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Abstract

The implied volatility surface (IVS) is a mapping of implied volatilities of options as a function of the

moneyness and time-to-maturity. Capturing and forecasting the dynamics of these surface can contribute to

trading and hedging strategies, as it contains information about the expected market volatility. I propose

both a two-step approach based on principal components analysis (PCA) and a one-step approach based on

a state-space model. Exogenous variables are included at a later stage to improve the predictions. The most

relevant factors and exogenous variables are selected by the least angle regressions (LARS) algorithm. There

are three main findings. First, both of the approaches capture the predictability of the IVS of equity options

in the information technology (IT) sector. The one-step approach is the best performing averaged over time

for each individual equity option in terms of performance evaluation measures. Second, the consideration of

exogenous variables improves the predictions of both approaches in terms of statistical performance. The

expected inflation and interest rates are found to contribute the most to the prediction of the IVS of equity

options. Third, when disregarding transaction costs, the one-step ahead forecasts of both approaches are able

to produce positive returns for an ATM straddle trading strategy. However, when accounting for transaction

costs, these potential profits disappear.

Keywords: Implied Volatility Surface (IVS), Factor models, PCA, Kalman filter, LARS algorithm, ATM

straddle strategy



1 Introduction

Implied volatility is a measure of the volatility that is obtained from observed market prices of assets. The

Black–Scholes implied volatility of a call option is defined as the value of the volatility parameter such

that the market price equals the price given by the Black–Scholes model for options pricing. In the Black-

Scholes model, the volatility is constant with time. However, in reality, there are two key dimensions on

which volatilities implied by options written on the same underlying asset depend: moneyness and time-to-

maturity. Mapping the implied volatility as a function of these two variables generates an implied volatility

surface (IVS). Changes in these variables cause the IVS to shift over time. Shifts in implied volatility are

correlated across strikes and maturities, causing the IVS to be relatively smooth. This correlation is due

to the fact that option prices for different moneyness and maturities depend on the same underlying stock.

As implied volatility is a transformation of the option prices, this co-movement will also be present in the

IVS. These characteristics suggest that the dynamics of the IVS are driven by a small number of factors and

make parsimonious modeling possible.

There exists a clear relevance for market participants to produce reliable IVS predictions, as it provides an

up-to-date indication of the expected market volatility [Bernales and Guidolin, 2014]. Risk managers use

implied volatility as a measure of risk in the financial market, whereas in option pricing it characterises the

future beliefs of market participants. Therefore accurate forecasts can contribute to trading and hedging

strategies. The attempt of this thesis is to further develop forecasting abilities of dynamic factor models

where the latent factors drive the dynamics of the surface. The statistical relevance of including exogenous

variables for the forecasts of equity options will be established. It is then investigated whether the out-of-

sample forecasts have economic value when applied to an ATM straddle trading strategy.

Most studies about the predictability of the IVS focuses on index options on the S&P 500, since these are

actively traded and the options are available for many strike prices and maturities. Options on stocks are

less liquid than index options, therefore results found in these papers mostly do not hold for equity options.

This is due to the slow updating process of the equity option IVS caused by the low trading frequency.

Because indexes are composed of several equities, positions taken in an index are typically motivated by

macroeconomic expectations or hedging purposes, rather than microeconomic analysis of the underlying

stocks. Predicting the IVS of individual equity options can thus offer insights more widely applicable to

trading strategies. The volatility of the equities asset class is difficult to charaterise, since the value of

different equities may be driven by different factors. Within a sector similar equity options IVS dynamics

are expected, since the stocks typically share value drivers. To gain a better understanding of the relevance

of forecasts of the IVS of equity option this paper focuses on equity options within one sector, the IT

sector. Some of the world’s largest companies by market capitalisation are IT companies. These stocks

are characterised by high trading volumes. Stocks in the IT sector also have a relatively high average

volatility. Investors in this sector typically expect rapid growth and speculate on the profitability of digital
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innovations.

Various models of surface construction and its dynamics have been developed and improved over time.

A number of papers have explored the index IVS movements using principal component analysis (PCA)

[Cont et al., 2002, Skiadopoulos et al., 2000] or using a Kalman filter approach [Bedendo and Hodges, 2009,

van der Wel et al., 2016]. Moreover, there is empirical evidence of the predictability of the IVS [Dumas et al.,

1998, Cont et al., 2002, Goncalves and Guidolin, 2006, Fengler et al., 2007]. These papers focus mainly on

the predictability of the IVS of index options, such as S&P 500 index options. Studies that explore the

predictability of the IVS of equity options are sparse. Goncalves and Guidolin [2006] forecast the IVS of

index options using a two-step framework. First, they model the IVS of the S&P 500 index options by fitting

on a daily basis a parametric model that describe the implied volatilities as a function of moneyness and

time-to-maturity. In the second step, they fit a VAR model to produce the forecasts in which the factors

are the time series coefficients estimated in the first step. They found that the performance of this model is

superior to hard-to-beat benchmarks, such as a random walk model. The existence of dynamic relationships

between the IVS of equity options and the IVS of index options has been investigated by Bernales and

Guidolin [2014] using the same two-step approach as Goncalves and Guidolin [2006]. They drew two key

conclusions. First, the IVS of equity options can be forecasted. Second, the movements in the IVS of

index options provide useful information to forecast the IVS of equity options. An out-of-sample forecasting

approach based on the factors estimated with PCA is taken by Chalamandaris and Tsekrekos [2010], who

studied IVS dynamics of 25 over-the-counter currency options. In the three aforementioned studies, the

trading profits created with the forecasts of the IVS are offset by transaction costs. Therefore, it can not yet

be concluded that the predictable movements support portfolio decisions. This is a motivation to investigate

whether alternative approaches of forecasting the IVS of equity options may not only hold as a statistical

fact but also be relevant from an economic perspective.

Recently, van der Wel et al. [2016] provided an approach to estimate the factors and their dynamics in one

step by means of the Kalman filter. This one-step approach estimates the factors and the IVS simultaneously

so that all the uncertainties of the factor forecasts are taken into account. The focus of the study of van der

Wel et al. [2016] is the construction of the IVS based on the Kalman filter; they are not concerned with

whether the dynamic factor models accurately forecast the IVS. Bedendo and Hodges [2009] produced returns

for options portfolios based on forecasts of the volatility skew using a model based on the Kalman filter.

They do not consider the volatility skew across various maturities.

Apart from constructing and forecasting the IVS by means of factors models, several papers [Franks and

Schwartz, 1991, Mixon, 2002] related the changes in implied volatility surfaces to observable state variables.

This is relevant since asset prices react to economic news, which suggests the presence of observable influences.

Chen et al. [1986] have identified variables which influence stock market returns. Mixon [2002] found evidence

that observable state variables can to some extent explain the movements in the IVS of index options, with
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the most predictive power found in index returns.

In this study, I will present two approaches to create forecasts of the IVS of equity options. In the first

approach I will consider a two-step framework. First, the IVS is fitted by a factor model. Then, the IVS is

predicted based on the forecasts of the factors. The set of factors is constructed by a principal component

analysis as in Chalamandaris and Tsekrekos [2010]. After the IVS is fitted, the time-variation of the IVS

is captured by the factors that are assumed to follow a VAR model. I will then extend the VAR model

with factors that characterise the IVS of index options and exogenous variables. Motivated by Chen et al.

[1986], Franks and Schwartz [1991], Bernales and Guidolin [2014] and Mixon [2002] the following exogenous

variables are chosen: the contemporaneous and lagged index return of the S&P 500, real interest rates,

inflation, corporate/government bond yield spread, and factors that characterise the IVS of index option.

The addition of the exogenous variables will be evaluated on a daily basis. A common approach is to

use monthly inflation data; I instead use the daily expected inflation, E[πt]. This represents what market

participants expect the inflation to be over the next 5 years, on average. This variable has not been used for

IVS predictions in previous studies.

Several papers [Bair et al., 2006, Bai and Ng, 2008, Stock and Watson, 2012, Kelly and Pruitt, 2015] stress

that statistical factor models construct the factors regardless of the observed time-series to be predicted.

They found that the selection of more relevant factors improves the forecast performance of the factor models.

Therefore I use the Least Angle Regression (LARS) algorithm introduced by Efron et al. [2004] to select the

set of most relevant factors for predicting the implied volatility. The factors are selected from the factors

created by PCA and the exogenous variables in the two-step approach. The LARS algorithm is efficient

in terms of computation time compared to other selection methods. Furthermore, LARS weights all the

variables according to their relevance, rather than leaving some variables out completely.

In the second approach, I will consider a state-space model for the implied volatility inspired by van der Wel

et al. [2016]. This is referred to as the one-step approach since it estimates the factors and forecasts the IVS

of equity options simultaneously by use of the Kalman filter. The Kalman filter was introduced by Kalman

[1960]. It is a recursive procedure that provides an optimal forecast of the factors one step ahead given the

currently available information. In this way, the filter makes the best use of the available information in time

sequence for the prediction of the factors and of the implied volatility. Similar to the two-step approach I

extend the state-space model with exogenous variables. There is no algorithm to select state-space factors,

since these are typically unobserved. Therefore the LARS algorithm cannot be used to select the exogenous

variables along the state space factors. The exogenous variables selected in the two-step approach, are also

used to extend the state-space model in the one-step approach.

For comparative purposes, I will also estimate two benchmark models. The first benchmark model is based

on the paper of Goncalves and Guidolin [2006] who use a parametric model to fit the IVS. This model is

used by a number of studies, among which Bernales and Guidolin [2014], and shown to be superior to the
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random walk model. The factors are related to strike prices and time-to-maturities since these are two key

dimensions for option prices. In this paper is concentrated on short-horizon forecasts up to five days ahead.

Related studies found that for short-horizon forecast the random walk model is hard to beat. Therefore

it is also relevant to include the naive random walk model as a second benchmark model. The forecast

performance of the approaches will be evaluated based on three performance criteria. The economic value

of equity IVS forecasts from the two approaches is assessed by executing a simple ATM straddle trading

strategy.

For the empirical study, I use a dataset of daily implied volatilities for options on equity. The dataset includes

options on the ten stocks with the largest market capitalisation in the S&P 500 in the information technology

sector from September 1, 2004, through December 31, 2017. All considered companies have continuous listing

during the sample period and are actively traded. Additionally, I have data on the daily implied volatilities

for European options on the S&P500 index. I have daily data of interest rates, expected inflation, index

returns (S&P500), and corporate/government bond yield spread to analyse the possible relationship between

the IVS of equity options and these exogenous variables.

The results confirm that the proposed forecast approaches and the selected exogenous variables can forecast

the IVS of equity options. This conclusion is supported by three main findings in this thesis. First, both of the

approaches capture the predictability of the IVS of equity options in the IT sector. The one-step approach is

the best performing averaged over time for each individual equity option in terms of performance evaluation

measures. Second, the consideration of exogenous variables improves the predictions of both approaches

in terms of statistical performance. The expected inflation and interest rates are found to contribute the

most to the prediction of the IVS of equity options. Third, when disregarding taking transaction costs, the

one-step ahead forecasts are able to produce positive returns for an ATM straddle trading strategy. However,

when accounting for transaction costs, these potential profits disappear.

This study contributes to the existing literature in three ways. First, this is one of the first papers to use a

state space model to forecast the IVS. The application to out-of-sample forecasting for IVS of equity options

of companies operating in the same sector are relatively rare. Moreover, research on the interactions between

the IVS of equity options and exogenous variables is sparse.

This paper is structured as follows: section 2 describes the different approaches to predict the implied

volatility surface. Section 3 elaborates on the data used for the empirical application. Section 4 will describe

the empirical results of the approaches. Section 5 concludes and discusses potential subjects for further

research.
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2 Methodology

This section describes two approaches to make out-of-sample predictions of the IVS of equity options. In

the approaches, I use as observation vectors, T time series of N units of log implied volatility. Each unit

refers to an option on a stock with a different moneyness (m) and time-to-maturity (τ). The grid of observed

implied volatilities are both irregular and changing with time as the level of the underlying fluctuates [Cont

et al., 2002]. To deal with this unbalanced panel I follow the approach of van der Wel et al. [2016]. I create

several maturity-moneyness groups. Within each maturity-moneyness group, I select the option that has the

smallest Euclidean distance to the midpoint of both dimensions to obtain a balanced panel of similar options

across time. If there is no options data within a group on a specific day, these missing values are generated

by selecting a neighbor defined as the option with the smallest Euclidean distance to both midpoints across

all other groups at that day [van der Wel et al., 2016]. This may cause some extra bias in the predictions.

In this paper I use the following notation, IV k is the (N × T ) matrix of log implied volatilities. Let IV k
t

is a column vector denoting all N log implied volatilities for options on stock k at time t, while IV k
i is

a row vector denoting the log implied volatilities over all days T for option i on stock k. Specifically, I

select three maturity groups (τ = 3) classified as short-term, medium-term, and long-term. Next, I select

six moneyness groups (M = 6) of at-the-money, out-of-the-money, and deep out-of-the-money call and put

options, which results in N = 18 different maturity-moneyness groups. Time-to-maturity (τ) is measured

in days. Following the approaches of Bollen and Whaley [2004] and van der Wel et al. [2016] moneyness is

defined in terms of ∆. The ∆ of an option is the sensitivity of the option price with respect to movements

in the price of the underlying. More common is to define moneyness as the ratio of the strike price to the

forward price. However, the advantage of using ∆ is that it considers the volatility of the underlying asset

and the remaining time-to-maturity.

IV k
t =



log(IV kτ1,m1,t)
...

log(IV kττ ,m1,t)

log(IV kτ1,m2,t)
...

log(IV kττ ,mM ,t)


(1)

I am interested in the h-step ahead out-of-sample forecast of the implied volatility, ˆIV
k

t+h|t. Therefore

the logarithm of the implied volatility is used as dependent variable since this has the advantage of always

producing non-negative forecasts. Finally, I convert the forecasts to standard implied volatilities by using

log normality property ˆIV
k

t+h|t =exp
(

log( ˆIV
k

t+h|t) + 1
2Vart(log( ˆIV

k

t+h|t))
)

.

In subsection 2.1 I discuss the two-step approach, where first the IVS is fitted and subsequently is predicted.

