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Abstract

Multivariate extremes exhibit either tail dependence or tail independence. Instead
of assuming tail (in)dependence upfront, we use a flexible copula model by Huser and
Wadsworth (2017) to model extreme government bond losses in European countries.
We find that bond losses across countries in the north exhibit tail dependence, in con-
trast to tail independence across countries in the south. Between northern and southern
country pairs, we also observe tail independence, but the level of remaining tail depen-
dence is higher than for pairs of southern countries. We show that tail (in)dependence
coefficients across European countries significantly vary from expansions to recessions.
Tail dependence of bond losses paired with Finland or Spain significantly decreases
during recessions, whereas it increases for pairs involving France or the Netherlands,

but to a lesser extent.

Keywords: Tail dependence, tail independence, Copula, Bond market linkages, Expansions

and Recessions



1 Introduction

Economies experience booms and recessions on a national and international level. Asset
markets are more volatile during crises and are prone to large losses. For example, during
the financial turmoil of the 2008 crisis and the sovereign debt crisis in 2010, European as-
set markets often crashed together, which shows signs of dependence across these countries.
The more dependent the Euro-area is, the more vulnerable it will be to a shock in a single
country. These shocks occur in different asset markets, where each market crash has differ-
ent consequences for individual European governments. Sovereign bonds in particular are
required for a stable funding mechanism to finance all government operations. Bond prices
can fluctuate drastically, which makes borrowing on the open market increasingly difficult
or even impossible, such that in some cases, intervention by the central bank is required
(Andrade, Breckenfelder, De Fiore, Karadi, & Tristani, 2016). In this paper, we analyse the
dependence of heavy losses in government bond returns in Europe during periods of recession
and expansion. Tail dependence of sovereign bond markets gives an indication of the rela-
tions between European countries that are more exposed to systemic risk. Consequently, the
effectiveness of policy shaped to reduce national risks is related to the dependence on other
countries. In addition, timing of policy could play an important role in its effectiveness, as
dependence across countries could be affected by the state of the economy.

The challenge in modelling extremes of two or more variables is to determine the appro-
priate type of dependence, since most models are either tail dependent or tail independent.
Tail dependence implies that there is a positive probability of a crash in one market con-
ditional on a crash in another market as the crashes become more extreme. When this
probability goes to zero, joint crashes are tail independent. However, we can still analyse the
speed at which this probability of joint extreme crashes approaches zero as an indication of
the remaining dependence. Using a new and flexible model, we do not specify the type of de-
pendence prior to the analysis, which allows us to estimate the degree of tail (in)dependence

from the data. This leads to the following research question:

How does tail dependence in the bond market in Europe differ during recessions and ex-



pansions?

In the latter part of this thesis, we analyse different regions in the Euro-area which have dif-
ferent dependence characteristics. Differences in dependence structures between and within
for instance the northern and southern regions of Europe could give useful insights for policy
makers. The overall picture of tail dependence helps to shape policy in both recessions and
expansions and to minimise the consequences of contagion by identifying the strongest links.

Therefore, we pose a second research question:

To what extent is tail dependence of the Furopean bond market related to certain regions?

Copulas are a natural choice for this extreme value analysis, because we are interested in
the dependence structure in the tail of the loss distribution. A copula is the link between
the marginal distributions and a joint distribution. This is a useful tool to identify comove-
ments between markets, because it contains all the information regarding the dependence.
It is particularly useful for financial applications as it can incorporate non-normal marginals.
Modelling dependence with a copula framework is favoured over the conventional Pearson
correlation measure, because copulas allow for non-linear dependence and are invariant to
marginal transformations (Embrechts, McNeil, & Straumann, 2002). Copulas can be used
to summarise tail dependence into a tail (in)dependence coefficient, which goes beyond the
linear properties of correlation and allows for a convenient comparison between groups of
countries.

The copula model for the extreme observations used in this thesis is based on the model
by Huser and Wadsworth (2017) (from now on HW). This model allows for a flexible tail de-
pendence structure, since one does not need to assume tail dependence or tail independence,
in contrast to previous models for copulas. Assuming an incorrect tail dependence structure
can lead to a bias and erroneous applications in for instance risk management due to either
over- or underestimation of joint tail risks. The HW model encompasses both structures in
a single parametric model, much like the generalised extreme-value distribution.

In addition, the assumption of a static dependence structure can be misleading. For



instance, Poon, Rockinger, and Tawn (2003b) shows that tail dependence tends to increase
over time. This suggests that an analysis regarding different periods with a flexible model
can be insightful.

The drawback of the HW model compared to a non- or semi-parametric model is that
one has to assume a parametric model for the tail distribution. However, this is partly
offset by the goal of this paper, which requires that there is no ex ante assumption about
tail dependence. Besides, we use visualisations of the parametric fit in comparison with the
non-parametric estimate to show that the HW model is able to capture the tail dependence
structure.

We apply the HW model to bivariate pairs of bond losses in two regimes, expansions and
recessions. This characterises the parametric differences between the two regimes and the
HW model allows for statistical comparison between the dependence parameters across these
regimes. Both regimes have their own parameters for the dependence measure and the copula
model. We use different copula models, including the asymmetric logistic model, which is
an extension of the HW symmetric logistic model. A test statistic is developed to examine
changes in tail (in)dependence, using the asymptotic normality of the estimators. We test
whether the bilateral tail dependence structure significantly changes between expansions and
recessions. Afterwards, we use a network analysis to identify groups of countries that can
be identified as tail dependent or tail independent during either expansions or recessions.
The aim is to identify regions in Europe that are most likely to experience joint collapses.
To analyse the extent to which this tail dependence poses a risk within certain regions of
Europe, we test whether the tail (in)dependence coefficients differ for each group of tail
dependent and independent countries across expansions and recessions.

We identify two regions in Europe with different tail dependence structures. Northern
Europe, including the Netherlands, Finland, Belgium, Germany, France, and Austria exhibit
tail dependence in expansions as well as recessions. The only exception is Finland, which
exhibits significantly lower tail dependence during recessions. The countries that experience
the strongest tail dependence increases with other countries resulting from a recession, are
France and the Netherlands. Other than Italy and Spain, southern Europe, including Greece,

Ireland, Italy, Portugal and Spain are tail independent. This is also observed for north-south



relations, although this tail dependence is stronger than merely the south. Recessions only
significantly affect the tail dependence of Spain with other countries, which decreases. These
findings are robust to model variations.

The outline of the remainder of this paper is as follows. First, the relevant literature
is discussed on the augmented methodology, as well as the linkages between bond markets.
Section 3 describes the methodology of Huser and Wadsworth (2017) for bivariate returns
and the implementation of the regime switching method. A simulation is performed in
section 4. This is followed by an application into the European bond market in Section 5

and 6. The final section concludes.

2 Related literature

The framework in this paper builds on the work of Huser and Wadsworth (2017) to model
tail dependence of sovereign debt between European countries. Thereby it relates to three
strands of literature. First of all, it is connected to the modelling of tail dependence. The
motivation for the application of the HW model originates from the issue whether data is
tail dependent or tail independent, which is far from clear in practice. The HW model
is one of the first to implement a flexible tail dependence structure for a spatial process.
The model has similarities to Wadsworth, Tawn, Davison, and Elton (2017) and Huser,
Opitz, and Thibaud (2017), who also try to encompass tail (in)dependence. However, these
models are more complex, less flexible in the parameter space of the dependence measure
and less flexible in the choice of the parametric distribution. Huser et al. (2017) in particular,
develop the building blocks for the HW model, namely the combination of a random variable
with a Gaussian model to achieve a smooth transition between tail dependence and tail
independence. However, the contribution of HW allows for a more diverse selection of
distributions, which are not necessarily Gaussian. Parametric models beyond the Gaussian
are the broad range of max-stable models (Coles & Tawn, 1991). We evaluate multiple
parametric models and test tail dependence in different states of the world.

