
Erasmus University Rotterdam

Master Thesis Operations Research & Quantitative
Logistics

A Branch-and-Cut Algorithm for the
Traveling Salesman Problem with Drone

Author:

Eveline van Dijck, 455264

Supervision:

Dr. P.C. Bouman, coach

Dr. R. Spliet, co-reader

August 27, 2018

Abstract

In this thesis, we introduce logical and comb inequalities for the Traveling Salesman

Problem with assistance of a Drone, where a truck and drone work together in a coordi-

nated tour that visits all customers. We have solved randomly generated instances with

up to 40 customer nodes using a branch-and-cut algorithm implemented by CPLEX

and assessed the performance of the proposed inequalities. Moreover, we present an

extensive analysis to determine the benefit from the proposed methods by running two

versions of the algorithm in parallel in an optimistic environment, where violated cuts

are identified immediately.

Contents

List of Tables iii

List of Figures iii

1 Introduction 1

2 Research gap 3

3 Literature review 5

3.1 Traveling Salesman Problem . 5

3.2 Prize Collecting Traveling Salesman Problem 10

3.3 Other related variants of the TSP . 12

3.4 Traveling Salesman Problem with assistance of a drone 14

3.5 Existing work on drone delivery problems . 16

4 Valid inequalities for the TSP-D 18

4.1 Initial blossom inequality . 18

4.2 Alternative blossom inequality . 19

4.3 Logical inequalities . 21

5 Separation algorithms 22

5.1 Separation of sub-tour inequalities . 22

5.2 Separation of blossom and simple comb inequalities 23

6 Implementation of the branch-and-cut algorithm 30

6.1 Branch-and-cut algorithm in CPLEX . 30

6.2 Finding cuts . 31

6.3 Experiment design . 32

6.4 Instance generation . 34

7 Computational results 35

7.1 Preliminary results . 35

i

7.2 Extensive results . 45

8 Conclusion 51

9 Further research 52

10 Bibliography 53

A Formulations 58

A.1 TSP formulation . 58

A.2 PCTSP formulation . 59

B Numeric results 59

B.1 Preliminary analysis . 59

B.2 Extensive analysis . 63

ii

List of Tables

1 Exact methods for TSP . 3

2 Solution methods for TSP-D . 4

3 Tested versions . 33

4 Solution times (minutes:seconds) using Use Cut Force, averages of 30 instances 36

5 Solution times (minutes:seconds) using Use Cut Force, averages of 30 instances 36

6 Number of nodes in the branch-and-cut tree N and number of user cuts added

U , using t = 0 and Use Cut Force, averages of 30 instances 37

7 Average differences in N and p-values . 38

8 Results using n = 20 and Use Cut Force, averages of 30 instances 42

9 Results using Use Cut Purge, t = 0, averages of 30 instances 43

10 Results preliminary analysis, averages of 30 instances (I) 60

11 Results preliminary analysis, averages of 30 instances (II) 61

12 Results preliminary analysis, averages of 30 instances (III) 62

13 Results for instance sizes in [32, 38], t = 0, averages of 30 instances 63

14 Results comparing versions A and C, n = 25 and t = 0 (I) 63

15 Results comparing versions A and C, n = 25 and t = 0 (II) 64

16 Results comparing versions A and C, n = 25 and t = 0 (III) 65

17 Results comparing versions A and C, n = 30 and t = 0 (I) 65

18 Results comparing versions A and C, n = 30 and t = 0 (II) 66

19 Results comparing versions A and B, n = 20 and t = 2 (I) 67

20 Results comparing versions A and B, n = 20 and t = 2 (II) 68

List of Figures

1 Outline of the branch-and-cut algorithm . 6

2 Example of a violated comb . 8

3 Example of a feasible solution . 8

4 Example of a blossom . 9

5 Example of a simple comb . 9

iii

6 Example of a solution using only the truck 15

7 Example of a solution using only the drone 15

8 Example of a solution using truck and drone 15

9 Example of a comb in an arbitrary instance 28

10 Creating a variant by deleting nodes from handle 28

11 Creating a variant by including loose nodes 28

12 Creating a variant by swapping tooth nodes 28

13 Creating a variant by swapping teeth . 28

14 Creating a variant by changing teeth . 28

15 Example of a comb with even number of teeth 29

16 Creating a variant by adding an extra tooth 29

17 Number of comb constraints for n = 30, per instance. Instances where no

comb constraints were generated are not shown. 39

18 Comparison of number of comb inequalities for different instance sizes, aver-

ages over 30 instances . 40

19 The number instances with a smaller tree, t = 0. In total 30 instances were

tested. Remaining instances had an equal N in both versions. 41

20 Averages over 30 instances, t = 0 . 44

21 The number instances with a smaller tree, t = 0 44

22 Number of nodes for all instances for n = 25 46

23 Time and optimality gap for all instances when t = 0 and n = 25 46

24 Number of nodes for all instances in version A and C 48

25 Time in branch-and-cut tree and optimality gap when the other version has

solved the problem . 48

26 Number of nodes for all instances with t = 2, n = 20 49

27 Time and optimality gap for all instances when t = 2 and n = 20 50

iv

1 Introduction

Since its introduction in a seminar talk by Hassler Whitney in 1934 and its introduction

in scientific literature by Flood (1955), the traveling salesman problem has been researched

extensively. An overview of the history of the traveling salesman problem, the theoretical

and computational results derived over the years, and an explanation of the most advanced

algorithm that is used at this moment can be found in the book by Applegate et al. (2011).

The classic traveling salesman problem, abbreviated as TSP in this thesis, is concerned with

finding a single route with minimal costs through all nodes in a graph. Next to the obvi-

ous practical application of finding the least cost route through geographical locations, there

are many more applications of the TSP, such as mapping the human genome and drilling

problems (Ben-Dor and Chor, 1997; Lin and Kernighan, 1973). Algorithms for solving the

TSP with geographical locations are widely used in planning software, resulting in a route

for people, vehicles or parcel delivery. This thesis will focus on this last topic, as recent

developments in drone technology give rise to a variant of the TSP where a parcel delivery

truck is assisted by a drone. Providing a delivery truck with a drone gives many benefits

as it has “best of both worlds” (Agatz et al., 2018). The main advantages of a drone are

its speed, its independence of traffic, and its low costs, as it is not operated by a human

pilot. However, both the load capacity and the travel range of a drone are limited, which

implies that drone delivery is mostly useful for last-mile delivery. Parcel delivery by drones

is already being tested by postal companies all over the world and is supported by the de-

velopments in delivery services and e-commerce (UnmannedCargo, 2016). At this moment,

86% of Amazon’s parcels in the USA weighs under 5 pounds, making it ideal for drones to

carry, and the company is making great progress in drone delivery (Wang, 2015; Oswald,

2017). Amazon drones are able to deliver packages within 30 minutes for one dollar and 82%

of customers are willing to pay for drone delivery service, making drone delivery very efficient

regarding both the costs and time needed for delivery (Keeney, 2015; Snow, 2014). In 2017,

UPS reported to have successfully performed a drone operation consisting of launching the

drone from the top of a delivery van, delivering a package to a customer and returning to the

van, while the delivery van visits another customer (UPS, 2017). Nowadays, frequent usage

1

of delivery drones still faces many economic, regulatory and technological obstacles. But as

delivering with truck and drone can be very advantageous from an economic point of view,

there will certainly be massive disruptions and new business models emerging in the field of

drone delivery (Lee et al., 2016; Campbell et al., 2017).

The variant of the traveling salesman problem with assistance of a drone (TSP-D) poses

many changes with respect to the classic traveling salesman problem. In the TSP-D the

truck drives a tour while visiting customer nodes. The truck is equipped with a drone, which

can be launched while the truck is parked at a customer location. From that moment on, the

truck and drone are performing tasks in parallel. It is assumed that the drone can only carry

one parcel at a time due to its limited capacity, and therefore it can only visit one customer

per flight operation. After delivering the parcel, the drone and truck will reunite at any

customer node. In the meantime, the truck can visit one or more customer nodes, or stay at

the same customer waiting for the drone to return. In the traveling salesman problem with

drone, the objective is to find a tour visiting all customers with minimal costs. These costs

can be expressed in terms of distance, travel time, fuel and electricity costs, or environmental

impact, but we will use travel time in this thesis. Moreover, it is assumed there is one

depot where the truck starts and ends its tour. One could solve an instance without depot

by repeatedly solving this problem for all customers as being the depot. Furthermore, it is

assumed that all customers can be visited by the truck and the drone. In case a customer can

only be visited by one of the two systems, this could be incorporated easily in the problem,

making the problem easier to solve. The goal of this thesis is to contribute to contemporary

research by finding valid inequalities for the TSP-D and using them efficiently in a branch-

and-cut algorithm, as is explained in Section 2. Section 3 presents an overview of available

research to the TSP-D and related combinatorial problems. Valid inequalities for the TSP-D

are derived in Section 4 and Section 5 discusses the way they are found in a branch-and-cut

algorithm. All implementation details of this algorithm are noted in Section 6, followed by

results of computational experiments in Section 7. Finally, the conclusion and suggestions

for future research will be covered in Section 8 and Section 9, respectively.

2

2 Research gap

As drone-assisted parcel delivery has become technically possible only recently, research to

the TSP-D is not as extensive as research to the TSP, which has been around for decades. As

the research in this thesis focuses on solving the TSP-D with an exact algorithm, we focus

on exact solving methods. The most straightforward method for solving the TSP is listing

all permutations and choosing the cheapest tour in that list. The dynamic programming

approach developed by Held and Karp (1962) is also exact and has the best time-complexity

for any known algorithm capable of solving all instances of the TSP. The research to the TSP

has been greatly influenced by the work of Dantzig et al. (1954), who introduced the cutting

plane method. Ideas from this method are used in the branch-and-cut algorithm, which is

the best performing exact algorithm at this moment. This is mainly due to the fact that

solving the subproblems can be done quite fast and the branch-and-cut algorithm guarantees

that the found solution is optimal. All exact methods are summarized in Table 1.

Table 1: Exact methods for TSP

Procedure Running time Max nr of cities

Find cheapest tour among all permutations O(n!)

Held-Karp algorithm (Held and Karp, 1962) O(n22n)

Branch-and-bound algorithms 40-60

Cutting plane method 15 112

Branch-and-cut algorithms 85 900

For the TSP-D, only few articles have been published. The first article to introduce the prob-

lem was written by Murray and Chu (2015). A mixed integer program was formulated and

simple heuristics were constructed and tested. Ha et al. (2015) propose two other heuristic

and reformulate the problem. This reformulation is comparable to the mixed integer pro-

gramming formulation used by Agatz et al. (2018). They also propose methods to construct

a TSP-D tour from an optimal TSP tour, based on local search and dynamic programming.

Methods using meta-heuristics were developed by Ferrandez et al. (2016), Ponza (2016) and

Freitas and Penna (2018), who developed genetic algorithms, simulated annealing methods

3

and a variable neighborhood search, respectively. An exact dynamic programming approach

was established by Bouman et al. (2017). In this paper, instances with 16 customer nodes

are solved to optimality. When limiting the number of nodes the truck can visit on its own,

instances with up to 20 customer nodes are solved to optimality. Finding the optimal solution

for those instances, allowing the truck to visit two customers on its own, yields an average

computation time of more than 10 hours. When visits by trucks only are disabled for an

instance of 20 customer nodes, computing the optimal solution takes a little over 27 minutes.

Table 2 gives a full overview of the available methods.

Table 2: Solution methods for TSP-D

Procedure Source

Exact algorithms Integer linear programming Agatz et al. (2018)

Dynamic Programming Bouman et al. (2017)

Heuristic methods Simple heuristics Murray and Chu (2015), Ha et al. (2015)

Genetic algorithm Ferrandez et al. (2016)

K-means algorithm Ferrandez et al. (2016)

Simulated annealing Ponza (2016)

Variable neighborhood search Freitas and Penna (2018)

Approximation algorithms Improvements from TSP tour Agatz et al. (2018)

Note: Based on a similar table in Bouman et al. (2017)

It is observed that exact methods that are well performing for the TSP have not been de-

veloped for the TSP-D. As the TSP-D differs substantially from the TSP and other existing

variants, one cannot use theoretical results from the TSP directly in the TSP-D. This thesis is

concerned with solving the TSP-D with a branch-and-cut method, which requires derivations

of templates of cuts and identification of violations of cuts. The main difference between the

TSP-D and the classic TSP is that the truck does not have to visit all nodes in the graph

and has to be coordinated with a second system, which is a drone in this case. This surely

complicates the derivations of cuts. Deriving templates for valid inequalities and constructing

identification algorithms to find them for the TSP-D are the main goals of this thesis. The

main focus is on comb inequalities, which were introduced by Hong (1972). These inequalities

4

prove to be useful in solving the more difficult instances of TSP-like problems. (Applegate

et al., 2011)

3 Literature review

The articles and other sources assessed for the literature review concern the classic Traveling

Salesman Problem, the Prize Collecting Traveling Salesman Problem, other related TSP

variants, the Traveling Salesman Problem with Drone, and other combinatorial problems

with drones reviewed in that order.

3.1 Traveling Salesman Problem

As mentioned earlier, the Traveling Salesman Problem is concerned with visiting all nodes

in a graph with minimal costs. The TSP generalizes most of the problems considered in this

thesis. The used formulation for the TSP in Appendix A.1 was introduced by Dantzig et al.

(1954). The TSP is modeled as a set V of nodes and a set E of edges. Together these sets

form an undirected graph G = (V,E). In this formulation, decision variable xij defines for

each edge (i, j) ∈ E if it is used in the optimal tour. Parameter cij is the cost of using edge

(i, j). It is assumed that cij is defined for all (i, j) ∈ E, and therefore, traveling is possible

between all nodes v ∈ V . The objective is to minimize the sum of the costs of all edges that

are used in the tour. The first constraint ensures that all nodes in the set V are visited by

the traveling salesman and the second constraint makes sure all variables are either 0 or 1.

3.1.1 Branch-and-cut algorithm for the Traveling Salesman Problem

As explained in Section 2, the branch-and-cut method is the most successful method in solving

the TSP optimally. Because of its importance for this thesis, we will discuss it in detail in

this section. The branch-and-cut algorithm is a combination of the cutting plane method and

the widely known branch-and-bound algorithm. The cutting plane method for the TSP was

introduced by Dantzig et al. (1954). The method solves the linear programming relaxation of

a problem iteratively, and adds cuts after each iteration. With each cut, the feasible region

of the linear programming relaxation is shrunk without deleting possible solution tours. An

5

inequality that cuts the solution space of the linear programming relaxation, but does not cut

any feasible solutions to the original integer programming problem, is called a valid inequality,

or facet-defining. The procedure of solving the linear programming relaxation and searching

for valid cuts is repeated until a feasible solution for the original problem is obtained. In the

branch-and-cut algorithm, the first step is to initialize a linear programming relaxation of the

original problem. Initially, a cutting plane procedure is used until no more valid inequalities

can be found anymore. The best solution for the original problem and the relaxed problem

is stored. Then, the first branching step is taken on a fractional variable, which means this

fractional variable is restricted to be either 0 or 1. This yields two new nodes in the so-called

branch-and-cut tree. In every node, the new linear programming relaxation of a problem is

solved. If the solution of the relaxed problem is higher than the best solution found for the

original problem, this means there is no room for improvement in this branch of the tree

and the node is pruned, i.e. cut off. Otherwise, the procedure of branching, solving and

looking for valid inequalities is repeated. Whenever a better incumbent solution is found, the

bounds throughout the tree are updated. The procedure of the branch-and-cut algorithm is

summarized in Figure 1. The implementation of this algorithm in this thesis is explained in

detail in Section 6.

