explained how we specified the pension model and how we

obtained the simulated processes of the financial market. In this section we explain how

we can use these simulated financial market processes for determining the optimal life-cycle
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asset allocations. First we give a brief sketch of the relevant history of life-cycle portfolio

construction problems.

6.1 Brief history of dynamic portfolio theory

When an investor wants to make life-cycle investment decisions, he needs a dynamic strategy

to manage his portfolio in the best way. In this setting dynamic means that the investor has

to re-balance his portfolio in every period, in response to a changing value of his portfolio.

In such problems, the investor has an attitude towards risk which has to be incorporated in

his portfolio optimization.

Many researchers consider the paper of Markowitz (1952) as the starting point of modern

finance. In this paper a static portfolio optimization is described for a mean-variance (MV)

myopic investor. Although this paper gives many useful insights, it has also its shortcomings:

the investor in this paper is time-independent and not able to capture changes in the value of

the portfolio in his investment decision. However, many institutional investors think and act

not only myopically. They are also interested in the long-term behavior of their portfolio.

Consequently, they need a model for multi-periods. As a result, researchers started to

analyze optimal portfolio decisions for long-horizon investors. Pioneer work on this topic

was done by Latane and Tuttle (1967), Mossin (1968) and Merton (1969). In these papers

the focus is on the allocation between stocks and a risk-free rate (cash), with i.i.d stock

returns. There is no stochastic interest rate included in these models. Merton (1971) was

the first one who captured a stochastic interest rate in his model. He showed that this leads

to a ’hedge’ demand, in addition to the myopic demand. Long-horizon investors wish to

hedge changes in the investment opportunity set. Depending on the level of risk-aversion,

the investor may wish more or less wealth when investment opportunities deteriorate or

improve.

During the 90s, a lot of research was done on the predictability of asset returns. As

shown by Fama and French (1988) and (Campbell and Shiller, 1988), the price-dividend ratio

predicts excess stock returns with a negative sign. This implies that we can predict the stock

market based on the price-dividend ratio and hedge time-variation in expected stock returns.

Brennan et al. (1997) analyzed numerically an optimization problem for an investor who can

invest in stocks, bonds and cash. It turned out that the equity premiums were predictable

by the interest rate and the dividend yield. In this way, the time-varying stock returns

can be hedged. Using this hedging strategy leads to significant better portfolio returns in

out-of-sample simulations. Campbell and Viceira (2002) showed that when investors have

relative risk-aversion greater than one, hedging demand leads to an increasing allocation to

stocks when the investment horizon increases.

Sangvinatsos and Wachter (2005) investigated whether the same mechanism holds for

bond returns of di↵erent maturities. In their paper they showed that long-term investors
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that are not restricted by portfolio constraints can realize large economic gains by both

timing bond markets and hedging time variation in bond risk premia.

For our analysis we incorporate the findings of the papers described above. In other

words, we want to determine a life-cycle investment strategy in which we can anticipate

on both time-varying stock and bond returns. On top of that, we want to perform this

analysis for investors with varying levels of risk-aversion. The investors do not only care

about their pension capital, but they want to consume also during their working life. All

these requirement are captured in the optimization problem described by KNW.

6.2 The optimization problem

KNW introduce a numerical optimization method in a model with multiple assets and

multiple state variables included. In this subsection we outline this model. We remark that

in appendix C there is a detailed explanation of this model. Also the solution method that

we outline in this subsection, is clarified in more detail in this appendix. We note that we

consider the optimization procedure as an exogenous part of the thesis. We use this part

only to determine the asset mixes for an IDC-investor. We apply these mixes as input for

the several pension models. The e↵ect of the bu↵er is not incorporated in the analysis of

the optimal asset allocations in this section. The impact of the bu↵er is only incorporated

in the pension models.

We consider an investor who starts working at t = 0 and retires at t = ⌧. This investor

obtains utility from real consumption C

t

/ ⇧
t

and the real terminal wealth W

⌧

/ ⇧
⌧

. This

person has an Constant Relative Risk Aversion utility index given by

max
(Ct,xt)2Kt

E0

 
⌧�1X

t=0

�

t

1� �

✓
C

t

⇧
t

◆1��

+
'�

⌧

1� �

✓
W

⌧

⇧
⌧

◆1��

!
. (39)

Here we have C

t

as the consumption rate of the individual during his working life. Further

' reflects the value of an annuity that starts at time ⌧ . The higher ', the more the investor

wants to save for his retirement. Again, � = 0.97 denotes the subjective discount factor.

The set K

t

contains the values that C

t

and x

t

can attain. Note that we have to optimize

a conditional expectation over a summation that includes stochastic variables until time T .

We obtain these stochastic variables by simulating from the financial market model that we

have introduced in section 4. We simulate N = 500 paths of this financial market of length

T = 75.

We summarize the set of investment opportunities in the vector of state variables X

t

.

We use a stochastic nominal cash account as risk-free rate R

f

t

. The n ⇥ 1 vector of asset

is denoted by R

t

. We denote Y

t+1 as the labor income of the investor. We do not use

superscripts X for referring to the specific age cohort here, for notational convenience. We

remark that we specify only once the optimal asset allocation for the entire period from age

25 until age 68 (or age 88 with a variable contract). We ignore in this sense which age-cohort
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corresponds to this asset mix, because the entire asset mix we determine is applied to all

the age-cohorts.

The wealth dynamics of the individual are given by

W

t+1 = (W
t

� C

t

)
⇣
x

0
t

(R
t+1 � ◆R

f

t

) +R

f

t

⌘
+ Y

t+1, (40)

where ◆ is a vector of ones. This means that we invest at time t a fraction x

t

in the vector

of risky assets. In our model the risky assets consist of a 5-year bond and a stock index.

The remaining of the financial wealth we put on a nominal cash account. We work in real

terms, so we first introduce lowercase letters to indicate real values of the variables:

c

t

=
C

t

⇧
t

, w

t

=
W

t

⇧
t

, r

t

=
R

t

⇧
t�1

⇧
t

, r

f

t

=
R

f

t�1⇧t�1

⇧
t

, y

t

=
Y

t

⇧
t

. (41)

We mention that we work with real returns, real wealths and real incomes throughout the

entire simulation study. We apply these real exogenous variables also in the pension model,

because this enables us to take the purchasing power of the participants into account. We

assume that the labor incomes grow with the same rate as the inflation rates. The budget

equation (40) can then be rewritten as

w

t+1 = (w
t

� c

t

)
⇣
x

0
t

(r
t+1 � ◆r

f

t+1) + r

f

t+1

⌘
+ y

t+1. (42)

Now we have a system with state variables (X
t

, y

t

, w

t

) and control variables (c
t

, x

t

). We

want to optimize the value function (39) with respect to the control variables. We define the

set of constraints K

t

= K(w
t

). There are some constraints that have to be satisfied. The

set of constraints can be stated in a formal mathematical way as

K(w
t

) = {(c
t

, x

t

) : c  w

t

, ◆

0
x

t

 1, x
t

� 0}. (43)

This means that the investor can not consume more than its own wealth. On top of that,

the investor has borrowing and short-sales constraints. With these constraints the investor

can not default.

We aim to determine the optimal investment and consumption strategy that satisfies the

constraints. Therefore, we first define the value functions for the di↵erent periods. In the

terminal period T we consume all wealth, so c

⌧

= w

⌧

. We do not have to choose an asset

allocation here, because the model ends. The value function at time ⌧ is given by

J

⌧

(w
⌧

, X

⌧

, y

⌧

) =
'w

1��

⌧

1� �

. (44)

The Bellman equation for t = 1, . . . , ⌧ � 1 is given by

J

t

(w
t

, X

t

, y

t

) = max
(Ct,xt)2Kt

 
c
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t

1� �

+ �E
t

(J
t+1(wt+1, Xt+1, yt+1))

!
. (45)
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6.3 Solution method

Life-cycle problems have analytical solution in only some specific cases. In most of the

situations we have to rely on numerical methods. In these methods, the motivation is to

exchange an intractable general problem for a tractable specific alternative that does not

change the solution too much. This is also the reasoning behind the solution method we

apply on this problem.

For optimizing the value function in (45) we use the simulation-based technique developed

by KNW. In the KNW paper, two methods are combined: the method of (Brandt et al.,

2005) and Carroll (2006). In the KNW-method that follows from these two papers, the

optimal portfolio can be solved for multiple assets and multiple exogenous variables. We

will outline this optimization method here. Some details are omitted in this section, because

otherwise the text would be destroyed by technical details.

In the KNW-method we first specify a grid of M = 50 points of wealth after consumption

a

t

,

a

t

= w

t

� c

t

. (46)

This trick enables us to specify the optimal consumption c

t

in an analytical way. As a

consequence we save a lot of computation time, because we need to determine only the asset

allocations x

t

in our numerical approach. We come back to the analytical solution of c
t

later.

First, we want to maximize the Bellman equations in (45) with respect to x

t

. The most

important thing to note in this algorithm is that we make a grid of M points for the wealth

after consumption for each of the (⌧ � 1) points in time (note that at time ⌧ there is no

consumption and asset allocation to choose). This results in (⌧ � 1) ⇥M grid-points. For

each of these grid-points we will determine the optimal asset allocation x

t,i

and consumption

policy c

t,i

for t = 1, . . . , ⌧ � 1 and i = 1, . . . ,M .

Given this background information, we continue with the algorithm. First we normalize

equations (44) and (45) for income to get rid of one variable. The first order derivative that

we have to solve for each grid-point to obtain the optimal asset allocation then reads

0 = E
t

⇣
�exp((1� �)u

t+1)c
��

t+1(rt+1 � r

f

t+1)
⌘
+ �� µ◆. (47)

Here we have � as a vector that corresponds to the short-sales constraints of the Lagrange

multiplier, and µ a Lagrange multiplier that belongs to the borrowing constraint. First we

want to solve this equation with respect to x

t

.

In this algorithm we work backwards, so we know the values of both the asset allocation

and the optimal consumption at moment t+1, for all the M points in the grid. We know this

optimal consumption and asset allocation for the di↵erent endogenous grid-points of a
t+1,i

with i = 1, . . . ,M . We have that w
t+1,i = a

t+1,i + c

t+1,i, so consequently we have pairs of
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(w
t+1,i, ct+1,i) with i = 1, . . . ,M . Between these points we can apply linear interpolation

to find other combinations of wealth and consumption. In this way we can approximate the

optimal combinations of wealth and consumption for moment t + 1. For each pair of the

grid-point we have also determined the optimal asset allocation, so actually we have the sets

(w
t+1,i, xt+1,i, ct+1,i) for i = 1, . . . ,M .

We continue with the algorithm. Recall that we have simulated N paths of T periods of

exogenous variables. Using these paths we can make a cross-sectional regression of a vector

of length N corresponding to time t , and a vector of length N at time t+1. For the vector

at time t+ 1 we can construct

z

t+1 := �exp((1� �)u
t+1)c

��

t+1(rt+1 � r

f

t+1),

term in the expectation operator in equation (47). For the vector at time t we make a

simple linear function of the state variables. One element of this vector is the linear function

corresponding to one path i, f(X
t,i

). When we plug in all the N paths we obtain a vector

f(X
t

). If we pick one asset s, and we execute the cross-sectional regression we obtain the

approximation

E
t

⇣
�exp((1� �)u

t+1)c
��

t+1(rs,t+1 � r

f

t+1)
⌘
' ✓

s

(x, a
t

)0f(X
t,i

). (48)

Here a

t

is one of the M fixed grid-points for wealth after consumption. Note that ✓
s

(x, a
t

)

is dependent of the asset allocation that the investor chooses, x. Now we narrow the opti-

mization with respect to x.

The next trick is that we can accurately approximate the projection coe�cients ✓
s

(x, a
t

)

in (48) by a simple linear function of the portfolio weights, g(x). The approximation of ✓
s

is then given by

✓

s

(x, a
t

) '  
s

(a
t

)g(x). (49)

With this approximation we have expressed the projection coe�cients ✓
S

as a linear function

of a constant coe�cient matrix  
s

and a function that only depends on the asset weights,

g(x). Plugging in the approximation (49) in (48) we obtain the following approximation of

the conditional expectation:

E
t

⇣
�exp((1� �)u

t+1)c
��

t+1(rs,t+1 � r

f

t+1)
⌘
' g(x)0 

s

(a
t

)0f(X
t,i

). (50)

Then we can plug in approximation (50) in (47) and this gives

0 ' g(x)0 (a
t

)0f(X
t,i

) + �� µ◆. (51)

This is the function we want to maximize for the asset allocation x, given that we are in

grid-point a
t

. We apply standard numerical techniques in this problem, and choose multiple

random starting points to reduce the chance that we reach a local maximum, and a wrong
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asset allocation x. With this algorithm we can find relative fast the optimal asset allocation

x

t

. The gain that we have is that we can derive an analytical solution for the optimal

consumption for the corresponding asset allocation x

t

. This optimal consumption strategy

is given by

c

⇤
t

=
�
E
t

�
�exp((1� �)u

t+1)c
��

t+1r
p

t+1

��� 1
�
. (52)

Here r

p

t+1 is the return of the optimal portfolio. Now we have determined both the optimal

allocation and the optimal consumption policy for the grid-point a
t

in path j.

