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Abstract

This master thesis introduces a pricing procedure for hybrid capital instruments issued by insurance
companies when the underlying interest rate process is modeled by α−stable Lévy processes, as several
empirical researches have shown that models based on normal distribution might be improper for
financial modeling. Increments of these stochastic processes are independent and follow an α−stable
distribution. This distribution is a generalization of normal distribution, only with heavier tails
and infinite variance. To obtain the instrument prices, I solve a partial integro-differential equation
(PIDE), which is the generalization of the Black-Scholes PDE for Lévy processes. This PIDE is solved
by a finite difference method. To improve the stability and the precision of the standard pricing
procedure, I provide my own refinement based on interpolation and extrapolation of instrument
prices. In comparison to the Gaussian models, the Lévy models provide lower instrument prices and
therefore are closer to the market values and allow more flexibility for the price modeling.

Keywords: Lévy process, α−stable distribution, hybrid capital instruments, callable bonds,
partial integro-differential equation
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1 Introduction

Funding is an essential part of every company. The funding of a company can be accomplished in
several ways, for example by borrowing money from a bank, issuing stocks, or issuing bonds. Bonds
issued by a company can have several features. They can pay coupons, have embedded optionality,
or even be perpetual. These bonds with embedded exotic optionality are called hybrid capital instru-
ments. After the issuance of such instruments, they are often traded on financial markets. Issuance
of hybrid capital instruments is an essential part of the funding of insurance companies. Based on
characteristics, the instruments are divided into different groups, called "tiers." According to a new
regulation, Solvency II, the tiers have different capacities and therefore the company has to have a
strategy on calling the instruments. Moreover, while until recently the regulation required values to
be the current market prices, after the Solvency II ratification the instrument prices have to be ob-
tained based on theoretical valuation with fixed credit spread. Thus, theoretical valuation of capital
instruments is necessary. Moreover, the proper theoretical valuation is useful also for investors and
traders to determine the right non-arbitrage price and therefore help with trading.

The first main contribution of this thesis to existing literature is pricing of hybrid capital instru-
ments implementing an α−stable Lévy framework and subsequent comparison to prices obtained by
Gaussian models. This α−stable process lies in the same set of so-called self-similar processes as
the brownian motion (a part of the process is similar to the whole process). The main difference
between the α−stable process and the Brownian motion is the continuity. While the Brownian mo-
tion is continuous, the α−stable process is not and allows jumps. The pricing is performed on three
theoretical and three real instruments issued by two Dutch insurance companies (NN and AEGON).
As the instruments are interest rate derivatives, important part of the thesis is correct interest rate
modelling and subsequent calibration. To obtain a fair price of an instrument considering the current
market conditions, correct selection of parameters is crucial. How the changing parameters affect
the final instrument price is the last part of this thesis and another contribution to the literature.
The whole sensitivity analysis of the instruments is performed on one of the theoretical instruments.
Moreover, I conduct the price dependence on the changing stability parameter α.

To price the instruments, three types of models are used, the model for yield curve production, the
instantaneous interest rate model and the model used to obtain the final price. As the instruments
priced in this thesis are bond options, typical option pricing models are used. For Gaussian models,
I use the well-known Black-Scholes model proposed by Black and M.Scholes (1973). The α−stable
model used in this thesis is a generalized Black-Scholes model, proposed by Swishchuk (2008). The
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instantaneous interest rate model used in this thesis is Hull and White (1990) model. The Hull-White
model is a one-factor short-rate model with two unknown parameters. It is so-called arbitrage-free
model. The generalized form of this model (used for Lévy models) is proposed by Swishchuk (2008),
where the Wiener process is replaced by a Lévy process. Moreover, as the short-rate models are
fitted to the initial yield curve, the yield curve construction is needed. This yield curve consist of two
elements - risk-free curve and CDS curve. The risk-free curve is modeled by Svensson (1994) model
which is used by European Central Bank to produce yield curves on a daily basis. For CDS curve, I
use Nelson and Siegel (1987) model that is fitted to current CDS on the market.

Methods used for the instruments pricing are based on the evaluation of the Black-Scholes partial
differential equation and generalized partial integro-differential equation using finite volume and finite
difference numerical methods. The numerical methods can be found in Kroner (1997), or d’Halluin et
al. (2001). While Gaussian models can be priced using a simulation method based on multiple interest
rate paths modeling and subsequent backward discounting, replicating this method for Lévy models
would cause issues. The main reason, why the simulation method is inappropriate for Lévy processes
is the infinite variance of its distribution what causes a substantial increase in the computational
time. The thesis explains the valuation procedure using mixed (implicitly-explicit) finite difference
method proposed by Duffy (2005). As the basic numerical methods for partial integro-differential
equation (PIDE) evaluation do not lead to precise results, I develope an advanced procedure for the
PIDE evaluation.

When evaluating the partial integro-differential equation, one has to create a grid, where each grid
point represents a concrete interest rate level and a time level. When creating this grid, the lowest
and the highest grid points determine the interest rate interval on which the computation is done.
During the PIDE evaluation procedure problems arise on the boundaries. To receive the price at
some specific time level, we use the known values of an instrument at the next time point. However,
to calculate the respective price, we need to know the price of a claim also outside of the grid. To
overcome this issue, I propose linear extrapolation on the boundaries to obtain the prices outside of
the grid and thereafter use them to calculate the correct prices inside the grid. Moreover, to correctly
evaluate the integral in the PIDE, we need to know the prices not only outside of the grid, but also
between two grid points. I propose in this thesis cubic spline interpolation to solve this issue.

There have been several researches conducted on callable bond pricing in the past. The first
methods were based on a tree framework. The binomial tree approach is used by Kalotay, Williams,
and Fabozzis (1993). Later, a trinomial tree approach was proposed by Hull and White (1994a),
(1994b) and (1996). With the beginning of the new century, numerical methods of solving PDEs
were examined by d’Halluin et al. (2001), where finite volume method is proposed to obtain the
prices of the semi-American options on coupon bearing bonds. However, later it was proved that the
normality assumption is rather strong. Several papers, e.g. Raible (2000) show, that the Gaussian
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models are improper for modeling the term structure. Raible proposes rather to use the generalized
Lévy processes for modeling the interest rates.

Data needed for this thesis can be divided into 3 categories, concretely the data for the instrument
interest rate curve, for the calibration, and for the instrument coupon payment. Firstly, there are two
data sets needed for interest rate modeling - risk-free rates and CDS of the corresponding company.
Data used for risk-free rate modeling are the Svensson parameters provided daily by the European
Central Bank. The used Svensson parameters are from the first 11 trading days in August 2017.
Another necessary data set for instrument interest rate modeling is the credit spread of the corre-
sponding instruments issued by AEGON and NN. For the construction and correct future prediction
of the CDS, I use daily CDS data between 01/08/2017 and 15/08/2017 for maturities 0.5Y-10Y.
Secondly, for the interest rate model calibration, I use interest rate swaption volatility data. The
ATM Black volatilities are used from 01/08/2017 until 15/08/2017 for maturities 5Y-15Y and tenors
1Y-15Y. Lastly, there is data needed for the floating coupon prediction of one instrument. I use
historical 3m EURIBOR rates from 01/1994 until 08/2017 with monthly periodicity.

The final results obtained using our models exceed the prices observed on the market. While the
model price of two of them (both issued by NN) shows significantly higher values for any credible
stability parameters, the value of the instrument issued by AEGON, maturing in 2023, deviates only
slightly. These price differences can be caused either by the inefficiency of markets or by different
interest rate (credit spread) expectations by market participants. The sensitivity analysis shows that
our model prices are increasing with the growth of any of the considered parameters (a, σ and α).
The price dependence plot on parameter α is S-shaped. While the price for the Gaussian model
(model with α = 2) is increasing nearly linearly with growing a and σ, the price change for Lévy
models is lower for higher parameter values.

The remainder of the paper is organized as follows. Chapter 2 discusses capital instruments priced
in this thesis and the data that is needed. Chapter 3 explains the the basics of Lévy models and some
typical examples. In the next chapter, I state models and the techniques needed for interest rates
modeling. Chapter 5 deals with the models and methods necessary for obtaining the final results,
which are stated in chapter 6. Finally, in chapter 7, is conclusion.
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2 Instruments and data

This chapter deals with the instruments priced in this thesis and the data needed for the pricing
procedure. Section 2.1 provides theoretical foundation of the hybrid capital instruments and also
describes the concrete instruments, that are priced. Section 2.2 names all the data used in this thesis.

2.1 Instruments

In this work I price hybrid capital instruments. But what are the hybrid capital instruments? What
features do they have? Instruments priced in this work are coupon bearing callable bonds. A callabe
bond is a bond with a call option. That means, that an issuer can call the underlying bond before
the maturity. The price of the instrument, therefore, depends on the price of the bond and the price
of the call option on the bond. The price of the call option on the bond lowers the price of the
underlying bond as it protects an issuer before the potential high future cash flows. The bond can,
in general, be called at pre-specified dates, called the call dates, when the investor has to pay the call
price.

Call dates are typically the same as coupon dates, when the issuer pays the interest on the bond.
These interest rates are either fixed, floating or even the combination of the two. A typical feature
of floating rate bonds are caps or floors. The cap is the maximum interest that can be paid, while
the floor is the minimum value. Moreover, it is usually not possible to call the instrument until some
fixed date that is agreed when issuing the bond (first call date). The period from the instrument
emission until the first call date is called the lock-up period. This lock-up period can also affect the
pricing procedure of instruments, as they have to be discounted from the first call date until the most
recent date. However, when pricing capital instruments already placed on the market, it does not
affect the pricing procedure most of the time as the lock-up period is already expired.

Maturity factor plays another important role in hybrid capital instruments. There are also per-
petual instruments on the market. That means, that there does not exist any fixed, pre-definied,
maturity. This attribute is convenient for the issuer, as the perpetual capital instrument is of a
higher capital quality, which helps companies to improve their capital adequacy ratios. Another com-
mon feature on the market is a so-called notice date. This is a date prior to a potential call date,
when the issuing company has to decide, whether it will call the bond at the next call date or will
not. The difference between the notice date and the call date is usually not more than several days.
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Figure 1: Scheme of the instrument - labels below the figure represent time (coupon dates), labels
above represent cashflow from an issuer point of view

In this thesis, I omit the presence of the notice date. Or in the other words, I assume that the notice
date and the call date are the same.

The redemption of an instrument is based on several factors such as the capital levels of a company
or the existence of a relevant investor that is willing to buy an issued instrument. Theoretically, a
company should redeem the instrument whenever its price is above the call price. However, the
correct time for redemption can be different in reality. These instruments are usually issued by a
company to improve the capital adequacy ratios. For instance, as already mentioned, the perpetual
instrument is of higher capital quality and thus the redemption could cause a company issues on
some levels of capital adequacy ratio. This issue could be solved by issuing a new instrument with
the fair value based on the current status of the market (that could be lower through lower coupon
payments). In spite of this fact, there are additional factors that influence companies. First of all
a company has to get a regulatory permission and additionally, there are another administration
costs that are not considered in this thesis. Thus I assume that there are no administration costs or
other legal issues that could affect final decision of a company. Therefore the company redeems the
instrument whenever the price at a call date is higher than the call price.