Secondly, this thesis relates to the literature on dependence changes. Poon et al. (2003b)

were the first to indicate the dynamics of tail dependence. In their paper, they analyse five



global indices and study their dependence properties. They split the sample into subpe-
riods, keeping the percentage of threshold exceedances relatively stable, and find evidence
for complex non-stationary tail dependence between CAC (France), DAX (Germany) and
FTSE (UK), which tends to increase over time. However, significance of the tail dependence
coefficients is computed separately for each time period and no significance test is performed
to test whether this increase in dependence is significant. We will use a parametric model
that is able to test this dependence relation. In a related paper, they found evidence of tail
independence in certain financial markets, in particular for stock returns (Poon, Rockinger,
& Tawn, 2003a). Heteroskedasticity is found to be a major source of tail dependence and
when filtered out, the resulting tail dependence structure often changes to independence. A
GARCH filter was also used in Poon et al. (2003b). This motivates the use of a GARCH
filter for the return series before the analysis of tail dependence.

A more recent study by Castro-Camilo, de Carvalho, and Wadsworth (2018) indicates a
similar trend of increasing tail dependence over time for financial markets. Using the angular
density of a number of extreme value distributions, they introduce a regression model that
enables inference of tail dependence given a covariate. Again, no specific test of significance is
performed, but now all available data is used to show that dependence takes a different form
over time. They conclude that tail dependence increased over time for the European stock
markets by comparing the dependence structure at a particular point in time, specifically
after significant European financial events. In contrast, our method uses a more simple setup
to compare dependence and focusses on the bond market, which might behave differently
across countries than the stock market.

As a result of this apparent instability of dependence, recent literature explores structural
breaks using copulas, where the copula parameter is allowed to vary over time, the functional
form is time-varying, or both (Manner & Reznikova, 2012). As a result of their survey, they
recommend a regime switching model to capture time dynamics for copulas, due to its
performance and relative simplicity. An example is the use of Markov switching copulas
by Rodriguez (2007), who allows a specific regime to determine the functional form of the
copula. He shows evidence for changing dependence structures during periods of crises, due

to changes in the regime and the related copula form. Wang, Wu, and Lai (2013) also stress



the findings in the existing literature that a copula framework without temporal changes
may not be appropriate to model financial returns. They conclude this based on a copula
switching model that examines the dependence between stock and currency markets. Our
approach differs in two ways. Firstly, we do not assume tail (in)dependence in any regime.
This differs from Rodriguez (2007), because in that case, regimes have a particular copula
structure with fixed tail (in)dependence. Secondly, our approach can be used to test for the
significance of tail dependence changes across periods of expansion and recession.

Finally, this thesis adds to the bond market literature, with a specific focus on depen-
dence. Until the paper of Hartmann, Straetmans, and Vries (2004), not much was known
about bond market linkages. Using tail dependence coefficients from a non-parametric model
on weekly bond returns, they show that there are relations between simultaneous crashes
in international bond markets, which are less frequent than stock market cocrashes. Using
a non-parametric test, most pairs of countries seem to be tail dependent and from this,
they calculate expected number of market crashes. They do not find a general geographical
pattern between extreme linkages, but show that occurrences of domestic and international
joint collapses of asset markets are surprisingly similar due to financial integration. The
consequences of deeper financial integration also increases the spillover of interest spreads
after bad news (Beetsma, Giuliodori, De Jong, & Widijanto, 2013; Mink & De Haan, 2013).
This seems to affect the entire European area, but to a lesser extent for northern countries
affected by the south.

Reboredo and Ugolini (2015) use a systemic risk measure, CoVaR, in combination with
copulas to estimate the tail dependence of the European bond market before and after the
onset of the Furopean sovereign debt crisis. The analysis is performed with six copula
models, ranging from tail dependent to independent, where the model selection is based on
the AIC criterion. They find that systemic risk before this crisis was stronger in the EU
as a whole. After the onset of the debt crisis, markets decoupled and showed lower overall
dependence. The systemic risk of Greek debt appears to have less detrimental effect for
northern European countries but it did particularly influence Portuguese bonds. Results from
Philippas and Siriopoulos (2013), using a semi-parametric model, confirm that probabilities

of joint collapses with Greece, because of an overall type of contagion, appear to be low



during recessions.

In summary, the contribution of this paper to the literature is a sound analysis into the
tail dependence structure of the European bond market without ex ante assumptions on
dependence, normality or linearity. On top of that, we develop a test for changes in tail

dependence across multiple regimes.

3 Methodology

This section presents the method applied in this paper, developed by Huser and Wadsworth
(2017). Instead of a spatial application, we use it to model bivariate financial returns in two
regimes to test for temporal dependence changes.

We are interested in the distribution of a crash in a specific bond market, given the
collapse in another country. To analyse these properties of extremal dependence, let (Y7, Y3)
be a random vector denoting bond returns of two countries. For the ease of notation, we take
the negative of the returns, such that extremes in the right tail correspond to large losses.

The information contained in (Y7,Y3) not only reflects the dependence, but also the
behaviour of the marginal distributions. Marginal transformations are not related to the
dependence structure. Therefore, we consider models for the copula of the joint distribution,
which is unaffected by monotone increasing transformations of the marginals. Let (U, Us) =
(Fl(Yl),Fg(Yg)), where F; and F, are the marginal distribution functions of Y; and Y5
respectively. The random vector (Uy,Us) can be represented on a unit square. The copula

links these uniform marginals to the joint distribution F' of (Y, Ys) (Sklar, 1959)
Cy (ur,u2) = F(F ' (u1), Fy ' (u2)),  wi,up € [0,1]. (1)

To model the extreme observations of the bond market losses, we use a parametric ap-
proach following the HW model. Let X = (X, X3) be a random vector, for which the copula

of X only applies to the extreme observations in Y, such that

Cy(uy,us) = Cx(uy,ug)  for uy > uj or ug > u3, (2)
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where u}, u3 are extremal thresholds. Note that this is a model for the tail of Y, described by
the copula of X. A copula model exhibits a certain form of tail dependence, characterised
by two metrics: the tail dependence coefficient and the tail independence coefficient, for
respectively tail dependent and tail independent models. These two metrics summarise the

tail (in)dependence structure in a two numbers.

3.1 Tail (in)dependence coefficients

Dependence for multivariate extremes occurs at the top-right corner of the copula distribu-
tion. When extremes tend to occur simultaneously, X is called tail dependent. A well known
metric for the strength of tail dependence is the tail dependence coefficient

N :2_1im1_CX(1_pal_p)
X p—0 p '

(3)

Equation (3) can be written as lim, 3 P(F1(X1) > u |F2(X3) > u) where Fy and F; are the
marginals of X. This is the probability of a crash in a particular country given a crash in
another country. Since it is a probability, it lies between 0 and 1.

