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Abstract

Extensive research has been done on the relevance of economic variables in predicting

bond returns. However, only few studies have considered the importance of technical indi-

cators which are commonly used by investors and traders. This paper studies the predictive

power of technical indicators in forecasting bond risk premia. Particularly, this paper as-

sesses the robustness of the indicators by considering several small-sample size problems such

as standard error bias and overlapping return bias which frequently appear in predictive re-

gressions for bond returns. For this purpose, I use a bootstrap procedure proposed by Bauer

and Hamilton (2018) and a formal test developed by Ibragimov and Müller (2010). I find

that technical indicators are not always significant and robust predictors. Only the level

and slope of the yield curve consistently show to be significant in forecasting robust bond

risk premia. From an asset allocation perspective, a portfolio constructed with the first five

principal components of yields and the technical indicators generates the most utility gains.

Keywords: yield curve, bond risk premium predictability, spanning hypothesis, robust methods,

technical analysis, principal components
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1 Introduction

The predictability of interest rates movements is of great importance for various market par-

ticipants such as bond investors, policy makers, and financial economists. For bond investors,

forecasting interest rates may result in higher bond returns. However, for policy makers under-

standing the change in future interest rates may help their decision making concerning macroe-

conomic monetary policy.

Recently, several studies have shown that a variety of macro-economic factors help in predict-

ing excess bond returns (e.g. Cochrane and Piazzesi (2005); Ludvigson and Ng (2009)). However

not much extensive research has been done on the relevance of technical indicators in the bond

market. Neely et al. (2012) found that technical indicators are significant in predicting the

equity risk premium. As the stock and bond markets behave similarly (e.g. Fama and French

(1989)), this paper investigates whether technical indicators are also of importance in forecasting

bond risk premia.

All the above-mentioned studies make use of predictive regressions for bond returns. How-

ever, the particular set-up results in two notable characteristics. The true regressors reflect the

information in the yield curve such that they are correlated with the lagged forecast errors.

Furthermore, the regressors are highly persistent. Bauer and Hamilton (2018) show that these

features result in significant standard error bias which causes the estimated standard errors to be

too small in small samples. Moreover, most predictive regressions use monthly data to forecast

an annual excess return. The use of overlapping returns leads to correlation in the lagged forecast

errors. Hence, conventional standard errors are estimated to be downwards biased. Bauer and

Hamilton (2018) show that past methods that have been used to deal with these two econometric

issues are not robust as they are subject to significant small-sample and size distortions. There-

fore, this paper seeks to answer two questions: First, are technical indicators robust predictors

of future bond risk premia? Second, do combinations of technical and macro-economic indica-

tors further improve this predictive power? In addition, I evaluate the economic value of this

predictive power for investors by examining the utility gains from an asset allocation perspective.

In this paper I use three types of technical indicators, where the set-up for the first two types

of indicators is similar to Goh et al. (2013). The first 48 technical indicators are constructed

based on moving averages of lagged forward spreads. The following 15 indicators are formulated

based on trading volume data. This is because practitioners regularly use data for the amount

of occurred transactions in combination with historical prices to analyze the market behavior.

The last 16 indicators are constructed using a momentum strategy. Cochrane and Piazzesi

(2005) found that lagged forward rates have significant additional predictive power in forecasting
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excess bond returns, which is especially relevant for the forward spread moving average technical

indicators used in this paper. However Bauer and Hamilton (2018) show that this result is

much weaker in small samples which is one of the main characteristics of macro-economic data.

Therefore, I first reproduce the results of Cochrane and Piazzesi (2005) in Bauer and Hamilton

(2018) using predictive regressions for excess returns, and show that this evidence is indeed

weaker for forecasting robust bond risk premia.

To address the first question, I investigate the so-called spanning hypothesis. According to the

spanning hypothesis, the first three principal components (PCs) of the yield curve are adequate

to forecast bond returns. These components are commonly indicated as the level, slope and

curvature, respectively. Under the null of the spanning hypothesis, technical indicators should

add no incremental significant information in forecasting bond returns. Then I use two robust

procedures to test this hypothesis. The first is a bootstrap procedure, designed by Bauer and

Hamilton (2018), which is constructed specifically to test the null of the spanning hypothesis.

In this procedure, the level, slope, and curvature are fit with a VAR model. Various studies,

such as Litterman and Scheinkman (1991), have acknowledged that these three factors explain

most of the variation in the entire yield curve. Under the bootstrap, it is possible to evaluate

the robustness of standard tests by calculating their small-sample size. The second procedure

is based on a formal test suggested by Ibragimov and Müller (2010). In this test, the dataset

is divided into subsamples such that the coefficients can be estimated separately. Afterwards, a

conventional t-test can be applied on the coefficients across the subsamples. Bauer and Hamilton

(2018) show that the IM-test successfully deals with the standard error bias which conventional

t-tests suffer from.

In order to answer the second question, I use a predictive regression which combines the in-

formation in the current yield curve with the constructed technical indicators. In this regression,

I use the first five PCs of yields together with the technical indicators as predictors. Afterwards,

I investigate the additional predictive power of the indicators using the same procedures as I did

to answer the first research question.

Three main conclusions can be drawn from this paper. First, technical indicators are not

always significant and robust predictors of future bond risk premia. Second, the addition of

macro-economic factors in the form of higher-order PCs of yields does not improve this predictive

power. In all findings, the current yield curve reflects all the relevant information for future bond

returns in a robust way. Third, the economic value of technical indicators is of considerable size

but less than the economic value of the level, slope and curvature. I find that the utility gains

for an investor is the highest when he/she uses forecasts based on the information contained in

3



the first five PCs of yields as well as the technical indicators.

The paper contributes to the literature by evaluating the importance of robust technical

indicators in forecasting bond risk premia. Particularly, the paper considers several econometric

issues such as standard error bias and overlapping return bias. Both of these biases are very

relevant in the context of time series analysis and may lead to different small-sample results for

the regressors. Moreover, the paper adds to the literature by evaluating the economic value of

bond risk premia forecasts from an asset allocation perspective.

The rest of the paper is structured in the following way. In section 2, I describe the con-

struction of the technical indicators and the methods used to evaluate the predictive power and

robustness of these predictors. Section 3 presents the data and shows summary statistics. Robust

results of Cochrane and Piazzesi (2005) are shown in section 4. Section 5 and 6 display empirical

results of the predictive power of technical indicators and macro-economic factors. In section 7,

I assess the economic value of this predictive power. Concluding remarks are provided in section

8.

2 Methodology

2.1 Construction of the technical indicators

I use a similar notation for the excess bond returns and yields as in Goh et al. (2013). Let p(n)t

be the log price of a n-year discount bond at the end of period t. Hence, the log yield of a n-year

discount bond at the end of period t is y(n)t ≡ − 1
np

(n)
t . The n-year bond price at the end of

period t is fs(n)t ≡ f
(n)
t − y(1)t , where f (n)t ≡ p

(n−1)
t − p(n)t is the forward rate at the end of period

t for future yields between period t+ n− 1 and t+ n.

For the construction of the technical indicators, I consider three types of indicators based on

popular technical strategies. The first is a forward spread moving average rule MAfs which

states whether one should buy (St = 1) or sell (St = 0) at the end of period t by comparing the

n-year forward spreads of two moving averages

St =

 1 if MA
fs,(n)
s,t > MA

fs,(n)
l,t

0 if MA
fs,(n)
s,t ≤MA

fs,(n)
l,t

, (1)

with

MA
fs,(n)
j,t = (1/j)

j−1∑
k=0

fs
(n)
t−k/12, for j = s, l.

Here, fs(n)t−k/12 is the forward spread for the n-year discount bond at the end of period t− k/12,

and s (l) is the length of the short (long) forward spread moving average. Then the forward
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spread moving average rule at the end of period t with maturity n and length s (l) can be denoted

as MA
fs,(n)
s(l),t . The trading signal St can be interpreted as follows: if the forward rates for the

n-year discount bonds are decreasing relative to the one-year bond yields, then the short forward

spread moving average will most likely be lower than the long forward spread moving average.

