
Erasmus University Rotterdam

Erasmus School of Economics

Master Thesis Econometrics

Non-parametric Bayesian Forecasts
Of Election Outcomes

Name of student: Banu Atav
Student ID number: 355108

Name of Supervisor: Prof. dr. R. Paap
Name of Second assessor: A. Castelein
Date final version: August 22, 2018

Abstract

Although there is much literature that covers election outcome forecasting, few to no methods of
prediction have been able to consistently deliver accurate results. This problem essentially stems
from the fact that election results are greatly influenced by idiosyncratic factors. This makes model
selection difficult as, at the time of election, it is not clear which (type of) model will perform
best. In this research, the problem of election forecasting is approached with a non-parametric
Bayesian individual-level model using voting intentions and sociodemographic variables on Dutch
elections in 2010 and 2012. Making use of a Dirichlet Process mixture (DPM) model, a flexible
model specification is proposed. This specification is useful as the model’s flexible nature allows
it to be able to adapt to the characteristics of a new election. Furthermore, results of previous
elections can be incorporated by adapting the prior specification. The results show that the DPM
model improves on the forecast of the benchmark election models. Using the outcome of the DPM
model applied to earlier years, forecasts of present elections can be further improved.

Keywords: non-parametric, Bayesian, Dirichlet Process, mixture modeling, election forecasting.



“I knew you were trouble when you walked in.”

— T.A. Swift
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1 Introduction

With pioneers dating back to the mid-20th century, predicting voting results of elections and other
forms of ballot have been a significant scientific concern motivated by the desire to determine the
drivers of an election outcome. The interest in and the application of forecasting election outcomes,
however, is not merely limited to scientific literature. Driven by the abundant supply and widespread
availability of public opinion polls and many sources of election outcome forecasts, forecasting election
outcomes has become a large business. The evolution of voting preferences throughout the campaign
period is closely tracked by the media, which influences the manner in which candidates and their
campaigns are perceived. Hundreds of millions of dollars are invested in advertising and manpower
which are allocated based on the knowledge about the topic (Linzer, 2013). Furthermore, this interest
has translated into the emergence of prediction markets, where large amounts of money are invested,
and various day-to-day forecasting websites that gained an enormous amount of popularity.

In the vast amount of literature, various types of election forecasting models are used to predict future
election outcomes. Yet, there have been few to no methods of prediction, whether it be scientific or
not, that have been able to consistently deliver accurate results under different circumstances. This
leads to the main problem in forecasting election outcomes; model selection is difficult as it is unknown
which model performs best under the new circumstances.

This research aims to alleviate part of this problem by taking a non-parametric Bayesian approach.
Under a Dirichlet Process mixture model specification, individual-level voting intentions are modeled.
The main rationale behind this choice is the model’s flexible nature. This allows the model to be able
to adapt to the characteristics of a new election, while it is still possible to include results of previous
elections. Furthermore, the general model specification allows the model to be applied on various
election systems, which expands and diversifies its track record.

Using the DPM model specification, where the prior distribution is a Dirichlet Process (DP), the joint
distribution of the response variable y and covariates x are modeled by specifying appropriate distri-
butions for y|x (multinomial logit model) and x (multivariate normal and categorical distribution).
Forecasts for the election outcome are made based on draws of the resulting posterior distribution.
These draws are obtained using a hybrid MCMC sampler, where draws of the parameters of the
multinomial logit model are generated using a Random Walk sampler, while a Gibbs sampler is used
for all other parameters. Data pertaining to Dutch parliamentary elections for the years 2010 and
2012 are used. Using a sample of voting intentions y of eligible voters and their sociodemographic
characteristics x, a forecast for the general election outcome is made with the DPM model and several
standard benchmark models.

The results show that the DPM model has great potential to improve upon election forecasts of the
benchmark models. This is especially true when the DPM model results of past elections are used to
improve the model specification of the present election forecast. Unfortunately, the usage of the DPM
model is no panacea. Challenges, such as finding a representative sample, make this a difficult topic.

This paper is organized in two parts. The first part outlines the existing literature and explains
the problems in election forecasting into more detail. These insights are used to show in which way
the current model specification can be useful. The second part is dedicated to the Dirichlet Process
mixture model specification and the empirical application on the aforementioned data.
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Part I

Modeling Issues In Election Forecasting

Most election forecasting models can be grouped under three categories. The political science literature
is dominated by fundamental models. Driven by theoretical foundations, these models rely on macro-
level information to predict voter share of the incumbent to estimate their long-term relationship to
election results. The empirical counterpart to these models are the aggregators. These models predict
election outcomes mainly using national polls and exploiting the benefits of quantitative methods.
Lastly, synthesizers combine the previous two models to benefit from both sources of information.

Table 1: Absolute forecast errors for the US national popular vote under different models for 1992-2016 obtained from
(PollyVote, nd).

1992-2012 2016 1992-2016

Polls 2.8 1.6 2.6
Econometric Models 2.5 1.5 2.4
Expert Judgment* 1.5 2.1 1.8
Index Models** 1.4 2.5 1.8
Prediction Markets 1.3 4.8 1.6
Citizen forecast 1.2 1.2 1.2
PollyVote 1 1.9 1.1

* Forecast only available from 2004-2016.
** Forecast only available from 2008-2016

Table 1 presents an overview of the average absolute forecast errors of several types of models. These
figures are determined based on a selection of models made for the PollyVote forecasts that predicts
the US presidential elections’ national popular vote. The figures for 1992-2012 seem to indicate that
most models fall in the same range of average forecast error where two types of models seem to
underperform. The data for 2016 shows, however, that the accuracy of the several types of models do
not follow the same order as the average between 1992-2012.

The same argument can be made for the models that fall within a certain type of category. Table
2 is an example of this and shows the forecast errors of fundamental models predicting the national
popular vote for US presidential elections. The figures show that, although the overall accuracy
seems to have improved a lot since 2008, the model that predicts the outcome well in one year does
not necessarily predict the outcome well in the next election year. This inconsistency is not limited
to models within the fundamental model category and also applies to models that fall within the
aggregate and synthesizer categories, the most popular example being the failure of Nate Silver’s
model (Silver, 2016b) to predict the 2016 US presidential elections after its great success in 2012.
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Table 2: Forecast error of the US presidential elections’ national popular vote for several fundamental models.

Forecast error

Forecaster 2016 2012 2008 2004 2000

Abramowitz -2.5 -0.5 -1.4 5.4 2.9
Campbell 0.1 0.9 0.8 5.5 2.5

(-0.4) (0.2) (-0.9)
Cuzan (& Bundrick) -4.2 0.9

(-5.5)
Erikson & Wlezien 0.9 1.5 0.7 4.6 - 3.4 4.9
Holbrook 1.4 -3.2 -2.8 6.2 10
Lewis-Beck & Tien -0.1 -2.9 -3.7 1.6 5.1

(1.6) (2.8)
Lockerbrie -0.7 2.7 -5.3 9.3 10
Norpoth (& Bednarczuk) -3.6 2.1 2.8 6.4 4.7
Jerome & Jerome-Speziari -1 0.5

1 The forecast errors are computed as y − ŷ, where y is the actual national
popular vote of the incumbent and ŷ the forecast of this popular vote.

2 When there are multiple errors reported for one model at a given year, the
items enclosed by parentheses are the forecast error of the researchers’ least
preferred forecast.

3 The models are taken from the list of election forecasting models that appeared
in the special US election issue of PS: Political Science & Politics. The selection
has been made based on the number of forecasts published between 2000-2016
to make comparison possible.

4 It should be noted that some of the listed forecasters altered their forecasting
model in the reported time period, making the figures not completely compa-
rable over time.

The lack of consistently accurate results is the main difficulty that lingers with forecasting election
outcomes and essentially stems from the fact that election results are greatly influenced by idiosyn-
cratic factors (Graefe, 2015). Evidently, an appropriate model is to be chosen prior to the event
taking place. Therefore, the issue of idiosyncrasy enhances the difficulty that comes with the task of
the selecting a forecasting model as one cannot know which type of model will perform well under the
circumstances of the election at hand. This issue is further magnified as a result of the limitations
in data. Elections are often held several years apart, due to which, depending on the type of the
used data, the sample can be limited. Furthermore, elections that were held a significant amount of
years ago may not carry information that is useful in predicting elections in the present. Yet, at the
same time, it is desirable to evaluate models based on their overall track record for many elections to
alleviate the model selection problem (Campbell et al., 2017).

An overlooked form of election forecasting is the individual-level model, which makes use of voting
intentions and (mostly) sociodemographic variables to model election outcomes. These models have
elements of both fundamental models as well as empirically driven models. Furthermore, due to the
characteristics of the used data, they present the opportunity to opt for models that are more general,
flexible and complex.

