
ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Master Econometrics & Management Science: Quantitative

Finance

Forecasting Non-Causal Processes

Master’s Thesis

September 9, 2018

Author

E. Streithorst

369981

Supervisor

A. Pick

Co-Reader

A.A. Naghi

Abstract

This research explores the forecast quality of a non-causal autoregressive model

compared to existing causal models. The forecasted data consists of electricity, gas

and oil prices. Different degrees of freedom in the error term of the non-causal

model and different forecast horizons, up to 12 months, are tested. Overall the

non-causal forecasts perform comparable to causal and vector autoregressive model

forecasts according to Diebold Mariano tests for electricity and gas data. For oil

data the non-causal forecasts perform worse. Lower degrees of freedom are favored

in the non-causal models. Parameter estimations converge in the non-causal model,

therefore the results are robust.
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1 Introduction

Forecasting economic time series is a popular topic in financial academic literature. The

voluminous research is a direct proof of this. There are many different ideas of how an

economic time series behaves and what its drivers are, hence many different approaches

have been examined such as the use of autoregressive (AR) models (Campbell et al.,

1997) or the generalized autoregressive conditional heteroskedasticity (GARCH) models

developed by Engle (1982) and 19 years later emphasized its importance in Engle (2001).

More recent machine learning techniques are applied to model economic time series as

well (J. V. Hansen et al., 2006).

Many different approaches have been used to model economic time series, however Lanne

& Saikkonen (2011) state “all economic applications so far restrict themselves to causal

autoregressive models where the current value of the variable of interest is forced to de-

pend only on the present and past values of the errors of the model.” (p.1). Following

this statement it is a reasonable next step to then explore the use of non-causal mod-

els which include leads in addition to lags. Economic theory to support a non-causal

approach is proposed by L. P. Hansen & Sargent (1991). The information set of an

economic agent who operates in the sector of interest can be greater than that of the

econometrician sitting behind a desk. This discrepancy gives rise to a nonfundamen-

tal solution to the modeling problem in the form of non-causality. Theoretically, this

extra information allows the agents to forecast future values of an economic variable

in question which is not possible for the econometrician. This results in a non-causal

representation with predictable errors.

Non-causal models incorporate predictable errors by making assumptions on their dis-

tribution. Theoretically, forecasting performance can therefore be improved if the time

series shows signs of non-causality. Problems do arise in identifying whether a time se-

ries is non-causal or not. If a time series shows signs of purely forward looking behavior,

then a non-causal model is justified. The identification problem is solved by having a

non-normal distribution of the error term when fitting an autoregressive model on the

data (Weiss, 1975).

Theoretical research on non-causal processes is not unfamiliar but the topic is less

popular than research on causal processes. For example Davis & Resnick (1986) and

Rosenblatt (2000) provide a general approach to non-causal processes which is nec-

essary for building the theoretical framework on which all following research relies.

Other research on non-causal processes with a theoretical statistical approach includes,

(Rosenblatt, 1995), (Gassiat, 1993) and (Huang & Pawitan, 2000)). Different research

areas such as physics also makes use of these processes (Falnes, 1995). A reason for the

popularity of causal processes is probably the more straightforward implementation as

opposed to the non-causal processes, as there are less issues with time and unknown

data.
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This research compares forecasting performance of different (non-)causal models. The

research question is: does a non-causal process improve forecasting accuracy of economic

time series compared to causal processes? The non-causal models used in this research

are non-causal autoregressive models. By using these specific type of models I stay close

to the popular existing autoregressive methods, but incorporate non-causality. These

models are denoted by AR(r,s) where r is the number of lags and s is the number of

leads included. Recent literature of this topic has explored non-causal modeling (Lanne

& Saikkonen, 2011) and forecasting (Gourieroux & Jasiak, 2016). The additional value

of this research is the evaluation of forecast quality in an economic setting.

The economic time series consist of oil, gas and electricity prices measured on a monthly

basis. The choice for the energy market has been made because I have not found previous

literature covering the energy market with a non-causal approach and therefore this is

an addition to existing research. A common way to model oil price is to use an AR

model, for example Kilian (2008) captures exogenous shocks in its price. Baumeister &

Peersman (2013) uses price elasticities to account for volatility changes. The usage of

AR models benefits this research since they are compared to non-causal AR models. The

setup of these two models is similar in their basis and therefore it is not unreasonable

to compare their performance.

2 Data

This section describes the data that is used in this research. Section 1 mentions the use

of non-causal processes in forecasting economic time series which are often found to be

‘difficult’ to forecast due to the presence of high variance and/or kurtosis. This research

examines three such series: electricity, gas and oil prices. Electricity and gas data

consists of monthly European harmonized consumer price index1 from December 2009

to July 2017. Simple monthly growth rates2 are taken of electricity and gas prices. The

oil data is constructed by using the U.S. crude oil composite acquisition cost by refiners3

and the U.S. CPI4 monthly from January 1974 to July 2017. First index the acquisition

cost with base 100 on January 1974. Next divide the price index by the corresponding

CPI to get the real price of oil. The oil price is transformed by taking simple yearly

growth rates2. By taking growth rates the first month of data is ‘lost’. therefore growth

rates for electricity and gas are available from January 2010 to July 2017 and for oil

from February 1974 to July 2017. For all three time series the null hypothesis of a unit

root is rejected according to an Augmented Dickey-Fuller test (Dickey & Fuller, 1979)

and trend-stationarity is not rejected according to a KPSS test (Kwiatkowski et al.,

1data retrieved from Centraal Bureau voor de Statistiek (CBS)
2Simple monthly growth rate ∆yt =

yt−yt−1

yt−1
∗ 100

3data retrieved from U.S. Energy Information Administration
4data retrieved from U.S. Bureau of Labor Statistics
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1992). Figure 1 shows the growth rates of electricity and gas prices, Figure 2 shows the

growth rates of the real price of oil.

This research replicates part of the findings in Kilian (2009) and therefore uses some

of its data as well. This data consists of the log differences of worldwide crude oil

production3, a real economic activity indicator custom made in Kilian (2009) and finally

the real price of oil as described above without taking yearly growth rates and expressed

in logs. A graphical overview of this data can be found in Figure 6 in appendix A. The

three preceding time series are used in comparison with the real price of oil and is

therefore available from January 1974 to July 2017 as well.

Figure 1: Electricity and gas data
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Monthly growth rate of electricity and gas prices.

Figure 2: Oil Data
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Table 1 contains summary statistics of the growth rates of electricity, gas and oil. Note

that the skewness and kurtosis of electricity are relatively large compared to the other

time series. The first growth rate from December 2009 to January 2010 of electricity is

close to −10% which influences these outcomes heavily. Furthermore, the variance of

oil is larger which is easily seen in figures 1 and 2. The electricity and gas data stays

roughly between −5% and +5%, whereas oil is between −20% and +20%.
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Table 1: Summary Statistics

Electricity Gas Oil

Sample Period 01/2010 - 07/2017 01/2010 - 07/2017 02/1974 - 07/2017
Forecast Period 08/2013 - 07/2017 08/2013 - 07/2017 08/1996 - 07/2017

Mean -0.33 -0.06 0.27
Variance 1.96 3.71 46.93
Skewness -3.58 1.16 0.06
Kurtosis 24.48 12.01 8.21

Summary statistics of the three datasets used in this research. Sample Pe-
riod denotes all available data, Forecast Period denotes the period that will be
forecasted.

3 Models

This research uses causal and non-causal models. The quality of the non-causal models

is of main interest and is measured by comparing them to causal models. I make a

selection of causal models based on existing literature on electricity, gas and oil price

forecasting. First, I introduce the non-causal AR(r,s) model. After this the AR(p),

VAR and Local Level models follow.

3.1 Non-causal AR(r,s)

A first important issue before defining the non-causal AR(r,s) model, is to elaborate

as to why this model is plausible to use in economic time series. If the time series

shows signs of purely forward looking behavior, then a non-causal model is justified.

This concept is also known in literature as a stochastic process which is not time-

reversible. Usually in economic time series the Box-Jenkins approach is used to check

the autocorrelation of a time series. Economic time series usually show signs of high

autocorrelation and this has always been assumed to be evidence of causal behavior.

The problem with this conclusion however is that a purely causal model with p lags

corresponds to a purely non-causal model with p leads when this high autocorrelation

is used as a persistence measure. This is because the underlying Gaussian assumption

causes the spectral densities to be the same5 for a non-causal model with coefficients

(ψ1L
−1, ..., ψnL

−n) and a causal model with coefficients (ψ1L, ..., ψnL
n) where L is the

lag operator. Intuitively this correspondence can be explained by the symmetry of

the Gaussian probability distribution. If one were to take independent draws from a

Gaussian distribution over time, the draws will covary symmetrically at times t + h

and t − h or in other words, it is time-reversible. Weiss (1975) proofs that if X(t) is a

stationary Gaussian process then X(t) is time-reversible. A partial converse theorem is

5The spectral density of yt in (1) is σ2

2π

∣∣∣φ(e−iω)ψ(e−iω)
∣∣∣2
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proven as well: if X(t) is a stationary, time-reversible, ARMA process then the error

term, say εt, is normally distributed. Therefore to use a non-causal process we should

be able to identify it. This is possible when the process is not time-reversible. Following

the theorems of Weiss (1975) a way of doing this is when we find a non-normal error

term after fitting an AR(p) model to the data. To check if this is the case I use the

partial autocorrelation function to fit an appropriate AR(p) model to each of the time

series and test the resulting residuals for normality using the Jarque-Bera test (1980).