The output of the grid

By executing this recursive process we obtain for each of the (⌧ � 1)⇥M endogenous grid-

points the optimal consumption policy, and the optimal asset allocation. We have to repeat

the analysis for each path again. The simulations of the 500 scenarios help us to optimize

the control variables for the grid-points of only one path. When we have obtained the entire

grid for one path, we can simulate forward through the grid by linear interpolation. We

illustrate this procedure in figure 2.

Figure 2: The dynamic programming analysis results in optimal consumption decisions and
an optimal asset allocation for all the M ⇥ (⌧ �1) grid-points. Following this grid we obtain
a wealth and consumption processes. Here the wealth-, income- and consumption process
are shown for a risk-neutral investor (� = 5) with a fixed pension.
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Remember that we have specified the sets (w
t,i

, c

t,i

, x

t,i

) for the di↵erent grid-points a
t,i

and 1  i  M , 1  t  (⌧ � 1). With these sets we can run through the grid.

We start at age 25, and in this year we obtain our first income y1. This income is the

wealth before consumption (w⇤
1) in the initialization step. Because we have specified the

grid, we can determine the corresponding optimal consumption c

⇤
1 and the corresponding

optimal asset mix x

⇤
1 for this w⇤

1 , by linearly interpolating between the sets (w1,j , c1,j , x1,j)
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for j = 1, . . . ,M. We apply the appropriate consumption strategy c

⇤
1, and this results in

a wealth after consumption a

⇤
1. This amount will be invested according to the asset mix

x

⇤
1. One period later, the wealth after consumption has yielded some return r

⇤
p,2, so the

wealth after consumption in period 1 grows to a

⇤
1(1+r

⇤
p,2). We add the the income of period

2, and this gives us the new wealth before consumption, w⇤
2 = a

⇤
1(1 + r

⇤
p,2) + y2. Again

we determine with linear interpolation the optimal corresponding consumption c

⇤
2 and the

optimal corresponding asset mix x

⇤
2. We obtain a new wealth after consumption a

⇤
2. This

wealth after consumption is invested again with the right asset mix x

⇤
2, etcetera. We repeat

this process until we are at time ⌧ . Here we have that the wealth before consumption equals

the consumption. This fits our terminal condition c

⌧

= w

⌧

.

We remark that the optimization of equation (51) with respect to x

t

is dependent of

f(X
i,t

). This function is di↵erent for the di↵erent paths. Therefore, we have to determine

a grid for each separate path. Hence, each path has a di↵erent grid in this algorithm.

This makes the algorithm quite time-consuming. To deal with this computational issue, we

determine the optimal asset mix for the pension fund for only ten paths.

Figure 3 depicts a plot of the ten wealth paths over time, and also the average of these

wealths. We see that there is a large variation in these di↵erent wealths. This is due to the

varying stock returns and therefore the varying portfolio returns. On average we see that

the pension accrual is slowly moving upwards.

Figure 3: Ten simulated paths of the wealth process for the risk-neutral investor with � = 5.
We plot the average of these wealth processes.
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The only thing we extract as input for the pension model is the underlying asset mixes

that drive the wealth development. We have ten simulated simulated wealth paths, and ten

corresponding paths of the asset allocations. For practical purposes we take the average

of the ten paths of the asset allocations to determine the asset mix that we apply in the

pension fund model. Because the average of the ten asset allocations is also a little volatile,

we take a polynomial fit through the average of the ten asset mixes. This polynomial fit is

our final asset mix of the investor. The results of these estimated optimal asset allocations

are presented in appendix D for the investors with di↵erent levels of risk aversion �.
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Figure 4: The average of the ten life-cycle asset allocations for the risk-neutral investor
(� = 5).
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Figure 4 shows the average life-cycle asset allocation for the risk-neutral that we extract

from the simulation. The life-cycle mixes are inherently linked to the attitude towards

risk. We have three levels of relative risk-aversion. We have � = 2 (risk-seeking), � = 5

(risk-neutral) and � = 10 (risk-averse). These specific parameters of � lead to the desired

life-cycle asset allocations incorporating the corresponding levels of risk.

We see that for all the three levels of risk aversion, the allocation to equity is decreasing

with age. This is a well-known result of the literature. If an investor has risk aversion

greater than one, hedging demand dictate that their allocation to stock decreases with the

horizon (Campbell and Viceira, 2002). Furthermore, the portfolios display the findings of

Sangvinatsos and Wachter (2005). In the fixed income part of the portfolios, there is only

an allocation to the nominal cash account in the last couple of years before retirement. The

longer the horizon, the more of the fixed income portfolio is allocated the 5-year bonds.
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7 Results

In this section we present the results of our analysis in order to answer the research question.

Before we present the results, we remark that we perform a simulation study. In such a

simulation study it is possible to have unrealistic high stock returns for many consecutive

years. Consequently, the pension outcomes can be quite extreme, especially within the

IDC-contracts. Again, despite these unrealistic outcomes the simulation study is useful to

compare the di↵erent pension contracts and to investigate the impact of the collective bu↵er

on these contracts.

The amount of times that the collective bu↵er a↵ects the stock returns of the portfolios,

depends on the real stock returns and the boundaries we choose. We have chosen the

boundaries ub and lb of the collective bu↵er based on the distribution of the simulated real

stock returns. In this way we know how many times the bu↵er is used on average, because

the real stock returns are above (below) the upper-bound (lower-bound) according to the

distribution. Table 7 depicts the amount of times that the bu↵er is used according to the

distribution of the simulated real stock returns, and the corresponding bounds.

Table 5: These percentages indicate how many times the bu↵er a↵ects the real stock returns
of the individual pension capital on average, according to the real stock return distribution.
For example, the ’30%’ chance on a working bu↵er implies that 15% of the real simulated
stock returns are lower than lb = �10.6% and 15% of the real stock returns are higher than
ub = 19.9%.

P (working bu↵er) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
lower-bound -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9 4.9
upper-bound 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6 4.9

Because in reality we do not know the distribution of the real stock returns in the future,

we introduce also another set of boundaries. The upper-bounds (lower-bounds) we use are

3%, 6% and 9% above (below) the median result of the median of the simulated real stock

returns. For investigating the working of the bu↵er, we combine the 3 upper-boundaries

with the 3 lower-boundaries, such that we obtain 9 extra contracts. In this way we can

incorporate that we do not know the distribution of the real stock results in the future,

and we can measure the impact of setting statistically incorrect boundaries on the pension

outcomes.

In table 6 the terminology that we use in this result section are clarified for the conve-

nience of the reader.
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Table 6: The relevant terminology for the description of the result and the meaning of this
terminology that we use in describing the results of the simulation study

Definition meaning
Ag The fixed pension contracts for the aggressive (Ag),

risk-neutral (Ne) and risk-averse investor (Av)

Ag-Ag The variable pension contract for an investor with
aggressive (Ag) investment until retirement, and Ag-
gressive investments after retirement. The same holds
for other combinations of aggressive (Ag), risk-neutral
(Ne) and averse (Av).

Distribution boundaries The upper-boundaries ub and lower-boundaries lb

that we specified in table 7, based on the distribution
of the real stock returns that we have derived. In
this way we know how many times the bu↵er is used
in average, because the real stock returns are outside
the boundaries. For example: 10% means that 5%
of all the simulated real stock returns are below the
corresponding lower-bound in table 7 and 5% above
the upper-bound.

Alternative boundaries The set of upper-and lower-bounds we derived by
combining three di↵erent upper-bounds with three
di↵erent lower-bounds. For example: [�1,+11%]
means that we have lb = �1% and ub = +11%

P5 The 5th percentile of the certainty equivalents of a
pension contract. This represents how well the pen-
sion scheme performs under bad circumstances. We
try to find a contract with a favorable P5, as the
pensions need to be stable. We denote the other per-
centiles similar to P5: For example, the 95th per-
centile is P95, etc.

⇧
max

The maximum percentage of the total accrued pen-
sion capital that the bu↵er may contain.

bu↵er full Bu↵er empty represents the time average of time that
the bu↵er is switched o↵, because there is either no
capital in the bu↵er (CB = 0). Bu↵er full represents
the average time that there is too much capital in
the bu↵er, so CB equals ⇧

max

of the total accrued
pension capital of the active participants in the fund.

NB An IDC-contract, so we have no bu↵er in this contract
(NB)
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7.1 General findings collective bu↵er

The general finding of our analysis is that applying a bu↵er in the pension contracts reduces

the medians of the several pension contracts, compared to the IDC-contracts without a

bu↵er. This is especially the conclusion we find in the case of the alternative boundaries,

where we assume that we do not know the distribution of the real stock returns. On the

other hand, the contracts without a bu↵er have a much larger spread in the pension results

than the contracts with a bu↵er. Figure 5 shows these findings for an risk-neutral investor

with a fixed pension. We see that the large spread for this IDC-contract (No Bu↵er, NB)

is especially caused by a large di↵erence between the median and the P95 result. The

di↵erence between the P5-results of the pension-incomes of the IDC-contract and the 4C is

not significant.

Figure 5: The distributions of the pension outcomes for a fixed pension for the aggressive
investor (� = 2). Below the x�axis the di↵erent upper- and lower-bounds of the collective
bu↵er of the 4C-contracts are displayed. On the right-hand-side of the blue solid line are
the pension results of the IDC contract (’no bu↵er’)

Furthermore figure 5 depicts a pattern that holds for all the 4C-contracts: the higher

the lower-bound, the higher the medians. The negative stock returns are more often hedged

by the collective bu↵er in this way. This is beneficial for the pension results. With a similar

reasoning we can conclude that the pension outcomes are higher for a higher upper-bound

of the bu↵er.

If we apply the ’distribution boundaries’ that we derived in the 4C-contracts (see table

7), we see another pattern. We see that the model without a bu↵er still has the highest

median pension income. The more the average bu↵er activity increases, the lower the pension

results seems to be. However, if we have a 90% activity of the bu↵er, the pension results

are improving compared to the models with the lower bu↵er activity. Moreover, the P5-

outcome of the ’90%’-model is 0.78, which is a significant improvement compared to the 0.68

P5-outcome of the IDC-contract of the aggressive investor. Still, we have a lower median

here compared to the IDC-contract (1.77 vs 1.61).

The IDC contracts have in general much higher P95 outcomes, compared to the 4C
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Figure 6: The pension results for a fixed pension for the Ag-investor (� = 2) and the
distribution boundaries corresponding to table 7. The percentages indicate how many times
the bu↵er a↵ects the real stock returns of the individual pension capital on average, according
to the real stock return distribution.

contracts. In this sense it seems to be favorable to not use a collective bu↵er. However, our

pension system has to provide solidarity as well and this feature is ignored in the individual

set-up of an IDC-contract.

We further note that the life-cycle-portfolio is constructed such that the investor’s ex-

posure to risk reduces as he gets older. With a fixed pension, this means that the hedging

demand of the investor is already incorporated in the way the life-cycle-portfolio is con-

structed. Therefore, we can interpret the hedge that the collective bu↵er provides in a fixed

pension contract as an ’additional’ hedge.

In contrast to the fixed contracts, the variable pension asset mixes have a longer invest-

ment horizon. Therefore, its exposure towards risk is at the conversion moment higher than

in the case of a fixed pension. In this way we can argue that there is in a variable pension

contract more demand for the ’additional’ hedge provided by the bu↵er, compared to the

fixed contracts. Consequently, it is more interesting to investigate how the bu↵er a↵ects

the variable pension contracts. Before we investigate this impact on variable pension out-

comes, we scrutinize the consequences of choosing di↵erent investment styles in the di↵erent

pensions contracts.

7.2 Risk-seeking investors rewarded

Figure 7 depicts that within the fixed pension scheme we have higher pension incomes if

we attain a risk-seeking attitude. We see again that applying an IDC-contract yields higher

pension outcomes. We can argue that it is rewarding to invest risky until retirement age.

The bu↵er can support investing in a risky way, because the bu↵er can distribute transfer

wealth across di↵erent periods.
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Figure 7: The pension outcomes for a fixed pension 4C-contract (with bounds lb = �1% and
ub = +8%) are displayed on the left-hand-side of the blue solid line. On the right-hand-side
of the blue line we have the outcomes of the IDC-contracts.