Figure 1: Outline of the branch-and-cut algorithm

The search for valid inequalities can be either exact or heuristic. Exact separation procedures

guarantee to find all violations of a certain type of inequalities. Heuristic separation proce-

6

dures aim to find violated inequalities, but do not guarantee to find violations. Therefore, the

exact separation procedures generally cut off more of the solution space, yielding a tighter

formulation. A tighter formulation might cause a decrease in the number of nodes needed

to arrive at the optimal solution. The main advantage of heuristic separation procedures is

their speed, which is why they are often used in state-of-the-art branch-and-cut algorithms.

3.1.2 Templates of cuts in the TSP

Sub-tour inequalities were introduced in Dantzig et al. (1954) and are necessary for a complete

formulation of the TSP. They ensure that for every subset of nodes, there are at least 2 paths

going in and out the subset. There can also be multiple paths through the subset, but the

number of used edges surpassing the border of the subset should always be even.∑
(xij : (i, j) has one end in S and one end not in S) ≥ 2 for all S ⊂ V, S 6= ∅ (1)

Comb inequalities as in Equation 2 were introduced by Hong (1972) and use subsets shaped

like a comb, where H is the handle of the comb and Tj is tooth j ∈ {1, . . . , s}. Combs are

officially defined by Equations 3-6.

∑
(i,j)∈E:|(i,j)∪H|=1

xij +
s∑

j=1

∑
(i,j)∈E:|(i,j)∪Tj |=1

xij ≥ 3s+ 1 (2)

|H ∩ Tj| ≥ 1 ∀j = 1, . . . , s (3)

|Tj \H| ≥ 1 ∀j = 1, . . . , s (4)

|Ti ∩ Tj| = 0 1 ≤ i < j ≤ s (5)

s odd (6)

To illustrate the working of this inequality, we consider the components of the comb inequality

separately in the case where all teeth have a single path going through them, yielding a

minimal left-hand side of the inequality. The first term sums the weight of all edges surpassing

the border of the handle. As every tooth has at least one node within the handle and at least

one outside of it because of Equations 3 and 4, the single path through a tooth is an edge

surpassing the border of the handle. Extending this to all teeth, the term
∑

(i,j)∈E:|(i,j)∪H|=1 xij

7

would thus yield a minimum of s. The second term of the inequality sums the edges surpassing

the border of the teeth. In case there is a single path going through each tooth, there

must be two edges surpassing its border. This yields a minimum value of 2s for the term∑s
j=1

∑
(i,j)∈E:|(i,j)∪Tj |=1 xij. Therefore, the left-hand side of Equation 2 would always be

greater than or equal to 3s. However, as s is by definition odd, 3s is odd as well. As the

number of nodes going in and out of a subset is supposed to be even, the right-hand side can

be increased by one in any case. This results in the comb inequality above. Figure 2 shows a

fractional solution that is not a valid tour, but all sub-tour constraints are met. The dotted

edges in this figure have a weight of 0.5, the others a weight of 1. Therefore, the left hand

side of the equation is equal to 9, as the sums of edge weights crossing the borders of the

handle and the teeth are 3 and 6, respectively, and the right hand side is 10. For the comb

in Figure 3, both the left and right hand side are equal to 10 and therefore, this solution

does not violate the comb inequality. In case each tooth only contains 2 nodes, the comb

inequality is also called a 2-matching inequality or blossom inequality in literature. When

the intersection of the handle with each tooth consists of one single node, it is called a simple

comb. Figures 4 and 5 show examples of both types of inequalities. As separation algorithms

are mainly available for these types, the focus of this thesis is on finding blossom and simple

comb inequalities.

Figure 2: Example of a violated comb Figure 3: Example of a feasible solution

8

Figure 4: Example of a blossom Figure 5: Example of a simple comb

In the TSP, comb inequalities are generalized by clique tree inequalities and path inequalities.

Moreover, in the state-of-the-art branch-and-cut algorithm valid inequalities are found by

multiple separation algorithms, shrinking techniques and cut metamorphoses. A full overview

of these approaches can be found in Applegate et al. (2011). These cuts and techniques for

the TSP-D are not considered in this thesis, but can be investigated in further research.

3.1.3 Finding cuts in the TSP

In 1993, the branch-and-cut algorithm was able to solve previously unsolved cases of the

TSP by implementing several separation algorithms. (Applegate et al., 1993) The shrinking

procedure was first formalized by Padberg and Rinaldi in 1990, but was already used by

Crowder and Padberg in 1980 (Padberg and Rinaldi, 1990b; Crowder and Padberg, 1980).

The idea behind shrinking is that the shrunk node set is smaller, and the violated cuts

are more easily visible. Shrinking is often used as a pre-processing step (Applegate et al.,

2011). Padberg and Rinaldi (1990a) also developed a separation algorithm for sub-tour

constraints. This algorithm solves n − 1 max-flow problems, but reduces the size of the

problem by shrinking nodes on the same side of a minimum capacity cut. For blossom

constraints, which are defined as comb equalities with only two nodes in each tooth, Padberg

and Rao (1982) developed a polynomial time exact separation algorithm, solving an odd

minimum cut-set problem. Calculations are sped up by using the shrinking procedure and

considering connected components. For comb inequalities, two heuristic algorithms were

developed. Grotschel and Holland (1991) shrink the solution graph such that some violated

comb constraints are turned into violated blossom constraints and apply the Padberg-Rao

9

procedure afterwards. Padberg and Rinaldi (1990b) propose an algorithm that is based on

a block decomposition of the graph and the concept of virtual edges. As both algorithms

for finding combs are a heuristic, they might not identify existing violated cuts. Padberg

and Rinaldi (1991) introduced, among other methods, the procedure of removing constraints

during the branch-and-cut algorithm if they have not been relevant for a number of iterations.

The removed constraints are then put in a cut pool, which makes them easier to identify

if violated later. In the meantime, more advanced algorithms have been incorporated in

the branch-and-cut method, such as the consecutive ones procedure, gluing and tightening.

(Applegate et al., 2011) Again, these seem to be very interesting for future research.

3.2 Prize Collecting Traveling Salesman Problem

The Prize Collecting Traveling Salesman Problem (PCTSP) was introduced by Balas (1989).

It concerns a traveling salesman problem where the salesman is penalized for every node that

is not included in the tour. The total number of penalties cannot exceed a certain threshold,

while traveling costs are minimized. The PCTSP is related to the traveling salesman problem

with assistance of a drone in the sense that nodes can be skipped in both problems. The

PCTSP formulation in Appendix A.2 was introduced by Balas (1995). In the PCTSP, the

traveling salesman gets a prize wi for every node i he visits. The goal is to find a minimal

cost tour while collecting a minimum amount of w0 of prize money. Decision variable xij

is used to indicate whether arc (i, j) is used in the tour and yi indicates whether node i is

skipped, i.e. not included in the tour. Costs for using arcs and skipping nodes are defined on

parameters cij and ci, respectively. U is defined as U =
∑

i∈N wi − w0. Moreover, GL(x, y)

is the subgraph of directed graph GL = (N,A∪L) where xij = 1 and yi = 1. The PCTSP is

also researched without the penalty threshold. Bienstock et al. (1993) extended this problem

to a Steiner Tree variant. For the PCTSP without the penalty threshold, lower bounds were

derived and computational results were reported in Dell’Amico et al. (1995). The Steiner

Tree variant of the TSP-D and the derivation of lower bounds independent of the drone’s

speed form also a gap in the research to the TSP-D.

10

3.2.1 Templates of cuts in the PCTSP

In early research to this problem, Balas has derived many polyhedral cuts for the PCTSP.

(Balas, 1989, 1995). Balas (1989) derived sub-tour constraints for less complex polytopes

in his search for PCTSP sub-tour constraints. For this research, the results for a polytope

without the knapsack constraint are also of interest, as the TSP-D will, in general, not contain

such a constraint. For simplicity, let x(S, T) =
∑

i∈S
∑

j∈T\{i} xij and y(S) =
∑

i∈S yi. For

this simplified variant of the PCTSP, Balas derives the valid sub-tour constraint in Equation

7 for all S ⊂ V , 2 ≤ |S| ≤ n− 1, and all k ∈ S, l ∈ V \ S. The sub-tour constraints for the

PCTSP polytope can be strengthened, depending on the price parameters of the considered

subset. In all cases, the constraints are facet-defining if |S| ≤ n− 2.

x(S, S) + y(S \ {k})− yl ≤ |S| − 1 (7)

Defining combs and comb inequalities is more difficult when feasible tours do not visit all

nodes in a graph. Balas (1995) derived comb inequalities as in Equation 8. This inequality

is facet-defining for both the PCTSP polytope and its earlier discussed simplified variant.

x(H,H) +
s∑

j=1

x(Tj, Tj) + y(H) ≤ |H|+ s− 1

2
(8)

Source-destination inequalities were introduced for the asymmetric traveling salesman poly-

tope by Balas and Fischetti (1993). This class of inequalities generalizes many other families

of facets, one of which is the family of comb inequalities. As there are currently no separation

algorithms available for source-destination inequalities, they will not be investigated in this

thesis. In an implementation of a branch-and-cut algorithm for the PCTSP, Bérubé et al.

(2009) also use inequalities from the associated knapsack polytope and logical inequalities.

The latter type uses the fact that an edge can only be part of a solution if the adjacent edges

are not in a loop. The inequalities in Equations 9 and 10 follow from this reasoning.

xij ≤ 1− yi ∀(i, j) ∈ δ(i), i ∈ V \ {v0} (9)

xij ≤ 1− yj ∀(i, j) ∈ δ(j), j ∈ V \ {v0} (10)

11

3.2.2 Solving the PCTSP

Feillet et al. (2005) consider three variants of the traveling salesman with profits, one of which

is the PCTSP. In all variants is it possible to exclude customers from the tour, which is why

the proposed solution approaches are of interest for this thesis. Before 1998, all solution

approaches were based on branch-and-bound. Thereafter, two papers solved a symmetric

TSP with profits with the branch-and-cut algorithm, yielding optimal solutions for 300 and

500 nodes, respectively. Later, Bérubé et al. (2009) used a branch-and-cut algorithm solving

the PCTSP. Using the results of Balas (1995), they defined blossoms and simple combs

and separated these cuts with the heuristic procedures of Padberg and Rinaldi (1990b) and

Fischetti et al. (1998). Their algorithm also includes column generation. From this report

it is concluded that slightly more instances can be solved when using comb inequalities and

that they function best for TSP instances, compared to instances of the Vehicle Routing

Problem.

3.3 Other related variants of the TSP

In this section, available research on other problems with similarities to the TSP-D is sum-

marized. The Orienteering Problem (OP) is closely related to the PCTSP, as prizes are

collected when visiting nodes and tours that skip nodes are feasible. The objective of the

OP is to find a tour that maximizes the total amount of collected prizes while a time thresh-

old is not exceeded. (Feillet et al., 2005) Polyhedral results for the OP are similar to the

results for the PCTSP and are therefore not discussed in this literature review. Fischetti

et al. (1998) describe a branch-and-cut and price algorithm for the OP, as well as separa-

tion algorithms for comb inequalities. Violated comb inequalities are identified by inspecting

the connectivity of minimum-weight spanning trees found by the greedy algorithm of Kruskal

(1956). In Gendreau et al. (1998), a branch-and-cut algorithm is developed for the OP, where

comb inequalities are found by the Padberg and Rinaldi (1990b) algorithm. A remarkable

aspect to their solution method is that both the number of constraints identified and the

number of constraints generated is limited by 50 and 30, respectively. Moreover, heuristics

are used within the branch-and-cut algorithm to define a feasible solution bound for a sub-

12

problem. Finally, branching is done primarily on the yk variables of the formulation of the

STSP, meaning they branch on the decision to include a node in the tour. If all variables

yk are integer, a similar procedure is followed for xij. The preference for branching on yk

variables is also used in this thesis. Both Gendreau et al. (1998) and Fischetti et al. (1998)

also use logical inequalities in their branch-and-cut algorithm. Their usage corresponds with

the usage for the PCTSP. Finally, Gendreau et al. (1998) and Fischetti et al. (1998) solve

instances with up to 300 and 500 nodes to optimality, respectively. Next to the PCTSP and

OP, another non-spanning variant of the classic TSP is the Generalized Traveling Salesman

Problem (GTSP). In this problem, the nodes are clustered and the objective is to find a

minimal cost tour where each cluster is visited at least once. A complete undirected graph

G = (V,E) is given. Node subsets C1, . . . , Cm form a proper partition of V and are called

clusters. cij is the cost of using edge (i, j). Decision variable xij is 1 if edge (i, j) is selected

in the considered tour, yi is a variable indicating whether node i is visited. Inequalities for

the GTSP were summarized in Fischetti et al. (1997). In that paper, the comb inequality

in Equation 11 was introduced. In this equation, βi is a parameter depending on how many

clusters are contained in both the teeth and the handle and how many are contained in a

tooth only.

∑
(i,j)∈E(H)

xij +
s∑

j=1

∑
(i,k)∈E(Tj)

xik +
∑
i∈V

βi(1− yi) ≤ |H|+
s∑

j=1

(|Tj| − 1)− s+ 1

2
(11)

When assuming there are no whole clusters in the TSP-D, this comb inequality is equal to

the comb inequality for the PCTSP. Fischetti et al. (1997) were the first to develop a branch-

and-cut algorithm for the GTSP. They propose several methods, both exact and heuristic,

to find violated cuts in the symmetric variant of the GTSP. For comb inequalities, they use

a heuristic method based on a procedure by Padberg and Grotschel (1985) for the TSP,

based on the connectivity of the fractional graph. Another heuristic separation algorithm

for finding combs is concerned with shrinking all clusters to a single node. This method is

not considered in this research as there are, in general, no clusters in the TSP-D. Using the

branch-and-cut algorithm, Fischetti et al. (1997) find optimal solutions for GTSP instances

up to 442 nodes. The Covering Salesman Problem (CSP) is related to the TSP-D in the

sense that the salesman does not have to visit all nodes in the graph. However, the nodes

13

that are not included in the tour should be within a certain distance of a visited node. The

Covering Tour Problem (CTP) is very similar to the CSP but defines a set of nodes that

must be included in the tour. The CSP, the CTP and the GTSP are all special cases of the

Generalized Covering Salesman Problem, introduced by Golden et al. (2012). For the CTP,

Gendreau et al. (1997) developed a branch-and-cut algorithm. They have developed several

families of cuts, one of which is the family of blossom inequalities. Other derived inequalities

include dominance constraints and sub-tour elimination constraints. In the proposed branch-

and-cut algorithm, and in this thesis, simple combs are found with the algorithm by Padberg

and Rinaldi (1990b). Gendreau et al. (1997) find optimal solutions for CTP for up to 600

nodes. The truck and trailer routing problem (TTRP) relates to the TSP-D in the sense

that not all nodes are covered by the same systems. In the TTRP, a truck and trailer need

to visit all customer nodes in a graph. Some customers are only accessible by the truck,

meaning the truck has to leave the trailer waiting at a node in the main tour and visiting

other nodes in the meantime via a sub-tour. A variant of this problem with a single truck and

trailer and parking locations for the trailer outside customer nodes is called the Single Truck

and Trailer Routing Problem with Satellite Depots and was solved with a branch-and-cut

algorithm by Belenguer et al. (2016). Two variants of comb inequalities were used, one where

some depots are in the handle of the comb and one where every tooth in the comb contains

at least one depot. Using this approach, Belenguer et al. (2016) solved several instances with

100 customer nodes and up to 20 satellite depots.