The one-step approach that fits and predicts the IVS simultaneously is discussed in subsection 2.2. Subsection
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2.3 describes the benchmark models, followed by the evaluation measures in subsection 2.4. Finally, section

2.5 describes the trading strategy that applies the predictions of the IVS.

2.1 Two-step approach

In the two-step approach, I first fit the IVS based on factors obtained from a principal component analysis.

The time-variation of the IVS is captured by the factors following a VAR model. Then the predictions of

the factors are used to predict the IVS h-step ahead. The VAR factor model is then extended by adding

exogenous variables. I use the LARS algorithm to select the most relevant factors for the prediction of the

implied volatility from the factors created by PCA and the exogenous variables. Then, I use the first rolling

window as an estimation period for the factors. I make predictions for the rest of the dataset using a rolling

window. The rolling window has a length of 200 days. The model is reestimated for every day. Log implied

volatilities can be modeled using first differences or levels. To select the right modeling approach, unit root

tests will be performed on the univariate factors and the exogenous variables. The augmented Dickey-Fuller

(ADF) test will be performed. The ADF test tests the null hypothesis that a unit root is present in a time

series against the alternative hypothesis of a stationary time series. The test statistic is a negative number.

The more negative the statistic, the stronger the rejection for the presence of unit roots. In addition, the

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test is performed. The KPSS has the presence of unit roots as

an alternative hypothesis. A failure to reject the null-hypothesis indicates stationarity.

2.1.1 Fitting IVS

I consider a factor representation to fit the daily implied volatility surfaces. The set of factors are created

by a principal component analysis.

IV k
t = θk1F

k
1,t + · · ·+ θkrF kr,t + εt = ΘkF kt + εt (2)

Let F kt = (F k1,t, F
k
2,t, ..., F

k
r,t)
′ be r factors of stock k created by PCA, and let Θk = (θk1 ,θ

k
2 , ...,θ

k
r )′ be

the (N × r) matrix of parameters for stock k. The factors F kt are time variant. The factor loadings

Θk = (θk1 ,θ
k
2 , ...,θ

k
r )′ are fixed over time.

The aim of a principal component analysis is to reduce the data dimension to r < N in such a way that

the r factors capture the bulk of the variation in the dataset. The factors are created by identifying the

linear combinations of the data that are uncorrelated and have maximum variance. This involves solving

the following non-linear least square problem [Stock and Watson, 2006]:

min
F k1 ,··· ,F kT ,Θk

T−1
T∑
t=1

(IV k
t −ΘkF kt )′(IV k

t −ΘkF kt ) subject to Θk′Θk = Ir (3)
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The solution of this optimisation is given by (Θ̂
k
, F̂

k

t ) where Θ̂
k

are r eigenvectors corresponding to the

eigenvalues of the covariance matrix of IV k
t and the factors are estimated by F̂

k

t = Θ̂
k′

IV k
t . A general

explanation of PCA and the proof of this result is found in appendix A.1.1.

The common approach of a PCA is to select the r factors with the largest eigenvalues. However, the factors

with the largest eigenvalues are not necessarily the best predictors for the variable to be predicted. Therefore

I select the most relevant factors for the prediction of the IVS with the LARS algorithm of Efron et al. [2004].

The selection algorithm is discussed in the subsection 2.1.3. The number of factors r that is selected will be

empirically determined for each rolling window with a maximum of r = 5 factors. The number of factors

that give the best prediction based on in-sample fit is selected.

2.1.2 Modeling the time-variation of the IVS

The time-variation in the IVS is captured by the dynamics of the factors identified. To model the dynamics

of the estimated factors I assume they follow a VAR process with p lags of the factors. A VAR model has

proven to be a reasonable approach to model the predictability in the IVS [Chalamandaris and Tsekrekos,

2009].

F̂
k

t = ck +

p∑
j=1

Φk
j F̂

k

t−j + vt vt ∼ N(0,Σk

F̂
k
F̂
k) (4)

where F̂
k

t is a (r × 1) vector with factors obtained via the optimisation in equation 3. To ensure the right

modeling approach for the factors, unit root tests will be performed on the univariate factors. Equation

4 is estimated with OLS. The appropriate number of p lags is selected based on the Bayesian information

criterion (BIC) for every rolling window.

Motivated by Mixon [2002] and Bernales and Guidolin [2014] I include exogenous variables to improve the

forecasts of the factors, so that equation 4 becomes a VARX model. The exogenous variables considered

are:

• The contemporaneous and lagged index returns of the S&P 500 options, respectively rSPXt and rSPXt−1

• The real interest rate in the USA, It

• The expected inflation rate in the USA, πt

• The corporate/government bond yield spread, Y t

• The factors created by PCA that characterise the IVS of S&P 500 index options, F SPXt

The definition and source of the exogenous variables is found in table 7 in appendix A.2. The model

introduced below in equation 5 is the VARX model, which is used to forecast the factors that drive the IVS
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of equity options using the additional exogenous variables.

F̂
k

t = ck +

p∑
j=1

Φk
j F̂

k

t−j + γkXt + ut ut ∼ N(0,Ω) (5)

where F̂
k

t−j represents the factors created by a PCA to the covariance matrix of individual equity option

k and its p lags. Xt = [rSPXt , rSPXt−1 , It,πt,Y t,F
SPX
t ] is the set of exogenous variables. To assess the

relevance of the exogenous variables for predicting the IVS of equity options, they are considered alongside

the factors created by PCA. The aggregate of these two sets, [F̂
k

t ,Xt], is used as input for the LARS

algorithm. The five that are found to be most relevant are included. The selection procedure is repeated for

every rolling window. The factors and exogenous variables will be tested for unit roots to determine whether

it is necessary to take the first differences of the log implied volatilities to ensure stationarity. Equation 5 is

estimated with OLS. I select the number of lags p for the factors via the minimisation of the Bayes–Schwarz

criterion for every rolling window.

2.1.3 Selecting factors

As explained in the introduction and subsection 2.1.1, the factors obtained by a PCA are created irrespec-

tively of the variable to be predicted. Therefore I select the most relevant factors for the prediction of the

IVS by the Least Angle Regressions (LARS) algorithm introduced by Efron et al. [2004]. When exogenous

variables are considered for the prediction of the factors, the factors created by PCA along with the exoge-

nous variables are used as input for the LARS algorithm. The LARS algorithm models the coefficients of

the included variables jointly, in order to prevent that valuable information, is lost. The LARS coefficients

are estimated for every rolling window, to obtain the most relevant set of predictors. This ensures that the

factors/exogenous variables used for the prediction of the IVS can change over time.

The intuition behind the LARS algorithm is as follows: it starts off with an empty set. At each step, it

adds the variable with the smallest angle, which equates to the variable with the largest correlation. From

this variable, it increases the coefficient until there is another variable with the same correlation. The

algorithm proceeds until all the variables are added according to their correlation with the variable to be

predicted. Figure 2 from the paper of Efron et al. [2004] gives a simple visualisation of the algorithm with

two variables. It starts with all coefficients equal to zero and finds the most correlated predictor, x1. The

algorithm takes the largest step possible in the direction of this predictor µ1 until some other predictor, x2,

has as much correlation. At this point, it changes in the direction of u2, which is equiangular between the

two predictors.

The following paragraphs give a formal description of the LARS algorithm, customised for the application

in this study. For a general explanation of the LARS algorithm, similar to Efron et al. [2004], I refer to

appendix A.1.2. I define ˆIV
k

q,t as the current estimate of the implied volatility with q factors at time t. The
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Figure 2: Visualisation of Least Angle regressions

corresponding current correlation is defined by ĉkt = F k
′

t (IV k
t − ˆIV

k

q,t), where F kt is the (T × q) matrix

of factors. The time-subscript t is included here since the LARS algorithm is performed for every rolling

window to find the most relevant factors. Since the same algorithm is applied to each rolling window, the

time subscript t is left out for the remainder of the description of the algorithm. In order for the algorithm

to work well, the input variables need to be standardised and the variable of interest need to be demeaned.

The algorithm starts with IV k
0 = 0. For all the factors i = 1, · · ·n the correlation between F ki and IV k

q can

be calculated as the inner product since the factors are standardised and the implied volatility is demeaned.

This implies that all means are zero and the standard deviations equal to 1.

ckj = corr(F kj , IV
k
q ) =

cov(F kj , IV
k
q )

σFkj σIV kq
=

E[(F kj − E(F kj ))(IV k
q − E(IV k

q ))]

σFkj σIV kq

=
1

n

n∑
i=1

(F kij − F̂
k

j )(IV k
i,q −

ˆIV k
q ) =

1

n

n∑
i=1

F kijIV
k
i,q

(6)

First, the algorithm selects the factors that have the highest absolute correlations with the current residual

ĉ = F k
′
(IV − ˆIV q). These are then added to the active set A.

A = [j : |ĉj | = Ĉ] Ĉ = max
j
|ĉj | (7)

where the index j = 1, · · · , n refers to the n factors. When the factor is added, the algorithm has to decide

in which direction to proceed. Therefore the algorithm tends to find the vector which has equal angles with

the factors in the active set, also referred to as the equiangular vector.

uA = FAwA where wA = (ι′A(F ′AFA)−1A ιA)−1/2(F ′AFA)−1ιA (8)

uA is a linear combination of the columns of FA scaled bywA. wA determines the direction of the prediction.

ιA represents a column vector of ones of length |A|. All angles between the vectors are assumed to be less

than 90 degrees, meaning that all correlations are positive. The next step of the LARS algorithm is to

determine how far γA the algorithm has to proceed along uA for the new prediction.

ˆIV q+1 = ˆIV q + γ̂AuA (9)
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To determine γ̂A the purpose of the algorithm needs to be considered. The algorithm needs to add one extra

variable to the set A only if there is a variable that has as much correlation as the ones from the active set.

In other words, γA needs to be chosen such that there exists a variable with |cj | = |ci|, where i is element of

the active set and j is not in the active set. When a factor F i is in the active set A the current correlations

is |ci| = +
−C − γAwA. When a factor F i is not in A the current correlations are |cj | = |ĉj − γAaj |. Since γA

always has to be greater than zero the solution to the equality becomes:

γ̂ = min
j∈AC

+
( Ĉ − ĉj
HA − aj

,
Ĉ + ĉj
HA + aj

)
(10)

where HA = (ι′A(F ′AFA)−1A ιA)−1/2. Furthermore, min+ implies that the minimum is taken only over the

components that are positive, within every j. So γ̂ is the smallest value such that there is a factor F j , not

yet in the active set, that has the same correlation with the residual.

2.1.4 Predicting the IVS

I make h-step ahead predictions of the IVS of equity options using the factor decomposition in equation 2

and the models of the factors dynamics in equation 4 and equation 5. The predictions will be mainly for

a short-horizon, h = [1, 3, 5] days, since previous studies found that the forecast accuracy diminishes when

forecast horizon increases [Chalamandaris and Tsekrekos, 2010, Bernales and Guidolin, 2014]. To form a

feasible h-days ahead forecast of the implied volatility surface of options on stock k, I need forecasts of the

factors F̂
k

t+h|t. I use the first rolling window of daily surfaces of the dataset to extract the factors F̂
k

t and

loadings Θ̂
k

= [θ̂k1 , · · · , θ̂kN ] as in equation 2. I obtain the h-step ahead forecast directly from a long-horizon

forecasting equation instead of a sequence of one-step ahead forecasts. The following approach based on

Chalamandaris and Tsekrekos [2010], is applied to create h-step ahead forecasts of the IVS:

Let β̂
k

= [ĉk, Φ̂
k

j ] be the coefficients of the projection of F̂
k

t on F̂
k

t−h and its p̂ lags as in equation 2. Obviously

for a one-day ahead forecast, h = 1, the coefficients include ĉk and Φ̂kj with j = 1, ..., p̂ lags. Analogously,

h-step ahead forecasts of the factors are produced by:

F̂
k

t+h|t =
(
β̂
k

p̂

)h
F̂
k

t (11)

When exogenous variables are considered for the prediction of the factors, F̂
k

t in equation 11 contains the

factors created by PCA and the exogenous variables. Also the coefficients for the exogenous variables are

included in coefficients so that β̂
k

p̂ = [ck,Φk
j ,γ

k] for j = 1, ..., p̂.

Since the IVS of equity options on stock k at day t + h given the information up to day t depends only on

F̂
k

t+h|t, forecasts of the IVS can be produced by:

ˆIV
k

t+h|t = Θ̂
k

t F̂
k

t+h|t = Θ̂
k

t

(
β̂
k

p̂

)h
F̂
k

t|t (12)

The factor loadings Θk
t = (θk1,t,θ

k
2,t, ...,θ

k
r,t)
′ are time-varying since for each rolling window the selected

factors/exogenous variables by LARS may vary.
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2.1.5 Algorithm

To summarise, the two-step approach to forecast ˆIV
k

t+h|t is as follows (repeat the steps for every rolling

window):

1. Compute the factors by PCA and fit the IVS based on the factor decomposition:

IV k
t = θk1F

k
1,t + · · ·+ θkrF kr,t + εt = ΘkF kt + εt (13)

Model the time-variation of the IVS with the VAR model for the factors.

F̂
k

t = ck +

p∑
j=1

Φk
j F̂

k

t−j + vt vt ∼ N(0,Σk

F̂
k
F̂
k) (14)

To improve the forecasts of the factors extend the VAR model with exogenous variables, Xt =

[rSPXt , rSPXt−1 , It,πt,Y t,F
SPX
t ].

F̂
k

t = ck +

p∑
j=1

Φk
j F̂

k

t−j + γkXt + ut ut ∼ N(0,Ω) (15)

Select the most relevant factors for the prediction of the IVS using the LARS algorithm. The factors

created by PCA and the exogenous variables are used as input for the LARS algorithm. Select the

number of r factors that gives the best prediction.

2. The h-step ahead forecasts of the factors selected by LARS are produced by:

F̂
k

t+h|t =
(
β̂
k

p̂

)h
F̂
k

t (16)

where β̂
k

= [ĉk, Φ̂
k

j ] are the coefficients of the projection of F̂
k

t on F̂
k

t−h and its p̂ lags. When exogenous

variables are considered for the prediction, F̂
k

t in equation 16 contains the factors created by PCA and

the exogenous variables. Also the coefficients for the exogenous variables are included in coefficients

such that β̂
k

p̂ = [ck,Φk
j ,γ

k] for j = 1, ..., p̂.

