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Abstract

Stock returns are likely to consist of linear parts as well as nonlinear parts over time. Autore-
gressive or moving average models may be suitable for capturing linearly behaving parts,
whereas nonlinear smooth transitioning or artificial neural network models can be used to
describe the nonlinear habits. In general, none of the aforementioned individual models is
able to capture both linearity and nonlinearity of time series completely. To overcome this,
my study combines two models from the linear and nonlinear field into a hybrid model to
describe and forecast the returns on the Spanish Ibex-35 stock index. Recursive and non-
recursive one-step-ahead and multi-step-ahead forecasting methods are utilised over three
forecast horizons to measure and compare the performance of the hybrid model relative to
the individual models. I find that the hybrid model is able to surpass the individual models
for short horizon one-step-ahead forecasts. The hybrid model seems particularly useful for
predicting the correct sign of the returns, which indicates that the combined model can be
of interest to incorporate in trading strategies.

1



1 Introduction

Which model can forecast the future returns of a stock index as accurate as possible? That is
a question that many investors would like to answer. Predicting the returns can be of interest
when incorporating a trading strategy over a longer horizon. A model that can describe the
movement of stock returns universally has yet to be found.

In the field of time series modelling and forecasting there are several different approaches. Most
traditional statistical models include exponential smoothing, autoregressive (AR) and moving
average (MA) models. These models are linear in a sense that the predictions of a variable in
the future are constrained to be linearly dependent on the observations in the past. Because
of the relative simple nature in understanding and implementation, the performance of linear
models has been studied quite elaborately during the past decades.

One of the most important and extensively used linear time series model is the autoregressive
integrated moving average (ARIMA) model. This model gained popularity due to its statistical
properties combined with the model building process, which follows a well-known Box-Jenkins
methodology [5]. Besides that, several different methods like the exponential smoothing model
can be implemented by ARIMA models. One big advantage of ARIMA models is their flex-
ibility. ARIMA models can capture pure AR, pure MA and combined AR and MA (ARMA)
series. However, the greatest drawback of these models is their assumed linear form. Due to
this assumption, no nonlinear patterns can be captured by the ARIMA models. Therefore the
approximation of linear models to explain possibly nonlinear real-word observations are not
always satisfactory.

In many studies the efficient market hypothesis is questioned [11, 17, 34]. The assumption
that complex asset price movements can be described by a random walk model is debatable.
As stated, time series do not always exhibit a linear relation and may very well be nonlinear.
This is well-grounded because the linear models are not always capable of explaining several
agency aspects. These aspects include the possibility that not all agents receive information
simultaneously, the importance of differences in negotiation times or how those agents with
more complex algorithms can make better-informed decisions. The conclusions of papers which
investigate the efficient market hypothesis support both a theoretical as a practical interest in
nonlinear financial time series models.

Broadly used nonlinear models include bilinear models, autoregressive conditional heterosce-
dastic (ARCH) models and smooth transition autoregressive (STAR) models [4, 9]. These
models offset linear models when forecasting nonlinearly behaving time series. Although this
improvement has been noticed, the gain of forecasting with nonlinear models over general linear
models is limited [12]. Because of the fact that nonlinear models are structured for certain
specific nonlinear patterns, they are not able to correctly capture multiple types of nonlinear-
ities simultaneously in time series. This led to the more recent rise of artificial neural network
(ANN) models, which have been suggested as a useful nonlinear alternative for forecasting time
series. The strength of these ANN models lays within their flexible nonlinear modelling capa-
city. These models have the capability to capture multiple types of nonlinearities which may
exhibit in time series data.

Both ANN and ARIMA models are successful models in the nonlinear and linear domain re-
spectively. Yet, none of them is considered as a universal model which is suitable under all
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circumstances. If one tries to estimate the parameters of an ARIMA model to account for a
complex nonlinear problem, it is very likely that this model would not capture this nonlinearity
properly as the data generating process differs. In addition, fitting an ANN model for clearly
linear data may be totally inappropriate as well. Moreover, real-world time series data often
consist of complex movements, both linear as well as nonlinear, which can not be captured well
by one of the aforementioned models separately. This leads to a model selection problem with
divergent solutions. Hence, a combination of these two models could yield a viable solution in
the form of a model, which is able to handle both linearity and nonlinearity adequately.

Theoretical and empirical evidences in current literature [25, 27, 28, 35] suggest that, by making
use of dissimilar models or models that capture disjoint characteristics, a hybrid model will give
lower generalization variance or error. The aim of a combined model is that the risk of using
an inappropriate model for the data is minimized or at least reduced. Combining thus reduces
risk of an erroneous model and obtains results which are more in line with the underlying data
and are on average more accurate.

This paper extends the work of Pérez-Rodŕıguez et al. [29] by making use of a hybrid ARIMA-
ANN model to forecast Ibex-35 stock index returns. They find that ANN models have a better
model fit over STAR models, as the former offers slightly higher trading profits in terms of
one-step-ahead forecasts as in Sharpe ratio. However, they are unable to determine whether the
ANN models are superior over other (non)linear models in the multi-step-ahead case. Empirical
results support that making use of a hybrid model for financial market forecasting can effect-
ively improve accuracy, such that the hybrid model can be used as an alternative to financial
market forecasting tools. Especially when only a short-term time series is investigated, the
hybrid model performs relatively well [37].

In this paper I will propose a method to combine the linear and nonlinear aspects into a hybrid
model for better modelling and forecasting purposes. In section 2 I will review the current
knowledge of forecasting with the individual models as well as with some hybrid models. Section
3 explains the model building process and the forecast methods. The proposed methodology
of the hybrid model consists of two stages. In the first stage a linear ARIMA model is fitted
in order to identify the existing linear components of the data. In the second stage I will
introduce an existing nonlinear ANN model to account for nonlinearity in the sample data.
This is followed in section 4 by a description of the data that I use for my analysis. In section
5 the performance of this hybrid model will be evaluated in comparison with the performance
of the separate linear and nonlinear models in terms of statistical criteria such as goodness of
forecast measures, proportion of times that the signs are correctly predicted, the directional
accuracy test and tests for equality of accuracy of competing forecasts. I produce forecasts of
the models using (recursive) one-step-ahead as well as multi-step-ahead methods. Section 6 and
7 respectively conclude and discuss my findings and give directions for further research.

