
Erasmus University Rotterdam

Erasmus School of Economics

Master’s Thesis Econometrics and Management Science

ng-Memory Based Capacity Cuts
A new Family of Robust Valid Inequalities for the Capacitated Vehicle

Routing Problem with Time Windows using ng-Route Relaxation

Ymro Nils Hoogendoorn (413127)

Supervisor: MSc Kevin Dalmeijer
Second Assessor: dr. Remy Spliet

August 17, 2018

Abstract

This thesis introduces a new family of valid inequalities for the capacitated vehicle
routing problem with time windows, the ng-memory based capacity cuts. These
inequalities are a lifting of the ordinary capacity cuts and can be included robustly
into a branch-price-and-cut algorithm if one uses the ng-route relaxation. This the-
sis evaluates the performance of these inequalities by solving the root node relax-
ation and by solving the full instance using branch-price-and-cut of several Augerat
benchmark instances. Furthermore, four separate separation methods are devised
to separate these new inequalities, which are all based on the CVRPSEP package for
separating ordinary capacity cuts. Two of these methods guarantee that all violated
ng-capacity cuts are found, provided all ordinary capacity cuts can be separated.
In the root node relaxation, ng-memory based capacity cuts lifted the lower bound
more than ordinary capacity cuts. For some instances, we even obtained an integer
solution with the ng-cuts, whereas we did not with the capacity cuts. The fourth
separation algorithm, which reduces arc flow with a factor of κ to find more violated
ng-capacity cuts, achieves the highest lower bound in almost all of the instances.
Furthermore, no additional violated cuts were found for κ > 4. In the branch-price-
and-cut setting, we found that including ng-capacity cuts reduces the number of
nodes needed in the branching tree drastically. However, no real time savings were
achieved due to the longer solving time per node for the ng-capacity cuts. All in all,
including ng-capacity cuts gives us higher lower bounds and reduces the number of
nodes in a branching tree.

Contents

1 Introduction 2

2 Problem Definition 6

2.1 Problem Description . 6

2.2 The Set Partitioning Formulation . 7

3 Branch-Price-and-Cut 7

3.1 Column Generation . 8

3.2 The Pricing Problem . 8

3.3 ng-Route Relaxation . 15

3.4 Capacity Cuts and Strengthened Capacity Cuts 17

3.5 Algorithm for Obtaining a Lower Bound 22

3.6 Obtaining an Integer Solution . 22

4 ng-Capacity Cuts 27

4.1 A Small Example . 28

4.2 Separation of Capacity Cuts . 29

4.3 Symmetry and ng-Capacity Cuts . 33

4.4 Feillet, Dejax, Gendreau, and Gueguen (2004) and ng-Capacity Cuts . . . 38

4.5 Other Cuts . 39

5 Experiments 42

6 Results 43

6.1 Root Node Relaxation . 43

6.2 Branch-Price-and-Cut . 47

7 Conclusion 50

A Proofs 56

B Additional Example Instances 61

C Additional Tables 64

1

1 Introduction

The vehicle routing problem (VRP) is a class of problems that concerns itself with finding

the least-cost way to serve multiple locations with one or more vehicles. There may be

side constraints the vehicles have to obey. This problem was first introduced in Dantzig

and Ramser (1959) as an extension of the travelling salesman problem (TSP), in which

we can only use one vehicle to serve all customers and there are no side constraints. The

VRP and its variants are encountered frequently in logistics. A straightforward example is

the distribution of goods, for instance grocery distributions (Carter, Farvolden, Laporte,

& Xu, 1996) and raw materials such as oil or gas (Bell et al., 1983). Due to the growing

volume of these industries, it is now more important than ever to solve such problems to

optimality.

The capacitated vehicle routing problem (CVRP) is one of the most popular members of

the VRP. In the CVRP, the fleet of vehicles is identical and stationed at a central depot.

The customers all demand a different amount of produce. However, as the vehicles have

a capacity limit, one vehicle cannot serve all customers. Furthermore, deliveries cannot

be split up, so that a customer is always served by exactly one vehicle. Another popular

member is the vehicle routing problem with time windows (VRPTW), which is a general-

ization of the CVRP. In this variant, the customers have specific time windows in which

they must be served. Both the CVRP and VRPTW are NP-hard (Lenstra & Kan, 1981).

Prevalent algorithms used to solve CVRP and VRPTW instances can be divided into

two main categories: inexact and exact methods. The exact methods guarantee that the

found solution is optimal, but usually take much longer to find that solution. Inexact

methods are usually faster but do not guarantee an optimal solution. In this thesis, we

focus on exact methods.

One of the first exact methods to solve the VRP is given in Balinski and Quandt (1964),

in which a set partitioning formulation is used with integer programming. This method

actually enumerates all feasible routes and can thus only be used if the number of cus-

tomers is small. Indeed, Balinski and Quandt (1964) only solved instances with up to 15

customers. This approach can also be used to solve the CVRP and VRPTW, as one can

2

model the extra route restrictions in the set of feasible routes. Rao and Zionts (1968)

were one of the first to consider column generation for the VRP, in which one does not

enumerate the routes, but rather generates them dynamically. They use this method to

solve larger VRP instances to optimality.

Fisher and Jaikumar (1981) developed the three-index flow formulation for the CVRP.

This mathematical program is completely different from the set partitioning formulation

in that it models the arcs over which the vehicles travel directly, but it contains an expo-

nential number of constraints. Fisher and Jaikumar (1981) do not solve this formulation

exactly. Laporte, Nobert, and Desrochers (1985) use a variant of the three-index flow

formulation: the two-index flow formulation, in which one does not have separate flow

variables for vehicles. They use this formulation, together with branch-and-cut procedure,

to obtain optimal solutions for the symmetric CVRP. In the branch-and-cut procedure,

one solves the linear program with just a limited number of constraints. If the solution

is fractional or violates some constraint, one branches on the fractional variable or adds

the violated constraint dynamically. With this technique, CVRP instances with up to 50

customers are solved to optimality.

Desrochers, Desrosiers, and Solomon (1992) expanded on the set partitioning formulation

combined with column generation to solve the VRPTW to optimality. In this approach,

new routes are generated by solving a shortest path problem with resource constraints

with 2-cycle elimination. This means that routes are allowed to visit customers multiple

times, but cycles of length 2 are forbidden. Integer solutions are obtained by branching on

arc flows, which results in a branch-and-price algorithm. With this approach, VRPTW

instances with up to 100 customers are solved to optimality.

Augerat (1995) and Kohl (1995) both introduced the concepts of valid inequalities for

the VRPTW and CVRP. Valid inequalities are inequalities that cut off a region of the

linear program space, but leave the integer portion intact. These inequalities were used

with a branch-and-cut procedure to reduce the number of branches needed to find an op-

timal solution. Further elaborating on valid inequalities, Augerat et al. (1998) also used

a branch-and-cut procedure on the 2-index flow formulation to solve CVRP instances

3

to optimality. With this technique, an instance with 134 customers was solved to opti-

mality, which was the largest CVRP instance solved to optimality to this date. Bard,

Kontoravdis, and Yu (2002) also employed a similar brach-and-cut procedure with valid

inequalities, but used it to solve VRPTW instances. They also executed heuristics to find

upper bounds for the optimal objective, to cut off part of the solution space. This allowed

them to solve VRPTW instances with up to 100 customers to optimality.

Back to the column generation side, it was already known that a branch-and-price al-

gorithm could be combined with the dynamic generation of valid inequalities to yield a

branch-price-and-cut algorithm. The first branch-price-and-cut algorithm was introduced

in Nemhauser and Park (1991) and was used to solve the graph colouring problem. For

branch-price-and-cut algorithms, de Aragao and Uchoa (2003) introduced the distinction

between robust and non-robust valid inequalities. Valid inequalities are called robust if

they do not complicate the generation of new routes (the pricing problem). Non-robust

valid inequalities do complicate the pricing problem, which means one must be very careful

about how many non-robust valid inequalities to include. Branch-price-and-cut’s poten-

tial was quickly noticed and used for VRPTW problems. For instance, Kohl, Desrosiers,

Madsen, Solomon, and Soumis (1999) used column generation on the set partitioning for-

mulation, together with 2-cycle elimination and 2-path cuts (which are robust), to solve

VRPTW instances. Several unsolved 50- and 100-customer instances could be solved to

optimality. One of the first instances branch-price-and-cut was used on the CVRP, was

done by Fukasawa et al. (2006). In this paper, they solely use robust valid inequalities,

combined with heuristic pricing in early iterations to solve CVRP instances to optimality

with up to 120 customers. While this paper is a breakthrough for solving CVRP instances

with the branch-price-and-cut technique, this technique is still not as effective as using

branch-and-cut for the CVRP. This is why branch-price and cut was not used very often

on CVRP instances.

Feillet et al. (2004) used a column generation algorithm to solve the VRPTW. They

actually solved an elementary shortest path problem with resource constraints instead of

the more common relaxed version with 2-cycle elimination. They found that the linear

programming gap can be reduced using this technique. As an extension of the 2-cycle

4

elimination for the shortest path problem with resource constraints, Irnich and Villeneuve

(2006) developed the k-cycle elimination, with k ≥ 2. They found that using k = 3 or 4

really benefits some VRPTW instances, and solved some unsolved 50- and 100-customer

instances to optimality. However, a different and more promising relaxation to the elemen-

tary shortest path problem with resource constraints is the ng-route relaxation, introduced

in Baldacci, Mingozzi, and Roberti (2011). This relaxation is completely different from

the established k-cycle elimination, but it proved very successfully for solving large CVRP

and VRPTW instances.

Røpke (2012) also uses a robust branch-price-and-cut algorithm, but with the ng-route

relaxation instead of k-cycle elimination. With this, they solved a 150-customer CVRP

instance in about 5 days. Finally, Pecin, Pessoa, Poggi, and Uchoa (2017) used branch-

price-and-cut with ng-route relaxations and both robust and non-robust valid inequalities

to solve CVRP instances to optimality faster than any other algorithm to date. They

limit the number of non-robust cuts in order to keep the pricing problem tractable.

As one can see from the above overview, branch-price-and-cut algorithms are recently

among the best-performing algorithms for solving CVRP and VRPTW instances. Ro-

bust valid inequalities play an important role in such algorithms. The main contribution

of this thesis is the introduction of a new type of robust valid inequalities for the VRPTW

and CVRP using ng-route relaxation, the ng-capacity cuts (NGCCs). The main ques-

tions of this thesis are whether NGCCs increase the LP bound and/or save runtime on

the CVRP and VRPTW compared to using no cuts and CCs, and which separation tech-

nique is most useful for separating NGCCs. Furthermore, we test whether NGCCs speed

up finding an integer solution to the CVRP and VRPTW compared to using CCs in a

branch-price-and-cut setting.

The outline of this thesis is as follows. First, in Section 2 we introduce the mathematical

notation for the CVRP and VRPTW. We also introduce the set partitioning formulation,

which forms the basis of the branch-price-and-cut algorithm. Then, Section 3 discusses

the branch-price-and-cut algorithm in detail. Section 4 introduces the NGCCs and de-

scribes several separation algorithms. Next, Section 5 describes the experimental setup

5

and instances used, while Section 6 discusses the results of the experiments. Finally,

Section 7 presents the final conclusions of this thesis.

2 Problem Definition

2.1 Problem Description

We model the CVRP and VRPTW by setting up a directed graph G = (N ,A). We

denote V = {1, . . . , n} as the set of customers, 0 as the starting depot and n + 1 as the

ending depot, giving us N = V ∪{0, n+ 1}. Note that the starting and ending depot can

also refer to one, central, depot. The distinction is made for mathematical convenience.

We denote the set of arcs with A ⊆ N ×N . Travelling to the starting depot and from the

ending depot is prohibited. With each arc (i, j) ∈ A, we associate a travel cost cij ≥ 0

and travel time tij ≥ 0. Furthermore, each customer i ∈ V has a demand qi > 0 and time

window [ei, li]. Here, ei and li ≥ ei are the earliest and latest service times of customer

i, respectively. Without loss of generality we set e0 = en+1 = 0 = q0 = qn+1 and assume

that ei ≥ 0 for all i ∈ N . l0 = ln+1 can be used to limit the overall length of routes. We

denote the total capacity of a vehicle by Q > 0. We assume that qi ≤ Q for all i ∈ N .

For both the VRPTW and CVRP, a feasible solution consists of a collection of feasi-

ble routes, that together serve each customer. Every route r is executed by one vehicle

and can be defined as a path r = (0, i1, i2, . . . , i|r|, n+1) through G, with i1, i2, . . . , i|r| ∈ V

and |r| ≥ 1. We say |r| is, by abuse of notation, equal to the number of customers r visits.

Here, the vehicle starts at the depot, 0, visits customers (i1, i2, . . . , i|r|) in the specified

order and ends at the depot n+ 1. A route is feasible for the CVRP if the total demand

on the route,
∑|r|

k=1 qik , does not exceed the capacity of a vehicle, Q. Furthermore, the

route must be elementary, which means no customer is visited more than once. For the

VRPTW, we have the additional constraint that every customer can be served within

their respective time window. Note that vehicles are allowed to wait.

6

2.2 The Set Partitioning Formulation

If we assume the total set of feasible routes, R, is available, we can model the CVRP

or the VRPTW as a set partitioning problem, as originally proposed by Balinski and

Quandt (1964). The binary variable xr denotes whether we choose route r ∈ R in our

solution. Parameter cr gives the costs of using route r ∈ R. These costs can be calculated

by summing cij for all arcs (i, j) visited by r. To track which customer is served in some

route r ∈ R, we introduce air, which equals the number of times route r visits customer

i ∈ V . Note that, for now, this parameter can be regarded as binary. The set partitioning

problem, is given by SPP.

(SPP) min
∑
r∈R

crxr, (1a)

s.t.
∑
r∈R

airxr = 1 ∀i ∈ V , (1b)

xr ∈ B ∀r ∈ R. (1c)

As the size of R is exponential in the number of customers n, directly solving SPP is

intractable, even for moderate n. Instead, we will use a branch-price-and-cut algorithm,

which will be discussed in the next section.

3 Branch-Price-and-Cut

This section will explain the basics of a branch-price-and-cut algorithm, which has been

used to successfully solve CVRP (Fukasawa et al., 2006; Pecin et al., 2017; Røpke, 2012)

and VRPTW (Kohl et al., 1999) instances. Section 3.1 describes the technique of column

generation, while Section 3.2 elaborates on the pricing problem of SPP used to generate

new columns. The mathematical definition of the ng-route relaxation is given in Section

3.3. We discuss capacity cuts and their strengthened form in Section 3.4, the algorithm

used to solve the LP relaxation of SPP to optimality in Section 3.5 and techniques used

to obtain the final integer solution in Section 3.6.

7

3.1 Column Generation

With column generation, we can solve the LP relaxation of SPP to optimality, without

enumerating the entire set R explicitly. Instead of the full set R, one uses a tractable

subset R′ ⊆ R of routes, which gives us the restricted master problem (RMP) (Desrosiers

& Lübbecke, 2005).

Normally, in the simplex algorithm, one searches for a route r ∈ R whose reduced costs

ρr = cr −
∑
i∈V

λia
i
r,

are negative. Here λi, i ∈ V are the dual variables of (1b). If we then let this variable

enter the basis, the objective decreases. Whenever there is no such variable with negative

reduced costs, the current LP solution is optimal.

However, with column generation the entire set R is not explicitly available. Instead,

searching for a route r ∈ R with negative reduced costs is formulated as an optimization

problem (Desrosiers & Lübbecke, 2005):

ρ∗ = min
r∈R
{ρr}. (2)

If ρ∗ < 0, then we add such a route or several routes r with ρr < 0 to R′. However, if

ρ∗ ≥ 0, then the solution to the RMP also solves the SPP to LP optimality (Desrosiers

& Lübbecke, 2005). The optimization problem (2) is known as the pricing problem. We

will discuss the pricing problem and how to solve it in detail in the next section.

3.2 The Pricing Problem

This section describes the pricing problem of the CVRP and VRPTW in detail. Firstly,

we will note that the pricing problem (2) is an elementary shortest path problem with

resource constraints (ESPPRC) (Kallehauge, Larsen, & Madsen, 2006). The costs of trav-

elling over an arc (i, j) ∈ A equal c̄ij = cij − λj, where we define λ0 = λn+1 = 0. Then,

ρr of some route r ∈ R equals the sum of c̄ij for every arc (i, j) the route visits. The

resources model the restrictions the route has to follow and keep track of the costs of the

8

route. For instance, we need a resource for the demand satisfied by the route, so we can

prevent it from exceeding Q. The VRPTW also needs a time resource for the customer’s

time windows. Furthermore, as routes must be elementary, we can use n resources to

track which customer has already been visited.

Before we give an algorithm to solve the (E)SPPRC, we will first give a general description

of the problem. After that, we will apply the general description to the VRPTW and

CVRP.

3.2.1 General Description of the Shortest Path Problem with Resource Con-

straints

The SPPRC is defined on a digraph G = (N ,A), with N and A ⊆ N ×N the nodes and

arcs of the graph respectively. Note that this graph G is the same as the graph of the

CVRP or the VRPTW. Just as the name of the problem suggests, not any path through

G is deemed feasible. It has to adhere to the resource constraints, which are usually mod-

elled with resource consumptions and resource intervals.

As the SPPRC has an arbitrary number of resources R ≥ 1 (Irnich & Desaulniers,

2005), we first introduce some concepts concerning resource vectors. A vector u =

[u1, u2, . . . , uR]> ∈ RR is called a resource vector, where x> denotes the transpose of

the vector x. We say for some resource vectors u and w that u ≤ w if and only if

us ≤ ws, for all s ∈ {1, . . . , R}. Furthermore, we define the resource interval [a,b] as

{u ∈ RR : a ≤ u ≤ b}. Note that a and b must also be resource vectors by construction.

In the SPPRC, only certain levels of resources are allowed in a node i ∈ N . We model this

by introducing a specific resource interval [ai,bi] for every node. Whenever we travel over

arcs, our resources change. Irnich and Desaulniers (2005) capture this via the resource

extension functions (REFs). A REF fij : RR → RR is a vector function that models

how a resource vector changes over an arbitrary arc (i, j) ∈ A. Note that, using these

REFs, resource consumptions can be dependent on other resources and can be non-linear.

We denote the sth component of fij as f sij : RR → R, with s ∈ {1, . . . , R}, such that

fij = [f 1
ij, . . . , f

R
ij]
>. As the CVRP and VRPTW can be modelled with non-decreasing

9

REFs, we assume that the REFs are non-decreasing. This makes the SPPRC easier to

solve (Irnich & Desaulniers, 2005). That is, u ≤ w implies that fij(u) ≤ fij(w) for all

(i, j) ∈ A.