3.4 Traveling Salesman Problem with assistance of a drone

This section introduces the TSP-D and its notation formally. In literature, the TSP-D was

formulated in two different manners. Murray and Chu (2015) introduced the problem as the

Flying Sidekick Traveling Salesman Problem (FSTSP), and used a very extensive formulation

taking many aspects into account, such as the endurance of the drone. Agatz et al. (2018) and

Ha et al. (2015) use a formulation that resembles the formulation in Appendix A.1 relaxing

some of the constraints posed in the FSTSP. The latter uses other input that increases the

number of variables and constraints, but considering the similarities between the TSP and

TSP-D formulation, the formulation by Agatz et al. (2018) is used in this research. Again, a

14

graph G = (V,E) is defined. For the traveling salesman problem with assistance of a drone,

two type of costs are defined in terms of travel time. The travel time of the truck between

node i and j is defined as c(e) = c(vi, vj). Similarly, the travel time of the drone is defined as

cd(e) = cd(vi, vj). Nodes are divided in drone nodes, which are only visited by the drone, truck

nodes, which are only visited by the truck, and combined nodes, visited by both systems.

Next, the concept of an operation is introduced. An operation o consists of a combined start

and end node, at most one drone node, and a non-negative number of truck nodes. The set

of feasible operations is then defined as O. Parameter co is defined as the cost of an operation

o ∈ O. Decision variable xo indicates for each o ∈ O if it is selected in the optimal tour.

Finally, an auxiliary variable yi is defined for each node i ∈ V to indicate whether node i

is used as a start node in the solution. Several subsets of O have been defined. O−(i) and

O+(i) contain all operations o that, respectively, start and end in node i. O(ij) contains all

operations starting in node i and ending in j. O(i) is the set of all operations o that contain

node i. O−(S) and O+(S) are subsets containing all operations that start in subset S and

end in V \S and end in S and start in V \S, respectively. Figure 8 depicts a feasible solution

for the TSP-D using 4 operations. Drone nodes and truck nodes are represented as yellow

and green points, respectively. Combined nodes are blue. Important to note is that in this

thesis, only operations with at most one truck node are considered. Comparing this solution

with the truck only solution in Figure 6 and the drone only solution in Figure 7 it is clear

that the coordination of truck and drone yields a more complex solution structure, but, as it

has been shown by Agatz et al. (2018), it can reduce the delivery time substantially.

Figure 6: Example of a solu-

tion using only the truck

Figure 7: Example of a solu-

tion using only the drone

Figure 8: Example of a solu-

tion using truck and drone

15

Agatz et al. (2018) developed the integer programming formulation of the TSP-D in Equa-

tions 12-20. For all assumptions used in this formulation, the reader is referred to Agatz

et al. (2018). For this operation oriented formulation, a sub-tour constraint was included in

Equation 16 in the formulation.

min
∑
o∈O

coxo (12)

s.t.
∑

o∈O(i)

xo ≥ 1 ∀i ∈ V (13)

∑
o∈O+(i)

xo ≤ n · yi ∀i ∈ V (14)

∑
o∈O+(i)

xo =
∑

o∈O−(i)

xo ∀i ∈ V (15)

∑
o∈O+(S)

xo ≥ yi ∀S ⊂ V \ {v0}, i ∈ S (16)

∑
o∈O+(v0)

xo ≥ 1 (17)

yv0 = 1 (18)

xo ∈ {0, 1} ∀o ∈ O (19)

yi ∈ {0, 1} ∀i ∈ V (20)

3.5 Existing work on drone delivery problems

Whereas Section 2 summarizes available literature on solving the TSP-D with state of the art

techniques, other research focuses on relaxing the assumptions made by Agatz et al. (2018)

or extending the problem in a different way. Marinelli et al. (2017) consider a version of

the TSP-D where the truck and drone can meet en route instead of at a customer node.

To solve this variant, they use the Greedy Randomized Adaptive Search Procedure, which

was earlier used by Ha et al. (2015). The TSP-D was researched from an environmental

perspective by Park et al. (2018), who conclude that the global warming potential (GWP)

per 1 km delivery by a motorcycle is six times as high as the GWP when using a drone,

and the amount of particulates produced by motorcycle delivery was twice the size of the

16

amount produced by drone delivery. The cooperation of trucks with drones in a delivery

system is also researched in other set-ups. The Heterogeneous Delivery Problem (HDP)

and the Multiple Warehouse Delivery Problem (MWDP), both introduced by Mathew et al.

(2015), are Vehicle Routing Problems using drones as a delivery tool. In the HDP, a truck

is equipped with a drone and locations where the truck can stop safely are marked as street

vertices. The drone is then only used for last mile delivery to customers. An optimal solution

is obtained by reducing the HDP to a Generalized Traveling Salesman Problem, a variant

of the TSP discussed earlier in this thesis. In the MWDP, the street vertices are replaced

by static warehouses and a fleet of drones is responsible for all deliveries. This problem is

solved by reducing it to a Traveling Salesman Problem and by an exact polynomial time

algorithm. The Same-Day Delivery Routing Problem with Heterogeneous Fleets, introduced

by Ulmer and Thomas (2017), uses multiple trucks and drones to yield same-day delivery.

They solve this problem with a Markov decision process model and Approximate Dynamic

Programming. Another problem where multiple trucks and drones are used to deliver parcels

is the Vehicle Routing Problem with Drones (VRPD). A worst case analysis for this problem

was done by Wang et al. (2017), and the most advantageous truck and drone combinations

were found by Poikonen et al. (2017). Carlsson and Song (2017) approach this problem using

the continuous approximation paradigm, and find that the improved efficiency depends on the

relative speeds of the vehicles and the number of drones used. For the variant of the VRPD

with time windows, Di Puglia Pugliese and Guerriero (2017) introduced a mathematical

model and solved several instances with CPLEX. A variant of the VRPD where drones

are not linked to a single truck was introduced and solved with a local search heuristic by

Daknama and Kraus (2017). Dorling et al. (2017) introduce two Vehicle Routing Problems

using a single drone to deliver parcels and use a simulated annealing algorithm to solve them.

Moreover, Dorling et al. (2017) introduces a cost function considering energy consumption

and re-usage of drones. Variations on the drone-only delivery problem were researched by

Vorotnikov et al. (2017) and Othman et al. (2017). A multi-trip version of the VRPD with

exact energy calculation was solved by Cheng et al. (2018) using a branch-and-cut algorithm.

Other related problems include the multi-objective Green UAV Routing Problem by Coelho

et al. (2017) and drone delivery in health care by Scott and Scott (2017). A more extensive

17

overview of research on the drone delivery problems mentioned can be found in Freitas and

Penna (2018). A full literature review on drones in logistic settings can be found in Otto

et al. (2018).

4 Valid inequalities for the TSP-D

In this section, several valid inequalities are developed for the Traveling Salesman Problem

with assistance of a Drone. As in the similar combinatorial problems covered in the previous

section, we will derive comb inequalities and logical inequalities. The combs are based on

the literature described in Sections 3.1 and 3.2. The logical inequalities are derived from the

branch-and-cut algorithms for the problems described in Section 3.3.

4.1 Initial blossom inequality

An initial idea for defining comb inequalities is:∑
o∈O−(H)

xo +
∑

o∈O+(H)

xo +
s∑

j=1

(∑
o∈O−(Tj)

xo +
∑

o∈O+(Tj)

xo

)
≥ 3s+ 1 (21)

The idea behind this inequality is that the operations are considered as arcs from their start

node to their end node, and the chosen operations O′ will span a directed Eulerian graph

G′. This inequality, however, allows for teeth and a handle containing only nodes where no

operations start or end and is therefore not valid. To have valid inequalities, it should be

guaranteed that every subset Tj \H and H ∩ Tj contains at least one node that is the start

node of an operation, i.e. yv = 1. To incorporate this, the following constraints for a blossom

inequality were drafted.∑
i∈Tj

yi − 1 ≤ zj ∀j = 1, . . . , s (22)

zj ≤ yi ∀i ∈ Tj,∀j = 1, . . . , s (23)
s∑

j=1

zj − s ≤ z− 1 (24)

s∑
j=1

zj − s ≥ −s · (1− z) (25)

18

zj ∈ {0, 1} ∀j = 1, . . . , s (26)

z ∈ {0, 1} (27)

These constraints will not cut the feasible region of the problem as they are only used to

define new variables zj and z. The binary variable zj is equal to 1 if nodes k, l in subset Tj

have yk = 1 and yl = 1, and is zero otherwise. Binary variable z is 1 if all zj are equal to 1.

Using z as an indicator variable, the new comb inequality becomes:

∑
o∈O−(H)∪O+(H)

xo +
s∑

j=1

∑
o∈O−(Tj)∪O+(Tj)

xo ≥ z · (3s+ 1) (28)

The main advantage of this formulation is that it is derived from the comb inequalities

for the TSP and, therefore, is a valid inequality for the TSP-D. An obvious disadvantage

of the derived blossom constraints is that variables z and z have to be added to the MIP

formulation of the TSP-D which is used by the branch-and-cut algorithm. This is generally

very hard to model. Moreover, many constraints are added to the formulation that may

not be necessary in later steps of the cutting plane or branch-and-bound algorithm. As an

alternative formulation of this comb inequality, which does not need additional variables

in the main MIP, is presented in the next section, we will not use the comb inequality in

Equation 28 in our computational experiments.

4.2 Alternative blossom inequality

In the researched literature, we have seen that comb inequalities could be defined for both

directed and undirected graphs. Originally, the operations in the TSP-D formulation are

directed, but we will disregard the directions for finding combs. After all, a violated comb

inequality in an undirected graph is violated, it is also violated in the directed variant. To

find an alternative comb formulation, we look at the tour that is formed by all combined

nodes and the operations connecting them. In the terminology of Balas (1995), the truck

and drone nodes can be seen as skipped nodes. The following notation is introduced for the

TSP-D. a(S) sums the weights of all operations that start and end in subset S. a(S, T) sums

the weights of all operations that start in S and end in T , where operations that start and

19

end in the same node are neglected.

a(S) =
∑

i,j∈S,i6=j

∑
o∈O−(i)∩O+(j)

xo for S ⊆ V (29)

a(S, T) =
∑
i∈S

∑
j∈T\{i}

∑
o∈O−(i)∩O+(j)

xo for S, T ⊆ V (30)

To derive an alternative formulation for comb inequalities, we also need to make extra as-

sumptions. Whereas using the same edge multiple times might be optimal in the TSP-D, as

proven by Agatz et al. (2018), we now assume that an edge can be used only once. Moreover,

it is assumed that every node has exactly one ingoing edge and one outgoing edge, i.e. the

node is incident to exactly two other nodes if it is visited by the tour. In the original TSP-D,

a possible solution is to leave the truck at the depot and visit all customers with the drone,

or to use an edge multiple times. In order to use comb constraints, it is assumed that these

types of solutions is not possible in this thesis. Equation 31 replaces Equation 14 in the

TSP-D formulation. Equation 32 is implied by this equation, the sub-tour constraints and

the bound constraints.∑
o∈O+(i)∩O−(i)

xo = 2 · yi ∀i ∈ V (31)

∑
o∈O(ij)∩O(ji)

xo ≤ 1 ∀i ∈ V, j ∈ V \ {i} (32)

To derive comb constraints for the TSP-D, we sum Equation 31 for all nodes in the handle

and sum Equation 32 for all edges that form the teeth. This yields the following inequality:∑
i∈H

∑
o∈O+(i)∩O−(i)

xo +
s∑

k=1

∑
(i,j)∈Tk

∑
o∈O(ij)∩O(ji)

xo ≤ 2 ·
∑
i∈H

yi + s

Both sides of this constraint are divided by 2 and rewritten in the symbols used by Balas

(1995). As the first term sums all weights starting and ending in H, it is the same as twice

the sum of the weights of all edges within nodes in H added to the sum of the weights of all

edges having a start or end node in H, yielding 2 · a(H) + a(H,V \H).

1

2
·
∑
i∈H

∑
o∈O+(i)∩O−(i)

xo +
1

2
·

s∑
k=1

∑
(i,j)∈Tk

∑
o∈O(ij)∩O(ji)

xo ≤
∑
i∈H

yi +
1

2
· s

1

2
·
(

2 · a(H) + a(H, V \H)
)

+
1

2
·

s∑
k=1

a(Tk) ≤
∑
i∈H

yi +
1

2
· s

20

a(H) +
1

2

(s∑
k=1

a(Tk) + a(H,V \H)−
s∑

k=1

a(Tk)
)

+
1

2
·

s∑
k=1

a(Tk) ≤
∑
i∈H

yi +
1

2
· s

a(H) +
s∑

k=1

a(Tk) +
1

2
·
(
a(H, V \H)−

s∑
k=1

a(Tk)
)

≤
∑
i∈H

yi +
1

2
· s

It is important to note that a(H,V \H)−
∑s

k=1 a(Tk) is always positive. As the teeth are a

subset of all edges going out of H,
∑s

k=1 a(Tk) is always smaller than a(H,V \H). Therefore,

we can safely round the coefficient 1
2
down to 0. As s is odd by definition, rounding down

1
2
· s yields s−1

2
. Therefore, rounding all coefficients down to the nearest integer yields the

blossom constraint in Equation 33.This equation is similar to the blossom constraints used

by Gendreau et al. (1997), Fischetti et al. (1997), Fischetti et al. (1998), and Bérubé et al.