Figure 1 shows a typical callable bond issued by companies. The horizontal line represents a
timeline. The point at time t = 0 is the issuance date, whilst the time point t = tkτ is the maturity
of the instrument represented by a bold vertical line. The medium length vertical lines represent the
coupon dates (identical with the call dates) and the shortest lines represent the notice date at which
an issuer has to decide, whether call the instrument or not. As we can see, the shortest lines are not
highlighted in the red part of the timeline. This part is the lock-up period of the instrument. If we
assume that the instrument is not called until the maturity date, we can represent a cashflow by the
labels above the figure. The values reflect the issuers point of view, thus the negative values mean
issuers expenses. The coupon payments are represented by letter C and the principal by letter P .
The instrument depicted in 1 is paying fixed coupons. However if we represent a coupon at time tki
by Ctki , we can describe any instrument with a floating coupon rate.

The whole work deals with callable bonds with fixed finite maturity and coupons without caps
or floors. This thesis provides valuation for 3 different instruments from both categories (theoretical
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and practical). All of these instruments have a different maturity and a different coupon structure.
During the work, the instruments are called in the abbreviated forms (stated in the parentheses). For
the simplification, the credit spread of theoretical instruments is 300 basis points for every maturity.
So-called real instruments priced in this thesis are issued by companies AEGON and NN. One of
the differences between a theoretical and a real instrument is the lock-up period. Two out of 3 real
instruments have still a valid lock-up period and therefore the first call date is not the same as the
next coupon date. Another different feature is, that the time until the next coupon date is not exactly
the same as the difference between two coupon payments. The last important difference is the coupon
structure, as two of the priced instruments have variable coupons after some reset date.

The first theoretical instrument (T-1) is the instrument with an eliminated lock-up period. The
coupon payments take place quarterly and its price in this work is determined the day after the last
coupon payment, therefore the next coupon is paid in 3 months. Call dates are the same as coupon
dates. As all of the other instruments, this callable bond is denominated in euros. The coupon is 1%
and the claim matures in 1 year. The second theoretical instrument (T-3) is, similarly as T1, with an
eliminated lock-up period and with similar coupon structure (3 months before the next coupon and
call date). The differences with the first instrument are only in the maturity and the interest of the
coupon. The coupon is 2% and the maturity of this callable bond is 3 years. The third theoretical
instrument (T-5) is the last from the category of theoretical instruments. It is with the longest
maturity, 5 years. The coupon sructure is different for this bond than for the previous ones. The
coupon is 2%, like the coupon for T-3, but is paid annually. The next coupon payment (and thus call
date) is exactly in 1 year.

The first of the real instruments priced in this thesis is a senior note issued by AEGON. In fact,
this instrument is not callable, therefore it is a coupon paying bond. The note was issued on December
9, 2016 and pays 1% coupon annually until the maturity (December 8, 2023). Throughout the work,
this instrument is called AEG-23. The second and third real instruments are instruments issued
by Nationale-Nederlanden. One of them is a subordinated note (NN-44) issued on April 8, 2014
that bears a coupon of interest of 4.625% annually until the first call date (April 8, 2024). After
this date, the interest of a coupon becomes floating and dependent on 3 month EURIBOR rate.
Moreover, the coupon is paid quarterly after this reset. The note matures on 8 April 2044. The last
considered instrument is again a subordinated note issued by NN group. This instrument is the most
recent one, since it was issued on 11 January 2017 (NN-48). Similarly, like the previous one, bears
a fixed coupon until the first call date (13 January 2028). This coupon is of interest of 4.625% paid
annually. Afterwards, the floating coupon is equal to 3 month EURIBOR rate plus 495 basis points
paid quarterly until the maturity of this claim.
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2.2 Data

To model the interest rate curve, I need the risk-free curve and the spread curve corresponding to
the proper company. All of the priced instruments are denominated in the EUR, so the risk-free rate
curve is created using the five Svensson model parameters published by European Central Bank daily
due to the first 11 trading days in August. Another inportant part is to capture the yield curve of
a credit spread for the corresponding instrument. The yield curve is constructed using Nelson-Siegel
model. The parameters for this model are estimated in this thesis (for more I refer to section 4.1 ).
To estimate the correct parameters, I use the historical CDS for both companies (AEGON and NN)
for maturities 0.5Y-10Y. I used the daily CDS data from 02/05/2017 to 31/07/2017.

The second data category is the data needed for the calibration. Our interest rate models are
calibrated to swaptions. The swaption volatilities are used from August 01, 2017 for maturities 5Y-
15Y and tenors 1Y-15Y. The last data category is the data needed for the final instrument pricing.
To price the real instruments and to compare them to the market prices, I use dataset for the first
11 trading days in August 2017 for all of these instruments. As the coupons for the instruments
issued by NN are floating after the lock-up period and are dependent on 3m EURIBOR rates, the
future rates have to be predicted. I use the historical rates from 01/1994 until 08/2017 with monthly
periodicity for the future prediction of EURIBOR rates. For the respective rates I refer to Table 8
and Table 9.

3 Lévy processes

Best-known models used in financial mathematics for pricing all types of instruments from bonds,
stocks to any exotic options follow a premise, that the financial intrument prices are driven by
Brownian motion. However, while the increments of Brownian motion follow normal distribution,
empirical findings show, that price changes of financial assets show signs of non-normality. To cope
with these discrepancies, there have been developed models that follow other processes. Stochastic
processes, that are used to describe the behavior of financial markets are called Lévy processes.

Definition 3.1 (Miyahara (2012), p.7). Suppose that a probability space (Ω, F, P ) and a filtration
{Ft, t ≥ 0} are given. A continuous time stochastic process {Zt, 0 ≤ t ≥ T} defined on the probability
space (Ω, F, P ) is a Lévy process if the following conditions are satisfied.

1. (independent increments property) For any 0 ≤ t0 < t1 · · · < tn ≤ T, Zt1 − Zt0 , Zt2 −
Zt1 , · · · , Ztn − Ztn−1 are independent.
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2. (stationary increments property) The distribution of Zt+s − Zt is the same for all t.

3. Z0 = 0(P − a.s.)

4. (stochastic continuity)
∀t ≥ 0,∀ε > 0, lim

s→t
P (|Zs − Zt| > ε) = 0. (3.1)

5. (cadlag property) There is a subset Ω0 ∈ F, P (Ω0) = 1, such that, for every ω ∈ Ω0, Z(t, ω) is
right continuous in t and has left limits.

The main part of this work is about the valuation of capital instruments with models based on
Lévy processes. In fact, Wiener processes are a subset of a larger set, called Lévy processes. While
the Wiener process is a process that follows a normal distribution, the increments of Lévy processes
can follow also other distributions such as a Poisson distribution, or other fat-tailed distributions,
or even a combination of these distributions. Many times are Lévy processes described as typical
Wiener process with jumps at random times. These processes are only a subset of Lévy processes
and are so-called Jump-diffusion processes. Another exapmles of processes are α-stable processes,
tempered-stable processes, and many more.

As we can see from definition (3.1), Brownian motion (Wiener process) is a specific example of a
Lévy process, where the conditional distribution P (Ws −Wt|Ft) follows a normal distribution with
mean 0 and variance s − t. During the work I refer to a model that is based on Brownian motion
as a Gaussian model. Any other model, that uses Lévy process, I call as a Lévy model. Every Lévy
process can be written in a general form. This form is so-called Lévy-Khintchine triplet - (σ, ν(dy), γ).
The γ in the triplet represents the linear part of the Lévy process (drift), σ stands for the Wiener
process and the ν(dy) − Lévy measure - stands for jumps. The crucial part of the Lévy-Khintchine
triplet is the Lévy measure. Lévy measure is a typical mathematical measure. A measure is a rule
or formula that assigns a value to any subset of a considered set and allows the comparison of the
subsets. This rule is usually characterized by a function (e.g. µ), that satisfies the measure axioms,
which are defined and explained in Appendix A1.

Although some measures, such as area or perimeter, are more intuitive, other are not intuitive at
all as the measures can be represented by nearly any function. This is also the case of the Lévy measure
responsible for jumps, or heavy-tailed distributions. The process considered in this work is so-called
α-stable Lévy process. This process can be written in form (0, ν(dx), b), where ν(dx) is the measure
that generates the process. The measure in this process is defined as follows (Miyahara (2012),p.16)

ν(dx) =

c1 1
|x|1+α , x < 0,

c2
1

x1+α , x > 0
(3.2)
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with any parameters c1 and c2 and α ∈ (0, 2]. The parameters c1 and c2 are responsible for asymmetry
(symmetry) of the measure. When c1 > c2, the measure is skewed positively and vice versa. This
formula for the α−stable Lévy measure is essential for the following part of the work as for the
evaluation of the claims when using Lévy processes it is necessary to integrate with respect to this
measure.

Definition 3.2 (Cartea and Howison (2009),p.6). A Lévy process Lt is called an α-stable process if L0

has independent increments; and Lt−Ls follows an α-stable distribution with parameters (t−s)1−α, β
and 0 (i.e.Lt − Ls ∼ Sα

(
(t− s)1−α , β, 0

)
) for any 0 ≤ s < t < ∞ and for some 0 < α ≤ 2 and

−1 ≤ β ≤ 1 (time-homogeneity of the increments).

As we can see from definition 3.2, increments of the α-stable process follow an α-stable distri-
bution. The α-stable distribution is a distribution that follows one important feature. Any linear
combination of α-stable distributions results into another α-stable distribution. Any stable distribu-
tion is uniquely defined by 4 different parameters, α, β, c, µ. For example, if a random variable X
follows an α-stable distribution, we can write X ∼ Sα (c, β, µ)), where α is called a stability parame-
ter, β is responsible for the skewness of the distribution and therefore is called a skewness parameter,
c is a scale parameter and µ is the location parameter.

Alpha-stable distributions describe the whole set of the distributions. For the vast majority of
the parameters, the distribution function cannot be written in a closed-form and therefore the whole
distribution needs to be defined by its characteristic function as follows (Miyahara (2012),p.16)

φstable (t;α, c, β, µ) = E
[
eitX

]
=

exp
(
iµt− |ct|α

(
1− iβ sign(t) tan πα

2

))
, α 6= 1,

exp
(
iµt− c|t|

(
1 + iβ 2

π sign(t) log |t|
))
, α = 1.

On the other hand, there are several well-know distributions, which pdf can be written in closed-
form. One of the best-known distributions is the normal distribution. It is a specific case, when
α = 2. When α = 2, regardless of the skewness parameter, we receive a normal distribution with
scale parameter equal to 2c2 and location parameter equal to µ. Anther well-known distribution is
for example Cauchy distribution (α = 1, β = 0).

Figure 2 shows probability density functions for different α−stable distributions. On the left,
we can see distribution functions for different stability parameters with other parameters fixed (β =

0, c = 0, µ = 0). A Gaussian distribution is the one with α = 2, therefore the yellow curve. The
figure shows that a decrease in stability parameter results in heavier tails. The second part of the
figure shows, how is the skewness parameter, β, affecting the distribution function. The skewness
parameter can be of any value from interval [−1, 1]. The figure shows, that while the distribution
with negative β leans to the left (is positively skewed), the positive β creates distribution negatively
skewed. The other parameter values are fixed (α = 1, c = 0, µ = 0).
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(a) Probability density functions for varying α (b) Probability density functions for varying β

Figure 2: Probability density functions for different α− stable processes

One very important feature of an α−stable distribution is its variance. Except of the normal
distribution, all the other distributions have infinite variance. This variance is responsible for one big
difference between the Brownian motion and the α−stable Lévy process (any Lévy process in general
as well). While the Brownian motion is continuous, the α−stable Lévy process is not necessarily, as
the infinite variance (or in general any jump process) can cause jumps. The difference can be seen
in the 4th point of definition 3.1, which says, that even if the process is not continuous, there is an
upper limit for the jump. For the visualization of jumps, see Figure 12.