2 Literature

Forecasting time series data is one the most prominent and widely discussed topics within the
fields of statistical analysis. The possibility of exploiting linearities as well as nonlinearities
within these datasets to improve forecasting performances over short and long horizons could
be of great importance.

In many studies of empirical finance, the efficient market hypothesis is questioned [11, 17, 34].
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According to those studies it is doubtful that the random walk model is a reasonable descrip-
tion of asset price movement and that linear modelling techniques are able to capture complex
movements of asset prices [11, 34]. Another often proposed model for capturing financial time
series data is the ARIMA model, which gained popularity due to its statistical properties as well
as the Box-Jenkins building methodology. However, the performance of these linear models can
be poor for seemingly nonlinear data, as the models lack the capability of capturing nonlinear
patterns.

As a result of this lack, the interest in nonlinear models is fueled. Those models are able to
capture more complex movements over time. Among the first were Lapedes and Farber [22] to
attempt to model a nonlinear time series with artificial neural networks. Later on, De Groot and
Wurtz [15] present a detailed analysis of forecasting a univariate time series by making use of
a feedforward neural network for two nonlinear time series, the annual amount of sunspots and
a deterministic chaotic time series. In addition, several large forecasting competitions suggest
that the neural network can be a promising addition to the forecasting toolbox [2].

One of the major developments in neural network modelling and forecasting was the introduc-
tion of combined models. The basic idea behind this multi-model approach is that the ideal
unique capability of the underlying models can capture different patterns in the data. Both
theoretical as empirical findings suggest that the predictive performance of a hybrid model off-
sets the individual model, especially when the models worked with are quite different [3, 36].

Among the first incorporations of such a combined hybrid model is Zhang [37], who proposes a
combination of the linear ARIMA model along with a feedforward ANN model. This model is
then used empirically with three often used real-world nonlinear time series datasets, namely the
sunspot data, Canadian lynx data and the British Pound/US Dollar exchange rate. His findings
indicate that a combined model can be effective to improve forecasting accuracy achieved by
the separate models.

Also Wang and Meng [33] find that the hybrid form of a combined ANN and ARIMA model
improves forecasts of the energy consumption of a province in China relative to those obtained
by the separate models. Furthermore, Khashei et al. [20] propose a novel hybrid model in order
to overcome limitations of ANN models to yield even more accurate results by making use of a
fuzzy regression model.

These positive findings for different non-financial nonlinearly behaving time series, enhanced in-
terest in the application in the financial sector. Khashei et al. [19] presented a hybrid ARIMA-
ANN approach to model financial market predictions. Also Tseng et al. [32] propose a hybrid
model called the SARIMABP, which contained the seasonal ARIMA (SARIMA) model and a
backpropagation ANN model to forecast total production value for the Taiwanese machinery
industry.

Concluding, the combination of an ARIMA model with an ANN model seems to be very fruitful
in multiple fields of research that make use of (possibly nonlinear) time series data. This research
focusses on the forecast comparison with other individual (non)linear models. I also investigate
that if the hybrid model provides superior results, to what extent this model can improve time
series data forecasting in a financial data framework.
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3 Methodology

In this section the basic concepts and modelling approaches of the different models are briefly
reviewed. Models of interest include the linear ARIMA model, nonlinear STAR model, artificial
neural network multilayer perceptron (MLP) model and a hybrid model combining ARIMA
and MLP models. After establishing the models, forecast methods are used in order to assess
statistical and economic criteria of out-of-sample forecasts. The dependent variable of interest is
the return (rt). Lagged observations and lagged error terms are the only explanatory variables
being used in the models.

3.1 ARIMA model

There is a broad range of approaches to model time series. A traditional linear model that has
been used extensively over the last 50 years is the ARIMA model. An ARIMA model consists
of three parts, the AR function regresses on historic values of the index, the MA function re-
gresses on a purely random process and the integrated (I) part ensures that the time series is
stationary by differencing. Whereas other models are able to capture nonlinearity, the ARIMA
model deals with non-stationary linear components.

The ARIMA model assumes that the future observation of a variable is a linear function of a
couple of past observations and random errors. Stated otherwise, the underlying process which
generates the time series data with mean µ is of the form

φ(B)∇d(rt − µ) = θ(B)εt, (1)

where rt and εt resemble the return of the index and the random error at time t. The functions
φ(B) = 1 −

∑p
i=1 φiB

i and θ(B) = 1 −
∑q

j=1 θjB
j are the polynomials in B of degree p and q

respectively, where φi (for i = 1, 2, ..., p) and θj (for j = 1, 2, ..., q) are the model parameters.
Here p and q are integers which are often referred to as the order of the AR part and the MA
part included in the model. Furthermore, ∇ = (1−B), where B is the backward shift operator.
In (1) d is also an integer which is often referred to as the order of differencing. The random
errors εt are assumed to be i.i.d. with zero mean and a constant variance σ2.

The methodology as described by Box-Jenkins [5] includes three iterative stages of model iden-
tification, parameter estimation and diagnostic checking. The main principle of model identific-
ation is that if a time series is generated according to an ARIMA process, it should have some
properties of theoretical autocorrelation. By comparing the empirical autocorrelation with the
theoretical values, it is often possible to identify one or multiple potential models for the given
time series data. As proposed by Box and Jenkins the autocorrelation function and the partial
autocorrelation function of the observed data are useful basic tools for order identification of
the ARIMA model. Other information criteria like the AIC or the BIC can also be used for
order selection.