The h-step ahead forecasts of the IVS of equity options can be produced by:

ˆIV
k

t+h|t = Θ̂
k

t F̂
k

t+h|t = Θ̂
k

t

(
β̂
k

p̂

)h
F̂
k

t|t (17)

The factor loadings Θk
t = (θkt,1,θ

k
t,2, · · · ,θ

k
t,r)
′ are time-varying since for each rolling window the

selected factors/exogenous variables by LARS may vary.

2.2 One-step approach

The alternative to the two-step approach described in section 2.1 is to estimate the factors and the IVS

simultaneously. van der Wel et al. [2016] describe the model for the implied volatility as state space model,

where the factors are treated as unobserved latent factors. A state space model consist of two equations:

11



the observation equation that links the observed implied volatilities series for N different options on stock

k to the states (factors), and the state equation that describes how the factors change over time. The

representation of this model is indicated below, where equations 18 and 19 denote the observation and state

equation respectively:

IV k
t = ΘkF kt +wt wt ∼ N(0,R) (18)

F kt+1 = ΦkF kt + vt+1 vt+1 ∼ N(0,Q) (19)

In these equations, IV k
t is the observation vector with the log implied volatilities for each option on stock

k, F kt are the unobserved (r × 1) factors, and Θk is the (N × r) factor loading matrix. According to the

approach of van der Wel et al. [2016], I model the state equation as a vector autoregressive model with p = 1

lag, where Φk is a (r × r) loading matrix. It is possible to include more lags, however this is found to be

computationally costly and p = 1 yields superior results. Finally, R and Q represent the (N×N) and (r×r)

covariance matrices of the error processes in equation 18 and equation 19 respectively. The disturbances are

mutually and serially uncorrelated. It is assumed that they follow a normal distribution, however this is not

a requirement for the properties of the Kalman filter to hold. The system is stable if the eigenvalues of F kt

lie in the unit circle, then F kt is mean-reverting to zero [Hamilton, 1994].

The unobserved factors F kt can be estimated by the Kalman filter. The algorithm was introduced by Kalman

[1960] for engineering applications, however it is also used in other disciplines. The forecasting exercise using

the Kalman filter proposed in this paper is mainly based on Hamilton [1994]. The Kalman filter is a recursive

procedure of two different steps: prediction and updating, through the time index t ∈ [0, T ]. It provides an

optimal forecast of the factors F kt given the information at time t. There also exist a Kalman smoother,

which smooths the estimates of the factors conditional on the complete sample size by backward recursion

from T − 1 to 1. However, the Kalman filter requires the parameters in equations 18 and 19: Θk, R, Φk

and Q to be known to construct estimates of the factors. The parameters can be estimated by Maximum

Likelihood (ML) but with many states it may converge to a local minimum. The Expectation Maximisation

(EM) algorithm of Shumway and Stoffer [1982] is more robust since the maximisation step is done analytically

which is not possible to do when using ML. The EM-algorithm also ensures that the covariance matrices R

and Q are positive definite and symmetric. The aim of the EM algorithm is to maximise the following joint

density of observing the states F kt and the data IV k
t :

L(IV k
t ,F

k
t |θ) =

T

2
log|R−1| − 1

2

T∑
t=1

(IV k
t −Θk′F kt )′R−1(IV k

t −Θk′F kt )

+
T

2
log|Q−1| − 1

2

T∑
t=1

(F kt −ΦkF kt−1)′Q−1(F kt −ΦkF kt−1)

(20)

where the optimisation is for θ = [Θk,R,Φk,Q]. The EM algorithm steps are as follows: first it takes some

initial values for the states, runs the Kalman filter with the values from 1 to T and smooths the estimates
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backward from T −1 to 1. It takes the expectation of the states conditional on the complete information set,

which are the result of the Kalman smoother. Subsequently the algorithm maximises the resulting likelihood

function given in equation 20 with respect to the unknown parameters θ. The parameter estimates are

used again in the Kalman filter to predict the states. The EM algorithm iterates the expectation and

maximisation steps until the parameters are converged. A more detailed description of the Kalman filter

and the expectation maximisation algorithm is found in appendix A.1.3.

For identification, I impose the following restrictions1 inspired by van der Wel et al. [2016]: R is a diagonal

matrix, which means that there is no correlation between the observations equations. Also, the diagonal

elements of Q are equal to 1, which imposes that the variances of the disturbances of the state equation are

equal to 1. I initialise the algorithm using the first 200 observations of the data: Θk is the coefficient matrix

of the principal component analysis and R as the corresponding residuals. Φk is initialised as the coefficient

matrix of a VAR(1) model of the first r factors created by PCA, and Q as the covariance of the VAR(1)

model.

Subsequently, forecasting in the state space framework is straightforward. The forecasts of the observation

ˆIV
k

t+h conditional on all available observations IV k
1 , . . . , IV

k
t , is denoted by:

ˆIV
k

t+h|t = ΘkF̂
k

t+h|t = Θk(Φk)hF̂
k

t|t (21)

Given the characteristics of the Kalman filter there is no need to use a rolling window for estimation. The

Kalman filter is recursive, therefore the current estimated factors depend on the previous factors. This

implies that the future values of the unobserved factors F kt+1 depend on the current value F kt and thus

indirectly on (F kt−1,F
k
t−2, ...,F

k
0). In this way, the Kalman filter efficiently uses the information from the

implied volatility and the factors up to time t to predict t+ 1.

Similar to the two-step approach I extend the state-space model with exogenous variables. The same set of

exogenous variables Xt = [rSPXt , rSPXt−1 , It,πt,Y t,F
SPX
t ] as in the two-step approach is considered. There

is no algorithm to select state-space factors, since these are typically unobserved. Therefore the LARS

algorithm cannot be used to select the exogenous variables along the state space factors. The exogenous

variables selected in the two-step approach, are also used to extend the state-space model in the one-step

approach. The state space model then becomes:

IV k
t = γkXk

t + ΘkF kt +wt wt ∼ N(0,R) (22)

F kt+1 = ΦkF kt + vt+1 vt+1 ∼ N(0,Q) (23)

Therefore F kt+1 indirectly depends on the exogenous variables Xt through the observation IV k
t . Since Xt

1In unreported results I have tried different sets of restrictions, but these restrictions have proven to give the best results
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is deterministic, the factors contain all the information that is relevant for predicting the IVS:

ˆIV
k

t+h|t = E(γkXk
t+h + ΘkF kt+h +wt+h|F t,F t−1 · · · , IV k

t , IV
k
1−1, · · · )

= γkXk
t+h + ΘkE(F kt+h|F t,F t−1 · · · , IV

k
t , IV

k
1−1, · · · )

= γkXk
t+h + (Θk)hF kt

2.3 Benchmark model

For both testing and comparative purposes, I also estimate two benchmark models. Both benchmarks are

partly equal to the the two-step approach in section 2.1. For the first benchmark model I will use the

parametric model for the IVS of Goncalves and Guidolin [2006]. The parametric model is similar to the

two-step approach but with a deterministic factor set. These factors are called the deterministic factors since

all variables are exogenous and option characteristics.

IV k
t = ιNβ

k
0,t +mkβk1,t +mk2βk2,t + τ kβk3,t + (mkτ k)βk4,t + εt = Θk

DFF
k
DF,t + εt (24)

where εt is the random error term (assumed to be white noise). m and τ refer to (N × 1) column vec-

tors containing respectively the moneyness and time-to-maturity, for each option of stock k. Θk
DF =

[ιN ,m
k,mk2, τ k, (mkτ k)] is the (N × 5) matrix containing the explanatory variables which do not vary

over time. The univariate time-series are tested for unit-root. Estimating equation 24 with OLS for each day

results in a five-dimensional time series F̂
k

DF,t, which contains OLS coefficients with the following interpreta-

tion, β̂
k

0,t is the intercept/level coefficient, β̂
k

1,t is the moneyness slope of the IVS, β̂
k

2,t describes the curvature

of the IVS in the moneyness dimension, β̂
k

3,t is the maturity slope, and β̂
k

4,t captures possible interactions

between the moneyness and time-to-maturity. To create predictions of the IVS using the factor decomposi-

tion in equation 24 similar steps are taken as described in subsection 2.1.5. The time-variation is modeled

using a VAR model as in equation 14. The prediction of the IVS is done using equation 17. This benchmark

model is also extended with the set of exogenous variables Xt = [rSPXt , rSPXt−1 , It,πt,Y t,F
SPX
t ].

As a second benchmark model I consider the ad-hoc Strawman model of Dumas et al. [1998]. The model

fits a random walk to the IVS coefficients in the deterministic model in equation 24. This implies that the

best forecast h-step ahead is the estimate of today [Bernales and Guidolin, 2014, Goncalves and Guidolin,

2006].

F̂
k

DF,t+h|t = F̂
k

DF,t + vt vt ∼ N(0,Σk

F̂
k
DF F̂

k
DF

) (25)

This corresponds to a special case of equation 14 with ck = 0, p̂ = 1, Φ1 = Ir. The same steps as described

in subsection 2.1.5 are followed to create forecasts of the equity IVS.
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2.4 Evaluation measures

The performance for out-of-sample forecasting for each approach is evaluated based on three measures. I

will report the mean of the following three statistics over time and across equity options for each approach

a ∈ [benchmark, one-step, two-step].

• The root mean squared forecast error (RMSE) which is the squared deviation between the actual and

forecasted implied volatility of the options on stock k by approach a at day t:

RMSEka,t =

√√√√ 1

N

N∑
i=1

(IV k
i,t+h − ˆIV

k,a

i,t+h|t)
2 (26)

• The mean absolute forecast error (MAE) i.e. the average absolute deviation between the actual and

forecasted implied volatility of the options on stock k by model a at day t:

MAEka,t =
1

N

N∑
i=1

|IV i,t+h − ˆIV
k,a

i,t+h|t| (27)

• The mean correct prediction of direction of change (MCPDC) which is defined as the percentage of

predictions of the options on stock k for which model a correctly forecasted the direction of the change

for the next day t+ 1:

MCPDCka,t =
1

N

N∑
i=1

1
[sign(IV k

i,t+h−IV
k
i,t)=sign( ˆIV

k,a
i,t+h|t−IV k

i,t)]
(28)

To see if whether the differences in forecasting performances between the approaches are signicant, I perform

the equal predictive ability test proposed by Diebold and Mariano [2002]. The test has a null-hypothesis of

equal forecast accuracy given a preferred loss function. Since there is no reason to assume that positive and

negative errors have a different impact, I use equal performance as null hypotheses. In particular, I compare

the forecasting performances of the approaches based on the above described performance measures to those

of the random walk model. I illustrate this with an example, I test if the differences between the RMSE

statistics of the two-step approach and the RMSE statistics of the random walk model are significant. For

significant positive values the null hypothesis is rejected in favor of the considered approach. In case of

negative values, the hypothesis is rejected in favor of the random walk model.

2.5 Trading strategy

The economic value of IVS forecasts is assessed by constructing a trading strategy based on the one-step

ahead forecasts of the approaches. Following Bernales and Guidolin [2014] I generate trading portfolios

based on an ATM straddle strategy. The advantage of a straddle strategy is that it is free of risks caused by

changes in the prices of the underlying stocks. Delta-hedged strategies are also free of risk caused by changes
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in the underlying, but require investing in or borrowing underlying shares for which none of the models

in this paper are constructed. The straddle strategy takes the full advantage of predictability patterns in

implied volatilities, since it trades only equity options [Bernales and Guidolin, 2014].

(a) Short Straddle

(b) Long Straddle

Figure 3: The payoff of a straddle strategy. Figure 3a shows the payoff structure for a short straddle position and

figure 3b shows the payoff structure for a long straddle position.

A straddle strategy involves trading a combination of a call and a put option with the same strike price and

expiration date. Straddles are a good strategy to execute if a trader believes that the price of the stock will

move significantly but he is not sure in which direction. The trader makes a profit if the stock price moves

up or down enough to cover the premium paid. The premium consists of the price for the puts and calls plus

the transaction costs. In figure 3 the payoff structure for a long and short straddle position are presented. A

long straddle position earns profits when the price of the underlying stock is larger than the strike price of

the long call option plus the premium paid or the price of underlying stock is smaller than the strike price
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of the long put minus the premium paid. The maximum possible loss is the premium paid. This maximum

loss occurs when the price of the underlying stock equates the strike price of the long call/put. Therefore if

high volatility is expected the straddle strategy is a suitable strategy. A long straddle, in which call and put

options are purchased, is equivalent to a bet on a high(er) future volatility. A short straddle, in which call

and put options are sold, is equivalent to a bet on a low(er) future volatility. Different performance for each

maturity-moneyness groups is expected, therefore if all groups would be considered at once it would not be

possible to draw a conclusion about the economic value of the forecasts based on the results. For this reason

I focus only on ATM straddles. An option is said to be ATM if the current price of the underlying stock

and the strike price of the option are equal. An ATM option has no intrinsic value, only time value. This

means it would not make money if it were to expire today.

On every day I choose an ATM straddle for every stock in which I invest a fixed amount of $1,000. The

implied volatilities of those puts and calls are predicted using the different approaches. The straddle is

purchased (sold) when the model forecasts that the implied volatility for equity options on stock k will

increase (decrease) between t and t+ 1. At day t+ 1 the profits and losses of the positions are recorded and

again $1,000 for every stock is invested in the straddles. This trading strategy is applied for every day in

the out-of-sample dataset.