7.3 Variable pension outcomes

In this subsection we answer the question whether it is favorable to choose for a variable

pension contract, instead of a fixed contract. Figure 8 shows the pension outcomes for both

a fixed pension (Ag-) and variable pension (Ag-Ag-, Ag-Ne- and Ag-Av-) investor. The

variable pension outcomes clearly dominate the fixed pension outcomes in this figure. The

medians of the fixed pension contracts are significant lower, compared to the variable pension

outcomes. Again we see a large spread between the pension outcomes in the IDC-contracts.

Figure 8: The pension outcomes for the aggressive (Ag) investor with a fixed pension and
a variable pension (Ag-Ag, Ag-Ne and Ag-Av). On the left side of the vertical line we have
the models with a bu↵er, and on the right-hand-side we have the models without a bu↵er.
We fix the bu↵er boundaries here: lb = �4% and ub = +14%.

We remark that some investment styles are not realistic from a practical point of view.

For example, appendix D shows that within the investment mix of the Aggressive-Aggressive
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(Ag-Ag) investor, the pension capital is almost entirely allocated to stocks, even when the

investor is very old. This is for a pension fund, that has to provide stable supplementary

pension outcomes, undesirable. On the other hand, if the solidarity requirement is met (the

bu↵er is not too often full or empty), the models can still be considered.

Considering the results of the variable pension contracts, we see that investing also after

retirement yields higher pension results on average. For all types of investors (Ag-Ag, Ag-

Ne, and Ag-Av) it pays o↵ to invest after retirement age. Again, the spreads between P5

and P95 increase, but this is mainly due to the high P95-outcomes.

We see that investing aggressive until retirement with investing risk-averse after retire-

ment (Ag-Av) results in a 24% higher median pension outcome, compared to the median of

the fixed pension outcomes of the aggressive investor (Ag). The P5-values of the variable

4C-contracts are in general comparable to the P5-values of the fixed IDC-contract when we

apply the bounds ub = +14% and lb = �4%. Therefore it is rewarding to opt for a variable

pension with a collective bu↵er.

7.4 Bounds and working bu↵er

Figure 6 shows that the higher the upper-bound ub of the bu↵er, the higher the pension

incomes. In this case, there flows more stock return to the individual pension accrual of the

participants. Following this reasoning, it seems to be favorable to choose the upper-bound

as high as possible. However, there is a drawback of this higher upper-bound in the 4C-

contract. Figure 9 shows this drawback: The lower-bound is hit on average more often when

we let the upper-bound increase. In view of solidarity purposes it does not seem to be fair

to put the upper-bound too high. In this case di↵erent age cohorts have unequal gains from

the bu↵er. Again, it may be possible that the bu↵er is switched o↵ for some times, such

that there is some intergenerational risk-sharing. However, the times that the bu↵er is full

or empty have to be minimized for solidarity purposes.

7.5 Varying the size of the bu↵er

We also investigate the maximum size of the bu↵er. With the maximum size we mean the

maximum amount of capital that the bu↵er may contain. We consider respectively 10%,

20% and 30% of the accrued pension capital as the maximum size of the bu↵er. After setting

these maximum sizes, we check for di↵erent investment styles what the impact is of varying

the maximum size of the bu↵er. Table 7 shows that an increasing maximum size of the

bu↵er causes a decrease in the median results. With a collective bu↵er that may contain

more capital, there can flow more stock returns to the bu↵er, which can be unfavorable for

the pension results of the participants. We note that for the solidarity aspect, the increase of

the bu↵er is favorable. The amount of times that the bu↵er is either full or empty decreases

when we increase the bu↵er size. This is beneficial for the solidarity aspect of the pension
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Figure 9: The average percentage of time that the bu↵er is empty (red bars) and full (green
bars) for an Ag-Av investor. The lower the amount of times that the bu↵er is switched
o↵, the more solidarity the bu↵er can provide to the participants, and the less capital is
transfered from the one generation to the other.

contract.

Table 7: Results for varying size of the bu↵er, where ⇧
max

represents the fraction of the
total accrued pension capital that the bu↵er can contain. The last column is the benchmark
model, the Aggressive-Neutral investor from an IDC-model (so no bu↵er, ”NB”). Here the
boundaries are ub = +11% and lb = �1%

investment style Ag-Ag Ag-Ne Ag-Av Ag-Ag
⇧

max

10% 20% 30% 10% 20% 30% 10% 20% 30% NB
P5 0.72 0.66 0.65 0.71 0.70 0.69 0.72 0.70 0.70 0.58
P50 2.21 1.96 1.90 2.07 1.85 1.84 1.98 1.83 1.80 2.35
P95 5.81 4.85 4.37 5.57 4.60 4.07 5.26 4.41 3.96 8.06

bu↵er empty 44% 40% 39% 43% 39% 38% 43% 39% 37%
bu↵er full 28% 15% 8% 26% 12% 6% 25% 12% 5%

.

Table 8: Results for varying size of the bu↵er, where ⇧
max

represents the fraction of the
total accrued pension capital that the bu↵er can contain. The last column is the benchmark
model, the Agressive-Aggressive investor from an IDC-model (so no bu↵er, ”NB”). Here we
apply the distribution boundaries, and we use the boundaries corresponding to the ’90%’
active bu↵er from table 7: lb = +2.9% and ub = +6.6%

investment style Ag-Ag Ag-Ne Ag-Av Ag-Ag
⇧

max

10% 20% 30% 10% 20% 30% 10% 20% 30% NB
P5 0.87 0.86 0.86 0.82 0.80 0.88 0.83 0.80 0.87 0.58
P50 2.63 2.42 2.33 2.42 2.20 2.17 2.34 2.16 2.12 2.35
P95 7.10 5.73 5.18 6.08 5.19 4.69 5.83 4.73 4.45 8.06

bu↵er empty 35% 30% 27% 34% 29% 26% 33% 29% 26%
bu↵er full 36% 23% 15% 34% 21% 14% 33% 19% 13%
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Boundaries according to distribution of stock returns

We further find that when we apply the bounds we determined according the distribution

of the real stock returns, that we can have wealth gains of the bu↵er. Table 8 shows for the

aggressive investor with a variable pension, that the ’90%- active bu↵er’ does a good job.

The ’bu↵er full’ or ’bu↵er empty’ score is relative low compared to the other models, which

is favorable for solidarity purposes. Also the P5-outcomes of the several 4C-contracts are

significant higher, compared to the IDC-contract in table 8. Even some median outcomes

of the 4C-contracts are higher than the median outcome of the IDC model that had the

highest median outcome in our analysis (Ag-Ag investor)

We note that we already know the distribution of the real stock returns in this example.

The 4C contracts with the ’distribution boundaries’ clearly outperform the models with the

’alternative boundaries’ ub = +11% and lb = �1% in table 7 . The 90%� active bu↵er, has

boundaries lb = +2.9%, and ub = +6.6%. Therefore the bu↵er often a↵ects the real stock

returns in the portfolios of the participants. We can argue that if we can accurately predict

at least the median of the real stock return distribution, and choose a small ’tube’ around

this median where the bu↵er does not a↵ect the stock returns, we can obtain favorable

pension results. The bu↵er provides both more stability and higher pension outcomes in

this way.

8 Conclusion

In this master thesis we investigate whether individual pension contracts with a collective

risk sharing component (4C-contract) lead to better pension results than individual defined

benefits (IDC) contracts. We find several conclusions regarding this question. The main

conclusion is that the pension outcomes in the 4C-contract are in general lower than the

pension outcomes of the IDC-contract, due to the hedging mechanism of the collective

bu↵er. However, the pension incomes of the 4C-contract are more stable. This stabilization

is mainly caused by lower P95-outcomes of the 4C-contract. The P5-outcomes of the two

contracts are comparable.

We examine the presence of several requirements in the pension contracts. The new

Dutch pension contract appears to meet four important pillars: i) sustainability, ii) trans-

parency, iii) customization and flexibility and iv) solidarity to your fellow participants. Re-

garding these requirements, the 4C-contract seems to be a good alternative to the current

common Defined Benefits system.

The 4C-system supports the possibility to choose a variable pension. Introducing the

collective bu↵er enables individual participants to take advantage of equity premium after

retirement age, without being exposed to high equity risk. We find for both the 4C- and the

IDC-contract, that the mortality risk and interest rate risk are reduced when the participant
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opts for a variable pension. In the commonly used DB-contract and in the fixed IDC-

contract these risks can strongly influence the pension results. Additionally, the 4C contract

has a strong customization aspect, because participants can opt for a changing risk-profile

in their asset allocation. On top of that, the contract supports transparency, because the

participants can easily see how their capital develops over time, and how it is invested.

Finally the solidarity requirement is met by means of the collective bu↵er that can share

equity risk amongst di↵erent generations.

We find that it pays o↵ if an investor has a low risk-aversion (� = 2) until retirement

in the fixed pension contract without a bu↵er. The median income is 34% percent higher

compared to the median income of a risk-neutral investor, and the P5-outcomes of the

contracts are approximately the same.

A variable pension contract is rewarding compared to a fixed pension contract. Choosing

a variable 4C- contract supports investing after retirement age. E.g. the variable contracts

of an aggressive investor until retirement outperform the fixed pension contract without a

bu↵er when we look at the medians. The P5-outcomes are comparable.

Regarding the upper-and lower-bounds of the bu↵er, we see an evident trade-o↵ between

these bounds and the pension results. The higher the upper-bound or lower-bound, the more

stock returns flow into the pension capital of the participants. The drawback of favorable

bounds of the bu↵er, with respect to pension outcomes, is that the bu↵er is switched o↵

more frequently. This results in an unequal distribution of the gains that di↵erent age-cohort

have of the bu↵er. We allow for intergenerational risk-sharing to some extent, but we want

to minimize this form of intergenerational risk-sharing in order to have equal gains for all

the participants as much as possible.

We also investigate the impact of a varying the maximum amount of capital that the

bu↵er may contain. We conclude that a bu↵er that may contain a higher maximum amount

of capital is favorable for the solidarity element of the pension contract, since the bu↵er is

less often full or empty. On the other hand, it lowers the pension incomes since there can flow

more capital to the bu↵er, instead of to the individual pension capital of the participants.

Finally we find that if we can accurately predict the distribution of the stock returns,

we can have higher pension results for the 4C-investor. If we know the real stock return

distribution and we adapt the upper- and lower-boundaries of the bu↵er to this distribution,

then we can obtain better pension results than the results of the IDC-contracts. Especially

when the bu↵er a↵ects 90% of the times the real stock returns on average, the 4C-contracts

can outperform the IDC-contracts, both with respect to solidarity purposes and the height

of the pension incomes.
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9 Discussion

In this section we discuss the shortcomings of the analysis. Thereafter, we present some

interesting possibilities where this analysis can be used and continued.

The most important shortcoming is that the model is really simplified. This makes

the analysis especially useful to test the sensitivity of the pension results with respect to

changing some parameters (e.g. the bu↵er size), but not to interpret the heights of the

pension outcomes.

Also some asset mixes are not very realistic for a supplementary pension contract (e.g.

the asset mix of the aggressive-aggressive investor). On the other hand, the isolated function

of the bu↵er is better to understand when we incorporate extreme asset mixes.

Another shortcoming is that we work in our scenario-sets with constant parameters. We

already saw with the development of yields over the last decades that this is not a very

realistic assumption. The parameters are estimated based on historic data, and this is not

a guarantee that in the future these parameters are the same. Other things that we did not

incorporate had to do with the possible misspecification of the model, or the correctness of

the utility functions. In the end, all outcomes are highly depending on the asset allocations

and these allocations depend on the chosen utility functions.

We have only one type of participant (individual with ’high-school education, but without

a college degree’) with one type of deterministic income process g in the entire pension fund.

In a pension fund there is a large diversity of participants with many di↵erent characteristics.

The size in our model of every age cohort is directly linked to survival rates. This is not

a realistic assumption. For the working of the pension contracts, realistic incomes and

populations are of course really important. Furthermore, we have assumed that the income-

streams are inflation-linked, and this assumption is also questionable.

We also assume in the di↵erent pension contracts that all the age-cohort invest according

to one level of risk-aversion. The idea of a 4C-system is that each individual can choose

for its own level of risk-aversion. For the several contracts and understanding the isolated

e↵ect of the bu↵er it is useful to choose only one investment strategy (like ’variable pension

Agressive-Agressive’).

In this model we have only a small number of assets. In a real pension fund, the asset

manager will invest in thousands of assets. For the understanding of the model it is insightful

to have a low number of assets. The asset allocation within these asset categories we chose

can be more specified by asset managers.