Therefore, an investor would want to sell the bond. The opposite reasoning applies when an

investor wants to take a long position in the bond. I analyze the monthly forward spread moving

average rule for n = 2,3,4,5, s = 3,6,9 and l = 18,24,30,36.

The second type of technical indicators is constructed based on volume data at the end of

period t, OBVt. However, since volume data for bond trading is not available for the whole

sample period, I instead use data for stock market trading volume. Various studies have shown

that stock market volume indicators can be a valid proxy for bond market volume indicators

(e.g. Campbell and Vuoltenaho (2004)). I define the trading volume-based indicator as

OBVt =

12t−1∑
k=0

V OLt−k/12Dt−k/12,

where V OLt−k/12 measures the trading volume between period t− (k+ 1)/12 and t− k/12, and

Dt−k/12 is a binary variable that is equal to 1 if Pt−k/12−Pt−(k+1)/12 ≥ 0 and −1 otherwise, with

Pt the closing price of the stock index at the end of period t. Afterwards, I define St similar to

the first type of technical indicators

St =

 1 if MAOBVs,t ≤MAOBVl,t

0 if MAOBVs,t > MAOBVl,t

, (2)

with

MAOBVj,t = (1/j)

j−1∑
k=0

OBVt−k/12, for j = s, l.

Here, MAOBVs(l),t is the volume-based trading rule at the end of period t, where s (l) is the length

of the short (long) moving average of the volume-based indicator. This trading signal St can be

interpreted as follows: a relatively large amount of available stocks combined with a fall of the

stock price signals a strong negative market trend. Therefore, an investor wants to take a long

position in the bond. The opposite reasoning holds when an investor wants to sell the bond. I

compute monthly volume trading rules for s = 1,2,3 and l = 9,12,15,18,21.

The last type of technical indicators I study is a momentum based strategy. I construct the

trading signal St as

St =

 1 if fs
(n)
t ≥ fs

(n)
t−k/12

0 if fs
(n)
t < fs

(n)
t−k/12

. (3)

Intuitively, when the current bond price rises relative to its price k periods before, this results
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in a positive momentum and relatively high expected excess returns. Therefore, creating a buy

signal. I compute monthly momentum rules for n = 2,3,4,5 and k = 3,6,9,12.

All the earlier constructed trading signals are binary in the sense that one can choose to

either buy or sell at the end of period t. However, it is not possible to assess how strong this

trading signal is and to what extent it is reasonable for an investor to trade the bond. Therefore,

I also construct non-binary trading signals which range from (−1, 1). A signal between −1 (0)

and 0 (1) indicates to what extent an investor should sell (buy) the bond. In this way, it is

possible to decide for which values of −1 < a ≤ 0 and 0 ≤ b < 1 it is justified to trade the

bond. For all three types of technical indicators, I use the same moving averages and momentum

technical indicators as before. However, for the forward spread and volume based moving average

I take the difference between the moving average for j = s and j = t. For the momentum based

strategy, I take the difference between the bond price at the end of period t− k/12 and t. Then

I normalize the differences such that all values range between (−1, 1).

2.2 Testing the spanning hypothesis

To evaluate the predictive power of the technical indicators, I test the spanning hypothesis by

using a regression of the following form

yt+h = β′1x1t + β′2x2t + ut+h,

where yt+h is a future yield or excess bond return, x1t and x2t are vectors consisting of G1 and

G2 regressors, respectively, and ut+h is a forecast error. The regressors x1t consist of a constant

and the information in the yield curve reflected by the level, slope, and curvature. Testing the

spanning hypothesis boils down to testing the following null hypothesis

H0 : β2 = 0,

which means that the technical indicators, x2t, have no incremental predictive power such that

all the relevant information is contained in the yield curve. In practice, including all of the

technical predictors in a predictive regression may cause in-sample over-fitting, which most of

the times results in very poor out-of-sample forecasting performance. Therefore I use a principal

component analysis to still include all the relevant information from the technical indicators

while avoiding potential over-fitting. In this analysis, I determine the amount of common factors

according to the information criteria developed in Bai and Ng (2002). An advantage of using

this criteria relative to the usual AIC and BIC is that the number of common factors can be

estimated consistently when both the cross-section dimension and the time dimension of the

panel are large.
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I analyze the relevance of the technical indicators in two ways: the first is based on the increase

in the R2 of the regression when the technical indicators are included; the second is based on

formal statistical tests of the null hypothesis β2 = 0. In general, the first three PCs of yields,

x1t, are not strictly exogenous because they reflect the information in the current yield curve.

Hence the PCs are correlated with ut. In addition, the predictors are very persistent. Bauer and

Hamilton (2018) show that if x1t is not strictly exogenous and if x1t and x2t are highly persistent

regressors, then standard tests that do account for heteroskedasticity and autocorrelation (also

called HAC standard errors) reject the null hypothesis β2 = 0 too often. This bias is also referred

to as standard error bias. Furthermore, most predictive regressions in similar settings use monthly

data to predict an annual excess return. This causes the use of overlapping returns and results in

correlation in the lagged forecast errors ut+h. Therefore, the HAC standard errors are even more

biased, and an increase in R2 is harder to interpret. This suggests that it is of great importance to

use methods and statistical tests that are robust to both biases. Therefore, I use two approaches

that give more robust small-sample inference. The first procedure is a parametric bootstrap

method to test the spanning hypothesis. A second procedure is a statistical test suggested by

Ibragimov and Müller (2010) (forth IM-test). Bauer and Hamilton (2018) confirm that both

procedures do take into account these significant small-sample problems.

2.2.1 Parametric bootstrap method to test the spanning hypothesis

By bootstrapping under the relevant null hypothesis, it is possible to determine the small-sample

size of standard tests and to evaluate their robustness. Moreover, this procedure also allows

to test the null of the spanning hypothesis with better precision which should result in more

powerful tests and more accurate estimates (Horowitz (2001)). I start the bootstrap procedure

by calculating the first three PCs of yields denoted by

x1t = (PC1t, PC2t, PC3t)
′,

and by calculating the weighting vector ŵn for the n-year bond yield:

int = ŵ′nx1t + υ̂nt.

Here, x1t = Ŵ it, where it = (in1t, ..., inKt)
′ is a K x 1 vector of yields at the end of period t,

Ŵ = (ŵn1 , ..., ŵnJ )′ is a 3 x K matrix such that the rows are equal to the first three eigenvectors

of the variance matrix of it, and υ̂nt is a fitted error. Furthermore, I normalize the eigenvectors

such that ŴŴ ′ = I3. Afterwards, I estimate a VAR(1) model for x1t by using OLS:

x1t = φ̂0 + φ̂1x1,t−1 + e1t t = 1, ..., T,
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from which I generate 5000 bootstrap yield samples. All samples have length T which is equal

to the length of the original sample. I start the recursion by drawing from the unconditional

distribution for x1t which is estimated from the following VAR(1) model:

x*
1τ = φ̂0 + φ̂1x

*
1,τ−1 + e*1τ .

Here, e*1τ is the bootstrap residual and the first iteration of every bootstrap sample is equal to

the starting value of the observed sample. Next I realize the bootstrap yields using

i*nτ = ŵ′nx
*
1τ + υ*

nτ for υ*
nτ ∼ N(0, σ2υ),

where the standard deviation of the measurement errors, συ, is equal to the sample standard

deviation of the fitted errors υ̂nt. In this way, the parametric bootstrap generates bootstrap yield

samples i*nτ which are only realized from the three yield curve factors in x*
1τ . On the other hand,

the structure of the covariance matrix and its dynamics are comparable to those of the observed

bond yield data int.

For the technical indicators x2t I use a similar VAR(1) model

x2t = α̂0 + α̂1x2,t−1 + e2t.

I then obtain 5000 bootstrap samples x*
2τ in the same way as done for x*

1τ .

In order to compute the size and power of the bootstrap test, I use the Monte Carlo simulation

developed in Bauer and Hamilton (2018).