I first explain the strategy if no transaction costs are considered. If the implied volatility of both the call

and put option in the straddle on stock k is predicted to increase between day t and t + 1 the options are

purchased. I purchase the quantity Xk
t = $1000/(Ckm,t + P km,t) in units of straddles on stock k, for a total

cost of $1000. Let Ckm,t (P km,t) denote the call (put) price of an option on stock k with maturity m at day

t. The options only differs across maturities, since a straddle implies that the options have the same strike

price and expiration date. Consequently, the profit made by the trading is as follows:

Profitkt+1(up) = Xk
t

[∑
((Ckm,t+1 + P km,t+1)− (Ckm,t + P km,t))

]
(29)

However, when the forecasted implied volatility of the straddle on stock k of the portfolio is negative, I sell

the quantity Xk
t = $1000/(Ckm,t + P km,t) in units of the straddle portfolio. This generates a cash inflow of

$1000. I also invest the $1000 generated by selling the straddles together with the $1000 initially investment

at the riskless interest rate rt over one day. In this case, the profit is:

Profitkt+1(down) = $2000 ∗ (exp(
rt

252
)− 1) (30)

If there does not exist a straddle at day t on stock k, I assume that the trader invests $1,000 in the riskless

asset for one trading day. In this case Profitkt+1(equal) = $1000 ∗ (exp( rt
252 )− 1).

I include a benchmark strategy for comparison. This benchmark based on a daily investment of $1000 in the

risk-free interest rate rolled over time, which only yields the time value of money. The associated one-day
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net profit is given by Profitkt+1(risk-free) = $1000 ∗ (exp( rt
252 )− 1).

Note that the above described trading strategy is simplified by assumptions regarding market liquidity and

transactions costs. Therefore profits generated by the strategy mostly cannot be achieved in the real world

trading. To make the trading strategy more realistic, transaction costs are accounted for. The considered

costs are for every transaction a half times the bid-ask spread. The transaction costs are subtracted from

the profits on a daily basis.

The economic value of the predictability of the IVS is evaluated based on the generated average daily profit

and the corresponding standard errors for the different approaches. A two-tailed t-test will be performed

to investigate whether the profits are significantly different from zero. In addition, to gain a better under-

standing of whether the approaches are useful for traders, Sharpe ratios are provided. The Sharpe ratio is

the average return earned in excess of the risk-free rate over the total risk of the portfolio.

SRp =
r̄p − rf
σp

(31)

where r̄p and σp denote mean profit and standard deviation of the straddle portfolio, and rf denotes the

average risk-free rate. This helps to understand whether the performance of a strategy is the result of smart

trading or having high exposure to risk. The greater a portfolio’s Sharpe ratio, the better its risk-adjusted

performance.

3 Data

For this study, I will use datasets of daily implied volatilities for options on stocks obtained from Option-

Metrics. The data include daily closing bid and ask quotes, option type (call/put), volume, strike prices,

expiration date, option delta (∆), dividends paid on each underlying asset and implied volatility. Option-

Metrics uses the midpoint of the bid price and offer price as the theoretical price for the option in the

Black-Scholes formula to calculate the implied volatility using a numerical search technique.

I consider a set of equity options on the ten stocks with the largest market capitalisation in the IT sector in

the S&P 500. The equity options are specified in table 6 in appendix A.2. The data set covers the period

from September 1, 2004, until December 31, 2017. Days on which the market is closed due to holidays or

other reasons are excluded, resulting in 3,357 daily observations of the implied volatility. All considered

companies have continuous listing during the sample period and the equity options are actively traded.

Additionally, I use data on the daily implied volatilities for European options on the S&P500 index and

daily time-series of the following exogenous variables: index returns (S&P 500), interest rates, expected

inflation and corporate/government bond yield spread. The glossary and definitions of the exogenous state

variables can be found in table 7 in appendix A.2.
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Figure 4: Markov-switching model for the implied volatility. The blue line corresponds to the estimated probabilities

of a Markov-switching model mapped on the left axis. A probability of 0 corresponds to a low volatility regime for the

implied volatility. A probability of 1 on the left axis corresponds to a high volatility regime for the implied volatility.

Along the estimated probabilities the time-series of the implied volatilties averaged across the equity options is plotted

in black corresponding to the right axis.

The datasets contain the 2008 financial crisis. The financial crisis was a period of extreme volatility which

may influence results. A regime-switching model, allows the behavior of the variables to depend on the

regime. A Markov switching model is such a regime-switching model which estimates the probability of

being in regime 1 or regime 2. If I estimate a Markov switching model for a high and low volatility regime

for the implied volatility, roughly two switches between the regimes are seen in figure 4. This is a reason to

believe that the regime before the crisis is quite similar to after the crisis. Therefore I exclude the financial

crisis from the sample period. The period from February 1, 2007, until September 1, 2009, is omitted. This

results in a dataset of 2,706 daily observations of implied volatilities.

The datasets are filtered following the procedures of Dumas et al. [1998], Bernales and Guidolin [2014],

van der Wel et al. [2016]. First, observations with implied volatility greater than 70% and those with missing

values for either the implied volatility or ∆ are dismissed. Second, all the options with maturity less than 10

days or longer than 360 days are dismissed, since these options usually contain little information regarding

IVS. Third, I exclude options with a price lower than $0.30 for equity options and $ 3
8 for S&P 500 index

options, to avoid the effects of price discreteness on the IVS shape. Fourth, I consider only out-of-the-money

(OTM) calls and puts as these are more actively traded than in-the-money options. The OTM call (put)

can be matched to an ITM put (call) via the put-call parity where the ∆ of the call option is always one

plus the ∆ of the put option and the corresponding put-call pair should have the same implied volatility.

Therefore studying OTM options indirectly encompasses the study of ITM options.

I divide the data into different maturity-moneyness groups in a similar way as van der Wel et al. [2016]. More
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specifically I divide the data into three maturity groups classified as short-term if τ < 60 days, medium term

if 60 ≤ τ ≤ 180 days and long-term if τ > 180 days. Together with six moneyness groups of at-the-money,

out-of-the-money, and deep out-of-the-money options for both call and put options. I consider put options

with −0.125 < ∆ < 0 as deep out-of-the-money (DOTM Put), with −0.375 < ∆ < −0.125 as out-of-the-

money (OTM Put), and with −0.5 < ∆ < −0.375 as at-the-money (ATM Put). Similarly, call options

with 0.375 < ∆ < 0.5 are at-the-money (ATM Call), 0.125 < ∆ < 0.375 are labeled as out-of-the-money

(OTM Call) and with 0 < ∆ < 0.125 are deep out-of-the-money (DOTM Call). The combination of the

three maturities and six moneyness groups provides 18 different groups. Within each maturity-moneyness

group, I select the option that has the smallest Euclidean distance to the midpoint of both dimensions as

a representative for this group. If there is no option within a group on a specific day, these can be seen

as missing values. I generate those missing values by selecting a neighbor defined as the option with the

smallest Euclidean distance to both midpoints across all other groups at that day [van der Wel et al., 2016].

This may cause some extra bias in the predictions. The maturity-moneyness groups for long-term deep

out-of-the-money puts and calls are empty most frequently. The groups for short-term and medium-term,

out-of-the-money and at-the-money, calls and puts are almost never empty. This is logical as an option is

considered deep out-of-the-money if its strike price is significantly above (for a call) or significantly below

(for a put) the current price of the underlying asset. A call (put) option becomes in-the-money if the strike

price is below (above) the stock price. Typically, the deeper out-of-the-money the option is, the less intrinsic

value the options has, and therefore the less it is traded. Options trading activity tends to be higher when

options are at-the-money or a bit out-of-the-money.

The filtered datasets will be split into two parts: the first 200 observations (first rolling window) of the

datasets are used as an estimation period for the models and the other 2,506 observations are used to

produce out-of-sample forecasts. I take the log of the implied volatility as the dependent variable in the

models to ensure that the predictions are non-negative.

3.1 Data statistics

This subsection describes summary statistics and empirical characteristics of the implied volatility surface

as a preliminary investigation of the IVS of equity options. In table 1 average data statistics across the

equity options are presented. Reported are the mean and standard deviation of the implied volatilities, ∆

and time-to-maturity. The statistics are ordered by the different maturity-moneyness groups. The implied

volatility is quite flat but increases with time-to-maturity. An option with short time-to-maturity have a low

implied volatility and options with long time-to-maturity tend to have a high implied volatility, since more

time-value is priced into the option. The implied volatility is the highest for deep out-of-the-money puts

and the lowest for deep out-of-the-money calls for each maturity. ∆ is fairly constant across the maturities.

The implied volatility is higher for puts than for calls for each group. Traders are typically more afraid of
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sharp drops in stock prices, than they are hopeful of strong rises. Table 8 in the appendix shows the average

correlations and variances of the implied volatilities within the maturity-moneyness groups. Overall, high

correlation between the maturity-moneyness groups is observed.

Table 1: Average data summary statistics across the equity options.

τ < 60 60 < τ < 180 τ > 180

Mean Std Mean Std Mean Std

ATM call

IV 0.296 0.111 0.289 0.094 0.287 0.088

∆ 0.225 0.216 0.198 0.215 0.196 0.220

τ 55.689 54.140 91.395 54.432 145.612 91.719

OTM call

IV 0.288 0.107 0.282 0.089 0.285 0.086

∆ 0.259 0.1425 0.264 0.104 0.293 0.117

τ 45.882 30.018 126.562 27.369 222.167 71.623

DOTM call

IV 0.292 0.110 0.292 0.094 0.294 0.088

∆ 0.398 0.134 0.428 0.084 0.427 0.116

τ 48.420 38.897 125.915 31.788 214.603 75.469

DOTM put

IV 0.325 0.122 0.360 0.121 0.372 0.113

∆ 0.141 0.240 0.022 0.210 0.029 0.212

τ 54.070 50.422 113.824 47.103 201.018 87.483

OTM put

IV 0.282 0.120 0.328 0.108 0.334 0.101

∆ -0.207 0.210 -0.221 0.135 -0.130 0.210

τ 43.935 27.001 126.920 26.295 222.698 71.260

ATM put

IV 0.299 0.113 0.302 0.099 0.304 0.092

∆ -0.263 0.309 -0.362 0.218 -0.285 0.300

τ 48.839 39.572 125.309 32.268 214.535 76.000

Notes: the table shows data statistics ordered by moneyness and time-to-maturity. The mean and standard deviation

(Std) are reported over time for the implied volatility (IV), ∆, and time-to-maturity τ (in days). The numbers

represent averages over time for the selected equity options in each maturity-moneyness group.

Figure 5 visualises the implied volatility surface of the options on the underlying stocks: Apple, NVIDIA,
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(a) Apple, August 20, 2008 (b) Apple, September 1, 2014

(c) NVIDIA, August 20, 2008 (d) NVIDIA, September 1, 2014

(e) Microsoft, August 20, 2008 (f) Microsoft, September 1, 2014

(g) Google, August 20, 2008 (h) Google, September 1, 2014

Figure 5: Equity IVS surfaces. Each subfigure corresponds to the IVS at a particular date for options on one of

the underlying stocks. The color-mapped surface illustrates the fitted IVS. The surface is recovered from the 18

maturity-moneyness groups.
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Microsoft and Google on two specific days. All the subfigures on the left show the IVS on August 20, 2008,

during the financial crisis. The subfigures on the right show the IVS on September 1, 2014. The surfaces are

recovered from the 18 maturity-moneyness groups. Apart from the level of the implied volatility, the shape of

the IVS during the financial crisis is quite similar to the IVS after the financial crisis. Differences in the shape

of the fitted surfaces can also be the results of different options that are selected for the groups on a specific

day. Overall, the same features can be seen in the surfaces as in table 1. The implied volatility increases if

the time-to-maturity increases and the implied volatility is higher for puts than for calls. However there are

some exceptions, for example in figure 5e the implied volatilities slightly decrease with time-to-maturity. A

common feature for implied volatility is the volatility smile. A volatility smile occurs in a situation in which

at-the-money options have lower implied volatility than out-of-the-money. The volatility is higher in the

extremes, deep out of the money and deep in the money, since the strike price is further away from the stock

price. Therefore the shape of the IVS looks like a smile. This feature is also seen in figure 5. Around ∆ = 0,

which corresponds to DOTM puts and DOTM calls, the implied volatility is the highest. The smile is not

directly visible due to the ordering of the options. If the curve is more balanced to one side it is referred to

as a volatility smirk. The sub-figures of figure 5 do not appear to show a relationship between the individual

equities. There is no evidence that the IVS of two equities has involved in a similar way over time or that

they have a comparable shape at the specific days.

Time series of the implied volatility over the sample period are shown in figure 6. Figure 6a gives the average

time-series across the equity options for each maturity-moneyness group separately. The fluctuations are

caused by the construction of the maturity-moneyness group. If there is no option in the group the option

that is closest to the midpoints across all options is selected. Figure 6b displays the mean across the equity

options and across all maturity-moneyness groups. It is clearly visible that the overall implied volatility is

especially high during the financial crisis and has fewer peaks over the complete sample period. Figure 6c

shows the average time-series across the maturity-moneyness groups for each individual equity option. There

is variation in the level of the implied volatilities of the equity options. The evolution of the time-series is

quite similar for each equity option. However, in the beginning and at the end of the sample period the

time-series divert to some extent.

4 Empirical results

This section elaborates on the empirical study based on the data presented in section 3. I evaluate the

predictions based on the two approaches outlined in section 2. The performance of the approaches will

be compared to the benchmark models. I also assess the economic value of the out-of-sample forecasts by

simulating the trading strategy described in section 2.5.

To ensure the right modeling approach, unit-root tests for the univariate times series of the factors and
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(a) Average time-series across the equity options for each

individual maturity-moneyness group

(b) Average time-series across equity options and

maturity-moneyness groups

(c) Average time-series across the maturity-moneyness

groups for each individual equity option

Figure 6: The time series of implied volatility over the sample period. Figure 6a gives the average time-series across

the equity options for each individual maturity-moneyness group. Figure 6b the average time-series across equity

options and maturity-moneyness groups. Figure 6c the average time-series across the maturity-moneyness groups for

each individual equity option.

exogenous variables are performed. I test unit-root stationarity with the augmented Dickey-Fuller (ADF)

test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The tests are performed on the univariate

time-series for the complete out-of-sample length. In table 10 and table 11 in appendix A.3 respectively the

ADF test statistics and the KPSS test statistics along with the corresponding p-values are reported for the

factors created by PCA and the deterministic factors. The uniform conclusion from the ADF statistics is

that the factors do not contain unit roots. The KPSS statistics are less uniform, however mostly the null-

hypothesis of the absence of unit roots is not rejected. Table 9 shows the test statistics for the exogenous
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variables. Again no strong evidence for the presence of unit root is found. This implies that there is no need

for modeling the log implied volatilities in first differences. Therefore the log implied volatility is modeled

in levels.