The remainder of part I is outlined as follows. In the next section, an overview of the existing literature
is presented. This section discusses the aforementioned models and explains their approach into more
detail. Furthermore, it sheds light on their advantages, identifies their limitations and explains in
which way choosing an individual-level model aims to mitigate the issues that exist with forecasting
elections. Section 3 explains how the choice of non-parametric Bayesian model can be beneficial in
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this setting. Together, the information laid out in these sections provide the arguments that have
driven the choices behind the model specification, which is discussed in Part II.

2 Literature and Modeling implications

The difference between existing forecast models is mainly driven by the type of data that is used.
They are further diversified by different modeling assumptions that come with the data of choice. The
political economy literature mostly deals with models that make use of macroeconomic and political
data, mainly categorized as fundamental models, while aggregators and synthesizers are much less
popular in the scientific literature. This section gives an overview of the numerous election forecasting
models. In addition, it provides a discussion of the performance and limitations of these models to
establish an overview of the model characteristics that are desired in election forecasting.

2.1 Fundamental Models

Fundamental models dominate the current literature and empirical forecasts (Lewis-Beck and Das-
sonneville, 2015a). These models assume a theoretical based approach where a political economy
explanation of voting is used to build a model and make use of data that is independent from the
election in question, such as economic and political data, that are in line with the theoretical frame-
work (Hummel and Rothschild, 2013). The predictor variables are assumed to determine the voting
outcome by some unknown function

Votet = f(Economic Variables,Political Variables)

The model is estimated based on historical data which captures the relationship between the election
outcome and the predictor variables of choice (Campbell, 2016a). The advantage of this type of models
is the possibility to gain insight into the drivers behind voting behavior and thus election outcomes.
Additionally, forecasts of the election outcome can be made far before any election related data is
available and much before opinion polls have meaning (Hummel and Rothschild, 2014).

Lewis-Beck and Rice (1984) created what is now considered the classical political economy model
by predicting voting results based on economic growth and political popularity. Many fundamental
models that are currently applied have some similarities to this model. Much of the discussion and
research pertaining to these models relates to selecting the correct predictor variables. It is save to say
that all fundamental models recognize that voting behaviour is in some way related to the economic
conditions in a country (Hibbs, 2008) and that voting behaviour is related to change in, not level
of, economic conditions (Wlezien, 2015). The models do, however, disagree about whether voting
is retrospective or prospective. Examples of economic covariates in accordance with retrospective
voting are real GDP growth (Abramowitz, 2016; Lewis-Beck and Tien, 2016; Campbell, 2016b), real
disposable personal income growth (Hibbs, 2008), unemployment rate (Lewis-Beck and Tien, 2008),
national conditions relative to foreign countries (Kayser and Leininger, 2016) and index variables that
are meant to capture economic conditions (Erikson and Wlezien, 2016; Holbrook, 2016). Prospective
voting is less popular and is, for example, included by Lockerbie (2016) in the form of a questionnaire
response variable in which voters are asked to predict the economic conditions in the future.

The economic conditions in the country reflect how voters perceive the incumbent has performed
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to improve the countries’ conditions and are one way to account for the voters’ judgment of the
incumbent. Essentially, the fundamental models work based on this principle; they perceive each
election as a referendum on whether the incumbent should remain elected based on several factors
that determine how the incumbent is evaluated (Campbell et al., 2017). Economic conditions are
a significant factor in this evaluation, but research also suggests that there is a tendency to punish
the incumbent regardless of the state of the economy or the popularity of the current president
(Abramowitz, 2000). In general, current fundamental models account for this using a dummy variable
for incumbency (Abramowitz, 2016), (the logarithm of) the time the incumbent has been in the
White House (Lockerbie, 2016) or an interaction term for economic conditions and rerunning of the
incumbent president (Holbrook, 2012).

Economic conditions and the overall tendency of punishing incumbents cannot completely explain the
extent to which the incumbent is affected in terms of popularity among voters as there is a myriad of
other factors at play. Hibbs (2012), for example, includes the sum of US military fatalities during term
as his research shows that voters punish the president that initiated the unprovoked commitment of
US forces as an additional variable. The main tendency to solve this issue, however, is to add political
indicators to fundamental models. The indicators are measures that capture the overall voters’ opinion
of the candidates given current affairs and thus summarize the effects of all factors. Adding a variable
of this sort seems to improve the model by mitigating the omitted variable problem. For fundamental
models, adding more variables to obtain the same effect is not a viable option as these models typically
have very few data points usually ranging from 15 to 25.

Frequently used political indicators are presidential approval ratings, which measures the overall
popularity of the incumbents (Lewis-Beck and Tien, 2016; Abramowitz, 2016). An alternative to using
popularity measures is to make use of a trial-heat variable that measures the candidates’ performance
in pre-election polls at a particular point in time, usually months from the election date (Erikson
and Wlezien, 2016; Campbell, 2016b; Holbrook, 2016). Furthermore, the findings of Norpoth (2016)
suggest that, historically speaking, presidential primary votes seem to be indicators of the winner of
the presidential election.

From the outline of the various examples of fundamental models it is clear that the main issue this
part of the field deals with is selecting the right variable that explains the share of votes the incumbent
receives. There are countless approaches to this problem. The vast array of examples mentioned here
is only a small extract of all fundamental model literature. The focus of this selection is mainly on
most recent elections and models that have been tenaciously used over time.

2.2 Aggregators and Synthesizers

Thus far, this section gave an overview of main approaches among the copious election forecasting
models that are based on theoretical foundations. The rival approaches, aggegrators and synthesizers,
while being less popular, are much more empirically driven and almost non-existent in European elec-
tion forecasting. Aggregators solely use empirical data to forecast the election outcome. Synthesizers,
on the other hand, use both sources of information: empirical data of any sort and theoretical models.
Among other advantages, as opposed to fundamental models, both types of models are dynamic in
the sense that their forecast can be updated with recent information as the election nears, thereby
foregoing the time advantage that the fundamental models posses.

With the explosive growth of the Internet, making collecting and communicating data easier, the
supply of polls has become abundant (Blumenthal, 2014). As a result, the aggregator and synthesizer
approaches, although almost exclusively used for the US national elections, have emerged in election
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forecasting. Polling data, which measures voting intentions at a particular point in time, is a very rich
information source at the same time as being very noisy (Linzer, 2013). Two main methodological
points of consideration are faced in dealing with polling data. The first concerns generating the
data which, next to collecting individual voting intentions, also consists of merging the data into an
aggregate. Even though collecting polling data has become easier, there still are many challenges
pollsters face in measuring polls. A few examples of these difficulties are identifying which voters to
contact, how to survey, who is likely to vote and eventually how to appropriately weight the incoming
information in order to reach a representative sample (Pasek, 2015). These difficulties make room
for many sources of bias including sampling error, non-response and errors due to wording of the
interview or other interview characteristics.

The second methodological concern is the manner in which polling data are processed to obtain a
forecast. Over time, polls converge to an average and, on average, polls held close to election are very
accurate. However, the observed data has a large variance, partially due to sampling error, which
complicates identifying the actual movement of preferences from the noisy data at hand. Moreover, a
poll is the result of voting intentions at a particular point in time and not the election day. This means
that it cannot be directly interpreted as a forecast (Pasek, 2015; Blumenthal, 2014). Given that the
voting intentions are measured before election day, the polling data is subject to a time-dependent
error as voting intentions before the election day are likely to be different from voting elections on
election day (Silver, 2014). The model that translates this type of data should, therefore, take these
two factors into account.

The methodology of aggregators typically consists of combining multiple sources of polling data to
arrive at a forecast for an election outcome. Due to the aforementioned factors, pollsters’ method-
ological choices cause polls to have idiosyncratic errors. If these errors persist in a certain direction
they lead to house effects. Consequently, these errors can be mitigated by combining many sources
of data. By aggregating individual polls, the magnitude of systematic bias diminishes, as this bias is
non-universal and has a smaller contribution when aggregated, but also because random errors are
lower due to more information that is accounted for in the final forecast (Pasek, 2015). The techniques
for combining polling data range from taking simple averages to much more complicated quantitative
methods. Although taking a simple average seems naive, as it neglects the sample size of a poll, which
is inversely related to its uncertainty, and the differences in quality between polls (Panagopoulos,
2009), to this date it is unclear which strategy is the best (Pasek, 2015). What is clear, however, is
that aggregating can have benefits as the outcome is less variable and less susceptible to idiosyncrasies.
This is beneficial to forecasting as a greater precision implies that smaller changes in preferences can
be detected as most of the variability in polling data is not due to changes in preferences, but rather
due to sampling error (Erikson and Wlezien, 1999).

While the methodology used by fundamental models is rather uniform, the opposite is true for ag-
gregators and synthesizers. Rigdon et al. (2009) forecast US presidential election outcomes using a
Bayesian approach that seems innate to election data. Starting out with previous election results,
used to specify an informative prior, the model forecasts the winning probability for the candidates
in each state by updating the prior believes with current polling data. Wang (2015), on other other
hand, estimates the probability of a given state winning from the polling margin by assuming that the
the median polling margin has a t-distribution. These probabilities are then combined to determine
the probability distribution of all possible outcomes which is used to predict the electoral vote for
each candidate.