2.2.2 IM-test

A second procedure that would give considerably more robust estimates of the small-sample dis-

tribution of the test statistics is the IM-test. Ibragimov and Müller (2010) developed a method

for robust inference about a scalar coefficient when the data is heterogeneous and correlated in

a largely unknown way. The original dataset is partitioned into r subsamples after which the

statistic is estimated separately over each subsample. When the estimates are approximately in-

dependent and normally distributed across subsamples, then a conventional t-test with r degrees

of freedom is used to test the hypothesis β2 = 0. According to Müller (2014), the size of the

IM-test is exceptional in settings where standard HAC inference would result in poor estimates

of the true small-sample variance. In this paper, I only consider 8 and 16 subsamples (as in

Müller (2014)).

I use the same Monte Carlo simulation as for the bootstrap procedure to compute the size

and power of the IM-test. An advantage of using this test over a standard t-test is that the

IM-test has little to no standard error bias. This is because the IM-test results in more precise
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estimates of the sampling variability of the test statistic since it splits the sample into multiple

subsamples.

2.3 Economic value from an asset allocation perspective

A relatively large increase in R2 by including the technical indicators may be of little interest for

an investor (Thornton and Valente (2012)). On the other hand, utility gain is one of the main

measurements used by investors to assess the economic value of any item. Therefore I study

the economic value of the bond risk premia forecasts by considering utility gains from an asset

allocation perspective. Specifically, I compute the utility gains of a mean-variance investor who

has a risk aversion coefficient of three, similar to Goh et al. (2013). This investor optimally

allocates a portfolio between a one-year risk-free Treasury bill and an n-year discount bond

every month. The allocation decision of the investor is only based on the excess return forecasts

obtained by a predictive regression model which includes (a combination of) the PCs of the yield

curve, technical indicators and macro-economic factors (forth combined model). At the end of

period t, the investor compares this forecast to the historical average forecast and allocates his

wealth according to the following weighting scheme

w̃
(n)
t+1 =

1

γ

r̃
(n)
t+1

σ̃2n,t+1

. (4)

Here, w̃(n)
t+1 is the fraction of wealth which he invests in an n-year discount bond during period

t+ 1, γ is the risk aversion coefficient, r̃(n)t+1 is a forecast for the n-year excess bond return, and

σ̃2n,t+1 is a forecast for the n-year excess bond return variance. To estimate the variance, the

investor bases his decision on a moving window of four years including historical excess bond

returns. Afterwards, the average utility of the investor who uses forecasts based on the combined

model can be calculated as

v̂(n) = µ̂n − 0.5γσ̂2n,

where µ̂n and σ̂2n are the sample mean and variance, respectively, of the portfolio constructed

based on the weights in (4).

The same procedure can be used for an investor who instead bases his allocation decision on

the historical average forecast. At the end of period t, this investor allots his wealth according

to a similar weighting scheme

w̄
(n)
t+1 =

1

γ

r̄
(n)
t+1

σ̃2n,t+1

. (5)

Here, w̄(n)
t+1 is the fraction of wealth which he invests in a one-year risk-free Treasury bill during

period t + 1, and r̄
(n)
t+1 is a forecast for the n-year historical average excess return. Next, the
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average utility of this investor can be computed as

v̄(n) = µ̄n − 0.5γσ̄2n,

where µ̄n and σ̄2n are the sample mean and variance, respectively, of the portfolio constructed

based on the weights in (5).

The utility gain, v̂(n) − v̄(n), can be explained as the portfolio management fee that the

investor is willing to pay to gain access to the combined predictive regression model and the

bond risk premia forecasts r̃(n)t+1.

3 Data

In order to replicate the results of Cochrane and Piazzesi (2005), I use the original data that is

provided on the website of the Federal Reserve Bank of San Francisco1 which ranges from 1964:01

- 2003:12. Since the original sample period, a substantial amount of new data is available for

research. Therefore, I assess the true out-of-sample performance of the earlier mentioned models

by using two sample periods. The first is equal to the original sample period in Cochrane and

Piazzesi (2005). The later sample period ranges from 1985:01 - 2016:12 which includes some

influential events like the financial crisis in 2008.

For the construction of the technical indicators, I use the Fama-Bliss discount bond prices for

maturities ranging from one to five years. This dataset is accessible at the Center for Research

in Securities Prices (CRSP) and spans the period 1964:01 - 2016:12. Furthermore, I compute

monthly yields, forward rates and forward spreads as explained in Section 2. I also use monthly

forward spreads to construct the forward spread moving average and momentum-based indicators

in (1) and (3), respectively. Lastly, to compute the trading volume-based technical indicators in

(2), I use monthly volume data for the S&P 500 index from Yahoo Finance.

Table 1 shows summary statistics for the technical indicator PC factors f̂fsi,t , f̂
OBV
i,t and

f̂MOM
i,t . These PC factors are obtained from 48 forward spread indicators MAfs, 15 volume-

based indicators MAOBV and 16 momentum based indicators, respectively, spanning the period

1964:01 - 2016:12. The top panel shows results for the binary trading signal; the bottom panel

reports results for the non-binary signal. In the top panel, the first row of Panel f̂fsi,t shows

that the first PC factor accounts for 54% of the total variance in the MAfs indicators. The

inclusion of the second and third PC factor increases the explained variance to 75%. For f̂OBVi,t

and f̂MOM
i,t , the first PC factor explains 82% and 50% of the total variance in the MAOBV and

momentum based indicators, respectively. Including the first three PC factors increases the total
1The dataset can be found at https://www.frbsf.org/economic-research/economists/michael-bauer/
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explained variance to 92% and 68%, respectively. For the non-binary trading signal, only two

PCs are sufficient to explain most of the variance in the technical indicators, according to the

information criterion of Bai and Ng (2002). In addition, these PCs also explain a larger fraction

of the total variance relative to the binary trading signal.

Column AR1i presents the first-order autoregressive coefficients of an AR(1) model for each

factor. In the top panel, the autoregressive coefficients for the forward spread technical PC factors

f̂fsi,t range from 0.87-0.97. The trading volume technical PC factors f̂OBVi,t have autoregressive

coefficients between 0.16 and 0.92. For the momentum based PC factors, the autoregressive

coefficients are slightly lower ranging from 0.56 to 0.85, but decline slower in comparison to

the volume based PCs. In the lower panel, similar results hold for the non-binary signal with

autoregressive coefficients ranging from 0.78 to 0.99 over all technical PC factors. The relatively

high persistence of most technical PC factors combined with the fact that the first three PCs

of the yield curve are typically not strictly exogenous indicate that it is indeed necessary to use

more robust approaches for inference.

Lastly, the time series plots in figures 1 - 3 show how each technical indicator varies over time.

Especially during important financial events such as the stock market crash in 1987, the burst of

the dot-com bubble in 2000 and the financial crisis in 2008, the forward spread moving average

and the bond prices are substantially lower. In addition, the volume-based moving average

displays a significant increase during the same period as the financial crisis. This indicates a

sudden rise in the amount of available stocks combined with a fall of the stock price which causes a

negative stock market trend. In unreported results, I find the same behavior for different lengths

j of the forward spread and volume-based moving average.

4 Robust results Cochrane and Piazzesi (2005)

Cochrane and Piazzesi (2005) (forth CP) found that a linear combination of (lagged) forward

rates is significant in forecasting bond risk premia for various maturities. CP found that the

addition of this variable gives R2 of 37% (and close to 44% when including lagged forward

rates). In particular, CP showed that the level, slope and curvature did not reflect all the

information in the yield curve but that higher-order PCs had additional predictive power. Since

the first type of technical indicators I use is constructed based on (lagged) forward rates, it is

necessary to determine whether the results of Cochrane and Piazzesi (2005) are robust to the

earlier mentioned problematic features of the predictive regression model. I do this by testing

the spanning hypothesis that only the level, slope and curvature predict excess returns and that

the fourth and fifth PC do not add any significant information.
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The top panel of table 2 shows the (unadjusted) R2 for the regression of yearly excess bond

returns with three and five PCs as regressors, using the original sample period. The first row

replicates the original results; the second row shows results using the bootstrap procedure (with

95% confidence intervals in the third row). For the bootstrap procedure, the inclusion of higher-

order PCs does not increase the R2 as much as in the original results. In addition, the increase

in R2 reported by CP is outside the 95% bootstrap interval. This indicates that the original

results are quite unconvincing and are not robust to the small-sample size problems.