In reality, pension funds invest a lot in financial derivatives like Interest Rate Swaps to

hedge interest rate risk. In a Defined Benefit framework, the interest rate risk is the largest

risk because it determines the liabilities of the pension fund. In a 4C-framework the interest

rate is important since the interest rate strongly impacts the value of an annuity factor, and

consequently the heights of the pension outcomes.
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We can further think about how to weight the di↵erent contributions to the collective

bu↵er. An aggressive investor intensively uses the bu↵er because he invests more in stocks

than a risk-neutral investor. Do both investors deserve it to have the same upper- and

lower-bounds for the bu↵er, or is it more fair to distinguish several boundaries for di↵erent

types of investors? And how do we distribute the returns on the capital in the bu↵er? Do

we allocate more of the returns on the bu↵er to people who have contributed more to the

bu↵er, or does the intergenerational risk-sharing comes here also into play?

Furthermore we assume that the model will be the same for 75 years. It is possible that

a certain pension contract could have been the best choice according to a simulation study

we do now. If the collective bu↵er is empty for three consecutive years, and people lose a

large part of their pension accrual through a recession, the system will be under pressure.

It can be a good choice to change the boundaries we initially chose in such a case. We have

not included this option.

In this study we only investigated the bu↵er that is applied to stock returns. It is of

course also interesting to see how the bu↵er a↵ects the entire portfolio returns.

Incorporating the collective bu↵er in the value functions in the dynamic programming

analysis in section 6 can also be interesting. It can be that the asset mixes for the IDC-

investor change in this framework if we put the collective bu↵er in the budget equations of

the individual investor. This is especially interesting from a theoretical point of view.

The 4C-contract is about to be introduced as the new pension system in the Netherlands.

By now there are still many points of discussion. Those points are mainly about the tran-

sition of the system, and the feasibility. Of course, it is a hard administrative task to move

millions of people to another contract. Like we mentioned, there are already exploration

papers like the one written by (Goudswaard et al., 2016). The contribution of this thesis to

these exploration papers is that this paper serves as a technical framework for the new pen-

sion contract. We actually sketch one complete ’supply chain’ of the pension contract. First

we estimated the parameters of the financial market with a feasible optimization method.

Then we estimated the optimal life-cycle mixes for di↵erent types of investors, with multiple

assets. Finally we used these asset mixes in the pension model, which gave useful insights for

the working of the bu↵er. The technical set-up we outlined in this thesis is a good starting

point to perform further research on both the individual defined contributions contract and

the 4C-contract. The shortcomings of this study we discussed, are relative easy to capture

in this framework. This gives the possibility to test quite easily some e↵ects of the model,

like we did in this study by varying the designs of the bu↵er. In conclusion, this thesis

can, together with the existing theoretical exploration papers, form a good starting point

for further research in order to create a sustainable pension contract for the future.
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Appendices

A Pension fund characteristics

Table 9: The survival tables that we apply in our model, from the AG-2016 (’Actuarieel
Genootschap’, which means actuarial society)

age X p

X,man

p

X,woman

p

X,average

age X p

X,man

p

X,woman

p

X,average

25 99.32% 99.96% 99.64% 64 89.08% 98.66% 93.87%
26 99.27% 99.96% 99.62% 65 88.06% 98.55% 93.31%
27 99.23% 99.96% 99.59% 66 86.94% 98.43% 92.68%
28 99.19% 99.95% 99.57% 67 85.73% 98.30% 92.01%
29 99.14% 99.95% 99.54% 68 84.40% 98.14% 91.27%
30 99.09% 99.94% 99.52% 69 82.96% 97.94% 90.45%
31 99.04% 99.94% 99.49% 70 81.39% 97.75% 89.57%
32 98.99% 99.94% 99.46% 71 79.67% 97.52% 88.59%
33 98.93% 99.93% 99.43% 72 77.79% 97.27% 87.53%
34 98.87% 99.92% 99.40% 73 75.75% 97.00% 86.38%
35 98.81% 99.91% 99.36% 74 73.54% 96.66% 85.10%
36 98.74% 99.91% 99.32% 75 71.14% 96.28% 83.71%
37 98.67% 99.89% 99.28% 76 68.52% 95.83% 82.18%
38 98.59% 99.88% 99.24% 77 65.69% 95.29% 80.49%
39 98.51% 99.87% 99.19% 78 62.63% 94.66% 78.64%
40 98.42% 99.86% 99.14% 79 59.37% 93.97% 76.67%
41 98.32% 99.84% 99.08% 80 55.90% 93.11% 74.50%
42 98.21% 99.82% 99.02% 81 52.20% 92.07% 72.13%
43 98.09% 99.80% 98.95% 82 48.36% 90.93% 69.64%
44 97.96% 99.78% 98.87% 83 44.36% 89.63% 66.99%
45 97.81% 99.75% 98.78% 84 40.25% 88.19% 64.22%
46 97.65% 99.72% 98.69% 85 36.11% 86.56% 61.33%
47 97.47% 99.68% 98.57% 86 31.94% 84.59% 58.27%
48 97.27% 99.65% 98.46% 87 27.84% 82.36% 55.10%
49 97.05% 99.62% 98.33% 88 23.85% 80.08% 51.96%
50 96.80% 99.59% 98.19% 89 20.07% 77.61% 48.84%
51 96.53% 99.54% 98.03% 90 16.54% 74.66% 45.60%
52 96.22% 99.49% 97.86% 91 13.37% 71.71% 42.54%
53 95.89% 99.45% 97.67% 92 10.56% 68.73% 39.64%
54 95.52% 99.40% 97.46% 93 8.13% 65.45% 36.79%
55 95.11% 99.35% 97.23% 94 6.11% 62.04% 34.07%
56 94.66% 99.30% 96.98% 95 4.46% 58.55% 31.50%
57 94.16% 99.24% 96.70% 96 3.16% 55.02% 29.09%
58 93.62% 99.17% 96.39% 97 2.18% 51.50% 26.84%
59 93.02% 99.10% 96.06% 98 1.45% 48.03% 24.74%
60 92.37% 99.02% 95.69% 99 0.94% 44.67% 22.81%
61 91.66% 98.92% 95.29% 100 0.00% 0.00% 0.00%
62 90.88% 98.84% 94.86%
63 90.02% 98.76% 94.39%
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Figure 10: A plot of one deterministic income path exp(g
t

) throughout the working age
of a participant. For every simulated scenario, we extend this deterministic path with a
permanent shock (the blue line), and additionally a transitory shock (results in the black
line).
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Figure 11: A plot of the average income of the participants (the red solid line) and the P5-
and P95-scenarios (the two outer dashed lines). We see that the P5 and P95 incomes di↵er a
lot. Since the incomes are the input for the pension capital, these varying incomes strongly
a↵ect the pension outcomes.
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B Financial market

B.1 Estimation method

We describe in this appendix how we estimate the structural form parameters that describe

the financial market. We apply for the term structure of money the methods introduced by

Hamilton and Wu (2012). First we recall where we ended in section 4, and then we derive

the VAR-model to estimate the reduced form parameters that we estimate. After that, we

link the structural form parameters that describe the term structure model to the reduced

form parameters of the VAR-model. Recall that we could interpret the latent factors as the

underlying factors of the yield curve. The yield for maturity n at time t is given by

y

n

t

= a

n

+ b

0
n

F

t

, (B.1)

where Ang and Piazzesi (2003) showed that a
n

and b

n

are given as

b
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=
1

n

⇥
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Furthermore, the discrete time specification under the physical measure we specified is given

by

F

t+1 = c+ ⇢F

t

+ ⌃
F

u

t+1.

The discrete time specification under the Q- VAR-measure we specified is given by

F

t+1 = c
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Q

F

t

+ ⌃
F

u

Q

t+1 (B.3)

Derivation of the VAR-model

Suppose that we want to describe N

d

yields. If N
d

is greater or equal than the number of

factors M , we can predict the values of one of the yields y

nt

as exact linear combination

of the others. In practice, this fit is never perfect. Ang and Piazessi suppose that the fit

holds exactly for N
l

, yields and that the other N
e

= N

d

�N

l

yields are observed with errors.

Consequently, we can specify the problem in the following way:
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By rewriting this equation we can derive the following specification of the latent factors:

F

t

= B

�1
1 (Y 1

t

�A1). (B.5)

In our estimation procedure we have M = 3 factors. We choose N

l

= 3 as the number of

yields for which the fit is perfect, and N

e

= 1 which is measured with error. We use the
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bond yields with a 12-,24, and 60-months maturity. The 36-months yield is measured with

error. For the latent factor specification we then obtain
2
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where we have that ue

t

is a standard normal variable. We use the specification with the risk-

averse Q parameters in this system, and we use for normalization of the model ⌃
F

= I3,

�1 � 0, c = 0 and ⇢

Q lower-triangular. In this case we have 23 unknown structural-form

parameters to estimate: 3 in c

Q, 6 in ⇢

Q, 9 in ⇢ and 1 in �0, 3 in �1, 1 in ⌃
E

. We can

collect these parameters in 23⇥ 1 the vector ✓. One way to solve this problem is to perform

a maximum likelihood maximization. The disadvantage of this problem is that we have a

large vector of parameters to estimate, which makes it very hard to find a global maximum.

In the analysis of Hamilton and Wu (2012), applying this MLE method was not succesful:

Only one of the 100 estimation experiments reached the true global MLE. Therefore, we use

another method.

If we multiply the discrete time-specification of the factors under the physical measure

by B1, and add A1 to this system, together with c = 0 and ⌃
F

= I3, we obtain
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2t. We see

that we have obtained a VAR model where Y

1
t

and Y

2
t

are both dependent of Y

1
t

. The

reduced-form parameter vector of this model can be specified by
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where vec(X) gives the matrix vectorization of the matrix X, and Vech(X) does the same

but only for the elements below and including the diagnonal. The reduced-form parameters

can be estimated using normal OLS in equation (B.8) and (B.9), with
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From the reduced form parameters we specified, we want to extract our structural-form

parameters. This can be done with the following steps.

1. Estimate ⌃
e

analytically via ⌦⇤
2 = ⌃2

e

�t.

2. Estimates of the 6 parameters in ⇢

Q and 3 parameters in �1 can be done by numerically

solving the relations
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We can solve this system of equation by vectorizing both the left-hand-side and right
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3. Estimates of the 9 unknown parameters in ⇢ can be obtained analytically by calculating
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Again, this optimization is done by vectorizing the equations and numerical optimiza-

tion.

These optimization methods are much simpler from a computational point of view, because

the several optimizations includes only a small number of variables.

Now we define ✓
B

as the vector of all the the 23 structure parameters of the term structure

model stacked. We want to test the hypothesis that ⇡ = g(✓
B

), using the Wald statistic

T ([⇡̂ � g(✓
B

)]0R̂[⇡̂ � g(✓
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)]. Here R̂ is an consistent estimate of the information matrix,
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0 ],. and L(⇡;x) the log likelihood of the entire sample. Note that we can

write B.4 as two independent blocks. For i=1,2 we have
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Then the information matrix R for the system of the reduced form parameters is given by

R̂ =

0

@R̂1 0

0 R̂2.

1

A (B.16)
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As shown in Magnus and Neudecker (1988), we have

R̂
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=
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�
D

qi ,
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A (B.17)

where D

qi is the (q
i

)2 ⇥ q

i

(q
i

+ 1)/2 duplication matrix satisfying D

qivech(⌦i

) = vec(⌦
i

),

and q

i

the dimension of ⌦
i

. The Minimum Chi-Square Estimator ✓̂
B

is given by

min

✓B

T ([⇡̂ � g(✓
B

)]0R̂[⇡̂ � g(✓
B

)]. (B.18)

This gives us the desired estimate of the vector of estimated parameters describing the a�ne

term structure model, and the corresponding standard errors. Hamilton and Wu prove that

the asymptotic distribution is given by

p
T

⇣
✓̂

B

� ✓

B

⌘
! N(0, [�0R�]�1), (B.19)

where we use � = @g

@✓

as the numerical gradient of g in the estimated ✓̂

B

.