The objective of the SPPRC is to find a feasible path that minimizes the first resource,

which we will call the “cost” resource. We will now define paths and their feasibility.

A path P through G is defined as a (p + 1)-tuple (i0 = 0, i1, . . . , ip), with ik ∈ N for

all k ∈ {0, . . . , p} and p ≥ 0. We say p is the length of P . We implicitly assume that

(ik, ik+1) ∈ A, for all k ∈ {0, . . . , p−1}. Path P is resource-feasible if and only if there ex-

ists resource vectors uk for all k ∈ {0, . . . , p} such that uk ∈ [aik ,bik] for all k ∈ {0, . . . , p}

and fik,ik+1
(uk) ≤ uk+1 for all k ∈ {0, . . . , p−1} (Irnich & Desaulniers, 2005). This defini-

tion of feasibility implies that there are many different possible choices for these resource

vectors u0, . . . ,up if a path P is feasible. Fortunately, if all the REFs are non-decreasing,

we associate a unique “minimal” collection of resource vectors (u0(P), . . . ,up(P)) with

path P which are all smaller than or equal to all other feasible resource vectors. As costs

are also a resource, other feasible collections of resource vectors for P are not relevant,

as their costs could be higher. Irnich and Desaulniers (2005) state the formulae for these

minimal resource vectors recursively as

uk(P) =

ai0 , if k = 0

max
{
aik , fik−1,ik(uk−1(P))

}
, if k ∈ {1, . . . , p}

. (3)

Here, the max function is defined component-wise. Note that path P is resource-feasible

if and only if uk(P) ≤ bik for all k ∈ {0, . . . , p}.

3.2.2 The SPPRC for the CVRP and VRPTW

The CVRP can be modelled with R = n + 2 resources. The first is the cost resource

RC . Its resource windows are positive unbounded, that is, aRC
i = 0 and bRC

i = +∞, for

all i ∈ N . The REFs are defined as fRC
ij (u) = uRC + c̄ij for all (i, j) ∈ A. The second

resource is the capacity resource RQ. Its resource windows are bounded by Q, the capacity

of one vehicle. That is, a
RQ

i = 0 and b
RQ

i = Q, for all i ∈ N . The REFs simply add the

demand of the newly visited customer to the capacity, that is f
RQ

ij (u) = uRQ + qj for all

(i, j) ∈ A. Finally, as it is forbidden for a vehicle to visit the same customer twice in a

10

route, we introduce n additional resources R1
E, . . . , R

n
E to track which customers we have

already visited in the route. This was introduced in Beasley and Christofides (1989) and

is called the elementary route restriction. The windows are a
Rj

E
i = 0 and b

Rj
E

i = 1, for all

i ∈ N , j ∈ V . The REFs are

f
Rv

E
ij (u) =

u
Rv

E , if j 6= v

uR
v
E + 1 , if j = v

∀(i, j) ∈ A, v ∈ V .

Feillet et al. (2004) actually alter the above resources, by also setting Ri
E to 1 if the par-

tial path cannot reach that customer anymore. For instance, when visiting a customer is

impossible time-wise or when its demand exceeds the remaining capacity of the vehicle.

This makes solving the SPPRC easier. As this technique is incompatible with the duals

of the ng-memory capacity cuts (see Section 4.4), we do not include this technique.

For the VRPTW, we also model the time resource RT . Its resource windows are ex-

actly the time windows defined earlier: aRT
i = ei and bRT

i = li, for all i ∈ N . The REFs

are, similar to the cost resource, fRT
ij (u) = uRT + tij, for all (i, j) ∈ A.

3.2.3 Solving the SPPRC

Usually, the SPPRC is solved by means of a labelling algorithm (Irnich & Desaulniers,

2005). In such an algorithm, labels are used to represent feasible (partial) paths through

the graph, which are extended by investigating all possible feasible extensions of them.

All partial paths start at node 0, the starting depot. Paths are regarded as completed as

soon as they have reached node n+ 1, the ending depot.

We can define a label L as a tuple L = (i,u, Lprev). That is, a label is represented by a

current node i ∈ N , a resource vector u and a predecessor label Lprev. One could trace

back the predecessor labels of a label to construct the path P = (i0 = 0, i1, . . . , ip = i)

implied by the label L. Note that the resource vector stored in the label should equal the

minimal resource vector up(P) of path P . The initial label L0 is the label corresponding

to the empty path P = (0) and equals L0 = (0, a0, NO). Here, a0 is a resource vector

with its components equal to the resource lower bounds of the depot 0. The symbol NO

indicates the lack of a predecessor label. We denote with i(L) and u(L) the current node

11

and resource vector of label L, respectively.

The way we extend a label is rather straightforward. Given a label L = (i,u, Lprev),

we can extend it via arc (i, j) ∈ A into label L′, which equals

L′ = (j,max{aj, fij(u)}, L). (4)

The updating of the resource vector is akin to recursion scheme (3). Consequently, L′ is

resource-feasible if and only if max{aj, fij(u)} ≤ bj.

If we start with L0 and keep extending labels until all of them are completed, we just

enumerate all feasible partial paths. We therefore use dominance rules to exclude some

undesired labels. We say a label L1 dominates label L2 if the following conditions are met

(Irnich & Desaulniers, 2005):

1. L1 and L2 have the same current node.

2. Every feasible extension of label L2 is also feasible for L1.

3. For every feasible extension of L2, possibly of multiple arcs, the costs of the extended

L1 are lower than or equal to the costs of the extended L2.

These dominance rules are not practical to verify, as one needs to consider all feasible

extensions of a label, of which there are an exponential number. Fortunately, because our

REFs are non-decreasing, these conditions can be restated neatly (Irnich & Desaulniers,

2005). We say L1 dominates L2, denoted by L1 � L2, if and only if equation (5) holds.

L1 � L2 ⇐⇒ i(L1) = i(L2), u(L1) ≤ u(L2) (5)

We also enforce that at least one inequality is strict, to prevent equal labels from getting

eliminated. Note that, because costs are included in the resource vector u, L1 � L2 im-

plies that the costs of L1 are lower than or equal to the costs of L2. As dominated paths

are never part of an optimal solution, we can remove those during the labelling process.

The resulting labelling algorithm can be found in Algorithm 1, which is adapted from

Irnich and Desaulniers (2005).

12

Algorithm 1: Labelling Algorithm for SPPRC.

1 LU ← {L0}, the set of unprocessed labels;

2 LP ← ∅, the set of processed labels;

3 while LU 6= ∅ do

4 L← some label in LU ;

5 foreach j : (i(L), j) ∈ A do

6 Extend L into L′ over arc (i(L), j) via equation (4);

7 if L′ resource-feasible and @L′′ ∈ LU ∪ LP : L′′ � L′ then

8 LU ← LU ∪ {L′};

9 foreach L′′ ∈ LU : L′ � L′′ do

10 LU ← LU \ {L′′};

11 end

12 end

13 end

14 LU ← LU \ {L};

15 LP ← LP ∪ {L};

16 end

17 Return one or several labels L ∈ LP with i(L) = n+ 1 and uRC (L) < 0;

There are many techniques for choosing an unprocessed label (line 4). As preliminary

experiments showed that extending the shortest labels usually dominate more labels, we

choose the first created unprocessed label. For line 17, we return only one label with the

most negative reduced costs. Note that lines 7 and 9 suggest that every created label

is compared to every other label. This can be time-consuming however. Instead, as is

suggested in Martinelli, Pecin, and Poggi (2014), one can limit the number of dominance

checks to a certain subset of labels. For instance, one could only check for dominance

in labels with the same capacity resource RQ. We do not employ this technique in this

thesis, though.

3.2.4 Pricing States

While label domination can greatly speed up the labelling process, it may still take a

long time to generate enough columns so that the CVRP or the VRPTW is solved to LP-

13

optimality. There exist other techniques to speed up this process. A powerful strategy

is to accelerate the labelling process early in the column generation. The idea is based

on the fact that the duals obtained by solving the RMP are not representative for the

optimal duals of the SPP, as indicated by the unstable behaviour of column generation

by Kallehauge et al. (2006), when the number of generated columns is small. In other

words, the optimal routes generated in early pricing problems are probably not used in

any final solution.

So, it seems obvious we can save time by not trying to find every path with negative

reduced costs, as Algorithm 1 does, but just any path with negative reduced costs. We

accomplish this by employing heuristic dynamic programming, as discussed in Desaulniers,

Lessard, and Hadjar (2008). These authors use two methods to accomplish this: aggres-

sive dominance and arc elimination.

With aggressive dominance, one adjusts the label domination rule (5) so that more dom-

inance takes place. For instance, one could ignore all n different elementarity (or ng-

resources, see Section 3.3) in dominance. Desaulniers et al. (2008) adjust the dominance

rule as follows: they check dominance on the cost (RC), capacity (RQ), time (RT) and

Rmax of the “customer” resources (Ri
E or Ri

NG, i ∈ V). When Rmax = n, the dominance

rule is exact and no heuristic dynamic programming takes place. When Rmax = 0, all

elementarity or ng-resources are ignored in the dominance rule.

Given the number of customer resources, Rmax, to use in the dominance check, Desaulniers

et al. (2008) determine which Rmax customers to use according to the following rule. They

compute the difference of the customer duals λi between the current and previous itera-

tion, for all i ∈ V , and select the Rmax customers for which this difference is the highest.

Arc elimination reduces the number of arcs in the graph G. Fewer arcs mean fewer partial

routes can be constructed, thus saving time in the labelling algorithm. Desaulniers et al.

(2008) limit the number of outgoing and incoming arcs of every customer i ∈ V by Aout

and Ain, respectively. To select which arcs should be included, they choose arcs with least

travel costs c̄ij = cij−λj. Note that arcs going to and from the depot are always included.

14

In this thesis, we only limit the number of outgoing arcs, as this limits the number of

arcs in the graph enough. That is, we always set Ain = n. Whenever we include capacity

cuts (see Section 3.4), we also incorporate those duals into the reduced arc costs c̄ij. If

we include ng-capacity cuts (see Section 4), we treat those duals as CC duals. This thus

gives us an approximation of the arc costs.

In early iterations of the column generation algorithm, when a small number of columns

have been added, we want our pricing problem to be fast and inexact. Thus, we want low

Rmax and Aout. In later iterations, we desire to price exactly, thus with Rmax = Aout = n.

To achieve this, we use pricing states. A pricing state dictates the values of Rmax and Aout

and thus the inexactness of the labelling algorithm. When the labelling algorithm fails to

find a route with negative reduced costs, the pricing state is increased and the algorithm

is run again. If the pricing state equals the highest (exact) state, we know for sure no

routes with negative reduced costs exist and the LP is solved to optimality. If a route is

found with negative reduced costs, the pricing state is reset to the lowest (most inexact)

state. An overview of the used pricing states, determined by preliminary experiments, is

given in Table 1.

Table 1: List of pricing states used.

Pricing State Rmax Aout

0 0 5

1 0
⌊
n
3

⌋
2

⌊
n
3

⌋ ⌊
2n
3

⌋
3

⌊
2n
3

⌋
n

4 n n

3.3 ng-Route Relaxation

The previous section already mentioned that the PP of the CVRP and VRPTW is the

ESPPRC. The ESPPRC is NP-hard in the strong sense (Dror, 1994), so it may be worth-

while to relax the problem. Several successful branch-and-price or branch-price-and-cut

applications from the past indeed relax the elementarity of the pricing problem. Notable

examples include the 2-cycle elimination (Desrochers et al., 1992), the k-cycle elimination

(Irnich & Villeneuve, 2006) and the ng-route relaxation (Baldacci et al., 2011). Of these,

15

ng-route relaxation performs the most promising. This relaxation allows for certain types

of non-elementary routes, namely ng-feasible paths.

Looking at elementary paths, if we have visited customer i ∈ V , we cannot visit it again.

In other words, customer i is in the path’s memory. An elementary path cannot visit

customers that are already in its memory, as it has already visited this customer. The

ng-route relaxation adjusts the concept of the paths memory, the ng-memory, making it

“forget” some customers under certain conditions.

We define separate “neighbourhoods” Vi ⊆ V per node i ∈ N . We require that i ∈ Vi
for all i ∈ V and define V0 = Vn+1 = ∅. Whenever we travel over an arc (i, j) ∈ A, we

“remember” having visited customer i if and only if i ∈ Vj. This also holds for every other

customer we remember. To make this idea more precise, let us consider some (partial)

path P = (i0 = 0, i1, . . . , ip) through G. We denote our ng-memory of previously visited

customers, while currently visiting ik, as Πk(P) ⊆ {i1, . . . , ik}, with k ∈ {0, . . . , p}. Note

that we do not remember the starting depot 0, as it is trivial that we visit that node

once. The same holds for the ending depot n + 1. We can determine our memory using

recursive scheme (6).

Πk(P) =

∅ , if k = 0(
Πk−1(P) ∩ Vik

)
∪ {ik} , if k ∈ {1, . . . , p}

(6)

In other words, travelling to customer ik makes us remember that customer, while simul-

taneously forgetting all customers not in Vik . Note that Πp(P) in the recursion scheme

(6) is equivalent to the definition of Π(P) in Baldacci et al. (2011). The proof is shown

in Lemma 1 of Appendix A.

We say a path P = (i0, . . . , ip) is ng-feasible if and only if it holds that ik /∈ Πk−1(P),

for all k ∈ {1, . . . , p}. That is, we are not allowed to visit any nodes that are currently

in our memory. The concept of ng-memory and ng-paths nicely generalizes elementary

paths. If Vi = V , for all i ∈ V , then ng-paths are elementary paths, and the ng-memory

is a perfect memory, as assumed in the previous sections. On the other hand, if Vi = {i}

for all i ∈ V , then the ng-memory corresponds to having no memory at all, which gives a

16

shortest path problem without elementarity.

To incorporate ng-memory into our SPPRC pricing problem, we only need to replace the

n elementarity resources R1
E, . . . , R

n
E with n ng-memory resources R1

NG, . . . , R
n
NG. These

n binary resources together will represent which nodes are currently in the ng-memory

of some path. The windows are, identical to the elementarity resources, a
Rj

NG
i = 0 and

b
Rj

NG
i = 1, for all i ∈ N and j ∈ V . The REFs are defined as

f
Rv

NG
ij (u) =

0 , if v /∈ Vj

uR
v
NG , if v ∈ Vj, j 6= v

uR
v
NG + 1 , if j = v

∀(i, j) ∈ A, v ∈ V . (7)

These new REFs are still non-decreasing, which is shown in Lemma 2 in Appendix A.

Of course, ng-paths are not necessarily elementary. Fortunately, the SPP and RMP

can handle non-elementary paths through air. Note that, in an integer solution, any path

selected needs to be elementary, because restriction (1b) is forced with equality. This

need not to be the case with the LP-relaxed (RMP). So, adding non-elementary paths to

the master problem does not affect the final integer solution, but can affect the LP lower

bound. Keep in mind that Vi should be chosen carefully. The smaller |Vi|, the lower and

less tight the LP bound is, but a larger |Vi| gives a higher LP bound at the cost of a more

expensive pricing problem.

3.4 Capacity Cuts and Strengthened Capacity Cuts

When solving the LP relaxation of the RMP (and thus the SPP), we receive a lower

bound on the optimal integer objective value. It is preferable that this lower bound is

as high as possible, as close to the integer objective as possible. One way to raise this

bound is by introducing valid inequalities to the RMP, as was first done by Kohl (1995)

for the VRPTW. Valid inequalities should be satisfied by all integer solutions, but not

necessarily by non-integer solutions. In other words, those inequalities cut off a part of

the non-integer feasible space, while leaving the integer solution space intact.

17

Robust valid inequalities for the CVRP and the VRPTW are the capacity cuts (CCs),

and have been used successfully in previous literature to raise the LP bound (Augerat et

al., 1998; Baldacci, Christofides, & Mingozzi, 2008; Fukasawa et al., 2006). If we let bijr

be the number of times route r travels over arc (i, j) ∈ A, we can define new variables

zij, for all (i, j) ∈ A as

zij =
∑
r∈R

bijr xr, (8)

so that zij equals the number of vehicles that travel over arc (i, j). In an integer solution,

zij is necessarily binary, but need not be in a non-integer solution.

The capacity cuts state that the number of times vehicles travel into some set of cus-

tomers S ⊆ V , with |S| ≥ 2, should be at least some lower bound on the number of

vehicles needed to serve the customers in S. Usually, this lower bound is set to the total

demand in S, divided by the capacity of one vehicle. Using the zij-variables, Naddef and

Rinaldi (2002) define the capacity cuts (CCs) as

∑
(i,j)∈A: i/∈S, j∈S

zij ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2. (9)

We can rewrite these inequalities easily into the xr variables using definition (8):

∑
r∈R

 ∑
(i,j)∈A: i/∈S, j∈S

bijr

xr ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2

∑
r∈R

 ∑
(i,j)∈A

βijS b
ij
r

xr ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2

∑
r∈R

ζCCr (S)xr ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2. (10)

Here, we defined parameter βijS , which is equal to 1 if i /∈ S and j ∈ S and 0 otherwise.

Furthermore, ζCCr (S) is the number of times route r ∈ R travels into set S.

Note that it is impractical to include CCs for all S ⊆ V : |S| ≥ 2, as there are an

exponential number of them. In practice, one uses a small collection of sets S1, . . . ,SK

18

with Sk ⊆ V , |Sk| ≥ 2, for all k ∈ {1, . . . , K}, K ≥ 1 for which to include the capacity

cuts in a cutting planes fashion. That is, one only adds such a set S if it cuts off the

current LP solution. This is also what we will assume for the remainder of this thesis.

Let us consider the example instance in Figure 1, Instance A. In the figure, square nodes

denote the depots and round nodes the customers. The vehicle capacity Q equals 3 and

the customer demands are displayed next to the nodes. Instance A has an LP solution

consisting of 4 different routes, each with a usage of 1
2
.

Figure 1: Example Instance A, in which a CC can be strengthened.

The LP solution of Instance A adheres to all CCs. Let us inspect S = {1, 2, 3}. We need

at least
⌈
4
3

⌉
= 2 vehicles to serve these customers. However, inspecting the figure, we

only use x2 + x3 + x4 = 3
2

routes. The reason this does not violate the CC is because the

CC corresponding to S = {1, 2, 3} equals

2x2 + x3 + x4 ≥ 2,

which holds for the presented solution. Because route 2 enters the set twice, it is counted

multiple times in the CC. We can also observe this from equation (10). Thus, it seems

we can strengthen the capacity cuts by counting every route at most once. If we do this,

we obtain the strengthened capacity cuts (SCCs):

∑
r∈R

min
{

1, ζCCr (S)
}
xr ≥

⌈∑
j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2

∑
r∈R

ζSCCr (S)xr ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2. (11)

We can interpret the binary parameter ζSCCr (S) as an indicator whether route r crosses

19

at least one arc going into S or not, or as the number of times route r ∈ R travels into S

for the first time. Inequalities (11) were first introduced by Baldacci, Hadjiconstantinou,

and Mingozzi (2004). As we can see from (11), the SCC corresponding to S = {1, 2, 3} is

indeed violated in Instance A.