For the simulation of interest rate paths, it is necessary to be able to generate random numbers
from mentioned distributions. The generation of the random numbers is straightforward for distri-
butions, that can be written in analytic form. However, as I already stated, the distribution has a
closed-form distribution function only for specific parameters, for example for α = 2 (normal distribu-
tion). In general, the closed-form distribution function is not available and thus to simulate a random
number from a distribution, one has to follow Weron’s algorithm introduced in Weron (1996b) and
Weron (1996a). The algorithm for random variable X ∼ Sα (1, β, 0) goes as follows (Weron (1996b),
p.8)
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1. Generate a uniformly distributed random variable V on (−π
2 ,

π
2 )

2. Generate exponentially distributed random variable W with mean 1

3. calculate X using the following formulas

• for α 6= 1, X = Sα,β ·
sin(α(V+Bα,β))

(cos(V ))1/α
·
(

cos(V−α(V+Bα,β))
W

)(1−α)/α
,

where

Bα,β =
arctan(β tan πα

2 )
α

Sα,β =
(
1 + β2 tan2 πα

2

)1/(2α);
• for α = 1, X = 2

π

[(
π
2 + βV

)
tanV − β log

(
W cosV
π
2
+βV

)]
.

After obtaining the results for X, we can get any generalized random variable Y (Y ∼ Sα (σ, β, µ))
by simple transformations. The generalized form for Y then follows from

Y =

σX + µ, α ≤ 1

σX + 2
πβσ log σ + µ, α = 1.

4 Interest rate modeling

Essential part of hybrid capital instruments valuation is the interest rate modeling. Section 4.1
shows, how do I construct the yield cruve for the instrument, while section 2.2 provides the short-rate
model, namely Hull-White model. The last part of this section, 4.3 describes the methodology of the
short-rate model calibration.

4.1 Yield curve preparation

An interest rate curve of an insurance company consists of two elements. The first is the risk-free
rate and the second is the credit spread, that is specific for each company (or even differs for different
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capital instruments). There are some papers dealing with the issue of incorporation a credit spread
for the interest rate modeling. For example, Schönbucher (1999) advocates, that there is a negative
correlation between these two elements that should be taken into account. Nevertheless, during this
work I simply add the spread component to the risk-free interest rate curve and fit the short-rate
model to this new interest rate curve, that means that the initial zero curve looks as follows

yInst = yrf + CS, (4.1)

where yInst is the zero curve of the instrument, yrf is the risk-free zero curve and CS is the credit
spread curve of the corresponding instrument. Therefore to construct a term structure of an instru-
ment, we have to construct the risk-free curve and the CDS curve first.

I begin with the risk-free curve modeling. As the instruments priced in this thesis are denominated
in EUR, the initial risk-free zero curve needs to be fitted to the situation in the Eurozone. The initial
zero curve is created using a Svensson (1994) model. This model is the typical model for zero curve
modeling used by central banks all over the world. Svensson model parameters are published daily
by the European Central Bank.1 The formula for the Svensson model goes as follows

yrf (τ) = β10 + β11

1− exp
(
− τ
τ1
1

)
τ
τ1
1

+ β12

1− exp
(
− τ
τ1
1

)
τ
τ1
1

− exp

(
− τ

τ11

)
+ β13

1− exp
(
− τ
τ1
2

)
τ
τ1
2

− exp

(
− τ

τ12

) ,
(4.2)

where y(τ) is the yield for maturity τ and β10 , β11 , β12 , β13 , τ11 , τ12 are parameters provided by the ECB.
By using the ECB input parameters for the Svensson model, I can determine the risk-free rate for
any maturity.

While the Svensson parameters for the risk-free interest rates are provided by the ECB, parameters
for the credit spread curve are estimated in this work. CDS of the instruments are quoted for different
maturities on the market. The problem, that could arise is with the longest maturity. There are no
CDS on the market with maturity longer than 10 years. While many of these instruments are maturing
in more than 20 years, the initial yield curve needs to be fitted for longer maturities. To obtain spread
values for any maturity, I use Nelson and Siegel (1987) model. I selected the Nelson-Siegel model
because of the smaller number of model parameters.

1Data available at: https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_

yield_curves/html/index.en.html
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While the Svensson model needs four input parameters, the Nelson-Siegel model needs only three.
The Nelson-Siegel model used in this work can be written as follows

CS(τ) = β20 + β21

1− exp
(
− τ
τ2
1

)
τ
τ2
1

+ β22

1− exp
(
− τ
τ2
1

)
τ
τ2
1

− exp

(
− τ

τ21

) , (4.3)

where CS(τ) is the credit spread for maturity τ and β20 , β21 , β22 , τ21 are parameters estimated in this
work. When constructing Nelson-Siegel model, parameter τ21 has to be selected by the user and
parameters β20 , β21 and β22 are estimated by linear regression. Therefore, we can see, that the selection
of τ21 is crucial to obtain a good fit for the model. In practice, τ21 is usually selected such that the
curvature of the model (the third term in Equation 4.1) peaks between maturity equal to 2 and 3
years, which corresponds to τ21 ≈ 1.35.

As the credit spreads are not constant over time (therefore the values differ between trading
days), Nelson-Siegel parameters are estimated on a daily basis. The regression is conducted such
that the dependent variables are 8 CS values for different maturities τ (0.5Y, 1Y, 2Y, 3Y, 4Y, 5Y,
7Y, 10Y) and the indpendent variables are the corresponding loadings. The detailed figures for each
trading day with the residual statistics are stated in Appendix A.6. The overall statistics (over the
whole considered period) of the parameters used for yield curves preparation are shown in Table 1.
Panel (a) shows the mean and the variance of Svensson parameters for the reference period (first 11
trading days in August). We can see, that the parameters are very stable over time, as the variance is
negligible. The second panel shows the same statistics for the estimated Nelson-Siegel parameters for
the CDS curve. As the credit spread curve is stated in basis points, the average values for estimated
parameters are higher than for the risk-free rates. Alongside the higher means of the parameters, the
variance captures bigger deviations between the CDS over time.

The constructed risk-free yield curve and the credit spread curve are on Figure 3. Both subfigures
contain in total 11 different curves that correspond to the first 11 trading days in August 2017. As
we can see, the risk-free curve is in the short end downward sloping and in negative numbers. The
minimum (approximately −0.7%) of all curves is reached between maturities equal to 2 and 3 years.
After reaching the minimum, the curves are upward sloping over all of the displayed tenors. The
Svensson model predicts low rates in general, as the highest rates are not higher than 1.5%. The
second subfigure displays credit spread of Nationale Nederlanden for our subordinated debt securities
described in section 2.2. The credit spread between is 40 and 200 basis points. It is increasing and
the dispersion between the spread curves is also growing with maturity. Points displayed by dark
stars are the data retrieved from Bloomberg, while the other parts of the lines are modeled using the
calibrated parameters of the Nelson-Siegel model.
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Parameter β10 β11 β12 β13 τ11 τ12

mean 1.7721 -2.4757 23.3787 -27.5478 1.5621 1.6667

variance 0.0015 0.0012 0.0021 0.0021 0.0013 0.0012

(a) Statistics of the ECB Svensson model parameters for risk-free rate

Parameter β20 β21 β22

mean 186.7151 -146.8655 -124.5909

variance 36.8308 26.0181 4.4266

(b) Statistics of estimated Nelson-Siegel model parameters for credit spread of NN

Table 1: Statistics parameters for risk-free curve and CDS curve for first 11 trading days in August
2017

(a) Risk-free curve (b) NN Credit spread curve

Figure 3: The constructed risk-free curve and the credit spread for first 11 trading days in August
2017
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4.2 Short-rate model

After the initial term structure is modeled using equation (4.1), We can finally construct a short-rate
model used for the instrument price evaluation. Instantaneous interest rates can be modeled using
several models, for example Hul-White, Black-Karasinski, Vasicek, etc. The most used models in
the literature are mainly first two mentioned models. Both of them have some advantages and also
disadvantges. I use the Hull-White model during this thesis. This short-rate model is a generalized
Vasicek model, that models interest rate using Wiener process (Gaussian process) with two unknown
parameters. It is the crossover between the equilibrium model and a no-arbitrage model. These
parameters are the mean reversion rate and the standard deviation of the short-rate.

The Black-Karasinski model is, on the other hand, model that models the log interest rates. The
biggest difference is, that while the Hull-White model allows interest rates to be negative, the Black-
Karasinski model does not. Therefore, it means that I assume the possibility of negative interest
rates. Even though the interest rates in the eurozone are negative, when thinking about the interest
rate of a company (that contains also the credit spread, not just the risk-free rates), the interest rates
are rather positive (especially during economic conjuncture). Despite this fact, the work is build
on the Hull-White model. It is the most popular and most used model for modelling instantaneous
interest rates.

The partial differential equation that describes the Hull-White model is defined as follows

dr = (θ(t)− ar) dt+ σdWt, (4.4)

where σ is the instantaneous standard deviation of the short rate and a is the mean reversion rate.
The last unknown quantity, θ(t), is a function of time chosen to ensure that the model fits the initial
term structure (4.1). Detailed explanation about the θ(t) construction are provided in Hull (2012).
First term of the equation is responsible for the mean reversion fit over time and the second term is
volatility, which is shifting up or down the level of r. Swishchuk (2008) proposes a generalized form
of Hull-White model that stands as follows

dr = (θ(t)− ar) dt+ σdLt, (4.5)

where L is the α−stable Lévy process introduced in section 3. As we can see, the only difference
between two models is the change of the Wiener process for the Lévy process.

The difference between the models in (4.4) and (4.5) can be easily seen on when looking at simu-
lated interest rate paths. The process of simulation needs discretization of the mentioned differential
equations. For every small time step a random number is simulated from the respective distribution.
Therefore, for Brownian models I simulate a random number from a normal distribution with mean 0
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(a) Gaussian model (b) Alpha stable model (α = 1.75)

Figure 4: Interest rate paths for different α

and variance δt and for Lévy model I simulate a number from α-stable distribution with parameters
((δt)1/α, β, 0). Thereafter for each time step θ(t) is obtained from the initial term structure (4.1).
Figure 12 shows 10 simulated interest rate paths using different models. Subfigure (a) describes the
Gaussian model and subfigure (b) the paths generated using Lévy model with stability parameter
α = 1.75. We can see that the jumps generated by Lévy models cause more extreme values than the
Gaussian model.

4.3 Calibration

One of the most important parts, when modeling the instantaneous interest rate is to calibrate the
parameters a and σ in (4.4) and (4.5) correctly. As the interest rate process is the essential and the
same underlying process for all instruments on the market, the parameters are not calibrated to the
instruments that we want to price, but rather to more essential instruments on the market. Thus
the whole calibration in this work will be done on the at-the-money swaptions. Using this way of
calibration, I explicitly assume, that the all of the uncertainty is captured by risk-free interest rates.
Therefore the CDS curves are fixed and have no variation, which can be different in reality.