4.1 Statistical results

In table 2 the average out-of-sample forecasting performance of the approaches for the implied volatility

over time and across the equity options is presented. The out-of-sample dataset is from July 18, 2005, until

December 29, 2017, excluding the financial crisis. The table reports the average root mean squared error

(RMSE), the average mean absolute error (MAE) and the average mean correct prediction of the direction

of change in implied volatilities (MCPDC) across the equity options. The corresponding Diebold-Marino

(DM) statistics of equal predictability compared to the random walk are reported between brackets. The

performance is evaluated for three forecast horizons: 1 day, 3 days and 5 days ahead. Panel A presents

the results when no exogenous variables are considered. Panel B shows the performance when exogenous

variables are considered. For the two-step approach, the most relevant predictors are selected by LARS from

the aggregate set of factors created by PCA and the exogenous variables. For the benchmark model and the

one-step approach, the exogenous variables selected by LARS algorithm in the two-step approach are used.

The bold values indicate the best performing model for each forecasts horizon according to the performance

measures.

When no exogenous variables are considered, the benchmark model is not able to outperform the random

walk model in terms of RMSE and MAE for the short forecast horizons. However, in terms of MCPDC

statistics the benchmark model performs significantly better compared to the random walk. When the

horizon is increasing the difference between the two becomes smaller. Both the two-step and one-step

approach significantly outperform the benchmark model and the random walk model in terms of all three

measures. This confirms that more sophisticated models are better able to capture the dynamics of the IVS of

equity options. The performance of the one-step approach is significantly higher than the performance of the

two-step approach. This gives an indication that the IVS prediction accuracy is higher when the factors are

estimated simultaneously with the IVS. In general the forecast accuracy diminishes as the forecast horizon

increases. Both the one-step and two-step approach are able to correctly predict more than 50 percent

of the directions of change in implied volatility (MCPDC statistics is higher than 0.5). If there were no

predictability the methods are expected to be correct in at least 50% of the cases (MCPDC statistics is 0.5).

This indicates that it is possible to create trading profits using the forecasts of the approaches.

The consideration of exogenous variables improves the forecast accuracy, see panel B of table 2. However, the

forecast accuracy does not increase notably when considering exogenous variables. Although the improve-

ment in forecast accuracy is minor, it is encouraging due to the limited number of the exogenous variables

25



Table 2: Average forecast performance measures across equity options.

RMSE MAE MCPDC

h = 1 h = 3 h = 5 h = 1 h = 3 h = 5 h = 1 h = 3 h = 5

Random walk 0.0369 (NA) 0.0390 (NA) 0.0406 (NA) 0.0270 (NA) 0.0289 (NA) 0.0305 (NA) 0.5123 (NA) 0.5121 (NA) 0.5149 (NA)

Panel A: no exogenous variables

Benchmark 0.0424 (-2.86) 0.0420 (-1.69) 0.0420 (-0.90) 0.0307 (-3.25) 0.0304 (-1.97) 0.0306 (-1.48) 0.5190 (0.69) 0.5199 (1.04) 0.5195 (0.88)

Two-step 0.0197 (6.02) 0.0678 (-0.99) 0.0232 (6.79) 0.0156 (8.65) 0.0552 (-0.99) 0.0189 (10.09) 0.5366 (-3.840) 0.5383 (-3.47) 0.5372 (-3.121)

One-step 0.0138 (6.46) 0.0153 (6.93) 0.0172 (7.18) 0.0113 (10.13) 0.0122 (10.79) 0.0136 (10.97) 0.6643 (-33.78) 0.6508 (-28.96) 0.6346 (-25.87)

Panel B: including exogenous variables

Benchmark 0.0390 (-2.26) 0.0370 (-1.77) 0.0379 (-1.68) 0.0288 (-2.56) 0.0278 (-2.16) 0.0289 (-2.16) 0.5282 (0.54) 0.5294 (0.72) 0.5308 (0.47)

Two-step 0.0175 (5.80) 0.0200 (5.88) 0.0225 (5.88) 0.0132 (8.73) 0.0155 (8.71) 0.0176 (8.39) 0.5502 (-3.99) 0.5469 (-3.25) 0.5446 (-2.83)

One-step 0.0077 (6.67) 0.0116 (7.11) 0.0147 (7.40) 0.0057 (10.46) 0.0083 (10.82) 0.0104 (10.94) 0.7646 (-21.75) 0.7154 (-20.79) 0.6829 (-18.98)

Notes: The table contains the average root mean squared error (RMSE), average mean absolute error (MAE) and the average mean correct prediction of the

direction of change in implied volatilities (MCPDC) across the equity options. The corresponding Diebold-Marino (DM) statistics of equal predictability compared

to the random walk are reported between brackets. The performance is evaluated for three forecast horizons: 1 day, 3 days and 5 days ahead. The different

factors sets are indicated as follows: Benchmark indicates the deterministic factors set (benchmark model), Two-step represents the two-step approach where the

factors are created by PCA and One-step indicates the one-step approach where a state space model for the implied volatilities is estimated using the Kalman

filter. Panel A shows the results when no exogenous variables are used. Panel B contains the performance when exogenous variables are considered. For the

two-step, the most relevant predictors are selected by the LARS algorithm from the aggregate set of factors created by PCA and the exogenous variables. For the

benchmark model and the one-step approach, the exogenous variables selected by LARS algorithm in the two-step approach are used. The bold values indicate

the best performing model for each forecasts horizon according to the performance measures.
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considered. This suggests that the consideration of other exogenous variables not available for this study

could further contribute to the prediction of the IVS of equity options. In table 3 the percentage of rolling

windows in which the exogenous variables and the factors created by PCA are selected by the LARS algo-

rithm. The aggregate of the exogenous variables and the factors created by PCA is used as the input for the

LARS algorithm. For each rolling window a maximum of five variables is selected. It is observed that the

LARS algorithm selects five variables for every rolling window. Therefore the percentages for each equity

option sum up to 500%. The LARS algorithm does not necessarily selects the same factors as a common

PCA. The first r = 5 factors would be selected by PCA based on the large eigenvalues. As these are not

chosen by LARS for every rolling window, this is a signal that the factors that explain most of the variation

in the data set are always the best predictors. This indicates that the selection of more relevant factors

improves the forecast performance of statistical factor models such as PCA. Often, exogenous variables are

selected in addition to the factors. The interest rate and the expected inflation are frequently selected as a

variable. Across the equities, these variables are selected in respectively 39% and 24% of all rolling windows.

The (lagged) return of the S&P 500 is found to be a less useful variable than literature suggested. The

selection of the exogenous variables and factors is different among the equity options and for each rolling

window. Therefore, it is not possible to make one general factor set that can be used for each equity option

over the complete sample. Hence, it is concluded that using the LARS algorithm to select the factors created

by PCA and the exogenous variable improves the forecast accuracy.

So far, the forecasting performances have been analysed by considering average statistics across the equity

options over the full out-of-sample period. To gain more insights on particular features of individual equity

options of the IT sector and in what way the approaches perform over the out-of-sample time period, the

statistical measures for each equity option are plotted. Figure 7 plots the time series of RMSE statistics.

The upper panel plots the RMSE time-series for the benchmark model. The middle panel shows the time-

series for the RMSE statistics when forecasting using the two-step approach. The lower panel contains the

RMSE statistics for the one-step approach. Similar plots for the MAE statistics are found respectively in

figure 9 in appendix A.3. The time-series have a visible amount of peaks for each option and each approach.

Most peaks correspond to company-specific events. The benchmark approach (top panel) is most sensitive

to the high volatility periods; before and during the crisis high values are observed. From the figures it

cannot be conclude that one of the approaches is the best for options of any particular stock. Given that

the performance measures of the approaches vary over time for each individual equity option, it might be of

interest to construct forecast combinations in order to improve overall forecasting performances. However,

these forecast combinations are beyond the scope of this thesis.

Table 4 reports the average RMSE statistics for each of the individual equity options using the approaches.

The reported values are the RMSE statistics of the one-step ahead forecasts of both excluding and including

exogenous variables averaged over three subperiods: before, during and after the financial crisis. Bold
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Table 3: Percentage of rolling windows in which the exogenous variables and the factors created by PCA are

selected by the LARS algorithm.

Apple Adobe Cisco Google IBM Intel Mastercard Microsoft NVIDIA Oracle

Return S&P 500 - - - - - - - - - 1.40

Lagged Return S&P 500 - - - 0.68 - - - - - 2.95

Expected inflation 9.94 45.25 24.66 19.11 30.85 26.14 23.25 0.36 34.12 28.93

Interest rate 17.80 64.88 35.55 32.68 43.02 44.21 61.88 3.79 51.48 40.66

Yield - - - 0.84 - 0.04 14.01 - - 2.75

Factors of index options - - 0.04 1.32 0.40 0.12 9.98 - - 0.92

Factor 1 34.00 67.64 49.80 38.19 54.95 57.02 57.64 10.34 54.67 46.69

Factor 2 49.48 54.35 45.53 51.84 53.43 54.59 54.35 23.90 52.19 46.29

Factor 3 62.53 42.70 45.73 59.02 49.32 49.44 40.70 41.42 49.44 47.01

Factor 4 57.38 34.48 44.17 54.67 42.98 44.25 35.48 55.31 45.65 49.40

Factor 5 51.04 60.73 56.94 54.95 58.54 58.86 52.73 61.85 59.06 56.15

Factor 6 44.09 67.68 62.01 58.54 63.81 61.61 66.68 56.34 60.30 59.58

Factor 7 38.55 27.33 47.25 42.74 35.91 36.83 22.33 41.30 35.75 42.18

Factor 8 40.46 17.08 33.40 31.60 20.75 29.41 13.08 38.35 23.34 28.85

Factor 9 38.11 11.09 21.19 27.02 13.93 19.31 8.09 39.86 15.04 20.67

Factor 10 26.06 4.91 12.13 16.80 10.97 10.77 9.91 43.18 10.93 12.01

Factor 11 13.69 1.56 9.42 6.46 9.30 6.11 3.56 39.11 5.31 7.70

Factor 12 8.86 0.32 7.30 2.71 5.87 1.04 10.32 28.41 1.56 4.03

Factor 13 5.83 - 4.55 0.60 4.39 0.24 8.91 13.09 0.76 1.76

Factor 14 2.08 - 0.32 0.16 1.28 - 4.01 2.59 0.12 0.08

Factor 15 0.12 - - 0.08 0.32 - 3.09 0.80 0.28 -

Factor 16 - - - - - - - - - -

Factor 17 - - - - - - - - - -

Factor 18 - - - - - - - - - -

Notes: Percentage of rolling windows in which the exogenous variables and the factors created by PCA are selected by

the LARS algorithm. The aggregate of the exogenous variables and the factors created by PCA is used as the input

for the LARS algorithm. For each rolling window a maximum of five variables is selected. Factor 1 corresponds to

the factor created by PCA with the largest eigenvalue. Likewise, Factor 18 corresponds to the factor created by PCA

with the smallest eigenvalue. - indicates that the exogenous variable/factor is not selected by the LARS algorithm.

values represent the lowest RMSE statistic for the equity option in the specific sub-period. Similar tables

containing the MAE and MCPDC statistics are found respectively in table 12 and table 13 in appendix

A.3. The results of the approaches for three forecast horizons for each equity options when (no) exogenous

variables are considered are found in table (15) 14 in appendix A.3. For each equity option it is observed

that the RMSE statistics for the benchmark model differ in each subperiod. The performance of the two-step

and the one-step approach is not highly influenced by the financial crisis. These statistics are steady over
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Table 4: Average RMSE statistics

Before financial crisis During financial crisis After financial crisis

July 18, 2005 until February 1, 2007 until September 2, 2009 until

January 31, 2007 September 1, 2009 December 31, 2017

Apple

Benchmark 0.0340 0.0567 0.0376

Two-step 0.0174 0.0263 0.0174

One-step 0.0106 0.0144 0.0098

Adobe

Benchmark 0.0360 0.0458 0.0359

Two-step 0.0142 0.0246 0.0160

One-step 0.0087 0.0168 0.0098

Cisco

Benchmark 0.0952 0.0408 0.0264

Two-step 0.0162 0.0262 0.0167

One-step 0.0089 0.0145 0.0103

Google

Benchmark 0.0619 0.0649 0.0263

Two-step 0.0136 0.0279 0.0143

One-step 0.0080 0.0162 0.0093

IBM

Benchmark 0.0565 0.0561 0.0429

Two-step 0.0114 0.0213 0.0149

One-step 0.0070 0.0120 0.0080

Intel

Benchmark 0.0645 0.1739 0.0250

Two-step 0.0139 0.0266 0.0145

One-step 0.0077 0.0147 0.0093

Mastercard

Benchmark 0.0451 0.0503 0.0451

Two-step 0.0205 0.0311 0.0223

One-step 0.0097 0.0239 0.0108

Microsoft

Benchmark 0.0531 0.0915 0.0518

Two-step 0.0208 0.0265 0.0231

One-step 0.0140 0.0151 0.0139

NVIDIA

Benchmark 0.0351 0.0592 0.0351

Two-step 0.0213 0.0332 0.0194

One-step 0.0133 0.0177 0.0115

Oracle

Benchmark 0.0381 0.0408 0.0331

Two-step 0.0149 0.0262 0.0165

One-step 0.0094 0.0145 0.0111

Notes: The table contains the average RMSE statistics of the one-step ahead prediction for the individual equity

options. For each equity option the RMSE statistic for the three approaches is reported. The statistics are averaged

over different subperiods: before, during and after the financial crisis. Bold values represents the lowest RMSE

statistic for the equity option in the specific sub-period. 29



(a) Benchmark

(b) Two-step

(c) One-step

Figure 7: Time-series of the RMSE statistics for the individual equity options. The upper panel plots the time-series

for the benchmark model. The middle panel plots the time-series for the RMSE statistics of the forecasts of the

two-step approach. The lower panel shows the RMSE statistics for the one-step approach.
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the subperiods. Overall, the one-step approach is the best performing model for each equity option in each

subperiod according to the three performance measures.