Incorporation into the Pricing Problem If one wants to include valid inequalities

such as the CCs or SCCs into a column generation framework, the duals of such inequal-

ities must be incorporated into the pricing problem. This is straightforward for the CCs.

If we denote γS ≥ 0 the duals associated with constraints (10), the reduced costs ρr of a

route r ∈ R become

ρr =
∑

(i,j)∈A

cijb
ij
r −

∑
j∈V

λja
j
r −

K∑
k=1

∑
(i,j)∈A

γSkβ
ij
Skb

ij
r

=
∑

(i,j)∈A

(cij − λj)bijr −
K∑
k=1

∑
(i,j)∈A

γSkβ
ij
Skb

ij
r

=
∑

(i,j)∈A

(
cij − λj −

K∑
k=1

γSkβ
ij
Sk

)
bijr

=
∑

(i,j)∈A

(
c̄ij −

K∑
k=1

γSkβ
ij
Sk

)
bijr .

The CCs can thus easily be incorporated into the pricing problem, as one only needs to

adjust the reduced arc costs using the new duals γS , as seen from the derivation above.

That is, we subtract the dual γS from the reduced arc costs of arc (i, j) ∈ A if i /∈ S and

j ∈ S. In other words, the CCs are robust, as their inclusion do not change the pricing

problem.

The duals of the SCCs, γSCCS ≥ 0, are not as easy to incorporate in the pricing problem

20

as the ordinary capacity cuts. After all, the reduced costs ρr of a route r ∈ R become

ρr =
∑

(i,j)∈A

cijb
ij
r −

∑
j∈V

λja
j
r −

K∑
k=1

γSCCSk ζSCCr (Sk)

=
∑

(i,j)∈A

(cij − λj)bijr −
K∑
k=1

γSCCSk ζSCCr (Sk)

=
∑

(i,j)∈A

c̄ijb
ij
r −

K∑
k=1

γSCCSk ζSCCr (Sk).

We cannot simply adjust the reduced arc costs to include these duals, as the value of γSCCS

is only subtracted at most once. We can adjust the REFs corresponding to the reduced

cost resource RC to incorporate the SCC duals. If a partial path P = (i0 = 0, i1, . . . , ip)

visits any node in S, then it has visited an arc going into S. This holds, as 0 /∈ S for any

S ⊆ V . So, we can adjust the REFs as follows:

fRC
ij (u) = uRC + c̄ij −

∑
k: i/∈Sk, j∈Sk,
uR

v
E=0 ∀v∈Sk,
k∈{1,...,K}

γSCCSk ∀(i, j) ∈ A. (12)

In other words, the discount γSCCS is applied on arc (i, j) ∈ A only if (i, j) is indeed an

arc going into S and the partial route has not yet visited any node in S. The latter

constraint is translated into uR
v
E = 0, ∀v ∈ S. Note that fRC

ij is still non-decreasing in u,

as increasing uRC increases fRC
ij and increasing any uR

v
E , for any v ∈ V , either increases

fRC
ij by γSCCS ≥ 0 for some S ∈ {S1, . . . ,SK} or does nothing.

Equation (12) shows that the SCCs are robust if we use the elementarity resources

R1
E, . . . , R

n
E. However, these are not available when we use the ng-route relaxation. So,

it is not obvious how to include the SCCs into the pricing problem without altering the

structure of it. In other words, the SCCs are non-robust when using the ng-route relax-

ation. Section 4 introduces the ng-capacity cuts, which are robust even when using the

ng-route relaxation.

21

3.5 Algorithm for Obtaining a Lower Bound

Now that we have discussed the labelling algorithm, the pricing states and valid inequal-

ities, we can state the full algorithm used to determine a lower bound on SPP. This

algorithm is best summarized in a flowchart and is shown in Figure 2.

Figure 2: Flow chart for solving a CVRP or VRPTW to LP optimality.

As the node ”LP with Initial Routes” suggests, we initialise R′ with certain routes. We

use the n trivial routes (0, i, n + 1) for all i ∈ V . The node “Solve LP” refers to solving

RMP with the current choice of R′, which is done by using CPLEX. We solve the pricing

problem in node “Solve Pricing Problem” with Algorithm 1. In the “Execute Separation”

phase we try to find violated valid inequalties. We either add no cuts at all (NoCuts),

find and add CCs with CVRPSEP (CCSEP) (Lysgaard, 2003), or find NGCCs using any

of the separation algorithms presented in Section 4.2.

3.6 Obtaining an Integer Solution

With the techniques described in the previous sections, one can solve the LP relaxation

of the (SPP) and strengthen it with valid inequalities. However, rarely are the optimal

values of xr, r ∈ R′ binary. So, in order to solve the CVRP or the VRPTW to integer

optimality, we use a branch-price-and-cut algorithm. We will describe the methods used

and this algorithm in the next few sections.

3.6.1 Branching Variable

An obvious, but flawed, choice of branching variables would be xr. While forcing xr = 1

for some route r ∈ R would be simple, fixing xr = 0 is not as straightforward. After all,

22

one has then to prevent this very specific route from being generated again in the pricing

problem. This complicates the pricing problem noticeably.

Instead, as is commonly done for these problems, we branch on the arc flows zij (8),

as introduced in Desrochers et al. (1992). Note that, if all arc flows zij are binary, for all

(i, j) ∈ V × V , then xr are also binary for all r ∈ R. We do not have to branch on the

arcs coming from depot 0 and going to depot n + 1, as the integrality of those arc flows

is also implied by the arc flows between customers.

Branching on those arc flows can easily be incorporated into the pricing problem. If

we force zij = 0 for some (i, j) ∈ V × V , then we delete arc (i, j) from the graph. If

we set zij = 1 for some (i, j) ∈ V × V , then we delete arcs (i, v), (u, j) and (j, i), for all

v ∈ N \ {j} and u ∈ N \ {i}. In other words, any route that visits i, must immediately

visit j afterwards. We also delete arc (j, i), as no elementary route will visit i and j more

than once. With these modified arcs, the labelling algorithm can be used as normal to

generate new routes while certain arc restrictions are active.

Note that setting zij to 1 means we can infer that a path has visited i if and only if

it has visited j. In other words, if a (partial) path’s ng-memory contains i, it must have

visited j and vice versa. In other words, this means we can add j to any neighbourhood

Vv, v ∈ V if i is in that neighbourhood and vice versa. This increases the number of

routes that dominate each other, thus speeding up the labelling algorithm. To be more

precise, we update the neighbourhoods as follows:

Vv ←

Vv ∪ {j}, if i ∈ Vv

Vv ∪ {i}, if j ∈ Vv

Vv, otherwise

, ∀v ∈ V .

As the ng-capacity cuts (see Section 4) depend on the neighbourhoods Vv, it is crucial to

recalculate them every time the neighbourhoods are updated.

23

3.6.2 Branching Scheme

Now that we know our branching variable, we can describe our branch-price-and-cut al-

gorithm. The main idea of the algorithm is to solve LP relaxations of (RMP) while

introducing restrictions on the branching variables in order to obtain an integer optimal

solution.

At the start of the algorithm, we solve the root node, which is the original LP relax-

ation of (RMP), with no restrictions on the branching variables. This usually gives a

non-integer, fractional solution. If such a solution is fractional, it means that at least

one arc (i, j) ∈ V × V has a fractional zij-value. We then choose one such arc (i, j) to

branch on. We choose the most fractional arc, that is, the arc (i, j) ∈ A that maximizes

|zij − 1
2
|. This is a popular rule that was first introduced in Padberg and Rinaldi (1991)

in the context of symmetric travelling salesman problems, a special case of the CVRP.

Branching means we create two child nodes connected to the parent, one in which zij = 0

is enforced and one in which we set zij = 1. Then, the children are solved to LP optimal-

ity, which gives rise to more nodes. The only time we cannot create two child nodes is

when a solution is integer, as then all zij-values are integer as well.

Nodes in which the optimal LP solution value is higher than the best known integer

solution value, need not to be explored further. After all, the LP solution value is a lower

bound on any integer solution value that could possibly be obtained from any descendent

of that node. The quality of the LP solution values can thus significantly speed up the

branch-price-and-cut algorithm, as higher LP bounds mean more branches are cut off early

in the tree. This also advocates the use of valid inequalities in the nodes of the search tree.

Note that the routes generated to solve the root node to LP optimality may not be

enough to solve any other node to LP optimality. In other words, there may still be

routes with negative reduced costs in any other node. Therefore, it is necessary to solve

the pricing problem in these nodes as well. Luckily, we can incorporate the restrictions

on zij into the pricing problem, as described in the previous section. Also, adding a re-

striction on some zij may make some existing routes infeasible. It is therefore also needed

to restrict xr for certain routes to 0. Note that these restrictions do not affect the pricing

24

problem, as those infeasible routes cannot be generated by the labelling algorithm.

3.6.3 Farkas Pricing

As mentioned before, branching on some zij may make some routes infeasible. It is possible

that too many routes are rendered infeasible, thus making it impossible to solve the RMP

for the current set of routes R′. To overcome such an infeasibility, we use a technique

called Farkas pricing (Lübbecke, 2010). The idea is based on a well-known fact that an

infeasible LP, implies that the dual of the LP is unbounded. This means that there is a

dual extreme direction π, which can usually be obtained by an LP solver. Let us denote

the column for a route r ∈ R in the constraint matrix with αr. Then, an application of

Farkas Lemma states that adding a route r with π>αr > 0 makes the dual bounded and

thus the LP feasible. In other words, we have to find a route r such that −π>αr < 0.

Note that the left-hand size side of the expression is identical to the definition of reduced

costs, with the route costs cr omitted and the use of the dual extreme direction π instead

of the ordinary duals. This means we can use our labelling algorithm to find a route that

repairs feasibility; we only have to change the cost component of the REF. Indeed, just

omitting the cij from the costs and replacing the duals with the dual extreme direction is

enough.

25

3.6.4 The Branch-Price-and-Cut algorithm

The full Branch-Price-and-Cut algorithm used in this thesis is given in Algorithm 2.

Algorithm 2: Branch-Price-and-Cut.

1 B0 ← branch node representing the root node;

2 BU ← {B0}, the set of unprocessed branching nodes;

3 BP ← ∅, the set of processed branching nodes;

4 Cint ← +∞, the best integer solution value;

5 while BA 6= ∅ do

6 B ← some node in BU ;

7 BU ← BU \ {B};

8 BP ← BP ∪ {B};

9 Solve the LP of node B using the algorithm in Figure 2;

10 CLP ← LP solution value;

11 if solution is integer then

12 Cint ← min{Cint, CLP};

13 else

14 if CLP ≤ Cint then

15 Choose the arc (i, j) that maximizes |zij − 1
2
|;

16 Create child nodes B1 and B2, one with zij = 1 and one with zij = 0;

17 BU ← BU ∪ {B1, B2};

18 end

19 end

20 end

21 Return best found integer solution;

Our node selection (line 6) is based on a depth-first traversal of the branching tree, where

we first investigate the child with zij = 1.

26

4 ng-Capacity Cuts

The usability of valid inequalities such as the CCs and SCCs in a column generation

framework is the ability to include the duals of those cuts into the pricing problem, as

otherwise we cannot calculate the reduced costs of a route r ∈ R accurately. Ideally,

we do not want to increase the complexity of the pricing problem. As we mentioned in

Section 3.4, the SCCs are not robust, if one uses the ng-route relaxation. This section

introduces a new type of valid inequalities, the ng-capacity cuts (NGCCs), which is robust

if used with the ng-route relaxation.

Let us define ζNGr (S) as the number of times route r ∈ R travels into S for the first

time, according to ng-memory. To be more exact, we can write ζNGr (S) for some route

r = (i0 = 0, i1, . . . , i|r|, i|r|+1 = n+ 1), |r| ≥ 1, as

ζNGr (S) =
∣∣{k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣ . (13)

Then, we can define the NGCCs as

∑
r∈R

ζNGr (S)xr ≥
⌈∑

j∈S qj

Q

⌉
∀S ⊆ V : |S| ≥ 2. (14)

As ζSCCr (S) ≤ ζNGr (S) ≤ ζCCr (S), it follows that the NGCCs are stronger than the CCs,

but the SCCs are stronger than the NGCCs. Furthermore, If we set Vi = {i}, for all

i ∈ V , the NGCCs are equivalent to the CCs, as then ζNGr (S) = ζCCr (S). On the other

end of the spectrum, setting Vi = V for all i ∈ V makes the NGCCs identical to the SCCs,

as then ζNGr (S) = ζSCCr (S). We prove these facts in Lemma 3 of Appendix A.

Incorporation into the Pricing Problem As mentioned before, equation (12) shows

that we cannot include the SCC duals into our pricing problem robustly if we use the

ng-route relaxation. After all, the elementarity resources R1
E, . . . , R

n
E are not available

when using this relaxation. The NGCCs mitigate this problem. If we denote the duals of

the NGCCs, (14), with γNGS ≥ 0, we can compute the reduced costs ρr of route ∈ R as

ρr =
∑

(i,j)∈A

c̄ijb
ij
r −

K∑
k=1

γNGSk ζ
NG
r (Sk).

27

The number of times we subtract γNGS from the reduced costs equals the number of arcs

(i, j) r visits with j ∈ S and the ng-memory not containing any nodes of S. In terms

of resources, whether a discount is applied on an arc thus depends on the ng-memory

resources R1
NG, . . . , R

n
NG. The cost REFs become

fRC
ij (u) = uRC + c̄ij −

∑
k: i/∈Sk, j∈Sk,
uR

v
NG=0 ∀v∈Sk,
k∈{1,...,K}

γNGS ∀(i, j) ∈ A. (15)

Inspecting (15), we can see that the formula is identical to (12), except that the elemen-

tarity resources R1
E, . . . , R

n
E are replaced with the ng-memory resources R1

NG, . . . , R
n
NG,

thus making it compatible with the ng-route relaxation.

4.1 A Small Example

In this section, we show a small example for which the NGCCs raise the LP lower bound

more than the CCs. This example instance, Instance B, is shown in Figure 3.

Figure 3: Instance B.
Figure 4: Optimal LP solution of Instance B,
adhering to CCs.

The square nodes denote the start and end depot, labelled 0 and 6, respectively. The

round nodes are the customers, with their demands denoted next to them. The position

of the nodes correspond to their exact position on the graph, as travel costs between

nodes are equal to the Euclidean distance between nodes, rounded down to 2 decimals.

We partitioned the customers into two groups who share the same neighbourhoods. That

28

is, V1 = V5 = {1, 5} and V2 = V3 = V4 = {2, 3, 4}, as is also shown in Figure 3. The costs

of using a vehicle are 10, which means c0i equals the Euclidean distance between 0 and i,

rounded to 2 decimals, plus 10, for i ∈ V . The vehicle capacity is Q = 150.

The unique optimal IP solution of Instance B uses 3 vehicles that follow routes (0, 3, 2, 6),

(0, 4, 6) and (0, 1, 5, 6), with objective 32.95. The optimal LP objective of 28.065 is con-

siderably lower and “uses” 2.5 vehicles. If we add all CCs to the problem, we get the

solution presented in Figure 4 with objective 28.36. In this figure, a line between nodes

denotes the usage of 0.5 vehicles on that particular arc. Figure 4 also highlights the set

S = {1, 2, 3}. The total demand of this set equals 199, so we need at least
⌈
199
150

⌉
= 2

vehicles to serve the customers in S. The LP solution in Figure 4 adheres to the CC of

this set, as arc (0, 1) is used 1 times and (0, 3) and (5, 2) are used 0.5 times.

However, Figure 4 does not adhere to the NGCC of set S. After all, arc (5, 2) does

not count, as we remember having visited node 1 ∈ S, while currently in node 5. So,

we only travel 1.5 times into S for the first time, according to ng-memory. Adding the

NGCCs to this problem, raises the objective to 28.515. This example shows that there

are instances for which adhering to the CCs does not imply adhering to the NGCCs.

Furthermore, it shows that adding NGCCs can indeed tighten the bounds between the

LP and IP objectives more than adding the CCs.

4.2 Separation of Capacity Cuts

CCs can be separated by using the CVRPSEP package (Lysgaard, 2003; Lysgaard, Letch-

ford, & Eglese, 2004). However, there seems to be no widely used methods for the sep-

aration of SCCs. Indeed, Baldacci et al. (2008) also use the CVRPSEP package for the

separation of SCCs, which means that not all violated SCCs are found, as CVRPSEP can

only separate violated CCs. Furthermore, as NGCCs are more complex in their definition

than CCs or SCCs, we will not devise an algorithm to separate NGCCs from scratch.

Instead, we will base our different separation algorithms on the CVRPSEP package, to

ease implementation of these methods.

The most straightforward way to separate NGCCs is using the CVRPSEP package without

29

any modifications. Of course, we will not find all violated NGCCs this way. Furthermore,

there are multiple ways one can separate these NGCCs. Two straightforward ways are as

follows:

1. (NGSEP1) When the LP is solved to optimality, find all violated CCs using CVRPSEP,

but add then as NGCCs. Then, re-solve the LP to optimality and find CCs again.

Repeat until no more CCs are found.

2. (NGSEP2) When the LP is solved to optimality, find and add all violated CCs using

CVRPSEP. Then, re-solve the LP to optimality and find CCs again. Repeat until

no more CCs are found. Then, convert all CCs to NGCCs. Re-solve and repeat the

whole process until no more additional CCs can be converted into NGCCs.

Note that neither of the methods dominates each other. That is, there are instances in

which NGSEP1 achieves a higher objective value than NGSEP2 and instances in which

the opposite is true. We give examples of such instances and discuss them in detail in

Section B.1 of Appendix B.

As mentioned before, NGCCs are weaker than the SCCs. So, one can separate NGCCs

by investigating all S for which the SCCs are violated, and then adding all those sets for

which the corresponding NGCC is violated. However, as mentioned before, no specialised

algorithms for separating SCCs seem to exist. Because of this, we will attempt to separate

SCCs using the existing techniques to separate CCs.