To calibrate the parameters, one has to select the proper "goodness-of-fit" measure. After this
measure is selected, the minimization of this measure provides the correct calibrated parameters. The
calibration used in this work is the calibration proposed by Hull (2012), which is the minimization of
the quadratic difference. Interest rate models consist of two unknown variables, σ and a. Therefore
the minimization is with respect to 2 parameters. The corresponding calibration technique can be
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written as follows

min
σ,a

M∑
j=1

(
Pmarketj − Pmodelj

)2
, (4.6)

where Pmarketj is the market price of calibrated instrument and Pmodelj is the price obtained by the
theoretical no-arbitrage evaluation and M is number of instruments used for calibration. The prices
(Pmarketj and Pmodelj ) reflect market and model prices of any instruments that are used for the model
calibration.

In this thesis, the instruments used for the calibration are interest rate swaptions. As all the
priced instruments are quoted in the euros, the swaptions used in this work are denominated in euros
as well. For the better understanding of the calibration process, I explain the swaption meaning. A
swaption is an option on the interest rate swap. Similarly, as with the other options, the swaptions
can be of different types, such as European, American, Bermudan, or other exotic options. The
swaptions used for the calibration are of European style, therefore the option can be called only at
the date of maturity. Similarly as other options, there are call and put swaptions. However, we
usually refer to them as receiver and payer swaptions.

The term swaption is closely connected to interest rate swaps. The interest rate swap is an
agreement to exchange the future interest payments. The payer swaption is an agreement to pay
fixed interests and receive floating interests in exchange. In this thesis I work with a typical example
of a payer swap. Lets assume, that L is the notional of the swap and the swap payment starts at
time Tn and finishes at time TN , with fixed rate equal to s0 and with m swap payments per year.
These swap payments are the explained interest rate changes from one participant to another and
vice versa.

To price the swaption and therefore to obtain the model price, one has to price the interest rate
swap at first. The price of the swap is determined by the price of the fixed leg and by the price of
the floating leg. The price of the fixed leg can be obtained as follows

s0
L

m

N∑
i=n+1

P (0, Ti), (4.7)

where P (0, Ti) is a discount factor that discounts future payments at time Ti to present value. The
price of the floating leg is

L (P (0, Tn)− P (0, TN )) . (4.8)

From the equations above we can get the forward swap rate, that is a fair fixed rate, such that the
swap value is at par. This leads to the following equation

s0 =
P (0, Tn)− P (0, TN )
1
m

∑N
i=n+1 P (0, Ti)

. (4.9)
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This equation provides us the forward swap rate necessary for the correct evaluation of the swap and
therefore also of the swaption.

As a payer swaption is a term for the put option on the swap, we can use the traditional formulas
for pricing the options to receive the swaption model price. The swaption model price goes after
straightforward algebraic operations as follows

Pmodel =
L

m
max (s0 − sk, 0)

N∑
i=n+1

P (0, Ti), (4.10)

where sk is the strike rate of the swaption determined in advance. To obtain the model price of the
swaption, we have to model the interest rates first and afterwards calculate the the corresponding
discount factors and the forward swap rate. The discount factors are calculated the same way as I
price the instruments. More elaboration on this procedure I state in sections 5.2.3 and 5.3.1.

The both price terms in calibration have to be calculated by different formulas. As the swaptions
are quoted on the market in volatilities, the market price has to be calculated. The model for
market price calculation of the swaption follows the famous Black-76 formula. This formula explicitly
assumes, that the forward prices of any considered claim follows normal distribution. The Black-76
formula for the swaptions takes the following form

Pmarket =
L

m

∑
P (0, Ti) [s0N (d1)− skN (d2)] (4.11)

where

d1 =
ln
(
s0
sk

)
+ σ2 T2

σ
√
T

, d2 = d1 − σ
√
T ,

P (0, Ti) is the discount factor for time Ti and N(d) is the CDF of normal distribution evaluated in
d.

While the Black-76 formula assumes normality of the forward price changes, the model can be used
just for the Guassian model calibration. As the vast majority of the work deals with the α−stable
Lévy processes, the normality assumption is not suitable for the calibration. Thus the model for
the swaption market price is adjusted in this work. The interest rate model is assuming, that the
forward prices are following α−stable distribution and not normal distribution. Therefore the normal
distribution function in the Black-76 model is replaced by the distribution function of the respective
α−stable distribution. The generalized Black-76 formula therefore looks as follows

Pmarket =
L

m

∑
P (0, Ti) [s0Nα (d1)− skNα (d2)] (4.12)

with Nα being the CDF of the α−stable distribution. This generalized Black-76 formula is in this
work used without any mathematical derivation as it goes beyond the scope of this thesis. However,
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the model was tested on the different numerical examples with the α = 2 and the traditional Black-76
model and the calibration results were the same for the both models.

5 Pricing methods

In this section I provide the pricing methods for the instruments. In section 5.1 I describe the
general pricing scheme, after which, in section 5.2, I describe and compare three different methods
that can be used to evaluate the Gaussian models. The subsection 5.3 deals with the pricing method
for the Lévy models.

5.1 Pricing scheme

For pricing a callable bond, we can use two different approaches. One is to price the bond and the
option separately. Then it is enough to subtract the price of the call option from the price of a plain
bond to obtain the final price of the instrument (Xcallable = Xplain−Xcall). In this thesis, I follow the
second approach, that is pricing the instrument as a whole. This approach was proposed by d’Halluin
et al. (2001), where a callable coupon paying bond is priced. In general, a coupon paying bond is
similar to a bond without a coupon, however the final condition is equal to a principal plus coupon
(X (r, TB;TB) = P + C).

d’Halluin et al. (2001) take into account also a difference between notice and call date. This
period is a period between deciding to call the bond and the call date. In this work, I assume that
the notice date and the call date are the same. When pricing the callable bonds, d’Halluin et al.
divide the time frame into smaller parts where every part is the time between two call dates. Then
they pick a reference interest rate which indicates, when it is worth to call the bond. If the simulated
interest rate is lower than the reference interest rate then the company calls the instrument and vice
versa. After dividing the time frame, we can price the instrument using backward recursion. That
means that we start from the last call date and discount the price of the instrument from the final
condition. Then we compare the interest rate to the reference rate. If it is not worth to call, we can
add coupon and continue with discounting the price until the beginning of the time frame.

Suppose, that the instrument matures in τ years and the coupon is paid n times a year and there
are m days left until the next coupon date. The P denotes the value of the principal and C the
coupon. Moreover denote by t the order of a coupon payment and by Xt the price of the bond at t-th
coupon payment. Therefore there are n · τ coupon payments to be made until the maturity unless
the instrument is called.
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1. Set the price at the maturity (Xt) equal to P +C (this is at the last coupon date, thus t = n ·τ),

2. Evaluate the price of the bond at t = n · τ − 1 (prior coupon date)

3. Compare the discounted price (Xt) and the call price (P+C). If P+C < Xt then the instrument
should be called and therefore the price at time t is equal to call price (Xt = P + C), else the
instrument price at time t is equal to a price obtained by discounting (Xt). Set t = t − 1 and
repeat steps 2 and 3 until t = 0.

4. Once there are no more coupon payments, discount the last obtained price from the first coupon
date for the remaining m days.

As we can see, the essential part of the work is the correct discounting between two call dates.
This is done in two different ways in this thesis. The first I call the Simulation approach. This
approach is using the simulated interest rates and subsequent discounting of the instrument prices.
The second, PDE approach is based on the evaluation of the Black-Scholes partial differential equation
for Gaussian models and the generalized partial integro-differential equation for Lévy models. The
next sections elaborate mainly on the second point of the pricing scheme.

5.2 Gaussian models

I describe the partial differential equation used for the hybrid capital instrument evaluation in sub-
section 5.2.1. To price the instruments, when the interest rates are modeled by Gaussian models, I
use three different methods. The first method (PDE-FVM)1 is slightly modified approach proposed
by d’Halluin et al. (2001), that uses finite volume method to solve the Black-Scholes PDE described
in subsection 5.2.2. The second method (PDE-FDM)2 is described in subsection 5.2.3 and is based
on the finite difference method. For this method, I slightly modify the pricing scheme. Moreover, it
is also the method used for the instrument pricing when the short-rate interest rates are modeled by
Lévy processes. Finally, in subsection 5.2.4 I propose the third method (Simulation method) that is
based on interest rate simulation and subsequent price discounting,

5.2.1 Black-Scholes PDE

As mentioned in the overview of this section, for evaluation of Gaussian models, I use 2 numerical
methods based on partial differential equation. This equation is the famous implementation of the

1The abbreviation stands for Partial Differential Equation - Finite Volume Method
2The abbreviation stands for Partial Differential Equation - Finite Difference Method
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heat equation in finance by Fischer Black and Myron Scholes. For the correct evaluation, I state the
equation first. Consider the stochastic differential equation of the interest rate in general form

dr(t) = a(r, t)dt+ b(r, t)dW (t), (5.1)

where a(r, t) and b(r, t) are functions of r and t.Then the Gaussian Bond pricing for One-factor
stochastic interest rate model via partial differential equation is

∂X

∂t
+

1

2
b2
∂2X

∂r2
+ (a− λb)∂X

∂r
− rX = 0, (5.2)

with final condition X (r, TB;TB) = Z, where the function λ is often called the market price of risk.
The market price of risk is the compensation for undertaken additional risk.

This parameter, λ, is necessary for all equilibrium interest rate models (such as Vasicek, or
Cox–Ingersoll–Ross model) to ensure arbitrage-free pricing. On the other hand, no-arbritrage models,
such as considered Hull-White model are constructed in such manner, that the market price of risk is
already contained in θ(t). The considered model is a model for coupon free bond. In case, when the
instantaneous interest rate is modeled by Hull-White model described by equation 4.4, the parameter
a(t, r) is equal to θ(t)− a · r and b(t, r) = σ. The partial differential equation for Hull-White model
goes then as follows

∂X

∂t
+

1

2
σ2
∂2X

∂r2
+ (θ(t)− ar)∂X

∂r
− rX = 0. (5.3)

Parameters t and r are independent variables. This equation describes the price behavior of our
instrument between two call dates. To obtain the final price, we need to solve this PDE using
numerical methods.

5.2.2 Finite volume method

When using numerical methods to evaluate the PDE stated in equation 5.3, a two-dimensional grid
has to be created. The position on the grid represents the time and the level of the interest rate.
In this thesis, the time level is represented by n ∈ [0, N ] and the interest rate level by i ∈ [−I, I].
Selection of the intervals is crucial. As the Hull-White model is unbounded, the interest rate at a
specific time level can be of any value. Moreover, the price of a claim at level i and time n depends
the price at both higher and lower price at following time level. Therefore when selecting the grid
boundaries, the maximum level of the interest rate (I) should be high enough to take into account
also this feature. The length of the time interval is given as the interval between two subsequent call
dates. However, it is important to select the time step small enough to obtain accurate results.