There are a couple of models that received a lot of attention in the past decade. Due to his great success
in forecasting the 2008 and 2012 US presidential elections, Nate Silver is probably the most well known
one. Initially starting out with developing pollster ratings, Silver eventually converts this information
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into a election forecasting model. The ratings are based on the observation that the performance of
polls is predictable and that pollsters vary in accuracy. For example, the best polls in Silver’s database
are 1% more accurate than average, while worst perform 2.3% worse than average (Silver, 2014). Silver
exploits this observation by constructing forecasts based on a weighted combination of the polling data
with weights that are based on the pollster rating, while also accounting for sample size, recency1 and
different versions of the same poll held at different times. The latter is used to calculate a trend of
the poll using loess regression to adjust the most recent data point used in the weighted combination.
Next to a couple of other adjustments that are mainly US election specific, a house effect adjustment
is included (Silver, 2016a). For recent estimations, a proxy that aims to account for polling firms’
methodological standards is added (Silver, 2014). The polling aggregate is eventually used to create
an estimate of how voting intentions are moving by regressing the aggregate2 at state level on the
partisan voter index. In effect, by including an attempt at accounting for all the difficulties that are
faced with polling data outlined in the previous paragraph and more, three forecasts are created by
blending the polling aggregate and the regressions where the polling aggregate receives more weight
the closer we get to election day. Eventually, Silver computes a winning probability3 (Silver, 2016a).

Alongside Nate Silver, Jackman and Linzer have created models that almost matched Silver’s success in
2012, while taking completely different approaches. Jackman (2014) uses model-based poll averaging
to estimate the outcome of the US presidential elections. His approach consists of using a national-
level forecast, for instance one of the fundamental models’ forecasts or an average thereof, to predict
the national popular vote on election day. This is then used to determine the difference between the
previous election outcome and the forecasted popular vote. This figure, called the uniform swing,
reflects the change in voting preferences on national level. Jackman assumes that the state-level
swing in voter preferences is constant over states and, thus, equal to the uniform swing, which is
supported with the observation that the correlation between state-level outcomes is very high (0.98).
This assumption is used to arrive at the forecasts, which is the sum of the previous state-level election
result and the uniform swing (Jackman, 2014).

Linzer (2013), on the other hand, proposes a dynamic Bayesian approach where he combines the
regression-based historical forecasting method and state-level polling data. To generate a forecast, he
updates state-level fundamental forecasts using most recent polling data. Similar to Silver’s strategy,
older polls contribute less as these are only used to compute a trend in opinion polls. With this
approach, both the fundamental as aggregate field are combined. The model gains its strength from
a hierarchical definition and is build on the assumption that current state-level preferences are a
function of state-level and national-level factors, both of which have been assigned a Bayesian reverse
random-walk prior. The scales of the state-level and national-level effects are anchored on election
day, by assuming the national-effects to be zero and the state-level effects to follow a prior distribution
that is specified by means of the fundamental forecasts at this day.

Synthesizer models are not strictly dominated by complex quantitative models. The PollyVote forecast
created by Graefe et al. (2016) and the work of Lewis-Beck and Dassonneville (2015a), for example,
consist of weighted combinations of individual forecasts generated by different models. Lewis-Beck
and Dassoneville combine their fundamental model forecast and poll data with fixed weights that favor
poll data as the election approaches in Lewis-Beck and Dassonneville (2015a), while in Lewis-Beck and
Dassonneville (2015b) they regress the forecasts of the two models on voter share in order to determine
their weights. For the PollyVote forecast, the sources of data are not limited to fundamental model

1The rationale for this is that more recent polls carry more accurate information about voting intentions and therefore
should receive more weight.

2Several other variables predictors are used where Silver takes three different strategies. These are blended on a later
stage.

3After introducing a national, demographic and regional, and state-specific error drawn from a fat tailed distribution,
this probability is determined by means of simulations.
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forecasts and polling data. Data is obtained from trial-heat polls, prediction markets, fundamental
models, expert judgment4, index models5 and citizen forecasts6. Forecast are created by taking the
average within and across all components. Previous research (see for example (Graefe et al., 2015))
shows that equal weights tend to outperform more complex combining methods, possibly due to the
inconsistency of the accuracy of various methods across time and different elections (Graefe et al.,
2016). Therefore, equal weights are applied first within each component to determine a component
and are then averaged again across components. This implies that each individual forecast does not
obtain an equal weight in the final forecast. Hence, components with a small number of individual
forecasts are assigned relatively more weight, while models with many forecast, such as fundamental
models, do not dominate the forecast.

2.3 Limitations

The limitations of fundamental models are numerous. The small number of data points, typically
around 20, is one of the major drawbacks of this approach and causes the models to only include
very few explanatory variables. This implies that the predictions of these models are subject to high
uncertainty and only in cases where the fundamental data clearly favors a candidate, predictions can
be made with confidence (Linzer, 2013; Jackman, 2014). Furthermore, the focus of these models on
finding a long-term relationship between fundamentals and election outcomes causes the forecasts
to be based on the historic relationship between these variables. As elections generally occur about
every 4 years, this means that this estimation is based on a relationship that is assumed to hold for
more or less 80 years. Even assuming the historic relationship does hold for every new election to
come, the approach completely fails at accounting for any idiosyncrasies that the election at hand
may have. Models that aim to include some of the idiosyncrasy by using pre-election polls are not
powerful enough. This is because the estimated regression weights are subject to high uncertainty
and early polling results are not accurate (Linzer, 2013).

The econometric approach of most, if not all, fundamental models is a linear regression where a voter
share is typically regressed on two or three fundamental variables. From a technical perspective, this
method completely fails to recognize that voter share is not an unrestricted continuous variable. In
addition, the model is limited to cases with only two running parties, where the voter share of one
party is estimated, while the second is implied by the forecast. For the US case, this limitation causes
models to disregard any third parties and to use the national popular vote as dependent variable.
The latter implies that this model does not account for the, on state-level, winner-takes-all feature
of the US electoral system, diminishing the relevance of the estimate of the national popular vote to
generate forecasts even further7. This critique is supported by the fact that differences between popular
vote and Electoral College are observed frequently (Rigdon et al., 2009). A handful of fundamental
models recognize this issue and propose a state-level model (see for example Jerme and Jerme-Speziari
(2016)), but this approach is far less common than the abundant national-level models (Jackman,
2014). Although it alleviates some of the issues national-level fundamental models face, such as the
limited number of data points and restricted dependent variable, other issues arise due to the panel
feature of the data and the limited availability of the required data on state-level.

While aggregators and synthesizers seem to have the answer to some of the problems faced with
fundamental models, their methodology is subject to criticism too. Much of the discussion within this

4A panel of 15 experts is polled.
5Index models obtain forecasts based on regressions of vote share on various index variables regarding, for instance,

characteristics of presidential candidate or economic conditions.
6These are constructed by means of surveys where citizens are asked to predict the winner.
7This argument also applies to models from the aggregate and synthesizer category that fail to account for this.
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category relates to methodological differences among models which are rather model specific. One of
the main points, however, is that poll data are technically not forecasts. These are rather snapshots of
voting intentions at a particular time and only nearing election date, they come close to being forecasts
(Kayser and Leininger, 2016). This means that, for forecasts produced based on polling data to have
any meaning, they have to be generated close to election date, which is undesirable. In addition, even
without sampling error, polling data has a large variance as it is highly influenced by sentimental
moments such as party conventions (Pasek, 2015). Another point of criticism is related to pollster
’herding’. Even though polls converge to an average over time, it is not clear whether this is because
voter preferences stabilize over time or because of tinkering in the polling results (Blumenthal, 2014).
Given the strong popularity of polling results and the expectations of accuracy, there seems to be the
incentive for pollsters to make ad hoc adjustments based on other pollster’s results or discard results
in order to not be an outlier. This is a significant problem as it decreases the amount of information
captured in the data, while, perhaps more importantly, making all information dependent on each
other (Silver, 2014).

It is widely accepted that elections are subject to more factors than just fundamental variables alone
and that sometimes the effect of these factors may overshadow the effect of fundamental variables.
However, fundamental model advocates argue that these factors are often temporary and different for
each election and that, a priori, it is not possible to incorporate these in the model. The justification for
fundamental models lies in that, overall, there seems to be a persistent historical relationship between
election outcomes and the various fundamental variables. Additionally, forecasting based on other
type of data does not yield any profound insight into drivers behind voting (Hibbs, 2013). Political
scientists conclude that the focus should be on the general pattern as many of the idiosyncrasies are,
despite media attention, not useful for predicting elections (Pasek, 2015).