As mentioned in (10), we can write the capacity cut for subset S ⊆ V as

∑
r∈R

ζCCr (S)xr ≥
⌈∑

j∈S qj

Q

⌉
,

with ζCCr (S) as the number of times route r ∈ R travels into set S. A CC can be turned

into an SCC by capping the coefficients of xr to 1. In other words, by replacing ζCCr (S)

with ζSCCr (S) = min{ζCCr (S), 1}. We first note that the upper bound for any ζCCr (S) is⌈
|r|
2

⌉
, where |r| is the number of customers route r visits. After all, this is the maximum

number of times a route can enter an arbitrary subset of customers, by repeatedly exiting

30

and entering the set. So, because we know that

ζCCr (S) ≤
⌈
|r|
2

⌉
, and ζSCCr (S) = min{ζCCr (S), 1}

we can derive that

⌈
|r|
2

⌉
ζSCCr (S) = min

{⌈
|r|
2

⌉
ζCCr (S),

⌈
|r|
2

⌉}
≥ ζCCr (S)

provided that
⌈
|r|
2

⌉
≥ 1, which is true for all routes r ∈ R.

So, let us assume some SCC is violated. That is, there exists an S ⊆ V with

∑
r∈R

ζSCCr (S)xr <

⌈∑
j∈S qj

Q

⌉
.

Then, we can derive the following:

∑
r∈R

ζSCCr (S)xr =
∑
r∈R

ζSCCr (S)

⌈
|r|
2

⌉
xr⌈
|r|
2

⌉
≥
∑
r∈R

ζCCr (S)
xr⌈
|r|
2

⌉
=
∑
r∈R

ζCCr (S)x̄r,

with x̄r ≡ xr

d |r|2 e
the reduced arc flow. Using the above derivation, we can derive that, if

an SCC is violated, then

∑
r∈R

ζSCCr (S)xr <

⌈∑
j∈S qj

Q

⌉
=⇒

∑
r∈R

ζCCr (S)x̄r <

⌈∑
j∈S qj

Q

⌉
.

In other words, a violated SCC means a CC is violated whose arc flows are reduced (re-

duced violation, or r-violated). This implies we can find all violated SCCs (and thus

NGCCs) by reducing the arc flow and searching for r-violated CCs. Of course, we would

find too many r-violated CCs that do not necessarily correspond to violated SCCs, but

one can always check afterwards whether the corresponding SCC (or NGCC) is actually

31

violated.

However, simply reducing the arc flows is usually not enough, as then the coverage con-

straint (1b) does not hold anymore. To solve this problem, one can modify the graph as

in Figure 5. This, in effect, triples the number of customers in the graph by introducing

two dummy nodes per customer. Note that the dummy nodes have a demand of zero.

Furthermore, if any of the dummy nodes appear in a found set S, one can delete them

without any consequences.

Figure 5: A method to restore the inflow and outflow of a node to 1.

So, using the reduced arc flows x̄r and the technique in Figure 5 to restore the inflow

and outflow, we can separate SCCs and NGCCs. This gives us the separation technique

NGSEP3:

3. (NGSEP3) When the LP is solved to optimality, find all r-violated CCs using

CVRPSEP with reduced arc flows x̄r ≡ xr

d |r|2 e
and dummy nodes (Figure 5). Then,

add all of the found CCs as NGCCs if they are violated in the original solution.

Then, re-solve and repeat until no more CCs are found.

We have to point out that NGSEP3 is guaranteed to find all violated SCCs or NGCCs,

given that all r-violated CCs can be separated (perfect separation of CCs). However,

CVRPSEP is not perfect, as discussed in Lysgaard et al. (2004), on which the CVRPSEP

package is based. Nevertheless, NGSEP3 is almost guaranteed to find as much or more

NGCCs than NGSEP1 and NGSEP2, given the near-perfect performance of CVRPSEP

(Lysgaard et al., 2004).

One drawback of NGSEP3 is that it can find too many r-violated CCs which can de-

grade the performance of the separation. It may be of interest to lower the arc flows

in order to find more violated SCCs (or NGCCs), but not as much r-violated CCs as

32

NGSEP3. However, the guarantee of finding all violated SCCs and NGCCs of NGSEP3,

given the finding of CCs is perfect, is desirable. So, we can devise a separation method

that tries to find r-violated CCs, and reduces the arc flows further if no violated NGCCs

are found. The resulting technique is NGSEP4:

4. (NGSEP4) Set κ = 1. Solve the LP to optimality. Find all r-violated CCs using

CVRPSEP with reduced arc flows xr
min{κ,d |r|2 e}

and dummy nodes (Figure 5). Then,

add all of the found CCs as NGCCs if they are violated in the original solution. If

there are no NGCCs found, increase κ with 1. Else, reset κ to 1. Then, re-solve and

repeat until no more violated NGCCs are found and κ equals maxr∈R′
{⌈
|r|
2

⌉}
.

Note that we do not want to reduce the arc flows with a factor higher than
⌈
|r|
2

⌉
, so

we divide by min
{
κ,
⌈
|r|
2

⌉}
. Furthermore, we stop whenever no NGCCs are found and

increasing κ does not reduce any arc flow further. If the finding of r-violated CCs is per-

fect, this method is guaranteed to find all violated NGCCs (and SCCs), just like NGSEP3.

However, it may save time by not always dividing the arc flow with the upper bound.

Observe that NGSEP3 is actually equal to NGSEP4 with κ fixed to any number higher

than maxr∈R

{⌈
|r|
2

⌉}
.

According to Lysgaard et al. (2004), CVRPSEP executes four different heuristics. If

the first one finds some r-violations, the other three are never executed. This is prob-

lematic, as we desire to find as many r-violations as possible, to increase the number

of NGCC violations found. So, for NGSEP3 and NGSEP4, we actually use an adjusted

version of CVRPSEP that always executes its four heuristics.

Furtermore, NGSEP4 is guaranteed to perform at least as good as NGSEP1, as the

first few iterations with κ = 1 are identical to NGSEP1, and actually increases κ when

NGSEP1 would have terminated.

4.3 Symmetry and ng-Capacity Cuts

Now, we will discuss the matter of symmetry and ng-capacity cuts. Bi-directional labelling

algorithms to solve the SPPRC are very popular in recent literature (Baldacci et al., 2011;

Pecin et al., 2017). Thus, we feel the need to discuss the implications of wanting to use

33

such an algorithm in combination with the NGCCs, despite this thesis using a mono-

directional labelling algorithm.

4.3.1 Bi-Directional Labelling

Algorithm 1 is sometimes called a mono-directional labelling algorithm, as we only cre-

ate paths from the starting depot 0 to the ending depot n + 1. In the worst case, we

need to keep exponentially more labels in memory the longer the partial paths become.

To limit this problem, many recent algorithms to solve the SPPRC use bi-directional la-

belling. Bi-directional labelling, as shown in Righini and Salani (2006), limits the number

of generated labels and reduces the runtime significantly. The main idea is to simultane-

ously create forward and backward paths, starting at the depots 0 and n+ 1 respectively.

Then, one joins backward and forward partial paths together to create full feasible routes.

As mentioned before, a bi-directional labelling algorithm creates two types of paths: for-

ward and backward paths. As the forward paths are identical to the paths discussed in

previous sections, we will now introduce the concept of backward paths briefly.

4.3.2 Backwards Paths

Similar to a forward path, a backward path is defined as a q + 1-tuple of nodes P̄ =

(j0 = n + 1, j1, . . . , jq), with jk ∈ N for all k ∈ {0, . . . , q} and (jk, jk−1) ∈ A for all

k ∈ {1, . . . , q}. Note that the arcs are pointed “backwards” in such a path, as the name

suggests. In a bi-directional labelling algorithm, one also represents backward paths using

a label K = (j,u, Kprev), with the “empty” label Kn+1 = (n+ 1, a′n+1, NO).

Extending a backward label is identical to extending a forward label, except that re-

source intervals and REFs can differ. One actually transposes the cost and time matrices

c̄ij and tij, as arcs point backwards in a backward path. Furthermore, we use the inverted

time windows, e′i and l′i of node i ∈ N instead of ei and li, defined as e′i = ln+1 − li and

l′i = ln+1 − ei respectively (Baldacci et al., 2011). Elementarity, capacity and ng-memory

are updated identically as in the forward case.

Note that, even though ng-memory is updated identically in a backward path, it ac-

34

tually corresponds to the concept of inverse ng-memory, as introduced in Baldacci et al.

(2011). The reason we can still join forward and backward paths is because ng-feasibility

is symmetric. However, the ng-memory along a backward path can be drastically different

than the ng-memory along a forward path that travels over the same edges. These two

facts are summarized in Proposition 1.

Proposition 1. ng-feasibility is symmetric, whereas ng-memory itself is not.

Proof. See Appendix A.

To merge a forward path P implied by label L = (i,u, Lprev) and a backward path P̄

implied by K = (j,w, Kprev) into a single, feasible route Baldacci et al. (2011) give

conditions.

4.3.3 Including Capacity Cut Duals

The duals of the CCs can easily be incorporated into backward labelling, as only the arc

costs need to be adjusted. However, the duals of the NGCCs are much more difficult

to include. The reason follows from Proposition 1: ng-memory is not symmetric. The

discount of a set S is applied whenever we travel into S for the first time, according to

ng-memory. However, backward paths have different ng-memory, due to the asymmetry,

and can thus apply the discount a different number of times. This is shown in Instance

C, Figure 6, where round nodes represent customers, the square nodes depots and the set

next to a node is the neighbourhood Vi of that node.

Figure 6: Instance C, containing a route with asymmetric ng-memory.

Let us consider the subset S = {2, 4}. Then, the path P = (0, 1, 2, 3, 4, 5, 6) only en-

ters S one time, according to ng-memory, as it remembers having visited node 2 when

travelling over arc (3, 4). However, the backward path P̄ = (6, 5, 4, 3, 2, 1, 0), which visits

the same customers and travels over the same arcs, actually enters S twice according to

35

ng-memory. Because backward paths are created from the ending depot, 6 in this case,

and are extended in the reverse direction, the ng-memory is also updated in the reverse

order. In this example, backward updating actually means the path does not remember

any previous nodes visited. So, as ng-memory is not symmetric, one cannot correctly

estimate how many times a backward path enters some set S for the first time, according

to (forward) ng-memory.

This means we cannot accurately compute the reduced costs of a partial backward path,

as its costs depend on the forward path it will be connected to. More specifically, it

depends on the ng-memory of the last node in the forward path. Instance D in Figure 7

illustrates this problem.

Figure 7: Instance D, the problem of joining forward and backward paths.

Assuming perfect ng-memory in Instance D (that is, Vi = V for all i ∈ V) the reduced

costs of backward path segment P̄ = (7, 6, 5, 4) depend on which forward partial path it

is connected to. If it is connected to P1 = (0, 1, 2, 4), the costs of P̄ include the discount

of travelling into S for the first time. If connected to P2 = (0, 1, 3, 4), this discount should

instead be applied to the costs of P2, not P̄ .

We introduce two ways to mitigate this problem, but both will reduce the effectiveness

of using the backward labelling in the first place. We call these two methods “memory

enumeration” and “cost bounding” respectively.

Memory Enumeration In memory enumeration, we add n additional binary resources

to labels, which we call the “starting ng-memory”. This corresponds to the forward ng-

memory of the last node in the forward path it can be connected to. With this starting

ng-memory, we can calculate the reduced costs of a backwards path exactly. For instance,

in Instance D, if the starting ng-memory of P̄ contains 3, we do not include the discount

36

of travelling into S. If not, we do include the discount. In essence, this means we create

at most 2n duplicates of any backwards label, corresponding to the different starting

ng-memories. Of course, the starting ng-memory cannot contain any nodes that the

backwards path will visit and remember. In Instance D, we only need 23 = 8 duplicates

of the label corresponding to P̄ , as the starting ng-memory can contain nodes 1, 2 or 3, or

any combination of those. Dominance can still occur, but n additional inequalities need

to be satisfied, due to the extra resources. Note that this method drastically increases

the number of stored labels.

Cost Bounding A second technique is cost bounding, in which we store an upper and

lower bound on the costs in a label. We want to determine the upper and lower bound such

that the costs of that backward path segment are always between those bound, regardless

of the forward path it is connected to. One way to calculate an upper bound on the costs

of a backward path is not including any duals γNGS or γSCCS into the cost calculation. As

all of these duals are positive, leaving out these duals can only increase the costs, giving

an upper bound. A lower bound can be computed in two ways. The first is to apply the

duals, γNGS or γSCCS , as if we were using CCs, so at any arc (i, j) with i /∈ S and j ∈ S.

As this applies the discount too many times, this leaves a lower bound to the reduced

costs. The second way is, if the partial backward path is P̄ = (j0 = n + 1, j1, . . . , jq),

to calculate the reduced costs of the forward path P̄ ′ = (0, jq, . . . , j1, j0), subtracting c̄0jq

and adding c̄j1,n+1. Domination of backward paths would occur if the upper bound of

one path is smaller than the lower bound of another, as we can then be sure the reduced

costs of the first path are always smaller than of the second path. Note that, while we do

not need any duplication of labels, this technique could lessen the number of dominated

paths, thus decreasing the effectiveness of backward labelling.

So, while it is possible to include the duals of the SCCs or NGCCs into backward labelling,

it does reduce the effectiveness of the bi-directional labelling algorithm. However, it is

not clear whether bi-directional labelling itself saves time compared to mono-directional

labelling. Further research is needed to investigate this.

37

4.4 Feillet et al. (2004) and ng-Capacity Cuts

As we mentioned in Section 3.2.2, Feillet et al. (2004) recommend setting an elementarity

resource Ri
E, i ∈ V to 1 if the partial path cannot reach that customer anymore. In a

similar fashion, one can also set the ng-resource Ri
NG, i ∈ V to 1 if a customer cannot

be reached anymore. This technique leads to more domination of labels and thus a faster

labelling algorithm.

However, this technique is incompatible with the duals of the NGCCs. Let us consider

Instance E in Figure 8. In the figure, square nodes denote the depots and round nodes

the customers. The demand of the customers is displayed next to the node. The capacity

of a vehicle is Q = 14. Let us assume the ng-memory of this instance is perfect. That is,

Vi = V for all i ∈ V . The figure also highlights the set S = {2, 3}.

Figure 8: Instance E, a counterexample for the technique of Feillet et al. (2004).

Figure 8 highlights three different partial paths in Instance E: P = (0, 1), P1 = (0, 1, 2)

and P2 = (0, 1, 4), where P1 and P2 are single-node extensions of P . Let us assume that

we have included the NGCC for customer subset S = {2, 3}. Then, P1 should receive the

discount γS and P2 should not. Note that, for all three paths, it is impossible to travel

to node 3, as this makes the demand exceed the vehicle capacity Q. If we adhere to the

technique of Feillet et al. (2004), node 3 enters the ng-memory of path P . Thus, for path

P , the resource R3
NG equals 1. This is problematic, as extending P to P1 now means P1

does not receive the discount γS (see formula (15)). But, we cannot grant the discount

prematurely to P , as then P2 unrighteously receives the discount as well.

Thus, it is not obvious how to combine the technique of Feillet et al. (2004) with NGCC

38

duals robustly. One can probably introduce new resources to combat this, but that would

ultimately destroy the motivation behind the technique of Feillet et al. (2004).

4.5 Other Cuts

In this section, we discuss other popular families of inequalities for the CVRP or VRPTW

and investigate whether we can derive other cuts using similar techniques as we used by

converting CCs to NGCCs.

4.5.1 k-Path Inequalities

The k-path inequalities are introduced in Kohl et al. (1999), and are defined similar to

the CCs, but with a stronger right-hand-side:

∑
(i,j)∈A: i/∈S, j∈S

zij ≥ k(S) ∀S ⊆ V : |S| ≥ 2,

where k(S) is defined as the minimum number of vehicles needed to serve the customers

in S. Unlike with the CCs, k(S) depends on both the capacity and time windows and is

thus stronger than the CCs. As all the derivations done for the CCs to obtain the SCCs

and NGCCs do not depend on the right-hand-side of the inequalities, we can do the same

derivations to strengthen the k-path inequalities. This is beyond the scope of this thesis,

however.

4.5.2 Clique Inequalities

Clique inequalities (CIs) are valid for any set partitioning problem, and can thus be used

to strengthen the RMP (Baldacci et al., 2008). The inequalities exploit the property that

certain routes cannot be used together in an integer solution. To be more exact, according

to Baldacci et al. (2008), two distinct routes r1, r2 ∈ R are said to conflict if and only if

they serve at least one common customer. That is, if and only if |{i ∈ V : air1 ≥ 1, air2 ≥

1}| ≥ 1. With this, we can define conflict graph GC = (R′,AC), where the nodes represent

routes and the arcs connect conflicting routes. Note that this graph is undirected, as the

conflict relationship is symmetric. We define a clique C in this graph as a subset of routes

whose subgraph in GC is complete. That is, C ⊆ R′ and C ×C ⊆ AC . Given such a clique

39

C, Baldacci et al. (2008) define a clique inequality as

∑
r∈C

xr ≤ 1.

We denote the dual of a clique inequality, corresponding to C, with ωC ≤ 0. Furthermore,

we assume we have included C clique inequalities in our master problem, corresponding

to unique clique sets C1, . . . , CC . We can incorporate these duals into the pricing problem

by including the following term in the REF of the cost resource fRC
ij (u):

−
∑

Ck: |{r∈Ck:
∑

i∈V a
i
ru

Ri
E≥1}|<|Ck|,

|{r∈Ck:
∑

i∈V a
i
ru

Ri
E≥1 or ajr=1}|=|Ck|,

k∈{1,...,C}

ωCk .

In the above formula, we subtract the dual of any clique C whenever we fulfil two criteria:

we must have a conflict with all routes in C when adding node j, and this conflict must

not exist without node j added to our current path.

However, the aforementioned addition to the REF actually makes it violate the non-

decreasing assumption. After all, the route is punished by a cost increase of −ωC ≥ 0 if it

conflicts with the whole clique C for the first time. Increasing the elementarity resources

Ri
E, i ∈ V , can make this first conflict happen, thus increasing the cost. However, increas-

ing these resources further can cause the first conflict to have happened before, lowering

the cost again. Thus, as an SPPRC with general REFs (thus not non-decreasing) is ex-

ponentially more difficult to solve (Irnich & Desaulniers, 2005), we do not include these

inequalities or attempt to adjust them for ng-resources.

4.5.3 Subset-Row Inequalities

The subset-row inequalities (SRs), as defined in Jepsen, Petersen, Spoorendonk, and

Pisinger (2008), are given by

∑
r∈R

⌊
1

k

∑
i∈S

air

⌋
xr ≤

⌊
|S|
k

⌋
∀S ⊆ V , 0 < k ≤ |S|.

40

The SRs state that the number of routes that serve at least k customers in S should be

at most
⌊
|S|
k

⌋
. The SRs are valid for general set partitioning problems and thus automat-

ically valid for the set partitioning formulation of the CVRP and VRPTW (Jepsen et al.,

2008).