If xx = 0, this probability of a conditional co-crash is zero. In this case, the countries
are tail independent. Nevertheless, there is still a certain level of residual dependence in
this case. Therefore, we consider the tail independence coefficient, which measures this
remaining dependence. We introduce the tail independence coefficient for random vectors
with standard Pareto marginal distribution functions. Suppose W = (W, W,) is a random

vector with standard Pareto margins and assume

P(Wy > w, Wy > w) = Ly (w)w /™ w>1, (4)

Lw (aw)

1V a > 0. Then the coefficient of tail independence 7y summarises the degree to which

where 0 < ny < 1 and Ly is slowly varying at infinity, which means that lim,, .

dependence vanishes in the limit (Ledford & Tawn, 1996).
Note that standard Pareto margins are not essential to define this model of tail indepen-

dence, because ny is related to the copula instead of the marginal distributions. We can
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derive this using the standard Pareto distribution function P(W < w) =1 — % and

1 1 —1/nw
:1—2p+LW (—) (—) .
p p

So, m is a characteristic of the copula Cyy, irrespective of the form of the marginal distri-

butions. This can be linked to the tail dependence coefficient as follows

1—-Cw(l—p1-— 1
xw = lim 2 — w(l —p, P) = lim Ly, (5) pt/mw =t (6)

p—0 p p—0

Since nyw < 1, when p — 0, xw — 0, which indicates the tail independence of W. The
exponent an — 1 indicates how fast the conditional probability tends to zero. Consider for
instance the case of independence, where Cyy(1 — p,1 —p) = (1 — p)? and xw = p. This
implies that ny = %

Another example of the tail independence coefficient lies in its relation with the correla-
tion coefficient for a bivariate normal random vector. A normally distributed random vector
is tail independent when its correlation coefficient p < 1. It can be derived that the tail
independence coefficient in that case equals n = HTP.

Tail dependence can thus be summarised depending on the tail dependence structure.
For tail independent variables, xx = 0 and 0 < nx < 1. For tail dependent variables,

0 < xx <1 and ny = 1. Higher values of xx or nx imply stronger dependence at extreme

levels.
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3.2 The model

Recall that the tail dependence structure in Y is modelled via that of X as in Equation (1).
The HW model for X = (X, X5) is given by

X;=RW}™°, 6=100,1],j=1,2, (7)

where R is a univariate standard Pareto random variable, § is the dependence parameter
and W = (W3, W,) is a random vector with standard Pareto margins. W is tail independent
with a coefficient of tail independence ny as defined in Equation (4). The construction of
Model (7) uses the parameter § to determine the type of extremal dependence, where the
two extremes occur at the boundary points of the parameter space. If § > 0.5, X exhibits

tail dependence with tail dependence coefficient

20 —1 : 1-2
Yo = = B (min(W;, W) 5°), (8)

as derived in Huser and Wadsworth (2017). If 6 < 0.5, (X7, X5) is tail independent and the

coefficient of tail independence is characterised by

1, ifdo>4
nx =, i <i< L 9)

The model shows appealing dependence properties by allowing for both types of tail
dependences structures in a single model. The flexibility of this model stems from W, for
which we can consider multiple distributions. We examine a Gaussian model and three
inverted max-stable models: logistic, asymmetric logistic and Dirichlet. The main difference
across these models is the coefficient of tail independence of W and the different shapes of

the copula, which directly affect the aforementioned coefficients of tail (in)dependence of X.
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3.2.1 Gaussian model

Let Z = (Zy, Z») be a standard normally distributed random variable with correlation coef-

ficient p. Let

1
W, = - 10
where ® is the standard normal distribution. Then W has a Gaussian copula with standard
Pareto margins and it has a coefficient of tail independence ny = %.

The Gaussian model is symmetric in its dependence structure. If 6 > 0.5, there is no
explicit form for yx, but it can be estimated through numerical integration. When § < 0.5,

X is tail independent with a tail independence coefficient

(

: 1
1, if § 2 5
— 0 e 14p 1
nx =5, 1f—3+p<(5<2
14p : 1+p
2 if 0 < 3+p

\

3.2.2 Inverted max-stable models

For this class of models, we make use of a max-stable random vector, which is constructed
as follows. Consider the i.i.d. copies ((YH,YH), . (Ynl,Yng)) of a random vector Y =
(Y1,Y3). Let M,, = (Mp1, M,2) be a random vector with componentwise sample maxima
M,; = max(Yy,,...,Y,;) for j = 1,2. If there exist normalising constants a,; > 0 and

b,; € R for j = 1,2 such that

M, —b M, —b
P(nl—nl<zl,u<zg — G(21,22), n — o0,
an1 an2

for each 21, z5 € R, then G is called a multivariate generalised extreme value distribution or
max-stable. If G has standard Fréchet marginals, we can apply a logarithmic transformation

to derive the exponent function

V(z1,22) = —log G(21, 22). (11)
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For necessary and sufficient conditions on V', see de Haan and Resnick (1977). In particular,
V is homogeneous of degree —1, such that V(a,a) = a™'V(1,1) for a € R.

To obtain an inverted max-stable copula, let

"= etz = () (12)

where G are the standard Fréchet marginal distributions of Z;. As a result, W has standard
Pareto distributed marginals and it has an inverted max-stable copula with a coefficient of
tail independence that depends on the exponent function. To derive this, we first consider

the copula of W

1 1
PWy >w, Wy >w) =P (exp (7> > w, exp (7> > w)
1 2

1 1
—P(Zi<— 2, <
log(w)

= exp (—V (logl(w)’ logl(w)>

w_V(171) ,

where w > 1 and we use the fact that V' is an homogeneous function. By comparing this

1
V(LD

result with Equation (4), we get ny = We analyse different models with parametric
exponent functions V' (2, 29; 0).

For the logistic model (Gumbel, 1960) the exponent function is

1

Vi) = (74257, e (0,1]. (14)

In this case, ny = 27°.
An extension compared to HW is the asymmetric logistic distribution, which extends
the symmetric model with two additional parameters. This model was introduced by Tawn

(1990) and has exponent function

1 1\ ¢
V(21,223 01, 2,0) = 1—¢1+1—¢2+<(ﬁ) +(ﬁ) > : 0 € (0,1]; 1,12 € [0,1].

21 Z9 21 Z9
(15)
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It simplifies to the symmetric model if ¢y = ¥y = 1. Its coeflicient of tail independence

equals
1

2 — et (U )

The Dirichlet model (Coles & Tawn, 1991) is asymmetric and the corresponding exponent

nw

function is

1 oz 1 azy
\%4 ; =—|1—Beta| ———; 1 —Beta | ——; 1
(2172:27@76) Zl( ea<azl+ﬂ22304+ 7B>)+22 ea(azl_’_ﬁzgyaaﬁ—i_ )7

a, 5> 0.
(16)

The coefficient of tail independence then becomes

~1
Q@ o
nw = (1—Beta(a+6,a+1,ﬂ) +Beta(a+5,a,ﬁ+1)> .

For all inverted max-stable models 7y, € [0.5,1), which implies that these models cannot

exhibit negative tail dependence. If 6 > 0.5 the bivariate extremes are tail dependent with

tail dependence coefficient
B 20 —1
1- (1 =61 +mw)

Xx (17)

Consequently, for inverted max-stable models, x x is explicit and depends on both ¢ and 7y .
If 6 < 0.5, X exhibits tail independence, xx = 0 and the coefficient of tail independence is
determined through Equation (9) combined the corresponding values of ny and 9.

Like the Gaussian model, the logistic model is symmetric in its tail dependence structure.
The asymmetric logistic and the Dirichlet model may have a better fit for pairs with more

asymmetric tail dependence structure.

3.3 Estimation

Let (Y1, Y2;) be observations of pairs of daily bond losses over time with t = 1...7T. This
sample is then transformed to uniform marginals as follows. Since the marginal distribution

functions are unknown, we will use the empirical cumulative distribution function indepen-
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dently for both vectors of observations, which transforms each margin through their ranks.