I report the same statistics for the later sample period in the lower panel of table 2. In this

period, the increase in R2 by including the fourth and fifth PC is significantly smaller when using

the method proposed by CP. The increase in R2 is also inside the 95%-bootstrap interval for any

method, which is in contrast to the original sample period.

In the top panel of table 3, I replicate additional bootstrap estimates of CP. The HAC p-value

of 0.000 suggests that PC4 is indeed a significant predictor such that the spanning hypothesis

would be rejected. The same conclusion can be drawn from the results of the Wald test (also

equal to 0.000) under the hypothesis that PC4 and PC5 add no additional information, as shown

in the last column of table 3. Remarkable is that the bootstrap procedure can not reject that

PC4 is significant. This implies that CP’s finding is not caused by the earlier mentioned small-

sample size problems. The reason for the significance of PC4 under the bootstrap is because the

persistence of the higher-order PCs is quite low. Therefore, they are not heavily affected by size

distortions2. However, the IM-tests do suggest that the fourth and fifth PC are not statistically

significant predictors, as it can not reject the null hypothesis that β2 = 0. Only PC1 and PC2

are strongly significant predictors of excess bond returns. Moreover, the size and power of the

IM tests are estimated to be closer to nominal size (5% and 95%, respectively) compared to

conventional tests. This illustrates that the IM test indeed performs very well in case there is

standard-error bias and overlapping return bias and that the results of the IM-test are more

convincing than those of the bootstrap procedure.

Similar bootstrap results for the later sample period can be found in the bottom panel of

table 3. According to the p-values of the HAC t-test, only PC1 and PC2 are significant. In

particular, the higher-order PCs are not significant for any estimation method (including the

method used in CP). This can also be seen when considering the p-values of the Wald test,

which are considerably higher for the later sample period. The IM tests imply that only the level

is a significant predictor.

Lastly, a substantial amount of data is available since the results of CP in 2005. Therefore
2For example, the first order autocorrelation of PC4 and PC5 are 0.425 and 0.227, while the twelfth order

autocorrelation is equal to 0.062 and -0.135, respectively.
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I analyze the true out-of-sample predictive power of the higher-order PCs, which are presented

in table 4. The first and second column show the in-sample R2 for the model using only the

first three PCs and for the model including all five PCs, respectively. While the inclusion of the

higher-order PCs reduces the in-sample MSE by 11%, the out-of-sample predictive power of this

model is worse as the MSE increases by 21%. Although the Diebold-Mariano test does not reject

the null hypothesis that both models have equal predictive accuracy, figure 4 shows that only

using the first three PCs of the yield curve gives more stable and more precise forecasts of excess

bond returns. During most time periods the unrestricted model containing all five PCs estimated

expected excess returns that were significantly farther away from the realized excess return than

those estimated by the restricted model. This holds especially in high volatile periods such as

the financial crisis in 2008. It is remarkable, however, that the unconditional mean (which is

estimated over the CP sample period) ended up to be better in predicting future excess returns

than both the unrestricted and restricted model.

These results suggest that the forecasting performance of the fourth and fifth PC is sam-

ple dependent and that the spanning hypothesis for estimating robust bond risk premia is not

rejected.

5 Forecasting excess returns using technical indicators

Before I evaluate the predictive power of the technical indicators, I first compare whether the

binary or the non-binary specification of the trading signal results in more significant predictors.

Tables 12 and 13 in the Appendix show results for both signals including the three different

types of indicators. Considering the p-values of the HAC t-test with standard asymptotic critical

values, both specifications show significant technical PCs for the two moving average indicators

(f̂fs1,t, f̂
fs
2,t, and f̂

OBV
1,t for the binary signal, and f̂OBV2,t for the non-binary signal) . This significance

is substantially weaker when employing the bootstrap under the spanning hypothesis, where only

one technical PC is still significant (f̂fs1,t and f̂
OBV
2,t , respectively). However, for both specifications

the Wald test does not reject the null of the spanning hypothesis suggesting that the technical

PCs are not important in predicting bond returns. The p-values for the IM-test are also in line

with this conclusion as only the level of the yield curve is significant.

Contrary to the first two indicators, the momentum based strategy is not significant in any of

the two specifications. Hence, including only the first two types of indicators may further improve

the predictive power of the technical PCs. Table 5 shows results of this binary specification.

According to the p-values of the HAC t-test, only the slope, curvature and the technical PCs f̂fs1,t
and f̂fs2,t are significant. The Wald statistic also rejects the spanning hypothesis with a p-value
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exceeding the critical value for conventional significant levels.

However, the bootstrap procedure shows that none of the technical PCs are robust predic-

tors. The Wald test does not reject the spanning hypothesis as well, which results in the same

conclusion. When I consider the results of the IM-tests, only the level and the slope of the yield

curve are significant at the five percent level suggesting that just the level and slope are robustly

significant predictors.

Regarding the size and power, it is seen that the true size of the standard t-tests range

between 8-16% which is substantially higher than the intended five percent. Because all of the

individual technical PC factors have a non-standard small-sample distribution, the size distortion

for the Wald test is even larger with an actual size of 36%. However, both the bootstrap and the

IM-test are close to nominal size. Especially the IM-test has relative good power.

When one compares these results with the non-binary specification in table 6, one can notice

that under the bootstrap the second PC of the volume based indicator f̂OBV2,t is still significant

(even at the one percent level). However, this evidence is still not strong enough to reject the

spanning hypothesis according to the Wald test. The IM-tests for this specification show slightly

different results compared to the binary case. In this case, only the level is a robust predictor

while both the level and the slope were robust predictors previously. The size and power show

similar patterns for both specifications.

In the later sample period, the level is a significant predictor under the binary specification

with a HAC p-value of 0.047. However in the non-binary case, it is remarkable that the level,

slope and curvature are not significant (not even at the ten percent level). This result heavily

contradicts the literature and should raise concerns on whether the non-binary trading signal is

an appropriate specification in this sample period.

Lastly I study the increase in R2 when including the technical PCs. Table 7 (binary signal)

and table 8 (non-binary signal) show that the inclusion of the technical PCs indeed increases

the R2 of the regression. When I employ the bootstrap procedure, the increase in R2 is smaller

for both types of signals in the later sample but higher for the non-binary signal in the original

sample. Recall that the bootstrap is constructed such that the technical PCs add no additional

information in predicting future excess returns. Hence, the latter observation is quite outstand-

ing and most likely suggests that a non-binary trading signal does not entirely summarize the

information in the technical indicators. Therefore, I only consider the binary trading signal in-

cluding the forward spread and volume based moving average when I analyze the forecasting

performance of technical indicators combined with macro-economic factors in Section 6.

Overall, these results do not indicate sufficient evidence against the spanning hypothesis.
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Although some technical PCs are significant using the bootstrap, the results of the Wald test

and IM-test consistently show that the first two PCs of yields are the only robust predictors of

excess bond returns.

6 Forecasting excess returns using technical indicators and macroe-

conomic factors

The predictability of technical indicators can possibly be improved upon after controlling for

macro-economic factors. Cochrane and Piazzesi (2005) provide strong empirical evidence that

the current term structure does not span all information needed to forecast future excess returns

and that the fourth and fifth PC contain additional predictive information. Therefore, I use the

model specification as chosen in Section 5 and combine this with the two higher-order PCs of the

yield curve to evaluate whether this model improves the forecasting performance of the technical

indicators.

The top panel of table 9 shows the (unadjusted) R2 for this regression, using the original

sample period. The increase in R2 is considerably higher in the original data (barely inside

the 95% bootstrap interval) relative to the bootstrap procedure. In addition, the inclusion of

higher-order PCs increases the R2 to 0.42 in the original data compared to a R2 of 0.34 for

the model with only the technical indicators as additional predictors (table 7). Therefore, the

inclusion of higher-order PCs increases the R2 with 0.08. Under the bootstrap, the increase in R2

is significantly lower with an increase of 0.01. This suggests that controlling for macro-economic

factors, in the form of the fourth and fifth PC of the yield curve, does not improve the forecasting

performance of technical indicators in terms of increase in R2.