One could include the SRs into the pricing problem by subtracting the dual, ωS ≤ 0,

every time a multiple of k customers in S is visited. Note that, if the partial route is

currently in i ∈ V , arc (i, j) ∈ A with j ∈ S is punished by −ωS ≥ 0 if the partial path

has already visited k − 1 customers in S, but not if k customers are visited. Thus, the

resulting REF is not non-decreasing in the resources. Similar to the clique inequalities,

we thus do not include these inequalities in our set partitioning problem. Furthermore, if

we try to strengthen the SRs, similar to the CCs, we could only lower the left-hand-side

of the inequality, which actually makes the SRs weaker.

Baldacci et al. (2011) consider the special case with |S| = 3 and k = 2, which they

call the SR3 inequalities. They also define a relaxation of the SR3 inequalities, the weak

SR3 (WSR3) inequalities:

∑
r∈R

max

 ∑
(i,j)∈A: i∈S, j∈S

bijr , 1

xr ≤ 1 ∀S ⊆ V , |S| = 3.

The WSR3 inequalities state that the number of routes that traverse at least one arc in S

should be at most 1. Note that we cannot include the duals of the WSR3 into our pricing

problem; our resources cannot remember whether we have travelled over an arc (i, j) with

i ∈ S and j ∈ S.

41

5 Experiments

To answer the main questions of this thesis, we execute the introduced branch-price-and-

cut method on several CVRP and VRPTW instances. We conduct the experiments on

the A, B and P classes of the Augerat instances (Augerat, 1995). To limit the runtimes of

our methods, we will only use the instances where the number of customers n is smaller

than or equal to 50.

To test the performance of the NGCCs on the root node of CVRP and VRPTW in-

stances, we execute the algorithm in Figure 2 with six different separation techniques:

no cuts at all (NoCuts), separate and add CCs (CCSEP), NGSEP1, NGSEP2, NGSEP3

and NGSEP4. To test the performance of the NGCCs in the branch-price-and-cut setting

(Algorithm 2), we compare the same separation techniques, except for NoCuts. We do not

include NoCuts here as this increases the runtime of the branch-price-and-cut algorithm

by an order of magnitude. Furthermore, if the runtime of the branch-price-and-cut algo-

rithm exceeds one hour (excluding the root node relaxation), we terminate the algorithm

and return the best found integer solution, which forms an upper bound on the actual

optimal value.

We set our neighbourhoods Vi to contain the 10 nearest neighbours of i ∈ V in terms

of costs, including i itself. We choose this number as it is similar to the neighbourhood

sizes chosen in Baldacci et al. (2011).

All methods are coded and implemented in C++. The algorithms were executed on

a PC running Windows 10 with an Intel core i5-4460 processor @3.2GHz. We solve the

linear programs with CPLEX version 12.7.1.

42

6 Results

6.1 Root Node Relaxation

Table 2 shows the results of solving the root node of several Augerat instances. The first

two columns (Inst. and Sep.) show the instance name and cut separation method used to

solve that instance. The third column (Obj.) shows the lower bound obtained by solving

the root node using price-and-cut, where boldface highlights the highest lower bound

obtained by any of the separation methods and an asterisk (∗) indicates that the solution

is integer. The remaining columns show the total running time in seconds (Time), the

number of routes generated (#Routes), the number of cuts generated, with the number

of active cuts at the solution in parenthesis (#Cuts) and the total time the cut separation

took in seconds (Sep. Time). The results for all solved instances are given in Section C.1,

Appendix C.

Inspecting Table 2, we can see that, in general, the addition of NGCCs raises the LP

lower bound in comparison to CCs. However, the relative gain from introducing CCs

compared to no cuts is higher than introducing NGCCs compared to CCs. This indicates

that there is a relatively small difference between the NGCCs and CCs, though this de-

pends on the instance and choice of the neighbourhoods. Furthermore, we see that in

some instances, such as A-n36-k5 and A-n44-k6, NGSEP3 actually attains a lower lower

bound than CCSEP. This is probably due to the fact that CVRPSEP does not have a

perfect separation of CCs. Let us, for instance, assume we have a CVRP instance whose

current solution violates only a single NGCC, and the corresponding CC is also violated.

Let us also assume that the current solution actually r-violates around 1000 CCs. Because

CVRPSEP cannot find all r-violated CCs, there is a high probability that the actually

violated NGCC will not be found, which means NGSEP3 terminates. NGSEP4 mitigates

this problem of NGSEP3 by first separating with κ = 1.

Furthermore, Table 2 shows that, in general, NGSEP3 creates more NGCCs of all other

separation methods and even has more active NGCCs at its solutions. However, such as

in A-n44-k6, more active NGCCs does not automatically mean that the found solution

has a higher objective value. We can also observe that the separation time is almost neg-

43

ligible to the solving time. We can still see that searching for r-violated CCs in NGSEP3

and NGSEP4 takes several orders of magnitude more time than in the other separation

methods. This is of course caused by the lowered arc flows and the tripling of the number

of customers. Also, NGSEP4 generally takes more separation time than NGSEP3, as

NGSEP4 iterates over the values of κ, thus executing more separations. Despite this, the

separations of NGSEP3 and NGSEP4 only take a few seconds in total.

Table 2: Root node relaxation results for selected Augerat instances.

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

A-n34-k5 No Cuts 742.456 35.1 252 0 (0) 0.0
CCSEP 775.000 59.7 349 78 (41) 0.0

NGSEP1 775.000 53.2 346 88 (48) 0.0
NGSEP2 775.000 66.2 365 78 (50) 0.1
NGSEP3 776.100 74.5 375 107 (63) 1.0
NGSEP4 775.000 53.8 346 88 (48) 0.5

A-n36-k5 No Cuts 774.167 358.4 379 0 (0) 0.0
CCSEP 798.302 939.5 498 83 (32) 0.0

NGSEP1 798.322 893.4 544 70 (50) 0.0
NGSEP2 798.314 1115.7 514 83 (53) 0.1
NGSEP3 795.093 1450.4 496 197 (153) 1.2
NGSEP4 799.000∗ 1114.0 556 72 (71) 0.5

A-n44-k6 No Cuts 927.107 117.8 392 0 (0) 0.0
CCSEP 936.800 342.6 539 155 (98) 0.0

NGSEP1 936.800 456.4 543 142 (106) 0.1
NGSEP2 936.800 394.7 572 155 (118) 0.1
NGSEP3 934.786 457.0 552 244 (140) 1.0
NGSEP4 936.800 460.4 543 142 (106) 1.3

B-n41-k6 No Cuts 797.033 227.2 314 0 (0) 0.0
CCSEP 828.600 801.4 619 92 (73) 0.0

NGSEP1 829.000∗ 928.8 657 82 (82) 0.0
NGSEP2 829.000 858.6 683 92 (91) 0.1
NGSEP3 829.000 802.5 692 244 (235) 0.6
NGSEP4 829.000∗ 934.0 657 82 (82) 0.2

B-n43-k6 No Cuts 699.760 759.2 368 0 (0) 0.0
CCSEP 736.880 2192.0 569 129 (42) 0.0

NGSEP1 737.486 2266.0 580 143 (69) 0.0
NGSEP2 737.486 2380.6 597 129 (56) 0.1
NGSEP3 737.418 1645.1 535 185 (94) 1.3
NGSEP4 737.493 1898.8 584 145 (71) 4.3

We can also see in Table 2 that the number of routes generated is roughly the same

for all separation methods, with the exception of No Cuts. This makes sense, as addi-

44

tional routes have to be generated in order to accommodate for the added CCs or NGCCs.

While the effectiveness of the different separation methods depends entirely on the in-

stance, we can notice some general trends in lower bound performance. Table 3 shows the

number of instances for which the separation technique achieved the highest lower bound,

per instance class. The percentage of highest lower bounds is shown in parenthesis.

Table 3: Number and percentage of instances in for which the particular separation
technique achieved the highest lower bound, per instance class.

Class No Cuts CCSEP NGSEP1 NGSEP2 NGSEP3 NGSEP4
A 0 (0.0%) 4 (26.7%) 8 (53.3%) 8 (53.3%) 5 (33.3%) 13 (86.7%)
B 0 (0.0%) 5 (38.5%) 9 (69.2%) 8 (61.5%) 7 (53.9%) 11 (84.6%)
P 2 (15.4%) 4 (30.8%) 8 (61.5%) 9 (69.2%) 7 (53.9%) 13 (100.0%)

As Table 3 shows, NGSEP4 achieves the highest lower bounds of all separation meth-

ods, even though it is not guaranteed. This shows that NGSEP4 is a good candidate

for separating NGCCs if one wants the highest lower bound. We can also observe that

NGSEP1 and NGSEP2 perform similarly and that NGSEP3 performs the worst of the

NGCC separation methods.

It may also be of interest to investigate for which values of κ the most violated NGCCs are

found in NGSEP4. After all, if one wants to limit the number of times CVRPSEP is run,

you could repeat the separation until κ equals some number smaller than maxr∈R′
{⌈
|r|
2

⌉}
.

Table 4 shows the number of violated NGCCs found per value of κ, for all instances in

which violated NGCCs are found by NGSEP4 for any κ > 1.

Table 4: Number of violated NGCCs found per value of κ for NGSEP4.

κ 1 2 3 4 > 4
A-n36-k5 71 1 — — —
A-n37-k5 68 3 1 — —
A-n37-k6 37 32 — — —
A-n39-k5 146 1 — — —
A-n39-k6 128 1 — — —
A-n45-k6 96 2 — — —
A-n45-k7 307 8 — — —
B-n34-k5 108 2 — — —

κ 1 2 3 4 > 4
B-n43-k6 143 2 — — —
B-n45-k6 39 9 — — —
B-n50-k8 217 1 — — —
P-n16-k8 13 2 — — —
P-n40-k5 67 1 — — —
P-n50-k7 131 3 — 2 —
P-n50-k8 78 2 — — —
P-n51-k10 90 1 — — —

As we can see from Table 4, no violated NGCCs are found with κ > 4 for any instance.

45

This means that we can save time on the separation by terminating NGSEP4 if κ = 4 and

no cuts are found. This can save quite some iterations of NGSEP4, as maxr∈R′
{⌈
|r|
2

⌉}
can be as high as 25 (for B-n34-k5). Of course, Table 4 does not give a guarantee that

no cuts will be found for κ > 4, but it does show that the vast majority of NGCCs are

found for relatively low values of κ.

As we know, NGSEP3 finds a lot of r-violated CCs and searches for violated NGCCs

among them. However, one may ask how many r-violated CCs are found, for instance

for memory preallocation. Figures 9a - 9c show the maximum and minimum number of

r-violated CCs for every solved Augerat instance. Every horizontal line (red or blue) rep-

resents one instance. Instances with the same number of customers, for instance A-n33-k5

and A-n33-k6, are ordered by number of vehicles from the bottom to the top. That is,

the lower (blue) line is A-n33-k5 and the higher (red) line is A-n33-k6.

(a) Class A. (b) Class B.

(c) Class P.

Figure 9: Ranges of the number of r-violated CCs found for Augerat instances.

Inspecting Figures 9a - 9c, we can see that the number of found r-violated CCs does

increase with the instance size. Of course, this is just a general trend, and the ranges

themselves can be quite volatile. If we also look at the actual number of generated

46

NGCCs in Table 2, we can conclude that only a small fraction of r-violated CCs are

actually violated NGCCs, thus further supporting the hypothesis why NGSEP3 sometimes

performs worse than CCSEP, NGSEP1 and NGSEP2.

6.2 Branch-Price-and-Cut

Table 5 shows the results of the branch-price-and-cut algorithm for some Augerat in-

stances. The full results are given in Section C.2, Appendix C. The first two columns

(Inst. and Sep.) show the instance name and cut separation algorithm used to solve

the instance. The third column (Obj.) shows the best found integer solution by the

branch-price-and-cut algorithm. If the algorithm was terminated (and thus not proven to

be optimal), a dagger (†) is added to the objective value. Boldface highlights the lowest

solution value obtained by any of the separation methods. The fourth column (Time)

shows the total running time in seconds, where boldface indicates the lowest running

time if the algorithm was not terminated. The next three columns show the number of

routes (#R) generated, the number of cuts (#C) generated and the total separation time

(ST) in seconds. The remaining columns show the number of created nodes in the tree

(#N), with boldface indicating the least number of nodes (if not terminated), the num-

ber of nodes that are pruned by bounds (#B) and the number of nodes that are pruned

by integer (#Int).

Inspecting Table 5, we can see that adding NGCCs is still beneficial, as this results,

in general, in lower upper bounds and shorter runtimes. However, unlike with the root

node, one has to choose the NGCC separation method a lot more careful. For instance,

NGSEP4 in A-n34-k5 takes more than twice as long as CCSEP and more than 10 times

as long as NGSEP3. This is probably caused by the fact that the separation takes longer

for NGSEP4 than the other considered separation methods. This does not fully explain

the absurdly high runtime of NGSEP4 in A-n34-k5. It could also be caused by the fact

that, by coincidence, NGSEP4 branches on an arc which leads to a suboptimal part of

the tree. Such a curiosity may not be present in a more balanced branching scheme.

We can also see from Table 5 that adding NGCCs results in fewer explored nodes. Of

course, as we know that including NGCCs, compared to CCs, raises the LP lower bound,

47

nodes are either quicker integral or have a higher lower bound than the best integer solu-

tion. However, it is not as clear-cut which of the NGCC separation methods achieves the

highest node reduction.

Table 5: Branch-price-and-cut results for selected Augerat instances.

Ins. Sep. Obj. Time #R #C ST #N #B #Int

A-n34-k5 CCSEP 778.000 1174.5 4584 184 4.6 621 235 76
NGSEP1 778.000 520.3 2134 132 1.8 249 93 32
NGSEP2 778.000 821.7 2657 139 2.4 301 121 30
NGSEP3 778.000 251.3 1093 121 17.3 65 27 6
NGSEP4 778.000 2521.1 3984 175 614.4 633 245 72

A-n36-k5 CCSEP 813.000† 4524.4 5847 188 3.8 499 226 19
NGSEP1 799.000 1267.6 714 73 0.1 11 3 3
NGSEP2 799.000 3240.5 2250 125 0.9 95 38 10
NGSEP3 807.000† 5022.0 3528 270 58.0 257 112 14
NGSEP4 799.000 1114.2 556 72 0.0 1 0 1

B-n38-k6 CCSEP 805.000 412.9 1222 64 0.2 27 8 6
NGSEP1 805.000 391.5 699 53 0.0 9 0 5
NGSEP2 805.000 419.1 890 60 0.2 23 4 8
NGSEP3 805.000 415.5 872 65 1.7 15 1 7
NGSEP4 805.000 395.2 699 53 3.5 9 0 5

B-n43-k6 CCSEP 749.000† 5781.2 6124 260 5.8 781 352 26
NGSEP1 745.000† 5827.0 3517 194 2.8 385 167 18
NGSEP2 742.000† 5956.4 3694 172 1.7 229 84 27
NGSEP3 743.000† 5275.2 2623 230 95.0 241 89 26
NGSEP4 743.000† 5465.2 2587 200 756.3 215 76 26

P-n40-k5 CCSEP 458.000 241.4 2009 122 0.8 87 29 15
NGSEP1 458.000 227.0 1256 113 0.5 51 15 11
NGSEP2 458.000 178.9 944 88 0.3 33 9 8
NGSEP3 458.000 290.1 1015 264 6.0 35 12 6
NGSEP4 458.000 324.9 1263 117 70.0 59 20 10

Just as with the root node relaxation, we may be able to detect general performance

patterns by inspecting the number of times a separation technique performs “best”. To be

more precise, Table 6 shows the number of instances for which some separation technique

achieved the lowest upper bound (Obj.), lowest running time (Time, if not terminated)

or lowest number of nodes (#N, if not terminated).

48

Table 6: Number of instances in for which the particular separation technique achieved
the lowest upper bound, running time or number of nodes, per instance class.

Criterium Class CCSEP NGSEP1 NGSEP2 NGSEP3 NGSEP4

A 10 (66.7%) 11 (73.3%) 13 (86.7%) 12 (80.0%) 11 (73.3%)
Obj. B 10 (76.9%) 11 (84.6%) 13 (100.0%) 9 (69.2%) 10 (76.9%)

P 11 (84.6%) 10 (76.9%) 8 (61.5%) 10 (76.9%) 10 (76.9%)

A 2 (13.3%) 2 (13.3%) 3 (20.0%) 3 (20.0%) 1 (6.7%)
Time B 4 (30.8%) 4 (30.8%) 1 (7.7%) 1 (7.7%) 0 (0.0%)

P 2 (15.4%) 2 (15.4%) 2 (15.4%) 2 (15.4%) 0 (0.0%)

A 1 (6.7%) 3 (20.0%) 4 (26.7%) 4 (26.7%) 4 (26.7%)
#N B 5 (38.5%) 9 (69.2%) 7 (53.8%) 6 (46.2%) 9 (69.2%)

P 4 (30.8%) 5 (38.5%) 7 (53.8%) 6 (46.2%) 6 (46.2%)

As we can see from Table 6, NGSEP2 performs best on A and B instances in terms of

objectives. However, the margins are too small to notice any strong patterns. The same

holds for time. With the number of nodes, we can notice that, indeed, the NGCC sep-

aration methods create less nodes on average. That the creation of less nodes does not

lead to better runtimes may be explained by the fact that the NGCC separation meth-

ods have higher solving times per node. Another explanation might be that we have to

recalculate the coefficients of the NGCCs whenever we branch on zij = 1. As the num-

ber of cuts and routes increases with time, the time to adjust the NGCCs increases as well.

Comparing the results for the root node relaxation and the full branch-price-and-cut,

it is not as clear-cut which separation technique performs best. It may be best to com-

bine several separation techniques to exploit their individual strengths. For instance, one

could use NGSEP4 on the root node, which has an excellent overall performance, and

NGSEP1, NGSEP2 or even CCSEP in the branching tree.

49

7 Conclusion

This thesis introduced a new type of robust valid inequalities for the CVRP and VRPTW:

the ng-capacity cuts. The inequalities are a lifting of the ordinary capacity cuts and can

be included robustly into a branch-price-and-cut scheme using the ng-route relaxation.

We have tested the performance of the NGCCs in a generic brach-price-and-cut setting

against using CCs and no cuts at all. To separate NGCCs, we devised four different

separation algorithms. We have tested the different separation methods on Augerat in-

stances (Augerat, 1995). We focused on the performance of the NGCCs in the root node

relaxation of the instances and the full branch-price-and-cut algorithm.

We have found that including NGCCs raises the LP lower bound in comparison to CCs.

In some instances, introducing NGCCs may even lead to an integer (optimal) solution.

NGSEP4 produces in general the highest lower bounds, at the cost of a longer separation

time. However, for the root node, this separation time is negligible. NGSEP3 performs

sometimes worse than CCSEP, which can be explained by the fact that reducing the flow

with the maximum factor may lead to CVRPSEP missing violated NGCCs. NGSEP4

mitigates this problem by first separating r-violated CCs with a low arc flow reduction

factor. The other methods, NGSEP1 and NGSEP2, perform roughly the same and have

a shorter separation time than NGSEP3 or NGSEP4, while having only slightly worse

performance than NGSEP4.