This process is modified such that the uniform variables never reach 1:

(18)

s, Vi) = (rank(Xlt) rank(th)).

n+1 > n+1

We fit the extreme observations (U4, Uy) which lie above a certain threshold (uj,u}) to
the copula of X, where X follows the HW model. This means that certain observations
have to be censored to avoid a bias caused by the influence of non-extreme data points.
All observations enter the likelihood, but in different forms depending on the location of
the observation. Figure 1 displays the censoring in two dimensions. Since we use a copula,
the marginals are uniform and the bivariate joint distribution can be displayed on a unit
square. Region 1 contains the extreme observations above the thresholds uj and uj. These
observations contribute fully to the model and require no censoring. Regions 2 and 3 contain
observations where only one variable is above the threshold, and thus considered extreme.
The censoring pushes the observation in region 3 (4) to the boundary uj (u}), which then
represents the distribution of the entire area. Hence the censored observations are of the form
(max(Uyy, u}), max(Us, u}) ). Finally, observations in region 4 do not exceed the thresholds
in any dimension. They enter the likelihood at the boundary values (u}, u3), which represents

the cumulative copula distribution over region 4.
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Figure 1: Regions of the censored likelihood

We use the log likelihood as defined in HW, with 7', the number of observations. We can

then write

L(gp) = > log (Li(¥)), (19)

where ¥ = (4, 0) and @ are the parameters of the exponent function. So, according to Figure

1, the likelihood can be written for three categories in different ways:

/

c(Urt, Uas; ), region 1

Li(¢) = Cyz, (max(Uyy, u}), max(Us, u3);9p), region 2 or 3

\C(u’{, uy; ), region 4

where J; denotes the set of observations with at least one threshold exceedance. The copula
densities are described in Section 3.1 of Huser and Wadsworth (2017). The maximum like-
lihood estimate 'zﬁ converges to a normal distribution with a speed of convergence based on

the number of observations k that exceed the thresholds (region 1, 2 and 3) as n — oo,

V@ —4) = N(0,Zy) (20)
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The parametric model for W is chosen based on the AIC criterion, such that the copula

of X has the best fit with respect to the amount of parameters:
AIC =2p —2L(v)

where p is the number of parameters and L()) is the censored log likelihood. A lower AIC
implies a better fit.

3.4 Testing dependence and regime switches

To test for the tail dependence structure, we use the asymptotic normality of the maximum
likelihood estimator for the parameter . We test Hy : 0 = % versus H, : 0 < % or H, : 6 > %
for respectively tail independent and tail dependent countries. We conduct this test in two
subsamples, namely expansions and recessions. This means that we can create four categories
of either similar dependence structures (TD-TD, TI-TT) or changing dependence structures
(TD-TI, TI-TD) from expansions to recessions. We then proceed to test whether the change
in the value of § is significant.

The parameter § is particularly useful in the context of tail dependence versus tail inde-
pendence, and not so much the degree of dependence. This is because tail dependence is not
solely determined by the value of §, but also by the copula parameters. However, this test
gives a first indication into the behaviour of the tail dependence across the regimes. We will
incorporate the change in the copula parameters when we test for changes in the coefficient
of tail (in)dependence.

Let 9, be the dependence parameter in the two regimes » = 1,2. The hypothesis of
similar tail dependence structures is Hy : 0; = d2. Let k, be the amount of observations

above the thresholds in each regime. Under the null hypothesis, it holds that

A 4 d o? o2
601 —0s =~ N 0,—1+—2), 21
R (e 1

where o2 is the corresponding variance of 6., If the parameter 0 is significantly different

during recessions in contrast to expansions, there are again four possible outcomes. One
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possibility is a significant change in the value of § with a different or similar tail dependence
structure. The value of § may also change without altering the tail dependence structure.
To test for tail dependence changes, we examine changes in xx and 7x. They are both
functionals of the parameters § and 6. Theoretically, based on the Cramer’s delta method,
the asymptotic distributions of yx and 79x are both normal. Specifically, when we apply a

function h

Ve (h(4,) = h(4,)) = N(0, Vh(3p,) 2y, Vi(1,)). (22)

Calculating the gradient can become arduous for the Dirichlet model, so we use a parametric
bootstrap instead of direct inference on the coefficient of tail (in)dependence.

The hypothesis of equal dependence is Hy : xx,1 = Xx,2 versus H, : xx1 # Xx,2 for tail
dependent countries and Hy : nx1 = nx,2 versus H, : nx1 7# 7x,2 for countries that are tail
independent. We obtain 1000 samples of 1, by simulating from a normal distribution with
mean ’:,ZAJ,« and variance k%f),, With these parameters, we calculate the coefficients of tail
(in)dependence and test the difference between an expansion and a recession per country
pair, using an asymptotically normal test

U[ﬁX,l - ﬁX,2] ’

szw fI’Z:

= = , 23
U[XX,l - XX,2] ( )

where the denominator denotes the standard deviation of the difference in the bootstrap

sample X x 1 — Xx2 and the same applies to the statistic for 7x.

4 Simulation

To examine whether the proposed models can be estimated correctly we perform simulations.
Given that HW performed simulations for the Gaussian model, we do simulations for the
inverted max-stable models, including the novel asymmetric logistic model.

We first simulate from the HW copula with the asymmetric logistic model for W. Fig-
ure 2 shows the results for the parameter § with shape parameters ¢; = 0.25, ¢o = 0.75
and dependence parameter § = 0.4. The estimation of the parameter § in this model per-

forms well, especially in the tail dependent case (6 > %) For lower values of 9, there is a
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higher variance and a downward bias. This is comparable to simulation results in Huser and
Wadsworth (2017) of the Gaussian model. Since ny > 0.5 for inverted max-stable models,
Equation (9) implies that ny will be the same for < % Different values for the dependence
parameter § were considered. As a result, lower values of 6 (stronger dependence) result in a
better fit for the parameter 0. Especially when 6 > 0.6, estimates of tail independent values
for the parameter 6 become more volatile and the downward bias increases due to the low

dependence.
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Figure 2: Boxplots for § = 0.1...0.9 simulated from the asymmetric logistic model with
parameters ¢; = 0.25, ¢ = 0.75, § = 0.4. Per value of 9, 100 simulations are performed,
with n = 1000 observations. The solid grey lines display the true values of 4. When
0=0.1...04, nx =0.57,0.57,0.57,0.67. For 6 =0.6...0.9, xx = 0.53,0.75,0.87,0.94.

The estimation of the copula parameters is more variable. Figure 3 shows the boxplots
for the three parameters. The estimation of all parameters is better for lower values of 6
(stronger dependence), but the bias of the parameters ¢; and ¢, is larger than the bias of
the parameter ¢ for any value of . Also, the bias of the parameter # seems to be affected by
the value of §. This effect is persistent for multiple values of # in the simulated distribution.

We interpret this observed effect as follows. Both parameters § and 6 contribute to the

degree of dependence and they appear to counteract, i.e. when the value of § is low (high),
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the estimate of 6 is high (low). This should be taken into account in the empirical analysis,

since this could also lead to a bias of the tail (in)dependence coefficients.
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Figure 3: Boxplots for ¢¥; = 0.25, ¥, = 0.75 and # = 0.4 simulated from the asymmetric
logistic model with 6 = 0.1,...,0.9. Per value of §, 100 simulations are performed, with
n = 1000 observations. The solid red lines display the true values of the parameters.

Figure 4 presents the simulation for the (symmetric) logistic model. Estimation for this
model with a single parameter does not show a bias over the range of the parameter §.

The only effect of a larger value of § is a wider distribution around the true value of 6,
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due to the strong dependence. This is also observed for the Gaussian parameters in Huser
and Wadsworth (2017). The volatility increases for simulations with larger values of the

parameter 6.
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Figure 4: Boxplots for 2 simulations of the logistic model with § = 0.3 (top) and 6 = 0.8
(bottom). It is simulated from the symmetric logistic model with 6 = 0.1,...,0.9. Per value
of 4, 100 simulations are performed, with n = 1000 observations. The solid red lines display
the true values of the parameters.