All residuals were found to be non-normal and thus a non-causal model is justified.

The non-causal AR(r,s) model is used to fit on the following stochastic process yt gen-

erated by

Φ(L)Ψ(L−1)yt = εt, (1)

where Φ(L) = 1 − φ1L − ... − φrLr and Ψ(L−1) = 1 − ψ1L
−1 − ... − ψsL−s with roots

strictly outside the unit circle. The error term εt is i.i.d. such that E(|εt|δ) < ∞ for

δ > 0. r and s can take on any non-negative integer value where three cases are 1.)

r = 0 and s > 0 results in a purely non-causal model with only leads and 2.) r > 0 and

s = 0 results in a purely causal model with only lags and 3.) r > 0 and s > 0 results in

a mixed model.

Following the preceding reasoning, throughout this entire research I assume the error

term εt in the AR(r,s) model to be non-Gaussian and to have a Lebesgue density

fs(x;λ) = σ−1f(σ−1x;λ) with parameter vector λ and scale parameter σ. Specifically

I choose a t-distribution with ν degrees of freedom. This distribution is not unfamiliar

in time series modeling because of its higher kurtosis (fat tails) than the Gaussian

distribution. Kilian (2009) and Gourieroux & Jasiak (2016) use this distribution with

ν = 3 and ν = 1 degrees of freedom respectively.

The structure of the AR(r,s) model when choosing r = s = 1 is as follows

(1− φ1L)(1− ψ1L
−1)yt = εt

(1 + φ1ψ1)yt = φ1yt−1 + ψ1yt+1 + εt

yt =
φ1

1 + φ1ψ1
yt−1 +

ψ1

1 + φ1ψ1
yt+1 +

εt
1 + φ1ψ1

.

Writing the complete process for larger values of r and s quickly becomes unclear as it

includes r + s different terms of y and the coefficients contain cross-terms of φ and ψ.

In the data generating process of Equation (1) a causal and a non-causal component can

be distinguished. These components are ut and υt respectively. The causal component

5



ut and its moving average representation are defined as

ut = Ψ(L−1)yt

Φ(L)ut = εt

ut = φ1ut−1 + ...+ φrut−r + εt

ut =
∞∑
j=0

αjεt−j ,

(2)

where α0 = 1 and the coefficients αj converge to zero as j → ∞. Note that the final

step includes repetitive substitution of all lagged values of u. This will create multiple

cross-terms in front of the summation sign which all contain powers of φ and therefore

converge to zero due to the stationarity of the process. In a similar fashion derive the

non-causal component υt and its moving average representation

υt = Φ(L)yt

υt =

∞∑
j=0

βjεt+j ,
(3)

where β0 = 1 and the coefficients βj converge to zero as j → ∞, again due to the

cross-terms of ψ. Combining (2) and (3) to compute the moving average representation

for yt gives

yt =

∞∑
j=−∞

γjεt−j , (4)

where γ0 = 1 and the coefficient γj converges to zero as |j| → ∞.

To be able to estimate the parameters of the model, determine the log-likelihood function

lT (θ) of yt. To do this, first note that the following information sets are equivalent.

i. (y1, ..., yT )

ii. (y1, ..., yr, υr+1, ..., υT )

iii. (u1, ..., uT−s, yT−s+1, ..., yT )

iv. (y1, ..., yr, εr+1, ..., εT−s, υT−s+1, ..., υT )

v. (u1, ..., ur, εr+1, ..., εT−s, yT−s+1, ..., yT )

vi. (u1, ..., ur, εr+1, ..., εT−s, υT−s+1, ..., υT ),

where ii. is obtained by using (3) on i. and similarly, iii. by using (2). Obtain iv. by

combining i. and ii. and using (1), similarly obtain v. by combining i. and iii. Finally vi.

is a combination of iv. and v. The equivalence of these information sets implicates there

exists a transformation between each. Lanne & Saikkonen (2011) derive this transfor-

mation through the following matrix representations which can be constructed by using

equations (2) and (3). In these representations the vectors (u1, ..., uT−s, υT−s+1, ..., υT )

6



and (u1, ..., ur, εr+1, ..., εT−s, υT−s+1, ..., υT ) are referred to as x and z respectively.

u1
...

uT−s

υT−s+1

...

υT


=



y1 − ψ1y2 − · · · − ψsys+1

...

yT−s − ψ1yT−s+1 − · · · − ψsyT
yT−s+1 − φ1yT−s − · · · − φryT−s+1−r

...

yT − φ1yT−1 − · · · − φryT−r


= A



y1
...

yT−s

yT−s+1

...

yT


(5)



u1
...

ur

εr+1

...

εT−s

υT−s+1

...

υT



=



u1
...

ur

ur+1 − φ1ur − · · · − φru1
...

uT−s − φ1uT−s−1 − · · · − φruT−s−r
υT−s+1

...

υT



= C



u1
...

ur

ur+1

...

uT−s

υT−s+1

...

υT



, (6)

where (5) and (6) are x = Ay and z = Cx respectively. These matrix representations

give the following relationship between y and z: z = CAy.

The following derivations use the density function of z and finally result in the log-

likelihood function of yt (Lanne & Saikkonen, 2011). The density function of z is

equal to the density function of y multiplied by |det(C)||det(A)|. C is an upper tri-

angular matrix with ones on the diagonal therefore det(C) = 1. The moving aver-

age representations of ut and υt in (2) and (3) respectively, show that the elements

(u1, ..., ur), (εr+1, ..., εT−s), (υT−s+1, ..., υT ) of z are independent, therefore define the

density function of z as

hu(u1, ..., ur)

(
T−s∏
t=r+1

fσ(εt;λ)

)
hυ(υT−s+1, ..., υT ),

where hu and hυ are the joint density functions of (u1, ..., ur) and (υT−s+1, ..., υT ) re-

spectively. The density function of y then equals

hu(ψ(L−1)y1, ..., ψ(L−1)yr)

(
T−s∏
t=r+1

fσ(φ(L)ψ(L−1)yt;λ)

)
hυ(φ(L)yT−s+1, ..., φ(L)yT )|det(A)|.

(7)

hu, hυ and det(A) are independent of sample size T and therefore the second term of

Equation (7) approximates the density. The approximated log-likelihood function of yt

7



then becomes

lT (θ) =
T−s∑
T=r+1

gt(θ) =
T−s∑
T=r+1

[
log(f(ψ(L−1)φ(L)yt;λ))− log(σ)

]
.

If the chosen t-distribution is plugged in, θ = (φ, ψ, σ, ν) and gt is the probability density

function (pdf) of the t-distribution, the resulting function is

lT (θ) =
T−s∑
t=r+1

log

[
Γ(ν+1

2 )
√
νπΓ(ν2 )

(
1 +

σ−2(ψ(L−1)φ(L)yt)
2

ν

)− ν+1
2

]
− log(σ). (8)

Estimate the parameters in θ by maximizing the log-likelihood function with a Quasi-

Newton approach. According to Gourieroux & Jasiak (2016) a recursive Berndt, Hall,

Hall and Hausman (1974) algorithm requires less evaluations of the log-likelihood func-

tion and is therefore computationally less demanding. However the quality of the es-

timates is roughly the same, therefore I use the well-known Quasi-Newton approach.

Table 2 provides an overview of estimated parameter values of all three datasets on

which the model is estimated. The values of φ and ψ are persistent throughout different

degrees of freedom (d.o.f.) with the exception of the AR(1,1) model on the oil data.

The value of σ however increases when the d.o.f. increase. Higher d.o.f. causes the

t-distribution to approach normality, the higher variance counters this effect. Recall

that a normal error distribution is rejected by a Jarque-Bera test (1980). The values

of the gas data are overall quite small, followed by electricity and oil with the greatest

values. A possible reason for this could be the higher variance in the oil dataset, which

causes the non-causal parameter to be of more influence.
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Table 2: AR(r,s) Parameter Estimates