In the identification step the data is required to be a stationary time series, since stationarity
is necessary for building an ARIMA model used for forecasting. Stationary time series are
characterized by constant mean and autocorrelation structure over time. When the observed
data does present a trend or heteroscedasticity, transformation in the form of differencing has
to be applied in order to remove the trend and stabilize the variance. Once this is established,
estimation of the parameters in the model is straightforward. For estimating the parameters,
the overall measure of errors is minimized, which can be achieved by making use of a nonlinear
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optimization procedure. The last step is a diagnostic check of the adequacy of the model. This
boils down to checking whether the model assumptions which are made about the errors, εt,
are satisfied. Residual plots and diagnostic statistics can be used to examine the goodness of fit
of the proposed model for the historical data. If the model is not able to explain the data well,
a new model should be identified which will be followed by repeating the steps of parameter
estimation and model verification. The structure of the residuals and the diagnostic information
may help to suggest an alternative, better model. This three stage approach for model building
is typically repeated a couple of times until a satisfactory model is selected. This final model
can then be used for the forecasting purposes.

3.2 STAR models

STAR models are especially useful if the data exhibit multiple regimes with potentially different
dynamic properties, but with a smooth transition between those regimes [14, 31]. A simple first-
order STAR model with two regimes is given by

rt = φ10 +

p∑
i=1

φ1irt−i +

[
φ20 +

p∑
i=1

φ2irt−i

]
Ft,d(st; γ, c) + εt. (2)

Here rt represents the stock index return at t, φji (for j = 1, 2; i = 0, 1, 2, ..., p) are the unknown
parameters that correspond to each regime j. The function Ft,d(st; γ, c) is the transition func-
tion, which is assumed to be twice differentiable and in the range [0, 1]. The parameter γ is
the transition rate or the smoothness parameter and c stands for the threshold value, which
represents the change from one regime to another. The number of lags of the transition variable
is given by d. The transition function allows for switching between regimes and introduces non-
linearity into parameters of the model. The transition variable, st, is usually defined as a linear
combination of lagged returns rt: st =

∑d
i=1 αirt−i. Specification of the transition function

is mostly done by a first-order logistic function (LSTAR) or a first-order exponential function
(ESTAR). The logistic specification (3) and the exponential speficiation (4) of the transition
function are given by

Ft,d(st; γ, c) = {1 + exp[−γ(st− c)]}−1, (3) Ft,d(st; γ, c) = {1− exp[−γ(st − c)2]}. (4)

For both specifications hold that γ > 0 and that the transition variable, st, can be any variable
in the information set Ψt−1.

The model parameters are estimated by making use of quasi-maximum likelihood (QMLE).
The model building process for STAR models is divided in three separate stages as described
in Granger et al. [14] and Teräsvirta [31]. Finally the STAR models are evaluated based on
within-sample performance following Eitrheim and Teräsvirta [10].

3.3 MLP model

ANN models are considered to be universal approximators and good forecasters of a wide
variety of nonlinear patterns. The models are able to include regime switches as well as other
nonlinearities. Based on the findings on the MAE and the Diebold and Mariano test [8], provided
in Rodriguez-Perez [29], the choice for the ANN model consist of the MLP model. The MLP
model can be seen as a feedforward network, which means that the connections between the

6



nodes do not form a cycle. A general form of the nonlinear MLP(p, q) model for a single hidden
layer network is

rt = β0 +

q∑
j=1

βjg

( p∑
i=1

φijrt−i + φ0j

)
+ εt. (5)

Here rt defines the return at time t or also referred to as the system output. The number of
inputs, in this case lagged stock returns, as explanatory variables is given by p. The set of lagged
returns then equals R = (1, rt−1, rt−2, ..., rt−p)

′ including a constant term. The parameter vector
is θ = (β′, φ′)′, with β = (β1, ..., βq)

′ and φ = (φ1j , ..., φpj)
′ for j = 1, ..., q which brings together

all the weights of the network, with βj representing the weights from the hidden unit to the
output unit and φij the weights from the input layer to the hidden unit j. The function g(·)
determines the connections between nodes of the hidden layer and is called the hidden unit
activation function, which enhances the nonlinearity of the model. More clearly, g(·) can take
multiple forms, such as a threshold function, which produces binary (0/1) or (±1) output, or it
can be defined as the sigmoid function, which produces an output between 0 and 1. In (5) εt
defines the residual which is assumed to be i.i.d. For a more concise overview and interpretation
of (5) review Kuan and White [21].

3.4 Hybrid model

The proposed ARIMA, STAR and MLP models have achieved successes in modelling and fore-
casting in their own linear or nonlinear domains. However none of the individual models can
be considered as a suitable universal model for all circumstances. Using a linear ARIMA for
modelling complex nonlinear problems may very well be inappropriate. Additionally, STAR and
MLP models can have inferior results when used on a clearly linear problem. Denton [7] showed
that when outliers or multicollinearity exist within the data, the neural networks do outperform
the linear models significantly. Markham and Rakes [26] also found that the performance of
MLP models heavily relies on the size of the sample and the noise level. This concludes that it
is not always a wise choice to simply apply MLP models to any type of data. Since it is difficult
to identify the complete characteristics of a time series dataset, combining both the linear and
nonlinear modelling capabilities can be a good strategy.

It can be opportunistic to consider a time series as composed of a linear autocorrelation structure
and a nonlinear component. Separating the returns in two parts as follows

rt = Lt +Nt, (6)

where Lt denotes the linear part of the returns and Nt represents the nonlinear component.
These two components can be estimated by making use of the two models. First, the linear
component can be taken account of by modelling an ARIMA model, then the remaining residuals
from this linear model will only contain the nonlinear relationship. If we define εt as the residual
at time t from the linear model, then

εt = rt − L̂t, (7)

where L̂t resembles the forecasted value for time t of the estimated relationship in (1). The
residuals are of importance in the diagnosis to decide whether the linear models are sufficient. A
linear model is not sufficient if the residuals still contain linear correlation structures. However,
analysis of the residuals is not able to detect any nonlinear patterns in the data. In general there
is currently no universal diagnostic statistic for checking nonlinear autocorrelation relationships.
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Even if the model passed the linear diagnostic check, the model may still not be adequate in
modelling the nonlinear relationships. Any significant nonlinear pattern that exhibit in the
residuals will typically indicate the shortcoming of the ARIMA model. By modelling these
residuals using a MLP model, nonlinear relationships can be discovered. A MLP model for the
residuals with n input nodes is given by

εt = f(εt−1, εt−2, ..., εt−n) + ηt. (8)

The function f(·) is a nonlinear function determined by the neural network and ηt equals the
i.i.d. random error at time t. Note that if the function f(·) is inappropriate, the error term does
not necessarily have to be random. This underlines the critical importance of correct model
identification. The forecast of (8) can be expressed as N̂t. By combining the results the forecast
of the returns is of the form

r̂t = L̂t + N̂t. (9)

Although this hybrid structure could lead to improvements in performance, there is some part
of subjective judgement of the model order as well as the model adequacy. For example, sub-
optimal models may be used in the hybrid model. The current practice of Box-Jenkins method
focusses on a low order of autocorrelation. Models are considered adequate if low order autocor-
relations are not significantly different from zero, though significant autocorrelations of higher
order may still exist. This form of suboptimality may not affect the usefulness of the hybrid
model as Granger [13] pointed out that in order to produce superior forecasts, the hybrid model
should consist of component models which should be suboptimal.