For NGSEP4 itself, we can actually save separation time by limiting the maximum value

of κ. We found that, in the considered instances, no violated NGCCs were found for

κ > 4. The relation between the number of r-violated CCs found by CVRPSEP and

instance size was clear: the more customers a problem contains, the more r-violated CCs

are found. For instance, 30 customers means around 1000 r-violated CCs while 50 cus-

tomers already gives us about 4000 r-violated CCs per separation.

While NGSEP4 performed best for solving the root node relaxation, no separation method

performed clearly best in a branch-price-and-cut setting. We did find that the inclusion

of NGCCs reduced the number of branching nodes needed to obtain an optimal solution,

compared to using CCs. However, as the solving of the individual nodes for the NGCCs

50

took longer and we recalculated the NGCCs if we branched on zij = 1, no clear-cut time

saving was achieved. Furthermore, for NGSEP4, cut separation now took a significant

amount of time compared to the other methods. For many instances, the solving time

took over an hour and we had to terminate the algorithm. Comparing the best-found

upper bound between the separation methods, we found that NGSEP1 and NGSEP2

performed best on class A and B instances. However, the margins are too small to notice

a general pattern. We hypothesise that using a different separation method in the root

node and branching tree may lead to shorter running times. For instance, using NGSEP4

in the root node and NGSEP1, NGSEP2 or CCSEP in the tree.

Of course, there are still many unanswered questions regarding the NGCCs. For instance,

it may be of interest to evaluate the performance of the NGCCs in a more state-of-the-

art branch-price-and-cut algorithm, such as the one in Pecin et al. (2017). Furthermore,

following our suggestion above, one could investigate which combination of separation

techniques in the root node and branching tree yields the best results. Another idea

is to investigate how to choose the neighbourhoods Vi, i ∈ V , as these neighbourhoods

impact both the performance of the pricing algorithm and the NGCCs. Also, as we de-

duced that we can strengthen the k-path inequalities in Section 4.5, one could research

the performance of those cuts, especially in VRPTW instances. As we mentioned in Sec-

tion 4.3, more research is needed to evaluate the impact of including NGCC duals in a

bi-directional labelling algorithm, together with the proposed fixes.

51

References

Augerat, P. (1995). Approche polyèdrale du problème de tournées de véhicules (Unpub-

lished doctoral dissertation). Institut National Polytechnique de Grenoble-INPG.

Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D., & Rinaldi, G.

(1998). Computational results with a branch-and-cut code for the capacitated ve-

hicle routing problem.

Baldacci, R., Christofides, N., & Mingozzi, A. (2008). An exact algorithm for the vehicle

routing problem based on the set partitioning formulation with additional cuts.

Mathematical Programming , 115 (2), 351–385.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for

the capacitated vehicle routing problem based on a two-commodity network flow

formulation. Operations Research, 52 (5), 723–738.

Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New route relaxation and pricing

strategies for the vehicle routing problem. Operations Research, 59 (5), 1269–1283.

Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem.

Operations Research, 12 (2), 300–304.

Bard, J. F., Kontoravdis, G., & Yu, G. (2002). A branch-and-cut procedure for the vehicle

routing problem with time windows. Transportation Science, 36 (2), 250–269.

Beasley, J. E., & Christofides, N. (1989). An algorithm for the resource constrained

shortest path problem. Networks , 19 (4), 379–394.

Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P.,

. . . Prutzman, P. J. (1983). Improving the distribution of industrial gases with an

on-line computerized routing and scheduling optimizer. Interfaces , 13 (6), 4–23.

Carter, M. W., Farvolden, J. M., Laporte, G., & Xu, J. (1996). Solving an integrated

logistics problem arising in grocery distribution. INFOR: Information Systems and

Operational Research, 34 (4), 290–306.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6 (1), 80–91.

de Aragao, M. P., & Uchoa, E. (2003). Integer program reformulation for robust branch-

and-cut-and-price algorithms. In Mathematical program in rio: a conference in

honour of nelson maculan (pp. 56–61).

Desaulniers, G., Lessard, F., & Hadjar, A. (2008). Tabu search, partial elementarity, and

52

generalized k-path inequalities for the vehicle routing problem with time windows.

Transportation Science, 42 (3), 387–404.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm

for the vehicle routing problem with time windows. Operations Research, 40 (2),

342–354.

Desrosiers, J., & Lübbecke, M. E. (2005). A primer in column generation. In Column

generation (pp. 1–32). Springer.

Dror, M. (1994). Note on the complexity of the shortest path models for column generation

in vrptw. Operations Research, 42 (5), 977–978.

Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2004). An exact algorithm for the

elementary shortest path problem with resource constraints: Application to some

vehicle routing problems. Networks , 44 (3), 216–229.

Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle

routing. Networks , 11 (2), 109–124.

Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., & Werneck,

R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing

problem. Mathematical Programming , 106 (3), 491–511.

Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints.

In Column generation (pp. 33–65). Springer.

Irnich, S., & Villeneuve, D. (2006). The shortest-path problem with resource constraints

and k-cycle elimination for k 3. INFORMS Journal on Computing , 18 (3), 391–406.

Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row inequalities

applied to the vehicle-routing problem with time windows. Operations Research,

56 (2), 497–511.

Kallehauge, B., Larsen, J., & Madsen, O. (2006). Lagrangean duality and non-

differentiable optimization applied on routing with time windows. Computers and

Operations Research, 33 (5), 1464–1487.

Kohl, N. (1995). Exact methods for time constrained routing and related scheduling

problems.

Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., & Soumis, F. (1999). 2-path

cuts for the vehicle routing problem with time windows. Transportation Science,

33 (1), 101–116.

53

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and

distance restrictions. Operations Research, 33 (5), 1050–1073.

Lenstra, J. K., & Kan, A. R. (1981). Complexity of vehicle routing and scheduling

problems. Networks , 11 (2), 221–227.

Lübbecke, M. E. (2010). Column generation. Wiley Encyclopedia of Operations Research

and Management Science, John Wiley and Sons, Chichester, UK .

Lysgaard, J. (2003). Cvrpsep: A package of separation routines for the capacitated vehicle

routing problem.

Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm

for the capacitated vehicle routing problem. Mathematical Programming , 100 (2),

423–445.

Martinelli, R., Pecin, D., & Poggi, M. (2014). Efficient elementary and restricted non-

elementary route pricing. European Journal of Operational Research, 239 (1), 102–

111.

Naddef, D., & Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated vrp. In

The vehicle routing problem (pp. 53–84). SIAM.

Nemhauser, G. L., & Park, S. (1991). A polyhedral approach to edge coloring. Operations

Research Letters , 10 (6), 315–322.

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems. SIAM Review , 33 (1), 60–100.

Pecin, D., Pessoa, A., Poggi, M., & Uchoa, E. (2017). Improved branch-cut-and-price

for capacitated vehicle routing. Mathematical Programming Computation, 9 (1),

61–100.

Rao, M., & Zionts, S. (1968). Allocation of transportation units to alternative trips–

A column generation scheme with out-of-kilter subproblems. Operations Research,

16 (1), 52–63.

Righini, G., & Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic

programming for the elementary shortest path problem with resource constraints.

Discrete Optimization, 3 (3), 255–273.

Røpke, S. (2012). Branching decisions in branch-and-cut-and-price algorithms for vehicle

routing problems. Presentation in Column Generation, 2012 .

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with

54

time window constraints. Operations Research, 35 (2), 254–265.

55

A Proofs

Lemma 1. Recursion scheme (6) is equivalent to the one stated in Baldacci et al. (2011).

Proof. Let us define a path P = (i0 = 0, i1, . . . , ip). Baldacci et al. (2011) define Π(P) as

Π(P) =

{
ik : ik ∈

p⋂
s=k+1

Vis , k ∈ {1, . . . , p− 1}

}
∪ {ip}. (16)

We will show that Π(P) = Πp(P) from (6). Using our recursive scheme (6), we can

investigate the event ik ∈ Πp(P), for some k ∈ {1, . . . , p− 1}. We get

ik ∈ Πp(P) ⇐⇒ ik ∈
(
{ip} ∪

(
Πp−1(P) ∩ Vip

))
⇐⇒ ik ∈

(
Πp−1(P) ∩ Vip

)
⇐⇒ ik ∈ Πp−1(P) ∧ ik ∈ Vip

⇐⇒ ik ∈
(
{ip−1} ∪

(
Πp−2(P) ∩ Vip−1

))
∧ ik ∈ Vip

...

⇐⇒ ik ∈
(
{ik} ∪

(
Πk−1(P) ∩ Vik

))
∧ ik ∈ Vik+1

∧ ik ∈ Vik+2
∧ . . . ∧ ik ∈ Vip

⇐⇒ ik ∈ Vik+1
∧ ik ∈ Vik+2

∧ . . . ∧ ik ∈ Vip

⇐⇒ ik ∈
p⋂

s=k+1

Vis

⇐⇒ ik ∈ Π(P).

Furthermore, as both ip ∈ Πp(P) and ip ∈ Π(P) trivially, we have that Πp(P) = Π(P),

which completes the proof.

Lemma 2. REFs (7) are non-decreasing.

Proof. Let us consider f
Rv

NG
ij for some (i, j) ∈ A and v ∈ V . If v /∈ Vj, then f

Rv
NG

ij (u) = 0

for all resource vectors u and is thus non-decreasing.

If v ∈ Vj and j 6= v, then f
Rv

NG
ij (u) = uR

v
NG . For any pair of resource vectors u,w with

u ≤ w, we have uR
v
NG ≤ wR

v
NG and thus f

Rv
NG

ij (u) ≤ f
Rv

NG
ij (w). So, it is non-decreasing.

A similar argument holds for the case j = v, as f
Rv

NG
ij (u) = uR

v
NG + 1. This thus concludes

56

the proof.

Lemma 3. For all S ⊆ V, |S| ≥ 2, for all r ∈ R and for all Vi ⊆ V, i ∈ Vi, ∀i ∈ V, it

holds that ζSCCr (S) ≤ ζNGr (S) ≤ ζCCr (S).

Proof. Let us assume route r equals (i0 = 0, i1, . . . , i|r|, i|r|+1 = n+ 1). We know that

ζNGr (S) =
∣∣{k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣ . (13)

Furthermore, we can rewrite ζCCr (S) as

ζCCr (S) =
∑

(i,j)∈A

βijS b
ij
r

=
∑

(i,j)∈A: i/∈S, j∈S

bijr

=
∣∣{k : ik ∈ S, ik−1 /∈ S, k ∈ {1, . . . , |r|}

}∣∣
=
∣∣{k : ik ∈ S, {ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣ . (17)

Because it always holds that ik−1 ∈ Πk−1(r), it holds that {ik−1} ⊆ Πk−1(r), which implies

the following relation:

Πk−1(r) ∩ S = ∅ =⇒ {ik−1} ∩ S = ∅.

This, in turn, leads to

∀k ∈ {1, . . . , |r|} : ik ∈ S, Πk−1(r) ∩ S = ∅ =⇒ ik ∈ S, {ik−1} ∩ S = ∅,

which implies

{
k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}

}
⊆
{
k : ik ∈ S, {ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}

}
=⇒

∣∣{k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}
}∣∣

≤
∣∣{k : ik ∈ S, {ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣
=⇒ ζNGr (S) ≤ ζCCr (S).

57

Using a similar technique, we can rewrite ζSCCr (S) as

ζSCCr (S) = min{1, ζCCr (S)}

=
∣∣{k : ik ∈ S, {i1, . . . , ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣ . (18)

Because it always holds that Πk(r) ⊆ {i1, . . . , ik} for all k ∈ {0, . . . , |r|}, we get

{i1, . . . , ik−1} ∩ S = ∅ =⇒ Πk−1(r) ∩ S = ∅,

∀k ∈ {1, . . . , |r|} : ik ∈ S, {i1, . . . , ik−1} ∩ S = ∅ =⇒ ik ∈ S, Πk−1(r) ∩ S = ∅,

which gives

{
k : ik ∈ S, {i1, . . . , ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}

}
⊆
{
k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}

}
=⇒

∣∣{k : ik ∈ S, {i1, . . . , ik−1} ∩ S = ∅, k ∈ {1, . . . , |r|}
}∣∣

≤
∣∣{k : ik ∈ S, Πk−1(r) ∩ S = ∅, k ∈ {1, . . . , |r|}

}∣∣
=⇒ ζSCCr (S) ≤ ζNGr (S).

This proves that

ζSCCr (S) ≤ ζNGr (S) ≤ ζCCr (S)

for any route r ∈ R, for any S ⊆ V : |S| ≥ 2 and for any choice of neighbourhoods

Vi, i ∈ V .

Now, let us assume Vi = {i} for all i ∈ V . Applying equation (6) shows us that Πk(r) =

{ik}, for all k ∈ {1, . . . , |r|}. Combining (13) and (17) gives us that ζCCr (S) = ζNGr (S).

In other words, this shows that the CCs and NGCCs are equivalent in this case.

Now, let us assume Vi = V for all i ∈ V . Applying equation (6) shows us that Πk(r) =

{i1, . . . , ik}, for all k ∈ {1, . . . , |r|}. Combining (13) and (18) gives us that ζSCCr (S) =

58

ζNGr (S). In other words, this shows that the SCCs and NGCCs are equivalent in this

case, which concludes this proof.

Proposition 1. ng-feasibility is symmetric, whereas ng-memory itself is not.

Proof. We first prove that ng-feasibility of a path is symmetric. Let us consider the

forward path P = (i0 = 0, i1, i2, . . . , ip) and the equivalent backward path P̄ = (ip+1 =

n + 1, ip, ip−1, . . . , i1). Note that both P and P̄ travel over the exact same arcs (except

for the arcs to the depots). We define the forward ng-memory Πk(P) of the path P as in

(6). The backward ng-memory Π̄k(P̄) at node ik is defined as in Baldacci et al. (2011):

Π̄k(P̄) =

∅ , if k = p+ 1(
Π̄k+1(P̄) ∩ Vik

)
∪ {ik} , if k ∈ {1, . . . , p}

.

Note that one can interpret this backward ng-memory as the forward ng-memory of the

reversed path P̄ ′ = (0, ip, ip−1, . . . , i1) so that Π̄k(P̄) = Πp+1−k(P̄
′) for k ∈ {1, . . . , p, p+1}.

The forward ng-path P is ng-feasible if and only if ik /∈ Πk−1(P) for all k ∈ {1, . . . , p},

whereas P̄ is ng-feasible if and only if ik /∈ Π̄k+1(P̄) for all k ∈ {1, . . . , p}. Let us

consider some l ∈ {1, . . . , p} such that il is unique in P and P̄ . That is, there is no

k ∈ {1, . . . , p} \ {l} such that ik = il. If a node il is indeed unique, then it is always true

that il /∈ Πl−1(P) and il /∈ Π̄l+1(P̄), as Πk(P) ⊆ {i1, . . . , ik} and Π̄k(P̄) ⊆ {ik+1, . . . , ip} for

all k ∈ {1, . . . , p}. So, unique nodes in a path do not determine the ng-feasibility of paths.

Instead, let us consider some l1, l2 ∈ {1, . . . , p} with l1 < l2 and il1 = il2 = i. So,

both P and P̄ visit i at least twice. Furthermore, assume without loss of generality that

ik 6= i for all k ∈ {l1 + 1, . . . , l2 − 1}. Then P is not ng-feasible if i = il2 ∈ Πl2−1(P).

Using the definition of ng-memory and the fact that i = il1 ∈ Πl1(P), we get

i ∈ Πl2−1(P) ⇐⇒ i ∈ Vil1+1
∩ Vil1+2

∩ . . . ∩ Vil2−1
.

We also have that P̄ is not ng-feasible if i = il1 ∈ Π̄l1+1(P̄). Following the same logic as

before, we get

i ∈ Π̄l1+1(P̄) ⇐⇒ Vil1+1
∩ Vil1+2

∩ . . . ∩ Vil2−1
.

59

So, it follows that i ∈ Πl2−1(P) ⇐⇒ i ∈ Π̄l1+1(P̄). As we can repeat this argument for

any node that is visited by P and P̄ more than once, we can conclude that ng-feasibility

of P implies ng-feasibility of P̄ and vice versa. In other words, ng-feasibility is indeed

symmetric.

Next, we show that ng-memory is not symmetric. In other words, we show that i ∈ Πk(P)

does not imply i ∈ Π̄k(P̄) and vice versa, except when i = ik, for any k ∈ {1, . . . , p}. It

is obvious that ik ∈ Πk(P) and ik ∈ Π̄k(P̄). Consider any i ∈ Πk(P) such that i 6= ik.

Note that it must hold that i ∈ {i1, . . . , ik−1}, as per definition Πk(P) ⊆ {i1, . . . , ik}. We

also know that Π̄k(P̄) ⊆ {ik+1, . . . , ip}. So, the presence of i in Πk(P) does not imply it

being in Π̄k(P̄). In fact, if i ∈ Π̄k(P̄), more conditions should be satisfied. Reversing this

argument also shows that i ∈ Π̄k(P̄) does not imply i ∈ Πk(P). Following an example

like Instance C also shows this fact.

60

B Additional Example Instances

B.1 Separation Methods NGSEP1 versus NGSEP2

Figure 10: Instance F. Figure 11: Instance G.

This section shows two instances, one in which NGSEP2 obtains a higher objective value

than NGSEP1 (Figure 10, Instance F), and one where the opposite happens (Figure 11,

Instance G). Figures 10 and 11 show these instances, in which the five customers are

denoted with round nodes and the depot is shown as a square node. Note that in these

instances, the starting and ending depot are located at the same position. The nodes are

located in Cartesian space, where costs are equal to 100 times the Euclidean distance,

rounded down. The capacity of a vehicle equals 150 and customer demand is denoted

next to a node. For instance F, the ng-memory of a customer includes itself and the 3

nearest customers, denoted with red arrows in the figures. For instance G, the ng-memory

is perfect. All the pricing problems will be solved exactly, that is, we add the route with

the most negative reduced costs.

Instance F Let us examine Instance F. Table 7 shows the events that happen when

solving the root node using NGSEP1 and NGSEP2. Looking at Table 7, we can see that,

up to step 11, the two methods perform identical. It should be noted that there is no

difference yet in the NGCC and CC in step 9, as well as the NGCC and CC in step 11.

This means that NGSEP2 also has an objective of 501.286 prior to executing step 12.

The reason why NGSEP2 does add route (0, 1, 5, 2, 6) and NGSEP1 does not, is because

61

route (0, 1, 5, 2, 6) receives the discount of CC {1, 2, 3} twice, but receives the discount of

the NGCC only once. This means route (0, 1, 5, 2, 6) has a lower reduced cost in NGSEP2

than in NGSEP1. In fact, the reduced costs in NGSEP1 are positive and negative in

NGSEP2. Because of the extra added route in NGSEP2, another CC is added, which is

not found in NGSEP1, resulting in a higher objective of NGSEP2.

