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Abstract

In this paper, I propose to include a ‘bad news’ index based on Google search

volume in a GARCH model. The resulting specification allows its parameters to vary

with the level of the index via a logistic transition function. In a simulation study, I then

illustrate the model’s dynamics and justify the use of maximum likelihood estimation,

as well as the validity of a Likelihood Ratio Test to verify the explanatory power

of the exogenous information. On a set of S&P 500 returns the test indicates that

including Google search volume improves the fit significantly for the periods during and

after the global financial crisis in 2008. A comparison to other GARCH specifications,

including an extended GARCH and spline-GARCH, shows that the proposed model

yields accurate Value-at-Risk predictions but the difference of its variance forecasts

to a realized variance proxy rank behind a standard GARCH(1,1) model in both an

in-sample and out-of-sample setting.

Keywords: GARCH model, varying parameters, Google Trends, Likelihood Ratio

Test, Realized Variance, Value-at-Risk
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1 Introduction

Correctly measuring and forecasting the volatility of asset returns as the underlying of various

securities, for portfolio management or as the basis for risk metrics has become increasingly

important in financial markets. Across markets and asset classes, large swings in returns are

more likely to be followed by large swings and vice-versa. Also, periods of large and small

variations alternate. This phenomenon is known as ‘volatility clustering’, which implies

a certain degree of predictability. Moreover, ‘bad news’ tend to have a bigger impact on

the volatility level than ‘good news’. This response is commonly known as the ‘leverage

effect’ (Black, 1976). However, political or economic shocks may change the dynamics of the

volatility series over longer periods of time and a model should account for it.

In the financial industry the General Conditional Heteroskedasticity (GARCH) model of

Bollerslev (1986) is still established as the ‘workhorse’. In its simplest form the standard

GARCH is able to explain the high persistence of the volatility or variance and provides

a good first impression of the dynamics of the series under investigation. Nonetheless, the

model requires the variance to be stationary over time. Although this assumption might hold

for shorter time spans, the long-run properties of volatility clustering may change over time.

Therefore, Teräsvirta and Amado (2008) propose a GARCH specification, whose parameters

change smoothly through time via a logistic transition function. In this way, the time-varying

GARCH (TV-GARCH) relaxes the assumption of stationarity and is able to capture trends.

However, also this specification expects that tomorrow’s variance can be predicted from

today’s variance and return without any uncertainty. But, there must also be an exogenous

component that goes beyond the variance’s own history, because news are still flowing in

after markets close.

Amongst others, Vlastakis and Markellos (2012) therefore suggest to incorporate internet

search volume as a proxy for investors’ demand for news. When the market is closed, investors

do not cease to search for information on financially relevant topics. As the internet has

become the primary source of information, the relative popularity of a specific search keyword

on the Google search engine is direct measure of investors’ attention (Da, Engelberg, & Gao,

2011). Thus, a sudden rise in the search volume of keywords with bad financial connotation,
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such as ‘inflation’, can be an indicator for ‘bad news’ arrivals.

In this paper, I amend the TV-GARCH of Teräsvirta and Amado (2008) by a ‘bad news’

index created from Google search volumes of keywords with a bad financial connotation.

Thus, the proposed model incorporates news also arriving, when the market is closed, and

can account for non-stationarity. The component that depends on the external variable is

added to a standard GARCH model and multiplied by a logistic transition function. This

property lets the model parameters vary with the level of the Google search volume and

implicitly with time. Consequently, the base variance level, the influence of the past returns

and the autoregressive component all fluctuate depending on the search interest of investors.

This approach is different from the popular method, in which the exogenous information

is added directly to the GARCH equation as a covariate, the so-called GARCH-X (Brenner,

Harjes, & Kroner, 1996). By offering more degrees of freedom, the proposed method allows

the search volume to influence the behavior of the conditional variance more flexibly. While

this property might be beneficial, it also comes with the risks of potential misspecification and

increased estimation noise. Furthermore, Engle and Rangel (2008) propose a specification,

in which the variance is multiplicatively decomposed in a stationary and a non-stationary

component. In their spline-GARCH model, the non-stationary part follows an exponential

quadratic spline, which is fitted to the data before estimation and is able to incorporate

exogenous information. In this way, Engle and Rangel are able to capture slow-moving

trends or seasonalities.

In a simulation study, I verify that the theoretical properties of a Likelihood Ratio Test

(LRT) hold, such that it can be applied to test the explanatory power of the Google search

volume on the variance. If the test statistic does not exceed the critical value, the difference

in likelihood compared to a standard GARCH is insignificant, so the likelihood added by the

exogenous variable is to neglect. Moreover, the simulations show that the model parameters

are estimated accurately by maximum likelihood, if the smoothness level of the transition

function is chosen in advance. In the case of a misspecification, the estimates that depend

on the external information become more noisy, but are still consistent.

For the empirical part of this paper, I focus on U.S data. In contrast to the European

market, where most of the income is deposited in savings accounts and investments are
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managed by institutions, American retail investors have a more pronounced equity culture

(Skypala, 2017). Because Google has become one of the primary sources of information

for retail investors, I focus on U.S. search volumes, which is publicly available via Google’s

service ‘Google Trends’. Moreover, I download a set of S&P 500 returns. This stock index is

often seen as a gauge of the U.S. equity market. For the evaluation of the variance estimates,

I employ a realized variance measure based on high-frequency data.

After testing the proposed specification on the data, the LRT suggests that including the

bad news index into the varying parameter specification improves the likelihood compared

to a standard GARCH model significantly. Hence, the Google search volume for keywords

with a negative financial connotation helps to explain the magnitude of the price swings in

the U.S. stock market. It also improves the out-of-sample predictions of the quantiles of the

conditional distribution in form of Value-at-Risk forecasts. Nevertheless, due to outliers in

the realized variance proxy during the financial crisis the accuracy of the variance estimates

falls behind the alternative GARCH specifications.

The rest of this paper is organized as follows. Section 2 discusses the relevant literature

about the development of different GARCH specifications as well as the use of Google Trends

in a financial context. In section 3, I describe the S&P 500 dataset alongside the variance

proxy and explain, which Google search keywords constitute the bad news index. Next, I

specify the model that allows its parameters to vary with the level of the Google Trends

index, as well as the other GARCH specifications that include exogenous information for a

later comparison. Then, I conduct a simulation study in section 5 to confirm the consistency

and accuracy of the estimated parameters and the properties of the Likelihood Ratio Test to

determine, if there is a significant relationship between the S&P 500 returns and the Google

Trends data. Lastly, I interpret the empirical results of Section 6 in a more general setting

and suggest further improvements.

2 Literature Review

Since the introduction of the Autoregressive Conditional Heteroskedasticity (ARCH) model

by Engle (1982) and its generalized extension by Bollerslev (1986), several more extensions
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have been developed, which can be summarized in two main categories. The first category

of models adjusts the standard specification such that the model provides a better fit to

the characteristics and statistical properties of the series under investigation. One impor-

tant example is the threshold GARCH (T-GARCH) model by Zakoian (1994), which takes

the leverage effect into account by treating the influence of positive and negative returns

differently.

Another line of research in this context has focused on relaxing the assumption of the

constant unconditional variance of the original specification and introduced time-varying

ARCH (Dahlhaus, Rao, et al., 2006) and time-varying GARCH (TV-GARCH) (Teräsvirta

& Amado, 2008) models. In both models the parameters are allowed to change smoothly

through time by the use of transition functions.