(2009). The final blossom inequality using the notation of Agatz et al. (2018) yields Equation

34.

a(H) +
s∑

k=1

a(Tk) ≤
∑
i∈H

yi +
s− 1

2
(33)

∑
i,j∈H

∑
o∈O−(i)∩O+(j)

xo +
s∑

k=1

∑
i,j∈Tk

∑
o∈O−(i)∩O+(j)

xo ≤
∑
i∈H

yi +
s− 1

2
(34)

This inequality applies to blossoms only, but can be generalized for (simple) combs as Equa-

tion 35 (Bérubé et al., 2009).∑
i,j∈H

∑
o∈O−(i)∩O+(j)

xo +
s∑

k=1

∑
i,j∈Tk

∑
o∈O−(i)∩O+(j)

xo ≤
∑
i∈H

yi +
s∑

k=1

|Tk|+
s+ 1

2
(35)

4.3 Logical inequalities

Next to comb inequalities, branch-and-cut algorithms from the literature also implement

other cuts. The cut family of logical inequalities was introduced for the OP by Leifer and

Rosenwein (1994) and can be directly transferred to the TSP-D. As in the OP, we introduce

δ(i) to denote all edges going out of node i. The logical inequality in Equation 36 is used for

the OP and PCTSP.

xij ≤ yj ∀(i, j) ∈ δ(j),j ∈ V \ {1} (36)

In essence, it defines explicitly what is implied by the cover, count, sub-tour, and bound con-

straints in the integer problem formulation. However, as the sub-tour and bound constraints

21

do not necessarily hold in the LP relaxation of the subproblems, logical inequalities can be

violated. This reasoning also applies to the TSP-D, as it was assumed earlier that there can

be at most one operation going from customer node i to j, or the other way around, and as

both i and j have to be combined nodes if the tour uses an operation between these nodes.

This yields the logical inequality in Equation 37.∑
o∈O(ij)∪O(ji)

xo ≤ yi ∀(i, j) ∈ δ(i), i ∈ V \ {v0} (37)

Gendreau et al. (1998), Fischetti et al. (1998), and Bérubé et al. (2009) all separate logical

inequalities by complete enumeration. This method is also applied in this thesis and will not

be discussed in the next section on cut separation because of its simplicity.

5 Separation algorithms

In this section, we introduce a separation algorithm for sub tour constraints and multiple

ways to identify comb inequalities.

5.1 Separation of sub-tour inequalities

The following sub-tour constraints were derived for the TSP-D by Agatz et al. (2018):∑
o∈O+(S)

xo ≥ yi ∀S ⊂ V \ {v0}, i ∈ S (38)

An exact method for finding the sub-tour constraints to be added to the LP was developed

by P.C. Bouman (personal communication, April 16, 2018). This method proposes a Mixed

Integer Program (MIP) and returns a subset S that violates the sub-tour inequality if the

objective is negative. As this method is exact and generally well performing, it is incorporated

in the branch-and-cut algorithm in this research. First, the coefficients cij are defined as:

cij =
∑

o∈O−(i)∩O+(j)

xo (39)

The decision variables zij and wi are introduced to find the set S and node i for which the

sub-tour inequality is most violated. Variable zij is defined as zij := max{0, wj − wi}. From

22

the MIP in Equations 40-43, the resulting subset includes all nodes i with wi = 1. For every

location in the subset, the violation of the sub-tour inequality is assessed. If it is positive,

the corresponding sub-tour inequality is added to the formulation, otherwise, it is added to

the cut pool.

min
z,w

∑
(i,j)∈V ′

cijzij −max
i∈V ′

yiwi (40)

s.t. zij ≥ wj − wi ∀i, j ∈ V ′, i 6= j (41)

zij ∈ {0, 1} ∀i, j ∈ V (42)

wi ∈ {0, 1} ∀i ∈ V ′ (43)

5.2 Separation of blossom and simple comb inequalities

This thesis assesses two methods to find violated comb inequalities. The first method is

based on the separation algorithm for finding a violated sub-tour inequality in Section 5.1,

as it solves a MIP to find the most severe violation. The second method is the heuristic

comb-finding algorithm by Padberg and Rinaldi (1990b), which was also used by Bérubé

et al. (2009). It is expected that the heuristic will find violated cuts faster, but that the cuts

found by the MIP are generally stronger.

5.2.1 Exact separation of blossom inequalities

To find comb inequalities, a similar method is used. A violated comb is found when the

objective value of the Mixed Integer Program below is positive. Let wi and uij be decision

variables indicating whether node i is in the handle and indicating whether node i and j

form a tooth, respectively. In uij, i is the node contained in the handle and j is the node

outside of it. Variable θij is used to indicate whether both node i and j are included in the

handle. Furthermore, parameter fij is used as expressed in Equation 44. Constraints 47-50

define the variables used in the MIP. If the optimal solution value is found to be positive, a

violated blossom inequality has been identified. The handle H and set of teeth {T1, . . . , Ts}

can then be found as H = {i : i ∈ V,wi = 1} and {T1, . . . , Ts} = {(i, j) : (i, j) ∈ V, uij = 1}.

As the teeth are disjoint sets of two nodes, it is straightforward to identify them individually.

23

It is emphasized that the MIP in Equations 45-53 will only identify blossom inequalities with

three teeth. As there is no linear way to check whether
∑

i∈V
∑

j∈V \{i} uij is odd, this is not

incorporated in this MIP. We present ways to deal with this restriction later in this thesis.

fij =
∑

o∈O−(i)∩O+(j)

xo (44)

max
∑
i∈V

∑
j∈V \{i}

θij · fij +
∑
i∈V

∑
j∈V \{i}

uij · (fij + fji)−
∑
i∈V

wi · yi− (45)

1

2

((∑
i∈V

∑
j∈V \{i}

uij

)
− 1
)

s.t.
∑
i∈V

∑
j∈V \{i}

uij ≥ 3 (46)

∑
j∈V \{i}

θij ≤ |V | · wi ∀i ∈ V (47)

∑
i∈V \{j}

θij ≤ |V | · wj ∀j ∈ V (48)

∑
j∈V \{i}

uij ≤ wi ∀i ∈ V (49)

∑
i∈V \{j}

uij ≤ 1− wj ∀j ∈ V (50)

wi ∈ {0, 1} ∀i ∈ V (51)

uij ∈ {0, 1} ∀i, j ∈ V, i 6= j (52)

θij ∈ {0, 1} ∀i, j ∈ V, i 6= j (53)

5.2.2 Separation heuristic for blossom and simple comb inequalities

As solving the MIP formulation in the previous section takes much computational time, we

also consider a heuristic to find comb constraints. Next to the blossom constraints, this

algorithm also considers simple comb constraints. As in Bérubé et al. (2009), Gendreau

et al. (1997) and Gendreau et al. (1998), simple comb constraints are separated by the

algorithm from Padberg and Rinaldi (1990b) in this thesis. The input of the algorithm is

the instance graph G, the current solution (x, y) and the fractional graph F that is induced

24

by the edges with a fractional weight in x. The list of possible handles (H) is based on the

block decomposition of F , which is the division of the graph in biconnected components. A

biconnected component of a graph is a subgraph that is maximally biconnected, meaning

that it is still connected when one edge is removed. All blocks containing more than 3 nodes

are put in the set B. Possible handles (H) are constructed by taking the power set of B and

therefore, the set of possible handles contains all combinations of blocks with more than 3

nodes. H is then defined as the set of all H. If the induced subgraph of a particular H ∈ H

is connected, we further investigate the possibility of making a comb with H as handle. For

a certain handle H, a set of virtual edges TH is constructed. All edges that are incident to

H and have a weight of 1 in x are added to this set. Padberg and Rinaldi (1990b) then add

a virtual edge to TH for every cut-node in H with an even degree in F . A cut node is a node

that connects two biconnected components. To find a virtual edge for a cut node v in H, a

set of possible virtual edges Jv is constructed. This set consists of all regular edges incident

to v and another end outside of H, biconnected components of F intersecting H in v, and

intersections of a block in F with the neighborhood set of node v. The last two possibilities

enable this algorithm to find simple combs. Among the possible virtual edges Jv, the virtual

edge with maximum weight is added to TH , where the weight is defined as in Equation 54.

xT = a(T, T) + 2− |T | (54)

After the set of virtual edges is filled, the elements with xT ≥ 0.5 are added to the set of

teeth T . If |T | is even, we go back to the set of virtual edges TH and add the virtual edge

T ′ such that min{xT ′ , 1 − xT ′} ≥ min{xT , 1 − xT}∀T ∈ TH , i.e. such that its weight is the

most fractional. Depending on whether this virtual edge was already in T , we add it to

or remove it from T . The possible comb now has an odd number of teeth, but the teeth

might be overlapping. Overlapping teeth are removed from the set of teeth and included

in the handle. To increase the possibility of finding a comb with this algorithm, an extra

step is added to Algorithm 1. After detecting the overlapping teeth, the remaining teeth are

collected. If the number of remaining teeth is even, we can obtain an odd number of teeth by

adding one of the overlapping teeth. Finally, we check if the comb is violated by computing

the both sides of the inequality in Equation 35. For all used definitions, assumptions and

25

other implementation details the reader is referred to Padberg and Rinaldi (1990b). The

algorithm presented here is used as a method to find comb inequalities fast, however, it is

not exact. Therefore we expect it to find less combs than the exact separation procedure

presented in the previous section. However, the proposed algorithm is much faster than the

exact separation procedure. Algorithm 1 summarizes the used heuristic.

Algorithm 1: Algorithm for simple comb separation, as in Padberg and Rinaldi (1990b)

Input: Graphs G and F and solution (x, y);

Define the set blocks of F with more than 3 nodes B;

Construct the list of possible handles H by taking the power set of B;

for H ∈ H do

Consider component H ∈ H ;

if H is connected then

Add all 1-edges incident to H to set TH ;

for v ∈ H such that |δ(v)| is even do

Construct set of possible virtual edges Jv as explained above ;

Add the possible virtual edge with maximum weight xT to TH ;

Add all elements in TH with xT ≥ 0.5 to the set T ;

if |T | is even then

Determine T ′ as the most fractional virtual edge ;

if T ′ ∈ T then

Set T = T \ T ′ ;

else

Set T = T ∪ {T ′} ;

while a set of teeth {Ti, . . . , Tj} intersects do

Set T = T \ {Ti, . . . , Tj} and H = H ∪ {Ti, . . . , Tj};

if comb inequality is violated by current solution and |T | ≥ 3 then

Record the comb inequality ;

else

continue;

26

5.2.3 Using heuristics to create variants of combs

As solving a MIP to find violated combs takes quite some effort, this thesis proposes using

heuristics to find combs that are similar to the comb found by the MIP proposed in Section

5.2.1. The combs found by these heuristics are only added if they are violated in the current

node of the branch-and-cut tree. As the MIP only finds the most violated comb, there might

be other violated comb inequalities that are also violated by the current LP solution or later

in the algorithm. To this end, we use the idea of a cut pool that was introduced by Padberg

and Rinaldi (1991). We propose to create variants of a found comb and put these variants in

a cut pool. In every following search for violated cuts, the cut pool will first be searched for

violated inequalities. This is a fast and efficient way to find combs. In this section, we will

introduce the heuristics used to create the variants. As a reference, Figure 9 shows an example

of a comb. The first heuristic approach considered in this thesis is deleting nodes that are

only contained in the handle from the comb. This is depicted in Figure 10. This approach

yields 2|H|−s − 1 variants of the base comb, as it includes all subsets of the set H \
⋃s

j=1 Tj

except the subset containing all nodes of the considered set. The second heuristic approach

is depicted in Figure 11 and includes nodes outside the comb in the handle. This approach

yields 2|V |−|H|−
∑s

j=1 |Tj |+s−1 variants of the base comb. As both of these heuristic approaches

can result in many variants of the same comb, we implement them only if |H| − s ≤ 10 and

|V | − |H| −
∑s

j=1 |Tj|+ s ≤ 10, respectively. Therefore, each of the heuristics will not return

more than 1024 constraints in an iteration. Variants of a base blossom can also be obtained

by swapping nodes within a tooth. The tooth node that was initially contained in the handle

is now excluded from the handle and vice versa , as depicted in Figure 12. This approach

yields 2s − 1 variants of the base blossom. Tooth nodes that are not included in the handle

can also be exchanged in between tooths, as depicted in Figure 13. This yields s!− 1 extra

variants. The same nodes can also be replaced by nodes outside of the comb, as depicted in

Figure 14. The number of variants created can then be computed by
min{|V |−|H|−s,s}∑

j=1

(
|V | − |H| − s

j

)
·
(
s

j

)
For the simple combs from the Padberg and Rinaldi (1990b) algorithm, only variants are

created following Figures 10, 11, and 13 if the comb has three teeth.

27

Figure 9: Example of a comb in an

arbitrary instance

Figure 10: Creating a variant by

deleting nodes from handle

Figure 11: Creating a variant by in-

cluding loose nodes

Figure 12: Creating a variant by

swapping tooth nodes

Figure 13: Creating a variant by

swapping teeth

Figure 14: Creating a variant by

changing teeth

28

5.2.4 Obtaining combs with an odd number of teeth

As it is not possible to capture the criterion for an odd number of teeth in a linear constraint,

the MIP can also find combs with an even number of teeth. As these do not yield valid

inequalities, they are not useful in solving the TPS-D. In this thesis, we consider three

methods to overcome this problem. In the first method the MIP from Section 5.2.1 is solved

to optimality. When the resulting blossom has an even amount of teeth, as in Figure 15,

valid blossoms can be obtained by creating an extra tooth, as in Figure 16, or deleting a

tooth, yielding the comb in Figure 9. These variants are saved in the cut pool, as they

have a higher probability of being violated later on. The advantage of this method is that

cuts can be found in a later stadium without having to solve a MIP, which is quite time

consuming. However, this method might miss combs with an odd number of teeth that

violate the inequality slightly less than a comb with an even number of teeth.

Figure 15: Example of a comb with

even number of teeth

Figure 16: Creating a variant by

adding an extra tooth

The second method implicitly adds the non-linear constraint to the MIP using an Incumbent

Callback in CPLEX. This callback function rejects all encountered incumbents that have an

even number of teeth. This callback function can be used while solving the MIP from Section

5.2.1 to optimality. This method finds all combs with a positive violation and an odd number

of teeth and is therefore exact. However, it does not use information from combs with an

even number of teeth, as the first method does. The third method resembles the second

method as the same Incumbent Callback is used to reject combs with an even number of

teeth. However, instead of solving the separation MIP from Section 5.2.1 to optimality, the

29

CPLEX function populate is used to save all incumbents encountered when solving the MIP.

Due to the θ variables in the MIP formulation, there are many incumbent solutions yielding

the same comb. Therefore, only unique combs are saved and checked for a positive violation.

This method is exact and will not miss any comb, but it takes more time as all combs are

found by forming a solution pool for a MIP. As the last two methods introduce an Incumbent

Callback, some other solving features of CPLEX are disabled. To limit the computational

time spent in each node, a 5 minute time limit is set to solve the MIP when an Incumbent

Callback is used.

6 Implementation of the branch-and-cut algorithm

This section describes the branch-and-cut algorithm in detail and elaborates on all imple-

mentation details. This approach is based on the algorithms used by Fischetti et al. (1997),

Fischetti et al. (1998) and Bérubé et al. (2009). Figure 1 in Section 3.1.1 shows an outline of

the algorithm. The branch-and-cut algorithm is implemented by CPLEX version 12.8 and

was written in Java 8.

6.1 Branch-and-cut algorithm in CPLEX

A MIP corresponding to the formulation in Section 3.4 was constructed to model the TSP-D.