Concluding, the proposed methodology of the hybrid model consist of mainly two steps. The
first step equals fitting an ARIMA model to analyse the linear part of the data. The second
step then is to develop an ANN model for the residuals from the fitted ARIMA model. Since
the ARIMA model only takes account of the linear structure of the data, the residuals of this
model will contain information about the nonlinearity. The results of the ANN model can
then be used as predictions of the remaining error terms of the ARIMA model. This hybrid
structure combines the linear capabilities of the ARIMA model as well as the ANN model in
determining different patterns. It is likely that this hybrid model is advantageous by modelling
linear as well as nonlinear patterns separately and then combining the forecasts to improve
overall performance.

3.5 Forecasting methods

The produced forecasts are based on one-step-ahead and multi-step-ahead methods. Two notes
on forecasting procedures: firstly, though one-step-ahead forecasts are calculated by using the
estimated parameters and the actual values for lagged returns, also recursive estimation of the
parameters are constructed. This is done by using an expanding window of the sample data
and by updating the parameters each period as a new rolling forecast. Secondly, nonlinear
multi-step-ahead forecasting is not straightforward. Multi-step forecasts are more difficult to
assess than for linear models, because exact analytical solutions are not available most of the
times when the innovation distribution is unknown. For linear models this does not matter as
the multi-step predictors depend on the parameters and historical data and not on the innov-
ation distribution. Monte Carlo simulation can overcome this problem of unknown innovation
distribution for evaluating forecast performance for nonlinear STAR models. For evaluation
purposes simulation with resampling from the residuals of the established STAR model with
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1000 replications is considered.

For the ANN model forecasts case, mainly one-step-ahead forecasts are considered in the lit-
erature. This is due to the fact that there is an increased layer of difficulty in the application
of multi-step predictions. The most common method for ANN multi-step forecasting consists
of training a predictor for the one-step-ahead forecast and using it in a recurrent way for the
corresponding multi-step forecast. By making use of this method, the forecasts provided by the
ANN model for the next step are fed back into the input layer of the model until the desired
forecast horizon is reached. This method is usually called the iteration prediction. Applying this
method requires the same number of data points for training as in the one-step-ahead forecasts.

3.6 Statistical and economic criteria of out-of-sample forecasts

The evaluation of the accuracy of the forecasts and the tests are based on h = 1, ...,H forecasting
periods for stock index returns rh, called r̂h. For performance comparing the linear ARIMA
model, nonlinear STAR and ANN models and the hybrid model are considered.

3.6.1 Statistical measures and tests

In order to be able to compare the predictive ability of the different models, multiple out-of-
sample forecasts criteria and statistical tests are evaluated. The accuracy of the forecast of the
estimated models is compared by making use of the MAE, MAPE, RMSE, Theil’s U -statistic
and the proportion of the times that the signs of the stock index returns are correctly predicted
(Signs). The various hypotheses tests include the Pesaran and Timmermann test [30] for ex-
amining directional prediction accuracy of changes. Under the null hypothesis, observed and
forecasted values are independent.

Also the forecast encompassing test for out-of-sample forecasts given by Clements and Hendry
[6] is incorporated. Under the null hypothesis model i encompasses model j based on the forecast
errors from the two models (ei for model i and ej for model j). This test uses two regressions,
the first involves a least squares regression on eih = α1 +λ1(eih− ejh) +uh, for h = 1, ...,H and

obtains estimated coefficient λ̂1. The second regression obtains estimated coefficient λ̂2 from
ejh = α2 + λ2(eih − ejh) + uh for h = 1, ...,H. In both cases I analyse whether λ̂1 and λ̂2 are
statistically significant and thus indicate that one model encompasses the other.

Furthermore, the differences between RMSE is checked on significance for out-of-sample fore-
casts. This is done by making use of the equality of competitive forecasts by the Diebold and
Mariano forecast test [8], which is a rather general test of the null hypothesis of equal forecast
accuracy between two competing models. Given the one- or multi-step-ahead predictions, and
given the corresponding prediction errors of e1h and e2h the null hypothesis of E[dh] = 0 is
tested, where dh = g(e1h, e2h) (a function of prediction errors). I choose the function g(·) to be
of the absolute type dh = |e1h| − |e2h|.

4 Data

For comparing purposes between the different models I analyse the same dataset as described in
Pérez-Rodŕıguez et al. [29], which includes one of the official indexes of the Madrid Stock Market,
the Ibex-35 (Pt). This index is composed of the 35 most liquid assets which are listed in the
Computer Assisted Trading System (CATS), which during the analysed period were among the
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highest in trading volume in cash pesetas. This index is considered to be highly representative
for the market and is fitted by capitalisation and dividends of the assets included, but not
by expansions in capital. The index is designed to be used as a reference value in derivatives
trading products, e.g., options and futures. The CATS system is introduced onto the Madrid
Stock Market in September 1989, whereas my sample period starts in September 1991 due to a
lack of data. This study makes use of daily closing prices of the Spanish Ibex-35 index ranging
from 10 September 1991 to 10 February 2000, with a total of 2093 observations. This closing
prices series is transformed into a logarithmic value to compute continuous returns according
to the following expression: rt = log( Pt

Pt−1
).