The overwhelming amount of literature concerning election forecasting models presents a wide range
of results that are contradicting to some extent. Empirical evidence suggest that the relative accuracy
of different models cannot be put into a clear order; methods that perform well in one election often
perform badly in others (Graefe et al., 2014). Past track records of these models support this ambiguity
in relative performance both within and between types of models. Even though fundamental models
have become more accurate over time and sometimes have remarkably accurate results (Linzer, 2013),
there are periods where they can be extremely off or contradicting. In 2008 and 2012, the opinions
regarding the victory of Obama were very divided. While fundamental models gave Obama 60%
chance of winning in 2012, aggregate models thought this chance was about 90% (Wang, 2015). In
2008, predictions of well-known fundamental models ranged from clear wins to high probability wins
for Obama according to Abramowitz (2008) and Lewis-Beck and Tien (2008), to a toss-up by Erikson
and Wlezien (2008) and a clear loss by Campbell (2008). All the while, historically speaking, the
national popular vote of 53.7% for Obama in 2008 is considered to be a significant margin.

Among fundamental models, a mean absolute forecast error of less than about 2% is classified as
’quite accurate’ (Campbell and Lewis-Beck, 2008). This established benchmark is reflected in the
satisfaction Campbell et al. (2017) voice in the accuracy of the reported models in 2016, where errors
ranged from 0.1% to 3.6%. An error of this magnitude may be reasonable when the goal at hand is to
determine the general drivers behind voting. When the aim is to forecast election outcomes, however,
slight differences in the national popular vote can tip the election outcome (Rigdon et al., 2009). In
fact, this was the case for the 2016 US election where Donald Trump won the election with only 48.9%
of the popular vote; an occurrence only forecasted by Norpoth (2016) with 0.87 probability, which is
based on a forecast that overpredicted Trump’s share in the popular vote by 3.6 per cent.

Similar observations apply to comparison of results within the category off aggregators and synthe-
sizers. After the ”triumph of the quants” where several approaches, among which Nate Silver’s, Drew
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Linzer’s and Simon Jackman’s approaches, successfully predicted the 2012 US presidential election
results (Jackman, 2014), it seemed as if consensus regarding the most preferred model for US election
forecasting was reached. However, these models are now criticized for failing to predict the winner
of the 2016 US presidential elections (Kennedy et al., 2017). In light of the unusual circumstances of
this particular election, the failure to predict this event would have been expected of models that rely
on a historic pattern, but came as a surprise given the nature of empirically driven models that, due
to their use of polling data, should be able to account for idiosyncrasies.

Reflected in the overall interest in the media, scientific literature regarding election forecasting is
mainly devoted to US (presidential) elections with some attempts for Western European countries
mostly concerning Germany, France, and UK (Kennedy et al., 2017). Even though forecasting of
election outcomes in European countries is becoming more popular, its literature is greatly under-
represented and dominated by fundamental models. Aggregators are almost non-existent, while in
the synthesizers category Lewis-Beck and Dassonneville (2015a) and Lewis-Beck and Dassonneville
(2015b) are the only examples. Hence, little is known about whether existing methods are useful
for many other countries and their electoral systems. Even though a general application of election
forecasting models is desired and can be useful in gaining knowledge in this topic, the majority of
the models specified for US election are too specific to be applied to European countries. Multi-party
electoral systems where parliamentary coalitions are indirectly chosen, which are common in Europe,
are one of the challenging features that current models often do not account for. Most models cir-
cumvent this issue by predicting the governing coalitions’ voter share in the election outcome instead,
but lose out on being able to draw a full picture of the election outcome. Kayser and Leininger (2016)
justify this choice by arguing that estimating the percentage of votes for all parties is not a forecast
of the outcome due to coalition bargaining that takes place after the election. However, when taking
this approach one has to make the assumption that the current governing parties will continue to stay
in power together if they are big enough after the elections, which in case of coalition forming may
not be true.

2.4 Modeling Implications

Clearly, aggregating many sources of data and forecasts can improve accuracy. Given the ambiguity
regarding the relative accuracy of different types of models and the fact that an appropriate model
is to be chosen a priori, combining different models seems to be the best option. However, the main
rationale behind Silver’s aggregating methodology applies here: when constructing aggregates it is
vital that one carefully selects models and weights them appropriately. Ideally, these decisions would
be based on the track record of the various models. However, choosing appropriate models and weights
is complicated due to the fact that elections only take place once in a couple of years. To validate a
model in respect of accuracy one would have to track a model for many election cycles. Although the
infrequency of elections cannot be resolved, additional knowledge on the track record and more can
be gained from applying a forecast model to various countries and elections. This requires specifying
a forecast model that can be generally applied.

Provided that the quality of the polls are up to par and the data is treated the proper way, polling
data provide an excellent source of information that can capture any idiosyncratic factors and allow
the forecasts to be updated as election nears. However, polling data only gains meaning close to the
election date and does not provide any insight into the drivers behind voting behaviour. This is yet
another reason why hybrid modeling may be fruitful, but a good initial starting point is needed. Most
synthesizers make use of a structural forecasts as a starting point. Models that make use of long-term
historic relationships, however, seem inadequate for forecasting.
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An underrated form of election forecasting uses individual-level data, which provides an alternative
to the structural counterpart of hybrid models. It provides advantages that are similar to the benefits
of fundamental models. For example, forecasts can be made much in advance and various sources
of data, such as economic conditions, can be included. In addition, it is a very natural departing
point as voting behaviour is based on the voters’ opinions, which are likely to be related to the voters’
characteristics. Valuable empirical relationships, such as the fact that most people vote for the same
party year after year (Jackman, 2014) and that previous voting behaviour is an important predictor
for current voting preferences (Paap et al., 2005), can be exploited. As long as the sample is large
enough and representative of the electorate, conclusions drawn from these voting choices apply to the
underlying population.

Voting choice models based on individual-level data offer a solution to many of the difficulties that
are faced in election forecasting. The data can be cross-sectional, which is relatively easy to gather,
or panel data, which captures much more information. In both cases, compared to fundamental
models, the number of data points and, as a result of this limitation, the uncertainty regarding
parameter estimates are no longer of concern. Additionally, the data allows for more complex model
specifications. Using multinomial discrete choice models, the model becomes suitable for many types
of electoral systems, while including more predictor variables can improve the forecasts. Furthermore,
even though some historical information may be of value, information regarding elections held decades
ago not likely to carry information that is useful in predicting elections in the present. Individual-level
data offers the possibility to include some historic information without limiting the model to long-term
historic patters. Voting choice models are also useful in Bayesian approaches such as the approach
described in Linzer (2013) where initial starting point is needed for prior specification.

In sum, the lack of preferred method as a results of inconsistent relative accuracy and the lack of a
general application that can account for multi-party electoral systems indicates the need for additional
research on the topic. As argued above, individual-level voting choice models have a great potential
to be a solution for this. To meet the requirement of general application, however, a flexible model
with the little model specific assumptions that can account multi-party response is needed.

3 Methodological Choices

In the previous section, the desired characteristics for an election forecasting model are established.
As argued in this section, the Dirichlet Process Mixture model offers the possibility to account for
these features.

When using data on an individual level, the simplest approach is to specify a model that is assumed
to hold for every individual: a pooled model. However, this restriction may not always be true and
differences between individuals may be such that one model cannot describe the relationship between
input and outcome variables. For instance, it could be that parameters vary across individuals, i.e.
there is unobserved heterogeneity in the parameters. Then, the heterogeneity in the parameters can be
included in the econometric model by assuming that the parameters vary according to a distribution,
which leads to the random parameters model or mixture modeling approach (Cameron and Trivedi,
2005).

p(d) =

∫
f(d|θ, λ)π(θ|λ)dθ (1)
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By averaging the distribution of the data d conditional on the parameter(s) θ over a mixing distribu-
tion, the marginal distribution is obtained. By means of this approach flexibility is introduced in the
assumed model. In fact, this approach enables us to pick a wide range of marginal distributions for d
by simply varying the choice of π(θ|λ) (Rossi, 2014).