We solve this MIP using a branch-and-cut solver in CPLEX. This section elaborates on the

working of this solver in CPLEX. Initially, only the sub-tour constraints corresponding to a

set of only one location were added to the MIP. Other sub-tour inequalities are added later

in the algorithm by the separation algorithm described in 5.1. After the initialization phase

there is only one node in the branching tree. This node is then automatically selected in

this step of the algorithm. However, after some iterations, there are multiple nodes that can

be investigated. The node with the lowest bound is selected for branching, as is the default

option in CPLEX. If the list of nodes is empty, the current best upper bound is the optimal

solution. At this stage, the algorithm searches for violated inequalities, which we will discuss

in detail in the next section. Next, the LP of the current node is solved with CPLEX. The

upper and lower bounds of the nodes preceding the current node in the branching tree are

30

updated with the newly found bounds. If the lower bound of this node is higher than the

best known upper bound, there is no reason to investigate this node further, and the node is

pruned. If it is lower than the best known upper bound, there is still room for improvement

and the algorithm continues to eventually branch on this node. When a node is pruned,

this node is not investigated more. After pruning, another node in the list is selected to be

solved. If this list is empty, the problem is solved to optimality. In CPLEX, priority is given

to branching on the yi variables, as they impose restrictions on all xo starting and ending in

customer i as well, as in Bérubé et al. (2009).

6.2 Finding cuts

Sub-tour inequalities can be added using both Lazy Constraint Callbacks and User Cut

Callbacks. Whereas the Lazy Constraint Callbacks cut the integer solution space and

are only called when the algorithm has found an integer solution, the User Cut Callbacks

only cut off fractional solutions and are called at any point in the algorithm. As the sub-tour

inequalities are actually a part of the TSP-D formulation in Section 3.4 and we would like the

algorithm to find violated sub-tour inequalities in every node, we have chosen to implement

the callback for these cuts as both Lazy Constraint Callbacks and User Cut Callbacks.

The comb inequalities and logical inequalities are added as User Cut Callbacks as they

only tighten the integer solution space. When using callbacks, one can define how CPLEX

should treat the found inequalities. The setting Use Cut Force forces CPLEX to add the

found inequality to the MIP formulation and keeping it there. When using the setting Use

Cut Purge, CPLEX can choose to remove it from the MIP formulation if it is redundant.

Another important setting in cut separation is the order in which the different separation

algorithms are called, as the algorithms are assessed sequentially and the finding of cuts is

ceased whenever a violated cut is found. For this thesis, the order is set to:

1. Existing constraints in the cut pool

2. Separation of logical constraints

3. Separation of sub-tour constraints

4. Heuristic separation of comb inequalities

31

5. MIP separation of comb inequalities

This order is based on the strength of the cuts and the speed of the separation algorithms.

The logical constraints are relatively easily found by an exact algorithm and can affect the

fractional solution significantly. The sub-tour constraints are important as they are a part of

the MIP formulation and therefore might cut off integer solutions. If no cuts are found up

until this point, the separation algorithm of Padberg and Rinaldi (1990b) is executed. As

this is an heuristic approach, finding a violated comb is not guaranteed, even if one is present.

If the heuristic does not find a simple comb or blossom, the separation method using a MIP

for finding blossoms is used as a last resort. Even though this method is more flexible in

finding combs than the Padberg and Rinaldi (1990b) algorithm, one cannot guarantee that

a violated comb is always found and solving the MIP takes quite some computational time.

The cut pool that is assessed first in this phase is filled with variants of the constraints found

by the other separation algorithms. For comb constraints, the variants from Section 5.2.3

are added to the pool. For sub-tour inequalities, the variants consists of sub-tour inequalities

with a combination of set and location that was not violated at the time of creation.

6.3 Experiment design

This research is aimed at implementing a branch-and-cut algorithm for the TSP-D. To this

end, the quantitative analysis is split in two. From the preliminary analysis we would like

to find out if the branch-and-cut algorithm works for the TSP-D and assess the effect of

the proposed inequalities. In order to find the best configuration, we compare the averages

of the number of nodes in the branch-and-cut tree and the number of user cuts in several

configurations. Version A uses only the sub-tour inequalities, whereas version B also uses

logical inequalities. The other versions all implement sub-tour, logical and comb inequali-

ties. Version C implements corresponds to not including an Incumbent Callback but using

information from combs with an even number of teeth to fill the cut pool. Version D corre-

sponds to solving the MIP with the Incumbent Callback and version E uses the MIP and

the Incumbent Callback to fill a solution pool. Version F only uses the Padberg and Rinaldi

(1990b) algorithm to find violated comb inequalities. Table 3 shows the different variants

32

tested in this analysis.

Table 3: Tested versions

Version Lazy cuts User cuts Comb separation method

A Sub-tour cuts Sub-tour cuts -

B Sub-tour cuts Sub-tour, logical cuts -

C Sub-tour cuts Sub-tour, logical, comb cuts Padberg and Rinaldi (1990b),

MIP separation

D Sub-tour cuts Sub-tour, logical, comb cuts Padberg and Rinaldi (1990b),

MIP separation with Incumbent Callback

E Sub-tour cuts Sub-tour, logical, comb cuts Padberg and Rinaldi (1990b),

MIP separation with solution pool and

Incumbent Callback

F Sub-tour cuts Sub-tour, logical, comb cuts Padberg and Rinaldi (1990b)

The versions are tested for problem instances with increasing number of customer nodes

and increasing difficulty of the operations that are allowed. From a problem instance with

15 customer nodes and no operations with truck only nodes allowed, we let the number of

customer nodes (n) increase as {15, 20, 25, 30, 40, 50} and the number of truck nodes in

an operation (t) up to 5. It is important to note that customer nodes are added to existing

instances, i.e., the first generated instance with 20 customer nodes contains all customer nodes

from the first instance with 15 customer nodes and 5 additional customers. 30 Instances

were run and compared for every configuration on the number of nodes in the branch-and-

cut tree (N), the number of user cuts added (U) and the gap between the optimal solution

value and the lower bound in the root node (G). Statistical tests are performed to assess

the distribution and significance of the differences in the number of nodes of the branch-

and-cut tree. These differences are tested for normality with the Shapiro-Wilk test. The

null hypothesis (H0) in this test is that the sample data is normally distributed. As the

popular t-test assumes a normal distribution of the sample and the data, as is shown later,

does not generally follow a normal distribution, the Wilcoxon signed rank test is used to

test whether the sample differences are symmetrically distributed around zero (H0). The

33

Wilcoxon signed rank test approximates the normal distribution when there are more than

20 nonzero differences recorded. In that case, p-values are calculated. Otherwise, the test

statistic is compared to a more sophisticated distribution. Whenever the Shapiro-Wilk test

shows that a normal distribution cannot be rejected, the t-test is used to test whether there

is a significant difference between the two versions. Finally, we will test the sensitivity of the

algorithm to changes in the number of decimals the costs are specified in and to enabling

Use Cut Purge. This setting allows CPLEX to remove the constraint if it is ineffective in

a later stadium. In the extensive results, we investigate a way to maximize the benefit by

running two configurations in parallel in an optimistic environment where violated cuts can

be identified immediately. As parallelization is an important trend in hardware development,

we hope to find that it can also improve the search to an optimal solution for the TSP-D. As

the separation of more types of inequalities generally leads to a higher computational time,

we will exclude the time spent in separation in this analysis. In practice, this means that

two variants solve a particular instance in parallel. Whenever one of the variants reached the

solution of an instance, the time spent excluding callbacks is stored, and the computation of

the other version is terminated upon reaching this time limit. Assessing the optimality gap

at this point gives an indication of how close the other version is to completely solving the

problem.

6.4 Instance generation

To test the effectiveness of the proposed cut families in a branch-and-cut algorithm, we use

generated instances of the TSP-D of different sizes and difficulty levels. For the generation

of an instance, locations are placed uniformly in the [0,1]x[0,1] plane. The first location is

automatically marked as the depot. The locations are then used to define the operations

as explained in Section 3.4. We run instances with operations that have up to 5 truck only

nodes allowed. Operations with more than 5 truck only nodes are not considered in this

thesis as allowing an infinite amount of truck nodes increases the solution time but does not

yield a better solution in general. (Bouman et al., 2017) As Agatz et al. (2018), this thesis

aims at minimizing the total travel time. Initially, it is assumed that the travel time of the

truck only depends on the Euclidean distance between two locations and that the drone is

34

twice as fast as the truck.

7 Computational results

This section is concerned with presenting the results from the performed analyses. All ex-

periments were performed on the Lisa computer cluster of SURFsara. Instances were solved

on either 32GB or 64GB nodes and solving instances was done in parallel if possible. The

computer cluster runs on Linux, which has implications for the working of CPLEX 12.8.

When running on other operational systems, differences were observed regarding the mo-

ments User Cut Callbacks were called, choosing the optimal solution for the separation

MIP when multiple solutions yield the same objective value and branching strategies. The

optimal objective value and solution of the TSP-D remained constant over different operating

systems. This section is split into preliminary results, concerned with an overall analysis of

the configurations in which the proposed valid inequalities work best, and extensive results,

where the best performing configurations are inspected in detail.

7.1 Preliminary results

In this section, the results obtained from the experiments are discussed. First, we inspect

the behavior of the different versions in case we increase the number of customer nodes

n and the number of allowed truck nodes t. Next, we assess the effect of letting CPLEX

delete redundant constraints during solving. Finally, the instances with 30 to 40 customer

nodes are inspected in detail. Based on these analyses, we will choose the best performing

configurations for the extensive results. All numeric results reflected in the tables and graphs

in this section can be found in Appendix B.1.

7.1.1 Comparing the branch-and-cut algorithm to existing literature

First and foremost, we observe that the branch-and-cut algorithm is very suitable for solving

the TSP-D. Tables 4 and 5 show the solution times for several versions of the branch-and-cut

algorithm. Versions D and E are not shown in these tables as version C proved to be the

fastest algorithm yielding a similar size of the branch-and-cut tree. Version F is not shown

35

as it generally did not find comb inequalities. An asterisk is reported when the available

memory was insufficient.

Table 4: Solution times (minutes:seconds) using Use Cut Force, averages of 30 instances

t = 0 t = 1

n 15 20 25 30 40 15 20 25 30

A 00:01 00:03 00:10 00:21 01:49 00:07 00:36 02:13 09:47

B 00:01 00:03 00:08 00:21 01:58 00:07 00:37 02:26 07:52

C 00:05 00:19 00:57 02:17 * 00:21 01:44 10:38 *

Table 5: Solution times (minutes:seconds) using Use Cut Force, averages of 30 instances

n = 20 n = 25

t 1 2 3 4 1 2

A 00:36 02:33 10:34 20:22 02:13 18:17

B 00:37 02:47 10:12 22:26 02:26 19:58

C 01:44 05:24 14:32 30:17 10:38 *

Up until this point, the best performing exact algorithm for the TSP-D was the A* algorithm

used by Bouman et al. (2017). That algorithm solved instances with 20 customer nodes and

2 truck nodes, on average, in 10:35:26. The results above show that the branch-and-cut

algorithm is very time-efficient. For the comb inequalities, instances with many customer

nodes and/or multiple allowed truck nodes caused memory problems, retaining the algorithm

from solving in versions C, D, E and F. Nevertheless, the results prove that the branch-and-

cut algorithm is an efficient way of solving TSP-D instances to optimality.

7.1.2 Comparison of variants for different instance sizes

In this section, all variants explained in Section 6.3 are compared by using them to solve

the same instances. For all configurations considered in this paragraph, the setting Use Cut

Force is used in CPLEX, i.e. no redundant constraints are deleted during the branch-and-cut

algorithm. Table 6 shows the averages for all versions over 30 instances.

36

Table 6: Number of nodes in the branch-and-cut tree N and number of user cuts added U ,

using t = 0 and Use Cut Force, averages of 30 instances

n 15 20 25 30 40

Version N U N U N U N U N U

A 39.20 123.47 70.57 244.20 128.67 401.50 113.20 468.93 369.73 1068.60

B 33.77 128.23 62.13 219.67 107.33 334.40 106.17 412.30 501.17 875.90

C 33.77 128.50 63.30 223.23 102.47 324.63 107.03 428.50 * *

D 33.70 128.33 62.30 220.47 109.57 326.63 104.40 444.43 * *

E 33.73 128.43 62.17 220.93 104.37 326.03 104.13 443.87 * *

F 33.77 128.23 62.13 219.67 107.17 334.23 106.17 412.30 * *

Using additional types of cuts leads in some cases to a lower average number of nodes in the

branch-and-cut trees. This does not imply that these versions outperform variants without

these constraints, as there are instances for which the addition of logical and comb inequalities

resulted in a larger branch-and-cut tree for every tested n. A more remarkable effect observed

in Table 6 is the jump in N from n = 30 to n = 40, as NA > NB for n ≤ 30, but the reverse

is true for n = 40. This implies that the logical inequalities only work well for instances

with n ≤ 30. The instances with n = 30 and n = 40 are investigated in detail later in this

chapter, as well as instances with n ∈ [32, 34, 36, 38]. The average number of user cuts needed

is generally lower for the versions using logical inequalities. This effect applies through all

instance sizes tested. Furthermore, it is observed that, based on the average number of nodes

in the branch-and-cut tree and number of user cuts used, there is little difference between

versions B, C, D, E and F. In fact, version F differs only from version B for n = 25 and

t = 0. In that configuration, two combs are found by the Padberg and Rinaldi algorithm.

This has very limited impact on the measures and therefore, we will not consider version F

in the remainder of this thesis.

Moreover, we observe that the average number of nodes in the branch-and-cut tree is similar

for all versions when comparing n = 25 to n = 30. Apparently, the five added customers do

not increase the difficulty of the 30 tested instances, when using t = 0. From the numeric

results in Appendix B.1 it appears that this effect does not hold when allowing more truck

37

nodes. The most probable cause for this effect is the limited number of instances tested.

As the differences between N for two configurations are both positive and negative, we will

test if they follow a normal distribution and if they differ significantly from zero. Ideally, we

would like N to decrease when using logical and comb inequalities or when more advanced

methods to find combs are used. As such effects cannot be observed directly from the plots,

we will use statistical tests to find the general effects. In Table 6, it is observed that averages

for n = 25 and n = 30 show the most differences between versions. Therefore, we will

perform the statistical tests on the differences in N between all versions for these instance

sizes. Table 7 shows the results of the statistical tests. In this table, the average difference

in N is denoted by δ, the p-value for the Shapiro-Wilk test by pSW and the p-value for the

Wilcoxon signed rank test by pW .

Table 7: Average differences in N and p-values

n = 25, t = 0

B C D E

δ̄ pSW pW δ̄ pSW pW δ̄ pSW pW δ̄ pSW pW

A 21.33 0.00 0.09 26.20 0.00 0.04 19.10 0.00 0.18 24.30 0.00 0.09

B - - - 4.87 0.00 0.47 -2.23 0.00 0.10 2.97 0.00 0.58

C - - - - - - -7.10 0.00 0.01 -1.90 0.00 0.92

D - - - - - - - - - 5.20 0.00 sig.

n = 30, t = 0

A 7.03 0.08 0.49 6.17 0.10 0.47 8.8 0.01 0.52 9.07 0.06 0.31

B - - - -0.87 0.00 n.s. 1.77 0.00 n.s. 2.03 0.00 n.s.

C - - - - - - 2.63 0.00 n.s. 2.90 0.00 n.s.

D - - - - - - - - - 0.27 0.00 n.s.