5 Model identification and out-of-sample forecast results

5.1 Model specification and estimation

In this section I am going to analyse the out-of-sample forecasting ability of all the individual
models and the combined hybrid model. This forecasting ability is based on statistical ac-
curacy and economic criteria and is considered for both one- and multi-step-ahead forecasts.
The forecasts produced are compared for three different forecast horizons h = 1, ...,H, where
H ∈ {100, 200, 500}. For the forecast horizon of 500 trading days the European stock exchange
crisis of 1998 is included in the forecast period, which makes it particularly suitable for obtain-
ing robust results.

Prior to forecasting, there is an identification and estimation step for the models of interest
for in-sample performance. For the ARIMA(p, d, q) model this boils down to coefficient es-
timation for the in-sample-period of data using different values for the lagged and integrated
variables. I choose p, d = 0 and q = 1 for all the different forecast horizons on the basis of the
BIC. The ARIMA(0,0,1) model is equal to a MA(1) model, so a relative simple moving average
model with one lag is best able to capture the data for the considered combinations of p, d and q.

The two STAR models are identified and estimated in a similar fashion. This modelling proced-
ure is described in Granger and Teräsvirta [14]. The STAR models also include a lagged com-
ponent and an added delay parameter St = rt−d which is considered over the range 1 ≤ d ≤ 12.
For all ESTAR models with different time horizons the amount of included lagged variables
p = 1, again based on the BIC. For LSTAR models I find that the best model is specified for
p = 1 for the in-sample-period for establishing 100-trading day forecasts, p = 3 for the 200-
trading day hold-out sample and p = 2 for 500-trading day hold-out sample.

By making use of the linearity test I choose d = 6 for the 100-trading day hold-out sample,
d = 4 for the 200-trading day hold-out sample and d = 1 for the 500-day hold-out sample. The
parameters in the STAR models are estimated by the QMLE method and the BFGS numerical
algorithm.

Lastly, for the MLP model, I include one hidden layer. In general one hidden layer is specified,
because this is generally effective for capturing nonlinear structures [1]. For the hidden layer
various hidden units or elements are considered, as denoted by q. The parameters p, q and the
activation function g(·) are not chosen upfront. The amount of lags p are calculated by means
of a sequential validation, so models with different combinations of values for p and q are es-
timated. The relevant rank of the parameters that is taken into account is p, q = {1, ..., 5}. The
model consists of lagged stock returns which are scaled assuming a uniform distribution within
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the interval [-1,1], this is done for speed improvements and to make sure that the algorithm
does not get stuck in local optima. For the hidden unit activation function g(·) the hyperbolic
tangent function is used, which provides a better fit over other activation functions [16].

Afterwards, the MLP model is trained over a given period using 1500 cycles and cross-validation.
This set is used to estimate the weights of the neural network. For improvements of the in-
sample fitting, the estimated set of weights are used as a set of initial values. Furthermore
cross-validation is performed to avoid overfitting of the data. The models for different combin-
ations of p and q are then analysed in terms of minimisation of the RMSE. Best models are
yielded for p = 2 and q = 4 for all training samples with different forecast horizons.

Once the models are identified and the parameters are estimated, the forecasts can be construc-
ted. The findings of this empirical research are discussed in the next sections.

5.2 Statistical analysis of out-of-sample forecasts

Here I will discuss the model selection procedures which are described in section 3.6.1 focussing
on the the individual models and the combined hybrid model. First of all the basic statistic
properties of the produced forecasts are evaluated together with the market timing ability of
the different models. This is done for all different forecast methods and horizons. Also the
hypothesis of Pesaran and Timmermann [30] of directional accuracy is tested. Furthermore,
the forecast encompassing test is evaluated for all forecasts and finally the Diebold-Mariano
test for equal accuracy is compared for the predictions.

5.2.1 Goodness of forecast results

Table 1 shows the results of the different statistical measures for the forecasts over the different
procedures and horizons. Next to that the Signs-value and P-values of the Pesaran-Timmermann
test for directional accuracy (DA) are given for all models. The main findings of the forecast
evaluation are that even with inclusion of the hybrid model no single model performs best
if evaluated over all different forecasts. In fact, it is noticed that the results are fairly het-
erogeneous over the different models. The simple ARIMA model provides on average pretty
decent forecasts, but those remain somewhat conservative and do not capture the peaks in the
returns. In general the LSTAR and ESTAR models perform reasonably well in terms of the
MAE and MAPE, especially for the longer horizon (recursive) one-step-ahead forecasts. As
in Pérez-Rodŕıguez et al. [29] it is found that the MLP model provides good forecast for the
short-horizon forecasts, but deteriorates when the forecast horizon is extended. In terms of
MAPE the MLP and hybrid model do not seem to capture the returns very well, since these
values increase rapidly as horizon increases over all forecast methods.

Nevertheless, the MLP model and the hybrid model are of added value. Especially for the short
time horizon forecast, the hybrid model seems particularly useful. The hybrid model surpasses
the nondrift random walk method as calculated in Theil’s U -statistic at all forecast horizon and
forecast method. This means that the Ibex-35 stock index return can be predicted by these
models and that the random walk model does not seem to provide a reasonable description of
the movement of the index return. Next to that, if we look at it from a market timing perspect-
ive the hybrid model gives a slight improvement with respect to the other (non)linear models.
This is seen by the relatively high Signs values. However, this improvement is not significant
most of the times, since we do not reject the null hypothesis of the DA test that forecasts
and realisations are independent. Only for the 200-day horizon one-step-ahead forecast this is

11



rejected at a 5% significance level. This shows that the hybrid neural network model does not
perform significantly better than the other (non)linear models, because the null hypothesis of
independent realisations and forecasts is not often rejected.

Concluding, the hybrid model can be useful in predicting the sign of the returns, with relative
low errors for short forecast horizons. Also in terms of surpassing the nondrift random walk
the hybrid model seems superior. However, it is remarkable that the performance over longer
horizons is inferior to the individual (non)linear models in terms of forecast error.
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5.2.2 Forecast encompassing results

Table 2 reports the findings of the forecast encompassing test, which is a test for a two-by-two
comparison of the competing models. The table shows the P-values of t-statistics on the null hy-
pothesis of λ̂1 = 0 and λ̂2 = 0 for all i− j comparisons (for i, j = {ARIMA,ESTAR,LSTAR,
MLP, hybrid}). The general element is denoted by bij , where i is the i-th row and j is the

j-th column. When referred to bESTAR,ARIMA the P-value for λ̂1 (lower triangular matrix) is

considered and when referred to bARIMA,ESTAR (upper triangular matrix) the P-value for λ̂2 is
considered.