The second kind of GARCH extensions tries to capture the dynamics of the conditional

volatility by including exogenous information. Han and Kristensen (2014) verify that, if a

covariate is directly added to the conditional variance equation, the asymptotic properties

of the parameter estimates still hold, even if this variable is not stationary. The choices for

exogenous variables cover a wide range of economic and financial indicators such as trading

volumes and interest rate spreads.

Since Google search data has been made publicly available more than a decade ago, re-

searchers have found vast empirical evidence for a relation between internet search volume

and stock market returns. Preis, Moat, and Stanley (2013) have successfully implemented

a trading strategy based on Google search volume and Da et al. (2011) consider the Google

Trends series a good measure of investors’ intention. Therefore, Da, Engelberg, and Gao

(2014) also create an index out of search keywords with a negative connotation in an eco-

nomic sense to sum up investors’ fears and subsequently discover that an increase in the

index coincides with a temporary increase in volatility. Also Vlastakis and Markellos (2012)

find evidence for a significant positive relation between internet search volume and various

volatility measures, such as backward-looking historical volatility and forward-looking im-

plied volatility of option prices. Smith (2012) then extends their research from a firm level to

the market of exchange rates. In contrast to the previous research, the methods in this paper

propose a new way to include Google Trends data in a GARCH model to test its explanatory
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power on a major U.S. financial indicator.

A short experiment by Taleb and Goldstein (2007) shows that because volatility itself

is a latent variable, even experts in financial markets make the mistake of interpreting the

standard deviation of stock returns as a physical measure. This is one of the reasons why

simply taking the squared or absolute daily return leads to a noisy proxy. Since its formulation

by Andersen, Bollerslev, Diebold, and Labys (2001), the idea of using high-frequency data to

calculate ‘realized variance’ has been growing in popularity, because realized variance is an

unbiased and efficient estimator which is less prone to noise in the price measurement than

squared returns.

Nonetheless, realized variance, or volatility is still an imperfect proxy. When comparing

different volatility forecasts, this can lead to wrong rankings. Therefore, Patton (2011)

defines a set of loss functions that is robust to noise in the proxy and homogeneous in data

transformations, which includes the Mean Squared Error (MSE), but not the Mean Absolute

Error (MAE). Hence, I will prefer the MSE over the MAE, if the rankings based on these

measures contradict each other, even though the MSE is prone to outliers.

3 Data

3.1 Google Search Volume

Google provides publicly available data on its search engine activity dating back to 1st Jan-

uary, 2004 via ‘Google Trends’ (http://www.google.com/trends). The time series obtained

from the service are an unbiased and random sample that indicate the searches for a specific

keyword as a proportion of all searches on all topics on Google at certain points in time. The

scale of observations ranges from zero to 100 and value of 100 marks the time of the biggest

relative search interest. The service also lets the user obtain the search frequencies based on

the location of the queries. To facilitate the analysis of the U.S. economy, I therefore restrict

the data to searches coming from the U.S. only and thereby avoid including undesired search

interest coming from worldwide search activity.

For periods smaller than 90 days Google provides the data in daily frequency and periods

larger than 90 days and up to five years are provided in weekly frequency. Any date range
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that is longer than five years is only available in monthly frequency. For the analysis of a

sample of daily stock returns that is longer than five years, I thus need to obtain multiple

smaller samples of 90 days. I then rescale these daily values based on the monthly values

of the entire sample period. Finally, I divide the trend data by 100 to avoid computational

problems. As a last step, I discard the first observations from 1st January, 2004 until 26th

May, 2005 due to missing values in the starting phase of the Google Trends service, and all

non-trading days such that the final sample starts on 27th May, 2005 and constitutes of 3146

observations.

As search keywords I consider financially relevant terms with connotations of bad news

for the economy based on a measure created by Preis et al. (2013) and the Financial and

Economic Attitudes Revealed by Search (FEARS) index of Da et al. (2014). Preis et al.

(2013) propose to measure relevance by the number of occurrences of a word in the Financial

Times newspaper normalized by the amount of hits on Google, while Da et al. (2014) identify

keywords that are negatively related to asset returns. Thus, I include those search terms that

are in the intersection of the ‘FEARS’ index and the keywords of the analysis of Preis et al.

(2013). These terms are ‘crisis’, ‘default’, ‘economy’, ‘inflation’ and ‘unemployment’. Finally,

I take the average of over all keywords at each point in time to create my ‘bad news’ index.

(a) Google Trends index (b) Realized volatility

Figure 1: Comparison of the ‘bad news’ index and the realized volatility proxy
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(a) Crisis (b) Default

(c) Economy (d) Inflation

(e) Unemployment (f) Google Trends index

Figure 2: Individual search volume series next to Google Trends index
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Figure 1 illustrates how the index level develops over time. After fluctuating around its

mean in the beginning of the sample, the search interest reaches its peak after the global

financial crisis of 2008. Hence, the peak of the Google Trends index is at the same time as

the most volatile period of the S&P 500. In addition, Figure 2 displays the constituents of

the index individually. Aside from ‘inflation’, all series exhibit a sharp increase around the

crisis. The search volume of ‘crisis’ experiences a few smaller peaks every time more news

about the European sovereign debt crisis emerge. Also the series of ‘unemployment’ follows

a different pattern than the other constituents. After the sudden rise in search interest,

the series returns to its pre-crisis level only slowly. This is an indication for the fact after

workers lost their jobs at the beginning of the financial crisis continue to look for the term

‘unemployment’ until the economy picks up again and they find a new job.

Table 1: Summary statistics of the Google Trends data

Crisis Default Economy Inflation Unemployment Google index

Mean 0.271 0.594 0.377 0.447 0.221 0.384

Std deviation 0.084 0.110 0.104 0.113 0.119 0.069

Max 1.000 1.000 1.000 1.000 1.000 0.757

Min 0.000 0.226 0.117 0.000 0.000 0.194

Skewness 1.746 0.518 0.589 0.337 1.340 0.673

Kurtosis 8.328 0.114 1.764 0.839 1.936 1.339

T 3146 3146 3146 3146 3146 3146

3.2 Stock Data

I obtain daily returns of the S&P 500 index from the Realized Library of the Oxford-Man

Institute of Quantitative Finance. As the index is often perceived as an accurate gauge of

the U.S. equity market, modeling its volatility helps to quantify the current uncertainty in

the U.S. economy and financial markets. The dataset consists of 3146 observations from 27th

May, 2005 to 29th December, 2017 and includes periods of high volatility around the financial
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crisis in 2008 in the first half as well as less volatile periods in the second half. I report the

summary statistics of the entire sample and the separate halves in the Appendix.

Figure 3: Daily S&P500 returns

Conditional variance itself is a latent variable. Therefore, I need to substitute a proxy for

model evaluation purposes. Following Liu, Patton, and Sheppard (2015), I employ realized

variance based on 5-minute high frequency data, which is also available in the Realized

Library. In general, I only use the realized variance to compute the loss functions and not as

a model input.