4.2 The economic value of the predictions of equity IVS

The results in the previous section show the existence of predictability in the dynamics of the IVS of equity

options. The predictability increases when exogenous variables are considered in the approaches. To assess

the economic value of those predictions for traders a simple trading strategy as described in section 2.5 is

constructed. The trading strategy tries to exploit the one-day-ahead predictions from the approaches to

generate profit. The MCPDC statistics are highly correlated with the profits of the trading strategy if the

simple trading strategy is followed: buy (sell) if the method predicts the IV will increase (decrease) between

t and t + 1. From section 4.1 it is concluded that the one-step approach including exogenous variables has

the highest MCPDC statistics for one-step ahead prediction. This method is therefore expected to generate

the highest profit.

Table 5 reports average daily summary statistics for the ATM straddle trading strategy applying the forecasts

of the approaches. These are presented alongside the average summary statistics for effortless investment

in the risk-free rate over the out-of-sample time period. Without taking transaction costs into account, the

forecasts of all the approaches translate into significant positive average profits. All trading strategies, even

the benchmark model, outperform the effortless investment in the risk-free rate. As expected the one-step

approach yield the largest profit. However, it also has the highest standard errors, which means this is

also the riskiest strategy. An average daily Sharpe ratio of 4.161 for the one-step approach indicates great

performances. The Sharpe ratio of the risk-free investment is zero, since the expected return is the risk-free

rate. Both the two-step approach and one-step approach have higher Sharpe ratio than the benchmark

model and the effortless investment in the risk-free rate. It is concluded that, disregarding transaction costs,

the approaches have sufficient economic value in forecasting the IVS of equity options.

However, when transaction costs are accounted for the profit of all approaches becomes negative as shown

in panel B. The cost of each transaction is taken as half the bid-ask spread. The profit of the effortless

investment in the risk-free rate remains positive since the transaction costs are negligible. The negative

Sharpe ratios should be interpreted as that an investment in the risk-free rate would be more profitable

than this strategy. However a negative Sharpe ratio can be misleading. When the mean profit is negative,

the Sharpe ratio improves if the volatility is higher. This should be kept in mind when analysing negative

Sharpe ratios. Relative to each other, the approaches show similar performances as when transaction costs

were not accounted for. Again, the trading strategy based on the forecasts of the one-step approach is the

least badly performing.

When exogenous variables are included in the approaches only minimal differences are seen in table 5 in
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Table 5: Trading results of the ATM straddle trading strategy (before and after transaction costs)

No exogenous variables Including obervable variables

Mean Profit Std profit t-test Sharpe ratio Mean Profit Std profit t-test Sharpe ratio

(%) (%) (%) (%) (%) (%)

Before transaction cost

Risk-free 0.300 0.241 62.263 0.000 0.300 0.241 62.263 0.000

Benchmark 3.123 7.200 21.718 2.733 3.601 7.474 24.121 3.035

Two-step 3.092 6.792 22.790 2.868 3.591 7.646 23.510 2.958

One-step 5.243 7.938 33.065 4.161 5.091 7.578 33.632 4.232

After transaction cost

Risk-free 0.300 0.241 62.263 0.000 0.300 0.241 62.263 0.000

Benchmark -3.538 7.542 -23.485 -2.955 -3.088 7.857 -19.678 -2.476

Two-step -3.597 7.169 -25.114 -3.160 -3.191 8.016 -19.929 -2.508

One-step -1.716 8.492 -10.115 -1.282 -1.826 8.136 -11.237 -1.424

Notes: The table reports average daily summary statistics for the ATM straddle trading strategy applying the

forecasts of the approaches. In particular, the average profit, the standard deviation of the profit, t-test statistic and

the Sharpe ratio are provided as a daily percentage averaged over the full out-of-sample period. The ATM straddle

trading strategy is applied for the forecasts of the approaches, indicated as: Benchmark, Two-step and One-step. In

addition the results for an effortless investment in the risk-free rate over the entire time period are reported, indicated

as: Risk-free. The statistics are presented in panel A when no transaction costs are accounted for, and in panel B

transaction costs are included. The considered transaction costs taken for every transaction is half the bid-ask spread.

The Sharpe ratios as defined in equation 31 are reported in percentages. A daily percentage of 4.161% translates into

a 4.161
100

∗ (252)(1/2) = 0.6605 annualised Sharpe ratio.

terms of mean profit and Sharpe ratios. This holds for both scenarios, before and after transactions costs.

Remarkable is that the profits generated by the forecasts of the one-step approach diminish when exogenous

variables are considered. Also the standard deviation of the one-step approach decreases, so that the Sharpe

ratio improves minimally. For the trading strategy based on the forecasts of the two-step approach, the

opposite is visible. The generated profits increase but the risk involved with the strategy also increases. From

an economic perspective, including exogenous variables to the approaches is not very beneficial. However,

the consideration of other exogenous variables not available for this study may contribute more positively to

the economic value of the forecasts.

The dynamic performances of all trading strategies before and after including transaction costs are provided

in figure 8. The approaches show similar patterns over time. The effortless investment in the risk-free
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(a) No transaction costs (b) Including exogenous variables, no transaction costs

(c) Including transaction costs (d) Including exogenous variables and transaction costs

Figure 8: Time-series over the out-of-sample period of the profits created by the ATM straddle trading strategy

applying the forecasts of the approaches. The upper panel, figure 8a and figure 8b, shows the performance when

disregarding transactions. The lower panel, figure 8c and figure 8d, plots the profits when there transaction costs are

accounted for.

rate has a constant performance. High negative profits over the full out-of-sample period are observed when

transaction costs are considered. Similar to the findings of Bernales and Guidolin [2014], the results show that

generating positive profits when accounting for transaction costs is difficult. Although the forecasts of the

IVS of equity options for the different approaches have proven to be valuable from a statistical perspective,

they are not able to generate profits using this trading strategy when transaction costs are considered.
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4.3 Robustness

In this subsection, a number of robustness checks for the approaches are elaborated on. In section 3 it is

seen that during the financial crisis the implied volatilities were very high. This period is excluded from

the dataset. To determine how the consideration of this period would influence the findings, the models are

rerun with the dataset including the financial crisis (unreported results). The performance of the models

relative to one another does not change notably. The one-step approach is still the best performing method.

The approaches were also applied using the data without a log-transformation. Overall the accuracy of the

forecasts increases. However, the log-transformation is necessary for subsequent predictions since it prevents

non-positive implied volatility forecasts.

5 Conclusion

The implied volatility surface is a mapping of implied volatilities of options as a function of the moneyness

and time-to-maturity. Understanding the dynamics of these surface can contribute to trading and hedging

strategies, as it contains information about the expected market volatility. This paper investigates whether

the proposed two-step and one-step approach can provide accurate forecasts for the implied volatility sur-

faces of equity options. The two-step approach is based on factors created by a principal component analysis

which are selected using the LARS algorithm. In the one-step approach, the factors are estimated simulta-

neously with the IVS. Both approaches are also applied with additional exogenous variables. The exogenous

variables are selected based on the LARS algorithm for each rolling window. Only those exogenous variables

that contribute to the performance of the models are used. The statistical and economic relevance of the

approaches are compared.

There are three main findings in this paper. First, the approaches capture the predictability of the IVS

of equity options in the IT sector. Both the two-step and one-step approach significantly outperform the

benchmark model and the random walk model. This confirms that more sophisticated models are better able

to capture the dynamics of the IVS of equity options. The one-step approach is the best performing averaged

over time for each individual equity option in terms of performance evaluation measures. This indicates that

the IVS prediction accuracy is higher when the factors are estimated simultaneously with the IVS. Second,

the consideration of exogenous variables improves the predictions of the approaches in terms of statistical

performance. The selection of the exogenous variables is different among the equity options and for each

rolling window. The LARS algorithm relatively frequently selects interest rate and expected inflation as

variables. Across the equity options, these variables are selected in respectively 39% and 24% of all rolling

windows. The (lagged) return of the S&P 500 is found to be a less useful variable than literature suggested.

Using the LARS algorithm to select the factors created by PCA and the exogenous variables improves the

forecast performance. Third, all the approaches are shown to have economic value. Applying the one-step
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ahead forecasts of the approaches to an ATM straddle trading strategy generates positive returns before

transaction costs are considered. However, when transactions costs are accounted for the profits become

negative. From an economic perspective, including exogenous variables to the approaches does not have a

large impact. Nonetheless, the predictable dynamics of equity option IVS could be helpful for a trader’s

prediction and hedging strategies.

However, this study has some limitations regarding the methodology. Since IVS data had an unbalanced

panel, the data had to be transformed before predictions could be made. In this paper, one option in each of

the 18 maturity-moneyness groups was selected. Considering more groups is possible. Another alternative

would be to consider the unbalanced set of all options, since forecasting is most relevant at an individual

option level. The performance of the two-step and one-step approach is compared to assess the relevance of

simultaneously estimating the factors and predicting the IVS. To effectively compare the approaches, they

should differ only on this point. However, as seen in the methodology, the exogenous variables are included

in the observation equation for the one-step approach, whereas in the two-step approach they are included in

the VAR model for the factors. Additionally, the Kalman filter used in the one-step approach is a recursive

algorithm. It therefore uses all the available information up to time t efficiently. In the two-step approach

only p lags with a maximum of five are considered for the prediction of the factors. These points need to be

kept in mind when assessing the relative performance of the two approaches.

There are three topics that can be addressed in further research. First, the results indicate that the addition

of exogenous variables improves forecast accuracy. However, access to daily updates of additional exogenous

variables (GDP, unemployment rates, money supply, CPI) was limited. The consideration of these indicators

could further increase the forecast accuracy of the IVS of equity options. Second, the economic value of

the forecasts is assessed using only a simple trading strategy. Due to some simplifying assumptions the

transaction costs when applying the strategy are high. More complex trading strategies could be explored,

where for example the amount of trades per day is limited. Third, investigation of combined forecasts

of the different approaches for individual equity options is advised to improve the forecast performance.

Alternatively, since the one-step approach tends to outperform the other models, a future study could focus

on optimising predictions with this approach.
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A Appendix

A.1 Proofs

A general explanation of PCA is given in subsection A.1.1. The LARS algorithm of Efron et al. [2004] is

elaborated in subsection A.1.2. A detailed description of the Kalman filter and the expectation maximisation

algorithm is found subsection A.1.3.

A.1.1 Principal Compenent analysis

PCA finds the principal components in a dataset. Principal components are the directions where there is

most variance in the data. PCA is used for data reduction.

Assume N given data variables xt = (x1,t, ..., xN,t)
′. Define the factors fi,t as a linear combinations of the

variables in the large dataset.

f i,t = a′ixt = a′i,1x1.t + · · ·+ a′i,NxN.t (32)

such that,

f t = A′xt (33)

Without loss of generality, A may be taken to be orthogonal, implying that A′A = IN or A−1 = A′.

Given that f t = A′xt and A is orthogonal, it follows that xt = Af t = ai,1f1.t + · · · + a′i,NfN.t. The aim

is to reduce the dimension to r < N in such a way that the r factors capture the bulk of the variation

in the dataset. A principal component analysis identifies the linear combinations of the data that are

uncorrelated and have maximum variance. This involves solving the maximisation problem denoted below.

Let Σ̂x = 1
T

∑T
t=1(xt − x̄)(xt − x̄)′ denote the covariance matrix of the data xt.

max
a1:r

a1:rΣ̂xa1:r subject to a1:ra1:r = Ir (34)

To solve the maximisation problem, form the Lagrangian L = a′1:rΣ̂xa1:r − l(a′1:ra1:r − Ir), where l is the

Lagrange multiplier. Taking the derivative with respect to a1:r results in δL
δa1:r

= 2Σ̂xa1:r − 2la1:r. Setting

this equal to zero gives the first order conditions, which can be rewritten as:

ΣIV a1:r = la1:r (35)

Which shows that the solution a1:r are the r eigenvector of Σ̂IV k according to the definition of an eigenvec-

tor.

A.1.2 LARS algorithm

The LARS algorithm of Efron et al. [2004] starts with µ̂0 = 0 and build the current estimate µ̂ by the steps.

The current correlation is defined as ĉ = X ′(y − µ̂A). Define the set K as the indices of the variables which
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corresponds to the largest absolute correlation

K = [j : |ĉj | = Ĉ] Ĉ = max
j
|ĉj | (36)

Let sj = signĉj and define the matrix XK = (...sjxj ...)j∈K . To update the estimates the algorithm tends

to find the vector which has equal angles with the existing variables. Define GK = X ′KXK and KK =

(1′KG
−1
K 1K)−1/2, where 1K is a vector of 1’s of length equal to the matrix K. The equiangular vector is

defined as:

GK = XKwK wK = KKG
−1
K 1K (37)

This is true because

X ′KuK = KK1K (38)

where uK is a unit vector (||uK ||2 = 1) with columns of the active set, therefore aK = X ′uK . The algorithm

updates the estimate in the direction of uK , so the next step becomes:

µ̂new = µ̂+ γ̂uK (39)

where γ > 0 is the amount the estimate changes with. The updated correlation between the variables is as

follows:

cj(γ) = x′j(y − µ(γ)) = x′j(y − µ̂− γ̂uK) = ĉj − γaj (40)

implying that the correlation is decreasing. γ is chosen in order that some other variable has the same

absolute correlation with the active set, which lead to values of γ as

γ̂ = min
j∈Kc

+
( Ĉ − ĉj
AK − aj

,
Ĉ + ĉj
AK + aj

)
(41)

The “min+” indicates that only positive values are considered.

A.1.3 Kalman filter

This subsection of the appendix aims to elaborate on the main steps in the Kalman Filter. I use similar

notation and equations as Hamilton [1994]. The state space is a representation of a linear time series model

given by an equation that describes how the observations are linked to the latent factors, and an equation

that describes how the factors evolve over time.

yt = H ′ξt +wt wt ∼ N(0,R) (42)

ξt+1 = Fξt + vt+1 vt+1 ∼ N(0,Q) (43)

for t = 1, ..., T , where yt is the observed N × 1 vector of dependent variables at time t , ξt is the (mostly)

unobserved r × 1 state vector, H and F are estimated matrices of the appropriate dimensions. The distur-

bance vectors wt and vt+1 are mutually and serially uncorrelated with zero means and variance matrices
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R and Q, respectively. The normality condition of the error terms is not necessary. The Kalman filter is

a recursive procedure through the time index t that provides an optimal forecast of the states ξt+1 given

the information at time t. The parameters H, R, F and Q are unknown and need to be estimated. The

estimation is done by the EM algorithm which first runs the Kalman filter and smoother with intial values,

subsequently uses the expected states conditional on the complete information set in the loglikelihood to

found the parameters that maximises the loglikelihood function. The EM algorithm iterates these steps until

the parameters converge.