Electricity Gas Oil
AR(0,1) AR(0,2) AR(0,3) AR(1,1) AR(0,1) AR(0,2) AR(0,3) AR(1,1) AR(0,1) AR(0,2) AR(0,3) AR(1,1)

d.o.f. 1

φ - - - 0.03 - - - 0.04 - - - -0.05

ψ
0.14 0.14 0.11 0.13 0.06 0.06 0.05 0.06 0.48 0.52 0.52 0.51

- 0 -0.01 - - 0.07 0.07 - - -0.06 -0.06 -
- - 0.14 - - - 0.17 - - - 0.01 -

σ 0.44 0.43 0.4 0.42 0.39 0.39 0.35 0.38 2.48 2.46 2.46 2.45

d.o.f. 2

φ - - - 0.03 - - - 0.05 - - - -0.01

ψ
0.13 0.14 0.12 0.12 0.07 0.06 0.06 0.06 0.46 0.5 0.5 0.47

- -0.02 -0.03 - - 0.07 0.06 - - -0.08 -0.07 -
- - 0.14 - - - 0.14 - - - -0.01 -

σ 0.58 0.58 0.55 0.56 0.55 0.55 0.51 0.55 3.34 3.33 3.34 3.32

d.o.f. 3

φ - - - 0.03 - - - 0.05 - - - 0.03

ψ
0.13 0.14 0.12 0.12 0.07 0.07 0.06 0.06 0.45 0.5 0.5 0.43

- -0.03 -0.04 - - 0.06 0.06 - - -0.09 -0.08 -
- - 0.14 - - - 0.12 - - - -0.03 -

σ 0.66 0.66 0.63 0.64 0.68 0.68 0.64 0.68 3.83 3.81 3.82 3.82

d.o.f. 5

φ - - - 0.03 - - - 0.05 - - - 0.12

ψ
0.13 0.14 0.13 0.12 0.08 0.07 0.07 0.06 0.45 0.5 0.5 0.35

- -0.04 -0.06 - - 0.05 0.05 - - -0.1 -0.08 -
- - 0.14 - - - 0.11 - - - -0.04 -

σ 0.76 0.76 0.73 0.72 0.87 0.88 0.82 0.88 4.38 4.36 4.36 4.37

d.o.f. 10

φ - - - 0.02 - - - 0.05 - - - 0.21

ψ
0.13 0.14 0.15 0.12 0.08 0.08 0.07 0.06 0.46 0.51 0.51 0.29

- -0.05 -0.07 - - 0.05 0.05 - - -0.11 -0.09 -
- - 0.15 - - - 0.12 - - - -0.04 -

σ 0.88 0.89 0.86 0.82 1.18 1.19 1.13 1.19 4.97 4.94 4.94 4.95

Values for parameter estimates of different setups of the AR(r,s) model. d.o.f. is the degrees of freedom used in the
t-distribution in the log-likelihood. The horizontal dashed lines separate the lags, φ, leads, ψ and scale parameter σ.
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3.2 Causal AR(p)

In context of this research the AR(p) model is simply a special case of the AR(r, s)

model where r ≥ 1 and s = 0. The AR(p) model is defined as

yt = c+

p∑
i=1

φiyt−i + εt, (9)

where c is a constant, φi is the autoregressive parameter and the error term εt is white

noise. One choice has to be made regarding the setup of this model, namely what

number of lags to include. Two methods of choosing a lag order are the use of a partial

autocorrelation function and the use of information criteria. In this research I choose

to use the latter method. To choose a lag order I use two different information criteria,

namely Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC).

Table 3 shows these values for five different AR(p) models. A lower value is favored,

therefore the smallest value of every row is underlined. In addition a lower order model

is favored, therefore I choose an AR(1) model for electricity and gas and an AR(2)

model for oil.

Table 3: Information Criteria

AR(1) AR(2) AR(3) AR(4) AR(5)

Electricity
AIC 318.2 317.2 317.9 319.2 317.9
BIC 320.8 322.3 325.4 329.2 330.4

Gas
AIC 377.4 379.0 378.3 380.2 382.2
BIC 379.9 384.0 385.8 390.2 394.7

Oil
AIC 3350 3343 3342 3342 3343
BIC 3354 3352 3354 3359 3364

Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) values of different AR(p) models.
Smallest values of each row are underlined.

Table 4 shows estimation results of the AR(p) models resulting from the chosen lag

orders. We see that the constant is close to zero for all datasets which implies no

positive or negative growth rate on average. The first coefficient is positive for every

dataset which implies a certain persistence in growth rate, e.g. a positive growth rate

in the previous month causes a positive push in the growth rate of this month and vice

versa. Furthermore, Table 4 shows the test results of a Jarque-Bera test (Jarque &

Bera, 1980). The null hypothesis of a normally distributed error is rejected for every

dataset and indicates the possibility of a non-causal model to be identified (Section 3.1).

For completeness appendix B provides all AR(p) parameter estimates.
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Table 4: AR(p) Estimation and Jarque-Bera Test Results

Model Constant φ1 φ2 Statistic P-value

Electricity AR(1) -0.23 0.35 - 769 0.00
Gas AR(1) -0.05 0.11 - 325 0.00
Oil AR(2) 0.16 0.55 -0.13 413 0.00

Estimation results of fitting an AR(p) model on full datasets.
Constant, φ1 and φ2 are parameters of the model. Statistic and
P-value refer to the Jarque-Bera test results of the residuals.

3.3 Causal VAR

The VAR model expands on the AR model incorporating lag dependency between differ-

ent variables. The model is used in this research because Kilian (2009) shows promising

forecasting results regarding the real price of oil. The VAR model of this research is

therefore similar. It contains three variables that have been introduced in section 2,

namely the percentage change in global crude oil production ∆prodt, the index of real

economic activity reat and the real price of oil rpot. The general setup of this model is

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + εt, (10)

where all elements included are defined as follows.

yt =

∆prodt

reat

rpot

 , c =

c0c1
c2

 , Ai =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 , i = 1, ..., p, εt =

ε1tε2t
ε3t

 ,

where y, c and ε are 3×1 vectors and A is a 3×3 matrix. All elements in εt are assumed

to be white noise. Kilian (2009) presents the model in structural form which defines

a nonsingular matrix B0. This matrix has the following two properties, B−10 Bi = Ai

and B−10 wt = εt. The latter property implies that B0 captures the impact effects of

each of the structural shocks on each of the model variables. Equation (11) shows the

structural VAR model

B0yt = B1yt−1 + · · ·+Bpyt−p + wt. (11)

The number of lags included in the VAR model in this research is p = 2. The focus of this

research is not on interpretation of structural shock effects, therefore the reduced-form

VAR model in Equation (10) is used.
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3.4 Local Level

The Local Level model (LLM) or otherwise known as a Random Walk with noise is

one of the most basic approaches to modeling time series. Despite its simplicity it is a

common benchmark for measuring performance of other models. Equations (12) and

(13) show the Local Level model

yt = µt + εt (12)

µt+1 = µt + ηt, (13)

where εt ∼ N (0, σ2ε) and ηt ∼ N (0, σ2) for every value of t. The LLM can be interpreted

as a state-space representation with (12) the observation equation and (13) the state

equation. I will use this to derive the Kalman filter (1960) that will aid in forecasting

in section 4.5.

4 Forecasting

This section describes how the models from section 3 are used to forecast prices. First

every model will be estimated using a subsample of the sample period defined in Table

1, namely the period before the forecast period, then H values are forecasted. This

process repeats itself throughout the entire forecast period, expanding the estimation

window, until 07/2017 is reached. The setup of this section is as follows, first the

choices that have been made in the overall forecasting process are described. Next, the

succeeding subsections describe the difference in causal and non-causal forecasting and

the forecasting procedures of the AR(r,s), AR(p), VAR and Local Level models.

Different forecasting horizons are used to compare model performance, namely 1, 2,

3, 6 and 12 months. This covers both short and medium term forecasting. Longer

horizons of multiple years are not of interest to this research. This setup causes the

first forecasted values to be made with a model that is estimated with less data than

the final forecasted values when nearing the end of the sample period. Especially with

the data on electricity and gas prices, the first estimation only uses 43 months of data.

I expect the results of all models improve over time as the sample period increases.

4.1 Causal Versus Non-causal Forecasting

Forecasting with causal models is for most of the common models roughly the same,

that is, the value yt is only affected by previous values of y, innovation εt and possibly

by some lagged innovations as well. A good example of this is a causal moving average

model. This implies that the conditional expectation Et(yt+1) has only one unobserved

innovation, εt+1. All other innovations are observed, albeit possibly not identified.

A non-causal model however is affected by future innovations. To illustrate this, use
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Equation (3) at time t and t+ 1 and take conditional expectation w.r.t. information set

It to get

yt = φ1yt−1 + · · ·+ φryt−r +

∞∑
j=0

βjEt(εt+j) (14)

Et(yt+1) = φ1yt + · · ·+ φryt−r+1 +
∞∑
j=0

βjEt(εt+1+j). (15)

Note that the equations (14) and (15) are purely non-causal to provide a convenient

example. Should a time series show signs of non-causality then the parameter βj 6= 0

(j ≥ 0). Another difference between causal and non-causal models is that in the latter

case Et(εt) 6= εt because εt depends on yt+j (0 < j ≤ s), this can be seen in Equation

(1).

Figure 3: Purely Non-causal Expectation Dynamics

Graphical overview of the effects of future ε on realized and expected future data, above
and below timeline respectively.

The dependency structure of εt is more complicated in the non-causal case than in the

causal case. For example an AR(0,3) model involves terms yt up to yt+3, which in turn

contain respective error terms εt up to εt+3. Therefore to calculate yt it is necessary to

take the conditional expectation at time t of these error terms and discount the values

back to time t. Consider again the AR(0,3) model situation, when calculating yt−1 and

all information is known up to and including time t. In a causal context every term
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included in yt−1 would have been observed and no uncertainty would remain. However

in a non-causal context, in this case AR(0,3), there are errors included that are observed

after time t, namely εt+1 and εt+2. These errors will be included in the following form:

β2Et(εt+1) and β3Et(εt+2). A practical overview of this type of situation is summarized

in Figure 3.