Table 7: Executed steps in solving Instance F.

Step NGSEP1 NGSEP2
1 Add route (0, 1, 2, 5, 6) Add route (0, 1, 2, 5, 6)
2 Add route (0, 2, 4, 2, 6) Add route (0, 2, 4, 2, 6)
3 Add route (0, 1, 3, 6) Add route (0, 1, 3, 6)
4 Add route (0, 3, 5, 6) Add route (0, 3, 5, 6)
5 Add route (0, 2, 3, 6) Add route (0, 2, 3, 6)
6 Add route (0, 1, 4, 6) Add route (0, 1, 4, 6)
7 Add route (0, 4, 5, 6) Add route (0, 4, 5, 6)
8 LP solved, objective 491 LP solved, objective 491
9 Add NGCC {2, 3, 5} Add CC {2, 3, 5}
10 LP solved, objective 498.667 LP solved, objective 498.667
11 Add NGCC {1, 2, 3} Add CC {1, 2, 3}
12 LP solved, objective 501.286 Add route (0, 1, 5, 2, 6)
13 LP solved, objective 498.667
14 Add CC {1, 4, 5}
15 LP solved, objective 500.5
16 Convert CCs to NGCCs
17 LP solved, objective 503.25

Instance G Figure 11 shows Instance G, with 10 customers. Here, NGSEP1 gives us

an objective of 730.333 and NGSEP2 730.000. What is interesting, is that NGSEP1 also

achieves the objective of 730.000, with almost the exact same solution as NGSEP2’s

final solution. The only difference is that NGSEP1 uses route r1 = (0, 2, 8, 10, 11),

whereas NGSEP2 uses route r2 = (0, 8, 2, 10, 11). Because of this, NGSEP1 finds the

CC {5, 6, 7, 8, 10} and can thus heighten its objective, while NGSEP2 cannot find it. Af-

ter all, route r2 enters the set twice, but r1 only once. Also, both r1 and r2 have a cost

coefficient of 165.

So, why do both of these methods use two different routes with the same costs that

serve the exact same customers? Investigating both solutions further, we observe that

NGSEP1 did not even generate route r2, and both generate r1 in the very first pricing

problem. The reason why NGSEP2 generates and uses r2 is, ironically, because of CCs.

62

In particular, the CCs {1, 5, 6, 7, 8, 10} and {1, 4, 5, 6, 7, 8, 9, 10}. These CCs give a double

discount to r2 but only a single discount to r1, which makes r2 more profitable to use

than r1 for NGSEP2. In fact, NGSEP1 also finds the CC {1, 5, 6, 7, 8, 10}, but because it

is added as an NGCC, it does not give an extra discount to r2, making its reduced costs

equal to that of r1 and thus making it undesirable to generate.

So, NGSEP2 generates route r2 because it is favoured more by some CCs than r1, but the

usage of this route prevents finding another CC that would raise the objective further.

NGSEP1 does not generate route r2 and thus achieves in this case a higher objective than

NGSEP2.

63

C Additional Tables

C.1 Additional Instances for Table 2

This section holds tables with additional instances for Table 2. The explanation of the

columns is found in Section 6.1.

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

A-n32-k5 No Cuts 758.432 34.4 289 0 (0) 0.0
CCSEP 784.000∗ 63.9 441 47 (43) 0.0

NGSEP1 784.000∗ 91.7 396 50 (48) 0.0
NGSEP2 784.000∗ 71.5 489 47 (45) 0.0
NGSEP3 784.000∗ 89.6 432 86 (80) 0.1
NGSEP4 784.000∗ 93.2 396 50 (48) 0.2

A-n33-k5 No Cuts 652.618 12.8 221 0 (0) 0.0
CCSEP 661.000 20.7 274 52 (34) 0.0

NGSEP1 661.000 26.9 272 52 (47) 0.0
NGSEP2 661.000 28.9 285 52 (47) 0.0
NGSEP3 661.000 29.5 260 179 (167) 0.3
NGSEP4 661.000 27.4 272 52 (47) 0.2

A-n33-k6 No Cuts 728.000 12.2 210 0 (0) 0.0
CCSEP 740.000 40.9 282 56 (39) 0.0

NGSEP1 740.250 35.8 279 62 (52) 0.0
NGSEP2 740.000 43.7 307 56 (41) 0.1
NGSEP3 740.250 29.3 276 158 (143) 0.3
NGSEP4 740.250 33.5 279 62 (52) 0.4

A-n34-k5 No Cuts 742.456 35.1 252 0 (0) 0.0
CCSEP 775.000 59.7 349 78 (41) 0.0

NGSEP1 775.000 53.2 346 88 (48) 0.0
NGSEP2 775.000 66.2 365 78 (50) 0.1
NGSEP3 776.100 74.5 375 107 (63) 1.0
NGSEP4 775.000 53.8 346 88 (48) 0.5

A-n36-k5 No Cuts 774.167 358.4 379 0 (0) 0.0
CCSEP 798.302 939.5 498 83 (32) 0.0

NGSEP1 798.322 893.4 544 70 (50) 0.0
NGSEP2 798.314 1115.7 514 83 (53) 0.1
NGSEP3 795.093 1450.4 496 197 (153) 1.2
NGSEP4 799.000∗ 1114.0 556 72 (71) 0.5

A-n37-k5 No Cuts 657.133 36.2 321 0 (0) 0.0
CCSEP 666.625 154.7 471 61 (32) 0.0

NGSEP1 667.467 177.7 465 68 (33) 0.1
NGSEP2 667.488 177.8 498 69 (38) 0.1
NGSEP3 666.563 110.2 401 261 (38) 0.6
NGSEP4 667.472 182.4 465 72 (39) 3.7

A-n37-k6 No Cuts 921.085 61.7 278 0 (0) 0.0
CCSEP 936.847 148.9 329 66 (31) 0.0

NGSEP1 937.272 194.4 324 37 (16) 0.0
NGSEP2 937.391 263.0 336 72 (43) 0.1
NGSEP3 936.777 215.1 320 61 (23) 1.0
NGSEP4 937.448 275.1 324 69 (47) 2.5

64

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

A-n38-k5 No Cuts 699.145 39.5 285 0 (0) 0.0
CCSEP 723.421 97.1 502 107 (64) 0.1

NGSEP1 723.714 96.4 460 108 (80) 0.0
NGSEP2 723.714 110.2 522 107 (86) 0.1
NGSEP3 716.354 170.0 419 285 (33) 1.4
NGSEP4 723.714 99.3 460 108 (80) 1.6

A-n39-k5 No Cuts 795.368 79.4 349 0 (0) 0.0
CCSEP 817.455 390.9 593 150 (59) 0.1

NGSEP1 817.647 357.9 551 146 (99) 0.1
NGSEP2 817.853 426.0 624 150 (95) 0.1
NGSEP3 815.411 359.4 486 246 (120) 1.2
NGSEP4 817.853 377.6 552 147 (98) 5.1

A-n39-k6 No Cuts 803.864 49.6 340 0 (0) 0.0
CCSEP 824.985 188.9 427 133 (33) 0.1

NGSEP1 825.286 157.7 431 128 (47) 0.1
NGSEP2 825.143 229.2 433 134 (44) 0.1
NGSEP3 824.698 178.1 436 231 (56) 1.6
NGSEP4 825.286 174.1 432 129 (48) 3.3

A-n44-k6 No Cuts 927.107 117.8 392 0 (0) 0.0
CCSEP 936.800 342.6 539 155 (98) 0.0

NGSEP1 936.800 456.4 543 142 (106) 0.1
NGSEP2 936.800 394.7 572 155 (118) 0.1
NGSEP3 934.786 457.0 552 244 (140) 1.0
NGSEP4 936.800 460.4 543 142 (106) 1.3

A-n45-k6 No Cuts 924.591 107.9 358 0 (0) 0.0
CCSEP 939.206 782.6 507 94 (37) 0.0

NGSEP1 939.599 1039.3 498 96 (47) 0.1
NGSEP2 939.599 1279.6 530 102 (49) 0.1
NGSEP3 938.230 852.8 464 118 (33) 2.1
NGSEP4 939.605 1092.7 499 98 (48) 5.3

A-n45-k7 No Cuts 1114.440 157.8 385 0 (0) 0.0
CCSEP 1140.880 486.4 519 300 (40) 0.1

NGSEP1 1141.150 738.3 525 305 (99) 0.1
NGSEP2 1141.220 853.2 562 304 (97) 0.1
NGSEP3 1137.390 858.5 559 280 (130) 2.8
NGSEP4 1141.340 871.9 529 315 (105) 4.4

A-n46-k7 No Cuts 899.956 118.8 402 0 (0) 0.0
CCSEP 914.000 315.6 528 211 (178) 0.0

NGSEP1 914.000 259.6 453 181 (159) 0.0
NGSEP2 914.000 382.1 566 211 (189) 0.0
NGSEP3 914.000 241.1 476 82 (61) 0.0
NGSEP4 914.000 262.6 453 181 (159) 0.2

A-n48-k7 No Cuts 1047.720 403.3 481 0 (0) 0.0
CCSEP 1071.760 2992.4 635 280 (69) 0.1

NGSEP1 1072.050 2410.1 643 280 (101) 0.0
NGSEP2 1072.050 3603.1 649 282 (171) 0.1
NGSEP3 1069.330 2644.9 617 210 (117) 2.9
NGSEP4 1072.050 2474.5 643 280 (101) 7.3

65

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

B-n31-k5 No Cuts 612.067 288.4 278 0 (0) 0.0
CCSEP 672.000∗ 314.8 387 36 (22) 0.0

NGSEP1 672.000∗ 367.6 446 40 (31) 0.0
NGSEP2 672.000∗ 324.3 431 36 (26) 0.0
NGSEP3 672.000∗ 449.8 533 60 (48) 0.1
NGSEP4 672.000∗ 371.3 446 40 (31) 0.2

B-n34-k5 No Cuts 744.132 731.2 292 0 (0) 0.0
CCSEP 784.970 997.5 536 89 (65) 0.0

NGSEP1 785.444 1101.6 700 108 (101) 0.0
NGSEP2 785.667 1034.4 619 89 (77) 0.0
NGSEP3 785.833 784.8 618 184 (144) 0.3
NGSEP4 785.481 1115.9 700 110 (103) 2.2

B-n35-k5 No Cuts 829.088 392.3 237 0 (0) 0.0
CCSEP 955.000∗ 437.1 606 85 (57) 0.0

NGSEP1 955.000∗ 453.3 767 80 (65) 0.0
NGSEP2 955.000∗ 544.1 780 85 (69) 0.0
NGSEP3 955.000∗ 460.1 454 156 (139) 0.6
NGSEP4 955.000∗ 453.6 767 80 (65) 0.4

B-n38-k6 No Cuts 715.102 282.5 303 0 (0) 0.0
CCSEP 804.143 309.0 473 54 (37) 0.0

NGSEP1 804.471 325.9 461 53 (39) 0.1
NGSEP2 804.471 316.5 511 54 (38) 0.1
NGSEP3 804.412 326.0 454 54 (39) 0.6
NGSEP4 804.471 325.1 461 53 (39) 1.1

B-n39-k5 No Cuts 513.991 4383.3 329 0 (0) 0.0
CCSEP 549.000∗ 7420.6 550 39 (37) 0.0

NGSEP1 549.000∗ 12213.0 467 38 (37) 0.0
NGSEP2 549.000∗ 9947.1 715 39 (38) 0.0
NGSEP3 549.000∗ 23719.2 649 238 (237) 0.2
NGSEP4 549.000∗ 12199.7 467 38 (37) 0.3

B-n41-k6 No Cuts 797.033 227.2 314 0 (0) 0.0
CCSEP 828.600 801.4 619 92 (73) 0.0

NGSEP1 829.000∗ 928.8 657 82 (82) 0.0
NGSEP2 829.000 858.6 683 92 (91) 0.1
NGSEP3 829.000 802.5 692 244 (235) 0.6
NGSEP4 829.000∗ 934.0 657 82 (82) 0.2

B-n43-k6 No Cuts 699.760 759.2 368 0 (0) 0.0
CCSEP 736.880 2192.0 569 129 (42) 0.0

NGSEP1 737.486 2266.0 580 143 (69) 0.0
NGSEP2 737.486 2380.6 597 129 (56) 0.1
NGSEP3 737.418 1645.1 535 185 (94) 1.3
NGSEP4 737.493 1898.8 584 145 (71) 4.3

66

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

B-n44-k7 No Cuts 858.938 1513.9 340 0 (0) 0.0
CCSEP 909.000∗ 2897.1 555 108 (83) 0.0

NGSEP1 909.000∗ 2786.8 610 103 (81) 0.0
NGSEP2 909.000∗ 3637.5 594 108 (83) 0.0
NGSEP3 909.000∗ 2101.2 609 221 (195) 0.1
NGSEP4 909.000∗ 2794.8 610 103 (81) 0.4

B-n45-k5 No Cuts 683.187 4506.9 432 0 (0) 0.0
CCSEP 750.556 6966.2 867 52 (44) 0.1

NGSEP1 751.000∗ 6977.7 872 46 (41) 0.1
NGSEP2 751.000∗ 7700.4 1091 52 (49) 0.1
NGSEP3 750.684 15959.0 1012 100 (77) 2.1
NGSEP4 751.000∗ 7055.2 872 46 (41) 0.7

B-n45-k6 No Cuts 654.279 570.6 341 0 (0) 0.0
CCSEP 677.763 4924.5 585 38 (21) 0.1

NGSEP1 677.804 4091.8 624 37 (26) 0.1
NGSEP2 677.804 5238.5 619 38 (25) 0.1
NGSEP3 677.723 4228.0 610 94 (37) 2.9
NGSEP4 677.839 4846.2 632 48 (32) 3.8

B-n50-k7 No Cuts 665.536 1651.1 451 0 (0) 0.0
CCSEP 741.000 1835.7 810 77 (75) 0.0

NGSEP1 741.000∗ 1816.8 957 79 (78) 0.0
NGSEP2 741.000 1854.4 888 77 (75) 0.0
NGSEP3 741.000∗ 4612.2 1072 105 (100) 0.2
NGSEP4 741.000∗ 1821.1 957 79 (78) 0.6

B-n50-k8 No Cuts 1255.050 1928.2 493 0 (0) 0.0
CCSEP 1303.580 4185.8 667 205 (51) 0.0

NGSEP1 1305.470 4546.4 672 217 (98) 0.0
NGSEP2 1305.550 5246.9 722 217 (115) 0.1
NGSEP3 1305.090 5886.5 750 272 (138) 4.1
NGSEP4 1305.500 4710.7 676 218 (100) 5.8

B-n51-k7 No Cuts 953.699 3600.3 461 0 (0) 0.0
CCSEP 1016.000∗ 4920.9 784 38 (36) 0.0

NGSEP1 1016.000∗ 6190.0 764 57 (54) 0.1
NGSEP2 1016.000∗ 4988.5 888 38 (38) 0.1
NGSEP3 1016.000∗ 7690.3 960 111 (111) 0.7
NGSEP4 1016.000∗ 5090.8 764 57 (54) 0.2

67

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

P-n16-k8 No Cuts 441.000 0.0 38 0 (0) 0.0
CCSEP 448.000 0.0 43 11 (11) 0.0

NGSEP1 448.000 0.0 43 11 (11) 0.0
NGSEP2 448.000 0.0 43 11 (11) 0.0
NGSEP3 450.000∗ 0.0 43 33 (33) 0.0
NGSEP4 450.000∗ 0.1 44 15 (15) 0.0

P-n19-k2 No Cuts 204.286 6.4 145 0 (0) 0.0
CCSEP 211.667 10.4 204 5 (4) 0.0

NGSEP1 212.000∗ 12.9 203 9 (9) 0.0
NGSEP2 212.000∗ 20.4 214 9 (9) 0.1
NGSEP3 211.857 13.6 191 6 (6) 0.1
NGSEP4 212.000∗ 13.3 203 9 (9) 0.1

P-n20-k2 No Cuts 212.000 5.9 180 0 (0) 0.0
CCSEP 215.500 16.4 214 6 (6) 0.0

NGSEP1 215.667 17.3 202 8 (8) 0.0
NGSEP2 215.667 33.8 230 8 (8) 0.0
NGSEP3 215.000 14.0 198 4 (4) 0.0
NGSEP4 215.667 18.1 202 8 (8) 0.2

P-n21-k2 No Cuts 211.000∗ 4.8 203 0 (0) 0.0
CCSEP 211.000∗ 4.9 203 0 (0) 0.0

NGSEP1 211.000∗ 4.9 203 0 (0) 0.0
NGSEP2 211.000∗ 4.9 203 0 (0) 0.0
NGSEP3 211.000∗ 4.9 203 0 (0) 0.0
NGSEP4 211.000∗ 5.0 203 0 (0) 0.0

P-n22-k2 No Cuts 215.500 13.4 226 0 (0) 0.0
CCSEP 215.500 13.5 226 0 (0) 0.0

NGSEP1 215.500 13.5 226 0 (0) 0.0
NGSEP2 215.500 13.5 226 0 (0) 0.0
NGSEP3 215.500 13.5 226 0 (0) 0.0
NGSEP4 215.500 13.6 226 0 (0) 0.0

P-n22-k8 No Cuts 589.667 0.0 61 0 (0) 0.0
CCSEP 590.000∗ 0.0 61 1 (1) 0.0

NGSEP1 590.000∗ 0.0 61 1 (1) 0.0
NGSEP2 590.000∗ 0.1 61 1 (1) 0.0
NGSEP3 590.000∗ 0.1 61 49 (49) 0.0
NGSEP4 590.000∗ 0.1 61 1 (1) 0.0

P-n23-k8 No Cuts 521.536 0.0 66 0 (0) 0.0
CCSEP 529.000∗ 0.1 91 32 (32) 0.0

NGSEP1 529.000∗ 0.2 95 32 (32) 0.0
NGSEP2 529.000∗ 0.2 99 32 (32) 0.0
NGSEP3 529.000∗ 0.1 90 40 (40) 0.0
NGSEP4 529.000∗ 0.1 95 32 (32) 0.0

68

Inst. Sep. Obj. Time #Routes #Cuts Sep. Time

P-n40-k5 No Cuts 448.278 99.0 354 0 (0) 0.0
CCSEP 456.875 103.2 422 61 (43) 0.0

NGSEP1 456.875 105.7 408 61 (51) 0.0
NGSEP2 456.875 106.6 431 61 (51) 0.0
NGSEP3 457.100 134.3 417 223 (214) 0.4
NGSEP4 457.100 110.6 412 68 (58) 1.5

P-n45-k5 No Cuts 499.687 134.1 389 0 (0) 0.0
CCSEP 505.850 186.6 431 101 (49) 0.0

NGSEP1 505.960 166.8 436 92 (68) 0.0
NGSEP2 505.960 216.8 453 101 (75) 0.1
NGSEP3 505.661 288.3 443 323 (283) 1.7
NGSEP4 505.960 174.5 436 92 (68) 6.6

P-n50-k7 No Cuts 542.698 104.4 397 0 (0) 0.0
CCSEP 550.794 214.0 468 133 (38) 0.1

NGSEP1 550.857 209.0 473 130 (66) 0.1
NGSEP2 550.876 237.1 479 133 (67) 0.1
NGSEP3 549.811 346.1 451 211 (180) 2.7
NGSEP4 550.876 256.0 476 136 (70) 10.3

P-n50-k8 No Cuts 612.263 68.5 307 0 (0) 0.0
CCSEP 615.024 206.0 351 81 (24) 0.1

NGSEP1 615.181 195.5 353 77 (22) 0.0
NGSEP2 615.155 232.4 362 81 (26) 0.1
NGSEP3 615.011 178.2 342 49 (27) 2.5
NGSEP4 615.283 279.1 356 80 (26) 6.4

P-n50-k10 No Cuts 686.509 14.5 270 0 (0) 0.0
CCSEP 689.580 29.2 298 49 (24) 0.0

NGSEP1 689.779 27.6 292 49 (31) 0.0
NGSEP2 689.779 35.0 300 49 (31) 0.0
NGSEP3 689.779 50.7 298 227 (204) 1.9
NGSEP4 689.779 30.5 292 49 (31) 3.2

P-n51-k10 No Cuts 732.943 19.1 304 0 (0) 0.0
CCSEP 735.828 88.0 351 82 (24) 0.1

NGSEP1 736.407 123.7 350 88 (25) 0.1
NGSEP2 736.407 143.2 363 84 (21) 0.1
NGSEP3 736.457 118.2 346 77 (24) 4.5
NGSEP4 736.726 170.4 353 91 (24) 5.1

69

C.2 Additional Instances for Table 5

This section holds tables with additional instances for Table 5. The explanation of the

columns is found in Section 6.2.