In the later sample period, the increase in R2 is even larger in the original data and is outside

the range of the 95% bootstrap interval. Surprisingly, the addition of PC4 and PC5 does not

increase the R2 in this sample period as the R2 in table 7 and 9 are the same (under both

the original data and the bootstrap). Therefore, higher-order PCs most likely do not add any

additional predictive information in forecasting excess bond returns.

Additional bootstrap results for the original sample period are reported in the top panel

of table 10. The HAC p-values of the t-test indicate that the higher-order PCs as well as the

first two PCs of the forward spread moving average are significant predictors, and that the

spanning hypothesis would be rejected. When I compare these results with the p-values under

the bootstrap procedure, quite similar results can be found as the robust results of Cochrane and

Piazzesi (2005) in Section 4. For instance, the higher-order PCs and the first PC of the forward
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spread moving average, f̂fs1,t, are still significant, and the spanning hypothesis is also rejected.

The significance of the higher-order PCs is most likely due to the same reasons as discussed in

Section 4. While the Wald statistic rejects the spanning hypothesis under the bootstrap as well,

this evidence is weaker relative to the Wald statistic under the HAC t-test.

However, the p-values of the IM-test indicate that only PC1 and PC2 are significant pre-

dictors. In particular, the p-values for the predictors that were significant under the bootstrap

(PC4, PC5, and f̂fs1,t) are far greater than the conventional significance levels. Therefore, I can

conclude that only the first two PCs of the yield curve are robust predictors.

Table 10 also reports the size and power of the different tests. The results reveal that the

standard HAC t-test has serious size distortions (ranging from 9% to 17%) which causes the size

of the Wald statistic to be even greater. Meanwhile, the bootstrap procedure and both IM-tests

show size levels that are much closer to the correct size of five percent. Moreover, the IM-tests

perform very well in terms of power. This gives me added reason to pay attention to the results

of the IM-tests relative to those of the bootstrap procedure.

The lower panel of table 10 shows results for the later sample period. In this period, the

higher-order and technical PCs are considerably less significant. Under the bootstrap, none of

the additional predictors are significant such that the spanning hypothesis would not be rejected.

The p-values of the IM-test show similar results as for the original sample period. The level and

slope are the only robustly significant predictors.

From these results, I can conclude that including macro-economic factors, in the form of

higher-order PCs of the yield curve, does not improve the forecasting performance of technical

indicators. Furthermore, the significance of the technical indicators seems to be considerably

weaker in the later sample period.

7 Economic value of bond risk premia forecasts

In this section, I evaluate the economic value of the bond risk premia forecasts for a mean-

variance investor who has a risk aversion coefficient of three. Every month, the investor optimally

manages a portfolio containing an n-year discount bond and a one-year Treasury bill. Table 11

displays the average utility gains, annualized in percentage points, for portfolios constructed with

various combinations of predictors. The average utility gain can be interpreted as the portfolio

management fee that the investor is willing to pay to gain access to the combined predictive

regression model and the bond risk premia forecasts. The results show that a forecasting model

based on only the technical PCs, f̂fs1,t− f̂OBV3,t , is of considerable economic value with a maximum

utility gain of 2.51% per annum. In the later sample period, the performance of this portfolio

16



becomes worse with the utility gain ranging between 0.48% and 2.12%.

However, a forecasting model based on the level, slope and curvature is able to generate

more economic value with a maximum utility gain of 2.78%. The inclusion of higher-order

PCs (PC1 − PC5) slightly improves the forecasting model in the original sample period with a

maximum utility gain of 2.90%. In the later sample period, this portfolio performs worse relative

to a portfolio based on only the first three PCs of yields as the maximum utility gain is only 2.00%

(compared to 2.45% for the latter portfolio). This is in line with my main findings in Section 4

(table 3) where I found that PC4 was a significant predictor in the original sample period but

both higher-order PCs were insignificant in the later sample period. Therefore, higher-order PCs

generate little economic value in the later sample period as expected.

Next, I consider the economic gains of forecasting models which combine the information in

the technical indicators and the macro-economic variables (the last two columns of table 11).

For all short-term discount bonds, using the 5 PCs of yields and technical PCs as predictors

results in higher average utility gains in both sample periods than by not including higher-order

PCs. This result is consistent with my conclusion in Section 6 (table 10) where I found that

several technical PCs are still significant after controlling for macro-economic factors in the form

of higher-order PCs. Therefore, I expected that a forecasting model based on technical indicators

and macro-economic variables would still generate positive economic value.

It is worth emphasizing that the average utility gains in the later sample period are consid-

erably lower relative to the original sample period. This is most likely due to the volatile bond

prices during the financial crisis in 2008. Therefore, bond risk premia are harder to forecast

which causes a decrease in utility gains for all different forecasting models.

Overall, a portfolio based on the first five PCs of the yield curve and the technical indicators

generates the most utility gains. An investor would be willing to pay an annual management

fee of close to 3.0% to gain access to the 5-year excess bond return forecasts generated by this

model.

8 Conclusion

In this paper, I investigate the importance of technical indicators in forecasting robust bond

risk premia. I find that technical indicators are significant but not robust predictors of excess

bond returns. Furthermore, I study whether including macro-economic factors, in the form of

higher-order PCs, improves the predictive power. My results show that higher-order PCs do not

increase the forecasting performance of technical indicators. A common finding in all my results

is that the level and slope of the yield curve are the only robust predictors of bond risk premia.
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From an asset allocation perspective, I find that forecasts obtained from the first five PCs of

yields and the technical indicators generate the most utility gains.

A natural extension of this research is to study the forecasting power of different technical

indicators in combination with other macro-economic factors. For example, in addition to the

trend-following moving averages constructed in this paper, Wong et al. (2003) also focus on

the most regularly used counter-trend indicator, the so-called Relative Strength Index. Another

idea is to use a different set-up for the non-binary trading signals. In this paper, the non-binary

signal is defined based on the difference between two technical indicators (of the same type). It

is also possible to take into account the volatility during unstable periods by scaling the moving

averages by their (downside) volatility. The higher the (downside) volatility, the less reliable

the trading signal. Incorporating these fundamental and technical indicators in term-structure

models of bond pricing is left for future research.
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Table 1: Summary statistics technical indicator PC factors

f̂fsi,t f̂OBV
i,t f̂MOM

i,t

i
∑i

j=1 λj/
∑N

j=1 λj AR1i
∑i

j=1 λj/
∑N

j=1 λj AR1i
∑i

j=1 λj/
∑N

j=1 λj AR1i

Binary trading signal

1 0.54 0.97 0.82 0.92 0.50 0.85

2 0.68 0.89 0.89 0.63 0.61 0.61

3 0.75 0.87 0.92 0.16 0.68 0.56

Non-binary trading signal

1 0.92 0.99 0.94 0.96 0.83 0.91

2 0.97 0.96 0.98 0.89 0.93 0.78

Table 1 shows summary statistics for the first three technical indicator principal component (PC) factors f̂fs
i,t ,

f̂OBV
i,t and f̂MOM

i,t . These PC factors are obtained from 48 forward spread indicators MAfs, 15 volume-based

indicators MAOBV and 16 momentum based technical indicators, respectively, spanning the period 1964:01 -

2016:12. The top panel shows results for the binary trading signal; the bottom panel reports results for the

non-binary signal. The second, fourth and sixth column show the fraction of the total variance in the technical

indicators explained by PC factor i, which is calculated by dividing the sum of the first i largest eigenvalues

λi by the sum of all N eigenvalues. Column AR1i displays the first-order autocorrelation for PC factor i

estimated from an AR(1) model. The amount of factors is decided by the information criterion developed by

Bai and Ng (2002).