Finally, we analyse the Dirichlet model. Figure 5 shows the results for the parameter ¢§
and Figure 6 gives the results for the copula parameters. We simulate with shape parameters
a = 0.15 and § = 0.75, such that we obtain similar tail (in)dependence coefficients as in
the asymmetric logistic model. The estimates of the parameter ¢ are slightly more variable
than in the asymmetric logistic model, but are estimated relatively well. Estimates of lower

values of § are the most volatile.
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Figure 5: Boxplots for 6 = 0.1...0.9 simulated from the Dirichlet model with parameters
a = 0.15 and § = 0.75. Per value of ¢, 100 simulations are performed, with n = 1000
observations. The solid grey lines display the true values of . When 6 = 0.1...0.4, nx =
0.57,0.57,0.57,0.67. For 6 =0.6...0.9, xx = 0.54,0.76,0.88, 0.95.

Estimation of the parameters in the Dirichlet model is less accurate than that for the
parameter 0. Although estimation of the a parameter « is good for the tail independent
case, increasing the value of ¢ increases its bias and variance. Estimates of the parameter
are biased downwards and volatile. This pattern is unrelated to the value of 4. Finally, we

observe that many outliers are present for both parameters.
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Figure 6: Boxplots for a = 0.15 and § = 0.75 simulated from the Dirichlet model with
0=0.1,...,0.9. Per value of 4, 100 simulations are performed, with n = 1000 observations.
The solid red lines display the true values of the parameters.

These simulations indicate that estimation of the copula parameters is prone to a bias,
especially in asymmetric models. Therefore, a robustness analysis of an asymmetric model
should be performed with a symmetric model which is less biased. This is especially relevant

for the calculation of yx and nx, which depend on the copula parameters.

5 Data

We use daily bond price data from Datastream. These are 10-year all traded benchmark gov-
ernment bond price indices from the following countries: Austria, Belgium, Finland, France,

Germany, Greece, Ireland, Italy, Netherlands, Portugal and Spain. Losses are calculated as
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Figure 7: Daily European recession indicator based on OECD data. The value 0 is an
expansionary period, while 1 indicates a recession.

the negative of the daily percentage index returns. The sample starts at December 30, 1988
and ends on May 8, 2018. Not all countries have data available from the start of the sample,
but the number of observations is large enough for this extreme value analysis. Data on
recessions is available at the FRED database!. It is an OECD based Recession Indicator on
a daily basis, which is not seasonally adjusted. The sample contains six periods of recessions,
which in total consist of 2849 observations. Figure 7 presents an overview.

Table 1 provides the summary statistics for the daily returns on government bonds.
Overall, returns in Spain, Portugal and Italy are the highest, while the Netherlands, Germany
and Austria have the lowest. The higher returns possibly reflect the higher risk profiles of
these bonds. Standard deviations are also higher in the former three countries.

The phenomenon of a flight to quality towards bonds during recessions appears to be
present for most countries. Average returns are higher during recessions, indicating a ris-
ing demand in all countries, except Greece. At the same time, volatility increases during

recessions. Expansions are characterised by low and relatively similar average bond returns.

Thttps://fred.stlouisfed.org/series/ EURORECD
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Finally, the largest losses during either expansions and recessions are fairly similar per
country. Also, most of these minima occurred during recessions. The most notable daily
losses happened in Greece. This reflected the turmoil of two disturbing events for the Greek
economy. During the recession in 2012, worries rose that Greece would possibly default.
Then in 2015, while Europe was in an expansion, the EU rejected a bid to extend the
Greek bailout, creating a severe loss on the bond market. Minima during expansions are
more scattered across the sample than during recessions, which might indicate stronger tail

dependence in turbulent periods.

Table 1: Summary Statistics: 10-year government bond price index returns in percentages
and standard deviations in parentheses.

n Mean Expansion Mean Recession mean Expansion Recession
minimum minimum

Austria 7657 0.008 0.001 0.020 -2.323 -2.303
(0.310) (0.304) (0.320)

Belgium 7527 0.010 0.002 0.024 -2.323 -2.634
(0.345) (0.333) (0.363)

Finland 6962 0.012 0.003 0.026 -4.398 -3.400
(0.372) (0.343) (0.413)

France 7657 0.010 0.002 0.024 -1.991 -1.996
(0.357) (0.351) (0.368)

Germany 7657 0.008 0.000 0.020 -2.037 -2.494
(0.335) (0.327) (0.347)

Greece 4984 0.011 0.018 -0.003 -25.315 -19.482
(1.606) (1.543) (1.746)

Ireland 7657 0.009 -0.004 0.031 -4.960 -4.934
(0.457) (0.426) (0.504)

Italy 7072 0.014 0.004 0.028 -3.134 -3.621
(0.460) (0.405) (0.532)

Netherlands 7657 0.008 0.000 0.022 -1.712 -1.794
(0.317) (0.311) (0.327)

Portugal 6462 0.015 0.000 0.044 -6.496 -10.977
(0.643) (0.565) (0.769)

Spain 7157 0.018 0.006 0.035 -2.701 -2.605
(0.441) (0.386) (0.512)

To reduce the effect of heteroskedasticity on tail dependence, we fit a Garch(1,1) model

and use the residuals of this series for the transformation to uniform margins (Poon et al.,
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2003b). Two examples of these transformations are shown in Figures 8 and 9. Each plot
shows a different type of tail (in)dependence in expansions or recessions. In Figure 8, note
the apparent dependence of the Netherlands and Germany. The largest losses seem to cluster

together in the upper right corner, which tends to increase during a recession.

Expansion Recession
1.00 1.00
%0.75 §0.75
= ks
= 0.50 = 0.50
5 5
© )
Z 0.25 Z 0.25
0.00 0.00
0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Germany Germany

Figure 8: Scatterplot of the marginally transformed residuals of daily losses for the Nether-
lands and Germany after a Garch fit. The dark area indicates the losses above the 90%
threshold. There is an indication of tail dependence.

Figure 9 shows stronger signs of tail independence. A lot of points are scattered across
the grid instead of being clustered in the upper right corner. Also, the relation looks more
asymmetric. This motivates the use of a flexible model to evaluate the tail dependence and

to incorporate asymmetric models like the Asymmetric Logistic and Dirichlet.
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Figure 9: Scatterplot of the marginally transformed residuals of daily losses for Belgium and
Greece after a Garch fit. The dark area indicates the losses above the 90% threshold. There
is an indication of tail independence

6 Results

In this section, we describe the results of the HW model applied to the European bond
market losses. We start with comparing the goodness-of-fit of the models. Then we group
countries using a network analysis and compare dependence changes based from expansions

to recessions. We end with a robustness analysis.

6.1 Model selection and evaluation

We fit each pair of countries to the four models and compare their relative fit based on the
AIC criterion. Table 2 indicates how many times a specific model has the best parametric fit
out of the 55 country combinations. We use 90% as the threshold for all country pairs. The
asymmetric models outperform the symmetric models, and the Gaussian model fits poorly.

One drawback of the asymmetric logistic model however is its variability regarding the initial
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values in the optimisation. This affects the outcome § to an extent that the optimisation
is able to find solutions with both ¢ > 0.5 and 6 < 0.5. When we consider the relative
performance without the asymmetric logistic model, the Dirichlet model has the best fit in

35 and 38 times in respectively expansions and recessions.

Table 2: Model selection using AIC criterion: Sum of cases where a model has the best fit

Model
Regime Gaussian Logistic Dirichlet Asymmetric Logistic
Expansion 9 11 19 16
Recession 5 12 22 16

To evaluate the performance of the HW model we to compare the non-parametric esti-
mates of yx with the parametric estimates. Figure 10 gives an example of the fit compared
to the non-parametric estimates for France and Italy. All models indicate tail independence
in this figure. The asymmetric models follow the empirical estimate best over the range of
u. For most country pairs, the largest deviations from the empirical estimate occur at the
endpoints, where the asymmetric logistic model has the steepest descent in y x and therefore
it indicates tail independence more often than the other three models. Most variation in
the non-parametric estimates occur close to u = 1, but most models are able to capture this

variation.
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Chi plots for France-Italy
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Figure 10: Estimates for xx, for v = 0.9,...,1. The black dotted lines are the empirical
estimates with a 95% confidence interval. The models are logistic (IEVL), Gaussian, Dirichlet
(IEVct) and asymmetric logistic (IEVAL).