Note: When there are more than 20 nonzero differences recorded a p-value is given for the Wilcoxon signed

rank test, otherwise the table shows non-significance (n.s) or significance (sig.). Significance at α = 0.05 is

marked in bold.

For n = 25, Table 6 shows quite some difference between the average number of nodes when

using version A compared to the other versions. From the statistical analyses follows that

38

the differences of none of the combinations are normally distributed for n = 25. This is

mainly due to the large range in the differences for such a small sample. For example, the

differences between version A and B range from -86 to 302. From the Wilcoxon signed rank

test followed that the differences between versions A and C, C and D, and D and E do

not follow a symmetric distribution around zero. In this respect it can be argued that, on

average, version C yields a significantly smaller tree compared to version A and D. Therefore,

version C is the most promising configuration, which we will inspect in detail in the extensive

results. For n = 30, the differences between versions A and B, and versions A and C can be

assumed to be normally distributed. The Wilcoxon signed rank test shows that the median

of the differences is not significantly different from zero for all combinations of versions. As

the results from the statistical results for n = 30 differ substantially from those for n = 25,

it cannot be stated that a configuration outperforms the others for all levels of instance

difficulty on the number of nodes in the branch-and-cut tree.

To compare the different configurations for the comb inequalities, we zoom in on the instances

with n = 30 for which comb inequalities have been used in in Figure 17. Figure 18 shows the

average number of comb inequalities that was found for every instance size.

1 2 4 5 6 7 10 13 15 17 18 20 22 23 26 27 29 30
0

50

100

Instance

N
um

be
r
of

co
m
b
cu
ts

Version C Version D Version E

Figure 17: Number of comb constraints for n = 30, per instance. Instances where no comb

constraints were generated are not shown.

39

15 20 25 30
0

2

4

6

8

10

n
N
um

be
r
of

co
m
b
cu
ts

Version C Version D Version E

Figure 18: Comparison of number of comb inequalities for different instance sizes, averages

over 30 instances

It is observed from Figure 18 that versions D and E generally find the most combs, as was

expected. However, it takes much computational time to populate the solution in every call-

back of a MIP. All versions seem to behave similarly for instances with 15 and 20 customers.

Moreover, from Figure 17 it appears that version C sporadically finds more violated cuts

by means of the cut pool, caused by the fact that it uses information from invalid combs

with an even number of teeth. As the additional cuts found by version D and E do not yield

significantly better results in terms of N and the callback functions take much computational

time, we shall use version C to find combs in the extensive results.

Finally, we investigate the tested instances more thoroughly for versions A, B and C. The

number for which a certain version is smaller is shown in Figure 19.

40

15 20 25 30 40
0

10

20

30

n

N
um

be
r
of

in
st
an

ce
s Smaller tree with Version A

Smaller tree with Version B

(a) Comparison of Version A and B

15 20 25 30
0

10

20

30

n

N
um

be
r
of

in
st
an

ce
s Smaller tree with Version B

Smaller tree with Version C

(b) Comparison of Version B and C

Figure 19: The number instances with a smaller tree, t = 0. In total 30 instances were tested.

Remaining instances had an equal N in both versions.

In Figure 19a we see that most of the times, there are less nodes when using version B. As

in Table 6, a remarkable difference is observed between version A and B for n = 40. Figure

19b shows more clearly that the comb inequalities only affect the branch-and-cut algorithm

for instances with 20 customer nodes or more. For n = 25, there are exactly as much trees

smaller with version B as there are with version C. For n = 30, there are slightly more

instances that have a smaller tree in version C.

7.1.3 Effect of allowing truck nodes

In Table 8, numeric results are reported for different numbers of allowed truck nodes (t) when

fixing the number of customer nodes at 20.

41

Table 8: Results using n = 20 and Use Cut Force, averages of 30 instances

t 0 1 2 3 4

Version N U N U N U N U N U

A 70.57 244.20 169.37 294.23 211.40 318.07 212.30 307.43 231.13 314.93

B 62.13 219.67 152.13 282.83 200.63 277.60 234.13 291.43 235.97 296.50

C 63.30 223.23 152.77 282.80 200.20 278.00 234.13 291.73 235.80 296.40

D 62.30 220.47 153.00 283.03 200.63 277.60 234.13 291.73 236.03 296.27

E 62.17 220.93 152.47 283.53 200.63 277.60 234.13 291.60 236.03 296.27

Naturally, the number of nodes in the branch-and-cut tree is larger when allowing one or

multiple truck nodes. It seems that the growth in N decreases for a higher t. The number

of user cuts does not seem to follow a clear trend. In this analysis, the differences between

versions B, C, D and E are even smaller. A logical cause for this result is the used instance

size. As combs are based on a separation of the customer nodes, it is straightforward that

larger instances yield more possible combs. This also increases the probability of a comb

violation. Unfortunately, larger instances could not be solved with the available memory.

The largest average difference is observed for t = 2 between version A and B, as δ̄ = 10.77

for this combination. The Shapiro-Wilk test resulted in a p-value of 0.00, rejecting the null

hypothesis of a normal distribution. The p-value of the Wilcoxon signed rank test is 0.052,

which is very close to rejecting the null hypothesis of similar medians. Therefore, we will

investigate this configuration in the extensive results.

7.1.4 Deleting redundant constraints

For the results in this section, the number of allowed truck nodes is fixed at 0 and the feature

Use Cut Purge is enabled instead of Use Cut Force. This implies that CPLEX can choose

to remove added constraints from the MIP formulation. The removed constraints will still

be available in the cut pool and are therefore easier to identify if violated in a later stadium,

as proposed by Padberg and Rinaldi (1991). Removing constraints yields different behavior

of the branch-and-cut algorithm throughout the tree. The experiments from Section 7.1.2

are repeated with this new setting and averages are reported in Table 9.

42

Table 9: Results using Use Cut Purge, t = 0, averages of 30 instances

n 15 20 25 30 40

Version N U N U N U N U N U

A 29.23 149.00 73.50 295.03 125.37 480.90 138.53 649.77 489.47 1272.97

B 34.50 158.93 73.67 263.33 116.33 437.93 125.30 530.30 508.83 1229.07

C 34.53 158.40 72.10 263.83 114.13 442.93 125.07 531.93 * *

D 34.53 159.07 73.07 265.70 114.83 446.23 128.13 536.03 * *

E 34.53 159.07 72.90 265.70 116.50 456.63 118.83 541.60 * *

It is observed that Version B now yields, on average, smaller trees than Version A for n > 25

and, comparing the Use Cut Purge results to the earlier results, that the average number of

nodes increases for all versions for the experiments with n ≥ 20. Again, these effects do not

apply all individual instances. The increase in average number of added cuts was expected,

as a particular cut can be added and removed multiple times within a run of the algorithm.

As the number of nodes increases for larger instances, we will not perform any extensive

analysis with the Use Cut Purge setting.

7.1.5 Instances with 30 to 40 customer nodes

In this section, we zoom in on instances with 30 to 40 customer nodes, as a remarkable jump

was observed in Table 6. Figure 20 shows the development of N and U for different instance

sizes in this interval. Numeric results reflected in this figure are reported in Appendix B.1.

43

30 32 34 36 38 40
0

200

400

n

N
Version A
Version B

(a) Size of branch-and-cut tree for versions

30 32 34 36 38 40
0

500

1,000

n

U

Version A
Version B

(b) Average number of cuts used

Figure 20: Averages over 30 instances, t = 0

In Figure 20a, N seems to grow exponentially for both variants. Next to that, Version B

seems to have a higher growth rate. The two versions yield similar tree sizes for n = 32.

From these figures, it appears that for instance with more than 32 customer nodes, Version

A outperforms Version B. This effect is also seen in Figure 21, depicting the number of trees

that have a smaller N in a particular version.

30 32 34 36 38 40

10

20

30

n

N
um

be
r
of

in
st
an

ce
s Smaller tree with Version A

Smaller tree with Version B

Figure 21: The number instances with a smaller tree, t = 0

From n = 32 on, there are substantially more instances with a smaller tree when using version

A compared to version B. A plausible cause for this effect might be the fact that the number

of arcs increases very fast when adding nodes. As the logical constraints are created for single

arcs they might not be as powerful as the sub-tour constraints. Moreover, the separation

algorithm also prioritizes the separation of logical inequalities, yielding a suboptimal branch-

and-cut tree for the majority of the instances. As n = 30 seems to be a threshold value, we

44

will zoom in further on this instance size in the extensive results.

7.1.6 Conclusions from preliminary results

When implementing the order of separation algorithms from Section 6.2, the logical inequali-

ties and sub-tour inequalities prove to be very strong. For small instances, hardly any combs

are necessary to find the optimal solution. When a comb was added to the formulation, it

had been found most often by the MIP separation from Section 5.2.1, sometimes via the cut

pool and sporadically through the Padberg and Rinaldi algorithm. For t = 0 and n = 25,

only 2 comb inequalities were found by this algorithm in Version C in total in 30 instances,

comparing to 67 and 32 combs found by the MIP and in the cut pool, respectively. Remark-

ably, Version D and E did not find any combs by the Padberg and Rinaldi (1990b) algorithm.

This might be caused by the fact that they identify violated comb inequalities cutting a sim-

ilar part of the solution space earlier in the branch-and-cut algorithm, as these versions force

any solution to the comb separation MIP to have an odd number of teeth. In general, more

combs are found when solving larger instances. However, the number of comb inequalities

remains much lower than the number of logical and sub-tour inequalities. Iterating over

the cut pool is a fast and effective way to find new cuts of both sub-tour inequalities and

comb inequalities. A significant difference was observed between version A and C for n = 25

and t = 0. Therefore, we will investigate the maximal possible benefit we can get for this

configuration in the next section. In the research to adding one or more truck nodes, it was

observed that the largest difference was observed between version A and B for n = 20 and

t = 2. Therefore, this will also be investigated in the next section. Lastly, we will research

the effects of implementing version C for n = 30 and t = 0, as this seems to be a threshold

value for the working of logical and comb inequalities.

7.2 Extensive results

The extensive analyses performed aim to assess the maximal possible benefit of adding logical

and comb inequalities to the branch-and-cut formulation. To this end, we run two versions

parallel and compare the time they have spent in the branch-and-cut tree (TBNC). We also

terminate the other run when a version has solved the problem instance, and determine the

45

optimality gap at that point.

7.2.1 Comparing computational times for Version A and C, t = 0 and n = 25

For this section of the extensive results, we have solved 50 instances with n = 25 and t = 0

using Version A and C. Figure 22 and 23 depict the results for the analysis.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

Instance

N

Version A
Version C

Figure 22: Number of nodes for all instances for n = 25

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

Instance

T
B
N
C
(s
ec
on

ds
)

Version A
Version C

0

20

40

60

80

100

G
ap

at
st
op

pi
ng

(%
)

Stopping A
Stopping C

Figure 23: Time and optimality gap for all instances when t = 0 and n = 25

46

From Figure 22, we first observe that version A and C generally yield branch-and-cut trees

of similar sizes. The average difference observed in the preliminary analysis is mainly caused

by the two seemingly difficult instances (6 and 23) where version C outperforms version

A. The third difficult instance (26) has a shorter tree with version A, but the difference is

much smaller. From Figure 23, it is observed that the time spent in the branch-and-cut tree

is very similar. Most differences are just a few seconds. 58.00% of the instances yielded

a shorter time spent branching in version C. In 10.34% of these cases, version A did not

find an incumbent solution yet. The average gap when stopping version A is 25.67%. For

version C, this measure is 24.28%. A more remarkable observation from the two figures is

that the computational time spent excluding callbacks does not give an indication of the size

of the tree. Instances with obvious peaks in the latter measure, do not have corresponding

peaks in TBNC . A possible cause for the lack of relation between these two measures is that

the size of the tree does not say anything about the shape of the tree. A large tree can

be due to the thorough investigation of a few nodes, going deeply into the branch-and-cut

tree, or due to the investigation of many nodes in different directions, mainly expanding

the width of the branch-and-cut tree. As the branching strategy is optimized by CPLEX,

we do not have insight in how branching evolves in every instance. Moreover, the version

and branching strategy affect the time spent in the two subsequent processes of looking for

an incumbent solution and converging from an incumbent solution to the optimal solution.

These black box methods can cause the occurrence of 100% optimality gaps in Figure 23. For

this configuration, we observe that the terminated version is often quite close to the optimal

value. This applies to both of the tested versions. On the one hand, this effect means that

the logical and comb inequalities work very well for n = 25 and t = 0. On the other hand, it

means that we do not get that much profit from running the two versions in parallel.

7.2.2 Comparing computational times for Version A and C, t = 0 and n = 30

For this section of the extensive results, we have solved 50 instances with n = 30 and t = 0

using Version A and C. Figure 24 and 25 depict the results for the analysis.

47

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

Instance

N
Version A
Version C

Figure 24: Number of nodes for all instances in version A and C

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

Instance

T
B
N
C
(s
ec
on

ds
)

Version A
Version C

0

20

40

60

80

100

G
ap

at
st
op

pi
ng

(%
)

Stopping A
Stopping C

Figure 25: Time in branch-and-cut tree and optimality gap when the other version has solved

the problem

As expected, there are no instances for which the total computation time is less using version

C compared to version A. More interestingly, Version A spent less computational time (ex-

cluding callbacks) in 54% of the instances, compared to Version C. For 32% of the instances,

Version C had not found an incumbent solution at the time Version A reached the optimal

48

solution. The reverse effect, where Version A had not found an incumbent solution at ter-

mination, was observed for 22% of the instances. This implies that, in case the two versions

are run in parallel all sub-tour and comb inequalities are found immediately, the two versions

are comparable. In case one wants to find a tight incumbent bound within a certain time

limit and solving two versions in parallel is not possible, version A is preferred. However, we

consider the presence of 100% optimality gaps as positive, as this means that parallel solving

is useful in this case.

7.2.3 Comparing computational times for versions A and B, t = 2, n = 20

Figures 26 and 27 depict the results of the final part of the extensive results. It is stressed

that we use version B instead of version C in this analysis. Therefore, all observed effects

can be contributed to the logical inequalities.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

Instance

N

Version A
Version B

Figure 26: Number of nodes for all instances with t = 2, n = 20

49

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

Instance

T
B
N
C
(s
ec
on

ds
)

Version A
Version B

0

20

40

60

80

100

G
ap

at
st
op

pi
ng

(%
)

Stopping A
Stopping B

Figure 27: Time and optimality gap for all instances when t = 2 and n = 20

The most remarkable observation in Figure 26 is the increase in number of nodes when using

version B for instance 2. Apparently, the logical inequalities cause the CPLEX algorithm to

inspect a suboptimal branch of the tree in detail. The number of nodes in the branch-and-cut

tree for other versions does not yield much difference between version A and B. The same

applies to the time spent in the branch-and-cut tree. It appears that the increase in number

of truck nodes, and therefore the number of operations, affects the time spent in the branch-

and-cut tree over all instances. Most instances spend over 100 seconds branching. For this

particular configuration, it seems that the optimality gaps are either very high or very low.