Equation (1) displays a model that assumes that the unobserved heterogeneity can be accounted for by
a continuous distribution. In practical applications, one often benefits from limiting the heterogeneity
assumption to simplify the model by using a finite mixture approach. In that case, the mixing
distribution π is discrete and it is assumed that the data d = (d1, · · · , dn) are heterogeneous in the
sense that there are K clusters. Each data point belongs to a certain cluster and each cluster has its
own parametric model, i.e. cluster j has a distribution parametrized by θj . Prior to the analysis of
the data, the unconditional probability of a data point belonging to a cluster j is described by πj .
This type of generative model, described in (2), has an intuitive interpretation: there may be K types
or subpopulations and individuals within a cluster respond to changes in covariates in the same way
(Cameron and Trivedi, 2005).

di|zi, θzi
zi|π

π = (π1, · · · , πK)

(2)

In this representation, π contains the mixing proportions and the variable zi determines cluster mem-
bership such that data point i belongs to cluster zi. Constructing the model in this way implies that
the unconditional distribution of d is a weighted, linear combination of distributions as represented in
equation (3).

p(d) =

K∑
j=1

πjf(d|θj) (3)

This representation gives rise to an alternative interpretation: the weighted average of the distributions
constitutes a good approximation of the empirical distribution of the variable of interest (Cameron
and Trivedi, 2005). Depending on the choice of K and the values of the remaining parameters,
this establishes a great amount of flexibility in the model. In fact, by choosing the right values
of the parameters, one can approximate a continuous distribution of any shape. For example, the
distribution can be multimodal, skewed, uniform near the mode or have fat tails as a consequence of
the choice of K, π and θ. Counterintuitively, this feature is even more so present in finite mixtures
than in the random parameter model. Partially, this is due to the fact that scaling is not enough to
model asymmetric characteristics in the distribution. More importantly, when the model choices in a
continuous random parameter model are not in line with the correct densities generating the data, the
model estimates (and, most likely, its forecasts) will be biased. On the other hand, as long as enough
clusters are chosen, the finite mixture approach will produce consistent results (Rossi, 2014). This
benefit, along with the flexibility that this model specification provides, makes it a good candidate
for election forecasting with individual-level data. Dividing the data into subpopulations can promote
more accurate inference and forecasting. Furthermore, identifying clumps of individuals that behave
in a similar way is appealing for, for example, formulation of election campaigns.

The most widely applied specification of this model is the mixture of normals, where it is assumed
that the distribution of the data f is normal for all clusters with cluster specific parameter θj =
(µj ,Σj). This choice for f is particularly appealing due to the fact that linear combinations of
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normal distributions have tractable representations. Furthermore, the choice is often justified due to
the flexibility argument given above; depending on the choice of mixing distribution and K, we can
approximate any marginal distribution.

The common ways in which finite mixture models are estimated are maximum likelihood (ML) esti-
mation and Bayesian analysis. Estimation with ML implies that the value of the parameter of interest
is chosen such that the highest likelihood of the data being generated by the assumed model is ob-
tained. Bayesian analysis, on the other hand, does not deal with optimization. It rather treats the
parameter of interest as a random variable that, prior to the analysis, are postulated to have a certain
distribution. This accommodates a systematic way in which any information can be included in the
model estimation (Greenberg, 2012). This is particularly appealing for election forecasting models as
it provides a natural way to influence the forecasting problem at hand with information obtained from
previous elections. This may improve the forecasts as the dependence on previous election results is
inherent to election data.

Besides this, Bayesian analysis offers numerous other advantages over ML. Firstly, it avoids any tech-
nical issues that accompany optimization problems. Possibly the most attractive feature of Bayesian
analysis is the fact that it does not suffer from overfitting in its strict sense as it does not attempt
to find the optimal fit of the data into the model. In addition, certain models that are computation-
ally demanding, such as multinomial probit models with many categories, can be estimated relatively
easily with Bayesian analysis.

The Bayesian representation of the model is similar to the above presented finite mixture model.
Again, in this model K represents the number of components, π contains the mixing proportions
and θ = (θ1, · · · , θK) describes the parameter(s) the researcher is interested in. The difference here
is the introduction of prior distributions on unknown parameters. Often, the prior distribution for
the mixing proportions is defined as the Dirichlet distribution (with hyperparameter α) due to the
Multinomial-Dirichlet conjugacy. Any distribution suitable to the model and parameter characteristics
can be picked as the prior of the component parameters θ, here denoted with H.

π|α ∼ Dir( α
K
, · · · , α

K
)

θ∗k|H ∼ H
zi|π ∼Mult(π)

di|zi, θ∗k ∼ F (θ∗zi)

(4)

Despite the many advantages the (Bayesian normal) mixture approach has to offer, the approach is
criticized for its parametric nature (Rossi, 2014). Given a space with all possible functions that attempt
to describe the true model, a parametric method restricts the functional form to a set of possibilities by
means of formulated assumptions about the true model. A mixture approach is essentially preferred
when one would like to eliminate the bias caused by misspecification by increasing the flexibility of
the model. Then, the modeling choice that leads to the ultimate flexible model is one with a highly
parametrized model specification. A non-parametric model meets this criterion. Contrary to the
parametric approach, non-parametric models put prior mass on all possible functional forms. This
does not imply that no assumptions are made. As a matter of fact, the chosen model reflects a
preference for simpler functions; these functions are assigned more mass prior to the analysis (Teh,
2013). A (finite) mixture model is not non-parametric as it cannot measure any distribution (Rossi,
2014). As the number of components cannot grow with n, no matter how large K is to be chosen,
eventually the model will hit its limit as n approaches infinity (Broderick, 2015).
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Several issues arise when opting for a parametric model. As a result of the desire for parsimony, the
model can suffer from underfitting. Moreover, methods for model selection are somewhat arbitrary
and different methods may lead to different conclusions. This makes choosing the right complexity for
a model very difficult. A non-parametric method offers a solutions to these issues. A naive solution to
the underfitting problem can be to always choose a large number of parameters in a parametric model,
especially in case parsimony is not important. This leads to another issue in model selection. Models
with an arbitrarily chosen large number of parameters can be subject to overfitting. Even though
these models may perform well in explaining the data at hand, the forecasting performance can suffer
from the consequences of overfitting. Forecasts may possibly be biased if the available data point to
the wrong model. On top of that, the large number of parameters results in a loss of accuracy. One
can alleviate the overfitting problem by taking a Bayesian approach. In a Bayesian approach (with
proper priors) the overfitting problem is not significant as, due to the formulated priors, it mimics a
shrinkage method; the priors impose a ’penalty’ on the parameters (Rossi, 2014).

Taking a non-parametric approach comes very natural in Bayesian analysis. The main principle in
Bayesian ideology is that when one encounters an unknown parameter, the parameter is treated as
random. In that case, a prior distribution is introduced that reflects the existing beliefs about the
parameter and the uncertainty around these beliefs. Hence, if the distribution of a parameter is
unknown, a Bayesian puts a distribution on this parameter too. In the non-parametric approach, this
prior is chosen such that the support of this distribution accounts for all possible distributions (Teh,
2010). Hence, a non-parametric Bayesian approach can be taken to counteract both issues. Here, the
Bayesian approach ensures that the overfitting is mitigated, while the unbounded complexity that the
non-parametric characteristic brings with, mitigates underfitting (Rossi, 2014; Teh, 2010).

One of the most popular and, in fact, the basis for many extensions of non-parametric Bayesian
models is the Dirichlet Process Mixture (DPM) model, which is similar to the finite mixture model.
The difference between the models is the fact that in the DPM model, the number of components and,
therefore, the number of parameters is unlimited. Although one can try to choose a large number
of components in a finite mixture model as an attempt to mimic this effect, the mere fact that the
number of components is still fixed implies that this approach cannot make non-parametric claims
(Rossi, 2014). The DPM approach facilitates a model with an infinite amount of parameters by
allowing the number of parameters to grow with the number of data points n (Broderick, 2015).
Hence, due to its infinite parameter space and Bayesian approach a DPM model provides us with a
model that can account for the desired flexibility (Teh, 2013).

Part II

Dirichlet Process Mixture Model And
Empirical Application

The previous sections have outlined the issues faced with election forecasting and argued that the
main problems are a) the difficulty of model selection and b) the idiosyncratic factors elections are
subject to. Section 2 of Part I concluded that an individual-level model can provide a solution to this
problem to some extent. Among many other advantages, this source of data allows for a generally
applicable model specification, due to which more knowledge can be gained on the track record of
the model from applying it on various countries and elections. This alleviates the problem of model
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election to some extent. Section 3 argued that a mixture approach may bring the desired flexibility. A
non-parametric Bayesian approach is preferred to mitigate under- and overfitting, while maintaining
this flexibility. More importantly, it allows the data to greatly influence the model due to which the
model can be adapted to the needs of each individual election, while allowing past information to be
included using the prior specification. In light of these considerations, the previous part concluded
that a DPM model provides the desired model.

The focus of this part is twofold. First, the technical details of the DPM model are outlined. Second,
the DPM model is put to a test with an empirical application on the dutch parliamentary elections in
2010 and 2012. The remainder of this part is organized as follows. First, Section 4 clarifies which data
is used and discusses the characteristics of this data. These characteristics are necessary for proper
model definition. Section 5 discusses the relevant definitions and representations of the general DPM
model, while 6 discusses the adjustments and additional specifications needed in the DPM model to
make it suitable for this research and the characteristics of the data. Section 7 presents the complete
MCMC sampler for all parameters using the Gibbs sampler method discussed in earlier sections. In
Section 8, the approaches to detecting convergence and generating forecasts are discussed. Section 9
completes the model specification by specifying the values of hyperparameters. Multiple sets of prior
specification are used to detect the influence of the prior on the final outcome. Finally, the last two
sections discuss the results and conclusions of this research.