4 Model

As a starting point for all models presented in this paper I specify the following process for

the stock returns: Let rt be the daily return at time t and I assume that

rt = µ+ εt,
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where E[εt|It−1] = 0, and E[ε2t |It−1] = σ2
t and It−1 = {rt−1, rt−2, ...} is the information set

available at time t− 1. Furthermore, let

εt = ztσt, (1)

with zt ∼ GWN(0, 1), such that E[rt|It−1] = µ and V ar[rt|It−1] = E[(rt − µ)2|It−1] = σ2
t .

The standard GARCH(1,1) specification introduced by Bollerslev (1986) is already able to

model volatility clustering and determines the conditional variance σ2
t as

σ2
t = ω + αε2t−1 + βσ2

t−1. (2)

This process is stationary, if α + β < 1 and to ensure a positive conditional variance α, β >

0. In some papers Equation (2) is referred to as a ‘filter’ and only uses backward-looking

information.

4.1 Varying parameter specification

To relax the assumption of a stationary variance, assume that σ2
t is varying and measurable

by an additive structure

σ2
t = ht + gt, (3)

where ht is a stationary process and follows the GARCH(1,1) model

ht = ω + αε2t−1 + βht−1 (4)

and gt induces non-stationarity in (3). Teräsvirta and Amado (2008) define gt as

gt = (ω∗ + α∗ε
2
t−1 + β∗ht−1)G(·), (5)

where G(·) is a non-negative, continuous function, bounded between zero and one and the

standard specification of Equation (2) is nested in (3) if gt = 0. However, instead of letting

G(·) depend on t∗ = t
T

, with T being the total number of observations, so the GARCH

parameters vary smoothly over time, I deviate from their approach and let G(·) depend on

the exogenous variable xt. Then, the parameters fluctuate with the level of the exogenous

variable and I can combine (3) - (5) to

σ2
t = ω(xt−1) + α(xt−1)ε

2
t−1 + β(xt−1)σ

2
t−1, (6)

10



with ω(xt) = ω + ω∗G(xt), α(xt) = α + α∗G(xt), and β(xt) = β + β∗G(xt) and to ensure

positivity of the conditional variance ω(xt), α(xt), β(xt) > 0. Moreover, for estimation I

employ the condition α(xt) + β(xt) < 1, which establishes second order stationarity.

According to Teräsvirta and Amado (2008), a reasonable choice for G(xt) is the general

logistic function defined as

G(xt; γ, c) = (1 + e−γ(xt−c))−1. (7)

When xt = c, G(xt; γ, c) = 0.5 and I select c to be the sample mean of xt. The parameter

γ controls, how smoothly the function transitions from zero to one. Figure 4 illustrates,

how the transition function evolves for different values of γ. More specifically, if γ = 1 the

function is a straight line, while it approaches the step function for large values of γ > 100.

Then, the transition becomes steep and transforms the model to some extent into a switching

model whose dynamics change immediately, as soon as the exogenous variable deviates from

its mean level.

Figure 4: Plots of the transition function with location parameter c = 0.5 and smoothness

level γ = 1, 5, 25, 50, 100.
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4.2 Constant parameter specification

A popular method to include exogenous variables into the volatility dynamics is to add the

additional regressors directly to the variance in (2), such that

σ2
t = ω + αε2t−1 + βσ2

t−1 + πxt−1. (8)

The model needs the same restrictions as the standard GARCH specification, namely ω, α, β >

0 and α + β < 1.

Additionally, π > 0 and the exogenous variable is often squared to ensure positivity,

but as the Google Trends series are bounded between zero and 100, a transformation is not

necessary in this case. Compared to the standard GARCH specification in Equation (2), the

extended-GARCH (GARCH-X) in Equation (8) introduces only one more parameter to be

estimated, but the parameters are not allowed to vary and the external information enters

linearly. Even though, the GARCH-X is therefore not able to model non-stationarity in the

conditional variance, according to Han (2015) it still provides additional explanations to the

stylized facts of returns that the standard GARCH(1,1) cannot capture. Yet, this property

depends on the explanatory power of the covariate.

4.3 Spline-GARCH

Another approach to include exogenous information is to follow Engle and Rangel (2008)

who separate slow-moving trends and seasonality in volatility from the standard GARCH

process by fitting an exponential quadratic spline. Their spline-GARCH model is defined as

follows:

εt =
√
τtσ2

t zt, (9)

where σt follows the standard GARCH specification as in (2) and zt ∼ GWN(0, 1). The

spline τt is defines as

τt = c exp(w0t+
k∑
i=1

wi max(t− ti−1, 0)2 + πxt), (10)

with exogenous information xt and k knots at t1, t2, . . . tk. The number of knots is chosen by

minimizing the Bayesian Information Criterion (BIC) and there is an equal distance between
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each knot. The difference to the previous specifications is that in this case the exogenous

information enters multiplicatively. Furthermore, the spline is fitted before estimation, so the

parameters are determined conditional on the position of the knots. In that sense, the model

also incorporates forward-looking information. Through the smooth spline this specification

is able to handle non-stationarity, but in highly volatile periods of small datasets the spline

might be too smooth to react to shocks in the variance.

4.4 Estimation

Under the assumption that the error terms are normally distributed, estimates of the pa-

rameter vector θ for all model specifications are obtained by maximizing the log-likelihood

function

`(θ) =
T∑
t=1

−1

2
ln(2π)− 1

2
log[σ2

t (θ)]−
ε2t

2σ2
t (θ)

(11)

with respect to θ. The fact that εt is assumed to be Gaussian does not directly imply that the

unconditional distribution of the returns is Gaussian. Under this assumption the uncondi-

tional distribution can still present the excess kurtosis that is often observed in stock returns.

In this paper the normal distribution is chosen for simplicity and to increase computational

speed. Nonetheless, I provide an example with t-distributed error terms in Section 6.5 as a

Sensitivity Analysis.

Further, I compute the standard errors around the parameter estimates using the so-called

‘sandwich’ form by Bollerslev and Wooldridge (1992), which is defined as

SE(θ) = diag((J −1IJ −1)
1
2 ), (12)

where J is the expected Hessian and I is the covariance matrix of the log-likelihood scores.

Both are approximated numerically (Sheppard, 2012).

In the case of varying parameters, σ2
t (θ) = ht(θ1) + gt(θ2) with θ1 = (ω, α, β)′ being the

standard GARCH parameters and θ2 = (ω∗, α∗, β∗, γ)′, while I choose the smoothness level

γ before estimation. If γ is estimated alongside the the other parameters, its standard error

is large (a multiple of 10). However, this is not a sign of its insignificance, but rather an

indication that θ2 and the log-likelihood are insensitive to small changes in γ and an exact

estimate is not necessary. Therefore, it suffices to search for the neighborhood of the true γ
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on a fairly coarse grid by choosing it before estimation and taking the value which yields the

biggest likelihood.

For GARCH models with time-varying parameters Dahlhaus et al. (2006) showed that

the time-varying model can be locally approximated by stationary models such that the

maximum likelihood estimates are consistent and have asymptotic properties. In the case of

this analysis, where the model parameters vary with the level of the exogenous variable, I

verify the model and the estimation accuracy by conducting a simulation study.

5 Simulation Study

In this section I conduct a simulation experiment to assure that all parameters of the proposed

specification in Section 4.1 are estimated correctly by maximum likelihood and evaluate, how

the dynamics of the varying parameter specification enter in a model with constant parame-

ters. Further, I verify that a Likelihood Ratio Test (LRT) can be applied to detect, whether

adding an external variable improves the fit significantly. All calculations and simulations are

run in Python 3.5. For the numerical maximization of the log-likelihood function I employ

the Sequential Least Squares (”SLSQP”) (Kraft, 1988) algorithm from the SciPy package.