This is probably due to the relatively small instance size. Whenever an incumbent solution is

found, it is immediately quite close to the optimal solution. In this analysis, version B spent

less time in the branch-and-cut tree for 66.00% of the instances. In 51.52% of these instances,

version A had not found an incumbent solution yet. Vice versa, this measure is 27.59%. As

no version is clearly dominant and the time spent in the branch-and-cut tree is quite high, we

conclude that running two versions parallel is efficient for this kind of instances. Of course,

this still assumes that comb inequalities are found immediately.

50

8 Conclusion

In this thesis, we have introduced logical and comb inequalities for the Traveling Salesman

Problem with assistance of a Drone. The logical inequalities could be derived directly from

existing literature on similar problems, such as the Prize Collecting Traveling Salesman Prob-

lem and the Generalized Traveling Salesman Problem. To derive valid comb inequalities, we

first used the original definition from the classic Traveling Salesman Problem. As the im-

plementation of this type of inequalities was very difficult, we have derived an alternative

formulation that corresponds to comb inequalities used in branch-and-cut algorithms for re-

lated problems. Next, exact and heuristic separation algorithms were developed to identify

the valid inequalities during branch-and-cut algorithm. For the logical inequalities, complete

enumeration is a fast and exact separation algorithm. For the comb inequalities we use both

the heuristic algorithm by Padberg and Rinaldi, that is based on the block decomposition of

the fractional subgraph, as well as an exact algorithm consisting of solving a Mixed Integer

Program. To improve the separation of comb inequalities, we also fill a cut pool with vari-

ants of earlier found combs and transform invalid combs to valid inequalities using inventive

heuristics. All separation algorithms are called in the branch-and-cut algorithm based on a

priority list. From a preliminary analysis, we observed that the branch-and-cut algorithm

is much faster than the known solution methods, but the proposed inequalities do not al-

ways yield an improvement. The addition of the proposed valid inequalities can cause both

an increase and a decrease in the number of nodes of the branch-and-cut tree. The logical

inequalities prove to be very strong and easily separated. As the heuristic separation finds

very few combs and the exact separation procedure takes much time in total, the proposed

branch-and-cut algorithm is not competitive for other solving procedures regarding compu-

tational time. It does, however, solve problem instances with up to 40 customer nodes to

optimality and for instances with less than 30 customer nodes, the tree is often smaller when

using the logical and comb cuts. In general, the branch-and-cut algorithm works best when

CPLEX is not allowed to delete constraints it deems redundant. In the extensive analysis,

the maximal benefit of three configurations were investigated. From these results, it can be

concluded that the proposed cuts can be competitive in case the inequalities can be found

51

faster. We have observed that logical and comb inequalities work well for difficult instances

with 25 customer nodes and no truck nodes included in the operations. Running two versions

in parallel was especially useful for instances with 30 customers and no truck nodes allowed

in the operations, and instances with 25 customers and 2 truck nodes allowed.

9 Further research

Even though the research for this thesis was conducted with great care and effort, there

are several limitations to it which can be studied in future research. First, the focus of this

research has been on the derivation and the effect of comb inequalities. The logical inequalities

from the aforementioned literature formed a well-fitting and strong addition to the comb

inequalities. However, it is very well possible that even stronger inequalities can be derived

in further research. Examples of this include the families of source-destination and clique tree

inequalities derived by Balas (1995) for the Prize Collecting Traveling Salesman Problem and

the path inequalities for the classic Traveling Salesman Problem. When allowing the drone to

pick up parcels on the road, one could use the co-circuit cuts, satellite depot cuts and depot

degree constraints used in Belenguer et al. (2016). Moreover, there are many other possible

heuristic separation algorithms that might find more valid inequalities than the Padberg and

Rinaldi (1990b) algorithm and match up to its speed. From the reviewed literature, other

existing heuristic algorithms are the Padberg and Grotschel (1985) heuristic and the blossom

finding heuristic proposed by Fischetti et al. (1998). As in the classic Traveling Salesman

Problem, one could also consider shrinking techniques and cut metamorphoses to find more

valid inequalities. Lastly, this research does not consider improvement heuristics, which

are frequently used in branch-and-cut algorithms for related combinatorial problems. This

research uses the built-in heuristics of CPLEX to improve the lower bound in the root node

and incumbent solutions throughout the algorithm. It could be useful to implement self-

built or existing improvement heuristics from literature to further speed up the algorithm in

terms of nodes of the branch-and-cut tree and computational time. At this moment, another

research is conducted to implementing pricing operations, yielding a branch-and-cut-and-

price algorithm. This extension could overcome the limitation of allowed truck nodes in this

52

research, as we have only covered cases with up to 5 allowed truck nodes. Allowing more truck

nodes and adding these operation variables with a pricing mechanism will yield a solution

that is guaranteed to be optimal in every aspect.

10 Bibliography

N. Agatz, P. Bouman, and M. Schmidt. Optimization Approaches for the Traveling Salesman

Problem with Drone. Transportation Science, pages 1–40, 2018.

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding Cuts in the TSP. Technical

report, DIMACS, 1993.

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling Salesman Problem: A

Computational Study. Princeton University Press, 2011.

E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.

E. Balas. The prize Collecting Traveling Salesman Problem: II. Polyhedral Results. Networks,

25:199–216, 1995.

E. Balas and M. Fischetti. A lifting procedure for the asymmetric traveling salesman polytope

and a large class of facets new. Mathematical Programming, 58:325–352, 1993.

J.M. Belenguer, E. Benavent, A. Martínez, C. Prins, C. Prodhon, and J.G. Villegas. A

Branch-and-Cut Algorithm for the Single Truck and Trailer Routing Problem with Satellite

Depots. Transportation Science, 50(2):735–749, 2016.

A. Ben-Dor and B. Chor. On constructing radiation hybrid maps. Journal of Computational

Biology, 4:517–533, 1997.

J. Bérubé, M. Gendreau, and J. Potvin. A branch-and-cut algorithm for the undirected prize

collecting traveling salesman problem. Networks, 54(1):56–67, 2009.

D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize

collecting traveling salesman problem. Mathematical Programming, 59:413–420, 1993.

53

P. Bouman, N. Agatz, and M. Schmidt. Dynamic Programming Approaches for the Traveling

Salesman Problem with Drone. 2017.

J.F. Campbell, D.C. Sweeney II, and J. Zhang. Strategic Design for Delivery with Trucks

and Drones. Technical report, 2017.

J.G. Carlsson and S. Song. Coordinated logistics with a truck and a drone. Management

Science, 2017.

C. Cheng, Y. Adulyasak, and Louis-Martin Rousseau. Formulations and exact algorithms

for drone routing problem. 2018.

B.N. Coelho, V.N. Coelho, I.M. Coelho, L.S. Ochi, D. Zuidema, M.S.F. Lima, A.R. da Costa,

et al. A multi-objective green uav routing problem. Computers & Operations Research,

88:306–315, 2017.

H. Crowder and M.W. Padberg. Solving Large-Scale Symmetric Travelling Salesman Prob-

lems to Optimality. Management Science, 26(5):495–509, 1980.

R. Daknama and E. Kraus. Vehicle routing with drones. arXiv preprint arXiv:1705.06431,

2017.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman prob-

lem. Technical report, RAND Corporation, Santa Monica, California, USA, 1954.

M. Dell’Amico, F. Maffioli, and P. Varbrand. On Prize-collecting Tours and the Asymmetric

Travelling Salesman Problem. International Transactions in Operations Research, 2(3):

297–308, 1995.

L. Di Puglia Pugliese and F. Guerriero. Last-mile deliveries by using drones and classical

vehicles, 2017.

K. Dorling, J. Heinrichs, G.G. Messier, and S. Magierowski. Vehicle routing problems for

drone delivery. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(1):

70–85, 2017.

54

D. Feillet, P. Dejax, and M. Gendreau. Traveling Salesman Problems with Profits. Trans-

portation Science, 39(2):188–205, 2005.

S.M. Ferrandez, T. Harbison, T. Weber, R. Sturges, and R. Rich. Optimization of a truck-

drone in tandem delivery network using k-means and genetic algorithm. Journal of Indus-

trial Engineering and Management, 9(2):374–388, 2016.

M. Fischetti, J.J.S. González, and P. Toth. A Branch-and-Cut Algorithm for the Symmetric

Generalized Traveling Salesman Problem. Operations Research, 45(3):378–394, 1997.

M. Fischetti, J.J.S. Gonzalez, and P. Toth. Solving the orienteering problem through branch-

and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998.

M. Flood. The Traveling-Salesman problem. Management Science, 1(2):61–75, 1955.

J.C. Freitas and P.H.V. Penna. A Variable Neighborhood Search for Flying Sidekick Traveling

Salesman Problem. (December 2013), 2018.

M. Gendreau, G. Laporte, and F. Semet. The Covering Tour Problem. Operations Research,

45(4):568–576, 1997.

M. Gendreau, G. Laporte, and F. Semet. A Branch-and-Cut Algorithm for the Undirected

Selective Traveling Salesman Problem. Networks, 32:263–273, 1998.

B. Golden, Z. Naji-Azimi, S. Raghavan, M. Salari, and P. Toth. The Generalized Covering

Salesman Problem. INFORMS, Journal of Computing, 24(4):534–553, 2012.

M. Grotschel and O. Holland. Solution of Large Scale Symmetric Travelling Salesman Prob-

lem. Mathematical Programming, 51:141–202, 1991.

Q.M. Ha, Y. Deville, Q.D. Pham, and M.H. Hà. Heuristic methods for the traveling salesman

problem with drone. Technical report, ICTEAM/INGI/EPL, 2015.

M. Held and R.M. Karp. A Dynamic Programming Approach to Sequencing Problems.

Journal of the Society for Industrial and Applied Mathematics, 10(1):196–210, 1962.

55

S. Hong. A Linear Programming Approach for the Traveling Salesman Problem. PhD thesis,

Johns Hopkins University, Baltimore, Maryland, USA, 1972.

T. Keeney. Amazon Drones Could Deliver a Package in Under Thirty Minutes for One Dollar.

https://ark-invest.com/research/amazon-drone-delivery#fn-5091-4, 2015. [On-

line; accessed 23-April-2018].

J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical society, 7(1):48–50, 1956.

H.L. Lee, Y. Chen, B. Gillai, and S. Rammohan. Technological Disruption and Innovation

in Last-Mile Delivery. White Paper. Stanford Graduate School of Business, 2016.

A.C. Leifer and M.B. Rosenwein. Strong linear programming relaxations for the orienteering

problem. European Journal of Operational Research, 73:517–523, 1994.

S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman

problem. Operations Research, 21:498–516, 1973.

M. Marinelli, L. Caggiani, M. Ottomanelli, and M. Dell’Orco. En route truck–drone parcel

delivery for optimal vehicle routing strategies. IET Intelligent Transport Systems, 12(4):

253–261, 2017.

N. Mathew, S.L. Smith, and S.L. Waslander. Planning paths for package delivery in hetero-

geneous multirobot teams. IEEE Transactions on Automation Science and Engineering, 4

(12):1298–1308, 2015.

C.C. Murray and A.G. Chu. The flying sidekick traveling salesman problem : Optimization

of drone-assisted parcel delivery. Transportation Research Part C: Emerging Technologies,

54:86–109, 2015.

E. Oswald. Here’s everything you need to know about Amazon’s drone de-

livery project, Prime Air. https://www.digitaltrends.com/cool-tech/

amazon-prime-air-delivery-drones-history-progress/, 2017. [Online; accessed

19-April-2018].

56

M. Othman, M. Shahrizan, A. Shurbevski, and H. Nagamochi. Routing of carrier-vehicle

systems with dedicated last-stretch delivery vehicle. 2017.

A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch. Optimization approaches for civil

applications of unmanned aerial vehicles (uavs) or aerial drones: A survey. Networks, 2018.

M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.

Mathematical Programming, 47(1-3):19–36, 1990a.

M. Padberg and G. Rinaldi. Facet Identification for the Symmetric Traveling Salesman

Polytope. Mathematical Programming, 47:219–257, 1990b.

M.W. Padberg and M. Grotschel. Polyhedral Computations. In E.L. Lawler, J.K. Lenstra,

A.H.G. Rinnoy Kan, and D.B. Shmoys, editors, The Traveling Salesman Problem: A

Guided Tour of Combinatorial Optimization, chapter 9, pages 307–360. Wiley, New York,

1985.

M.W. Padberg and M.R. Rao. Odd Minimum Cut-Sets and b-Matchings. Mathematics of

Operations Research, 7(1):67–80, 1982.

M.W. Padberg and G. Rinaldi. A Branch-and-Cut Algorithm for the Resolution of Large-

Scale Symmetric Traveling Salesman Problems. 33(1):60–100, 1991.

J. Park, S. Kim, and K. Suh. A comparative analysis of the environmental benefits of drone-

based delivery services in urban and rural areas. Sustainability, 10(3):888, 2018.

S. Poikonen, X. Wang, and B. Golden. The vehicle routing problem with drones: Extended

models and connections. Networks, 70(1):34–43, 2017.

A. Ponza. Optimization of drone-assisted parcel delivery. 2016.

J. Scott and C. Scott. Drone delivery models for healthcare. 2017.

C. Snow. Drone Delivery: By The Numbers. http://droneanalyst.com/2014/10/02/

drone-delivery-numbers, 2014. [Online; accessed 23-April-2018].

57

M.W. Ulmer and B.W. Thomas. Same-day delivery with a heterogeneous fleet of drones and

vehicles. Technical report, 2017.

UnmannedCargo. Drones going postal – a summary of postal

service delivery drone trials. http://unmannedcargo.org/

drones-going-postal-summary-postal-service-delivery-drone-trials/, 2016.

[Online; accessed 11-April-2018].

UPS. UPS Tests Residential Delivery Via Drone Launched From atop Pack-

age Car. https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?

ConceptType=PressReleases&id=1487687844847-162, 2017. [Online; accessed 23-April-

2018].

V. Vorotnikov, I. Gumenyuk, and P. Pozdniakov. Planning the flight routes of the unmanned

aerial vehicle by solving the travelling salesman problem. Technology audit and production

reserves, 4(2 (36)):44–49, 2017.

D. Wang. The economics of drone delivery. https://www.flexport.com/blog/

drone-delivery-economics/, 2015. [Online; accessed 19-April-2018].

X. Wang, S. Poikonen, and B. Golden. The vehicle routing problem with drones: several

worst-case results. Optimization Letters, 11(4):679–697, 2017.