4 Data

The data for voting choices are obtained from the LISS Panel collected by CentERdata. The panel
consists of roughly 7000 subjects situated in the Netherlands who complete monthly online surveys
related to various topics in social sciences since October 2007. The sample of subjects is composed
such that it is in line with the true probability sample obtained from Statistics Netherlands. The
data of interest is taken from three different questionnaires: Background Variables (BV), Religion
and Ethnicity (RE), and Politics and Values (PV).

Nine waves of the PV data set are available. These waves correspond to the years 2007-2013, 2015
and 2016. During each wave two types of questions regarding to voter preferences are posed. The
individuals are asked for their party choice during a particular election as well as their hypothetical
voting choices if an election were to be held on the day of the questionnaire. The actual voter choices
can be obtained for the Parliamentary elections held in years 2006 (waves 1-3), 2010 (waves 4-5) and
2012 (waves 6-9). Although the data correspond to a panel structure, the DPM model defined in the
upcoming sections does not make use of this structure. Instead, a sample of all relevant variables is
obtained for the years 2010 and 2012 separately, which are the only two years for which the complete
data set is available at the time of research8. As explained in Section 10, the model is then estimated
for each year separately. This way, model performance can be assessed over multiple years.

The response variable and covariates are selected based on variables used in previous literature (Paap
et al., 2005; Quinn et al., 1999). The, by far, dominating approach is to use hypothetical voting
choices on the day of the questionnaire as response variable and to use sociodemographic respondent
characteristics to model party preferences. The following explanatory variables are selected: Age,
Individual Income, Gender, Education, Civil Status, Home Ownership, Urban character of place of
residence, Primary Occupation and Religion. All sociodemographic variables but one are obtained

8Each variable is obtained from the wave of data collected closest to the relevant election date. For all covariates
and voting intentions this corresponds to the most recent wave prior to the election date, while for the actual voting
choices this corresponds to the wave right after the election date.
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from the BV questionnaire. Only the variable Religion is obtained from the RE questionnaire.

Paap et al. (2005) show that modeling state dependence (by including previous election choices in the
model) improves the predictive power of the model. This observation is supported by the data selected
for this study. Therefore, the party choice of the individuals in the previous election is also added to
the list of explanatory variables. Given the model specification, state dependence can be added to the
model by viewing this variable as an ordinary categorical variable using dummies. Another method
would be to use alternative specific parameters that account for whether the individual has chosen
the alternative in the previous election or not. Although the latter would be preferred in the sense
that it leads to a smaller model, the former option showed much better results with the data at hand.
This is in line with the findings of Paap et al. (2005). Hence, state dependence is modeled by means
of dummy variables only.

In the interest of reducing the size of the model, the response variable is transformed into fewer
number of alternatives. In line with the approach taken in previous literature, only the four parties
that received the largest party shares in 2010 are listed separately. All other parties are lumped
together into alternative ’Other’. The options ’Do not know’ (DNK) or ’Prefer not to say’ (PNTS) are
merged into one category DNK/PNTS. Eventually, the voter preferences are described by alternatives
VVD, PvdA, PVV, CDA, Other, DNK/PNTS, No Vote. Some studies choose to drop all cases of
DNK/PNTS and No Vote and proceed the analysis with the remaining part of the data. Disregarding
this information could, however, lead to selection bias. Although this is a serious issue and much
literature is devoted to it, this is not the main concern of this study. Therefore, it is decided to keep
these alternatives in the model at an attempt to resolve this issue to some degree.

Some of the sociodemographic variables are altered as well. Civil Status and Home Ownership are
recoded into binary variables as most previous literature do not include any other options either. Urban
character of place of residence is recoded into a four-category variable as one of the categories showed
no explanatory power at all. Primary Occupation originally measures 14 different categories that
aim to describe the occupation of respondents rather detailed. Previous literature mainly includes
a variable regarding whether the individual is (un)employed. Therefore it has been recoded into
options Employed (paid), Unemployment and Other. Lastly, the variable Religion originally specifies
14 different religions. The variable is recoded to only specify religions that are adopted by a significant
amount of respondents and/or seem to have an effect on voting choices9. Lastly, the variables Age and
Income are log-transformed as their distribution is skewed. This way the data conform more closely
to the normal distribution, which simplifies its prior specification in the upcoming sections.

5 Dirichlet Process Mixture Models

This section is divided into four parts that discuss a set of definitions and concepts related to the
Dirichlet Process Mixture model. The first section gives a formal definition of the Dirichlet prior and
explains its function in the DPM model. The second and third sections are different representations off
the DPM model that are necessary to develop the intuition in the workings of the model. Furthermore,
the latter representation seems to be particularly interesting when deriving the Gibbs sampler. Finally,
the Gibbs sampler that is necessary to sample the parameters of the DPM model used in this paper
is presented.

9The (magnitude of the) effect of religious beliefs on voting choices differs for each party. Religions that seem to
have a strong effect or an effect on most parties are kept in the data set.
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5.1 Dirichlet Process and General DPM Model

For non-parametric Bayesian analysis, prior distributions are desired to have two properties: they
should have a large support and the resulting posterior should be analytically manageable (Ferguson,
1973). Even though these two properties are difficult to be obtained at the same time, based on the
conjugacy of the Dirichlet and Multinomial distribution, Ferguson (1973) developed a distribution,
the Dirichlet process, that meets these criteria.

The Dirichlet process (DP) is a stochastic process: a distribution over functions. In this case, these
functions happen to be probability distributions. Due to this, the DP is a distribution over distri-
butions, which has properties that are useful in non-parametric Bayesian analysis (Teh, 2010). In
particular, it is used as a prior for the mixing proportions in an infinite mixture model.

Formally, the DP is defined as a distribution of probability measures on a partition of some space
(sigma-algebra) in the following way. Let G0 be a distribution over X and α be a positive, real number.
Furthermore, let (A1, · · · , Ak) be an arbitrary, measurable partition of X . Then, by the definition
of the DP, if G is a DP denoted as G ∼ DP (α,G0), the following must hold (Ferguson, 1973; Rossi,
2014)

(G(A1), · · · , G(Ak)) ∼ Dir(αG0(A1), · · · , αG0(Ak)) (5)

Hence, the DP has marginal distributions that are Dirichlet distributed, based on which the distri-
bution obtains its name (Hjort et al., 2010; Teh, 2010). As can be seen from (5), the DP has two
parameters. The following two derived properties indicate the interpretation of these parameters. For
any measurable set A it holds that10

E[G(A)] =
αG0(A)

α
= G0(A)

V [G(A)] =
αG0(A)(α− αG0(A))

α2(α+ 1)
=
G0(A)(1− αG0(A))

α+ 1

(6)

This implies that the parameter G0, the base measure, can be interpreted as the mean or location
of the DP. On the other hand, α is a tightness (or inverse variance) parameter that determines how
tightly the DP is distributed around the base measure. The larger α is, the smaller the variance with
which the DP is dispersed around its base measure or mean. Due to this, when α approaches infinity,
G(A) will approach G0(A) (Rossi, 2014; Teh, 2010).

Since draws from a DP are distributions, they can be used to describe random variables. This random
variable11 can be defined as

θ|G ∼ G
G|α,G0 ∼ DP (α,G0)

(7)

This feature is exploited in a DPM model where each data point di has a distribution F depending

10These derivation are based on the properties of a Dirichlet distribution given the fact that (G(A1), · · · , G(Ak)) are
Dirichlet distributed.

11As G is defined on X , the random variable θ takes values in this set too.
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on the data point specific parameter θi which is a DP random variable

di|θi ∼ F (θi)

θi|G ∼ G
G|α,G0 ∼ DP (α,G0)

(8)

F and G0 may depend on more hyperparameters, which can be given priors as well. This model can
be seen as the infinite limit of the finite mixture model. This property is explored in the next section.

5.2 Relation to Finite Mixture Model

The finite mixture model as shown in (2) under an infinite limit was initially explored, for example
by Neal (1992), to avoid determining the number of components and to be able to let the number of
components grow with sample size (Teh, 2010). Nowadays, it is widely known as the DPM model.
Using the finite mixture model representation, we can show the relationship between the two models,
which gives insight into the characteristics of a DPM model. As stated in section 3, the Bayesian
representation of the finite mixture model is12

di|zi, θ∗j ∼ F (θ∗zi)

zi|π ∼Mult(π)

θ∗j |G0 ∼ G0

π|α ∼ Dir( α
K
, · · · , α

K
)

Given this model definition, the posterior distribution of the classification of a particular data point i
can be derived by integrating out the parameters. For this we first augment the probability of interest,
p(zi = j|z1, · · · , zi−1), with the parameters π

p(zi = j|z1, · · · , zi−1) =
p(z1, · · · , zi−1, zi = j)

p(z1, · · · , zi−1)
=

∫
p(z1, · · · , zi−1, zi = j, π)dπ∫

p(z1, · · · , zi−1, π)dπ

By Bayes’ rule this is equal to

p(zi = j|z1, · · · , zi−1) =

∫
p(π)p(z1, · · · , zi−1, zi = j|π)dπ∫

p(π)p(z1, · · · , zi−1|π)dπ

This expression can be specified according to the generative model definition

12Two arguments apply for the manner in which the Dirichlet distribution is parametrized in the prior distribution.
First, the strength of the Dirichlet prior depends on the number of components. More components, inherently give
more strength to the prior due to the flexibility they create. For this reason, the sum of the parameters of a Dirichlet
prior is often seen as the strength of the prior. Therefore, the prior’s strength should be adjusted for accounting for the
number of components (Teh, 2013). Secondly, as clarified in the remainder of this section, this particular symmetric
parametrization ensures that the number of components used to model is independent from K in its infinite limit as
α/K approaches zero when K approaches infinity (Neal, 2000).