The parameters can be estimated by Maximum Likelihood but this is problematic with many states. The

Expectation Maximisation (EM) is more robust since the maximisation step is done analytically which

is hard for ML. Thereby the EM-algorithm ensures that the covariance matrices R and Q are positive

definite and symmetric. The EM algorithm takes the conditional expectation of the states conditional on

the complete information set and maximises the resulting likelihood function with respect to the unknown

parameters.

The aim of the EM algorithm is to maximise the following joint density of observing the states ξ0:T and the

data y1:T :

L(y1:T , ξ0:T |θ) =
T

2
log|R−1| − 1

2

T∑
t=1

(yt −H
′ξt)
′R−1(yt −H

′ξt)

+
T

2
log|Q−1| − 1

2

T∑
t=1

(ξt − Fξt−1)′Q−1(ξt − Fξt−1)

(44)

The EM algorithm iterates the expectation and maximisation step, which are clarified below, until the

parameters are converged.

The Expectation step of the EM-algorithm for state space models. The Kalman filter first predicts the

states based on the information up to time t in equation 45. Where ξ̂t+1|t represents the states, and P t+1|t

the variance of the states. However, when yt+1 is observed it is possible to do better than the initial pre-

diction. Therefore the prediction and the variance are updated based on a well-known result for normal

variables in equation 46. The prediction ξ̂t+1|t+1 is adjusted based on the prediction error, and the variance

P t+1|t+1 becomes smaller, since there is more information. Given the estimates of the states for the complete

sample size T the smoother iterates backwards to compute the smoothed estimates as in equation 47. For

the exact derivation of the Kalman filter I refer to Hamilton [1994].

• The Kalman prediction step:

ξ̂t+1|t = F ξ̂t|t, P t+1|t = FP t|tF
′ +Q (45)
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• The Kalman updating step:

ξ̂t+1|t+1 = ξ̂t+1|t + P t+1|tH(H ′P t+1|tH +R)−1(yt+1 −H
′ξ̂t+1|t)

P t+1|t+1 = P t+1|t − P t+1|tH(H ′P t+1|tH +R)−1H ′P t+1|t

(46)

• The Kalman smoothing step:

ξ̂t|T = ξ̂t|t + P t|tF
′P−1t+1|t(ξ̂t+1|T − ξ̂t+1|t)

P t|T = P t|t − P t|tF
′P−1t+1|t(P t+1|t − P t+1|T )P−1t+1|tFP t|t

P t+1,t|T = P t+1|TP
−1
t+1|tFP t|t

(47)

The Maximisation step of the EM-algorithm for state space models. In this step the output of the Kalman

filter and smoother are used as the true values. The maximisation of equation 44 can be done analytically

with respect to the parameters θ = [F ,H,Q,R]:

F =
( T∑
t=1

ξ̂t|T ξ̂
′
t−1|T + P t,t−1|T

)( T−1∑
t=0

ξ̂t|T ξ̂
′
t|T + P t|T

)−1
H ′ =

( T∑
t=1

ytξ̂
′
t|T
)( T∑

t=1

ξ̂t|T ξ̂
′
t|T + P t|T

)−1
Q =

1

T

T∑
t=1

ξ̂t|T ξ̂
′
t|T + P t|T − F [ξ̂t−1|T ξ̂

′
t|T + P t−1,t|T ]

− [ξ̂t|T ξ̂
′
t−1|T + P t−1,t|T ]F ′ + F [ξ̂t−1|T ξ̂

′
t−1|T + P t−1|T ]F ′

)
R =

1

T

T∑
t=1

(
yty

′
t −H

′ξ̂t|Ty
′
t − ytξ̂

′
t|TH +H ′[ξ̂t|T ξ̂

′
t|T + P t|T ]H

)

(48)

The derivations of the expectation and maximisation step of the EM algorithm can be found in Shumway

and Stoffer [1982].

A.2 Data

Table 6 gives the list of considered equity options with the largest market capitalization for the information

technology sector in the S&P 500. A glossary and the definitions of the exogenous variables can be found in

table 7.
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Table 6: List of the ten largest market cap stocks of the S&P500 for the information technology sector

Symbol Name Sector

AAPL Apple Information Technology

MSFT Microsoft Information Technology

GOOG Google Information Technology

INTC Intel Information Technology

CSCO Cisco Systems Information Technology

ORCL Oracle Information Technology

MA Mastercard Information Technology

IBM IBM Information Technology

NVDA NVIDIA Information Technology

ADBE Adobe Systems Information Technology

Table 7: Glossary and definitions of the considered exogenous variables.

Symbol Variable Definition (source) Remarks

Basic series

rSPX
t Return of the S&P 500 1 − pt

pt−1
(OptionMetrics) Percent, Daily, Not Seasonally Adjusted

E[πt] 5-Year Breakeven Inflation Rate Represents a measure of expected infla-

tion derived from 5-Year Treasury Con-

stant Maturity Securities and 5-Year

Treasury Inflation-Indexed Constant Ma-

turity Securities (FRED)

Percent, Daily, Not Seasonally Adjusted.

The latest value implies what market par-

ticipants expect inflation to be in the next

5 years, on average.

TBt Treasury Bill The 1-month constant maturity treasury

bill rate (FRED)

Percent, Daily, Not Seasonally Adjusted

GBt Long government bond 30-Year Treasury Constant Maturity

Rate (FRED)

Percent, Daily, Not Seasonally Adjusted

CBt High rated corporate bond Moody’s Seasoned Aaa Corporate Bond

Yield (FRED)

Percent, Daily, Not Seasonally Adjusted

Derived series

It Real interest rate TBt − E[πt]

Yspread Corporate/governement yield spread CBt −GBt

Notes: In the top panel the direct observed variables are elaborated. Reported are the symbol, variable and definition

along with the source between brackets and remarks. In the lower panel the derived time series are explained.
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Table 8: Correlations of the implied volatilites within the maturity-moneyness groups.

τ < 60 60 < τ < 180 τ > 180 τ < 60 60 < τ < 180 τ > 180

DOTM -call OTM - call ATM -call DOTM -call OTM - call ATM -call DOTM -call OTM - call ATM -call DOTM - put OTM - put ATM- put DOTM - put OTM - put ATM - put DOTM - put OTM - put ATM - put

DOTM -call 0.0171 0.9789 0.9796 0.9466 0.9475 0.9505 0.9338 0.9348 0.9378 0.8995 0.9629 0.9778 0.8198 0.9300 0.9481 0.7700 0.9049 0.9346

OTM - call 0.0162 0.9874 0.9513 0.9581 0.9604 0.9432 0.9458 0.9479 0.9078 0.9726 0.9844 0.8186 0.9364 0.9563 0.7682 0.9117 0.9433

ATM -call 0.0167 0.9486 0.9569 0.9625 0.9408 0.9458 0.9498 0.9208 0.9818 0.9908 0.8358 0.9450 0.9610 0.7816 0.9185 0.9469

DOTM -call 0.0135 0.9871 0.9873 0.9822 0.9816 0.9831 0.8553 0.9276 0.9439 0.8311 0.9553 0.9828 0.7997 0.9477 0.9785

OTM - call 0.0128 0.9959 0.9822 0.9896 0.9907 0.8798 0.9353 0.9510 0.8531 0.9672 0.9891 0.8162 0.9515 0.9846

ATM -call 0.0134 0.9825 0.9906 0.9943 0.8913 0.9475 0.9592 0.8685 0.9763 0.9958 0.8308 0.9628 0.9909

DOTM -call 0.0123 0.9887 0.9886 0.8498 0.9204 0.9363 0.8235 0.9522 0.9778 0.7925 0.9440 0.9821

OTM - call 0.0119 0.9964 0.8725 0.9269 0.9408 0.8511 0.9583 0.9849 0.8172 0.9545 0.9883

ATM -call 0.0122 0.8800 0.9350 0.9467 0.8644 0.9697 0.9912 0.8387 0.9668 0.9954

DOTM - put 0.0207 0.9366 0.9265 0.8695 0.8884 0.8943 0.7965 0.8606 0.8801

OTM - put 0.0190 0.9886 0.8570 0.9488 0.9536 0.7960 0.9183 0.9377

ATM - put 0.0174 0.8444 0.9504 0.9623 0.7898 0.9227 0.9473

DOTM - put 0.0203 0.8953 0.8786 0.8497 0.8662 0.8708

OTM - put 0.0159 0.9845 0.8545 0.9658 0.9767

ATM - put 0.0142 0.8406 0.9698 0.9927

DOTM - put 0.0169 0.8954 0.8585

OTM - put 0.0142 0.9801

ATM- put 0.0128

Notes: This table contains the correlations and variances of the implied volatilities within the maturity-moneyness groups. The off-diagonal elements corresponds

to the correlations and the diagonal elements represent the variances within a group.
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A.3 Results

Table 9 contains the ADF and KPSS test statistics and the p-values for unit roots in the exogenous variables.

The tables 10 and 11 respectively give the ADF and KPSS test statistics and the corresponding p-values for

the factors created by applying PCA to the covariance matrix of the equity options and the deterministic

factors. Figure 9 plots the time-series of MAE statistics of the individual equity options for the different

approaches. Table 12 and table 13 give the average MAE and MCPDC statistics for the individual equity

options for different subperiods. In table 14 and table 15 the performance measures for the individual equity

options are found.

Table 9: Unit root test statistics for the exogenous variables used in the different approaches.

ADF test statistic (p-value) KPSS test statistic (p-value)

Return S&P500 -54.708 (0.001) 0.0145 (0.100)

Lagged Return S&P500 -54.712 (0.001) 0.0146 (0.100)

Inflation -4.578 (0.001) 30.671 (0.010)

Interest rate -19.510 (0.001) 8.945 (0.010)

Yield -25.848 (0.001) 11.674 (0.010)

S&P 500 -9.247 (0.001) 24.158 (0.010)

Notes: The table contains the test statistics and in brackets the p-values of the ADF test and KPSS test for unit

roots in the exogenous variables. The univariate time-series are tested for the complete out-of-sample period.
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Table 10: ADF Unit root test statistics for the factors created by PCA, and the deterministic factors used in the benchmark model.

AAPL GOOG MSFT INTC CSCO ORCL MA IBM NVDA ADBE

PC factor 1 -7.99 (0.001) -7.22 (0.001) -6.52 (0.001) -7.69 (0.001) -7.48 (0.001) -7.49 (0.001) -6.26 (0.001) -3.18 (0.089) -4.69 (0.001) -7.56 (0.001)

PC factor 2 -9.27 (0.001) -9.47 (0.001) -12.39 (0.001) -11.66 (0.001) -12.26 (0.001) -10.37 (0.001) -13.82 (0.001) -8.79 (0.001) -10.07 (0.001) -10.33 (0.001)

PC factor 3 -10.79 (0.001) -14 (0.001) -15.66 (0.001) -18.7 (0.001) -14.41 (0.001) -14.57 (0.001) -25.69 (0.001) -11.99 (0.001) -11.98 (0.001) -11.39 (0.001)

PC factor 4 -12.59 (0.001) -19.58 (0.001) -18.12 (0.001) -20.67 (0.001) -23.82 (0.001) -22.79 (0.001) -27.62 (0.001) -12.24 (0.001) -15.76 (0.001) -15.32 (0.001)

PC factor 5 -18.63 (0.001) -22.85 (0.001) -28.81 (0.001) -22.78 (0.001) -32.72 (0.001) -38.69 (0.001) -15.14 (0.001) -21.39 (0.001) -27.68 (0.001) -25.08 (0.001)

DF factor 1 -9.547 (0.001) -11.06 (0.001) -53.26 (0.001) -46.69 (0.001) -51.01 (0.001) -41.91 (0.001) -11.52 (0.001) -29.17 (0.001) -27.53 (0.001) -50.75 (0.001)

DF factor 2 -26.54 (0.001) -28.63 (0.001) -53.24 (0.001) -50.12 (0.001) -52.27 (0.001) -50.8 (0.001) -30.31 (0.001) -30.94 (0.001) -42.71 (0.001) -50.43 (0.001)

DF factor 3 -14.49 (0.001) -16.21 (0.001) -52.91 (0.001) -31.55 (0.001) -52.25 (0.001) -45.43 (0.001) -22.19 (0.001) -18.48 (0.001) -24.59 (0.001) -27.59 (0.001)

DF factor 4 -11.87 (0.001) -12.4 (0.001) -53.15 (0.001) -47.82 (0.001) -51.37 (0.001) -46.89 (0.001) -17.79 (0.001) -29.25 (0.001) -38.15 (0.001) -50.78 (0.001)

DF factor 5 -26.72 (0.001) -28.43 (0.001) -53.14 (0.001) -50.41 (0.001) -52.96 (0.001) -50.76 (0.001) -30.19 (0.001) -30.96 (0.001) -43.25 (0.001) -50.39 (0.001)

Notes: The table contains the results of the augmented Dickey-Fuller test for unit roots of factors created by PCA, and the deterministic factors used in the

benchmark model. The univariate time-series are being for the complete out-of-sample period.
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Table 11: KPSS unit root test statistics for the factors created by PCA, and the deterministic factors used in the benchmark model.