4.2 AR(r,s) Forecasting

To forecast future values of yt using the AR(r,s) model it is important to note that future

values of υt are equivalent to yt. Section 3.1 shows the equivalence of datasets (y1, ..., yT )

and (u1, ..., ur, εr+1, ..., εT−s, υT−s+1, ..., υT ). If the dataset is increased to (y1, ..., yT+H)

the equivalent set becomes (u1, ..., ur, εr+1, ..., εT−s, υT−s+1, ..., υT+H). Equation (3)

makes this equivalence possible and therefore it is feasible to find the following condi-

tional p.d.f. for υt

l(υT+1, ..., υT+H |y1, ..., yT )

= l(υT+1, ..., υT+H |u1, ..., ur, εr+1, ..., εT−s, υT−s+1, ..., υT )

= l(υT+1, ..., υT+H |υT−s+1, ..., υT ),

(16)

where u1, ..., ur, εr+1, ..., εT−s can be discarded due to independence with υT−s+1, ..., υT+H

(section 3.1). Rewrite the conditional p.d.f. (16) as

l(υT+1, ..., υT+H |υT−s+1, ..., υT )

=
l(υT−s+1, ..., υT , υT+1, ..., υT+H)

ls(υT−s+1, ..., υT )

=
l(υT−s+1, ..., υT+H−s|υT+H−s+1, ..., υT+H)

ls(υT−s+1, ..., υT )
ls(υT+H−s+1, ..., υT+H),

(17)

where ls denotes the stationary density of s consecutive values of υ. These values are

denoted as υτ−s+1, ..., υτ . Note that both densities l(·) and ls(·) are unknown. The next

step is therefore to find closed-form solutions. rewriting l(·) gives

l(υT−s+1, ..., υT+H−s|υT+H−s+1, ..., υT+H)

= l(υT−s+1|υT−s+2, ..., υT+1)l(υT−s+2|υT−s+3, ..., υT+2)...l(υT+H−s|υT+H−s+1, ..., υT+H)

= g(Φ(L−1)υT−s+1)g(Φ(L−1)υT−s+2)...g(Φ(L−1)υT+H−s).

(18)

Parametrizing the p.d.f. g by parameter θ allows the parameters Φ, Ψ and θ to be

estimated using maximum likelihood. Recall that this research uses a t-distribution

with ν degrees of freedom (section 3.1). For testing purposes ν ∈ {1, 2, 3, 5, 10}, to

see the effects of ranging from a high kurtosis with ν = 1, also known as a Cauchy

distribution, to a distribution that is close to Gaussian with ν = 10.
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The final step is to find a closed-form solution to the p.d.f. ls(·). By using the joint

density of Υτ−s+1, ...,Υτ and any sequence of lagged values υ∗τ−s+1, ..., υ
∗
τ at any date

τ , use the Iterated Expectations Theorem to rewrite the stationary density.

ls(υ
∗
τ−s+1, ..., υ

∗
τ )

= E[l(υ∗τ−s+1, ..., υ
∗
τ |Υτ+1, ...,Υτ+s)]

= E[g(υ∗τ−s+1 − φ1υ∗τ−s+2 − ...− φsΥτ+1)...g(υ∗τ − φ1Υτ+1 − ...− φsΥτ+s)]

≈ 1

T − s+ 1

T−s+1∑
t=1

{ĝ(υ∗τ−s+1 − φ̂1υ∗τ−s+2 − ...− φ̂sυ̂t)...ĝ(υ∗τ − φ̂1υ̂t − ...− φ̂sυ̂t+s−1)},

(19)

where the last step is the sample-based approximation of the expectation with g and φ

replaced by their estimated values and all current and past υ replaced by their filtered

values. Rewrite Equation (17) by using (18) and (19) into a closed form solution for the

predictive density Π̂ where l̂s is evaluated at two starting dates τ , namely τ = T − s+ 1

and τ = T +H − s+ 1. For example when s = 1 and H = 2 the predictive density is

Π̂(υT+1, υT+2|υ̂T ) =
ĝ(υ̂T − φ̂1υT+1)ĝ(υT+1 − φ̂1υT+2)

∑T
t+1 ĝ(υT+2 − φ̂1υ̂t)∑T

t=1 ĝ(υ̂T − φ̂1υ̂t)
.

For s = 2 and H = 2 the predictive density becomes

Π̂(υT+1, υT+2|υ̂T , υ̂T−1) = ĝ(υ̂T−1 − φ̂1υ̂T − φ̂2υT+1)ĝ(υ̂T − φ̂1υT+1 − φ̂2υT+2)

×
T−1∑
t+1

ĝ(υT+1 − φ̂1υT+2 − φ̂2υ̂t)ĝ(υT+2 − φ̂1υ̂t − φ̂2υ̂t+1)

/ T−1∑
t=1

ĝ(υ̂T−1 − φ̂1υ̂T − φ̂2υ̂t)ĝ(υ̂T − φ̂1υ̂t − φ̂2υ̂t+1).

Note that the fraction in front of the summation sign in Equation (19) cancels out.

The predictive density provides the possibility to find future values of υ. A Sampling

Importance Resampling (SIR) method, introduced by Rubin (1987), simulates values

from this predictive density. The goal of the SIR method is to simulate values from

a known, but non-standard, density function f . This is done by resampling simulated

values of a known, simpler distribution g according to appropriate weights. In this

research I choose the same distribution for g as the error term of the AR(r,s) model, a t-

distribution with ν degrees of freedom. First, simulate S values Xs of the t-distribution.

Second, calculate the weight f(Xs)
g(Xs) for every s. Third, draw H (forecast horizon) values

from the set X where every Xs has its corresponding weight, i.e. a higher weight causes

the value more likely to be drawn.

At this point I am able to make a step-by-step forecasting procedure. First, estimate an

AR(r,s) model on the data y1, ..., yT to obtain model parameters Φ and Ψ. Second, from
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this data infer ε, u and υ. Third, use the predictive density in the SIR method to simulate

future values of υ. Fourth, with the newly simulated values compute corresponding ε, u

and y. Fifth, repeat previous steps with a dataset that is increased by H observations.

Algorithm 1 describes these steps in pseudo-code for convenience.

Algorithm 1 AR(r, s) model forecasting

1: while T < T ′ do . T ′ is end of forecasting period
2: Infer ε̂r+1, ..., ε̂T−s, û1, ..., ûT−s and υ̂r+1, ..., υ̂T from y1, ..., yT
3: Estimate predictive density Π̂
4: Simulate υT+1, ..., υT+H with SIR method
5: Compute ε̂T−s+1, ..., ε̂T−s+H , ûT−s+1, ..., ûT−s+H and yT+1, ..., yT+H
6: Increase T with H
7: end while

This algorithm describes the forecasting procedure of the AR(r,s) model with pseudo-code.

4.3 AR(p) Forecasting

The forecasting procedure of the AR(p) model is more straightforward than that of the

AR(r,s) model. The main reason for this is of course the causality of AR(p) as opposed

to the non-causality of AR(r,s). Recall Equation (9) and extract forecasted values by

taking the conditional expectation.

Et(yt+1) = Et(c+

p∑
i=1

φiyt+1−i + εt+1)

Et(yt+1) = c+

p∑
i=1

φiyt+1−i + Et(εt+1)

Et(yt+1) ≡ ŷt+1

= c+

p∑
i=1

φiyt+1−i (20)

where Et(εt+1) = 0. After the estimation of parameter φi all elements of the expression

are known. When the forecast horizon H increases, the expression will contain values

yt+H−i that are not in the conditional information set It. This problem can be solved by

recursively putting in the closed-form expression of the forecast H−1 months ahead. To

illustrate, obtain Equation (21) by setting H = 2 and use (20) to simplify the expression

Et(yt+2) ≡ ŷt+2

= c+ φ1ŷt+1 +

p∑
i=2

φiyt+2−i. (21)
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4.4 VAR Forecasting

Forecasting a VAR(p) model is similar to forecasting an AR(p) model. The main differ-

ence is that all elements contained in ŷt+H are vectors and matrices instead of scalars.

The VAR model is exactly reproduced from Kilian (2009), therefore the resulting time

series represents the log real price of oil. The resulting time series from the AR(r,s)

model represents the growth rate of the real price of oil. To compare these time series,

transform the log real price of oil by taking the exponential values and then taking the

yearly growth rates.

Use Equation (10) and extract forecasted values by taking the conditional expectation

Et(yt+1) = Et(c+A1yt +A2yt−1 + · · ·+Apyt−p+1 + εt+1)

Et(yt+1) = c+A1yt +A2yt−1 + · · ·+Apyt−p+1 + Et(εt+1)

Et(yt+1) ≡ ŷt+1

= c+A1yt +A2yt−1 + · · ·+Apyt−p+1

Where Et(εt+1) = 0. Increasing the forecast horizon has similar implications as the

AR(p) model. Recursively putting in the H − 1 months ahead forecast results in

Et(yt+2) ≡ ŷt+2

= c+A1ŷt+1 +A2yt + · · ·+Apyt−p+2. (22)

4.5 Local Level Model Forecasting

To forecast values with the Local Level model I will derive the Kalman filter (1960).