From table 2 two main results stand out. Firstly, the forecast encompassing test shows that
the ARIMA model almost always encompasses the other models for the longest horizon for
the (recursive) one-step-ahead forecasts. The forecasts of the ARIMA model are condition-
ally more efficient than those of the other models for the forecast horizon H = 500. Given that
bi,ARIMA < 0.05 for i = {ESTAR,LSTAR,MLP, hybrid} for the one-step-ahead and also holds

for i = {ESTAR, hybrid} for the recursive one-step-ahead forecasts. This indicates that λ̂1 is
statistically significant (P-value lower than 0.05 in lower triangular matrix). Thus, we reject
the null hypothesis and the ARIMA model encompasses the other models at a 5% significance
level. Secondly, one can see that the hybrid model does not often surpass the other individual
models. In fact, it is shown in the table that the hybrid model is more often being encompassed
than encompassing other models. The times that the hybrid model is encompassed is given
when bhybrid,j < 0.05 for j = {ARIMA,ESTAR,LSTAR,MLP} and the time it encompasses
another model is given when bi,hybrid < 0.05 for i = {ARIMA,ESTAR,LSTAR,MLP}. Espe-
cially at the 500-trading day forecast for (recursive) one-step-ahead methods, the other models
are conditionally more efficient than the proposed hybrid model. On the other hand, the oppos-
ite holds for the 200-trading day one-step-ahead forecasts, where the hybrid model significantly
encompasses every other model at a 5% significance level.

The reason behind the poor 500-day forecast performance of both the MLP as well as the
hybrid model is most likely due to the fact that overfitting occurs. The 500-trading day fore-
casts includes the European stock exchange crisis which generated high volatility across several
European markets. This volatility is not captured well by the specified (neural network) mod-
els. A solution to overcome this overfitting is to make use of an optimized approximation
algorithm as given by Liu et al. [23]. This algorithm is proposed to solve overfitting by utilizing
a quantitative stopping criterion based on the signal-to-noise-ratio figure (SNRF). The SNRF
estimates ratios of expected prediction errors and based on this figure an optimized approx-
imation algorithm can be proposed. Overfitting is automatically detected by the algorithm
by only making use of the training errors. The algorithm itself has been validated for optimiz-
ing the number of hidden neurons for MLP models and can often increase forecasting power [23].

Nonetheless, the table also shows that in some cases the hybrid model does encompass other
models. Mainly this occurs in the case of the 200-trading day one-step-ahead forecast. This
indicates that for some forecasting methods and horizons, the hybrid model can be slightly bet-
ter in terms of conditional efficiency. Especially during periods of relatively constant volatility
the hybrid model encompasses the other models as both linear as nonlinear parts are captured
adequately.

Therefore I conclude that the hybrid model can serve as an attractive alternative model for
forecasting in some cases. However, it does not consistently produce superior forecasts in
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general. Another remarkable finding is that for the multi-step-ahead case only one model
is encompassed, whereas Pérez-Rodŕıguez et al. [29] found much more rejections of the null
hypothesis for long horizon multi-step-ahead horizons. This difference in P-values can possibly
be explained by the selection of the training period, as the sample period differs with a lack of
two years, which yields different model parameters and thus different forecasts.

15



T
ab

le
2:

P
-v

al
u

es
as

so
ci

at
ed

w
it

h
th

e
h

et
er

os
ke

d
as

ti
ci

ty
-r

ob
u

st
t-

st
at

is
ti

cs
on

λ̂
1

an
d
λ̂
2

fo
r

al
l

p
os

si
b

le
i-

j
co

m
p

a
ri

so
n

s
b
a
se

d
o
n

O
L

S
re

gr
es

si
on

s

M
o
d
el
s

H
=
1
0
0

H
=
2
0
0

H
=
5
0
0

A
R
IM

A
E
S
T
A
R

L
S
T
A
R

M
L
P

H
y
b
ri
d

A
R
IM

A
E
S
T
A
R

L
S
T
A
R

M
L
P

H
y
b
ri
d

A
R
IM

A
E
S
T
A
R

L
S
T
A
R

M
L
P

H
y
b
ri
d

O
n
e-
st
ep

-a
h
ea
d

A
R
IM

A
-

0
.2
3

0
.2
6

0
.3
5

0
.5
2

A
R
IM

A
-

0
.4
0

0
.3
5

0
.3
7

0
.0
2
*

A
R
IM

A
-

0
.6
9

0
.3
2

0
.8
7

0
.8
3

E
S
T
A
R

0
.1
7

-
0
.7
4

0
.2
4

0
.4
4

E
S
T
A
R

0
.8
8

-
0
.5
5

0
.4
9

0
.0
3
*

E
S
T
A
R

0
.0
0
*

-
0
.4
1

0
.0
8

0
.1
0

L
S
T
A
R

0
.1
5

0
.4
9

-
0
.1
3

0
.4
0

L
S
T
A
R

0
.8
0

0
.6
2

-
0
.5
8

0
.0
4
*

L
S
T
A
R

0
.0
0
*

0
.0
0
*

-
0
.0
0
*

0
.0
0
*

M
L
P

0
.7
9

0
.6
7

0
.4
1

-
0
.6
2

M
L
P

0
.8
9

0
.5
3

0
.5
6

-
0
.0
3
*

M
L
P

0
.0
0
*

0
.0
0
*

0
.0
0
*

-
0
.6
5

H
y
b
ri
d

0
.1
6

0
.1
9

0
.2
3

0
.1
1

-
H
y
b
ri
d

0
.2
9

0
.2
2

0
.2
6

0
.2
3

-
H
y
b
ri
d

0
.0
0
*

0
.0
0
*

0
.0
0
*

0
.0
0
*

-

O
n
e-
st
ep

-a
h
ea
d

(r
ec
u
rs
iv
e
re
g
re
ss
io
n
)