I introduce the PDE-FVM as the first out of two numerical methods. This method was used by
d’Halluin et al. (2001) to price a callable bond and is slightly modified for this thesis. It is used to
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compute the claim value between two call dates. It uses a discretization technique called the finite
volume method to solve the equation (5.3). This finite volume method is based on the decomposition
of the problem into so-called control volumes. We can think of the control volume as a small amount
of volume around each point in our two-dimensional grid. The method used in this thesis comes from
a general version proposed by Kroner (1997). The derivation is stated in Appendix A3 and the final
formula looks as follows

Xn
i = −∆τ

Ai

∑
j∈ηi

αij

(
Xn+1
j −Xn+1

i

)
+
∑
j∈ηi

Lij · ViXn+1
ij+ 1

2

− riAiXn+1
i

+Xn+1
i . (5.4)

where

Ai =
ri+1 − ri−1

2
,

ηi = {i+ 1, i− 1}

∆τ = τn+1 − τn,

Vi = θ(n)− ari,

αij =
σ2

2|rj − ri|
,

Lij =

−1, ifj = i+ 1,

1, ifj = i− 1.

Moreover, Xn
i represents the price of our instrument at time at node n and interest rate level

corresponding to node i. We can see, that Vi is dependent only on Hull-White parameters and the
other variables on the interest rate levels. Xn

ij+ 1
2

represents the value of our claim between two
volumes. The value for Xn

ij+ 1
2

can therefore be calculated as follows

Xn
ij+ 1

2

=
Xn
i +Xn

j

2
.

We see that Xn
i depends on the price of this claim one step ahead in time at three different interest

rate levels ({i− 1, i, i+ 1}). This method is so-called explicit method, as we can obtain the price of
a claim (at time n and interest rate level i) explicitly.3

As this approach uses PDE to price the instrument only between two call dates, simulated interest
rate paths are needed. The prices are evaluated for every simulated path separately. After reaching
the next call date, the price of a claim for the interest rate path is determined. It is done by picking
the grid position that corresponds to the simulated instantaneous interest rate at that time. If this
price is higher than the call price, the price is reset to principal plus coupon. Otherwise the price for
the corresponding interest rate path stays unchanged and the pricing scheme continues as described
in section 5.1. After obtaining all the prices for all of the interest rate paths at t = 0, the final price
is equal to the simple average of the individual prices.

3For a general overview about different numerical methods, please refer to Appendix A2.
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5.2.3 Finite difference method

The second method, how to evaluate Black-Scholes equation when using Gaussian models is PDE-
FDM. As already mentioned, I use this method also to evaluate PIDEs for Lévy models. The main
difference is, that the PDE is evaluated not only between 2 different call dates, but over the whole
time period until the maturity of an instrument (this means that the grid is created for the whole
maturity and not only for the period between two call dates). Therefore the numerical method has
to be more precise and stable, as the errors are accumulating over longer time. Another improvement
in comparison to the first method described in 5.2.2 is, that the interest rate paths simulation is not
needed. The situation at the call dates is solved naturally. For all the grid points, at which the price
of a claim is higher than the call price, is the price set to the value equal to principal plus coupon
and thereafter the prices for the next time steps are evaluated.

The discretized partial differential equation can therefore be written as follows

Xn+1
i −Xn+1

i

∆t
=

γ

(
−1

2
σ2
Xn+1
i+1 − 2Xn+1

i +Xn+1
i−1

∆r2
− (θ(n+ 1)− ari)

Xn+1
i+1 −X

n+1
i−1

2∆r
+ riX

n+1
i

)
+

(1− γ)

(
−1

2
σ2
Xn
i+1 − 2Xn

i +Xn
i−1

∆r2
− (θ(n)− ari)

Xn
i+1 −Xn

i−1
2∆r

+ riX
n
i

)
.

(5.5)

The equation (5.5) is generalized version for any finite difference method. By setting different values
to the scaling parameter, γ, the formula can represent fully explicit (γ = 1) or fully implicit method
(γ = 0). When selecting γ = 1

2 , the equation is transformed into so-called Crank-Nicolson method.
This method belongs to mixed methods and for evaluation of equation, one has to solve system of
linear equations at each time step. It is also the one method that is used in this thesis.

We see from the equation (5.5), that the price at time level n and at interest rate level i depends
on values at 3 different nodes one step further in time (n+ 1). This holds for any interest rate level,
except for i = 1 and i = I, what corresponds to the price that belongs to the lowest interest rate on
the grid and the highest rate on the grid. These two values depend only on 2 values one step further
in time. If we consider the price at the highest node (for the highest interest rate on the grid), there
are only 2 known values from equation (5.5) as the Xn

i+1 exceeds the grid borders. The same applies
for the lowest node. Moreover, we can see, that also every node on the grid at time n + 1 affects 3
different nodes at time n (again, except for the highest and the lowest node). Therefore we can solve
this system of equations using the tridiagonal algorithm (Thomas algorithm).

By setting γ = 1
2 and after some linear algebra, the tridiagonal system can be created by tridi-

agonal matrix A, vector of unknown values of a claim at time n (Xn) and vector of known values,
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dn+1. If we denote for all i = 1, 2, ..., I

A0(i, n) = −ri
2
− σ2

2∆r
− 1

∆t
, A1(i, n) =

σ2

4∆r2
+
θ (n)− ari

4∆r

A−1(i, n) = −θ(n)− ari
4∆r

+
σ2

4∆r2
,

dn+1
i =

1

4

(
− σ2

∆r2
− θ (n+ 1)− ari

∆r

)
Xn+1
i+1 +

(
ri
2

+
σ2

2∆r
− 1

∆t

)
Xn+1
i

+
1

4

(
θ(n+ 1)− ari

∆r
− σ2

∆r2

)
Xn+1
i−1 ,

the mentioned matrix and vector look as follows

A =

 0

0

0

0

0

A−1(2, n)

A0(1, n)

0

0

0

0

A−1(3, n)

A0(2, n)

A1(1, n)

0

0

0

. . .

A0(3, n)

A1(2, n)

0

0

0

. . .

. . .

A1(3, n)

0

0

0

A−1(I − 1, n)

. . .

. . .

0

0

0

A−1(I, n)

A0(I − 1, n)

. . .

0

0

0

0

A0(I, n)

A1(I − 1, n)

0

0

0

0

0


Xn =


Xn

1

Xn
2
...
Xn
I

 .

The price at time level n can be calculated using following equation

Xn = A−1dn+1. (5.6)

Moreover, at the call dates, the price Xn is compared at each node to the call price. The lower of
the two prices is taken as a final price at the node. This whole procedure continues until we reach
n = 0, when we get the final price of a claim. For more detailed explanation of the method and
mathematical derivation, please refer to Appendix A4.
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5.2.4 Simulation method

The first pricing method I describe is the Simulation method. The whole approach is based on the
simulation of multiple instantaneous interest rate paths. Every interest rate path is simulated by
discretizing the Hull-White differential equation. The instantaneous interest rate is therefore, strictly
speaking, not continuous, but discrete between two time steps. As the interval between these time
steps is extremely small, it is a good approximation of continuous instantaneous interest rate. The
fact, that these interest rates are discrete, is used for the evaluation of the price of a claim using
backward discounting approach.

The price of an instrument is discounted between two time points by the interest rate generated
at that time point. Therefore the price at a call date at time tC when knowing the price at time tC+1

is given by formula

Xi
tC

= Xi
tC+1

exp(−∆t · ritC+1−∆t
) · exp(−∆t · ritC+1−2∆t

) . . . exp(−∆t · ritC ). (5.7)

After obtaining the price at time tC , we follow the third and fourth point of the pricing scheme in
section 5.1. This procedure gives us the price of an instrument for one simulated interest rate path.
By simulating many interest rate paths (consider N paths), the expected value gives us the correct
arbitrage-free price for the Gaussian models

X0 =
1

N

N∑
i=1

Xi
0. (5.8)

5.3 Lévy models

In this section I describe the pricing method for Lévy processes. In subsection 5.3.1 I describe the
partial integro-differential equation that needs to be solved in order to obtain instrument prices. In
subsection 5.3.2 I propose the numerical method used for evaluation of the equation stated in 5.3.1.

5.3.1 PIDE for Lévy model

To price the instruments when the underlying interest rate is modeled by Lévy process, I use only the
last method (PDE-FDM) modified to ensure the accuracy for Lévy models. The other two methods
are inappropriate because of the need of the interest rate simulation. The simulation method uses
simulated multiple interest rate paths to determine the final price. As the α−stable distribution has
infinite variance, the expected value of the final price converges significantly slower. This increases
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the computational time substantially, what makes this method improper. The PDE-FVM also needs
the simulated interest rate paths. Moreover, while this method needs also the numerical evaluation,
the computational time is even higher.

For pricing the instruments using Lévy models, Swishchuk (2008) shows the corresponding partial
integro-differential equation. Let suppose, that (σL, ν(dy), δ)4 is a Lévy process generating triplet
already defined in section 2.2. The ν(dy) represents the Lévy measure stated in equation (3.2).
When pricing the instruments using Lévy processes I intend to follow the PDE-FDM explained
in section 5.2.3. The only difference is in the partial differential equation, which will be changed
for the partial integro-differential equation defined in Swishchuk (2008). The corresponding partial
integro-differential equation is as follows

∂X

∂t
+

1

2
b2σ2L

∂2X

∂r2
+ (a+ bδ − λbσL)

∂X

∂r

+

∫ +∞

−∞

[
X (t, r + by)−X(t, r)− by∂X(t, r)

∂r

]
ν(dy)− rX = 0,

(5.9)

with the final equation X (r, TB;TB) = Z.

The general partial integro-differential equation has to be adjusted for Hull-White model driven
by α-stable Lévy process. Using the fact, that Hull-White interest rate model is arbitrage-free, thus
the market price of risk is equal to 0 the adjusted PIDE looks as follows

∂X

∂t
+ ((θ(t)− ar) + σδ)

∂X

∂r

+

∫ +∞

−∞

[
VB (t, r + σy)−X(t, r)− σy∂X(t, r)

∂r

]
ν(dy)− rX = 0.

(5.10)

We see, that the difference between the PIDE for the Lévy models and the PDE for the Gaussian
model described by equation (5.3) is that the PIDE is missing the second order derivative with respect
to the interest rate and contains the integral part.

5.3.2 Finite difference method

It is possible to obtain the solution of the PIDEs using numerical approach, which involves discretizing
the equations. To solve the PIDE’s, there are several other papers in the literature, describing how to
solve these types of equations. For example, Duffy (2005) describes different finite difference methods
that can be used to obtain results, namely Explicit and Implicit, IMEX, Operator Splitting and

4Note, that I use different order of elements in the triplet from Swishchuk, who uses triplet notation in order
(δ, σL, ν(dy))
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Predictor-Corrector method. In this work, I use the Crank-Nicolson method based on Duffy (2005).
The procedure of the equation evaulation is basically the same as for partial differential equations.
The only difference is the presence of the integral part in the equation. Duffy (2005) proposes the
evaluation of the integral at time level, at which the prices are already known.

Crucial part is the evaluation of the integral with respect to α-stale Lévy measure on infinite
interval. Assume, that one wants to evaluate integral

∫
R f(x)·g(dx), where f is integrand and g(dx) is

a measure given by a function. This integration is equivalent to an integral
∫
R f(x)·g(x)dx. Therefore

in our case, we have to evaluate typical Riemann integral of a multiplication of two functions. To
cope with the numerical integration over infinite interval, boundaries are introduced. In general,
the boundaries have to be selected very carefully to ensure approximately correct evaluation of an
integral. The function of the α-stable measure defined as in (3.2) is rapidly decreasing on the tails.
This allows me to not consider extreme values for the boundaries.

When using numerical methods, the region of integration is a bounded symmetric interval [Bl, Bu],
where Bl is equal to −Bu. After selecting lower and upper boundary, the integral can be evaluated.
The integral discretization closely follows Cont (2003).