AAPL MSFT GOOG INTC CSCO ORCL MA IBM NVDA ADBE

PC factor 1 2.503 (0.01) 16.137 (0.01) 10.533 (0.01) 6.157 (0.01) 17.098 (0.01) 13.703 (0.01) 27.532 (0.01) 17.933 (0.01) 21.285 (0.01) 7.634 (0.01)

PC factor 2 11.148 (0.01) 3.108 (0.01) 1.345 (0.01) 8.988 (0.01) 7.454 (0.01) 20.954 (0.01) 0.178 (0.02) 18.713 (0.01) 4.385 (0.01) 8.49 (0.01)

PC factor 3 9.895 (0.01) 7.908 (0.01) 1.887 (0.01) 3.089 (0.01) 4.767 (0.01) 0.582 (0.01) 1.481 (0.01) 1.456 (0.01) 19.619 (0.01) 3.164 (0.01)

PC factor 4 0.339 (0.01) 6.549 (0.01) 2.466 (0.01) 14.456 (0.01) 5.151 (0.01) 0.834 (0.01) 0.172 (0.03) 8.292 (0.01) 6.944 (0.01) 3.167 (0.01)

PC factor 5 1.487 (0.01) 6.269 (0.01) 0.682 (0.01) 1.1766 (0.01) 0.282 (0.01) 0.903 (0.01) 6.933 (0.01) 2.375 (0.01) 4.308 (0.01) 5.893 (0.01)

DF factor 1 2.262 (0.01) 0.0236 (0.1) 4.125 (0.01) 0.122 (0.09) 0.021 (0.1) 1.125 (0.01) 22.281 (0.01) 0.246 (0.01) 6.845 (0.01) 0.088 (0.1)

DF factor 2 2.723 (0.01) 0.0615 (0.1) 1.547 (0.01) 0.053 (0.1) 0.015 (0.1) 0.229 (0.01) 1.14 (0.01) 0.07 (0.1) 0.137 (0.07) 0.066 (0.1)

DF factor 3 11.777 (0.01) 0.129 (0.081) 2.397 (0.01) 4.403 (0.01) 0.075 (0.1) 1.513 (0.01) 1.152 (0.01) 8.566 (0.01) 2.721 (0.01) 2.382 (0.01)

DF factor 4 3.933 (0.01) 0.044 (0.1) 0.2371 (0.01) 0.0367 (0.1) 0.042 (0.1) 0.566 (0.01) 2.757 (0.01) 0.108 (0.1) 0.233 (0.01) 0.066 (0.1)

Notes: The table contains the results of Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test for a unit roots of factors created by PCA, and the deterministic

factors used in the benchmark model. The univariate time-series are being for the complete out-of-sample period.
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(a) Benchmark

(b) Two-step

(c) One-step

Figure 9: Time-series of the MAE statistics for the individual equity options. The upper panel plots the time-series

for the benchmark model. The middle panel plots the time-series for the MAE statistics of the forecasts of the

two-step approach. The lower panel shows the MAE statistics for the one-step approach.
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Table 12: Average MAE statistics

Before financial crisis During financial crisis After financial crisis

July 18, 2005 until February 1, 2007 until September 2, 2009 until

January 31, 2007 September 1, 2009 December 31, 2017

Apple

benchmark 0.0259 0.0434 0.0272

Two-step 0.0135 0.0215 0.0132

One-step 0.0083 0.0114 0.0075

Adobe

benchmark 0.0288 0.0367 0.0271

Two-step 0.0112 0.0195 0.0121

One-step 0.0068 0.0129 0.0075

Cisco

benchmark 0.0826 0.0320 0.0205

Two-step 0.0127 0.0206 0.0125

One-step 0.0068 0.0113 0.0075

Google

benchmark 0.0544 0.0485 0.0200

Two-step 0.0109 0.0221 0.0108

One-step 0.0060 0.0125 0.0070

IBM

benchmark 0.0491 0.0429 0.0288

Two-step 0.0089 0.0171 0.0116

One-step 0.0055 0.0094 0.0063

Intel

benchmark 0.0549 0.1678 0.0190

Two-step 0.0110 0.0212 0.0109

One-step 0.0059 0.0114 0.0069

Mastercard

benchmark 0.0344 0.0394 0.0326

Two-step 0.0208 0.0263 0.0217

One-step 0.0164 0.0194 0.0172

Microsoft

benchmark 0.0357 0.0718 0.0331

Two-step 0.0154 0.0213 0.0152

One-step 0.0103 0.0117 0.0098

NVIDIA

benchmark 0.0280 0.0497 0.0274

Two-step 0.0164 0.0273 0.0148

One-step 0.0100 0.0135 0.0085

Oralce

benchmark 0.0324 0.0320 0.0242

Two-step 0.0121 0.0206 0.0122

One-step 0.0072 0.0113 0.0079

Notes: The table contains the average MAE statistics of the one-step ahead prediction for the individual equity

options. For each equity option the MAE statistic for the three approaches is reported. The statistics are averaged

over different subperiods: before, during and after the financial crisis. Bold values represents the lowest MAE statistic

for the equity option in the specific sub-period.
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Table 13: Average MCPDC statistics

Before financial crisis During financial crisis After financial crisis

July 18, 2005 until February 1, 2007 until September 2, 2009 until

January 31, 2007 September 1, 2009 December 31, 2017

Apple

benchmark 0.5205 0.5097 0.5157

Two-step 0.5242 0.5300 0.5367

One-step 0.7199 0.7832 0.7278

Adobe

benchmark 0.5275 0.5229 0.5119

Two-step 0.5682 0.5675 0.5526

One-step 0.7262 0.7373 0.7100

Cisco

benchmark 0.5310 0.5323 0.5312

Two-step 0.5603 0.5499 0.5597

One-step 0.7617 0.7720 0.7171

Google

benchmark 0.5063 0.5038 0.5357

Two-step 0.5676 0.5090 0.5698

One-step 0.7573 0.7437 0.7266

IBM

benchmark 0.5147 0.5143 0.4694

Two-step 0.5552 0.5508 0.4981

One-step 0.6924 0.7582 0.7152

Intel

benchmark 0.5196 0.5298 0.5414

Two-step 0.5848 0.5477 0.5705

One-step 0.7775 0.7665 0.7316

Mastercard

benchmark 0.5372 0.5241 0.5216

Two-step 0.5777 0.5724 0.5622

One-step 0.7310 0.7469 0.7148

Microsoft

benchmark 0.5033 0.5202 0.5135

Two-step 0.5177 0.5557 0.5406

One-step 0.6827 0.7739 0.6864

NVIDIA

benchmark 0.5234 0.5334 0.5304

Two-step 0.5609 0.5625 0.5572

One-step 0.7467 0.7751 0.7495

Oralce

benchmark 0.5388 0.5323 0.5324

Two-step 0.5894 0.5499 0.5553

One-step 0.7512 0.7720 0.7172

Notes: The table contains the average MCPDC statistics of the one-step ahead prediction for the individual equity

options. For each equity option the MCPDC statistic for the three approaches is reported. The statistics are averaged

over different subperiods: before, during and after the financial crisis. Bold values represents the lowest MCPDC

statistic for the equity option in the specific sub-period.
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Table 14: Forecast performance measures for the individual equity options.

RMSE MAE MCPDC

h = 1 h = 5 h = 5 h = 1 h = 5 h = 5 h = 1 h = 5 h = 5

Benchmark model

Apple 0.037 0.037 0.037 0.027 0.027 0.028 0.517 0.518 0.517

Adobe 0.036 0.037 0.038 0.028 0.028 0.032 0.516 0.517 0.517

Cisco 0.043 0.044 0.044 0.036 0.036 0.036 0.531 0.528 0.528

Google 0.035 0.035 0.035 0.028 0.031 0.030 0.529 0.529 0.531

IBM 0.046 0.044 0.045 0.034 0.032 0.033 0.480 0.481 0.481

Intel 0.035 0.034 0.032 0.028 0.026 0.025 0.536 0.536 0.538

Mastercard 0.045 0.046 0.047 0.033 0.034 0.037 0.525 0.526 0.526

Microsoft 0.052 0.052 0.053 0.034 0.034 0.034 0.511 0.511 0.513

NVIDIA 0.035 0.036 0.035 0.028 0.028 0.028 0.529 0.528 0.528

Oracle 0.034 0.034 0.033 0.026 0.026 0.026 0.534 0.535 0.535

Two-step approach

Apple 0.017 0.019 0.020 0.013 0.014 0.015 0.534 0.534 0.531

Adobe 0.016 0.016 0.017 0.012 0.013 0.014 0.556 0.552 0.551

Cisco 0.017 0.017 0.018 0.013 0.013 0.014 0.560 0.557 0.551

Google 0.014 0.015 0.015 0.011 0.011 0.012 0.569 0.568 0.567

IBM 0.014 0.906 0.016 0.011 0.745 0.013 0.512 0.511 0.511

Intel 0.014 0.015 0.016 0.011 0.011 0.012 0.574 0.570 0.569

Mastercard 0.022 0.023 0.024 0.021 0.022 0.023 0.566 0.562 0.560

Microsoft 0.023 0.024 0.026 0.015 0.016 0.018 0.535 0.532 0.529

NVIDIA 0.020 0.021 0.022 0.015 0.016 0.017 0.558 0.556 0.549

Oracle 0.016 0.017 0.017 0.012 0.013 0.013 0.564 0.561 0.558

One-step approach

Apple 0.010 0.013 0.016 0.008 0.010 0.012 0.726 0.693 0.667

Adobe 0.010 0.012 0.014 0.007 0.009 0.011 0.714 0.683 0.656

Cisco 0.010 0.012 0.015 0.007 0.009 0.011 0.728 0.683 0.656

Google 0.009 0.011 0.013 0.007 0.008 0.010 0.734 0.697 0.673

IBM 0.008 0.009 0.012 0.006 0.007 0.009 0.710 0.682 0.658

Intel 0.009 0.011 0.013 0.007 0.008 0.010 0.743 0.700 0.669

Mastercard 0.011 0.013 0.015 0.017 0.019 0.021 0.719 0.688 0.661

Microsoft 0.014 0.019 0.023 0.010 0.013 0.015 0.685 0.653 0.634

NVIDIA 0.012 0.013 0.016 0.009 0.010 0.012 0.749 0.721 0.696

Oracle 0.011 0.012 0.013 0.008 0.009 0.010 0.725 0.700 0.676

Notes: The table contains the average root mean squared error (RMSE), average mean absolute error (MAE) and the

average mean correct prediction of the direction of change in implied volatilities (MCPDC) across the out-of-sample

time period. The performance is evaluated for three different forecast horizons: 1 day, 3 days and 5 days ahead. The

different factors sets are indicated as follows: Benchmark indicates the deterministic factors set (benchmark model),

Two-step represents the two-step approach where the factors are created by PCA and One-step indicates the one-step

approach where a state space model for the implied volatility is estimated using the Kalman filter. The bold values

indicate the best performing model within each maturity category.
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Table 15: Forecast performance measures for the individual equity options.

RMSE MAE MCPDC

h = 1 h = 5 h = 5 h = 1 h = 5 h = 5 h = 1 h = 5 h = 5

Benchmark model including exogenous variables

Apple 0.037 0.038 0.039 0.027 0.028 0.029 0.519 0.520 0.520

Adobe 0.037 0.039 0.041 0.029 0.031 0.033 0.518 0.518 0.521

Cisco 0.051 0.057 0.059 0.042 0.047 0.047 0.525 0.529 0.528

Google 0.038 0.039 0.040 0.030 0.032 0.035 0.529 0.530 0.532

IBM 0.045 0.047 0.047 0.033 0.034 0.036 0.481 0.481 0.484

Intel 0.032 0.029 0.030 0.025 0.023 0.024 0.540 0.542 0.541

Mastercard 0.045 0.047 0.049 0.038 0.040 0.042 0.525 0.525 0.528

Microsoft 0.052 0.053 0.054 0.034 0.035 0.036 0.514 0.516 0.517

NVIDIA 0.034 0.036 0.037 0.027 0.028 0.029 0.529 0.530 0.529

Oracle 0.035 0.035 0.037 0.026 0.027 0.029 0.538 0.538 0.540

Two-step approach including exogenous variables

Apple 0.018 0.020 0.022 0.013 0.015 0.017 0.531 0.530 0.528

Adobe 0.016 0.019 0.021 0.012 0.015 0.017 0.555 0.551 0.548

Cisco 0.017 0.019 0.021 0.013 0.015 0.017 0.562 0.556 0.552

Google 0.015 0.017 0.019 0.012 0.014 0.016 0.566 0.562 0.560

IBM 0.016 0.019 0.022 0.013 0.016 0.018 0.516 0.513 0.511

Intel 0.015 0.017 0.019 0.012 0.014 0.016 0.570 0.567 0.565

Mastercard 0.018 0.020 0.023 0.020 0.023 0.025 0.556 0.552 0.549

Microsoft 0.023 0.026 0.029 0.016 0.018 0.021 0.536 0.534 0.532

NVIDIA 0.020 0.023 0.025 0.015 0.018 0.020 0.554 0.547 0.543

Oracle 0.017 0.020 0.022 0.013 0.016 0.018 0.562 0.558 0.555

One-step approach including exogenous variables

Apple 0.006 0.011 0.015 0.005 0.008 0.011 0.791 0.733 0.696

Adobe 0.007 0.011 0.014 0.006 0.008 0.011 0.752 0.699 0.664

Cisco 0.008 0.012 0.015 0.006 0.008 0.011 0.771 0.710 0.677

Google 0.007 0.009 0.012 0.005 0.007 0.009 0.778 0.727 0.691

IBM 0.006 0.009 0.012 0.005 0.007 0.009 0.713 0.676 0.646

Intel 0.007 0.010 0.012 0.005 0.008 0.009 0.776 0.721 0.690

Mastercard 0.012 0.015 0.019 0.015 0.018 0.020 0.760 0.708 0.672

Microsoft 0.011 0.019 0.024 0.008 0.012 0.014 0.726 0.684 0.661

NVIDIA 0.009 0.013 0.016 0.006 0.009 0.011 0.805 0.755 0.719

Oracle 0.008 0.011 0.013 0.006 0.008 0.009 0.768 0.723 0.691

Notes: The table contains the average root mean squared error (RMSE), average mean absolute error (MAE) and the

average mean correct prediction of the direction of change in implied volatilities (MCPDC) across the out-of-sample

time period. The performance is evaluated for three different forecast horizons: 1 day, 3 days and 5 days ahead. The

different factors sets are indicated as follows: Benchmark indicates the deterministic factors set (benchmark model),

Two-step represents the two-step approach where the factors are created by PCA and One-step indicates the one-step

approach where a state space model for the implied volatility is estimated using the Kalman filter. The bold values

indicate the best performing model within each maturity category.
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