Estimation stock and inflation process parameters

With the estimated parameters from the term structure model, we continue with estimating

the parameters that describe the stock price dynamics and the inflation rate dynamics. We

apply the General Method of Moment in this part. The moment conditons follow from Shen

(2015). We have �t = 1
12 because we work with monthly data and estimate the data on a

yearly basis.For the inflation process we have the following discretization process:

�⇡

t+�t

= (⇠0 + ⇠

0
1Ft

)�t+
p
�t�

T

⇡

z

t+�t

. (B.20)

Since we work with monthly data and we estimate the data on a yearly basis, we have

�t = 1
12 . For the inflation process we have the following 4 equations, resulting in 8 moment

conditions.
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We do the same trick for the stock process. First we define the discretization of r
t+1 =

st+1�st

st
, and as parametrization for the stock return process we obtain

r

t+�t

= (�0 + �

0
1Ft
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p
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. (B.21)
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Now we can derive the following 4 equations that give 6 moment conditions for the stock

price process.
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We denote ✓

⇡

as the vector of 9 unknown parameters in the system of moment conditions

belonging to ⇡ and ✓

S

the vector of 5 unknown parameters belonging to the stock return

process. Then we have ✓̂

i

= 1
T

P
f

t

(✓
i

), where f

t

(✓
i

) is the vector of errors of the moment

conditions. The matrix S is the sample covariance matrix of f
t

(✓
i

). Then we have under

e�cient GMM that the estimate ✓

i

is asymptotically normal distributed as
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where d is the numerical gradient evaluated in ✓̂

GMM

.
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B.2 Data description and estimation output

Figure 12: The estimated 1-year nominal bond yield with the three-factor model, and the
observed 1-year nominal bond yield over time
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Figure 13: The estimated nominal 5-year nominal bond yields with the three-factor model,
and the observed 5-year nominal bond yields over time
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Figure 14: The simulated paths of the real asset returns for one scenario-set, for the instan-
taneous risk-free rates (r

f

), the stock return (r
St

), the bond yields with a 1-year maturity
(r1y) and the bond yield with a 5-year maturity (r5y). The horizon is 75 years, since this is
the duration or our model.
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Figure 15: The loadings B of the three factors of the a�ne term structure model of Hamilton
and Wu, for di↵erent maturities. The three factors in the HW-model can be interpreted as
the level, slope and curvature of the yield curve from the Nelson-Siegel model.
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Table 3: The distribution of the simulated N ⇥ T real stock returns from our financial
market.

Table 10: The specific upper- and lower-bounds that lead to a di↵erent amount of times that
the bu↵er a↵ects the stock returns of the portfolios on average, based on the distribution of
the real stock returns shown in the histogram in figure ??. The ’30%’ bounds imply that
15% of the real stock returns are lower than lb = �10.6% and 15% of the real stock returns
are higher than ub = 19.9%. Consequently the bu↵er is used in 30% of the times with these
specific bounds throughout our simulation study.

P (working bu↵er) 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
lower-bound -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9 4.9
upper-bound 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6 4.9

60



C Dynamic stochastic optimization procedure

We describe here the stochastic optimization procedure of Koijen et al. (2009) in more detail.

We first note that the financial wealth of the individual investor is described by the process

w

t+1 = (w
t

� c

t

)
⇣
x

0
t

(r
t+1 � ◆r

f

t+1) + r

f

t+1

⌘
+ y

t+1. (C.1)

The investor has to meet the following constraints.

K(w
t

) = {(c
t

, x

t

) : c  w

t

, ◆

0
x

t

 1, x
t

� 0}. (C.2)

In this way the investor can not default, and he has borrowing and short-sales constraints.

The investor wants to maximize value functions by setting the optimal consumption and

investment strategy in each period. The value function in the terminal period is given by

J

T

(w
⌧

, X

⌧

, y

⌧

) =
'w

1��

⌧

1� �

. (C.3)

The value function for the other moments in time is given by

J
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t

) = max
(Ct,xt)2Kt
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1��

t

1� �

+ �E
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t+1(wt+1, Xt+1, yt+1))

!
. (C.4)

Reducing number of state variables

We first note that our problem is homogeneous in (c
t

, w

t

, y

t

). 7 We see that the value

function in (C.4) is homogeneous of order (1� �). The constraints on the asset weights and

on consumption in equation (C.2) are homogeneous of order 0 or order 1. Because of these

homogeneities we can reduce the number of variables. We recall that the income process is

given by

y

t

= exp(g
t

+ v

t

+ ✏

t

),

where we had that v

t+1 = v

t

+ u

t+1. We can now, following Cocco et al. (2005) normalize

our variables by the income process, because this does not a↵ect the optimization over the

control variables x
t

and c

t

. Furthermore, because of the homogeneity, we can also scale up

our variables with exp(�v

t

). This results in the following variables:

w
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t
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exp(�v

t

), c⌫
t

= c

t

exp(�v

t

), y⌫
t

= exp(g
t

+ ✏

t

). (C.5)

Substituting these variables in our budget equation (C.1), gives us the new dynamic budget

constraint equation:

w
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t+1 = (w⌫
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7A function f is homogeneous of order k if f (↵x,↵y) = ↵

k
f(x, y) for some ↵ 2 R
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Re-writing equation (C.4) finally gives us the Bellman equation reduced by one variable:
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with the terminal condition
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) =
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. (C.8)

By means of the normalization we have only two state variables left. We can recover the

original state variables easily by multiplying the ’new’ variables by exp(vt).

We want to optimize the Bellman equations in equation (C.7). The only tools we have

are our control variables; the consumption c

t

and the investment mix x

t

for each time t.

The problem we encounter is that we have to optimally choose our control variables now,

for a result in the (far) future. The solution is backward-recursion.

Endogenous Grid-point Method (EGM)

In the optimization problem we have two types of variables. The first type consists of

the exogenous variables, captured in X

t

. These exogenous variables are the simulated asset

returns and state variables. Further we have the endogenous variable w

⌫ . This variable is

endogenous because it depends on decisions we have made until time t. We can deal with

endogenous variables by constructing a grid for the values that this variable can attain.

First we create a new variable called ’wealth after consumption’,

a

t

= w

t

� c

t

.

For a

t

we define a grid of M points. The grid is constructed in such a way that all the

possible values that this variable can attain at time t are in the range of the grid. For every

gridpoint we want to determine the asset allocation x

t

. The advantage of this method is

that we can determine c

t

analytically, which saves a lot of computation time.

For the algorithm we use cross-sectional regressions of N simulated paths of the state

variables of length T . We define the realized wealth of simulation i at time t as !

i,t

. The

realized state variables from the simulations are denoted as X

i,t

with 1  i  M and

1  t  ⌧ . The wealth-after-consumption grid-points are denoted by a

⌫

j

, with 1  j  M .

We have for each simulation ⌧ points in time, and for each point in time for the specific

simulation M grid-points for the possible values for wealth after consumption. This results

in in (⌧ � 1)⇥M ⇥N grid-points. We omit from now on the superscripts ⌫ for notational

convenience.

We specify the process recursively backwards by dynamic programming. The optimiza-

tion procedure starts at moment t = ⌧ , and we want to optimize the problem at all the

grid-points. The idea is that for values between these grid-points, we can interpolate to

have optimal solutions.
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Time ⌧ : At terminal time T the investor retires. He wants to consume all wealth in this

year, so c

⌧

= w

⌧

, and the value function equals

J

⌧

(w
⌧

, X

⌧

) = �

w

1��

⌧

1� �

. (C.9)

Time ⌧ � 1: Here we have to make our first decision. We assume here that we are in a

certain grid-point j, and we are in path i. We first substitute equation (C.9) in equation

(C.7), which gives us the following optimization problem:

max
(c⌧�1,x⌧�1)2K⌧�1
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We first want to optimize (C.10) with respect to the asset allocation. We have to take into

account that we have liquidity constraints that have to be satisfied by the asset allocation.

The first order condition of (C.10) with respect to x

t

reads as

E
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h
��w
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T

exp ((1� �)u
T

) (r
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� r

f

T

)|X
T�1, at�1

i
+ �� µ◆ = 0. (C.11)

Here, � and µ are non-negative Kuhn-tucker multipliers corresponding to the Lagrange

optimization. Now comes the trick. The conditional expectation C.11 can be approximated

by a polynomial function of the asset allocation x

t

. We have a vector of N simulated values

of the term inside the conditional expectation at moment ⌧ , and N simulated values of the

state variables for moment ⌧ � 1. With this information we can do the following regression.
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The function f(X
⌧�1) is a simple linear function in the state variables. Note that ✓

S

is

a function which depends on the asset weights x. We can estimate x by first constructing

test-portfolios for x. We create h test-portfolios for x

⌧�1. Note that the function inside

the conditional expectation is dependent of w
T

, and this w

T

depends on the asset weights

we choose. By running h regressions for the di↵erent test-portfolios, we obtain h di↵erent

functions ✓

S

(x
i

, a

t�1), for i = 1, . . . , h. With these functions we can estimate  in the

following equation:

✓

S

(x
i

, a

⌧�1) ⇡ g(x
i

)0 
S

for i = 1, . . . , h. (C.13)

Using this linearization in x we can now write equation (C.11) as

g(x) f(X
⌧�1,i) + �� µ◆ = 0. (C.14)

where g(x) is a simple linear polynomial function in the asset weights. Numerically solving

this equation with respect to x gives us the optimal asset allocation at time ⌧�1 in path i and

grid-point j. For each path this asset allocations will gives us a return on the portfolio r

p

⌧,i

,

and also a certain wealth w

⇤
⌧,i

, given that we started in grid-point j. Using this information
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we can just take the first-order derivative of C.11 w.r.t. c

⌧�1, and solve for c

⌧�1. The

optimal consumption that follows is given by

c
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⌧�1(��w

⇤��
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The last step is to construct the endogenous grid for the ’cash-on-hand’ w
⌧�1, given by

w

⌧�1(!⌧�1,i) = c

⇤(!
⌧�1,i, j) + a

⌧�1(j). (C.16)

For every trajectory we have constructed an endogenous grid for the wealth after consump-

tion. Consequently, for all the wealth levels we know the corresponding optimal investment

strategies and the optimal consumption policies.

Time t = ⌧ � 2, · · · , 1 We will now explain how we optimize the consumption choice and

the investment policy for the other moments in time. Assume that we are at time t. We

know the endogenous grid for wealth at time t + 1, and the corresponding consumption

policies, so we have the combinations (w
t+1,j , ct+1,j , xt+1,j) for j = 1 . . . ,M . We want to

optimize the following value function:
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Taking the first order derivatives with respect to c

t

and w

t

, and using the chain rule gives

the following first order conditions:
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The Kuhn-Tucker multipliers � and µ have to satisfy

�

s

x
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= 0 (s = 1, · · · , n) and µ(x0
◆� 1) = 0.

with n the amount of risky assets. When we take the partial derivative of C.17 w.r.t to w
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we obtain
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so we can see that
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The first order conditions in equations (C.18) and (C.19) then read
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In equation (C.22) we determine the optimal investment policy in the same way as we did in

period ⌧�1: we are in a certain grid-point j, and try to linearize the conditional expectation

in x

t

, by cross sectional regressions. Therefore, we make test portfolios for x

t

. For a fixed

test portfolio, we obtain corresponding wealth levels one period later for all the N paths,

so w

t+1. With these wealth levels we can interpolate the corresponding consumption levels

c

t+1.When we have determined the optimal consumption levels at t+1 we can solve equation

(C.23) for the optimal x
t

. With the optimal x
t

we can calculate the return of the portfolio

r

p

t+1 one period later, and substitute this in equation (C.23). Again, we can determine in

this way the consumption policy analytically. The optimal consumption equals

c

⇤
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=
�
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Again, we complete our analysis by calculating the endogenous ’cash-on-hand’:

w

t

(!
it

, j) = c

⇤
t

(!
i,t

, j) + a

t

(j). (C.25)

By defining the grid, we have to take into account that we can not consume more then our

wealth. As a consequence, we always include a

t

(1) = 0 as the smallest grid-point. Further

we note that the wealth and consumption have a linear relationship, except for very small

values of wealth. Therefore, we follow Carroll (2006) and choose a triple-exponential grid.

With this specification of the grid, the density of the grid-points near zero is much higher.

After we have constructed the grids, we can run forward from t = 0 to t = ⌧ through

the grids with linear interpolation, in order to determine the optimal consumption and

investment policies for the investor. We have outlined this procedure section 6.
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D Life-cycle asset allocations

Figure 16: The asset allocations for the investor with di↵erent levels of risk-aversion, with
a fixed pension contract.

Figure 16A: Risk-seeking investor (� = 2)
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Figure 16B: Risk-neutral investor (� = 5)

25 30 35 40 45 50 55 60 65
0

0.2

0.4

0.6

0.8

1

Figure 16C: Risk-averse investor (� = 10)
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Figure 17: The asset allocations for the investor with di↵erent levels of risk-aversion, with
a variable pension contract.