19



∫
p(π)p(z1, · · · , zi−1, zi = j|π)dπ∫

p(π)p(z1, · · · , zi−1|π)dπ
=

∫
Γ(α)Γ(α/K)−Kπ

α/K−1
1 · · ·πα/K−1

K πz1 · · ·πzi−1πjdπ∫
Γ(α)Γ(α/K)−Kπ

α/K−1
1 · · ·πα/K−1

K πz1 · · ·πzi−1
dπ

and further simplified to

∫
Γ(α)Γ(α/K)−Kπ

α/K+n1−1
1 · · ·πα/K+nj

K · · ·πα/K+nK−1
K d π∫

Γ(α)Γ(α/K)−Kπ
α/K+n1−1
1 · · ·πα/K+nK−1

K dπ

where nk is the number of zk equal to k for k 6= j. As can be seen from this expression, the two
distributions have the kernel of a Dirichlet distribution, which can be integrated out after accounting
for the proper normalizing constant, so that the expression finally simplifies to

∏
k 6=j Γ(α/K + nk)Γ(α/K + nj + 1)Γ(α+ i+ 1)−1∏K

k=1 Γ(α/K + nk)Γ(α+ i)−1
=
nj + α/K

i− 1 + α

When we let K go to infinity, the relevant probabilities become

p(zi = j|z1, · · · , zi−1) =
nj

i− 1 + α

p(zi 6= j|z1, · · · , zi−1) =
α

i− 1 + α

(9)

Hence, for large K, the number of components used to model N data items is independent of K. This
implies that the model remains well defined as K approaches infinity. These probabilities are sufficient
to define the model in the sense that the categorical variables zi are only important in whether or not
they are equal to other zi (Neal, 2000).

The equivalence between the two ’different’ models can be shown by making use of

θi|G ∼ G
G ∼ DP (α,G0)

(10)

By integrating G out of the model, we can derive the Blackwell-MacQueen Polya Urn representation;
the distribution of a draw θi conditional on previous draws. In order to arrive to this distribution, we
start by considering the posterior G|θ1 after one draw. Bayesian theory dictates that the posterior
distribution p(G|θ1) is proportional to prior times the likelihood, p(G)p(θ1|G). Under a given partition
of X , G is Dirichlet distributed (see (5)). Due to the fact that DP random variables are inherently
clustered and the fact that the probability of each cluster given G is fixed, P (θ1 ∈ Aj |G) = G(Aj),
θ1|G has a categorical distribution with the aforementioned cluster probabilities. Since the posterior
distribution given a partition of X is proportional to the product of a Dirichlet and a categorical
distribution, we can make use of the Dirichlet-Multinomial conjugacy. Hence, the posterior for a
given partition of X is
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(G(A1), · · · , G(Ak))|θ1 ∼ Dir(αG0(A1) + n1, · · · , αG0(Ak) + nk)

Here, ni is the number of draws in subset Ai. Using (10), this implies that

G|θ1 ∼ Dir(α+ 1,
αG0 + δθ1
α+ 1

)

where δθ1 is a point mass. To arrive at the distribution of the next draw θ2 conditional on θ1, we
integrate G out of the generative model

θ2|G, θ1 ∼ G|θ1

Now we can marginalize G out given that P (θ1 ∈ Aj) = E[G(Aj)] =
αG0+δθ1
α+1 (Teh, 2010)

θ2|θ1 ∼
αG0 + δθ1
α+ 1

Repeating this idea for multiple draws implies

(G(A1), · · · , G(Ak))|θ1, · · · , θn ∼ Dir(αG0(A1) + n1, · · · , αG0(Ak) + nk) (11)

As this is true for any arbitrary partition of X , the posterior of G must be a DP. In fact, given that
the

∑n
i=1 αG0(Ai) +ni = α+n, the posterior is a DP with concentration parameter α+n. Moreover,

the base distribution of the constructed DP is
αG0+

∑n
i=1 δθi

α+n , a result that can be achieved by factoring
out α+ n from all αG0(Ai) + ni. This implies the result shown in (12).

G|θ1, · · · , θn ∼ Dir(α+ n,
α

α+ n
G0 +

n

α+ n

∑n
i=1 δθi
n

) (12)

and the Blackwell-MacQueen representation

θn|θ1, · · · , θn−1 ∼
1

n− 1 + α

n−1∑
i=1

δ(θi) +
α

n− 1 + α
G0 (13)

where δ(θi) is the probability mass concentrated at θi. Hence, the predictive distribution of θi is a
mixture of the empirical distribution of all previously observed values, δ(θi) : i ∈ 1, · · · , n− 1 and
the base measure G0. As the sequence of draws is exchangeable, the labeling of the draws in the
derivation does not matter; the same result applies for any draw.
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The Polya Urn representation of the DPM model in (13) obtains its name from its interpretation
based on an urn metaphor. For this interpretation, we start out with an empty urn and draw a ball
from G0, the value of which represents a colour. This ball is then dropped into the urn. After this,
subsequently new balls are drawn. With probability proportional to the number of balls of colour x
in the urn, a ball with colour x is drawn. If this is the case, the drawn ball is replaced and another
ball with colour x is added to the urn. With probability proportional to α a ball with a new colour is
drawn from G0 and one ball of that colour is dropped in the urn (Teh, 2010). This scheme has been
used to show that the DP prior exists by Blackwell and MacQueen (1973).

Using the results in (9) and (13), we can now see the correspondence between the limiting probability
of the finite mixture model and the DPM model; the limiting probabilities in (9) are the Blackwell-
Macqueen conditional probabilities of either drawing from an existing cluster (previous draws of θi)
or creating a new cluster for the new draw from G0. The limit of the finite mixture model becomes
equivalent to the DPM model when we take θi from (13) equal to θ∗zi from (9) (Neal, 2000). The DP
can be constructed from the infinite limit of the finite mixture model (taking K →∞) of the random

probability measure
∑K
k=1 πkδθ∗k (Teh, 2010).

The result in (13) implies several important properties of the DP distribution. First, we can infer
that the resulting posterior can be discrete no matter how smooth G0 is. For a long enough sequence
of draws, a value will be repeated. Secondly, larger clusters have a larger posterior probability of
being drawn (Rossi, 2014). This is called the rich-gets-richer property (Teh, 2013). Lastly, as can
be seen from the posterior, the larger α, or as previously mentioned, the strength parameter is, the
more informative the prior becomes. Hence, when the number of observations grows, the empirical
distribution dominates the posterior. This indicates that the posterior approaches the true distribution
for large number of observations (Teh, 2010).

Besides the representation as the infinite limit of the finite mixture model, the DPM model has two
more representations, the Chinese Restaurant Process and the stick-breaking representation. The
latter proves to be more useful in the practical application of the model and is explored in the next
section.

5.3 Stick-breaking representation

The previous section has shown that there is a direct link between the finite mixture model and the
DPM model. This equivalence occurs when we take the number of components in a finite mixture
model to approach infinity. In theory, this explanation is valid. In practice, however, constructing a
DPM model in this way is not feasible since one cannot draw an infinite number of mixing probabilities
from the finite mixture representation of the mixture model.