A
R
IM

A
-

0
.4
0

0
.3
7

0
.6
2

0
.5
8

A
R
IM

A
-

0
.3
1

0
.1
1

0
.0
6

0
.2
6

A
R
IM

A
-

0
.9
3

0
.9
5

0
.1
6

0
.1
0

E
S
T
A
R

0
.0
4
*

-
0
.8
6

0
.1
1

0
.1
2

E
S
T
A
R

0
.3
6

-
0
.1
3

0
.3
5

0
.1
5

E
S
T
A
R

0
.0
1
*

-
0
.6
8

0
.0
0
*

0
.0
0
*

L
S
T
A
R

0
.0
4
*

0
.7
4

-
0
.1
0

0
.1
2

L
S
T
A
R

0
.7
0

0
.9
3

-
0
.3
0

0
.2
9

L
S
T
A
R

0
.0
6

0
.5
0

-
0
.0
0
*

0
.0
0
*

M
L
P

0
.2
7

0
.8
1

0
.7
5

-
0
.3
9

M
L
P

0
.0
0
*

0
.0
0
*

0
.0
0
*

-
0
.6
2

M
L
P

0
.8
2

0
.8
9

1
.0
0

-
0
.1
1

H
y
b
ri
d

0
.1
7

0
.4
7

0
.5
1

0
.2
4

-
H
y
b
ri
d

0
.0
7

0
.0
4
*

0
.0
2
*

0
.8
5

-
H
y
b
ri
d

0
.0
0
*

0
.0
1
*

0
.0
1
*

0
.0
0
*

-

m
u
lt
i-
st
ep

-a
h
ea
d

A
R
IM

A
-

0
.6
1

0
.7
0

0
.5
4

0
.6
0

A
R
IM

A
-

0
.2
1

0
.9
0

0
.8
6

0
.9
0

A
R
IM

A
-

0
.7
7

0
.8
8

0
.0
0
*

0
.7
2

E
S
T
A
R

0
.4
1

-
0
.7
1

0
.4
0

0
.4
8

E
S
T
A
R

0
.4
5

-
0
.5
4

0
.4
2

0
.4
6

E
S
T
A
R

0
.4
7

-
0
.6
8

0
.4
2

0
.4
6

L
S
T
A
R

0
.5
0

0
.9
4

-
0
.4
9

0
.5
8

L
S
T
A
R

0
.5
3

0
.1
9

-
0
.5
7

0
.5
2

L
S
T
A
R

0
.5
7

0
.8
4

-
0
.5
1

0
.5
5

M
L
P

0
.9
8

0
.6
0

0
.6
9

-
0
.5
9

M
L
P

0
.7
8

0
.2
0

0
.9
6

-
0
.4
6

M
L
P

0
.7
6

0
.7
3

0
.8
3

-
0
.7
5

H
y
b
ri
d

0
.3
2

0
.7
1

0
.7
9

0
.5
4

-
H
y
b
ri
d

0
.9
8

0
.2
2

0
.9
0

0
.4
8

-
H
y
b
ri
d

0
.7
4

0
.7
6

0
.8
6

0
.6
8

-

T
w

o
tr

ia
n

gu
la

r
m

at
ri

ce
s

fo
r

ea
ch

h
or

iz
on

an
d

fo
re

ca
st

m
et

h
o
d

.
U

p
p

er
tr

ia
n

gu
la

r
m

at
ri

x
co

rr
es

p
on

d
s

to
P

-v
a
lu

es
fo

r
λ̂
2

a
n

d
lo

w
er

tr
ia

n
g
u

la
r

m
at

ri
x

co
rr

es
p

on
d

s
to

P
-v

al
u

es
fo

r
λ̂
1
.

W
h

en
I

re
fe

r
to

th
e

P
-v

al
u

e
fo

r
λ̂
1
,

th
e

ro
w

is
th

e
i-

th
m

o
d
el

an
d

th
e

co
lu

m
n

is
th

e
j-

th
m

o
d

el
.

W
h

en
I

re
fe

r
to

th
e

P
-v

al
u

e
fo

r
λ̂
2
,

th
e

ro
w

is
th

e
j-

th
m

o
d

el
an

d
th

e
co

lu
m

n
is

th
e
i-

th
m

o
d

el
.

*
in

d
ic

at
es

th
a
t
λ̂
1

o
r
λ̂
2

is
si

g
n

ifi
ca

n
t

a
t

a
5
%

si
gn

ifi
ca

n
ce

le
v
el

.

16



5.2.3 Diebold and Mariano test results

Also I compare the produced forecasts by means of forecast accuracy by making use of the
Diebold and Mariano (DM) test considering the MAE loss function, which table 3 shows. The
test examines whether there is a significant difference in the MAE of the forecasts obtained
from the different models. The performed DM test is based on the absolute difference between
the MAE of two models, i.e. dh = |e1h| − |e2h|. The P-value associated with this outcome is
given in the upper triangular matrix for each combination of models over each horizon. The
lower triangular matrix is omitted because the matrix is diagonal symmetric, but with a multi-
plication of -1 of the upper triangular matrix. The e2 forecast errors are shown in the columns
and the e1 errors in the rows.

In the table multiple findings stand out. For the long horizon one-step-ahead forecasts, the
MAE of both the MLP and the hybrid model are significantly larger than those of the ARIMA
model. This indicates that the ARIMA model is relatively good at predicting the stock index
returns compared to (combined) neural network models over longer horizons. This holds for the
500-trading day one-step-ahead forecast as well as the 200-trading day recursive forecasts for
the MLP model. The MLP model produces significantly inferior forecasts and does not seem
to capture the movement of the stock index out-of-sample.