Figure 1: Time series of forward spread moving average rule MAfs

Figure 1 shows a time series of the forward spread moving average rule MAfs, for j = 3 and 18. The time

series ranges from 1964-01 to 20016-12, containing several significant financial events such as the stock market

crash in 1987, the burst of the dot-com bubble in 2000, and the financial crisis in 2008.
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Figure 2: Time series of volume-based trading rule MAOBV

Figure 2 shows a time series of the volume-based moving average rule MAOBV , for j = 1 and 9. The time

series ranges from 1964-01 to 20016-12, containing several significant financial events such as the stock market

crash in 1987, the burst of the dot-com bubble in 2000, and the financial crisis in 2008.

Figure 3: Time series of n-year bond prices

Figure 3 shows a time series of the n-year bond prices. The time series ranges from 1964-01 to 20016-12,

containing several significant financial events such as the stock market crash in 1987, the burst of the dot-com

bubble in 2000, and the financial crisis in 2008.
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Table 2: In-sample adjusted R2 values of the results in Cochrane-Piazzesi (2005)

R2
1 R2

2 R2
2 −R2

1

Original sample: 1964-2003

Data 0.26 0.35 0.09

Bootstrap 0.21 0.22 0.01

95% confidence interval (0.05, 0.39) (0.06, 0.40) (0.00, 0.02)

Later sample: 1985-2016

Data 0.15 0.18 0.03

Bootstrap 0.30 0.31 0.01

95% confidence interval (0.10, 0.51) (0.11, 0.52) (0.00, 0.05)

Table 2 shows the (unadjusted) R2 for the regression of yearly excess bond returns (averaged across two

through five years) with the level, slope and curvature (R2
1) and including all five PCs of yields (R2

2). The

third column also displays the difference in R2. The upper panel reports results for the original sample period

as in Cochrane-Piazzesi (2005); the bottom panel is for the sample period 1985-2016. The first row of both

panels shows the R2 value using the same data as in the original paper. The second row shows the R2 value

according to the bootstrap procedure, and the third row the 95% confidence interval. For the bootstrap

method, the null hypothesis is that the higher-order PCs of the yield curve have no additional predictive

power.
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Table 3: Robust estimation of results in Cochrane-Piazzesi (2005)

PC1 PC2 PC3 PC4 PC5 Wald

Original sample: 1964-2003

Coefficient 0.127 2.740 -6.307 -16.128 -2.038

HAC p-value 0.085 0.000 0.003 0.000 0.455 0.000

Bootstrap p-value 0.000 0.501 0.000

IM q = 8 0.006 0.005 0.717 0.484 0.626

IM q = 16 0.000 0.040 0.087 0.600 0.477

Estimated size of tests

HAC 0.091 0.077 0.112

Bootstrap 0.060 0.040 0.050

IM q = 8 0.053 0.052

IM q = 16 0.056 0.052

Estimated power of tests

HAC 0.997 0.148 0.994

Bootstrap 0.995 0.113 0.988

IM q = 8 0.994 0.589

IM q = 16 0.998 0.596

Later sample: 1985-2016

Coefficient 0.106 1.589 3.157 -9.585 -9.360

HAC p-value 0.048 0.025 0.343 0.145 0.207 0.124

Bootstrap p-value 0.239 0.295 0.264

IM q = 8 0.040 0.506 0.169 0.211 0.232

IM q = 16 0.001 0.049 0.671 0.352 0.793

Table 3 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve. The results in the upper panel are identical to

those of Cochrane and Piazzesi (2005). p-values of the HAC t-test are obtained using Newey-West standard

errors with 18 lags. The column "Wald" shows p-values for the χ2 test that the fourth and fifth PC have no

predictive power. I also display results for the IM-test, designed by Ibragimov and Müller (2010), for r = 8

and 16 subsamples. Estimates of the size and power are shown in panel Size and Power, respectively. These

estimates are obtained from the Monte Carlo simulation described in Bauer and Hamilton (2018). p-values

below 5% are highlighted in bold.
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Table 4: Out-of-sample forecasting performance of results in Cochrane-Piazzesi

In-sample Out-of-sample

R2
1 R2

2 MSE-ratio MSE-ratio DM p-value

0.267 0.344 0.891 1.213 0.103

Table 4 reports the in-sample and out-of-sample forecasting performance of the model containing the

level, slope and curvature as regressors (R2
1), as well as the model including all five PCs of yields (R2

2)

as regressors. The in-sample period ranges from 1964 to 2002, which is equal to the last observation

used by Cochrane and Piazzesi (2005). The out-of-sample period is from 2003 to 2016. The columns

show in-sample R2 for both models, the in-sample mean-squared-errors (MSE) ratio calculated as
MSE1

MSE2
, the out-of-sample MSE ratio, and the p-value of the Diebold-Mariano (DM) test of equal

forecast accuracy.

Figure 4: Cochrane-Piazzesi: out-of-sample forecasts

Figure 4 shows realized and predicted excess bond returns from the model with three PCs (restricted model)

and the model with all five PCs (unrestricted model). The in-sample period ranges from 1964 - 2002, and

the out-of-sample period ranges from 2003 - 2016. The black dashed line shows the in-sample mean excess

return.
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Table 5: Statistical inference of technical indicators with binary trading signals

PC1 PC2 PC3 f̂fs1,t f̂fs2,t f̂fs3,t f̂OBV
1,t f̂OBV

2,t f̂OBV
3,t Wald

Original sample: 1964-2003

Coefficient 0.134 1.227 -5.018 0.850 -0.853 0.533 0.597 -1.348 -0.792

HAC p-value 0.224 0.041 0.007 0.010 0.027 0.397 0.052 0.155 0.221 0.001

Bootstrap p-value 0.065 0.119 0.509 0.124 0.243 0.284 0.103

IM q = 8 0.002 0.010 0.857 0.788 0.293 0.418 0.610 0.892 0.377

IM q = 16 0.000 0.000 0.139 0.263 0.347 0.351 0.118 0.753 0.621

Estimated size of tests

HAC 0.149 0.164 0.125 0.120 0.105 0.084 0.362

Bootstrap 0.060 0.061 0.060 0.046 0.050 0.049 0.054

IM q = 8 0.079 0.068 0.077 0.068 0.067 0.061

IM q = 16 0.074 0.066 0.074 0.072 0.068 0.065

Estimated power of tests

HAC 0.661 0.366 0.201 0.638 0.378 0.235 0.914

Bootstrap 0.466 0.176 0.095 0.512 0.267 0.178 0.598

IM q = 8 0.723 0.691 0.582 0.788 0.710 0.694

IM q = 16 0.712 0.654 0.613 0.756 0.647 0.593

Later sample: 1985-2016

Coefficient 0.310 -0.570 0.326 1.732 -0.887 0.859 0.189 -0.315 -0.260

HAC p-value 0.047 0.350 0.921 0.000 0.165 0.213 0.646 0.609 0.576 0.000

Bootstrap p-value 0.009 0.287 0.383 0.745 0.691 0.635 0.166

IM q = 8 0.002 0.033 0.429 0.188 0.557 0.308 0.069 0.204 0.772

IM q = 16 0.024 0.045 0.883 0.585 0.304 0.475 0.359 0.569 0.765

Table 5 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve, the first three technical PC factors of the first

two technical indicators f̂fs
i,t and f̂OBV

i,t , and a binary trading signal. p-values of the HAC t-test are obtained

using Newey-West standard errors with 18 lags. The column "Wald" shows p-values for the χ2 test that all

technical PC factors have no predictive power. I also display results for the IM-test, designed by Ibragimov

and Müller (2010), for r = 8 and 16 subsamples. Estimates of the size and power are shown in panel Size and

Power, respectively. These estimates are obtained from the Monte Carlo simulation described in Bauer and

Hamilton (2018). p-values below 5% are highlighted in bold.
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Table 6: Statistical inference of technical indicators with non-binary trading signals