For convenience equations (23) and (24) denote the LLM again

yt = µt + εt (23)

µt+1 = µt + ηt. (24)

To create the Kalman filter let µt|j = E(µt|Ij) be the conditional expectation of µt

given information set Ij and let Σt|j = V ar(µt|Ij) be the conditional variance of µt

given Ij . yt|j = E(yt|Ij) denotes the conditional mean of yt given Ij . Furthermore

let at = yt − yt|t−1 and Vt = V ar(at|It−1) = V ar(at) be one-step-ahead forecast error

and its variance of yt given It−1. A key insight in forecasting with the Kalman filter

is recognizing that it is suffices to forecast the future state µ. Therefore derive the

following equality

yt|t−1 = E(yt|It−1) = E(µt + εt|It−1) = E(µt|It−1) = µt|t−1,
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which implies

at = yt − yt|t−1 = yt − µt|t−1
Vt = V ar(yt − µt|t−1|It−1) = V ar(µt + εt − µt|t−1|It−1)

= V ar(µt − µt|t−1|It−1 + V ar(εt|It−1) = Σt|t−1 + σ2ε .

Note that at is independent with yj for j < t

E(at) = E[E(at|It−1)] = E[E(yt − yt|t−1|It−1)] = E[ytt−1 − yt|t−1] = 0

Cov(at, yj) = E(atyj) = E[E(atyj |It−1)] = E[yjE(at|It−1)] = 0, j < t.

The following equality now holds for the information set, It = {It−1, yt} = {It−1, at}.
Make use of the following theorem to create the Kalman filter. Suppose that x and y

are random vectors such that their joint distribution is multivariate normal with mean

E(w) = µw and covariance matrix Σmw = Cov(m,w), where w and m are x and y.

In addition assume that the diagonal block covariance matrix Σww is non-singular for

w = x, y. Then,

E(x|y) = µx + ΣxyΣ
−1
yy (y− µy)

V ar(x|y) = Σxx −ΣxxΣ
−1
yy Σyx.

(25)

Use the preceding findings to derive the filtering and forecasting steps of the Kalman

filter. Filtering is done by finding yt given It, which is equivalent to (µt, at)
′ given It−1.

First derive the properties of this joint distribution and then use (25) to create the

filtering step. To create the joint distribution, the following expressions are needed

E(at|It−1) = E(yt − yt|t−1|It−1) = 0

V ar(at|It−1) = Vt = V ar(yt − yt|t−1|It−1) = V ar(µt + εt − µt|t−1|It−1)

= V ar(µt − µ)t|t− 1|It−1) + V ar(εt|It−1) = Σt|t−1 + σ2ε

E(µt|It−1) = µt|t−1

V ar(µt|It−1) = Σt|t−1

Cov(µt, at|It−1) = E(µtat|It−1) = E(µt(yt − µt|t−1)|It−1)

= E(µt(µt + εt − µt|t−1)|It−1)

= E(µt(µt − µt|t−1)|It−1) + E(µtεt|It−1)

= E((µt − µt|t−1)2|It−1) = V ar(at|It−1) = Σt|t−1.

(26)

These five expressions in (26) combined give the joint distribution of (µt, at)
′ given It−1

18



shown in Equation (27)[
µt

at

]
It−1

∼ N

([
µt|t−1

0

]
,

[
Σt|t−1 Σt|t−1

Σt|t−1 Σt|t−1 + σ2ε

])
. (27)

Now the theorem in (25) can be applied to obtain the following expressions

µt|t = µt|t−1 +
Σt|t−1

Σt|t−1 + σ2ε
at

Σt|t = Σt|t−1 −
Σt|t−1

Σt|t−1 + σ2ε
.

Finally find an expression for forecasting µt+1 given It

µt+1|t = E(µt + ηt|It) = E(µt|It) = µt|t

Σt+1|t = V ar(µt+1|It) = V ar(µt|It) + V ar(ηt) = Σt|t + σ2η.

Equation (28) provides the complete Kalman filter

at = yt − µt|t−1
Vt = Σt|t−1 + σ2ε

Kt = Σt|t−1/Vt

µt+1|t = µt|t−1 +Ktat

Σt+1|t = Σt|t−1(1−Kt) + σ2η.

(28)

To forecast values using the Kalman filter, estimate the parameters with maximum

likelihood and use yt+1|t = µt+1|1 = µt|t−1 +Ktat.
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5 Results

This sections measures and compares quality of the forecasts made by the models dis-

cussed in section 3 with the forecasting methods discussed in section 4. The main focus

of this research remains the AR(r,s) model, therefore a selection of combinations has

been made regarding the lags r and leads s. This selection results in three purely non-

causal combinations, namely s = {1, 2, 3} (in combination with r = 0). Following the

reasoning of Lanne & Saikkonen (2011) a combination of r and s that satisfies r+s = p,

where p is the order of the best fitting AR(p) model, is suitable. Therefore I also include

an AR(1,1) model, the models that satisfy this rule are AR(0,1) for electricity and gas

and both AR(0,2) and AR(1,1) for oil. Note that the combinations chosen here do not

represent an exhaustive set, however a selection has to be made in order to keep the

amount of results manageable. The following subsections use statistics to measure and

compare the forecasting performance of the different models. Evaluate the quality of a

forecast by looking at the forecast error which is defined as

et = yt − ŷt,

where yt is the actual value of the time series at time t and ŷt is its forecasted value.

Table 1 provides the forecast period. The forecast error will therefore be available for

this period as well.

5.1 Root Mean Square Forecast Error

The first forecast quality measure is the root mean square forecast error (RMSFE). This

is a popular measure that returns a single value of average error. A distinct feature is

the higher penalty for bigger errors, this higher penalty is a result of first squaring and

then averaging the error values. Afterwards take the square root to ensure the result is

interpretable. Calculate the RMSFE as follows

RMSFE =

√∑n
t=1(et)

2

n
.

A final important note about the RMSFE is the assumption of a finite variance, this

causes the results with 1 and 2 d.o.f. in the t-distribution to be infeasible for the

calculation of the RMSFE since a second moment is not defined for these cases. Table

5 contains a collection of RMSFE values. The table contains fifteen columns of values

in pairs of five for each dataset. The five columns in each dataset represent a certain

forecast horizon. The different models are separated with horizontal lines and every

non-causal model contains RMSFE values for different degrees of freedom (d.o.f.).

Overall the RMSFE values of the AR(r,s) models are slightly greater than those of
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the causal models. The difference between the non-causal models is very small. The

models that satisfy r+s = p, as mentioned before, do not seem to outperform the other

models. In the causal models I expect an increasing RMSFE value when the forecast

horizon increases. With the oil data, this pattern is indeed showing. However, with

the electricity and gas data the values are rather constant. A reason for this could be

the relatively small dataset on electricity and gas. With a forecast horizon of twelve

months the model is only estimated four times. Looking again to the oil data results,

the non-causal models do not show this pattern of increasing error. A reason for this

behavior should be found in the difference between the models, causal models start to

use data that is increasingly further removed from the forecasted date when the horizon

increases. This could lead to a forecast that drifts off to a wrong direction, which of

course increases the forecast error. Non-causal models on the other hand make use of

a predictive density. Only one predictive density is estimated for the entire forecast

horizon, but values are drawn every month. The ‘old’ data is therefore indirectly being

used to create the forecast. This could dampen the aging effect of the data.

Table 5: Root Mean Square Forecast Error

Electricity Gas Oil

Horizon → 1 2 3 6 12 1 2 3 6 12 1 2 3 6 12

Causal
AR(p) 1.2 1.2 1.2 1.2 1.1 1.7 1.7 1.7 1.7 1.8 7.2 7.2 7.6 7.8 7.8
LLM 1.1 1.1 1.1 1.1 1.1 5.1 6.7 1.6 1.7 1.7 7.2 7.3 7.6 7.8 7.8

AR(0,1)
3 d.o.f. 1.6 1.6 1.4 1.7 1.5 1.9 1.8 1.9 2.1 2.0 10.1 11.2 12.4 11.2 10.0
5 d.o.f. 1.3 1.3 1.5 1.5 1.3 2.0 2.0 1.7 1.8 2.0 10.6 11.2 11.4 10.7 10.6
10 d.o.f. 1.4 1.2 1.5 1.5 1.2 2.2 2.3 2.0 2.1 2.0 11.3 11.6 12.5 12.9 11.8

AR(0,2)
3 d.o.f. 1.4 1.6 1.2 1.3 1.5 1.9 1.8 1.7 1.7 1.7 11.1 12.0 11.5 12.2 11.8
5 d.o.f. 1.3 1.5 1.4 1.3 1.6 2.0 1.9 1.7 1.9 1.7 12.1 11.1 12.2 12.3 13.0
10 d.o.f. 1.4 1.3 1.3 1.5 1.4 1.9 1.8 2.0 2.0 1.6 12.8 13.4 13.5 13.7 13.5

AR(0,3)
3 d.o.f. 1.5 1.3 1.1 1.7 1.5 1.7 1.9 1.6 1.6 1.6 10.9 11.2 12.1 12.3 10.6
5 d.o.f. 1.9 1.4 1.6 1.4 1.5 1.8 1.7 2.0 1.7 1.8 12.3 12.6 12.5 11.8 11.9
10 d.o.f. 1.4 1.5 1.5 1.3 1.4 2.1 1.9 1.8 1.8 2.2 13.0 12.7 13.7 13.4 13.7

AR(1,1)
3 d.o.f. 1.5 1.6 1.3 1.3 1.5 2.0 1.7 2.0 1.8 2.1 11.0 12.3 12.2 10.6 14.4
5 d.o.f. 1.3 1.4 1.6 1.1 1.5 2.0 1.8 2.0 1.8 1.9 10.5 10.6 11.6 13.4 10.8
10 d.o.f. 1.4 1.2 1.3 1.4 1.4 2.1 2.3 2.2 2.2 2.1 11.4 12.0 13.2 13.5 14.6

All values represent root mean square forecast error (RMSFE) values. For every dataset
the values are presented for every forecast horizon (horizontal) and degree of freedom in
the t-distribution of the error term εt in the AR(r,s) model (vertical).
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5.2 Mean Absolute Forecast Error

The second forecast quality measure is the mean absolute forecast error (MAFE). This

measure returns a single value of average error, just like the RMSFE. The penalty for

bigger errors is less severe, since the errors are not squared. Calculate the MAFE as

follows

MAFE =

∑n
t=1 |et|
n

. (29)

No assumption has to be made regarding a finite variance, therefore the results of 1 and

2 d.o.f. can be calculated as opposed to the RMSFE. Table 6 shows the MAFE and has

a similar layout as table 5.