Following the additive structure of Equation (3) in Section 4.1, I consider two data gen-

erating processes (‘DGP’). In the first case

DGP 1 : σ2
t = ht + gt, (13)

where ht again follows the GARCH(1,1) model

ht = ω + αε2t−1 + βht−1

and

gt = (ω∗ + α∗ε
2
t−1 + β∗ht−1)G(xt−1).

In the second case

DGP 2 : σ2
t = ht, (14)

with gt = 0, so there is no influence of external factors on the conditional variance. The

parameters for both simulations are shown in Table 2. I choose the values of the DGP
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parameters after a test estimation on empirical data. In this estimation, γ was computed

by maximum likelihood alongside the other parameters. Results for different values for γ

are reported in the Appendix. In DGP 1, the past returns lose their influence, when the

exogenous variable increases, while at the same time the process becomes more persistent.

On the other hand, DGP 2 is a standard GARCH process with constant parameters.

Table 2: Simulation parameters

ω α β ω∗ α∗ β∗ γ

DGP 1 0.012 0.12 0.85 0.09 -0.11 0.14 77

DGP 2 0.012 0.12 0.85 - - - -

I consider a sample size of T = 3146 and discard the first 100 observations to reduce the

initialization effect, and N = 5000 repetitions. Figure 5(a) and (b) show examples of return

series based on DGP 1 and DGP 2, respectively. Both use the same random seed, but only

Figure 5(a) includes the effects of the exogenous variable. Therefore, the period in which the

graph exhibits the highest volatility coincides with the period of the bad news index reaching

its peak and the largest variations in return cluster around the 1000th observation. In

Figure 5(b) on the other hand, the exogenous information has no influence and the volatility

clustering appears randomly.

Figure 6 (a) depicts the first 100 autocorrelations of absolute returns created by DGP

1 (blue) and DGP 2 (orange). The horizontal lines represent the 95% and 99% confidence

bounds. The degree of persistence created by the first process is higher than the one of

a standard GARCH process and therefore closer to the behavior of the S&P 500 dataset

(Figure 6(b)) and also consistent with slowly declining autocorrelations of absolute returns

in other datasets.

For the remainder of the simulation study I simulate the exogenous information xt along-

side the returns to improve its reliability for other datasets and assume xt to follow an

autoregressive process of order 1, such that

xt = 0.38 + 0.85xt−1 + εt, εt ∼ N(0, 0.042).
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(a) Varying parameter specification (b) standard GARCH specification

Figure 5: Simulated returns of GARCH processes with and without varying parameters

(a) Varying parameter specification (blue) and

standard GARCH specification (orange)

(b) S&P 500

Figure 6: The first 100 autocorrelations of absolute returns with 95% (and 99%) confidence

intervals.

The coefficients of the process correspond to the parameters estimates of an AR(1) model

fitted to the Google Trends index.
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5.1 Estimation accuracy

Table 3 displays the true values plus the mean, standard deviation, median, 2.5% and 97.5%

percentiles of the sample of estimated parameters. I choose γ in advance, so it is not estimated

alongside the other parameters. The numbers in Table 3 show the case, when γ is indeed

set to its true value. The other cases of γ being misspecified as either too high or too low

are reported in the Appendix in Table 15. The means and medians of the ht parameters

θ1 in Panel A of Table 3 do not significantly differ from their true values. In contrast, the

parameter vector θ2 of gt is not estimated as precisely and both mean and median indicate

that the magnitude of the coefficients is underestimated. Especially the estimation of β∗ is

relatively inaccurate and has the largest error. Its true value of 0.14 is undershot by both

mean (0.051) and median (0.073). Nonetheless, the true value lays within one standard

deviation from the mean. In general, the 95% confidence interval, given by the percentiles,

includes the true values in all cases. If γ is misspecified, the errors around all estimates

increase and the means of θ2 are further off their true values. Yet, the model still estimates

θ1 accurately and for both θ1 and θ2 the percentiles contain the true values.

The results for θ1 of DGP 2 in Panel B of Table 3 correspond to the results for DGP

1. Again, both means and medians are close to the true values of θ1 and the confidence

intervals are small. Because θ2 is unspecified in DGP 2, the standard deviation around α∗

and β∗ increase and the means shrink closer to zero. Yet, with a value of 0.014 ω∗ is close

to the mean of ω (0.012), although ω∗ is unspecified. From the simulation results in Panel

B I cannot definitely conclude that gt = 0. Therefore, I specify a test in Section 5.3 to

investigate, if gt is indeed insignificant, even though not all elements of the parameter set θ2

are estimated to be zero.
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Table 3: Simulation results of the varying parameter GARCH for 5000 replications

Panel A

DGP 1 Parameter True value Mean Std. Median 2.50% 97.50%

θ1

ω 0.012 0.014 0.005 0.014 0.006 0.024

α 0.12 0.121 0.015 0.120 0.093 0.152

β 0.85 0.857 0.017 0.857 0.822 0.888

θ2

ω∗ 0.09 0.032 0.041 0.024 -0.020 0.130

α∗ -0.11 -0.080 0.034 -0.082 -0.139 -0.008

β∗ 0.14 0.051 0.086 0.073 -0.183 0.156

γ 77 77

LL -3408.94

Panel B

DGP 2 Parameter True value Mean Std. Median 2.50% 97.50%

θ1

ω 0.012 0.012 0.004 0.012 0.005 0.020

α 0.12 0.123 0.017 0.122 0.094 0.158

β 0.85 0.847 0.019 0.849 0.808 0.880

θ2

ω∗ - 0.014 0.028 0.008 -0.018 0.084

α∗ - -0.006 0.042 -0.006 -0.087 0.082

β∗ - -0.045 0.099 -0.026 -0.299 0.089

γ - 77

LL -2627.49

Notes: True values plus the mean, standard deviation, median, 2.5% and 97.5%

percentiles of the sample of estimated parameters of the varying parameter spec-

ification on DGP 1 and DGP 2. γ is chosen in advance, so it is not estimated

alongside the other parameters by maximum likelihood.
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5.2 Constant versus varying parameter specification

Further, I investigate, if a model with a constant parameter specification, where the exogenous

variable enters linearly is able to grasp the nonlinear effects induced by gt. Table 4 includes

the summary statistics of the sample of GARCH-X parameters estimates based on 5000

replications for DGP 1 and DGP 2. The mean of π in Panel A indicates that the linear

model is able to pick up the external influence to a certain extent, but the means of ω and

β deviate from their true values with differences of 0.005 and 0.013, respectively. The mean

of ω is also more than two standard deviations away from its true value. So, the constant

specification does not collect all of the influence of gt in π and distributes it across the

constant and the autoregressive component. On the other hand, the model captures the

influence of the squared returns accurately, as the mean of α (0.112) almost matches the true

value of 0.12. In general, the model’s average log-likelihood is smaller than the one of the

varying parameter specification and when both are estimated on the same simulated returns,

the varying parameter model yields a better fit in 97% of the cases.