For the short forecast horizon of 100 trading days, the MLP and hybrid model perform well over
all three forecast methods. However, the MAE is not significantly lower than other models at the
conventional 5% significance level, but is in some cases at the 10% significance level. Concluding,
the hybrid model seem to capture the stock index return fairly well for short forecast horizons
of 100- and 200-trading days. However, as time horizon grows, the forecasts reduce in terms
of forecast accuracy. Also table 3 shows evidence of no superior model or forecast method in
general for the sample.
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6 Conclusions

I analysed five different models for forecasting the out-of-sample daily returns of the Ibex-35
index. The models of interest are the linear ARIMA model, the nonlinear ESTAR and LSTAR
smooth transition autoregressive models, an artificial neural network MLP model and a com-
bined hybrid ARIMA-MLP model. The comparison between these forecasts is carried out on
basis of a set of statistical criteria, while making use of different forecast methods and multiple
forecast horizons in order to obtain robust results.

As shown in Pérez-Rodŕıguez et al. [29], the random walk model is not a reasonable description
of the movement of the Ibex-35 stock index returns. This indicates a rejection of the efficient
market hypothesis and argues that nonlinear models may be more appropriate. Pérez-Rodŕıguez
et al. suggest that ANN techniques may be a more appropriate direction for improvement of
forecasting ability. This seems to hold for some cases of the one-step-ahead forecasts. For fur-
ther improvement I propose a combined ARIMA-MLP model. This model is able to capture
both the linear and the nonlinear habits of the stock index returns. This property could be of
potential added benefit over the individual MLP and ARIMA models.

Empirical analysis of the statistical properties of the produced forecasts shows that the hybrid
model can be particularly useful for short forecast horizons of 100- and 200-trading days, but
deteriorates as horizon grows. Also, the hybrid model is not always able to deliver superior
forecasts over the other proposed methods. I find that the ARIMA and STAR models produce
superior forecasts for 500-trading days. Over long horizons the forecast error increases and
MAPE explodes. Despite the fact that the market timing ability of the hybrid model is not
always significant, the hybrid model does a better job at correctly predicting the sign of the
index return than the other models do. This also holds for longer forecast horizons.

This pattern of fruitful short horizon forecasts, but inferior long horizon forecasts also resides in
the forecast encompassing test. For one-step-ahead forecasts and at short horizons the hybrid
model encompasses several other individual models, but at longer horizons all other individual
models encompass the hybrid model.

Furthermore this holds for the Diebold and Mariano test for different absolute forecast errors
as well. For small horizons it can not be rejected that the hybrid model produces equal fore-
casts in terms of MAE. However for longer horizons, it is rejected with a 5% significance level
that the hybrid model produces equal forecasts, due to relatively high MAE values at expense
of the hybrid model. The inclusion of the crash of European stock indices shows that the hy-
brid model is not able to produce adequate forecasts for this period of unforeseen high volatility.

After assessing and comparing different statistical criteria, I conclude that the return on the
Ibex-35 index can be predicted well by making use of a hybrid ARIMA-MLP model for a
relatively short time horizon, which is also supported by Zhang [37]. However, these findings
do not persist for longer time horizons with high volatility. Therefore, the hybrid model can
deliver a slight improvement in investment strategies for short-period forecasting over individual
(non)linear models.
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7 Discussions

In my empirical research the performance of the proposed hybrid ARIMA-MLP model is solely
evaluated for one stock index return series, this lead to limitations of the possible forecast im-
provement of the hybrid model. A possibly interesting research direction is to investigate the
performance of the hybrid model for aggregated stock returns or bonds as these have different,
possibly correlated, movements which the model might be capable of to account for.

Besides that, the proposed model is also heavily dependent on the period that is used for model
training. Multiple training periods, or longer periods with cross-validation could make sure
that no overfitting occurs in-sample and better forecasts can be made in different states of the
economy. To improve longer horizon forecasting overfitting needs to reduce. Due to the fact
that a European stock exchange crash is included in the longer horizon, the benefit of a (hybrid)
neural network model is marginal. The proposed model is not able to handle periods of volat-
ility clustering well within the stock index return data. I propose a method in section 5.2.2, as
used by Liu et al. [23], which can overcome overfitting and may be valuable for producing less
training-period dependent forecasts.

In this paper I make use of the hybrid ARIMA-MLP model as proposed by Zhang [37]. How-
ever, Khashei and Bijari [19] suggest a slight modification which seem to benefit forecasting
purposes. Their model also consists of a sum of a linear and a nonlinear component, but
handles the produced errors of the ARIMA model somewhat different. Instead of approaching
a suitable fit by making use of only the lagged errors, also past original return values, present
ARIMA-forecasted return values and past error sequence values are given as input to the ANN
model. This method shows to have better performance than Zhangs method in various applic-
ations in terms of accuracy of the forecasts. Whether this method could benefit stock index
returns forecasting remains for further research.

Next to that, not only observed or predicted values for the stock index, but also macroeconomic
variables could be of great influence on predicting the movement of the stock index returns.
Changes in GDP, incomes or the housing market may heavily effect the underlying stocks in
the index and have additional explanatory power when forecasting the index. Adding these
variables as input for (hybrid) neural network models may yield interesting results.

Furthermore the choice of the activation function and the the rescaling of the input data remains
for discussion. In this research I consider the relationship between one input and one neuron to
be defined by a hyperbolic tangent activation function. However, Kalman and Kwasny [18] dis-
cuss whether the hyperbolic tangent function should be used instead of for example the sigmoid
function. On the other hand, empirical results obtained by Maier and Dandy [24] indicate that
not only the hyperbolic tangent function is preferred over the logistic sigmoid function in terms
of computation speed, but also in forecast performance. However, my study lacks a comparison
between the performance of the logistic sigmoid function and the hyperbolic tangent function.

Lastly, the rescaling of the inputs to [-1, 1] limits the output range of the activation func-
tion approximately to [-0.7616, 0.7616]. These bounds are far away from the extreme limits
of the activation function. A small range of output values will make the output less sensitive
to the change of the weights between the hidden layer and the output layer, which will make
the training process more difficult. On the other hand, because the neurons in MLP models
are linearly combinations with many weights, any rescaling of the input vector can be effect-

20



ively offset by changing the corresponding weights and biases. This gives reasonable doubt
whether standardization of the input data may be a better choice than to rescale them into a
small interval, especially when the data size is large enough to show presence of extreme returns.
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