PC1 PC2 PC3 f̂fs1,t f̂fs2,t f̂OBV
1,t f̂OBV

2,t Wald

Original sample: 1964-2003

Coefficient 0.177 2.157 -5.505 0.224 0.158 3.585 -46.965

HAC p-value 0.127 0.000 0.002 0.189 0.723 0.379 0.000 0.003

Bootstrap p-value 0.346 0.768 0.504 0.008 0.137

IM q = 8 0.001 0.054 0.574 0.262 0.659 0.383 0.486

IM q = 16 0.000 0.012 0.105 0.688 0.662 0.132 0.216

Estimated size of tests

HAC 0.167 0.144 0.162 0.130 0.346

Bootstrap 0.047 0.044 0.051 0.056 0.050

IM q = 8 0.081 0.076 0.073 0.065

IM q = 16 0.067 0.072 0.065 0.062

Estimated power of tests

HAC 0.220 0.138 0.234 0.720 0.759

Bootstrap 0.066 0.052 0.098 0.554 0.288

IM q = 8 0.612 0.693 0.629 0.854

IM q = 16 0.591 0.645 0.633 0.901

Later sample: 1985-2016

Coefficient 0.159 0.264 1.488 107.846 86.307 -0.097 0.417

HAC p-value 0.130 0.758 0.435 0.002 0.349 0.891 0.853 0.001

Bootstrap p-value 0.038 0.480 0.921 0.882 0.125

IM q = 8 0.001 0.102 0.239 0.010 0.169 0.048 0.739

IM q = 16 0.001 0.213 0.100 0.550 0.116 0.561 0.870

Table 6 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve, the first two technical PC factors of the first two

technical indicators f̂fs
i,t and f̂OBV

i,t , and a non-binary trading signal. p-values of the HAC t-test are obtained

using Newey-West standard errors with 18 lags. The column "Wald" shows p-values for the χ2 test that all

technical PC factors have no predictive power. I also display results for the IM-test, designed by Ibragimov

and Müller (2010), for r = 8 and 16 subsamples. Estimates of the size and power are shown in panel Size and

Power, respectively. These estimates are obtained from the Monte Carlo simulation described in Bauer and

Hamilton (2018). p-values below 5% are highlighted in bold.
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Table 7: In-sample adjusted R2 values of technical indicators using binary trading signals

R2
1 R2

2 R2
2 −R2

1

Original sample: 1964-2003

Data 0.28 0.34 0.06

Bootstrap 0.23 0.28 0.05

95% confidence interval (0.06, 0.42) (0.11, 0.47) (-0.00, 0.13)

Later sample: 1985-2016

Data 0.19 0.41 0.22

Bootstrap 0.32 0.39 0.07

95% confidence interval (0.11, 0.55) (0.17, 0.61) (0.00, 0.19)

Table 7 shows the (unadjusted) R2 for the regression of yearly excess bond returns (averaged across two

through five years) using a binary trading signal, including the level, slope and curvature (R2
1) and the first

two PC factors of the first two technical indicators (R2
2). The third column also displays the difference in

R2. The upper panel reports results for the original sample period; the bottom panel is for the sample period

1985-2016. The first row of both panels shows the R2 value using the same data as in the original paper. The

second row shows the R2 value according to the bootstrap procedure, and the third row the 95% confidence

interval. For the bootstrap method, the null hypothesis is that all technical PC factors have no additional

predictive power.

Table 8: In-sample adjusted R2 values of technical indicators using non-binary trading signals

R2
1 R2

2 R2
2 −R2

1

Original sample: 1964-2003

Data 0.28 0.30 0.02

Bootstrap 0.23 0.29 0.05

95% confidence interval (0.06, 0.42) (0.11, 0.47) (0.00, 0.15)

Later sample: 1985-2016

Data 0.17 0.30 0.14

Bootstrap 0.28 0.34 0.06

95% confidence interval (0.08, 0.49) (0.14, 0.55) (0.00, 0.18)

Table 7 shows the (unadjusted) R2 for the regression of yearly excess bond returns (averaged across two

through five years) using a non-binary trading signal, including the level, slope and curvature (R2
1) and the

first two PC factors of the first two technical indicators (R2
2). The third column also displays the difference in

R2. The upper panel reports results for the original sample period; the bottom panel is for the sample period

1985-2016. The first row of both panels shows the R2 value using the same data as in the original paper. The

second row shows the R2 value according to the bootstrap procedure, and the third row the 95% confidence

interval. For the bootstrap method, the null hypothesis is that all technical PC factors have no additional

predictive power.
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Table 9: In-sample adjusted R2 values of technical indicators and macro-economic factors

R2
1 R2

2 R2
2 −R2

1

Original sample: 1964-2003

Data 0.28 0.42 0.14

Bootstrap 0.23 0.29 0.06

95% confidence interval (0.06, 0.42) (0.12, 0.48) (0.00, 0.15)

Later sample: 1985-2016

Data 0.19 0.41 0.22

Bootstrap 0.32 0.39 0.07

95% confidence interval (0.11, 0.55) (0.18, 0.62) (0.01, 0.20)

Table 9 shows the (unadjusted) R2 for the regression of yearly excess bond returns (averaged across two

through five years) using a binary trading signal, including the level, slope and curvature (R2
1), the fourth

and fifth PC of the yield curve along with the first three PC factors of the first two technical indicators (R2
2).

The third column also displays the difference in R2. The top panel reports results for the original sample

period; the bottom panel is for the sample period 1985-2016. The first row of both panels shows the R2 value

using the same data as in the original paper. The second row shows the R2 value according to the bootstrap

procedure, and the third row the 95% confidence interval. For the bootstrap method, the null hypothesis is

that all technical PC factors have no additional predictive power.
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Table 10: Statistical inference of technical indicators and macro-economic factors

PC1 PC2 PC3 PC4 PC5 f̂fs1,t f̂fs2,t f̂fs3,t f̂OBV
1,t f̂OBV

2,t f̂OBV
3,t Wald

Original sample: 1964-2003

Coefficient 0.136 1.080 -4.797 7.117 11.577 0.982 -0.924 0.408 0.620 -0.977 -0.656

HAC p-value 0.147 0.053 0.005 0.035 0.000 0.001 0.015 0.490 0.059 0.228 0.346 0.000

Bootstrap p-value 0.087 0.000 0.024 0.094 0.588 0.142 0.313 0.422 0.003

IM q = 8 0.008 0.048 0.492 0.242 0.455 0.727 0.759 0.101 0.568 0.689 0.999

IM q = 16 0.000 0.002 0.360 0.522 0.089 0.871 0.131 0.222 0.319 0.066 0.593

Estimated size of tests

HAC 0.111 0.132 0.157 0.173 0.132 0.129 0.104 0.093 0.472

Bootstrap 0.049 0.056 0.059 0.063 0.056 0.050 0.057 0.050 0.055

IM q = 8 0.060 0.062 0.080 0.065 0.073 0.067 0.063 0.055

IM q = 16 0.056 0.059 0.076 0.063 0.069 0.066 0.059 0.059

Estimated power of tests

HAC 0.686 0.790 0.764 0.410 0.172 0.541 0.262 0.191 0.990

Bootstrap 0.548 0.644 0.583 0.204 0.079 0.374 0.174 0.133 0.840

IM q = 8 0.743 0.879 0.864 0.712 0.649 0.794 0.642 0.556

IM q = 16 0.754 0.882 0.802 0.748 0.548 0.772 0.613 0.564

Later sample: 1985-2016

Coefficient 0.156 0.359 2.033 -2.232 2.386 1.124 -0.627 0.323 0.026 0.017 -0.050

HAC p-value 0.042 0.011 0.331 0.632 0.733 0.007 0.216 0.582 0.950 0.974 0.887 0.002

Bootstrap p-value 2.765 2.517 2.887 2.582 2.799 2.758 2.524 2.326 44.382

IM q = 8 0.001 0.013 0.729 0.289 0.324 0.897 0.929 0.303 0.894 0.104 0.592

IM q = 16 0.000 0.051 0.290 0.216 0.386 0.329 0.293 0.342 0.342 0.787 0.060

Table 10 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve, and the fourth and fifth PC as macro-economic

factors. The predictive regression also includes the first three technical PC factors of the first two technical

indicators f̂fs
i,t and f̂OBV

i,t , and a binary trading signal. p-values of the HAC t-test are obtained using Newey-

West standard errors with 18 lags. The column "Wald" shows p-values for the χ2 test that all technical PC

factors have no predictive power. I also display results for the IM-test, designed by Ibragimov and Müller