An example of a more debatable result is presented in Figure 11. In both recessions and
expansions, all models except the asymmetric logistic model indicate tail dependence. In
the asymmetric logistic model however, the parameter estimate of J is sensitive to the initial
parameters (varying the starting value of 6 changes the point estimate for the parameter §
from 0.47 to 0.61), which makes the model hard to interpret even though the goodness-of-fit
is good for both values of 6. The algorithm converges in both cases, and the likelihood

appears relatively flat, which could explain these varying parameter estimates.
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Figure 11: Estimates for xx, for v = 0.9,...,1. The black dotted lines are the empirical
estimates with a 95% confidence interval. The models are logistic (IEVL), Gaussian, Dirichlet
(IEVct) and asymmetric logistic (IEVAL). The bottom figure shows the same figure as
the expansion with different starting values for the asymmetric logistic model, showing tail
dependence.

Based on the model selection criteria in combination with the parametric fit and the

variability of the asymmetric logistic results, the Dirichlet model is the best candidate. We

continue the analysis with this model.
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6.2 Network analysis

We now categorise the bilateral dependence relations into the four categories depending on
the value of 9, as in Table 3 and Figures 12 and 13. The missing values in Table 3 are due
to numerical issues in calculating the standard errors. These will be disregarded from the
analysis.

The cluster of countries that results from the division in tail (in)dependence is visualised
in Figure 12. The inter-linkages in the bond markets are clearly divided between the north
and the south of Europe, where the north consists here of Germany, France, Finland, Bel-
gium, Austria and the Netherlands. Among the southern countries, consisting of Greece,
Ireland, Italy, Spain and Portugal, there is hardly any tail dependence. The single exception
is Italy - Spain, which also exhibits tail dependence.

Asymptotically dependent countries

Expansion Recession
France . France .
Germany Finland Germany Finland
Belgium Belgium
Greecg Greecg
ustria ustria
Irelan® Irelan®
Netherlands ® Netherlands
ItaI;\. (6] Italy (6]
Spain Portugal Spain Portugal

Figure 12: All connected countries with 4 > 0.5. The colour intensity of the edges represents
the value of xx.

Tail dependence is found to be strongly significant in the northern countries of Europe
during expansions. Italy is also connected to some northern countries. However, this linkage

with Belgium and Austria is weak, insignificant and it vanishes in recessions. The other
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connections continue to exist during recessions, except for the pairs Finland - Netherlands
and Finland - Austria, which become (insignificantly) tail independent. The pair Ireland -
Belgium becomes tail dependent during recessions. Nevertheless, this tail dependence is weak
and insignificant. During recessions, the parameter § becomes less significant or insignificant
for the pairs involving Belgium and for the pair Italy - Spain.

Five out of fourteen tail dependent country pairs experience a significant change in the
value of ¢ across regimes. The change in the value of § can be both significantly positive or
negative.

From these results, it is evident that the northern connections during expansions are
more often significantly dependent than during recessions, which is not in contrast with the
literature. It is shown that during European recessions, spillover effects in the north are

limited and that during the onset of a crises, dependence is strongest (Reboredo & Ugolini,

2015).
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Table 3: Estimates of § and asymptotically normal P-values of each country pair (Dirichlet
model).

Expansion Recession Comparison
Tail Dependence i) P(5>0.5) 0 P(6 > 0.5) P(0rec = Seap)
Austria-Belgium 0.57 0.00 0.56 0.22 0.38
Austria-France 0.56 0.00 0.59 0.00 0.02
Austria-Germany 0.63 0.00 0.57 0.00 0.00
Austria-Netherlands 0.56 0.00 0.58 0.00 0.28
Belgium-Finland 0.56 0.00 0.50 0.88 0.02
Belgium-France 0.55 0.00 0.56 0.00 0.40
Belgium-Germany 0.53 0.01 0.53 0.25 0.44
Belgium-Netherlands 0.54 0.00 0.55 0.00 0.29
Finland-France 0.55 0.00 0.51 0.45 0.02
Finland-Germany 0.56 0.00 0.56 0.00 0.40
France-Germany 0.54 0.00 0.54 0.00 0.35
France-Netherlands 0.56 0.00 0.60 0.00 0.02
Germany-Netherlands 0.56 0.00 0.53 0.40 0.30
Italy-Spain 0.54 0.00 0.54 0.22 0.40
Tail Independence ) P(6 <0.5) 0 P(6 <0.5) P(0rec = beap)
Austria-Greece 0.03 0.12 0.08
Austria-Ireland 0.43 0.46 0.00
Austria-Portugal 0.24 0.00 0.32 0.00 0.10
Austria-Spain 0.49 0.70 0.25 0.00 0.00
Belgium-Greece 0.06 0.20 0.02 0.00 0.46
Belgium-Portugal 0.38 0.15 0.35 0.00 0.36
Belgium-Spain 0.48 0.53 0.37 0.06 0.08
Finland-Greece 0.06 0.30 0.17 0.00 0.40
Finland-Ireland 0.46 0.06 0.48 0.34 0.27
Finland-Italy 0.50 0.87 0.44
Finland-Portugal 0.40 0.00 0.39 0.00 0.39
Finland-Spain 0.48 0.37 0.39 0.00 0.01
France-Greece 0.10 0.47 0.13 0.05 0.48
France-Ireland 0.47 0.20 0.50 0.91 0.17
France-Italy 0.45 0.06 0.31 0.06 0.08
France-Portugal 0.14 0.10 0.33 0.00 0.19
France-Spain 0.41 0.01 0.39 0.03 0.38
Germany-Greece 0.17 0.00 0.13
Germany-Ireland 0.43 0.00 0.47 0.27 0.10
Germany-Italy 0.46 0.00 0.07 0.06 0.05
Germany-Portugal 0.27 0.00 0.34 0.00 0.14
Germany-Spain 0.49 0.46 0.29 0.00 0.00
Greece-Ireland 0.09 0.11 0.21 0.01 0.34
Greece-Italy 0.04 0.04 0.28 0.01 0.16
Greece-Netherlands 0.04 0.15 0.13
Greece-Portugal 0.05 0.00 0.35 0.01 0.02
Greece-Spain 0.10 0.00 0.37 0.02 0.02
Ireland-Italy 0.44 0.01 0.47
Ireland-Netherlands 0.40 0.00 0.46 0.29 0.11
Ireland-Portugal 0.43 0.00 0.48 0.49 0.04
Ireland-Spain 0.42 0.00 0.42 0.03 0.49
Italy-Netherlands 0.47 0.22 0.21 0.01 0.01
Italy-Portugal 0.47 0.15 0.45 0.07 0.29
Netherlands-Portugal 0.28 0.00 0.30 0.00 0.34
Netherlands-Spain 0.02 0.31 0.00
Portugal-Spain 0.49 0.74 0.45 0.01 0.14
TI — TD 5 P(5 <0.5) 5 P(5 > 0.5) P(6rec = beap)
Belgium-Ireland 0.45 0.60 0.52 0.33 0.24
TD — TI 9 P(§ > 0.5) ) P(6 < 0.5) P(brec = bexp)
Austria-Finland 0.59 0.00 0.50 0.91 0.00
Austria-Italy 0.51 0.72 0.03
Belgium-Italy 0.52 0.11 0.04 0.20 0.09
Finland-Netherlands 0.53 0.01 0.49 0.57 0.03
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Asymptotically independent countries
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Figure 13: All connected countries with § < 0.5. The colour intensity of the edges represents
the value of nx.