In Panel B both mean and median of π rightfully decrease and converge to zero with

values of 0.006 and 0.000, respectively. Also the means of ω, α and β are closer to their

true values. In fact the mean of ω matches the true value of 0.012 exactly and its standard

deviation decreases by a factor of 4.5 compared to the estimates in Panel A. On the other

hand, the noise around β increases slightly. Essentially, this analysis indicates that a model

with constant parameter specification is not able to identify the two different constants ω

and ω∗ induced by DGP 1. As a consequence for the application on empirical data, large

standard errors around the estimates of ω and π of the GARCH-X suggest that in this case

the exogenous information does not enter linearly and the varying parameter specification

will provide a better fit to the data.
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Table 4: Simulation results of the GARCH-X for 5000 replications

Panel A

DGP 1 Parameter True value Mean Median Std. 2.50% 97.50%

ω 0.012 0.007 0.006 0.018 0.001 0.016

α 0.12 0.112 0.112 0.013 0.087 0.137

β 0.85 0.863 0.863 0.015 0.832 0.891

π gt 0.026 0.026 0.032 0.002 0.056

LL -3411.52

Panel B

DGP 2 Parameter True value Mean Median Std. 2.50% 97.50%

ω 0.012 0.011 0.012 0.004 0.002 0.019

α 0.12 0.119 0.119 0.014 0.093 0.149

β 0.85 0.845 0.845 0.017 0.811 0.876

π 0 0.006 0.000 0.010 0.000 0.032

LL -2629.11

Notes: True values plus the mean, standard deviation, median, 2.5% and 97.5%

percentiles of the sample of estimated parameters of the GARCH-X on DGP 1

and DGP 2.

5.3 Likelihood Ratio Test

Finally, to test, whether there is a relationship between the external variable and the condi-

tional variance, and including it by means of the varying parameter specification improves

the fit, I propose to use a Likelihood Ratio Test (LRT). More specifically, the standard

GARCH model with parameters θ1 is nested in the the varying parameter specification, if

gt = 0 and consists of four parameters less. The LRT compares the goodness of fit of both
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models with the null hypothesis that the models do not differ significantly, such that the

more parsimonious model is preferred. The statistic of the test in this case is defined as

D = −2
L(θ̂1)

L((θ̂1, θ̂2)′)
(15)

and follows a chi-squared distribution with four degrees of freedom (Casella & Berger, 2002).

If the null hypothesis is rejected, the varying parameter specification, with parameters θ1 and

θ2, improves the fit significantly. Otherwise the external variable has no meaningful influence

on the conditional variance.

To examine the validity of the LRT in this context, I simulate again from both DGPs.

When applying the test combined with a 5% significance level on N simulations from DGP

1 that include the external effects, I expect a rejection rate of 95%. Equivalently, when

simulating from DGP 2, I expect a rejection of the test in 5% of the cases. Nevertheless, this

also requires that the statistic is indeed chi-squared distributed.

Table 5: Rejection rates of the LRT for 100 and 1000 simulations

DGP 1 DGP 2

N Rejections Rate N Rejections Rate

100 94 0.94 100 3 0.03

1000 920 0.92 1000 25 0.025

Notes: Theoretically true rejection rates: 0.95 for

DGP1; 0.05 for DGP2

Table 5 contains the results of this analysis. In both cases, the rejection rates are slightly

lower than they should be. However, they are still close enough to their theoretically true

values, such that the test is valid when applied on empirical data and the chi-squared distri-

bution is a legitimate choice.
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6 Empirical Results

6.1 Setup

In this section, I illustrate the relation between the bad news index based on Google search

volume and the conditional variances of S&P 500 returns. I examine the degree if nonlin-

earity of this relationship by choosing the smoothness parameter γ such that the resulting

varying parameter specification (vpx-GARCH) provides the best fit. Then, I compare the

performance of this specification against a standard GARCH model, the GARCH-X and the

spline-GARCH with regard to goodness of fit and accuracy and employ the Likelihood Ratio

Test (LRT) to determine, whether the bad news index carries explanatory power. Besides

the log-likelihood, I report the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC). Both criteria are based on the likelihood, but penalize models for including

extra parameters. For ranking the models in terms of accuracy, I follow the approach of

Patton (2011) and compute the Mean Squared Error (MSE), which is robust against noise

in the realized variance proxy. Additionally, I report the Mean Absolute Error (MAE) as a

second measure, which is less prone to outliers, but at the same time less robust to noise in

the proxy to investigate, if both measures imply the same ranking.

Secondly, I split the sample in two halves to investigate, if the effect of including the

bad news index differs for the period during the financial crisis and the more stable times

afterwards. In addition to the in-sample estimates of the full sample, I generate 300 out-of-

sample one-step rolling window forecasts. For each model this involves repeatedly placing

the last return and estimate of the rolling sample in the respective GARCH filters after the

estimation of the parameters and I set the cutoff point at the three quarters of each sample.

Then, I use these out-of-sample forecasts to calculate 300 daily 95% Value-at-Risk (VaR)

estimates for both halves and determine how often the actual daily losses exceed the VaR

predictions. Ultimately, I employ the Kupiec test (Kupiec, 1995), which can reject a model

for too many or too few violations.

Before each estimation, I de-mean the return series to assure that I only capture the effect

of the external information on the conditional second moments. Again, I run all models on

Python 3.5 and use the SLSQP algorithm (Kraft, 1988) for the numerical minimization of

22



the negative log-likelihood function of all model specifications. I initialize the optimization

multiple times at random starting values that satisfy all constraints and save the estimates

that yield the most optimal log-likelihood value.

6.2 Full sample results

Table 6: Estimates and log-likelihoods for different values of γ

Full sample γ ω α β ω∗ α∗ β∗ LL

1 0.002 0.132 0.850 0.225 -0.132 0.150 -3855.94

(0.001) (0.033) (0.043) (0.080) (0.047) (0.158)

5 0.001 0.134 0.845 0.256 -0.134 0.155 -3851.39

(0.001) (0.033) (0.044) (0.085) (0.046) (0.156)

25 0.013 0.134 0.841 0.126 -0.134 0.159 -3845.69

(0.005) (0.021) (0.022) (0.066) (0.033) (0.113)

50 0.016 0.134 0.840 0.093 -0.134 0.160 -3844.49

(0.006) (0.020) (0.022) (0.068) (0.032) (0.108)

100 0.017 0.134 0.840 0.072 -0.134 0.160 -3844.72

(0.007) (0.020) (0.023) (0.069) (0.032) (0.106)

Notes: Estimates of the varying parameter specification on the full sample of S&P 500

returns. γ is chosen before estimation. Numbers in brackets are standard errors as in

Bollerslev and Wooldridge (1992) based on numerical derivatives developed by Sheppard

(2012). Bold numbers highlight the parameter set with the highest log-likelihood.

Table 6 contains the parameter estimates and log-likelihood for different values of γ and

Figure 7 illustrates the corresponding transition functions of the parameters for different

smoothness levels. The dotted line in the graph represents the constant estimates of a

standard GARCH estimates (Table 18 in the Appendix). The intercept ω(xt) is rather

sensitive to changes in γ as ω increases and ω∗ decreases, when γ increases. From γ = 1 to

100, ω increases by 8.5 times and ω∗ at γ = 100 is only a third of its value at γ = 1. The
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opposite effect is visible for β(xt) but the relative differences are smaller. Finally, α(xt) is

the least sensitive and raising γ only steepens the transition.