Inst. Sep. Obj. Time #R #C ST #N #B #Int

A-n32-k5 CCSEP 784.000 63.9 441 47 0.0 1 0 1
NGSEP1 784.000 91.7 396 50 0.0 1 0 1
NGSEP2 784.000 71.5 489 47 0.0 1 0 1
NGSEP3 784.000 89.6 432 86 0.0 1 0 1
NGSEP4 784.000 93.3 396 50 0.0 1 0 1

A-n33-k5 CCSEP 661.000 34.5 380 52 0.0 7 0 4
NGSEP1 661.000 30.2 310 52 0.0 3 0 2
NGSEP2 661.000 37.5 334 52 0.0 5 0 3
NGSEP3 661.000 46.1 324 181 0.2 5 1 2
NGSEP4 661.000 31.1 310 52 0.2 3 0 2

A-n33-k6 CCSEP 742.000 76.1 1070 64 0.5 71 13 23
NGSEP1 742.000 87.7 833 78 0.7 97 10 39
NGSEP2 742.000 84.6 866 64 0.6 87 12 32
NGSEP3 742.000 72.2 572 161 1.5 27 7 7
NGSEP4 742.000 109.8 833 78 24.6 97 10 39

A-n34-k5 CCSEP 778.000 1174.5 4584 184 4.6 621 235 76
NGSEP1 778.000 520.3 2134 132 1.8 249 93 32
NGSEP2 778.000 821.7 2657 139 2.4 301 121 30
NGSEP3 778.000 251.3 1093 121 17.3 65 27 6
NGSEP4 778.000 2521.1 3984 175 614.4 633 245 72

A-n36-k5 CCSEP 813.000† 4524.4 5847 188 3.8 499 226 19
NGSEP1 799.000 1267.6 714 73 0.1 11 3 3
NGSEP2 799.000 3240.5 2250 125 0.9 95 38 10
NGSEP3 807.000† 5022.0 3528 270 58.0 257 112 14
NGSEP4 799.000 1114.2 556 72 0.0 1 0 1

A-n37-k5 CCSEP 669.000 333.3 1342 77 0.4 49 11 14
NGSEP1 669.000 319.7 995 87 0.2 35 9 9
NGSEP2 669.000 248.8 800 71 0.1 11 3 3
NGSEP3 669.000 314.5 956 270 1.9 27 2 12
NGSEP4 669.000 312.9 1011 80 25.8 25 4 9

A-n37-k6 CCSEP 949.000† 3742.9 5109 234 6.1 799 307 89
NGSEP1 949.000† 3780.3 4398 196 4.9 639 252 62
NGSEP2 952.000† 3852.0 3818 225 6.5 767 272 106
NGSEP3 949.000† 3803.3 3710 235 168.0 653 234 88
NGSEP4 949.000† 3861.4 3419 279 938.4 485 186 50

A-n38-k5 CCSEP 730.000† 3702.2 6042 179 6.3 913 352 102
NGSEP1 730.000† 3694.9 5004 151 3.6 519 208 48
NGSEP2 730.000† 3709.3 4903 160 3.6 509 196 55
NGSEP3 730.000† 3763.7 4024 343 65.1 343 110 58
NGSEP4 730.000† 3703.0 4227 154 718.2 413 167 38

70

Inst. Sep. Obj. Time #R #C ST #N #B #Int

A-n39-k5 CCSEP 822.000† 3988.2 4857 291 3.0 363 159 20
NGSEP1 822.000† 3958.2 3815 262 2.2 261 104 24
NGSEP2 822.000 3840.4 3373 257 2.2 229 98 17
NGSEP3 822.000† 3945.5 3708 419 75.0 221 80 26
NGSEP4 822.000† 3991.3 3754 278 900.1 247 89 32

A-n39-k6 CCSEP 831.000 3031.8 4148 207 5.2 463 188 44
NGSEP1 831.000 2037.7 2575 173 3.7 251 98 28
NGSEP2 831.000 2369.5 2903 180 7.8 363 134 48
NGSEP3 831.000 2855.9 2766 301 105.5 343 149 23
NGSEP4 831.000 2948.0 2416 177 802.4 273 122 15

A-n44-k6 CCSEP 937.000 508.6 942 166 0.2 19 5 5
NGSEP1 937.000 586.2 735 153 0.1 11 2 4
NGSEP2 937.000 990.3 1308 166 9.8 39 12 8
NGSEP3 937.000 801.7 834 265 5.1 17 3 6
NGSEP4 937.000 584.6 666 149 8.3 9 3 2

A-n45-k6 CCSEP 964.000† 4347.6 3362 193 1.6 203 76 15
NGSEP1 948.000† 4606.7 2410 183 9.6 133 45 15
NGSEP2 953.000† 4862.2 3039 174 2.0 223 85 20
NGSEP3 944.000† 4458.7 2053 185 19.2 57 8 17
NGSEP4 953.000† 4669.2 2202 176 307.2 105 40 8

A-n45-k7 CCSEP 1154.000† 4063.2 4177 510 3.1 315 109 40
NGSEP1 1154.000† 4319.6 3266 429 1.9 199 70 20
NGSEP2 1146.000† 4428.3 2540 479 2.1 155 45 29
NGSEP3 1146.000† 4454.9 2821 439 87.7 143 49 19
NGSEP4 1154.000† 4447.3 2587 419 256.2 131 35 24

A-n46-k7 CCSEP 914.000 619.6 847 211 0.1 11 0 6
NGSEP1 914.000 605.8 865 181 0.0 9 1 4
NGSEP2 914.000 1149.6 959 211 0.1 15 0 8
NGSEP3 914.000 396.8 557 82 0.1 3 0 2
NGSEP4 914.000 607.7 865 181 2.1 9 1 4

A-n48-k7 CCSEP 1074.000† 6451.1 1143 313 0.3 27 7 5
NGSEP1 1074.000† 6035.9 1267 306 0.2 25 8 4
NGSEP2 1073.000 5499.5 932 290 0.1 7 2 2
NGSEP3 1085.000† 6101.3 1390 272 74.9 41 10 3
NGSEP4 1074.000† 6111.7 1235 305 118.3 25 7 4

71

Inst. Sep. Obj. Time #R #C ST #N #B #Int

B-n31-k5 CCSEP 672.000 314.8 387 36 0.0 1 0 1
NGSEP1 672.000 367.6 446 40 0.0 1 0 1
NGSEP2 672.000 324.3 431 36 0.0 1 0 1
NGSEP3 672.000 449.8 533 60 0.0 1 0 1
NGSEP4 672.000 371.5 446 40 0.0 1 0 1

B-n34-k5 CCSEP 788.000† 4599.6 7491 152 3.9 565 181 96
NGSEP1 788.000† 4702.0 5964 123 1.6 241 75 44
NGSEP2 788.000† 4642.0 5958 109 2.3 335 103 60
NGSEP3 788.000† 4384.5 4943 206 20.2 245 65 55
NGSEP4 788.000† 4724.8 5205 136 492.0 189 59 32

B-n35-k5 CCSEP 955.000 437.1 606 85 0.0 1 0 1
NGSEP1 955.000 453.3 767 80 0.0 1 0 1
NGSEP2 955.000 544.2 780 85 0.0 1 0 1
NGSEP3 955.000 460.1 454 156 0.0 1 0 1
NGSEP4 955.000 453.8 767 80 0.0 1 0 1

B-n38-k6 CCSEP 805.000 412.9 1222 64 0.2 27 8 6
NGSEP1 805.000 391.5 699 53 0.0 9 0 5
NGSEP2 805.000 419.1 890 60 0.2 23 4 8
NGSEP3 805.000 415.5 872 65 1.7 15 1 7
NGSEP4 805.000 395.2 699 53 3.5 9 0 5

B-n39-k5 CCSEP 549.000 7420.6 550 39 0.0 1 0 1
NGSEP1 549.000 12213.0 467 38 0.0 1 0 1
NGSEP2 549.000 9947.1 715 39 0.0 1 0 1
NGSEP3 549.000 23719.2 649 238 0.0 1 0 1
NGSEP4 549.000 12199.9 467 38 0.0 1 0 1

B-n41-k6 CCSEP 829.000 1275.7 1527 99 0.2 33 7 10
NGSEP1 829.000 928.8 657 82 0.0 1 0 1
NGSEP2 829.000 895.1 700 92 0.0 3 1 1
NGSEP3 829.000 1094.8 1160 248 1.0 15 3 5
NGSEP4 829.000 934.2 657 82 0.0 1 0 1

B-n43-k6 CCSEP 749.000† 5781.2 6124 260 5.8 781 352 26
NGSEP1 745.000† 5827.0 3517 194 2.8 385 167 18
NGSEP2 742.000† 5956.4 3694 172 1.7 229 84 27
NGSEP3 743.000† 5275.2 2623 230 95.0 241 89 26
NGSEP4 743.000† 5465.2 2587 200 756.3 215 76 26

72

Inst. Sep. Obj. Time #R #C ST #N #B #Int

B-n44-k7 CCSEP 909.000 2897.1 555 108 0.0 1 0 1
NGSEP1 909.000 2786.8 610 103 0.0 1 0 1
NGSEP2 909.000 3637.5 594 108 0.0 1 0 1
NGSEP3 909.000 2101.2 609 221 0.0 1 0 1
NGSEP4 909.000 2795.1 610 103 0.0 1 0 1

B-n45-k5 CCSEP 751.000 8200.0 1185 53 0.0 7 1 3
NGSEP1 751.000 6977.7 872 46 0.0 1 0 1
NGSEP2 751.000 7700.4 1091 52 0.0 1 0 1
NGSEP3 751.000† 19561.6 1117 100 1.0 5 1 2
NGSEP4 751.000 7055.8 872 46 0.0 1 0 1

B-n45-k6 CCSEP 679.000† 8397.7 1394 46 0.3 37 9 8
NGSEP1 678.000 6271.2 775 38 0.1 13 1 6
NGSEP2 678.000 6490.3 702 39 0.1 7 1 3
NGSEP3 678.000† 7876.0 1010 111 11.3 23 6 3
NGSEP4 678.000† 8473.2 956 53 33.5 19 2 8

B-n50-k7 CCSEP 741.000 1866.0 984 78 0.0 3 0 2
NGSEP1 741.000 1816.8 957 79 0.0 1 0 1
NGSEP2 741.000 1981.1 1106 78 0.0 3 0 2
NGSEP3 741.000 4612.3 1072 105 0.0 1 0 1
NGSEP4 741.000 1821.7 957 79 0.0 1 0 1

B-n50-k8 CCSEP 1360.000† 7750.2 2792 464 1.5 139 40 11
NGSEP1 1321.000† 8109.2 3273 435 2.5 263 101 16
NGSEP2 1312.000† 8800.4 2755 299 1.6 123 40 13
NGSEP3 1340.000† 9424.4 2976 498 97.2 179 47 22
NGSEP4 1313.000† 8274.6 2638 319 602.7 105 36 8

B-n51-k7 CCSEP 1016.000 4921.0 784 38 0.0 1 0 1
NGSEP1 1016.000 6190.0 764 57 0.0 1 0 1
NGSEP2 1016.000 4988.5 888 38 0.0 1 0 1
NGSEP3 1016.000 7690.3 960 111 0.0 1 0 1
NGSEP4 1016.000 5091.0 764 57 0.0 1 0 1

73

Inst. Sep. Obj. Time #R #C ST #N #B #Int

P-n16-k8 CCSEP 450.000 0.1 50 11 0.0 5 0 3
NGSEP1 450.000 0.1 49 11 0.0 5 0 3
NGSEP2 450.000 0.1 48 11 0.0 5 0 3
NGSEP3 450.000 0.1 43 33 0.0 1 0 1
NGSEP4 450.000 0.1 44 15 0.0 1 0 1

P-n19-k2 CCSEP 212.000 21.6 311 7 0.1 9 2 3
NGSEP1 212.000 12.9 203 9 0.0 1 0 1
NGSEP2 212.000 20.4 214 9 0.0 1 0 1
NGSEP3 212.000 19.2 234 8 0.1 5 0 3
NGSEP4 212.000 13.3 203 9 0.0 1 0 1

P-n20-k2 CCSEP 216.000 74.1 664 9 0.2 27 5 9
NGSEP1 216.000 40.9 586 10 0.1 15 0 8
NGSEP2 216.000 59.1 470 8 0.1 11 2 4
NGSEP3 216.000 39.2 472 7 0.2 11 3 3
NGSEP4 216.000 43.4 586 10 1.7 15 0 8

P-n21-k2 CCSEP 211.000 4.9 203 0 0.0 1 0 1
NGSEP1 211.000 4.9 203 0 0.0 1 0 1
NGSEP2 211.000 4.9 203 0 0.0 1 0 1
NGSEP3 211.000 4.9 203 0 0.0 1 0 1
NGSEP4 211.000 5.1 203 0 0.0 1 0 1

P-n22-k2 CCSEP 216.000 64.1 417 22 0.1 9 1 4
NGSEP1 216.000 64.8 437 22 0.1 9 1 4
NGSEP2 216.000 65.3 437 22 0.1 9 1 4
NGSEP3 216.000 70.3 462 115 0.1 9 1 4
NGSEP4 216.000 65.6 437 22 1.0 9 1 4

P-n22-k8 CCSEP 590.000 0.1 61 1 0.0 1 0 1
NGSEP1 590.000 0.1 61 1 0.0 1 0 1
NGSEP2 590.000 0.1 61 1 0.0 1 0 1
NGSEP3 590.000 0.1 61 49 0.0 1 0 1
NGSEP4 590.000 0.1 61 1 0.0 1 0 1

P-n23-k8 CCSEP 529.000 0.1 91 32 0.0 1 0 1
NGSEP1 529.000 0.2 95 32 0.0 1 0 1
NGSEP2 529.000 0.2 99 32 0.0 1 0 1
NGSEP3 529.000 0.1 90 40 0.0 1 0 1
NGSEP4 529.000 0.2 95 32 0.0 1 0 1

P-n40-k5 CCSEP 458.000 241.4 2009 122 0.8 87 29 15
NGSEP1 458.000 227.0 1256 113 0.5 51 15 11
NGSEP2 458.000 178.9 944 88 0.3 33 9 8
NGSEP3 458.000 290.1 1015 264 6.0 35 12 6
NGSEP4 458.000 324.9 1263 117 70.0 59 20 10

74

Inst. Sep. Obj. Time #R #C ST #N #B #Int

P-n45-k5 CCSEP 510.000† 3784.1 5518 316 4.8 559 255 23
NGSEP1 510.000† 3764.5 4379 223 3.6 445 189 32
NGSEP2 513.000† 3814.1 5165 256 3.8 383 174 12
NGSEP3 513.000† 3890.1 3467 447 155.2 257 107 18
NGSEP4 510.000† 3780.5 3438 201 1338.9 299 115 29

P-n50-k7 CCSEP 554.000† 3813.5 4682 316 13.5 581 241 46
NGSEP1 558.000† 3803.0 2849 283 8.4 451 182 40
NGSEP2 568.000† 3831.5 2907 312 4.5 421 194 8
NGSEP3 559.000† 3935.9 3100 346 327.1 273 99 29
NGSEP4 558.000† 3852.5 2873 290 1234.1 277 113 21

P-n50-k8 CCSEP 647.000† 3790.7 3648 521 9.7 1065 453 63
NGSEP1 636.000† 3781.6 2644 346 4.3 429 171 32
NGSEP2 644.000† 3819.9 2586 332 5.2 439 187 19
NGSEP3 629.000† 3778.7 2098 343 590.6 357 147 23
NGSEP4 637.000† 3867.8 2870 407 1125.3 345 124 38

P-n50-k10 CCSEP 696.000† 3629.5 2773 406 11.7 1191 528 65
NGSEP1 696.000† 3628.0 1965 310 7.4 739 328 36
NGSEP2 697.000† 3634.5 2116 293 7.7 697 314 29
NGSEP3 697.000† 3650.6 1767 411 569.2 447 208 11
NGSEP4 696.000† 3635.2 1437 280 1999.0 365 159 19

P-n51-k10 CCSEP 748.000† 3685.3 2922 497 7.6 783 348 37
NGSEP1 747.000† 3724.1 1953 428 4.1 375 170 10
NGSEP2 747.000† 3738.6 2251 370 4.6 371 136 43
NGSEP3 741.000† 3721.5 1642 291 304.5 327 142 20
NGSEP4 745.000† 3765.1 1772 335 941.0 321 127 29

75

	Introduction
	Problem Definition
	Branch-Price-and-Cut
	ng-Capacity Cuts
	Experiments
	Results
	Conclusion
	Proofs
	Additional Example Instances
	Additional Tables