Intni =

∫ Bu

Bl

[
X (t, r + σy)−X(t, r)− σy∂X(t, r)

∂r

]
ν(dy) ≈

Ku∑
j=Kl

[
X (n+ 1, ri + σyj)−X(n+ 1, ri)− σyj

X(n+ 1, ri+1)−X(n+ 1, ri−1)

2∆r

]
ν(yj)∆y,

where Kl = −Ku and therefore j ∈ {−Ku,−Ku + 1, ...,−1, 0, 1, ...,Ku}. The value of y0 is equal to
0 and yj = j∆y to hold the symmetricity of the region of integration. The Moreover, I set ∆r = ∆y

during this thesis. We see that the value of this integral at time n depends only on the claim values
that are already known (values at time n+ 1). We therefore do not have any unknown values within
the integral that need to be solved during the pricing scheme.

After obtaining the integral value, we can state the final discretization of equation (5.10), that
goes as follows

Xn+1
i −Xn+1

i

∆t
=

γ

(
−(θ(n+ 1)− ari + σδ)

Xn+1
i+1 −X

n+1
i−1

2∆r
+ riX

n+1
i

)
+

(1− δ)
(
−(θ(n)− ari + σδ)

Xn
i+1 −Xn

i−1
2∆r

+ riX
n
i

)
+ Intni .

(5.11)

The equation (5.11) is generalized version for type of finite difference method. Similarly as in
section 5.2.3, I set parameter γ = 1

2 to obtain the Crank-Nicolson method. Again, by some linear
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algebra we can obtain the necessary formulas for our tridiagonal matrix5, where

A0(i, n) = −ri
2
− 1

∆t
, A1(i, n) =

θ (n)− ari
4∆r

A−1(i, n) = −θ(n)− ari
4∆r

,

dn+1
i =

1

4

(
−θ (n+ 1)− ari + σδ

∆r

)
Xn+1
i+1 +

(
ri
2
− 1

∆t

)
Xn+1
i

+
1

4

θ(n+ 1)− ari + σδ

∆r
Xn+1
i−1 −∆tIntni .

the tridiagonal system can be now created by tridiagonal matrix A, vector of unknown values of a
claim at time n (Xn) and vector of known values, dn+1. The mentioned matrix and vector look as
follows

A =

 0

0

0

0

0

A−1(2, n)

A0(1, n)

0

0

0

0

A−1(3, n)

A0(2, n)

A1(1, n)

0

0

0

. . .

A0(3, n)

A1(2, n)

0

0

0

. . .

. . .

A1(3, n)

0

0

0

A−1(I − 1, n)

. . .

. . .

0

0

0

A−1(I, n)

A0(I − 1, n)

. . .

0

0

0

0

A0(I, n)

A1(I − 1, n)

0

0

0

0

0


,

Xn =


Xn

1

Xn
2
...
Xn
I

 .

The price at time level n can be calculated using following equation

Xn = A−1dn+1. (5.12)

This procedure goes until the next call date, where the price of the instrument at each node is
compared to the call price. The lower of the two prices is taken as a final price at the node. This
whole procedure then continues until we reach n = 0.

5The derivation is done similarly as in 5.2.3
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When evaluating the partial integro-differential equation, the X(t, r + σy) plays an important
role. As this term is integrated with respect to our measure on a symmetric interval, possible issues
can arise on the interest rate grid boundaries. As y in the term takes values on a symmetric interval
[−Bu, Bu], the evaluation of this interval on the first and the last interest rate points for a specific
time step is not defined (as X(n+ 1, 1−σyi) is not defined for nonzero σ and yi and the same applies
for the X(n+ 1, rK +σyi)). To solve this issue, I introduce the method based on the extrapolation of
the price of the claim. For the purpose of the integral evaluation, I extrapolate the prices at time t+1

on the boundaries. Let assume, that we have interest rate grid on interval [−I, I]. The extrapolated
values create another grid points outside of this interval and therefore to evaluate the prices at time
t on the interval [−I, I], I use values at time t+ 1 on the interval [−I − 5σ∆r, I + 5σ∆r].

Another problem occures with the density of the grid points, not only with the missing values on
the boundaries. The same issue arises on any interior grid point. For the correct valuation of a claim
at grid point (n, r), we need to know the values at all points (n, r + σy), where y ∈ [−Bt, Bt]. As
∆r = dy and σ < 1, the value of the claim at any point (n, r+ σy) is unknown. To solve this issue, I
interpolate the instrument values for respective points using cubic spline. These interpolated values
are then used to evaluate the integral in (5.11), what is necessary to price the claim. The interpolated
values are only temporary to ensure small computational time.

The whole procedure of the valuation is described on Figure 5. Subfigure 5 (a) shows the scheme
of the Crank-Nicolson method for the partial integro-differential equation. In comparison to the PDE
approach, we need more values from the following time step. As visualised on the figure, the small
dots represent the interpolated and extrapolated values. The number of necessary interpolated values
depends on the measure (how quickly are the tails decreasing) and the required accuracy. Subfigure
5 (b) shows the progression of the claim valuation. After knowing the values at a specific time (T ), I
interpolate and extrapolate the values for the other necessary interest rate levels, thereafter I obtain
the prices at time T − 1. After obtaining these prices, the procedure is replicated until we obtain the
values at time t = 1.
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(a) PIDE evaluation explanation

(b) The first and the second step of PIDE evaluation

Figure 5: PIDE evaluation explanation
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6 Results

I divide the result part of this work into 4 sections. The first section, 6.1, presents the calibration
results. In sections 6.2 and 6.3 I demonstrate the prices of theoretical instruments and the real
instrument prices, respectively. The final part of this chapter, section 6.4, displays the instrument
price depenedence on changing parameters.

6.1 Calibration results

In section 4.3 I state the calibration method for this work. The Hull-White parameters in equations
(4.4) and (4.5), a and σ are calibrated to the interest rate swaptions. For this calibration, I use the
famous Black-76 formula, which assumes log-normality of the forward prices, what implicates the
log-normal volatilities (so-called Black volatilities). While the current interest rates are below zero,
the log-normal volatilities are not available for the interest rate swaptions denominated in EUR. The
problem with missing swaption data is, however, only local. This means, that when the interest rates
are expected to be above zero (and the zero curve for long enough tenors is above zero), the Black
volatilities are available.

The only negative effect of negative interest rates for the calibration is, that the swaptions with
short enough maturity cannot be priced by the Black-76 formula. Therefore, these swaptions are not
included in the calibration procedure.Concretely, I use 72 swaptions with different maturities and
different tenors. The maturities of the swaptions are 5, 6, 7, 8, 9, 10, 12 and 15 years and for all of
these maturities we have 9 swaptions with different tenors (1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y, 12Y, 15Y).
Therefore the respective calibrated parameters are the ones, that minimize the equation (4.6) over
all all 72 instruments. The respective volatilities are stated in the Appendix. The whape of the error
function is showed on figure 6.

Figure 6 shows the error function from equation (4.6) for different parameters. The left subfigure
shows the error function for Gaussian model (or Lévy model with α = 2), while subfigure on right
side shows the error function for Lévy model with stability parameter equal to 1.7. Both figures are
nearly identical. We can see, that the graphs take U shape, where the global minimum is in the
middle part and the value is increasing on both sides of the graphs (with increasing parameter a
with stable value of σ and vice versa). The minimized parameters for all Lévy models (and Gaussian
model as well) are a = 0.02 and σ = 0.01, therefore these are the parameters used for the pricing of
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Figure 6: Calibration error for Gaussian model and Lévy model (α = 1.7)

the instruments. However, other pairs of parameters minimize the error function similarly well. The
errors of more than 10 pairs of parameters are within 15% range from the error of the smallest pair
of parameters Thus the investigation of the instrument price dependence on the parameters is crucial
and conducted in section 6.4.

6.2 Final prices of theoretical instruments

As mentioned in section 2 this work investigates the price behavior of three theoretical instruments.
All of these instruments are priced using Gaussian models by 3 different methods, called PDE-FVM,
PDE-FDM and Simulation method (Backward discounting) introduced in section 5.2. The PDE-
FDM method is the mixed numerical method, the PDE-FVM is the explicit method, that uses the
simulated interest rates as well and the Backward discounting is using only backward discounting to
determine the final prices of the instruments. The results for Lévy models are obtained using the
finite difference method stated in section 5.3.2. This method is the generalized version of PDE-FDM.

To obtain prices as accurately as possible, the proper interest rate and time steps are necessary.
In this thesis, I work with time step equal to 1/1008 of a year (prices are updated 4 times a day).
The interest rate step (∆r) is 0.1%. This level can cause some problems, as the initial interest
rate level (that is needed to obtain the final prices using PDE and PIDE methods) can be between
two subsequent interest levels. In such situations, the final price of the instrument is obtained by
linear extrapolation between these two levels. When creating the grid for the numerical methods, the
interval for the interest rates is [−10%10%]. For the PDE-FVM method, I simulate 100 interest rate
paths. For the purpose of the Backward discounting approach, 200 interest rate paths are simulated
and thereafter the instrument price is obtained. This procedure is repeated 10 times and the average
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of these 10 prices is the final instrument price.

Table 2 shows prices for our theoretical instruments using different methods. All of the models
are calibrated to the same parameter values that were stated in section 6.1. The final prices of all
instruments using Gaussian models are between 99% and 100% of the principal. When using Lévy
models, we can see also smaller values. The differences between the Gaussian numerical methods are
negligible, however steadily growing with longer maturity. This anomaly can be seen when comparing
any of 2 numerical methods with the Backward discounting approach. Moreover, to provide similar
accuracy with Backward discounting method as the other 2 methods for the instruments with longer
maturity needs more interest rate paths and therefore is more time consuming.

The second part of the table is about the instrument prices obtained for Lévy models. As the Lévy
models cannot be approximated by the simulation methods, the only way of pricing the instruments
is by the PIDE approach (generalized PDE-FDM), therefore the mixed numerical method. The prices
for the theoretical models are obtained for 3 different stability parameters (α = 1.7, 1.8 and 1.9). We
can see, that the price for the instruments is decreasing with decreasing stability parameter. While
the price difference is relatively small for the instruments T-1, and T-3, the price difference for the
instrument T-5 is much higher. One of the main reasons, why this is the case, is the frequency of
call dates. When the call dates are less frequent, the effect of the call on the price is not that major,
while with more frequent call dates the possibility of calling the instrument is influencing the next
prices much more.

Prices for different callable bonds

Type PDE-FDM PDE-FVM Simulation method α = 1.7 α = 1.8 α = 1.9

T-1 (1% quarterly) 99.0188 99.0137 99.0244 98.6251 98.6621 98.7681

T-3 (2% quarterly) 99.9252 99.9694 99.8930 99.9094 99.9117 99.9162

T-5 (2% annually) 99.8468 99.8926 99.9324 94.4651 97.7153 99.6952

Table 2: Prices for different callable bonds using different models

Figure 7 shows the price level of the theoretical instruments of the Gaussian model and at the
Lévy model (α = 1.7) under different interest rate levels and tenor levels. We can see, that the price of
the instruments is decreasing with decreasing time to maturity and high interest rates (approximately
higher than 2%). The lower interest rates cause the price increase in between two call dates. However,
at the call date, the price of the instrument falls at the price level equal to principal plus coupon.
This attribute causes the wave effect. Small upwards shifts of the price are the effect of the coupon
payments.