(a) ω(xt) (b) α(xt)

(c) β(xt) (d) Legend

Figure 7: Transition functions of the parameters for different values of γ

Both ω(xt) and β(xt) are increasing in xt, which means that a high level of the news index

raises the base variance level and makes the dynamics more persistent. Contrarily, α(xt) is

a decreasing function and even falls to zero for in extreme cases. So, the dynamics of the

conditional variance are solely driven by the autoregressive component and past shocks lose

their influence entirely, as soon as the Google search volume index is above its mean.

For all values of γ the standard errors around the parameters that are multiplied by the
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transition function are higher than their standard counterparts θ1. For instance, the standard

error around β∗ is about five times larger than around its counterpart β. Except for ω, all

standard errors are decreasing functions of γ.

The model fits best for γ = 50 and therefore I select this specification for the remainder of

the empirical analysis. However, the difference in likelihood to even higher values of γ is only

minor. At a log-likelihood of -3844.49 the vpx-GARCH including the Google Trends index

provides a better fit than the standard GARCH specification, given in Table 7. Furthermore,

the LRT statistic introduced in the previous section then exceeds the critical values at 95%

(9.49) and 99% (13.28) with a value of 40.20. The same specification including a series

of random draws between zero and one instead of the Google Trends index, yields a log-

likelihood of only -3863.24 and leads to a rejection of the model. Thus, adding the bad news

index as exogenous information improves the likelihood significantly and carries explanatory

power for the conditional second moment.

Based on the other fit criteria provided in Table 7, the varying parameter specification

also beats the more parsimonious GARCH-X, because both its AIC and BIC are smaller.

Nonetheless, the spline method, which uses forward-looking information, still provides the

best fit out of all specifications with a log-likelihood of -3808.87. The spline-GARCH beats

the other specifications even with regards to AIC and BIC, although it involves the estimation

of 12 parameters with seven knots.

The differences between the realized variance proxy and the estimated conditional vari-

ances contradict these results. Although the spline-GARCH also produces the lowest mean

absolute and mean squared errors, the varying parameter specification ranks last in both

measures and the standard GARCH is in the second place. The bad performance of the

vpx-GARCH can be explained by its underestimation of a few huge outliers in the proxy.

In October 2008, the graph of the realized variance displays a spike. This spike is so large

in magnitude that its underestimation makes up a large portion of both MSE and MAE.

At this point in time, the bad news index is above its mean, so the process is highly per-

sistent, but neglects the influence of the past return. Therefore, the model cannot react to

the outlier. Figure 8 shows the cumulative MSE and MAE of all four models. The spike of

the orange line in both subplots hence suggests that the estimate of the vpx-GARCH misses
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the outliers in 2008 to a greater extent than the other specifications. After the spike, the

orange line actually depreciates at a higher rate, which is a reason for the high likelihood of

the vpx-GARCH.

Table 7: Fit and errors of different specifications based on the full sample

Fit in-sample

LL AIC BIC MSE MAE

standard GARCH -3864.59 7735.18 7747.83 3.813 0.628

vpx-GARCH -3844.49 7702.98 7732.49 4.390 0.645

GARCH-X -3860.14 7728.27 7745.13 3.845 0.638

spline-GARCH -3808.87 7641.73 7692.32 3.227 0.567

Notes: Bold numbers represent the value, which ranks first for a certain

criterion. Specifications: spline-GARCH, 7 knots; vpx-GARCH γ = 50

(a) Cumulative MSE (b) Cumulative MAE

Figure 8: Cumulative MSE and MAE of in-sample fitted values
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6.3 Time-varying effects

Table 8: Split sample estimates for γ = 50

Sample γ ω α β ω∗ α∗ β∗

Full sample 50 0.016 0.134 0.840 0.093 -0.134 0.160

(0.006) (0.020) (0.022) (0.068) (0.032) (0.108)

27.05.2005 - 02.09.2011 50 0.018 0.105 0.874 0.092 -0.105 0.126

(0.011) (0.017) (0.021) (0.134) (0.041) (0.114)

06.09.2011 - 04.12.2017 50 0.017 0.241 0.755 0.128 -0.202 -0.094

(0.007) (0.041) (0.042) (0.058) (0.088) (0.110)

Notes: Estimates of the varying parameter specification on the full sample and both

sample halves of the S&P 500 returns. γ is set to 50 before estimation. Numbers in

brackets are standard errors as in Bollerslev and Wooldridge (1992) based on numerical

derivatives developed by Sheppard (2012).

The parameter estimates of the full sample are mainly characterized by the effect of the global

financial crisis. The signs of the estimates in Table 8 that are based only on the first half of

the dataset, which includes the crisis, are equal to the estimates of the entire sample and they

only differ in magnitude. As soon as the bad news index is above its mean level, the past

returns lose their influence and the process becomes highly persistent in the autoregressive

component β(xt).

On the other hand, estimating the model on the second, more stable half makes β(xt) a

decreasing function, such that for this sample, the model sets the conditional variance mainly

by shifting the constant and the past shocks never lose their influence entirely, as α+α∗ > 0.

In this half, the standard error around β∗ is with a value of 0.110 larger in an absolute sense

than the coefficient of -0.094. Hence, it is likely that β(xt) = β and therefore a constant.

In both halves, including the bad news index in the model improves the likelihood sig-

nificantly, as the LRT statistic exceeds the critical values at 95% (9.49) and 99% (13.28)

with values of 16.92 in the first half and 16.55 in the second one. However, the estimates
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Table 9: Fit, in-sample and out-of-sample errors based on two halves of the entire sample

Fit in-sample out-of-sample

27.05.2005 - 02.09.2011 LL AIC BIC MSE MAE MSE MAE

standard GARCH -2242.33 4490.67 4501.24 7.217 0.919 2.359 0.567

vpx-GARCH -2233.87 4481.75 4506.41 8.201 0.959 2.418 0.632

GARCH-X -2236.94 4481.87 4495.97 7.544 0.966 2.374 0.603

spline-GARCH -2802.00 5628.00 5670.28 26.697 3.718 15.330 3.731

Fit in-sample out-of-sample

06.09.2011 - 04.12.2017 LL AIC BIC MSE MAE MSE MAE

standard GARCH -1612.46 3230.92 3241.49 0.473 0.362 0.123 0.230

vpx-GARCH -1604.19 3222.37 3247.03 0.411 0.335 0.178 0.253

GARCH-X -1612.46 3232.92 3247.01 0.473 0.362 0.123 0.228

spline-GARCH -1570.65 3165.30 3207.57 0.382 0.315 0.572 0.720

Notes: Bold numbers highlight the best model in each category. Specification: For both

halves, γ = 50 in the vpx-GARCH and 7 knots in the spline-GARCH.

of the GARCH-X (Table 16 in the Appendix) would suggest that the Google Trends have

no effect in the second half, because the coefficient π is 0. Therefore, both GARCH-X and

standard GARCH also yield the same likelihood and predictions in the bottom panel of Ta-

ble 9. Nonetheless, the simulation study indicates that the LRT fails to reject slightly more

often than it should. This consideration gives the rejection of the null in the second half

more weight and suggests that the exogenous information enters nonlinearly and does have

explanatory power.