Figure 17A: Risk-seeking investor with � = 2

Figure 17B: Risk-neutral investor with � = 5

Figure 17C: Risk-averse investor with � = 10
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E Pension results

Table 6: The relevant terminology for the description of the result and the meaning of this termi-
nology that we use in describing the results of the simulation study

Definition meaning
Ag The fixed pension contracts for the aggressive (Ag), risk-

neutral (Ne) and risk-averse investor (Av)

Ag-Ag The variable pension contract for an investor with ag-
gressive (Ag) investment until retirement, and Aggressive
investments after retirement. The same holds for other
combinations of aggressive (Ag), risk-neutral (Ne) and
averse (Av).

. .
Distribution boundaries The upper-boundaries ub and lower-boundaries lb that we

specified in table 7, based on the distribution of the real
stock returns that we have derived. In this way we know
how many times the bu↵er is used in average, because
the real stock returns are outside the boundaries. For
example: 10% means that 5% of all the simulated real
stock returns are below the corresponding lower-bound in
table 7 and 5% above the upper-bound.

Alternative boundaries The set of upper-and lower-bounds we derived by com-
bining three di↵erent upper-bounds with three di↵erent
lower-bounds. For example: [�1,+11%] means that we
have lb = �1% and ub = +11%

P5 The 5th percentile of the certainty equivalents of a pension
contract. This represents how well the pension scheme
performs under bad circumstances. We try to find a con-
tract with a favorable P5, as the pensions need to be sta-
ble. We denote the other percentiles similar to P5: For
example, the 95th percentile is P95, etc.

⇧
max

The maximum percentage of the total accrued pension
capital that the bu↵er may contain.

bu↵er full Bu↵er empty represents the time average of time that the
bu↵er is switched o↵, because there is either no capital in
the bu↵er (CB = 0). Bu↵er full represents the average
time that there is too much capital in the bu↵er, so CB

equals ⇧
max

of the total accrued pension capital of the
active participants in the fund.

NB An IDC-contract, so we have no bu↵er in this contract
(NB)
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E.1 Results based on distribution boundaries

Tables pension outcomes

Table 11: The pension results for the fixed and variable contracts for the investor who invests
aggressive (� = 2) until retirement age with the ’distribution’ boundaries.

Investment strategy
bu↵er active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

Aggressive

P5 0.68 0.69 0.65 0.66 0.70 0.70 0.67 0.71 0.71 0.78
P50 1.79 1.77 1.72 1.67 1.56 1.56 1.50 1.46 1.52 1.61
P95 4.56 4.01 3.63 3.36 3.19 2.93 2.76 2.82 2.76 3.09

bu↵er empty 56% 51% 49% 47% 45% 41% 38% 33% 26%
bu↵er full 0% 1% 1% 1% 3% 4% 6% 9% 14%

.

Aggressive-Aggressive

P5 0.61 0.64 0.64 0.68 0.67 0.69 0.70 0.69 0.75 0.89
P50 2.50 2.45 2.46 2.31 2.18 2.18 2.06 2.01 2.01 2.44
P95 8.15 7.49 6.65 5.85 5.53 5.02 4.95 4.89 5.13 5.92

bu↵er empty 43% 44% 45% 44% 42% 38% 35% 31% 24%
bu↵er full 1% 1% 2% 3% 4% 6% 10% 13% 19%

.

Aggressive-Neutral

P5 0.63 0.63 0.63 0.63 0.67 0.68 0.65 0.72 0.79 0.94
P50 2.31 2.29 2.23 2.20 2.06 2.02 1.96 1.93 1.92 2.33
P95 7.70 6.75 6.19 5.28 4.82 4.62 4.17 4.31 4.62 5.14

bu↵er empty 43% 44% 44% 44% 42% 38% 34% 29% 22%
bu↵er full 0% 1% 1% 2% 3% 4% 7% 11% 17%

.

Aggressive- Averse

P5 0.61 0.61 0.61 0.61 0.64 0.68 0.65 0.73 0.76 0.89
P50 2.26 2.23 2.26 2.11 2.00 1.96 1.88 1.90 1.90 2.23
P95 7.35 6.21 5.74 5.07 4.76 4.42 4.03 4.07 4.18 4.94

bu↵er empty 43% 44% 44% 44% 42% 37% 34% 29% 22%
bu↵er full 0% 0% 1% 1% 2% 4% 6% 10% 16%
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Table 12: The pension results for the fixed and variable contracts for the investor who invests
risk-neutral (� = 5) until retirement age. After retirement age the investor has several investment
strategies.

Investment strategy
time active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

Neutral

P5 0.69 0.69 0.69 0.66 0.69 0.70 0.65 0.66 0.67 0.73
P50 1.38 1.35 1.34 1.31 1.27 1.25 1.22 1.24 1.22 1.28
P95 2.77 2.65 2.49 2.24 2.15 2.05 2.04 1.91 1.95 2.02

bu↵er empty 56% 51% 48% 46% 44% 40% 36% 30% 23%
bu↵er full 0% 0% 0% 0% 1% 1% 2% 4% 8%

.

Neutral-Agressive

P5 0.51 0.48 0.55 0.57 0.63 0.65 0.63 0.62 0.65 0.69
P50 1.80 1.85 1.84 1.76 1.71 1.65 1.62 1.58 1.61 1.84
P95 4.67 4.50 3.98 3.87 3.47 3.32 3.18 3.03 3.16 3.58

bu↵er empty 43% 44% 44% 44% 41% 37% 34% 29% 22%
bu↵er full 0% 1% 1% 2% 3% 4% 6% 10% 16%

.

Neutral-Neutral

P5 0.53 0.59 0.61 0.60 0.60 0.62 0.61 0.61 0.65 0.74
P50 1.78 1.83 1.72 1.72 1.63 1.62 1.56 1.53 1.59 1.69
P95 4.22 3.74 3.89 3.71 3.41 3.17 3.09 2.84 3.08 3.34

bu↵er empty 43% 44% 44% 43% 41% 37% 33% 27% 20%
bu↵er full 0% 0% 0% 1% 2% 2% 4% 7% 14%

.

Neutral- Averse

P5 0.52 0.54 0.57 0.58 0.60 0.56 0.61 0.61 0.65 0.70
P50 1.74 1.70 1.70 1.64 1.58 1.55 1.51 1.50 1.54 1.68
P95 4.19 3.90 3.73 3.45 3.24 3.15 3.08 2.98 3.01 3.14

bu↵er empty 43% 44% 44% 43% 41% 36% 32% 27% 19%
bu↵er full 0% 0% 0% 1% 1% 2% 4% 6% 13%
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Table 13: The pension results of the pension results of the risk-averse (� = 10) investor, with a
fixed contract (’Averse’) and a variable contract (’Averse-Agressive’, ’Averse-Neutral’ and ’Averse-
Averse’)

Investment strategy
time active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

Averse

P5 0.66 0.66 0.66 0.65 0.67 0.67 0.66 0.65 0.65 0.72
P50 1.27 1.26 1.24 1.21 1.20 1.18 1.16 1.15 1.18 1.19
P95 2.54 2.40 2.24 2.09 2.01 1.90 1.91 1.85 1.80 1.86

bu↵er empty 56% 50% 48% 46% 44% 40% 35% 29% 22%
bu↵er full 0% 0% 0% 0% 1% 1% 2% 3% 7%

.

Averse-Agressive

P5 0.52 0.53 0.56 0.53 0.51 0.32 0.46 0.51 0.59 0.68
P50 1.68 1.57 1.70 1.64 1.49 1.51 1.49 1.43 1.48 1.62
P95 4.31 4.05 3.81 3.65 3.56 2.93 3.10 3.07 3.04 3.39

bu↵er empty 43% 44% 44% 44% 41% 37% 34% 28% 21%
bu↵er full 0% 0% 1% 1% 2% 4% 6% 9% 15%

.

Averse-Neutral

P5 0.53 0.51 0.53 0.53 0.55 0.58 0.62 0.58 0.68 0.67
P50 1.62 1.57 1.59 1.50 1.44 1.43 1.40 1.42 1.42 1.54
P95 3.80 3.56 3.39 3.23 3.12 3.08 2.90 2.71 2.80 2.82

bu↵er empty 43% 44% 44% 43% 41% 36% 33% 27% 19%
bu↵er full 0% 0% 0% 1% 1% 2% 4% 7% 13%

Averse- Averse

P5 0.47 0.52 0.55 0.57 0.54 0.57 0.48 0.58 0.60 0.62
P50 1.57 1.56 1.55 1.56 1.46 1.43 1.34 1.40 1.42 1.56
P95 3.56 3.47 3.52 3.16 2.87 2.90 2.56 2.55 2.68 2.82

bu↵er empty 43% 44% 44% 43% 41% 36% 32% 26% 18%
bu↵er full 0% 0% 0% 0% 1% 2% 3% 6% 11%
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Distribution pension outcomes

Figure 18: Distributions of the certainty equivalents in the case of a fixed pension, for the di↵erent
investment styles

18A) Fixed aggressive (� = 2).

18B) Fixed neutral (� = 5).

18C) Fixed averse (� = 10) .
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Figure 19: Distributions of certainty equivalents for the aggressive (Ag) investor until retirement
with a variable pension.

19A) Variable pension with aggressive investing after retirement (Ag-Ag).

19B) Variable pension with risk-neutral investing after retirement (Ag-Ne).

19C) Variable pension with risk-averse investing after retirement (Ag-Av).
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Figure 20: Distributions of certainty equivalents with a variable pension contract for the risk-
neutral (Ne) investor until retirement with a variable pension.

20A) Variable pension with aggressive investing after retirement (Ne-Ag).

20B) Variable pension with risk-neutral investing after retirement (Ne-Ne).

20C) Variable pension with risk-averse investing after retirement (Ne-Av).
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Figure 21: Distributions of certainty equivalents with a variable pension contract for the risk-averse
(Av) investor until retirement with a variable pension.

21A) Variable pension with aggressive investing after retirement (Av-Ag).

21B) Variable pension with risk-neutral investing after retirement (Av-Ne).

21C) Variable pension with risk-averse investing after retirement (Av-Av).
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Bu↵er full or empty

Figure 22: Stacked charts of average part of times that the bu↵er is empty (red) and the part
of the time that the bu↵er is full (green) for the aggressive (Ag) investor until retirement, with
a fixed pension, and for the variable pensions with aggressive investing until retirement (Ag-Ag,
Ag-Ne and Ag-Av).
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Figure 23: Stacked charts of the average percentage of times that the bu↵er is empty (red) and the
part of the time that the bu↵er is full (green) for the risk-neutral (Ne) investor until retirement
with a fixed pension, and for the variable pensions with risk-neutral investing until retirement
(Ne-Ag, Ne-Ne and Ne-Av).
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Figure 24: Stacked charts of the part of the time that the bu↵er is empty (red) and the part of
the time that the bu↵er is full (green) for the averse (Av) investor until retirement with a fixed
pension, and for the variable pensions with aggressive investing until retirement (Av-Ag, Av-Ne
and Av-Av).
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Varying maximum amount of capital allowed in bu↵er

Table 14: The pension results for a varying bu↵er size (⇧
max

equals respectively 10%, 20% and 30% of the total
accrued pension capital in the fund). Here we have an Aggressive-Aggressive investor

⇧
max

time active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

10%

P5 0.58 0.58 0.63 0.62 0.63 0.67 0.67 0.68 0.72 0.87
P50 2.35 2.30 2.32 2.26 2.27 2.22 2.25 2.18 2.36 2.63
P95 8.06 7.21 6.73 6.40 6.49 6.08 5.67 5.81 6.12 7.10

bu↵er empty 56% 51% 49% 49% 48% 47% 44% 41% 35%
bu↵er full 8% 13% 17% 20% 23% 25% 28% 31% 36%

20%

P5 0.58 0.58 0.63 0.62 0.61 0.67 0.66 0.67 0.71 0.86
P50 2.35 2.29 2.32 2.24 2.13 2.10 2.07 2.02 2.13 2.42
P95 8.06 6.91 6.39 6.01 5.13 5.03 4.87 4.92 4.92 5.73

bu↵er empty 56% 51% 49% 49% 47% 44% 41% 37% 30%
bu↵er full 2% 4% 5% 7% 8% 12% 14% 18% 23%

30%

P5 0.58 0.58 0.63 0.62 0.61 0.67 0.65 0.66 0.70 0.86
P50 2.35 2.29 2.32 2.23 2.13 2.10 1.95 1.94 1.97 2.33
P95 8.06 6.91 6.39 5.68 4.95 4.89 4.50 4.44 4.60 5.18

bu↵er empty 56% 51% 49% 48% 46% 42% 39% 34% 27%
bu↵er full 1% 1% 1% 2% 4% 5% 7% 10% 15%

Table 15: The pension results for a varying bu↵er size (⇧
max

respectively 10%, 20% and 30% of the total accrued
pension capital in the fund). Here we have an Aggressive-Neutral investor.