The figure moreover shows the price behavior of the instruments price, when the underlying
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(a) T-1 price behavior

(b) T-3 price behavior

(c) T-5 price behavior

Figure 7: Price behavior of theoretical instruments for Gaussian model and Lévy model with stability
parameter α = 1.7.
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interest rate is modeled by α−stable process with stability parameter 1.7. The price behavior is
very similar to the price behavior of Gaussian model. The only difference is the extremal behavior.
The waves on the low interest rate parts of the figures are with slightly smaller amplitude than for
Gaussian model. The second difference are the lowest possible values, that the instruments can reach.
While for the first instrument (T-1), this difference is minor, for the instrument moderate, but T-5
is this price difference bigger than 10%.

6.3 Final prices of real instruments

To price the real instruments, the interest rate curve is slightly changed. While the interest rate
for the theoretical instruments was the zero curve plus 300 bps as a fictional credit spread for the
instruments. For real instruments, the final yield curve consists of ECB zero yield plus the respective
credit spread for the security and the day. For two instruments, both issued by NN, the future 3m
EURIBOR rates need to be estimated as they are the underlying floating As the estimated rates are
prone to overfiffting to the selected model, I decided to estimate the future rates using simple average
of the historical values. The predicted 3m EURIBOR rates are predicted for X time periods ahead
as the simple average of the last X time periods. The historical interest rates are shown in Appendix
A.2.

Table 3 shows the obtained model prices for real instruments as of 01/08/2017 for different stability
parameters. We can see, that the the prices are increasing with increasing stability parameter. While
the prices for AEG-23 approximately correspond with the market prices (101.94 as of August 01), all
of the theoretical prices for instruments issued by NN are much higher than the market prices. The
market prices do not exceed 112, while the model prices are higher than 120 for all of the considered
stability parameters. Similar result can be seen in figure 8. It shows the price behavior (for α = 2

and α = 1.7) over time in comparison to the market prices over first 11 trading days in August for
NN-44 and AEG-23 respectively. We can see, that the model prices are much more stable than the
market prices. Slightly bigger price movements can be seen between the fourth and sixth trading day,
what is caused by bigger changes in the zero curve and the credit spreads for the instruments.

Prices for real instruments

Type α = 1.7 α = 1.8 α = 1.9 α = 2 (Gaussian) Market price

AEG-23 97.7394 99.1500 101.0752 101.0925 110.679

NN-44 123.1977 124.7314 127.8138 134.1447 112.860

NN-48 122.7263 126.4506 134.1980 141.2399 111.566

Table 3: Model prices for real instruments as of 01 August 2017
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(a) NN-44 price for the Gaussian model (left) and the Lévy model with α = 1.7 (right)

(b) AEG-23 price for the Gaussian model (left) and the Lévy model with α = 1.7 (right)

Figure 8: The actual market price (red) and theoretical price (blue) of NN-44 (up) and AEG-23
(down) over first 11 trading days in August

Both subfigures moreover show, that the AEG-23 prices are approximated fairly well. The lowest
differences between the model prices and the market prices are around 1 to 1.5% of a principal.
Moreover, we can see, that the Gaussian model is the one that prices the instrument the best in
comparison to the market data and with decreasing stability parameter the difference is growing.
However, the NN-44 model prices are much higher than the prices on the market for all of the
considered parameters α. The biggest differences between the real prices and the model prices are
for the Gaussian model, while for the model with α = 1.7 are the prices the closest to the market
data. These prices are still about 8% higher than the ones on the market.
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6.4 Sensitivity analysis

To determine, how do the model prices depend on some parameters, I conduct the sensitivity analysis.
The analysis consists on analyzing the price dependence on the interest rate model parameters, a and
σ, when the second parameter is stable and calibrated to the swaption data (a = 0.02, σ = 0.01).
Moreover, I conduct the analysis on the stability parameter, where I observe the price changes with
changing the parameter α while the interest rate model parameters are stable and calibrated to
swaptions. The whole sensitivity analysis is conducted on the instrument T-5.

Figure 9 shows the T-5 price dependence on the interest rate parameters a and σ for Lévy model
with stability parameter 1.7 and for Gaussian model. The results for both parameters are nearly
identical. We can see, that the prices are increasing in both cases. The price of the instrument using
Gaussian model is increasing nearly linearly with growing parameter a. However, the price when using
Lévy model is increasing for small values of a slowly, for parameter a greater than approximately 0.03
is the price change very fast until a ≈ 0.06. After reaching this value, the price change of a claim is
very steady, nearly negligible. For parameter σ, there is a small deviation from linear dependence,
which might be caused by the inaccuracy of the numerical method.

The last of the price dependences examined in this work is the price dependence on the parameter
of stability (α), when the interest rate parameters are fixed at calibrated values. The plot describing
the price change with growing parameter α is shown on Figure 10 We can see, that the price of the
T-5 instrument is approximately 93.5 for α = 1.5. For the parameters slightly higher, the final value
of the instrument is growing slowly. When α is approximately equal to 1.65, the price starts to grow
faster with growing stability parameter until approximately α = 1.85, when the price change is lower
with the growing α. Therefore the final plot reminds the letter "S".
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(a) Price sensitivity on interest rate parameter a with σ fixed at 0.01 - Lévy (α = 1.7) left, Gaussian right

(b) Price sensitivity on interest rate parameter σ with a fixed at 0.02 - Lévy (α = 1.7) left, Gaussian right

Figure 9: Price sensitivity on interest rate parameters a and σ
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Figure 10: Price sensitivity on stablity parameter α with interest rate parameters fixed at σ = 0.01

and a = 0.02
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7 Conclusion

This master’s thesis deals with hybrid capital instruments pricing when the underlying interest rate
process is modeled by the α−stable Lévy process. It examines numerical methods that can be
used to price such instruments and reflects the differences between α−stable and Gaussian models. It
elaborates on the necessity of use of numerical methods, and the issues when the valuation is executed
using simulation methods. The thesis moreover deals with the selection and calibration issues of the
short-rate interest model that is necessary for the instrument pricing. The interest rate model used
in this thesis is a generalized Hull-White model, which calibrated parameters (a and α) were used
for the final evaluation of the partial integro-differential equation. The calibration of the thesis was
done on interest rate swaptions to capture the underlying market conditions.

The pricing method chosen for this thesis was the generalized form of the famous Black-Scholes
equation. This generalized equation is a partial integro-differential equation that needs to be solved
in order to obtain the price of the instrument. For the evaluation of these equations I used finite dif-
ference numerical method. Moreover, the thesis provides my own refinement to increase the stability
of the finite difference approach based on the interpolation and extrapolation of instrument prices.
Thereafter, the performance of the finite difference method was compared to methods commonly used
to price the instruments when the underlying interest rates are modeled using normal distribution.
The differences between the results are negligible.

There are 3 real instruments, issued by Dutch insurance companies, priced in this work. While the
model price of two of them shows significantly higher values for any credible stability parameters, the
value of the instrument issued by AEGON, maturing in 2023, deviates only slightly. The differences
in prices can be caused either by the inefficiency of the markets, of by different interest rate (credit
spread) expectation by the market participants. Moreover, the work prices another 3 theoretical
instruments and on one of them is conducted sensitivity analysis on different model parameters. The
analysis shows, that the model prices increase with the higher values of the considered parameters (a,
σ and α). The price dependence plot on parameter α is S-shaped. While the price for the Gaussian
models (models with α = 1) is increasing nearly linearly with growing a and σ, the price change for
Lévy models is lower for higher parameters.

This thesis showed that the exotic bond options can be priced by more versatile models than
normal models and therefore capture better the non-normal behavior of the market. The thesis
shortly elaborates on the fact that the use of simulation based methods is inappropriate to price
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the instruments when the underlying interest rate model is modeled by α−stable Lévy process. It
is recommended to use finite difference numerical method in order to price the market instruments.
Moreover, the use of the proposed interpolation and extrapolation refinement leads to a stable and
precise method. The sensitivity analysis showed the necessity of correct interest rate parameters
calibration as the prices can deviate significantly by different parameter selection.

The work can be extended in several ways. For example, the selection of the proper interest rate
model can be crucial to correct instrument valuations. This work uses Hull-White model, that allows
negative interest rates. As a credible alternative, one might select CIR model. If the there is a belief
of only positive interest rates (that is a credible assumption in case of the private companies), Black-
Karasinski model can be selected. We saw, that the final prices are very sensitive to interest rate model
parameters. Therefore the second modification of this work can be different calibration technique,
or different calibration instruments. One may use the Bachelier model proposed in Bachelier (1964)
for the swaption market prices. Moreover we saw, that the prices of real instruments are mispriced
from the ones on the market. While the result might indicate the incorrect market prices, it can be
caused by the prediction of the EURIBOR rates as well. Therefore, the possible extension of this
work can be connected with the sensitivity analysis on the predicted floating coupon rates, whether
the model prices can relate more to the ones on the market with different EURIBOR rates. The most
interesting improvement can, however, be caused by using non-symmetrical α−stable process. The
market price changes are known to be skewed and by using different skewness parameters, we can fit
the real market behavior better.
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A Appendix

A.1 Measure explanation

The axioms defining a mathematical measure look as follows

1. For any subset E of a set X, µ(E) ≥ 0,

2. µ(∅) = 0,

3. For any countable sequence {Ei}∞i=1 holds µ(∪∞i=1Ei) =
∑∞

i=1 µ(Ei)

An intuitive explanation of the first axiom is, that any measure (size) of a subset is nonnegative, the
second means, that the measure of a null set is always equal to 0. That means, that, for example the
length of a point in 2-dimensional world is always equal to zero. The third axiom speaks about the
countability of the subsets, that a measure of the union of some objects is the sum of the measures
of the respective objects.

A.2 Overview of numerical methods

To evaluate partial differential equations, we can use three different numerical methods. also need
boundary conditions. Assume that we want to evaluate our instrument and we know the value at
maturity. Thereafter to evaluate the equation, already known prices are used to evaluate the prices
backward in time. If we want to evaluate only one unknown value using more known values, then we
speak about explicit method. It means, that we can determine the price directly (explicitly). When
we have in our final discretized equation more than 1 unknown variable and one known, then we
speak about implicit method. There are also other methods, that use more than one known variable
for the evaluation of multiple unknown variables (so-called mixed methods). The difference between
the methods is captured in Figure 11. There are also qualitative differences between the methods.
While explicit method needs less computational time and is therefore faster, it faces stability issues.
On the other hand, it is proven, that the implicit method and Crank-Nicolson methods are stable.
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Figure 11: Explanation of numerical methods

A.3 PDE-FVM derivation

I introduce the PDE-FVM as the first out of two numerical methods. This method was proposed
by d’Halluin et al. (2001) and is slightly modified for this thesis. The discretized formula of the
Black-Scholes PDE in d’Halluin et al. (2001) looks as follows
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where
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,
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The parameter γ can be selected arbitrarily by the researcher. Different values of the parameter
give different numerical approaches. While, by selecting γ = 0 we have an implicit method, by
selecting γ = 1 we have explicit method. This method is plausible if the data at time n + 1 is
know before the data at time n, what exactly is our situation when using backward induction. After
selecting γ = 1 and using basic linear algebra we obtain the fully explicit method, where

Xn
i = −∆τ

Ai

∑
j∈ηi

αij

(
Xn+1
j −Xn+1

i

)
+
∑
j∈ηi

Lij · ViXn+1
ij+ 1

2

− riAiXn+1
i

+Xn+1
i . (A.2)

The equation (A.2) is the final equation we need to solve in order to receive the price between two
call dates.