All values in Table 6 are smaller than their counterparts in Table 5. This is the result

of the lower penalty of error magnitude. All other patterns that have been discussed

regarding the RMSFE hold for the MAFE as well. Looking at the 1 and 2 d.o.f. values

we see no notable results at 2 d.o.f., however the 1 d.o.f. MAFE values are regularly

greater than the other degrees of freedom. 1 d.o.f. implies a fat-tailed t-distribution

which seems to be worse than the distributions with (slightly) less fat-tails.

Table 6: Mean Absolute Error

Electricity Gas Oil

Horizon → 1 2 3 6 12 1 2 3 6 12 1 2 3 6 12

Causal
AR(p) 0.9 0.9 0.9 0.8 0.7 1.1 1.1 1.1 1.1 1.2 5.7 5.6 5.8 5.8 5.8
LLM 0.8 0.8 0.8 0.8 0.7 1.7 2.3 1.0 1.0 1.1 5.7 5.6 5.8 5.9 5.8

AR(0,1)

1 d.o.f. 1.4 1.2 1.6 3.1 1.2 1.2 1.4 2.0 2.0 1.3 8.1 8.5 8.8 8.0 7.9
2 d.o.f. 1.0 1.3 1.1 1.1 1.0 1.0 1.2 1.6 1.2 1.4 7.8 7.7 8.6 8.2 8.0
3 d.o.f. 1.0 1.1 1.0 1.2 1.0 1.2 1.2 1.3 1.4 1.3 7.8 8.9 9.3 8.3 7.7
5 d.o.f. 1.0 1.0 1.0 1.1 1.1 1.4 1.3 1.2 1.3 1.4 8.6 9.2 9.1 8.4 8.3
10 d.o.f. 1.1 0.9 1.2 1.1 1.0 1.4 1.8 1.4 1.5 1.6 9.5 9.7 10 10.6 9.4

AR(0,2)

1 d.o.f. 1.7 1.2 1.7 1.3 1.7 2.1 1.8 1.4 1.2 1.4 8.5 9.0 8.1 9.2 7.3
2 d.o.f. 1.0 1.0 1.2 0.9 1.2 1.2 1.4 1.5 1.4 1.2 9.1 8.6 9.2 8.6 8.6
3 d.o.f. 1.0 1.1 0.9 1.0 1.0 1.3 1.2 1.2 1.1 1.2 8.9 9.3 9.1 9.6 9.4
5 d.o.f. 1.0 1.1 1.0 0.9 1.2 1.4 1.3 1.2 1.2 1.2 9.8 8.9 10.1 9.7 10.6
10 d.o.f. 1.1 0.9 0.9 1.1 1.0 1.4 1.3 1.4 1.5 1.1 10.8 10.8 11.1 11.7 11.4

AR(0,3)

1 d.o.f. 1.1 1.2 1.0 1.6 1.3 1.4 1.3 1.4 1.2 1.2 8.5 8.3 8.6 9.8 7.8
2 d.o.f. 1.1 1.3 1.0 1.0 1.0 1.1 1.1 1.4 1.2 1.1 8.2 8.6 9 8.7 8.4
3 d.o.f. 1.0 0.9 0.8 1.1 1.1 1.1 1.3 1.0 1.2 1.1 8.7 9.0 9.4 9.8 8.4
5 d.o.f. 1.3 1.0 1.1 1.1 1.2 1.3 1.1 1.3 1.1 1.3 10.1 10.1 10 9.5 9.7
10 d.o.f. 1.1 1.1 1.1 1.0 1.1 1.6 1.3 1.3 1.3 1.6 11.0 10.4 11.6 10.9 11.6

AR(1,1)

1 d.o.f. 1.5 1.3 1.6 1.6 1.4 2.4 1.3 1.6 1.6 1.5 10.1 10.9 10.9 11.1 10.7
2 d.o.f. 1.1 1.0 1.0 1.2 1.3 1.4 1.2 1.1 1.2 1.3 9.4 8.9 9.1 8.4 10.5
3 d.o.f. 1.1 1.2 1.0 0.9 1.0 1.4 1.1 1.2 1.4 1.4 8.6 9.0 9.0 8.2 11.3
5 d.o.f. 0.9 1.1 1.2 0.9 1.1 1.5 1.2 1.3 1.2 1.4 8.4 8.6 9.4 10.5 8.5
10 d.o.f. 1.0 1.0 1.0 1.1 1.1 1.5 1.6 1.6 1.6 1.6 9.2 10.0 11.1 11.5 12.6

All values represent mean absolute forecast error (MAE) values. For every dataset the
values are presented for every forecast horizon (horizontal) and degree of freedom in the
t-distribution of the error term εt in the AR(r,s) model (vertical).
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5.3 Diebold Mariano Test

Diebold and Mariano (1995) propose a test to compare the quality of different forecasts.

The null hypothesis of the test is E[dt] = 0 with a two-sided alternative hypothesis,

where dt is the difference in loss functions g(eit). The loss function can take on any

form, I choose a quadratic form in this research to increasingly penalize greater errors,

g(eit) = e2it, i = {1, 2}. The test statistic is

d̄√
σ̂2dt/T

∼ N (0, 1), (30)

where σ̂2dt is the variance of dt. Compute σ̂2dt as follows

σ̂2dt = γ̂0 + 2
h−1∑
j=1

γ̂j ,

with γ̂j denoting the j-th order sample autocovariance

γ̂j =
1

T

T∑
t=|j|+1

(dt − d̄)(dt−|j| − d̄).

The correction of the sample variance γ̂0 with the autocovariances γ̂j , j = 1, . . . , h− 1,

is based on the fact that forecast errors for h-step-ahead forecasts are serially correlated

up to (at least) order h−1 by construction. Diebold and Mariano (1995) point out that

the estimate σ̂2dt can, in rare cases, be negative. In this case σ̂2dt is treated as 0 and the

null hypothesis of equal forecast accuracy is immediately rejected (p. 254).

Table 7 shows the test statistics. In every test e1t is the forecast error of the AR(r,s)

model and e2t the forecast error of the model of interest. The standard normal dis-

tributed test statistic therefore indicates that there is reason to believe the forecast

quality of the AR(r,s) model is better if the statistic is smaller than −1.96 and the

reverse holds true when the statistic is greater than 1.96. The models included in Table

7 are those that comply with the r + s = p rule. The Diebold Mariano statistics of all

other models discussed in this section can be found in appendix C. The left-hand side

of Table 7 gives the statistics when AR(r,s) is compared to AR(p) and the right-hand

side does this for the Local Level model. Electricity and Gas results show no forecast is

significantly outperforming the causal forecasts. In some cases the non-causal forecasts

are significantly worse, namely when the statistic is greater than the critical value of

1.96. In most cases there is no clear ‘winner’. Oil forecasts however, are almost al-

ways outperformed by the causal forecasts. The difference between different d.o.f. is

clearly visible in the oil forecasts. More degrees of freedom reduce the quality of the

non-causal forecast. For electricity and gas this pattern is not always visible, which
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Table 7: Diebold Mariano Statistics

AR(p) LLM

Horizon → 1 2 3 6 12 1 2 3 6 12

Electricity
AR(0,1)

1 d.o.f. 1.23 1.19 1.50 1.12 1.51 0.24 1.41 1.40 1.27 0.99
2 d.o.f. 0.80 1.43 2.22 0.99 1.31 -1.01 0.80 2.11 0.73 1.54
3 d.o.f. 1.15 1.57 1.64 1.87 1.49 1.39 1.28 1.02 1.69 1.32
5 d.o.f. 0.97 0.47 1.69 2.28 1.37 2.01 2.73 -0.04 0.97 1.27
10 d.o.f. 1.57 -0.14 2.23 1.50 1.13 2.71 3.29 1.78 1.56 1.65

Gas
AR(0,1)