With regards to out-of-sample MSEs and MAEs, the more parsimonious standard GARCH

and the GARCH-X outperform the vpx-GARCH and the spline-GARCH in both halves. Es-

pecially during the financial crisis, the spline seems to be too smooth to cope with the high

variances and the errors explode. Its MSE of 15.330 and MAE of 3.731 are far off the second
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to last vpx-GARCH with an MSE and MAE of 2.418 and 0.632, respectively. Because the

standard GARCH model outranks the models that include the bad news index in both halves,

it seems that the Google Trends data lacks out-of-sample predictive power.

Regarding in-sample errors, the vpx-GARCH performs well in the second half compared

to its high errors in the full sample. Because this sample half does not include the outliers

around the financial crisis, the model ranks second with an MSE of 0.411 and MAE of 0.335

and is only beaten by the spline-GARCH. In this case the rankings according to the goodness

of fit measured by the likelihood and the in-sample errors actually coincide. However, in the

first half the outliers during the financial crisis distort this ranking again. Even though the

vpx-GARCH provides the best fit in terms of likelihood its MSE of 8.201 is affected by the

outliers in the variance proxy and only ranks third behind the standard GARCH (7.212) and

the GARCH-X (7.544). Consequently, the distorted ranking of the full sample in Table 7 is

also caused by the effects of the financial crisis.

6.4 Value-at-Risk violations

With the 300 one-step out-of-sample forecasts of each sample as a basis I estimate the daily

Value-at-Risk (VaR) at time t with probability level p as

V aRp(rt) = µ− σtΦ−1(p), (16)

where Φ−1(p) is the quantile of a standard normal distribution, µ is the mean return and σt

is the predicted conditional volatility coming from the GARCH model. The VaR is a risk

measure that describes the worst possible loss of an investment, excluding the worst outcomes

in the tail of the return distribution that have a probability of 1− p. At a probability level

p = 0.95, the daily loss is expected to exceed the VaR estimate in 5% of the cases. Given the

300 predictions, a model’s VaR predictions should be violated exactly 15 times.

Table 10 contains VaR failures of 300 out-of-sample predictions and the corresponding

Kupiec statistic. The test follows a chi-squared distribution with one degree of freedom.

Hence, a model is rejected for too high or low failures on a 95% significance level, if the

statistic exceeds the critical value of 3.84. At first glance the spline-GARCH seems to perform

well, because it yields the lowest number of violations with zero in the first half and four in the
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Table 10: 95% VaR violations and Kupiec (1995) test statistics

95% VaR
Violations Kupiec test statistic

first half second half first half second half

standard GARCH 17 8 0.27 4.11

GARCH-X 17 8 0.27 4.11

vpx-GARCH 16 9 0.07 2.93

spline-GARCH 0 4 30.77 11.85

Notes: All numbers are based on 300 out-of-sample forecasts. Given

this sample size, a model’s predictions should be violated 15 times at

the probability level of 95%. Bold values do not exceed the critical

value of 3.84 (95%) and the model is not rejected for too many / too

few violations.

second one. Nonetheless, the Kupiec test rejects the model for overestimating the VaR both

times. Moreover, the standard specification and the GARCH-X underestimate the quantile

in the second half. Consequently, the only model, which is not rejected in both samples is

the vpx-GARCH and therefore yields the most accurate predictions of the quantile.

6.5 Sensitivity Analysis

In this section, I turn back to the entire sample to evaluate how my empirical results change,

if I (1) change the conditional distribution of the returns and (2) use Principal Component

Analysis (‘PCA’) as a more sophisticated method to create the Google Trends index. Table

11 is the replication of Table 7 of Section 6.2. The difference is that all numbers are computed

under the assumption of t-distributed error terms. Following the approach of (Egan, 2007), I

fit a standardized t-distribution with a mean of 0 and a variance of 1 to the return data. The

estimated degrees of freedom of 3.5 lead the new distribution to have considerably heaver

tails than a standard Gaussian. As a result, all models provide a better fit compared to their

counterparts in Table 7 and also the in-sample errors are smaller. However, changing the

conditional distribution does not change the rankings in terms of fit and in-sample errors.
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Only in this case the log-likelihood of the standard GARCH and the GARCH-X are equal,

so there is no difference between the models with regard to the goodness of fit.

Looking at the vpx-GARCH, its difference in likelihood to the standard GARCH is still

significant as the LRT statistic of 25.05 exceeds the critical value of the confidence level at

99%. Hence, changing the conditional distribution does not change the significance of the

Google Trends index. Unfortunately, the optimizer does not converge after changing the dis-

tribution for the spline-GARCH model. Therefore, it is uncertain whether this specification

still provides the best fit under a different residual distribution.

Table 11: Full sample results with t-distributed residuals

Fit in-sample

LL AIC BIC MSE MAE

standard GARCH -3781.80 7569.60 7582.25 3.538 0.452

vpx-GARCH -3769.27 7552.55 7582.06 3.914 0.461

GARCH-X -3781.65 7588.16 7571.29 3.538 0.450

spline-GARCH - - - - -

Notes: In-sample fit and errors of the different specifications using

a standardized t-distribution with 3.5 degrees of freedom as residual

distribution. Due to convergence problems, ‘-’ are reported for the

spline-GARCH

In a second effort, I perform a PCA on all five Google Trends index constituents. PCA is a

method to transform a set of seemingly correlated variables into a set of linearly uncorrelated

principal components. The aim of this transformation is that the first principal component

accounts for most of the variation in the original data. In this case, the first component

explains 43% of the variance and is displayed in Figure 9 in the Appendix. However, taking

the component as the Google Trends index instead of computing the simple average, does

not improve the likelihood of the vpx-GARCH on the full sample. A comparison of Table

12 to Table 6 in Section 6.2 illustrates that the bad news index based on the simple average
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Table 12: vpx-GARCH with PCA index

Full sample γ ω α β ω∗ α∗ β∗ LL

1 0.002 0.132 0.849 0.226 -0.132 0.151 3855.19

(0.002) (0.029) (0.024) (0.069) (0.076) (0.296)

5 0.003 0.133 0.845 0.228 -0.133 0.155 3850.26

(0.007) (0.025) (0.023) (0.118) (0.055) (0.230)

25 0.014 0.133 0.843 0.085 -0.133 0.157 3846.32

(0.006) (0.020) (0.022) (0.073) (0.033) (0.109)

50 0.016 0.133 0.843 0.069 -0.133 0.157 3846.32

(0.006) (0.020) (0.022) (0.067) (0.029) (0.103)

100 0.016 0.133 0.843 0.065 -0.133 0.157 3846.86

(0.006) (0.020) (0.021) (0.063) (0.026) (0.100)

Notes: Estimates of the varying parameter specification on the full sample of S&P 500

returns including the first principal component as bad news index. γ is chosen before

estimation. Numbers in brackets are standard errors as in Bollerslev and Wooldridge

(1992) based on numerical derivatives developed by Sheppard (2012).

yields a larger likelihood at all smoothness levels except for γ = 1.

7 Discussion & Conclusion

In this paper, I amend the time varying parameter GARCH model of Teräsvirta and Amado

(2008) by a bad news index based on Google search volume data of keywords with a negative

financial connotation. The result is a model, whose parameters vary with the level of the

bad news index and implicitly with time. A simulation study then verifies the accuracy

of the estimated maximum likelihood parameters and that a Likelihood Ratio Test (LRT)

against a standard GARCH(1,1) model can be applied to confirm the explanatory power of

the exogenous regressor.