Turning now to the second group of countries, Figure 13 shows that the majority of
country pairs in the euro-area are tail independent. The relations are not so clear cut as
before, but there are some noteworthy results.

First of all, tail dependence in the south of Europe during expansions is the highest
for the pairs Portugal - Spain and Italy - Portugal. These pairs are also insignificantly tail
independent. The tail independence coefficient decreases during recessions, which is reflected
by the pair Portugal - Spain, which becomes significantly tail independent.

Secondly, Greece has low tail dependence coefficients in combination with the northern
countries during expansions, which slightly increases during recessions. The difference in
the value of ¢ from expansions to recessions is also insignificant in at least half of the pairs.
The strongest links between the north and the south in expansions are via pairs with either
Spain or Italy. This can be seen from the dark colours representing nx and the fact that most
estimates for the parameter § are not significantly different from 0.5 for pairs involving Italy

or Spain. During recessions, these relations weaken and instead, Ireland has the strongest
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links with all northern countries.

Tail independent estimates of the parameter § more often have a higher variance than
tail dependent estimates. This could also be expected based on the simulation results, which
showed greater variability for 6 < 0.5. There is no clear pattern in the change of value in §
from expansions to recessions. In many cases, the hypothesis of equal d can not be rejected.
To gain more insight into dependence movements, we will analyse the tail (in)dependence

coeflicients.

6.3 Dependence comparison

Because the parameter § does not provide all information on the tail dependence structure,
we consider the tail (in)dependence coefficients yx and 7x. Denote X = Xxrec — XX,eaxp 88
the difference between the bootstrapped values of x x in recessions and expansions. Similarly
Nx = Nxrec — NX,cap-

Figure 14 shows that dependence can either significantly increase or decrease for tail
dependent countries. In all cases where the parameter 0 is significantly different between
expansions and recessions, so is the corresponding tail dependence coefficient. For example,
France has higher tail dependence coefficients with northern European countries during re-
cessions and this increase is significant in combination with Austria and Germany. Finland
is the exception to this. However, Finland experiences a significant decrease in its tail depen-
dence coefficient during recessions in combination with Belgium, France and Germany. On
average, this decrease is higher than 10%. Finland also becomes tail independent in combi-
nation with Austria and the Netherlands. So, Finland deviates from the northern European
countries during recessions.

The countries that have exclusively higher tail dependence coefficients with tail depen-
dent countries in recessions are Austria and the Netherlands. The Netherlands and Germany
specifically appear strongly affected by recessions, which increases the probability of a col-

lapse in a bond market by 10% conditional on a crash in the other bond market.
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Bootstrapped differences
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Figure 14: Differences in xx from expansions to recessions. The black bars are significant
at 5% based on 1000 bootstraps.

The comparison of the tail independence coefficients show a different picture in Figure
15. The significant changes in the coefficient of tail independence are negative and occur for
Spain in combination with Austria, Finland and Germany. Similar to Finland in the north,
Spain segregates from countries in the north and south during recessions. Other southern
countries do not seem to be significantly affected by changes in tail dependence due to
crises. Also, a significant difference in the value of § from expansions to recessions for tail
independent countries does not automatically lead to a significant change in the coefficient
of tail independence. To summarise, collapses in government debt that occur for southern
countries appear to be more idiosyncratic. This aspect also holds for the relationships

between the north and the south, in particular for Spain.
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Figure 15: Differences in nx from expansions to recessions. Countries on the left are southern
countries, on the right are the interactions between north and south. The black bars are
significant at 5% based on 1000 bootstraps.

6.4 Robustness analysis

Since estimation of the copula parameters can be biased using an asymmetric model as noted
in Section 4, we perform a robustness check using the best symmetric alternative: the logistic
model. The network plots are expected to be similar, because estimation of 4 is unbiased in
all models. However, the coefficients of tail (in)dependence could be affected by the bias in
the copula parameters.

For the network of tail dependent countries in figure 16, we find a similar structure.
Finland differs from the previous model since it loses its tail dependence with the Netherlands
in expansions and with Germany and Austria in recessions. However, the relation with the
Netherlands is not significantly tail independent. Finland’s decrease in dependence with
northern countries during recessions was noted in the previous section as well, which results
in these tail independent estimates in the logistic model.

During expansions, Spain shows weak tail dependence with Germany, Belgium and Aus-

tria, which vanishes during recessions. These decreases in ¢ are significant. This is in line
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with the previous model, which indicated a general drop in dependence for Spain. In the

logistic model the point estimates of § are similar, but have a larger variance.

Asymptotically dependent countries

Expansion Recession
France . France .
Germany Finland Germany Finland
Belgium Belgium
Greecg Greecg
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Ital;\. ® ltaly g &)
Spain Portugal Spain Portugal

Figure 16: All connected countries with § > 0.5. The colour intensity of the edges represents
the value of yx. Estimates of the logistic model.

For tail independent countries in Figure 17, we find the expected higher tail independence
coefficients for Finland in combination with other northern countries, which are on the
border of tail dependence. One notable difference from the previous model is the stronger
connection between Greece and Portugal during expansions, a phenomenon that was also
seen in Reboredo and Ugolini (2015). Greece also had a relatively strong connection with

Portugal in the Dirichlet model, but it was not the strongest southern link.
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Figure 17: All connected countries with § < 0.5. The colour intensity of the edges represents
the value of nx. Estimates of the logistic model.

Figure 18 displays the differences in xyx and shows that the logistic model matches the
Dirichlet model to a great extent. Finland experiences dependence decreases of at least
10%, which generates significantly less vulnerability to northern European shocks during
recessions. In contrast to the previous model, France has significant tail dependence coeffi-
cient increases with only Austria and instead, tail dependence for the Netherlands increases
significantly with Austria and Germany. More so, the change in dependence between the

Netherlands and Germany grows to 13%, compared to 10% in the previous model.
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Figure 18: Differences in yx from expansions to recessions based on the symmetric logistic
model. The black bars are significant at 5% based on 1000 bootstraps.

For tail independence in Figure 19, we see a different picture compared to the Dirichlet
model for two reasons. First, Spain exhibits tail dependence in combination with Germany;,
Belgium and Austria, so these pairs do not show up in this figure. However, the decrease in
the value of ¢ is significant for the combinations with Belgium and Germany, which indicates
that Spain becomes less tail dependent during recessions. Secondly, the coefficient of tail
independence of Greece and Portugal during expansions is high and decreases significantly
during recessions. This is similar to the pair France and Italy, where the dependence decrease
is now significant.

Again, no significant increases in the coefficient of tail independence during recessions

occur for the southern or northern-southern relations.
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Figure 19: Differences in ny from expansions to recessions based on the symmetric logistic
model. Countries on the left are southern countries, on the right are the interactions between
north and south. The black bars are significant at 5% based on 1000 bootstraps.

Overall, results from the Dirichlet model are in line with the symmetric logistic model.
Significance of changes in the parameter ¢ are less indicative for tail (in)dependence changes
in the logistic model, but tail (in)dependence coefficients show a similar picture as the
asymmetric Dirichlet model. This holds specifically for the most deviating countries, Spain
and Finland. Pairs involving France or the Netherlands experience most significant tail

dependence increases in both models.

7 Conclusion & Discussion

In this paper, we analysed the dependence of extreme losses in the European bond markets
using a novel copula model by Huser and Wadsworth (2017). This model bridges tail de-
pendence and tail independence in a single model using a dependence parameter. Both tail
dependence and tail independence occur for different groups of countries, which strength-
ens the need for a flexible tail dependence structure instead of assuming tail (in)dependence.