1 d.o.f. 1.29 1.33 1.55 1.12 1.40 -0.98 -0.96 1.44 1.27 1.19
2 d.o.f. 1.34 1.56 2.32 1.10 1.25 -1.01 -0.99 2.33 0.81 1.06
3 d.o.f. 1.35 2.09 1.92 1.85 1.74 -0.96 -0.99 1.45 1.72 1.22
5 d.o.f. 1.63 1.92 1.85 2.13 1.45 -0.93 -0.97 0.75 1.02 1.64
10 d.o.f. 2.85 0.45 2.29 1.51 1.11 -0.90 -0.94 2.02 1.48 1.21

Oil
AR(0,2)

1 d.o.f. 5.16 2.24 4.25 2.31 2.68 5.12 2.24 4.21 2.30 2.66
2 d.o.f. 1.75 4.27 4.43 2.44 2.79 1.75 4.28 4.39 2.44 2.79
3 d.o.f. 6.96 4.84 4.39 2.87 2.85 6.90 4.85 4.37 2.86 2.85
5 d.o.f. 8.81 6.03 4.92 2.84 2.90 8.66 5.99 4.88 2.84 2.90
10 d.o.f. 10.56 5.55 5.22 3.97 2.92 10.40 5.49 5.20 3.96 2.92

Oil
AR(1,1)

1 d.o.f. 4.79 3.46 3.11 2.61 1.46 4.77 3.45 3.12 2.6 1.46
2 d.o.f. 4.87 3.19 3.21 3.00 2.05 4.84 3.19 3.22 2.97 2.06
3 d.o.f. 5.82 4.12 2.65 3.02 2.38 5.73 4.12 2.65 3.02 2.39
5 d.o.f. 7.06 5.05 4.80 3.34 2.42 6.97 5.06 4.73 3.33 2.43
10 d.o.f. 7.59 6.12 5.49 4.02 2.93 7.43 6.14 5.48 4.02 2.93

Diebold-Mariano statistics for electricity AR(0,1), gas AR(0,1) and oil AR(0,2)
& AR(1,1). A lower statistic is in favor of the AR(r,s) forecast quality. Note
that the critical values are all roughly ±2.

can be attributed to the smaller sample size. The difference in quality over different

forecast horizons is not visible in the electricity and gas data, but in the oil data the

test statistic is decreasing when the forecast horizon increases. Keep in mind that this

could simply show that at long forecast horizons the different models simply perform

equally bad.

In addition to the forecast results over the entire forecast period it could be interesting

to evaluate forecasting performance in subperiods. Table 8 divides the forecast period in

subperiods for the oil dataset. The crisis period is defined as the period from September

2007 up to and including December 2010. The forecasts before, during and after this

period are compared. The AR(1,1) model will be used because the Diebold Mariano

statistics of this model are on average lower (favoring the AR(r,s) model) than the

AR(0,1) model. The period during the crisis has, on average, the lowest Diebold Mariano

statistics, indicating the relative best performance of the non-causal model. This in

addition to the overall poor performance of the non-causal model in oil price forecasting,

leads to believe that the only reason why the test statistics are lower during crisis is
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because the causal models simply perform worse in this period. The average value of

the test statistics before the crisis are greater than after the crisis. Around the year

2003 the oil started to be more volatile which has a negative impact on forecast results.

Table 8: Diebold Mariano Statistics Credit Crisis

AR(p) LLM

Horizon → 1 2 3 6 12 1 2 3 6 12

Before Crisis
AR(1,1)

1 d.o.f. 4.61 2.56 2.39 2.15 1.25 4.58 2.56 2.39 2.15 1.25
2 d.o.f. 3.85 2.58 2.44 2.44 1.49 3.83 2.58 2.45 2.41 1.49
3 d.o.f. 3.69 2.73 1.87 2.45 1.73 3.62 2.74 1.86 2.47 1.73
5 d.o.f. 4.92 3.36 4.06 2.58 1.87 4.86 3.35 4.00 2.58 1.88
10 d.o.f. 5.91 4.54 4.18 3.05 2.16 5.71 4.52 4.16 3.05 2.16

During Crisis
AR(1,1)

1 d.o.f. 1.54 1.67 1.86 1.65 1.02 1.53 1.67 1.86 1.65 1.02
2 d.o.f. 1.88 1.96 1.93 1.05 1.44 1.87 1.94 1.87 0.95 1.43
3 d.o.f. 3.01 1.73 1.69 0.91 1.24 2.86 1.72 1.54 0.89 1.24
5 d.o.f. 2.45 2.10 1.90 1.18 0.53 2.31 2.15 1.84 1.17 0.52
10 d.o.f. 2.71 1.69 1.91 1.19 1.23 2.64 1.72 1.88 1.17 1.22

After Crisis
AR(1,1)

1 d.o.f. 2.02 2.65 2.11 1.57 1.66 2.02 2.66 2.16 1.58 1.68
2 d.o.f. 3.21 2.44 2.36 1.55 1.46 3.23 2.49 2.39 1.56 1.47
3 d.o.f. 4.87 2.94 2.52 1.77 1.57 4.84 2.97 2.55 1.78 1.58
5 d.o.f. 4.47 3.36 2.65 1.98 1.44 4.49 3.42 2.67 1.98 1.45
10 d.o.f. 5.45 3.87 3.25 2.37 1.76 5.45 3.92 3.26 2.37 1.77

Diebold Mariano statistics from forecasts of AR(1,1) model versus causal mod-
els for oil data. A lower statistic is in favor of the AR(r,s) forecast quality.
Crisis period is considered September 2007 up to and including December 2010.

5.4 Robustness

Figures 4 and 5 show the evolution of parameter estimates as the estimation period

increases during forecasting. The figures show the AR(0,1) model for electricity and gas

and the AR(0,2) model for oil respectively. All parameter estimates are based on models

with 1 degree of freedom and a forecast horizon of one month. I expect to see variation

in the estimates when the estimation period is small, however as this period increases

the estimates should stabilize. For electricity in Figure 4 this pattern holds true. The

first estimate is based on 32 datapoints and varies around 0.2. As the period increases

the estimates decrease towards around 0.14 and do not jump up and down a lot. Gas

in Figure 4 seems to show a somewhat different pattern, the estimates are varying even

at increasingly more available datapoints. However, the vertical axis shows that the

movement is between 0.05 and 0.065. The magnitude of these varying estimates is

therefore small and can be attributed to the random nature of the economic time series.
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Figure 4: parameter evolution electricity and gas
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Parameter estimates of the AR(0,1) parameter ψ for the electricity (top) and
gas (bottom) datasets with a forecast horizon of one month. Vertical axis con-
tains the estimated value and horizontal axis contains the date up to which data
is used to make the estimation.

The parameter estimates for oil in Figure 5 are relatively constant throughout the entire

period. This is because the oil dataset is larger than the electricity and gas datasets.

Figure 5: parameter evolution oil
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Parameter estimates of the AR(0,2) parameters ψ1 and ψ2 for the oil dataset
with a forecast horizon of one month. Vertical axis contains the estimated
value and horizontal axis contains the date up to which data is used to make
the estimation.
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5.5 VAR Model Results

The VAR model creates all preceding statistics and results as well. Note that the VAR

model is only used with oil data. Table 9 and Table 10 summarize the information.

Table 9 presents the MAFE and RMSFE of the VAR model forecast. These values are

quite constant throughout the different forecast horizons. Table 10 shows the Diebold-

Mariano test statistics of the causal models versus the VAR model and the AR(r,s) model

versus the VAR model. A higher statistic indicates a higher VAR forecast quality and

vice versa for the other models. Similar to the AR(r,s) model, the VAR model is not

able to significantly outperform the other causal models in terms of forecast quality.

Moreover, the causal forecasts all perform significantly better than the VAR forecasts.

Again we see that at long forecast horizons, the forecasts are starting to become equally

bad and the test statistic is going towards zero. When comparing the non-causal model

to the VAR model, we see test results inside the the critical values for most of the

forecasts. Longer forecast horizons see to have a worse effect on the non-causal model

than on the VAR model.

Table 9: Mean Absolute Error & Root Mean Square Error VAR

1 2 3 6 12

MAFE 8.2 8.2 8.2 8.2 8.2
RMSFE 10.3 10.3 10.3 10.3 10.3

Mean absolute error and root mean
square error values of the forecasts made
by the VAR model.

Table 10: Diebold Mariano Statistics VAR

1 2 3 6 12

AR(2) -6.91 -4.64 -4.22 -3.25 -2.76
LLM -6.82 -4.73 -4.38 -3.25 -2.76

AR(0,2)

1 d.o.f. 1.78 1.18 1.52 3.02 4.38
2 d.o.f. 1.28 1.20 2.03 1.22 3.03
3 d.o.f. 0.70 2.05 1.49 2.47 3.54
5 d.o.f. 1.57 0.94 1.61 1.67 3.43
10 d.o.f. -1.25 0.60 1.73 2.32 2.34

Diebold Mariano statistics for the VAR model versus
the models shown on the left-hand side of the table. A
higher statistic is in favor of the VAR model.
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6 Conclusion

This section includes a summary of the results and some points of discussion on the

AR(r,s) model and thoughts on future research. The goal of this research is to answer

the question if a non-causal process improves forecasting accuracy of economic time

series compared to causal processes. In short, no it does not for the non-causal processes

used in this research. However, the non-causal processes in this research do not perform

significantly worse in some cases than the existing models. Namely the performance in

forecasting electricity and gas data is comparable to the existing causal models.