As a consequence of the promising simulation results, I put the varying parameter model
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to test by applying it to daily returns of the S&P 500. This stock index usually acts as

gauge for the U.S. stock market and economy. On a sample ranging from May, 2005 until

December, 2017 the LRT suggests a significant increase of the log-likelihood, which means

that the bad news index adds explanatory power. The same is true, when estimating the

model on both halves of the sample separately. However, the effect of the external variable

differs for both cases and the impact of the global financial crisis 2008 seems to dominate the

dynamics of the conditional variance.

In sum, including a bad news index based on Google Trends in a GARCH model via a

logistic transition function improves the likelihood significantly. When the investors’ interest

for topics with a negative financial connotation, such as inflation, rises, the stock market

volatility increases. Thus, additionally to its explanatory ability for stock returns as in (Preis

et al., 2013) and (Da et al., 2011, 2014), Google Trends data also improves the goodness of

fit of models for the returns’ second moment.

To some, this might be a surprising outcome, because usually retail investors rather than

financial institutions use Google as one of their primary sources of information before making

financial decisions. On the other hand, institutional investors rely on professional services

like Bloomberg or Reuters. For the most part, the actions of retail investors do not impact

the market remarkably, but because they tend to ‘panic sell’, the increased volatility, when

Google search volume rises, might be probable. Additionally, breaking news, which lead

both investor groups to act in the market, appear in the professional news services and the

Google feed almost simultaneously and Google search behavior might therefore also explain

the actions of institutional investors.

Nonetheless, the predictive ability of the Google Trends data seems to be limited. Even

though, including the bad news index in the varying parameter specification, an extended-

GARCH, and the spline-GARCH by Engle and Rangel (2008) beats a standard GARCH

model in terms of fit, this most parsimonious model still yields the most accurate out-of-

sample predictions of the conditional variance. This drawback could be attributed to the

rather large standard errors around the estimates that depend on the external information.

On the other hand, given the outcomes of the Kupiec (1995) test, the varying parameter

specification is the only model whose out-of-sample Value-at-Risk predictions are not rejected
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in both sample halves.

Throughout the entire paper, I work with the assumption of normally distributed stock

returns for simplicity and computational speed. An extension to a distribution which takes

the leptokurtosis of returns into account and goes beyond the sensitivity analysis is easily

possible and would probably improve the viability for non-academic purposes. Further, the

bad news index could be extended by more search keywords, which would make it smoother,

but could also erase its explanatory power. Also the creation of a ‘good news’ index appears

possible and it would be interesting to see how the dynamics would change. Finally, the

analysis of other markets is the next logical step and would further uncover the explanatory

power of Google Trends as an economic and financial indicator.
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Appendices

Tables

Table 13: Summary statistics S&P 500

S&P 500 27.05.2005 - 04.12.2017 27.05.2005 - 02.09.2011 06.09.2011 - 04.12.2017

Mean 0.02 0.01 0.04

Std Dev. 1.13 1.39 0.78

Max 10.22 10.22 4.11

Min -9.35 -9.35 -3.66

Skewness -0.30 -0.26 -0.24

Kurtosis 11.75 9.21 3.00

No. Obs. 3146 1573 1573

(a) First Principal Component (b) Average

Figure 9: First Principal Component vs simple average as index
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Table 14: Simulation results for γ = 5

Parameter True value Mean Std. Median 2.50% 97.50%

θ1

ω 0.01 0.012 0.020 0.010 0.000 0.030

α 0.12 0.129 0.023 0.130 0.090 0.170

β 0.85 0.850 0.027 0.850 0.810 0.880

θ2

ω∗ 0.09 0.112 0.114 0.100 -0.030 0.310

α∗ -0.11 -0.112 0.038 -0.120 -0.170 -0.020

β∗ 0.14 -0.027 0.184 0.040 -0.430 0.180

γ 5 5

LL -3447.13

Notes: The number of simulations is N=5000
Definitions

The Kupiec (1995) test statistic is defined as

LRK = 2 ∗ ln[(1− N

T
)T−N(

N

T
)N ]− 2 ln[(1− p)T−NpN ],

where p is the expected rejection frequency, N is the number of violations and T is the

number of predictions. The test is chi-squared distributed with one degree of freedom with

the null hypothesis p = N
T

.

39



Table 15: Simulation results with falsely specified smoothness parameter γ

Panel A

Parameter True value Mean Std. Median 2.50% 97.50%

θ1

ω 0.01 0.012 0.010 0.011 0.000 0.032

α 0.12 0.126 0.019 0.124 0.094 0.166

β 0.85 0.851 0.019 0.852 0.811 0.886

θ2

ω∗ 0.09 0.131 0.567 0.101 -0.032 0.322

α∗ -0.11 -0.110 0.034 -0.116 -0.162 -0.020

β∗ 0.14 0.017 0.161 0.088 -0.355 0.177

γ 5 75

LL -3481.41

Panel B

Parameter True value Mean Std. Median 2.50% 97.50%

θ1

ω 0.01 0.012 0.014 0.011 0.000 0.032

α 0.12 0.126 0.020 0.125 0.093 0.167

β 0.85 0.849 0.033 0.851 0.814 0.883

θ2

ω∗ 0.09 0.043 0.587 0.100 -0.032 0.319

α∗ -0.11 -0.112 0.033 -0.118 -0.159 -0.031

β∗ 0.14 0.014 0.168 0.093 -0.368 0.177

γ 75 5

LL -3328.29

Notes: Panel A contains the results for the case, when the true γ = 5 and

for estimation γ is falsely set to 75. Panel B contains the results for the

opposite case. The number of simulations is N = 5000.
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Table 16: GARCH-X estimates

GARCH-X ω α β π

27.05.2005 - 04.12.2017 0.003 0.110 0.875 0.034

27.05.2005 - 02.09.2011 0.002 0.092 0.897 0.039

06.09.2011 - 04.12.2017 0.021 0.195 0.791 0.000

Table 17: standard GARCH estimates

standard GARCH ω α β

27.05.2005 - 02.09.2011 0.014 0.107 0.877

27.05.2005 - 02.09.2011 0.017 0.091 0.894

06.09.2011 - 04.12.2017 0.021 0.195 0.791

Table 18: Full sample estimates with random data

Full sample γ ω α β ω∗ α∗ β∗ LL

1 0.018 0.128 0.851 -0.018 -0.128 0.149 3860.72

(0.051) (0.027) (0.025) (0.750) (0.079) (0.352)

5 0.017 0.116 0.866 -0.017 -0.056 0.045 3863.19

(0.007) (0.020) (0.021) (0.078) (0.064) (0.119)

25 0.015 0.108 0.876 -0.015 0.005 -0.013 3863.28

(0.006) (0.018) (0.020) (0.057) (0.056) (0.100)

50 0.015 0.107 0.878 -0.015 0.014 -0.013 3863.25

(0.006) (0.018) (0.020) (0.057) (0.063) (0.097)

100 0.015 0.106 0.878 -0.015 0.016 -0.013 3863.24

(0.005) (0.018) (0.020) (0.053) (0.061) (0.089)
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Figure 10: standard GARCH fit (red line) vs realized variance (dots)
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Figure 11: GARCH-X fit (red line) vs realized variance (dots)
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Figure 12: vpx-GARCH fit (red line) vs realized variance (dots)
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Figure 13: spline-GARCH fit (red line) vs realized variance (dots)
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