(2010), for r = 8 and 16 subsamples. Estimates of the size and power are shown in panel Size and Power,

respectively. These estimates are obtained from the Monte Carlo simulation described in Bauer and Hamilton

(2018). p-values below 5% are highlighted in bold.
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Table 11: Asset Allocation Results

n f̂fs1,t − f̂OBV
3,t PC1 − PC3 PC1 − PC5 (PC1 − PC3) + (f̂fs1,t − f̂OBV

3,t ) (PC1 − PC5) + (f̂fs1,t − f̂OBV
3,t )

Original sample: 1964-2003

2 0.65 0.87 1.13 1.01 1.29

3 1.49 1.66 1.82 1.84 2.01

4 1.88 2.01 2.14 2.29 2.33

5 2.51 2.78 2.90 3.04 3.08

Later sample: 1985-2016

2 0.48 0.67 0.52 0.83 1.04

3 0.93 1.45 1.20 1.73 1.92

4 1.63 1.89 1.45 2.11 2.24

5 2.12 2.45 2.00 2.67 2.81

Table 11 shows the average utility gains, annualized in percentage points, for a mean-variance investor who

has a risk aversion coefficient of three. Every month, the investor optimally manages a portfolio containing

an n-year discount bond and a one-year Treasury bill. The utility gain can be interpreted as the portfolio

management fee that the investor is willing to pay to gain access to the combined predictive regression model

and the bond risk premia forecasts r̃(n)
t+1. The PC factors f̂fs

1,t - f̂OBV
3,t are obtained from 48 forward spread

indicators MAfs and 15 trading volume-based indicators MAOBV , spanning the period 1964:01 - 2016:12.

PC1 − PC3, f̂fs
1,t - f̂OBV

3,t , and PC1 − PC5 represent the model including the first three PCs of yields, the

technical indicator PCs, and the first five PCs of yields, respectively. The top panel reports the average utility

gains for the original sample period; the lower panel shows average utility gains for the later sample period.
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10 Appendix

Table 12: Statistical inference of technical indicators with binary trading signals

PC1 PC2 PC3 f̂fs1,t f̂fs2,t f̂fs3,t f̂OBV
1,t f̂OBV

2,t f̂OBV
3,t f̂MOM

1,t f̂OBV
2,t f̂MOM

3,t Wald

Original sample: 1964-2003

Coefficient 0.125 1.218 -4.348 1.163 -0.941 0.165 0.784 -1.231 -0.835 -0.523 0.600 -0.728

HAC p-value 0.232 0.050 0.010 0.000 0.018 0.753 0.031 0.119 0.151 0.240 0.315 0.148 0.001

Bootstrap p-value 0.008 0.089 0.800 0.090 0.188 0.210 0.325 0.390 0.221 0.174

IM q = 8 0.030 0.038 0.921 0.847 0.107 0.944 0.248 0.256 0.806 0.129 0.748 0.542

IM q = 16 0.003 0.145 0.454 0.457 0.395 0.740 0.198 0.182 0.301 0.366 0.209 0.702

Estimated size of tests

HAC 0.124 0.158 0.130 0.124 0.098 0.085 0.105 0.086 0.098 0.471

Bootstrap 0.066 0.054 0.056 0.054 0.053 0.054 0.057 0.050 0.051 0.052

IM q = 8 0.074 0.065 0.074 0.069 0.064 0.059 0.062 0.060 0.059

IM q = 16 0.070 0.063 0.067 0.062 0.055 0.0539 0.063 0.056 0.062

Estimated power of tests

HAC 0.802 0.413 0.142 0.676 0.347 0.237 0.243 0.192 0.236 0.962

Bootstrap 0.673 0.221 0.062 0.543 0.244 0.164 0.155 0.129 0.157 0.666

IM q = 8 0.859 0.694 0.643 0.828 0.635 0.593 0.647 0.655 0.735

IM q = 16 0.847 0.694 0.531 0.810 0.734 0.677 0.656 0.740 0.742

Later sample: 1985-2016

Coefficient 0.160 0.234 2.279 1.243 -0.651 0.442 0.022 0.114 -0.055 0.053 0.377 -0.772

HAC p-value 0.129 0.760 0.311 0.002 0.260 0.375 0.956 0.849 0.881 0.906 0.432 0.268 0.012

Bootstrap p-value 0.022 0.379 0.501 0.967 0.876 0.899 0.927 0.520 0.364 0.430

IM q = 8 0.004 0.011 0.903 0.172 0.233 0.001 0.494 0.177 0.807 0.420 0.313 0.798

IM q = 16 0.000 0.171 0.602 0.295 0.315 0.323 0.129 0.269 0.144 0.705 0.740 0.927

Table 12 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve, the first three technical PC factors of the three

technical indicators f̂fs
i,t , f̂

OBV
i,t and f̂MOM

i,t , as well as a binary trading signal. p-values of the HAC t-test

are obtained using Newey-West standard errors with 18 lags. The column "Wald" shows p-values for the χ2

test that all technical PC factors have no predictive power. I also display results for the IM-test, designed by

Ibragimov and Müller (2010), for r = 8 and 16 subsamples. Estimates of the size and power are shown in

panel Size and Power, respectively. These estimates are obtained from the Monte Carlo simulation described

in Bauer and Hamilton (2018). p-values below 5% are highlighted in bold.
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Table 13: Statistical inference of technical indicators with non-binary trading signals

PC1 PC2 PC3 f̂fs1,t f̂fs2,t f̂OBV
1,t f̂OBV

2,t f̂MOM
1,t f̂MOM

2,t Wald

Original sample: 1964-2003

Coefficient 0.179 2.170 -5.461 -0.122 -0.879 3.654 -47.243 0.871 -0.423

HAC p-value 0.125 0.000 0.003 0.522 0.345 0.374 0.000 0.057 0.186 0.000

Bootstrap p-value 0.663 0.539 0.495 0.008 0.173 0.350 0.197

IM q = 8 0.000 0.377 0.939 0.659 0.311 0.165 0.827 0.808 0.720

IM q = 16 0.000 0.037 0.170 0.246 0.898 0.062 0.393 0.198 0.883

Estimated size of tests

HAC 0.197 0.186 0.158 0.135 0.162 0.168 0.709

Bootstrap 0.050 0.050 0.051 0.048 0.055 0.053 0.044

IM q = 8 0.072 0.067 0.075 0.070 0.062 0.063

IM q = 16 0.064 0.061 0.068 0.064 0.055 0.058

Estimated power of tests

HAC 0.194 0.240 0.239 0.729 0.282 0.169 0.908

Bootstrap 0.051 0.091 0.099 0.577 0.132 0.058 0.137

IM q = 8 0.524 0.682 0.591 0.854 0.621 0.548

IM q = 16 0.589 0.667 0.635 0.892 0.649 0.593

Later sample: 1985-2016

Coefficient 0.141 0.505 1.592 191.191 381.096 -0.047 -0.007 -252.203 19.365

HAC p-value 0.163 0.574 0.395 0.000 0.021 0.944 0.998 0.021 0.840 0.000

Bootstrap p-value 0.005 0.083 0.962 0.998 0.063 0.865 0.148

IM q = 8 0.002 0.153 0.242 0.003 0.039 0.029 0.899 0.252 0.058

IM q = 16 0.014 0.175 0.184 0.487 0.024 0.247 0.898 0.127 0.209

Table 13 shows bootstrap results of forecasting yearly excess bond returns (averaged across two through five

years) with the level, slope and curvature of the yield curve, the first three technical PC factors of the three

technical indicators f̂fs
i,t , f̂

OBV
i,t and f̂MOM

i,t , and using a non-binary trading signal. p-values of the HAC t-test

are obtained using Newey-West standard errors with 18 lags. The column "Wald" shows p-values for the χ2

test that all technical PC factors have no predictive power. I also display results for the IM-test, designed by

Ibragimov and Müller (2010), for r = 8 and 16 subsamples. Estimates of the size and power are shown in

panel Size and Power, respectively. These estimates are obtained from the Monte Carlo simulation described

in Bauer and Hamilton (2018). p-values below 5% are highlighted in bold.
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