⇧
max

time active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

10%

P5 0.63 0.63 0.62 0.63 0.66 0.70 0.71 0.73 0.71 0.82
P50 2.29 2.23 2.23 2.18 2.06 2.02 2.10 2.06 2.21 2.42
P95 7.34 6.36 5.93 5.96 5.68 5.51 5.30 5.38 5.56 6.08

bu↵er empty 56% 51% 49% 49% 48% 46% 43% 40% 34%
bu↵er full 7% 11% 14% 17% 20% 23% 26% 29% 34%

20%

P5 0.63 0.63 0.62 0.63 0.64 0.68 0.65 0.72 0.76 0.80
P50 2.29 2.23 2.20 2.11 2.04 1.96 1.90 1.91 1.93 2.20
P95 7.34 6.36 5.73 5.34 5.06 4.74 4.60 4.54 4.51 5.19

bu↵er empty 56% 51% 49% 48% 46% 43% 40% 36% 29%
bu↵er full 1% 2% 4% 5% 7% 10% 12% 15% 21%

30%

P5 0.63 0.63 0.62 0.63 0.64 0.68 0.63 0.71 0.75 0.88
P50 2.29 2.23 2.20 2.08 2.03 1.96 1.88 1.85 1.87 2.17
P95 7.34 6.36 5.64 5.22 4.68 4.49 4.07 4.15 4.13 4.69

bu↵er empty 56% 51% 49% 47% 45% 42% 38% 33% 26%
bu↵er full 0% 0% 1% 1% 2% 3% 6% 9% 14%

14%
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Table 16: The pension results for a varying bu↵er size (⇧
max

equals respectively 10%, 20% and 30% of the total
accrued pension capital in the fund). Here we have an Aggressive-Averse investor.

⇧
max

time active 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
lb - -19.7 -14.2 -10.6 -7.6 -5.1 -2.9 -0.8 1.1 2.9
ub - 28.8 23.4 19.9 17.1 14.7 12.5 10.5 8.5 6.6

10%

P5 0.61 0.60 0.60 0.61 0.63 0.70 0.64 0.73 0.72 0.83
P50 2.26 2.20 2.20 2.09 2.00 2.01 2.04 2.03 2.09 2.34
P95 7.08 6.19 5.94 5.54 5.64 5.16 5.19 5.21 5.21 5.83

bu↵er empty 56% 51% 49% 49% 48% 46% 43% 39% 33%
bu↵er full 6% 10% 13% 17% 19% 22% 24% 28% 33%

20%

P5 0.61 0.60 0.60 0.61 0.63 0.67 0.62 0.71 0.73 0.80
P50 2.26 2.20 2.17 2.07 1.99 1.93 1.88 1.89 1.93 2.16
P95 7.08 6.14 5.47 5.07 4.87 4.57 4.36 4.15 4.38 4.73

bu↵er empty 56% 51% 49% 48% 46% 43% 39% 35% 29%
bu↵er full 1% 2% 3% 4% 6% 8% 12% 15% 19%

30%

P5 0.61 0.60 0.60 0.61 0.63 0.68 0.62 0.71 0.72 0.87
P50 2.26 2.20 2.17 2.02 1.96 1.91 1.87 1.83 1.83 2.12
P95 7.08 6.14 5.45 4.91 4.60 4.42 3.89 3.95 3.93 4.45

bu↵er empty 56% 51% 49% 47% 45% 41% 38% 33% 26%
bu↵er full 0% 0% 1% 1% 2% 3% 5% 8% 13%
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E.2 Pension results alternative boundaries

Tables pension outcomes

Table 17: In this section we reply the analysis we did in appendix E1, except that we combine the upper-bounds +8%,
+11%, and +14 with the lower-bounds �4%, �1% and +1% to examine what the e↵ect is of not knowing exactly the
distribution of the real stock returns, and consequently setting unfavorable bounds.

Investment strategy
ub +8% +11% +14%

No bu↵er
lb -4% -1% +2% -4% -1% +2% -4% -1% +2%

Aggressive

P5 0.62 0.65 0.71 0.64 0.70 0.72 0.67 0.71 0.74 0.68
P50 1.24 1.33 1.53 1.35 1.44 1.59 1.52 1.62 1.76 1.79
P95 2.40 2.65 2.88 2.59 2.80 3.00 2.92 3.05 3.18 4.56

bu↵er empty 22% 26% 29% 33% 37% 42% 43% 49% 53%
bu↵er full 17% 14% 11% 8% 6% 5% 3% 2% 1%

.

Aggressive-Aggressive

P5 0.60 0.69 0.83 0.63 0.74 0.76 0.69 0.77 0.78 0.58
P50 1.61 1.82 2.21 1.75 1.94 2.27 2.06 2.18 2.57 2.50
P95 4.44 4.82 5.39 4.34 4.77 5.13 4.86 5.42 5.77 8.15

bu↵er empty 20% 24% 27% 30% 35% 39% 40% 46% 51%
bu↵er full 23% 18% 16% 13% 10% 7% 5% 3% 2%

.

Aggressive-Neutral

P5 0.64 0.66 0.78 0.67 0.70 0.80 0.66 0.71 0.65 0.64
P50 1.51 1.74 2.04 1.71 1.89 2.10 1.93 2.04 2.32 2.29
P95 3.95 4.06 4.47 3.90 4.22 4.48 4.44 4.97 5.22 7.45

bu↵er empty 18% 22% 26% 29% 34% 38% 39% 46% 51%
bu↵er full 21% 16% 14% 10% 7% 5% 4% 2% 1%

.

Aggressive- Averse

P5 0.65 0.64 0.78 0.62 0.71 0.77 0.68 0.69 0.68 0.61
P50 1.46 1.72 1.94 1.69 1.91 2.08 1.93 2.01 2.26 2.26
P95 3.60 3.91 4.44 3.67 4.11 4.31 4.23 4.40 5.13 7.19

bu↵er empty 18% 22% 25% 28% 34% 38% 40% 46% 51%
bu↵er full 19% 16% 13% 9% 6% 5% 3% 2% 1%
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Table 18: The distribution of the pension results of the risk-neutral (� = 5) investor, with a fixed contract (’Neutral’)
and a variable contract (’Neutral-Agressive’, ’Neutral-Neutral’ and ’Neutral-Averse’)

Investment strategy
ub +8% +11% +14%

No bu↵er
lb -4% -1% +2% -4% -1% +2% -4% -1% +2%

Neutral

P5 0,63 0,68 0,67 0,65 0,65 0,68 0,69 0,66 0,69 0,69
P50 1,04 1,13 1,22 1,14 1,20 1,28 1,23 1,30 1,34 1,38
P95 1,68 1,84 1,96 1,80 1,90 2,08 2,02 2,16 2,27 2,77

bu↵er empty 19% 23% 26% 30% 35% 40% 42% 48% 52%
bu↵er full 12% 8% 7% 4% 3% 2% 1% 1% 0%

.

Neutral-Aggressive

P5 0,51 0,62 0,68 0,60 0,68 0,62 0,61 0,68 0,67 0,53
P50 1,37 1,44 1,67 1,48 1,54 1,69 1,64 1,74 1,82 1,82
P95 2,90 3,09 3,57 3,31 3,38 3,57 3,39 3,76 3,86 4,93

bu↵er empty 18% 22% 25% 28% 34% 38% 39% 45% 50%
bu↵er full 20% 16% 14% 9% 7% 5% 4% 2% 1%

.

Neutral-Neutral

P5 0,55 0,56 0,70 0,56 0,63 0,63 0,61 0,66 0,65 0,57
P50 1,31 1,42 1,58 1,37 1,50 1,68 1,52 1,61 1,73 1,72
P95 2,56 2,89 3,12 2,69 3,05 3,08 3,18 3,10 3,42 4,23

bu↵er empty 16% 20% 23% 27% 32% 37% 39% 45% 50%
bu↵er full 18% 12% 10% 7% 4% 3% 2% 1% 1%

.

Neutral- Averse

P5 0,53 0,60 0,69 0,57 0,60 0,60 0,55 0,63 0,61 0,58
P50 1,27 1,41 1,57 1,37 1,47 1,69 1,50 1,61 1,74 1,74
P95 2,45 2,67 2,76 2,67 2,93 3,04 3,05 3,19 3,29 4,15

bu↵er empty 15% 19% 23% 26% 32% 37% 38% 45% 50%
bu↵er full 16% 12% 9% 6% 4% 3% 2% 1% 1%
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Table 19: The pension results for the averse (� = 10) investor, both for the fixed (’Averse’) and the variable pensions
(’Averse-Aggressive’,’Averse-Neutral’,’Averse-Averse’).

Investment strategy
UB +8% +11% +14%

No bu↵er
LB -4% -1% +2% -4% -1% +2% -4% -1% +2%

Averse

P5 0.62 0.64 0.66 0.64 0.64 0.65 0.67 0.64 0.66 0.66
P50 1.01 1.06 1.16 1.09 1.12 1.19 1.16 1.22 1.28 1.27
P95 1.61 1.67 1.77 1.73 1.83 1.92 1.92 1.99 2.05 2.54

bu↵er empty 18% 22% 25% 30% 35% 40% 41% 47% 52%
bu↵er full 10% 7% 5% 3% 2% 1% 1% 0% 0%

.

Averse-Aggressive

P5 0.54 0.54 0.61 0.52 0.56 0.61 0.57 0.47 0.59 0.44
P50 1.22 1.31 1.51 1.40 1.41 1.58 1.45 1.51 1.69 1.62
P95 2.63 2.78 2.85 2.88 2.86 3.48 3.09 3.36 3.53 4.20

bu↵er empty 17% 21% 24% 28% 33% 38% 39% 45% 50%
bu↵er full 19% 16% 13% 8% 6% 4% 3% 2% 1%

.

Averse-Neutral

P5 0.53 0.55 0.60 0.53 0.50 0.63 0.40 0.61 0.45 0.53
P50 1.23 1.25 1.47 1.28 1.39 1.54 1.42 1.48 1.57 1.58
P95 2.41 2.51 2.73 2.56 2.65 2.76 2.96 3.02 3.23 3.68

bu↵er empty 15% 19% 23% 26% 32% 37% 38% 45% 50%
bu↵er full 16% 12% 9% 6% 4% 3% 2% 1% 1%

.

Averse- Averse

P5 0.47 0.54 0.60 0.53 0.48 0.55 0.57 0.60 0.60 0.52
P50 1.21 1.30 1.46 1.24 1.37 1.49 1.40 1.44 1.56 1.58
P95 2.49 2.44 2.73 2.54 2.62 3.05 2.67 2.78 2.98 3.56

bu↵er empty 14% 19% 22% 26% 32% 37% 38% 45% 50%
bu↵er full 14% 11% 8% 5% 3% 2% 1% 1% 0%
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The distributions of the pension outcomes

Figure 25: Distributions of the certainty equivalents in the case of a fixed pension contract,
for di↵erent investment styles.

25A) Fixed aggressive (� = 2)

25B) Fixed neutral (� = 5)

25C) Fixed averse (� = 10)
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Figure 26: Distributions of the certainty equivalents for a variable pension contract and an
investor that invests aggressive (Ag) until retirement.

26A) Variable pension with aggressive investing after retirement (Ag-Ag)

26B) Variable pension with risk-neutral investing after retirement (Ag-Ne)

26C) Variable pension with risk-averse investing after retirement (Ag-Av)
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Figure 27: Distributions of the certainty equivalents for a variable pension contract and an
investor that invests risk-neutral (Ne) until retirement.

27A) Variable pension with aggressive investing after retirement (Ne-Ag)

27B) Variable pension with risk-neutral investing after retirement (Ne-Ne)

27C) Variable pension with risk-averse investing after retirement (Ne-Av)
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Figure 28: Distributions of the certainty equivalents for a variable pension contract and an
investor that invests risk-averse (Av) until retirement.

28A) Variable pension with aggressive investing after retirement (Av-Ag)

28B) Variable pension with risk-neutral investing after retirement (Av-Ne)

28C) Variable pension with risk-averse investing after retirement (Av-Av)
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Filling bu↵er

Figure 29: Stacked charts of the part of the time that the bu↵er is empty (red) and the part
of the time that the bu↵er is full (green) for the aggressive (Ag) investor until retirement
with a fixed pension, and for the variable pensions with aggressive investing until retirement
(Ag-Ag, Ag-Ne and Ag-Av).
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Figure 30: Stacked charts of the part of the time that the bu↵er is empty (red) and the part of
the time that the bu↵er is full (green) for the risk-neutral (Ne) investor until retirement with
a fixed pension, and for the variable pensions with risk-neutral investing until retirement
(Ne-Ag, Ne-Ne and Ne-Av).
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Figure 31: Stacked charts of the part of the time that the bu↵er is empty (red) and the
part of the time that the bu↵er is full (green) for the averse (Av) investor until retirement
with a fixed pension, and for the variable pensions with aggressive investing until retirement
(Av-Ag, Av-Ne and Av-Av).
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Varying maximum amount of capital allowed in bu↵er

Table 20: The pension results for a varying bu↵er size (⇧
max

equals respectively 10%, 20% and 30% of the total
accrued pension capital in the fund). Here we have an investor who invests aggressive until retirement age, and
aggressive after retirement age.