A.4 PDE-FDM derivation

Another possible way how to evaluate the Black-Scholes equation is the finite difference method.
Moreover, I calculate the PDE by the mixed, Crank-Nicolson method. For finite difference method
and not explicit as in PDE-FVM. To discretize the PDE, we have to find the discretization of all
partial derivations. The discretization looks as follows
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The discretized partial differential equation can therefore be written as follows
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(A.3)

The equation (A.3) is generalized version for any finite difference method. By setting different values
to the scaling parameter, γ, the formula can represent fully explicit (γ = 1) or fully implicit method
(γ = 0). When selecting γ = 1

2 , the equation is transformed into so-called Crank-Nicolson method.
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This method belongs to mixed methods and for evaluation of equation, one has to solve system of
linear equations at each time step.

As we are moving backward in time, the unknown variables are ones with superscript n and known
with superscript n + 1. By setting γ = 1

2 and rearranging the equation to have all known variables
on right hand side and unknown on left hend side, we can get following equation
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(A.4)

We see from the equation (A.4), that the price at time level n and at interest rate level i depends
on values at 3 different nodes one step further in time (n+ 1). This holds for any interest rate level,
except for i = 1 and i = I, what corresponds to the price that belongs to the lowest interest rate on
the grid and the highest rate on the grid. This shows us that we can use a matrix notation in order
to describe the discertized PDE. The equation looks as follows

Xn = A−1dn+1, (A.5)
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A.5 Figures

(a) Alpha stable model (α = 1.95) (b) Alpha stable model (α = 1.5)

Figure 12: Interest rate paths for different α
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Figure 13: Price behavior of instrument AEG-23 at different interest rate and tenor levels, when the
underlying interest rate is modeled by α−stable Lévy process with α = 1.7
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Figure 14: Price behavior of instrument NN-44 at different interest rate and tenor levels, when the
underlying interest rate is modeled by α−stable Lévy process with α = 1.7
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Figure 15: Price behavior of instrument NN-48 at different interest rate and tenor levels, when the
underlying interest rate is modeled by α−stable Lévy process with α = 1.7
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(a) T-1 price behavior with α = 1.8 (b) T-1 price behavior with α = 1.9

(c) T-3 price behavior with α = 1.8 (d) T-3 price behavior with α = 1.9

(e) T-5 price behavior with α = 1.8 (f) T-5 price behavior with α = 1.9

Figure 16: Price behavior of the theoretical instruments at different interest rate and tenor levels,
when the underlying interest rate is modeled by α−stable Lévy process
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A.6 Tables

ECB Svensson model parameters

Date β0 β1 β2 β3 τ1 τ2

01/08/2017 1.8346 -2.4753 23.2761 -27.6514 1.5091 1.6125

02/08/2017 1.8072 -2.4992 23.3094 -27.6180 1.4949 1.6043

03/08/2017 1.7827 -2.4977 23.3802 -27.5469 1.5334 1.6395

04/08/2017 1.7983 -2.5273 23.4106 -27.5163 1.5820 1.6850

07/08/2017 1.7930 -2.4970 23.3710 -27.5560 1.5534 1.6588

08/08/2017 1.7926 -2.4966 23.3891 -27.5378 1.5625 1.6678

09/08/2017 1.7443 -2.4523 23.4063 -27.5205 1.5767 1.6830

10/08/2017 1.7298 -2.4358 23.4184 -27.5082 1.5795 1.6859

11/08/2017 1.6990 -2.4103 23.4159 -27.5106 1.5916 1.6955

14/08/2017 1.7446 -2.4499 23.3838 -27.5414 1.6079 1.7081

15/08/2017 1.7673 -2.4913 23.4052 -27.5192 1.5916 1.6935

Table 4: ECB Svensson model parameters for the first 11 trading days in August

NN Nelson-Siegel model parameters

Date β̂0 β̂1 β̂2 E(ε̂) · 103 Var(ε̂)

01/08/2017 153.6006 -138.2805 -165.4838 0.1688 4.5006

02/08/2017 153.4333 -137.6016 -165.8496 0.0711 4.2290

03/08/2017 155.3434 -139.6600 -168.7551 0.3642 4.1809

04/08/2017 152.0455 -136.4193 -159.5262 0.2132 4.2421

07/08/2017 156.4406 -136.0087 -178.9616 -0.0178 4.6741

08/08/2017 155.2234 -138.2591 -161.7605 0.2665 4.7767

09/08/2017 157.3685 -138.2591 -157.0893 0.1510 4.6094

10/08/2017 159.8847 -139.3644 -175.2298 -0.2487 4.7261

11/08/2017 157.1287 -137.5161 -162.7463 0.0888 4.8164

14/08/2017 153.3679 -134.4655 -160.5645 0.2487 11.3601

15/08/2017 154.3508 -135.4758 -166.9918 0.2309 5.0993

Table 5: Estimated NN Nelson-Siegel model parameters and residual statistics for the first 11 trading
days in August
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AEGON Nelson-Siegel model parameters

Date β̂0 β̂1 β̂2 E(ε̂) · 103 Var(ε̂)

01/08/2017 191.9560 -150.8692 -126.9449 -0.0812 5.8847

02/08/2017 183.3487 -143.7914 -125.0672 0.0457 5.4528

03/08/2017 177.5054 -138.9254 -124.5036 0.2081 4.5329

04/08/2017 181.3698 -142.2040 -124.3873 0.1675 5.6314

07/08/2017 177.9303 -139.2067 -124.0953 0.0990 4.6283

08/08/2017 193.0630 -152.0016 -125.2925 -0.3477 3.3724

09/08/2017 188.5161 -148.2554 -124.4103 -0.1370 6.2157

10/08/2017 189.2622 -148.7767 -125.9007 -0.2284 2.5952

11/08/2017 190.7460 -150.0412 -125.8369 -0.1827 3.9003

14/08/2017 185.0856 -147.6074 -118.7671 -0.1269 3.5654

15/08/2017 195.0826 -153.8418 -125.2939 -0.0254 2.9555

Table 6: Estimated AEGON Nelson-Siegel model parameters and residual statistics for the first 11
trading days in August

Term/Tenor 1Y 2Y 3Y 4Y 5Y 7Y 10Y 12Y 15Y

5Y 58.8 53.57 49.18 45.55 42.88 39.66 37.27 36.12 34.27
6Y 50.25 46.62 43.35 40.97 39.2 37.42 35.94 34.79 33.28
7Y 44.16 41.56 39.51 37.92 36.73 35.72 34.96 33.81 32.69
8Y 38.82 37.7 36.48 35.57 35.24 34.13 34.09 32.93 32.19
9Y 35.91 35.48 34.77 34.69 34.24 33.85 33.52 32.78 31.96
10Y 34.21 34.17 34.4 33.92 33.2 33.73 33.07 32.79 31.89
12Y 33.84 33.37 32.54 33.21 33.37 33.26 33.46 32.88 31.95
15Y 34.73 34.7 34.17 33.66 33.19 34.24 33.43 33.76 32.36

Table 7: ATM swaption volatilities due to 01/08/2017 (all values are in %)
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3m EURIBOR rates (01/1994-12/2005)

01/1994-12/1995 01/96-12/97 01/98-12/99 01/00-12/01 01/02-12/03 01/2004-12/2005

6.9100 5.8100 4.2600 3.3431 3.3388 2.0895
6.8600 5.5800 4.2400 3.5368 3.3571 2.0706
6.7500 5.5000 4.1100 3.7470 3.3908 2.0288
6.5700 5.2700 4.0900 3.9253 3.4069 2.0488
6.2400 5.0600 4.0600 4.3620 3.4671 2.0859
6.3000 5.0800 4.0200 4.5017 3.4640 2.1127
6.3400 5.0600 3.9500 4.5829 3.4100 2.1160
6.4300 5.0800 3.9300 4.7771 3.3519 2.1143
6.3800 4.8600 3.9300 4.8528 3.3101 2.1186
6.4300 4.6900 3.8100 5.0413 3.2613 2.1473
6.4000 4.5700 3.6900 5.0920 3.1241 2.1703
6.6900 4.5000 3.3700 4.9392 2.9410 2.1732
6.6600 4.3900 3.1321 4.7707 2.8318 2.1454
6.5900 4.4300 3.0934 4.7558 2.6875 2.1384
7.5800 4.5000 3.0467 4.7086 2.5300 2.1372
7.2900 4.3900 2.6965 4.6820 2.5333 2.1372
7.0400 4.3000 2.5790 4.6367 2.4005 2.1256
7.0800 4.2900 2.6267 4.4536 2.1519 2.1110
6.9200 4.3000 2.6765 4.4671 2.1300 2.1194
6.6600 4.3600 2.6950 4.3535 2.1404 2.1325
6.5000 4.3100 2.7267 3.9829 2.1473 2.1391
6.7500 4.4400 3.3757 3.5999 2.1436 2.1966
6.4500 4.4900 3.4677 3.3857 2.1590 2.3609
6.3200 4.3700 3.4460 3.3449 2.1463 2.4729

Table 8: Historical 3m EURIBOR rates (01/1994-12/2005)
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3m EURIBOR rates (01/2006-8/2017)

01/2006-12/2007 01/08-12/09 01/10-12/11 01/12-12/13 01/14-12/15 01/2016-08/2017

2.5117 4.4815 0.6798 1.2222 0.2920 -0.1461
2.6004 4.3621 0.6617 1.0483 0.2881 -0.1836
2.7226 4.5964 0.6450 0.8585 0.3053 -0.2285
2.7938 4.7835 0.6447 0.7443 0.3297 -0.2492
2.8890 4.8574 0.6865 0.6849 0.3246 -0.2572
2.9857 4.9405 0.7276 0.6589 0.2414 -0.2679
3.1022 4.9610 0.8488 0.4970 0.2050 -0.2945
3.2265 4.9652 0.8955 0.3324 0.1916 -0.2982
3.3354 5.0192 0.8805 0.2463 0.0971 -0.3016
3.5020 5.1131 0.9977 0.2079 0.0826 -0.3090
3.5972 4.2383 1.0420 0.1920 0.0809 -0.3127
3.6842 3.2926 1.0217 0.1855 0.0809 -0.3158
3.7519 2.4565 1.0172 0.2049 0.0627 -0.3255
3.8182 1.9431 1.0867 0.2234 0.0482 -0.3286
3.8909 1.6355 1.1755 0.2061 0.0272 -0.3293
3.9753 1.4223 1.3212 0.2089 0.0047 -0.3304
4.0714 1.2817 1.4251 0.2012 -0.0104 -0.3295
4.1478 1.2279 1.4886 0.2103 -0.0139 -0.3300
4.2162 0.9750 1.5976 0.2214 -0.0187 -0.3304
4.5436 0.8605 1.5521 0.2259 -0.0277 -0.3291
4.7417 0.7721 1.5365 0.2232 -0.0370
4.6874 0.7375 1.5759 0.2258 -0.0536
4.6385 0.7162 1.4847 0.2234 -0.0876
4.8484 0.7120 1.4261 0.2735 -0.1263

Table 9: Historical 3m EURIBOR rates (01/2006-8/2017)
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