The insights gained from the results section are 1.) Lower degrees of freedom in a

t-distributed error term of the AR(r,s) model increase forecast quality relative to the

causal models. This can be attributed to the higher kurtosis of economic time series in

general, which is a property of a t-distribution with few d.o.f. 2.) The r + s = p rule

used in Lanne & Saikkonen (2011) is not supported nor rejected by the results from

this research. The number of leads in a non-causal model could depend heavily on the

chosen dataset and there is, as with causal models, no best number of leads to include

in every situation. 3.) the AR(r,s) model shows robust parameter estimation which

makes it feasible to use in practice. 4.) The use of non-causal models in forecasting

economic time series is relatively new and shows a comparable forecast quality to the

well-known VAR model.

The role of non-causal models in forecasting is one that needs more exploration. Decreas-

ing forecast errors with lower degrees of freedom indicate the importance of variance.

A downside of the AR(r,s) model is the approximation of the predictive density. The

SIR method is computationally intensive. The randomness involved in getting the ‘cor-

rect’ draws from this density is an implied obstacle for any non-causal model. Future

research could improve on this part of the process by using less intensive methods in

which more simulations can easily be made. Furthermore future research could try and

find an optimal error distribution in the AR(r,s) model. Of course, not only the setup of

the AR(r,s) model could be changed but different data can also be used, such as certain

stocks or financial markets.
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A VAR Data

Figure 6 show the data that is used in the VAR model. The data and model are exactly

replicated from Kilian (2009).

Figure 6: VAR Data
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B AR(p) Parameter Estimates

Table 11: AR(p) Parameter Estimates

Electricity
Constant yt−1 yt−2 yt−3 yt−4 yt−5

AR(1) -0.23 0.35
AR(2) -0.32 0.34 -0.34
AR(3) -0.26 0.37 -0.34 0.22
AR(4) -0.22 0.36 -0.32 0.15 0.02
AR(5) -0.29 0.35 -0.30 0.07 0.01 -0.00

Gas
Constant yt−1 yt−2 yt−3 yt−4 yt−5

AR(1) -0.05 0.11
AR(2) -0.05 0.10 0.07
AR(3) -0.04 0.09 0.05 0.17
AR(4) -0.04 0.08 0.05 0.17 0.03
AR(5) -0.04 0.08 0.05 0.17 0.03 0.01

Oil
Constant yt−1 yt−2 yt−3 yt−4 yt−5

AR(1) 0.14 0.49
AR(2) 0.16 0.55 -0.13
AR(3) 0.18 0.54 -0.08 -0.08
AR(4) 0.19 0.54 -0.09 -0.05 -0.06
AR(5) 0.19 0.53 -0.09 -0.05 -0.04 -0.04
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C Diebold Mariano Statistics

Table 12: Diebold Mariano Statistics Electricity

AR(p) LLM

Horizon → 1 2 3 6 12 1 2 3 6 12

Electricity
AR(0,2)

1 d.o.f. 1.41 1.23 1.13 1.45 1.25 1.43 1.26 1.13 1.50 1.27
2 d.o.f. 1.57 1.22 1.72 1.21 1.53 2.92 1.61 1.96 1.52 1.44
3 d.o.f. 1.83 1.44 -0.45 1.43 1.43 2.74 1.75 0.04 1.27 1.43
5 d.o.f. 0.70 1.26 1.94 1.29 1.4 1.77 1.86 2.04 2.31 1.44
10 d.o.f. 1.33 0.17 0.74 1.90 1.13 2.31 1.8 1.22 1.85 1.00

Electricity
AR(0,3)

1 d.o.f. 1.37 1.25 2.09 1.47 1.19 1.42 1.4 2.22 1.49 1.19
2 d.o.f. 1.34 1.12 1.19 1.38 1.26 1.83 1.65 1.72 1.48 1.24
3 d.o.f. 1.45 2.11 0.67 1.27 1.40 2.29 2.65 1.34 1.29 1.34
5 d.o.f. 0.27 1.48 2.42 -0.70 1.62 1.23 2.73 2.39 -0.31 1.71
10 d.o.f. 1.48 -0.08 0.53 1.30 1.43 2.63 0.95 1.19 1.50 1.28

Electricity
AR(1,1)

1 d.o.f. 1.03 1.70 1.00 1.57 1.29 1.11 1.91 1.10 1.57 1.28
2 d.o.f. 1.19 1.09 1.09 0.82 2.04 1.44 1.13 1.39 0.87 -
3 d.o.f. 1.49 0.28 -1.04 1.23 1.75 2.29 1.24 -0.54 1.28 1.77
5 d.o.f. 1.70 1.05 1.85 1.61 1.44 1.94 1.67 2.03 1.72 1.44
10 d.o.f. 1.63 2.05 1.65 2.03 1.60 3.32 2.78 1.77 1.82 1.56

Diebold-Mariano statistics for electricity AR(0,2), AR(0,3) and AR(1,1). A
lower statistic is in favor of the AR(r,s) forecast quality. Note that the critical
values are all roughly ±2. ‘-’ is a result of a negative σ̂2dt (section 5.3).
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Table 13: Diebold Mariano Statistics Gas

AR(p) LLM

Horizon → 1 2 3 6 12 1 2 3 6 12

Gas
AR(0,2)

1 d.o.f. 2.25 1.33 1.60 -0.38 2.20 -0.64 -0.76 1.85 -0.10 3.23
2 d.o.f. 1.26 1.77 2.36 1.06 0.85 -0.96 -0.96 2.74 1.37 0.59
3 d.o.f. 2.03 0.43 0.28 -0.42 -0.23 -0.95 -0.99 1.26 0.01 -0.10
5 d.o.f. 1.79 2.11 0.21 0.96 -0.43 -0.93 -0.98 1.18 1.15 -0.03
10 d.o.f. 1.38 0.44 2.01 1.52 -0.57 -0.95 -0.99 2.43 1.68 -0.58

Gas
AR(0,3)

1 d.o.f. 1.24 1.69 1.47 1.26 0.62 -0.92 -0.97 1.57 1.34 1.57
2 d.o.f. 0.64 1.00 1.13 0.09 - -0.98 -1.00 1.17 0.48 -
3 d.o.f. 0.09 1.78 -1.61 -1.08 -0.90 -0.99 -0.98 0.02 -0.38 -1.14
5 d.o.f. 1.11 -0.34 2.53 -0.30 0.57 -0.96 -1.00 2.67 0.19 0.62
10 d.o.f. 1.98 0.95 0.34 0.50 1.38 -0.92 -0.98 0.72 1.00 1.20

Gas
AR(1,1)

1 d.o.f. 1.32 1.33 1.67 1.49 1.00 0.31 -0.96 1.74 1.58 1.14
2 d.o.f. 2.13 0.38 0.34 0.95 0.79 -0.9 -1.00 1.30 1.08 0.98
3 d.o.f. 1.47 -0.21 1.40 0.77 1.48 -0.93 -1.00 2.23 1.32 1.35
5 d.o.f. 2.52 0.92 2.48 0.41 1.56 -0.94 -0.99 2.80 0.86 1.30
10 d.o.f. 3.07 2.65 1.68 1.86 1.63 -0.92 -0.95 2.06 1.97 1.38

Diebold-Mariano statistics for gas AR(0,2), AR(0,3) and AR(1,1). A lower
statistic is in favor of the AR(r,s) forecast quality. Note that the critical values
are all roughly ±2. ‘-’ is a result of a negative σ̂2dt (section 5.3).

Table 14: Diebold Mariano Statistics Oil

AR(p) LLM

Horizon → 1 2 3 6 12 1 2 3 6 12

Oil
AR(0,1)

1 d.o.f. 4.78 4.02 3.05 2.48 2.31 4.74 4.04 3.05 2.47 2.31
2 d.o.f. 5.25 3.63 3.18 2.83 2.32 5.17 3.65 3.19 2.83 2.32
3 d.o.f. 5.65 5.19 3.50 3.30 2.75 5.54 5.22 3.50 3.30 2.76
5 d.o.f. 7.11 5.75 4.65 3.14 2.73 7.04 5.78 4.66 3.15 2.73
10 d.o.f. 9.63 6.27 4.70 3.75 3.08 9.49 6.32 4.69 3.76 3.08

Oil
AR(0,3)

1 d.o.f. 4.83 4.22 2.85 2.35 2.62 4.80 4.22 2.84 2.35 2.60
2 d.o.f. 6.47 5.34 3.60 3.11 2.27 6.34 5.33 3.59 3.09 2.26
3 d.o.f. 7.49 5.96 4.10 3.15 2.72 7.35 5.93 4.11 3.15 2.73
5 d.o.f. 7.78 6.67 4.84 3.05 3.02 7.68 6.63 4.81 3.04 3.03
10 d.o.f. 9.93 5.53 6.02 3.24 3.06 9.79 5.46 5.98 3.24 3.06

Diebold-Mariano statistics for oil AR(0,1) and AR(0,3). A lower statis-
tic is in favor of the AR(r,s) forecast quality. Note that the critical values
are all roughly ±2. ‘-’ is a result of a negative σ̂2dt (section 5.3).
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