A Formulations

A.1 TSP formulation

min
∑

(i,j)∈E

cijxij (55)

s.t.
∑

j∈V \{i}

xij = 1 ∀i ∈ V (56)

∑
i∈V \{j}

xij = 1 ∀j ∈ V (57)

58

∑
(xij : (i, j) has one end in S and one end not in S) ≥ 2 ∀S ⊂ V, S 6= ∅ (58)

xij ∈ {0, 1} ∀(i, j) ∈ E (59)

A.2 PCTSP formulation

min
∑
i∈V

∑
j∈V \{i}

cijxij +
∑
i∈V

ciyi (60)

s.t.
∑

j∈N\{i}

xij + yi = 1 ∀i ∈ V (61)

∑
i∈V \{j}

xij + yj = 1 ∀j ∈ V (62)

∑
i∈V

wiyi ≤ U (63)

xij ∈ {0, 1} ∀(i, j) ∈ E (64)

yi ∈ {0, 1} ∀i ∈ V (65)

Subgraph GL(x, y) has one cycle of length k ≥ 2 (66)

yi = 1 for all nodes i not included in the cycle of GL (67)

B Numeric results

B.1 Preliminary analysis

The tables in this section give averages of several measures for the instances used in the

preliminary results. In Tables 10 and 11, the number of customer nodes is set out horizontally

and the number of truck only nodes that is allowed is set out vertically for every version

tested. N represents the average number of nodes in the branch-and-cut tree, T represents

the average computational time in the branch-and-cut part of the algorithm in seconds, and

G is the average gap between the lower bound in the root node and the optimal solution in

percentage points. It is emphasized that T does not include the time spent in the callback

function, as this would not yield a fair comparison between the different versions.

59

Table 10: Results preliminary analysis, averages of 30 instances (I)

Version A

n 15 20 25 30 40

t N U G N U G N U G N U G N U G

0 39.20 123.47 12.95 70.57 244.20 12.50 128.67 401.50 11.94 113.20 468.93 7.84 369.73 1068.60 8.56

1 65.23 156.17 16.77 169.37 294.23 16.38 277.00 484.73 16.78 758.71 896.03 17.85

2 82.87 168.07 17.60 211.40 318.07 18.60 411.90 541.10 18.25

3 91.17 160.27 18.95 212.30 307.43 18.52

4 98.43 163.57 18.96 231.13 314.93 18.46

5 91.57 166.40 18.96

Version B

0 33.77 128.23 14.24 62.13 219.67 11.71 107.33 334.40 11.13 106.17 412.30 8.39 501.17 875.90 10.41

1 73.27 151.90 16.87 152.13 282.83 17.05 305.97 446.67 17.21 719.13 ‘678.87 17.74

2 77.33 150.33 17.81 200.63 277.60 18.57 401.40 508.23 18.23

3 88.97 149.33 18.94 234.13 291.43 18.50

4 90.53 151.10 18.95 235.97 296.50 18.44

5 98.73 148.93 18.95

Version C

0 33.77 128.50 12.49 63.30 223.23 11.71 102.47 324.40 11.13 107.03 428.50 8.39 * * *

1 71.97 152.17 16.87 152.77 282.80 17.05 297.03 449.20 17.21 * * *

2 77.33 150.33 17.81 200.20 278.00 18.57 * * *

60

Table 11: Results preliminary analysis, averages of 30 instances (II)

n 15 20 25 30 40

t N U G N U G N U G N U G N U G

3 89.03 151.10 18.94 234.13 291.73 18.50

4 90.53 151.10 18.95 235.80 296.40 18.44

5 98.73 148.93 18.95

Version D

0 33.70 128.33 12.49 62.30 220.47 11.71 109.57 326.63 11.13 104.40 443.43 8.39 * * *

1 71.90 152.30 16.87 153.00 283.03 17.05 301.37 451.30 17.21 * * *

2 77.33 150.33 17.81 200.63 277.60 18.57 * * *

3 88.97 151.07 18.94 234.13 291.73 18.50

4 90.53 151.10 18.95 236.03 296.27 18.44

5 98.73 148.93 18.95

Version E

0 33.73 128.43 12.49 62.17 220.93 11.71 104.37 326.03 11.13 104.13 443.87 8.39 * * *

1 72.00 152.33 16.87 152.47 283.53 17.05 300.47 450.17 17.21 * * *

2 77.33 150.33 17.81 200.63 277.60 18.57 * * *

3 88.97 151.07 18.94 234.13 291.60 18.50

4 90.53 151.10 18.95 236.03 296.27 18.44

5 98.73 148.93 18.95

61

Table 12: Results preliminary analysis, averages of 30 instances (III)

Version F

n 15 20 25 30 40

t N U G N U G N U G N U G N U G

0 33.77 128.23 14.24 62.13 219.67 11.71 107.17 334.23 11.13 106.17 412.30 8.39 * * *

1 73.27 151.90 16.87 152.13 282.83 17.05 305.97 446.67 17.21 * * *

2 77.33 150.33 17.81 200.63 277.60 18.57 * * *

3 88.97 151.07 18.94 234.13 291.43 18.50

4 90.53 151.10 18.95 235.97 296.50 18.44

5 98.73 148.93 18.95

62

Table 13: Results for instance sizes in [32, 38], t = 0, averages of 30 instances

n 32 34 36 38

Version N U N U N U N U

A 128.10 528.10 153.50 636.97 181.67 746.27 263.63 878.60

B 134.13 522.97 157.40 541.37 229.37 663.10 330.80 755.97

B.2 Extensive analysis

This section covers the numeric results of the figures in Section 7.2. The number of nodes

in the branch-and-cut tree (N), time spent in the branch-and-cut tree (TBNC), gap in root

node (G) and gap when stopping the other version (Gstop) are reported.

Table 14: Results comparing versions A and C, n = 25 and t = 0 (I)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

1 183 221 4.64 7.374 11.54 11.55 22.62

2 72 80 4.95 5.344 12.43 11.66 4.28

3 93 127 5.773 4.919 11.12 11.16 6.72

4 69 42 4.701 6.111 11.03 7.76 24.34

5 59 16 5.347 4.09 13.09 10.52 52.80

6 407 105 9.865 5.318 14.83 10.22 12.15

7 152 138 6.982 5.301 9.29 9.53 8.13

8 99 77 4.63 4.812 9.65 9.14 1.79

9 135 108 9.093 6.618 10.65 10.03 13.13

10 94 134 6.274 5.871 12.78 12.32 2.08

11 107 60 5.241 6.997 12.38 10.17 28.87

12 164 139 7.119 5.95 13.28 12.56 3.39

13 53 31 3.807 4.678 11.65 10.37 15.27

14 55 35 8.206 3.739 9.43 9.20 42.52

15 140 107 7.186 6.026 9.90 11.85 9.30

16 202 142 6.518 6.647 14.25 11.80 1.76

17 254 173 8.859 5.513 14.15 13.37 18.15

63

Table 15: Results comparing versions A and C, n = 25 and t = 0 (II)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

18 49 75 5.791 6.753 14.29 14.27 18.19

19 159 172 7.261 7.003 16.60 16.60 0.00

20 113 103 6.641 4.833 12.98 12.68 12.48

21 87 86 5.023 5.655 14.74 14.52 27.62

22 42 39 4.525 4.327 9.03 8.21 0.00

23 445 280 8.201 6.863 11.70 11.92 1.40

24 198 93 9.192 5.793 13.40 12.31 36.09

25 149 125 9.022 4.737 20.95 20.49 23.92

26 291 335 8.747 9.299 14.97 15.82 4.05

27 149 158 10.968 5.88 14.26 13.73 100.00

28 24 15 2.712 3.727 8.77 7.43 100.00

29 23 22 3.806 4.75 9.11 7.43 100.00

30 29 55 6.745 5.763 12.74 10.44 31.15

31 97 172 3.98 4.34 10.24 10.24 4.89

32 48 38 3.369 4.114 8.91 8.90 26.77

33 88 55 4.725 3.582 10.72 9.34 9.67

34 81 91 5.419 6.6 12.02 12.08 21.03

35 102 75 6.842 4.987 5.13 5.13 35.88

36 73 122 4.803 5.543 7.91 8.43 7.36

37 56 112 5.641 6.275 15.32 16.32 11.98

38 52 40 4.436 4.022 10.30 8.45 4.42

39 108 104 6.307 7.89 14.33 14.57 49.18

40 183 129 5.652 4.156 8.48 8.05 28.34

41 110 97 11.42 5.3 12.68 10.37 44.31

42 87 29 5.066 4.537 7.42 6.53 6.51

43 89 48 4.41 3.914 9.01 8.20 3.24

44 242 201 8.593 5.49 18.07 16.54 13.07

45 94 80 4.73 5.637 7.11 7.23 29.93

46 66 21 5.94 3.742 10.62 11.55 100.00

47 166 217 5.658 5.714 16.93 16.46 4.92

48 5 6 5.848 4.161 10.05 10.13 100.0064

Table 16: Results comparing versions A and C, n = 25 and t = 0 (III)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

49 19 8 2.801 2.828 6.32 4.88 10.04

50 71 164 6.424 7.875 15.01 11.90 19.23

Table 17: Results comparing versions A and C, n = 30 and t = 0 (I)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

1 80 61 8.688 15.838 7.28 6.89 100.00

2 138 178 8.723 12.851 11.11 11.88 100.00

3 12 10 7.024 13.431 3.45 3.85 100.00

4 179 85 11.862 16.145 9.40 9.39 100.00

5 66 80 10.023 13.847 7.66 8.31 22.51

6 83 133 11.559 15.581 6.52 8.44 20.70

7 68 15 11.324 11.410 8.83 6.24 100.00

8 33 47 8.948 9.320 6.92 7.44 12.65

9 54 37 9.931 10.503 6.99 7.76 14.02

10 40 69 10.517 11.901 6.82 6.19 45.09

11 84 73 12.098 8.202 8.96 9.34 100.00

12 113 92 9.371 9.349 9.17 10.17 11.38

13 160 143 12.754 11.835 11.35 11.51 10.26

14 15 18 9.316 13.312 3.65 3.82 100.00

15 25 55 12.812 11.204 5.19 5.02 100.00

16 34 46 12.043 18.539 6.12 10.11 100.00

17 39 55 23.286 17.079 6.44 6.49 100.00

18 158 55 23.010 10.216 13.85 10.96 100.00

19 552 663 23.998 22.215 18.22 20.54 6.86

20 93 115 17.100 14.427 8.30 9.13 100.00

21 100 73 11.417 13.606 6.60 7.26 100.00

22 21 10 12.021 13.585 5.51 4.10 100.00

65

Table 18: Results comparing versions A and C, n = 30 and t = 0 (II)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

23 134 142 10.476 13.495 6.08 5.63 13.18

24 129 135 13.308 16.426 8.37 11.32 100.00

25 186 208 25.522 19.044 16.75 15.50 16.71

26 335 264 18.949 27.033 14.57 15.35 100.00

27 139 275 10.700 14.284 7.32 10.33 100.00

28 90 95 14.278 16.053 7.42 10.17 100.00

29 47 51 11.920 11.103 6.47 6.38 17.27

30 28 33 17.107 10.926 5.44 6.28 100.00

31 258 171 27.085 17.284 8.50 7.58 40.38

32 23 23 7.406 10.619 4.33 7.33 100.00

33 119 123 13.491 13.928 10.95 14.20 26.04

34 44 36 5.725 13.328 3.15 5.69 100.00

35 356 320 14.896 20.788 6.73 6.40 19.06

36 243 196 12.862 12.288 6.43 9.93 9.49

37 159 260 21.036 19.326 9.73 11.94 100.00

38 105 61 10.925 10.305 4.63 5.16 8.98

39 236 170 19.933 13.541 11.40 10.10 17.27

40 153 135 17.591 17.474 5.49 4.68 100.00

41 189 121 16.265 18.964 6.81 7.44 26.38

42 48 9 6.825 9.277 4.46 2.92 36.74

43 77 127 13.673 16.250 8.62 10.75 38.01

44 188 75 22.264 11.321 13.02 10.65 31.38

45 49 37 8.004 7.816 4.30 4.59 30.55

46 472 389 19.028 17.497 13.88 14.74 4.43

47 15 9 8.707 8.111 3.69 2.27 100.00

48 23 15 10.560 10.814 5.86 6.55 100.00

49 77 53 13.009 6.156 6.03 8.02 100.00

50 43 35 19.060 7.562 6.31 12.02 100.00

66

Table 19: Results comparing versions A and B, n = 20 and t = 2 (I)

Instance NA NC TBNC,A(s) TBNC,B(s) GA(%) GB(%) Gstop(%)

1 135 147 130.027 102.594 15.49 15.18 100.00

2 187 650 109.902 182.695 22.00 22.00 100.00

3 183 133 119.43 103.143 17.55 17.55 16.27

4 192 157 148.959 124.562 15.00 15.00 100.00

5 122 137 107.687 95.552 23.91 23.91 100.00

6 120 127 88.491 110.455 13.88 13.78 28.59

7 158 101 200.257 142.609 16.93 16.93 100.00

8 168 139 125.014 99.835 15.94 15.94 16.02

9 109 85 113.381 90.885 17.79 17.79 100.00

10 310 280 115.345 115.385 19.39 19.39 2.55

11 514 493 146.089 112.838 23.40 23.40 21.63

12 455 382 147.903 148.094 22.25 22.25 7.26

13 241 256 140.235 153.622 22.04 22.04 7.24

14 18 21 70.631 86.982 7.49 7.49 100.00

15 165 168 122.878 105.464 15.40 15.40 100.00

16 222 252 134.599 137.102 21.75 21.75 6.14

17 299 238 123.561 153.233 20.84 20.84 32.71

18 157 204 121.812 170.575 26.49 26.45 100.00

19 148 211 107.339 109.046 18.42 18.42 6.93

20 142 159 109.143 99.978 20.76 20.76 12.98

21 280 180 143.929 110.828 18.35 18.35 20.31

22 321 195 110.28 115.86 18.33 18.33 7.76

23 91 198 99.343 98.74 12.75 12.75 29.29

24 141 90 117.484 88.551 17.42 17.42 100.00

25 222 247 152.484 138.497 20.92 20.92 7.97

26 174 148 186.469 157.177 27.41 27.41 100.00

27 193 162 120.293 153.402 21.76 21.76 100.00

67

Table 20: Results comparing versions A and B, n = 20 and t = 2 (II)

Instance NA NC TBNC,A(s) TBNC,C(s) GA(%) GC(%) Gstop(%)

28 61 96 86.024 88.625 14.99 14.99 16.85

29 234 350 92.098 114.862 20.89 20.89 14.57

30 349 373 140.793 125.962 19.24 19.24 14.24

31 241 270 155.628 170.727 17.02 16.99 7.41

32 287 352 138.472 112.014 22.05 22.05 100.00

33 121 105 108.99 101.529 13.51 13.47 100.00

34 215 326 148.281 114.459 19.59 19.57 25.61

35 206 176 163.8 117.785 10.22 10.20 100.00

36 182 194 114.927 95.142 14.18 14.18 100.00

37 120 101 128.171 124.54 19.91 19.91 100.00

38 182 224 102.254 125.737 12.90 12.90 100.00

39 295 176 185.708 131.689 24.83 24.83 28.53

40 385 306 166.97 134.418 20.41 20.11 13.68

41 225 230 177.746 159.635 23.98 23.98 11.65

42 111 146 113.701 111.539 14.74 14.74 85.20

43 78 127 155.249 132.923 15.93 15.93 100.00

44 66 82 97.01 108.615 14.45 14.45 100.00

45 151 116 118.052 121.844 14.55 14.55 100.00

46 150 84 157.686 102.995 18.93 18.93 100.00

47 240 214 121.243 119.262 23.81 23.81 5.71

48 68 52 171.343 120.533 19.39 19.39 100.00

49 364 223 172.491 160.451 20.88 20.88 8.55

50 436 267 150.428 137.297 20.91 20.91 10.60

68