Using this framework, we estimated tail (in)dependence in recessions and expansions and de-
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veloped a test statistic to evaluate changes in tail (in)dependence coefficients across regimes.

Linkages of heavy losses in the European bond markets during recessions and expan-
sions are characterised by tail dependence in the north of Europe and tail independence
for southern and north-south relations. We find that tail dependence is persistent for most
bilateral relations in the north except for Finland, which experiences significantly reduced
tail dependence during recessions. On average, the probability of a co-crash with Finland
decreases by more than 10%. The strongest increases in tail dependence occur for France
and the Netherlands in combination with Austria and Germany.

By contrast, southern Europe is characterised by tail independence, except for Italy and
Spain. In recessions, the coefficient of tail independence does not significantly increase, but
it decreases significantly for Spain, similar to Finland in the tail dependent case. So, bond
market crises in southern Europe appear less systemic than in the north. This also holds
for relations between the north and the south, which are mostly tail independent. However,
specifically during expansions, north-south linkages are stronger than the southern links. In
short, tail dependence across the different regions in Europe can thus be summarised by
north > north — south > south.

From a policy perspective, this implies that regulation with a national focus will be
more effective in the south than in the north. Based on the results, the importance of
the timing of policies is less important for southern countries, except Spain. There, the
best time to adopt regulations that could be affected by its dependence on other countries
will be during recessions. The effectiveness of regulations in northern Europe may be more
strongly affected by the dependence on other countries in the north, because they exhibit
tail dependence. During recessions, this is specifically applies to France, the Netherlands,
Germany and Austria.

The model by Huser and Wadsworth (2017) has useful financial applications using tail
(in)dependence coefficients and it is an effective tool to differentiate between tail dependent
and tail independent series. However, there are certain limitations to this model as well, apart
from the ones mentioned in Huser and Wadsworth (2017). First of all, simulation showed
that estimation of the copula parameters can be biased and subject to a large variance.

The symmetric logistic model with a single copula parameter showed the lowest bias, but
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increasing variance for larger values of §. Estimation of ¢ is unbiased for all models, but
is more variable for lower values of §. Inverted max-stable models in particular, exhibit a
constant tail independence coefficient for § < % The bias can be reduced by increasing the
number of dimensions, but this requires the assumption of d-wise tail (in)dependence.

The second drawback of this model is the computation time for datasets with many pairs
or high dimensions. This especially applies to a bootstrap procedure for inverted max-stable
models to calculate standard errors. Therefore, we use the Hessian as the representation of
the asymptotic variance, which may affect the power of the significance tests.

Finally, when the dependence structure changes from recessions to expansions, we can
not simply compare the tail (in)dependence coefficients. As a result, we can only assess
the statistical significance of the differences in the model parameters, but not for the tail
(in)dependence coefficients for these country pairs.

This copula model is one of the first to specifically model the tail dependence structure
and has many possible extensions. One can easily implement new models, such as the
asymmetric logistic model. In any case, a careful simulation analysis should be considered
to assess a possible bias or instability of the parameters with respect to the initial values.
This particularly holds for analyses with few dimensions and with asymmetric models. A
possible improvement is to consider a new model for W that is not inverted max-stable,
but which is asymmetric, unlike the Gaussian model. On the one hand, this overcomes the
issue of a constant tail independence coeflicient for § < % At the same time, an asymmetric

structure is preferred based on the results from the AIC criterion and the parametric fit.
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Appendix

Table 4: Estimates of § and asymptotically normal P-values for each country pair (logistic
model).

Expansion Recession Comparison
Tail Dependence ) P(6 > 0.5) 0 P(6 >0.5) P(0rec = beap)
Austria-Belgium 0.56 0.01 0.53 0.32 0.23
Austria-France 0.52 0.33 0.60 0.00 0.02
Austria-Germany 0.61 0.00 0.56 0.04 0.14
Austria-Netherlands 0.55 0.00 0.57 0.01 0.30
Belgium-Finland 0.55 0.03 0.51 0.65 0.15
Belgium-France 0.54 0.01 0.56 0.04 0.30
Belgium-Germany 0.52 0.32 0.52 0.43 0.45
Belgium-Netherlands 0.53 0.22 0.54 0.09 0.30
Finland-France 0.53 0.10 0.51 0.81 0.25
France-Germany 0.52 0.40 0.54 0.14 0.28
France-Netherlands 0.52 0.56 0.58 0.01 0.08
Germany-Netherlands 0.55 0.00 0.51 0.89 0.13
Italy-Spain 0.53 0.20 0.54 0.25 0.44
Tail Independence ) P(5 <0.5) ) P(§ <0.5) P(brec = Seap)
Austria-Greece 0.07 0.22 0.10
Austria-Ireland 0.40 0.08 0.45 0.21 0.23
Austria-Italy 0.29 0.00 0.31 0.05 0.45
Austria-Portugal 0.20 0.03 0.31 0.00 0.24
Belgium-Greece 0.11 0.02 0.14 0.25 0.47
Belgium-Ireland 0.42 0.01 0.49 0.79 0.04
Belgium-Italy 0.45 0.38 0.14 0.02 0.03
Belgium-Portugal 0.16 0.31 0.00
Finland-Greece 0.10 0.29 0.12
Finland-Ireland 0.47 0.12 0.47 0.24 0.39
Finland-Italy 0.49 0.77 0.42 0.06 0.07
Finland-Portugal 0.35 0.50 0.32 0.00 0.45
Finland-Spain 0.48 0.19 0.38 0.11 0.09
France-Greece 0.06 0.12 0.20
France-Ireland 0.45 0.07 0.48 0.35 0.28
France-Italy 0.48 0.58 0.27
France-Portugal 0.34 0.10 0.34 0.00 0.47
France-Spain 0.46 0.29 0.30 0.00 0.01
Germany-Greece 0.06 0.17 0.15 0.14 0.41
Germany-Ireland 0.41 0.00 0.46 0.17 0.12
Germany-Italy 0.39 0.42 0.25 0.03 0.22
Germany-Portugal 0.22 0.00 0.33 0.00 0.13
Greece-Ireland 0.11 0.33 0.17 0.19 0.45
Greece-Italy 0.31 0.35 0.42
Greece-Netherlands 0.11 0.04 0.15 0.58 0.48
Greece-Portugal 0.49 0.54 0.32 0.02 0.01
Greece-Spain 0.09 0.03 0.36 0.09 0.09
Ireland-Italy 0.43 0.01 0.41 0.15 0.38
Ireland-Netherlands 0.38 0.01 0.44 0.06 0.16
Ireland-Portugal 0.29 0.01 0.46 0.30 0.02
Ireland-Spain 0.43 0.01 0.42 0.02 0.36
Italy-Netherlands 0.43 0.15 0.14 0.00 0.01
Italy-Portugal 0.45 0.16 0.45 0.10 0.48
Netherlands-Portugal 0.25 0.01 0.28 0.00 0.37
Netherlands-Spain 0.40 0.50 0.33 0.00 0.32
Portugal-Spain 0.45 0.45 0.03
TI — TD é P(§ <0.5) 0 P(0 > 0.5) P(0rec = deap)
Finland-Netherlands 0.49 0.79 0.51
TD — TI é P(6 > 0.5) 0 P(6 <0.5) P(rec = dexp)
Austria-Finland 0.54 0.11 0.48 0.51 0.07
Austria-Spain 0.52 0.24 0.00
Belgium-Spain 0.51 0.79 0.25 0.00 0.00
Finland-Germany 0.54 0.14 0.48 0.65 0.13
Germany-Spain 0.52 0.28 0.28 0.00 0.00
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