⇧
max

ub +8% +11% +14%
NB

lb -4% -1% +2% -4% -1% +2% -4% -1% +2%

10%

P5 0.65 0.68 0.79 0.65 0.72 0.72 0.64 0.69 0.70 0.58
P50 1.87 2.11 2.38 2.06 2.21 2.46 2.17 2.20 2.50 2.35
P95 5.39 6.06 6.32 5.65 5.81 6.28 5.81 6.30 6.45 8.06

bu↵er empty 32% 35% 38% 40% 44% 48% 47% 52% 57%
bu↵er full 41% 37% 34% 33% 28% 25% 24% 21% 18%

.

20%

P5 0.59 0.68 0.79 0.61 0.66 0.76 0.64 0.67 0.70 0.58
P50 1.65 1.84 2.21 1.76 1.96 2.29 2.05 2.17 2.52 2.35
P95 4.35 4.66 5.40 4.65 4.85 5.67 4.88 5.34 5.84 8.06

bu↵er empty 27% 31% 33% 36% 40% 44% 45% 50% 55%
bu↵er full 27% 23% 20% 18% 15% 13% 10% 8% 6%

.

30%

P5 0.59 0.68 0.79 0.59 0.65 0.75 0.64 0.66 0.69 0.58
P50 1.53 1.72 2.06 1.73 1.90 2.17 1.99 2.14 2.50 2.35
P95 3.87 4.30 4.75 4.19 4.37 4.78 4.66 4.77 5.51 8.06

bu↵er empty 24% 28% 31% 34% 39% 43% 44% 49% 54%
bu↵er full 18% 15% 13% 10% 8% 6% 4% 3% 2%

Table 21: The pension results for a varying bu↵er size (⇧
max

equals respectively 10%, 20% and 30% of the total
accrued pension capital in the fund). Here we have an investor who invests aggressive until retirement age, and
risk-neutral after retirement age.

⇧
max

ub +8% +11% +14%
NB

lb -4% -1% +2% -4% -1% +2% -4% -1% +2%

10%

P5 0.63 0.67 0.75 0.64 0.71 0.83 0.67 0.71 0.68 0.63
P50 1.80 1.93 2.20 1.87 2.07 2.26 2.01 2.05 2.30 2.29
P95 4.76 5.09 5.61 4.83 5.57 5.83 5.37 5.80 5.92 7.34

bu↵er empty 31% 34% 37% 39% 43% 47% 46% 52% 56%
bu↵er full 39% 35% 32% 30% 26% 23% 22% 18% 16%

20%

P5 0.61 0.65 0.75 0.61 0.70 0.82 0.65 0.71 0.65 0.63
P50 1.53 1.75 2.06 1.70 1.85 2.10 1.93 2.04 2.23 2.29
P95 4.06 4.47 4.74 4.07 4.60 4.69 4.52 4.85 5.27 7.34

bu↵er empty 25% 29% 32% 35% 39% 43% 44% 50% 54%
bu↵er full 24% 21% 18% 15% 12% 10% 8% 6% 5%

30%

P5 0.59 0.64 0.75 0.61 0.69 0.79 0.65 0.71 0.65 0.63
P50 1.50 1.65 1.93 1.65 1.84 2.03 1.90 2.03 2.23 2.29
P95 3.60 3.75 4.32 3.64 4.07 4.15 4.28 4.49 4.96 7.34

bu↵er empty 23% 26% 29% 33% 38% 42% 43% 49% 53%
bu↵er full 17% 13% 11% 8% 6% 4% 3% 2% 1%
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Table 22: The pension results for a varying bu↵er size (⇧
max

equals respectively 10%, 20% and 30% of the total
accrued pension capital in the fund). Here we have an Aggressive-Averse investor.

⇧
max

ub +8% +11% +14%
NB

lb -4% -1% +2% -4% -1% +2% -4% -1% +2%

10%

P5 0.65 0.66 0.74 0.64 0.72 0.81 0.65 0.69 0.63 0.61
P50 1.75 1.90 2.17 1.81 1.98 2.22 2.00 2.07 2.25 2.26
P95 4.57 5.15 5.47 4.62 5.26 5.52 5.25 5.35 5.68 7.08

bu↵er empty 31% 34% 36% 39% 43% 46% 46% 52% 56%
bu↵er full 38% 34% 31% 29% 25% 22% 21% 17% 15%

.

20%

P5 0.59 0.62 0.72 0.62 0.70 0.78 0.63 0.69 0.62 0.61
P50 1.49 1.73 1.99 1.66 1.83 2.02 1.90 2.03 2.22 2.26
P95 3.70 4.16 4.55 3.96 4.41 4.66 4.32 4.87 4.91 7.08

bu↵er empty 25% 28% 31% 34% 39% 43% 44% 49% 54%
bu↵er full 24% 20% 17% 14% 12% 10% 7% 6% 4%

.

30%

P5 0.61 0.62 0.72 0.61 0.70 0.76 0.63 0.69 0.62 0.61
P50 1.44 1.65 1.88 1.64 1.80 2.00 1.89 2.01 2.19 2.26
P95 3.41 3.66 4.27 3.56 3.96 4.19 4.18 4.40 4.84 7.08

bu↵er empty 22% 26% 29% 32% 37% 42% 43% 49% 53%
bu↵er full 16% 12% 10% 7% 5% 4% 3% 2% 1%
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F Explanation DB model

In this appendix, we briefly outline the cash-flows in the common Defined Benefits model.

This gives insight in the premium policy, and the lack of customization in the contract. We

follow the model introduced by Veldhuijzen (2014).

Pension policy

We expect that age cohort X receives every year during retirement a fixed percentage c

of his current income (we specified c = 1.875% earlier but denote it as c for notational

convenience). We have to take into account the probability that the person is alive during

retirement. We use N

x

again in this context. Each payment of c% in the future has to be

discounted to the current period, in the same way as we did with an annuity. This gives the

next expression for the accrued pension (AP) for an age cohort x at time t:

AP

x

t

=
100�xX

i=67�x

c y

X

t

N

x+i

(1 + r

t

(i))i
, (F.1)

where y

X

t

denotes the wage of age-cohort X at time t. This is called the actuarial value of

the accrued pension for age-cohort X. It now easily follows that the actuarial value of the

total accrued pensions at time t is given by

AP

t

=
68X

x=25

AP

x

t

. (F.2)

If the contribution rate C

t

is such that only the accrued pensions have to be covered, we

can determine the contribution rate in a DB-policy as

C

t

=
AP

t

y

t

, (F.3)

where y

t

is the sum of the wages of all the age-cohorts in year t. We can multiply this C

t

with some constant ✓ > 1 such that not only the accrued pensions are covered, but also

costs of the execution of the system. We ignore this for now and choose ✓ = 1.

Indexation

The idea of indexation is that we have to adjust the pension payments with the inflation

rates to preserve purchasing power. Giving indexation is not always possible. It depends

on the position of the pension fund. When the pension fund has a funding ratio (the rate

of assets over liabilities) which is too, the fund can not obey the indexation demand in

that year. The accrued pensions have to be adjusted in this case. Every year, the recovery

indexation and cuts that need to be made depend on the funding ratio of the year before.

We use a simplified indexation policy. If the funding ratio is above a certain threshold, we

have 100 % indexation, and if the funding ratio is below a certain threshold we can not give

93



indexation. Between these thresholds we use a linear indexation. We use as upper-bound

130% and lower-bound 110%. This gives the following equation for the indexation.

i

t

= min[max

"
F

policy

t

� 110

130%� 110%
, 0

#
, 1]⇥ ⇡

t

(F.4)

When the indexation can not be entirely provided by the pension fund, the missed

indexation has to be provided later. If the pension fund is healthy this can only be done, so

if the funding ratio is above the upper threshold. If the pensions are not indexed for several

years, the compensation can be large. The fund spends only a fraction of the extra money

it has above the upper funding ratio. We define the recovery indexation at moment t as ir
t

and it is described by

i

r

t

= max

"
1

10

 
F

policy

t

130
� 1

!
, 0

#
. (F.5)

This has to be done only if the fund was not able to give the indexation obligation in an

earlier stage.

Cuts

Cuts need to be made if the capacity to recover is not enough to obtain a policy funding ratio

equal to the Required Funding ratio. We use 105% in this example as the required funding

ratio. Pension funds need to announce cuts if their policy funding ratio, plus the capacity

for recovery, is below the required funding ratio (RF). So in 10 years the fund has to be

at least above the lower-bound, otherwise they need to cut. We make a di↵erence between

small cuts and big cuts. Small cuts is the 1/10�th fraction of the di↵erence between the

minimum required funding ratio and the actual funding ratio. If the funding ratio is for 5

consecutive years below the RF, the fund has to do a large cut such that it is back to a

’healthy’ situation. The cuts have to be increased and the cut can be spread over 10 years.

We assume with the large cut that this is done in once, for convenience. We can describe

the big cut as bc
t

and the formula for this big cut is given by

bc

t

=
F

end

t

105%
� 1

This 105 % depends on the level of risky investments. The riskier the investments, the larger

the minimum required funding ratio. The total amount of cuts equals the sum of the small

cuts and the big cuts.

Liabilities

The pension rights, or financial wealth in our case, develop sequentially as follows. Every

year the participants accrue a percentage c of their current wage that will be received each

year during retirement. In year t, the pension rights are the rights from year t� 1, plus the
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newly accrued pension. This new amount has to be adjusted for indexations and/or cuts.

For retirees the same principle holds, but they do not accrue new pension rights of course.

We can for age cohort x describe this pension rights for moment t as

PR

X

t

=
�
PR

x�1
t�1 + cy

x

t

N

x

125x<68

�
(1 + i

t

)(1 + i

r

t

)(1 + c

t

). (F.6)

Where 1 denotes the indicator function to mention that there is no new pension accrual

after retirement. This system has to be initialized of course.

Now we are able to determine the liabilities of the pension fund for di↵erent periods.

These liabilities are the sum of the of the liabilities for the di↵erent age cohorts. If the age

cohort is retired, this is an annuity of the pension rights accrued so far, starting from 68�x

years from now. The liabilities can be calculated by the current value of that annuitization

times the probability of being alive (the size of the cohort group in our case). The discount

factor is the estimated term structure at time t. The liabilities for the participants with age

x can be defined by

L

x

t

=
100�xX

i=max(68�x,1)

PR

x

t

N

x+i

(1 + r

t

(i))i
. (F.7)

Finally, the total liabilities at time t for the pension funds follows from summing over all

the age cohorts.

L

begin

t

=
100X

x=25

L

x

t

. (F.8)

Annual funding ratio process

We now determine how the funding ratio over time will develop. First the pension benefits

are paid to the retired participants. Also the contributions are added. Our level of assets

changes with

A

begin

t

= A

end

t�1 + contributions
t

� payments
t

. (F.9)

The contributions are specified in equation (F.2). The payments are conditioned on the fact

that the participants are alive. We link the pension incomes to the payments of the pension

fund below and sum over the retirement ages. We then have

payments
t

=
100X

j=67

PI

j

t

=
100X

i=67

PR

i

t

N

i

(F.10)

The annuitizations are locked for the pension fund. The liabilities are defined by F.8. This

results in an initial value of our funding ratio, namely

F

begin

t

=
A

begin

t

L

begin

t

. (F.11)
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In the second step we go one year further, so the investments on the assets have rendered

returns, so the assets will increase, say with r

t

i

, then

A

end

t

= A

begin

t

(1 + r

i

t

). (F.12)

There is only one investment mix for all the assets in the fund. The liabilities grow with the

short term interest rate. In this way we obtain the liabilities for time t,

L

end

t

= L

t

(1 + r

t

(1)) . (F.13)

Finally

F

end

t

=
A

end

t

L

end

t

(F.14)

This is a procedure that works recursive trough the time. It is important to note that in

this DB-contract, the contribution rate C

t

is equal for all the participants. Therefore, the

contribution rate can be collectively increased in order to keep the funding ratio at the

required level. Like we mentioned in section 2, this can be harmful for the incomes of new

entering participants (young employees), as they have to contribute to bad results from the

past.
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