We can, however, make use of a different construction of the Dirichlet distribution called the stick-
breaking construction. This construction makes use of the fact that if π = (π1, · · · , πk) is Dirichlet
distributed, the marginal of π1 has a Beta distribution and the remaining πj conditional on π1 are
Dirichlet distributed (Broderick, 2015). More precisely, if π = (π1, · · · , πk) ∼ Dir(α1, · · · , αK), then

π1 ∼ Beta(α1,

K∑
j=2

αj)

(π2, · · · , πk)

1− π1
∼ Dir(α2, · · · , αK)
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Sethuraman (1994) uses this idea to show that the DP G ∼ DP (α,G0) can be constructed from a
series of Beta random variables. The metaphorical meaning of the stick-breaking construction follows
from interpreting the sum of cluster probabilities

∑∞
k=1 πk as a the length of a stick. Starting from

the first iteration i = 1, we draw a Beta random variable to determine π1 and break off a piece of
the stick of length π1. The piece of the stick that remains is used to determine the following cluster
probabilities; we recursively draw βi and break off πi by means of the following identities (Teh, 2010)

βk ∼ Beta(1, α)

πk = βk

k−1∏
j=1

(1− βj)

A DP can be constructed from the cluster probabilities in the following way

θ∗k ∼ G0

G =

∞∑
k=1

πkδθ∗k

The distribution of the sequence of (π1, π2, · · · ) is called the GEM distribution, named after Griffiths,
Engen and McCloskey (Ishwaran and Zarepour, 2002). By making use of the GEM distribution the
DPM model in (8) can be expressed equivalently as

π|α ∼ GEM(α)

zi|π ∼ Cat(π)

θ∗k|G0 ∼ G0

di|zi, θ∗zi ∼ F (θ∗zi)

(14)

with G =
∑∞
k=1 πkδθ∗k and θi = θ∗zi . This representation makes way for an intuitive interpretation of

the manner in which a DP operates. The DP is a distribution that is constructed from a countable
infinite number of atoms by combining two steps. Firstly, the random weights of the distribution πk
are obtained from a GEM distribution. The result is a discrete distribution that puts probability
mass πk on location k for k ∈ N ; this determines the scaling of the DP. Secondly, the draws from
base distribution G0, which may be a continuous distribution, determines the location of each πk; it
transforms the discrete distribution draw from the GEM distribution which assigns locations 1, 2, ...
to a distribution with locations θ∗1 , θ

∗
2 , ... (Broderick, 2015). Due to this, as compared to the finite

mixture model representation, the DP combines the clustering probabilities, cluster assignment, and
the cluster parameters into one random variable.

5.4 Gibbs Sampler

Many Gibbs sampling schemes for the model in (8) have been determined, with the most obvious being
the sampler from the complete conditional posterior θj |θ−j , D, i.e. the parameter of each observation is
sampled one by one. As draws from a Dirichlet Process (DP) have a clustering property, one can define
a more efficient algorithm by exploiting this feature. To do this, the stick-breaking representation of
the DPM model is used.
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π|α ∼ GEM(α)

zi|π ∼ Cat(π)

θ∗k|λ ∼ G0(λ) (15)

di|zi, θ∗zi ∼ F (θ∗zi)

The θi parameters in (5) carry the same information as the cluster indicators zi combined with the
relevant cluster parameter θ∗k (15). Hence, by writing the model in stick-breaking representation
one can obtain a sample from the joint distribution in two steps. First, the zi are sampled for all
observations. Second, using this clustering scheme, θ∗k are sampled for all clusters.

As π is difficult to sample due to its infinite size, it is integrated out. The respective conditional
distributions of this sampler are derived as follows. First the distribution of zi conditional on all
except π is derived. Let λ represent all hyperparameters, D the data points di for i = 1, · · · , n and j
a cluster observed among z−i, then13

p(zi = j|z−i, D, {θ∗k}Kk=1, α, λ) ∝ p(zi = j|z−i, α)p(D|z−i, zi = j, {θ∗k}Kk=1, α, λ)

= p(zi = j|z−i, α)

n∏
l=1

p(dl|z−i, zi = j, {θ∗k}Kk=1, α, λ)

=
nj,−i

n+ α− 1
p(di|θ∗j ) (16)

Similarly, the probability that zi starts a new cluster is

p(zi = K + 1|z−i, D, {θ∗k}Kk=1, α, λ)

= p(zi = K + 1|z−i, α)

n∏
l=1

p(dl|z−i, zi = K + 1, {θ∗k}Kk=1, α, λ)

=
α

n+ α− 1
p(di|λ)

=
α

n+ α− 1

∫
p(di|θ)p(θ|λ)dθ (17)

The cluster parameters θ∗k for all K existing clusters can be sampled from

p(θ∗k|θ∗−k, z,D, α, λ) ∝ p(θ∗k|λ)p(D|z, {θ∗k}Kk=1, α, λ)

= p(θ∗k|λ)

N∏
i=1

p(di|θ∗zi)

∝ p(θ∗k|λ)
∏
zi=k

p(di|θ∗zi) (18)

13The probabilities p(zi = j|z−i, α) and p(zi = K + 1|z−i, α) are derived in section 5.2 and do not depend on cluster
parameters.
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The integral in
∫
p(di|θ)p(θ|λ)dθ is hard to evaluate in cases where the prior p(θ|λ) and the likelihood

are not conjugate. Neal (2000) proposes to use auxiliary variables to circumvent having to calculate
this integral. His algorithm can be summarized in the following way.

Neal’s Algorithm 8 Let (z1, · · · , zn) and θ∗ = (θ∗k : k ∈ {z1, · · · , zn}) describe the state of the
Markov chain. The algorithm alters the previously derived Gibbs sampler by creating temporary
variables and augmenting θ∗ with m additional parameters drawn from G0.

• For i = 1, · · · , n, let K− be the number of clusters after zi is removed from the state. Relabel
z−i (if necessary) such that they take value in 1, · · · ,K−.

– If zi = zj for some i 6= j draw new values for θ∗h for K− < h < k− +m from G0.

– If zi 6= zj for all i 6= j, set θ∗K−+1 = θ∗zi and draw new values for θ∗h for K−+1 < h < k−+m
from G0.

Then, draw a new value for zi from

p(zi = k|z−i, di, θ∗1 , · · · , θ∗K−+m) ∝

{
n−i,k
α+n−1p(di|θ

∗
k) for 1 ≤ k ≤ K−,

α/m
α+n−1p(di|θ

∗
k) for K− < k ≤ K− +m,

(19)

where n−i,k is the number of zj = k for all j 6= i. Conclude this step by updating the state by
altering z to contain zi and θ∗ to only contain cluster parameters that are associated with zi for
all i = 1, · · · , n.

• For all k ∈ {z1, · · · , zn} draw a new value for θ∗k from θ∗k|{di : zi = k}

• A final step can potentially contain updates of hyperparameters.

6 Adapted Model Specification

Thus far, a very general specification of the DPM model is given. In this section, the general DPM
model is modified to make it fit for the data, keeping in mind the aims of this analysis. In the next
subsection, the model is adapted to facilitate the inference of the conditional distribution. After this
adaptation, the likelihood and prior specifications are discussed.

6.1 Generative vs. Discriminative Approach

So far, the DPM model is defined for a general variable vector d. In terms of the individual-level
election data, data point d denotes the variable bundle (x, y) where x are the sociodemographic
variables, while y denotes the response variable. There are two main ways of adapting the DPM model
to facilitate conditional distribution inference: the generative and the discriminative approach. Using
the generative approach the joint distribution of (x, y) is modeled and p(y|x) is inferred implicitly.
On the other hand, the discriminative approach models the distribution of p(y|x) directly.

At first glance, the discriminative approach seems the simpler alternative. There are plenty of models
that aim to describe the relationship between a multinomial response variable and covariates that can
easily be used here. Another benefit is the fact that the dimension of the problem is much smaller
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when the response variable only is explicitly modeled. This implies that the discriminative approach
would be computationally less expensive compared to the joint approach. While this argument holds
for many other models, these observations are not necessarily true for the non-parametric approach
taken in this analysis. To comply with the non-parametric feature of the DPM model, one must find
a model specification that ensures that the covariates enter the distribution of the response variable
in a flexible way. For this method to be truly non-parametric, the covariates should be at least able to
influence the mixing probabilities (Rossi, 2014). An example of this is the approach taken by Geweke
and Keane (2007). They aim to do non-parametric analysis with a finite mixture model where the
following discriminative approach is taken

y|x ∼
K∑
k=1

πk(x)f(xTβk, σk)

While this type of specification would indeed allow covariates to influence mixing probabilities, it
does not facilitate a general form of heterogeneity. For example, heteroskedasticity is only accounted
for implicitly through the influence of the covariates on the mixing probabilities. This inflexibility
in the model has two consequences. First, the number of components needed to model the data
is likely to increase as the sampler will try to accommodate a good fit. Furthermore, despite the
increased number of components, the model may still perform poorly as it is build on the assumption
of homoskedasticity (Villani et al., 2009). The disadvantages of this approach do not limit themselves
to model performance. Due to the particular model specification, (conditional) conjugacy in the model
may no longer hold, which complicates the sampling procedure (Rossi, 2014).

Clearly, the discriminative approach is not an elegant solution for a non-parametric model. The joint
approach, on the other hand, inherently takes into account the distribution of the covariates and its
effect on the model and does not require for these effects to be modeled explicitly. Due to this, it
allows for all types of conditional heterogeneity (Rossi, 2014). Most DPM regression models make use
of the generative approach (see for instance (Taddy and Kottas, 2010; Hannah et al., 2011; Shahbaba
and Neal, 2009)).

In principle, using the generative approach, the model specification does not need to accommodate
the inference of the conditional distribution. The DPM model can be specified in the following way

xi|θx,i ∼ Fy(θx,i) (20)

yi|θy,i ∼ Fx(θy,i)

θi = (θx,i, θy,i)|G ∼ G
G|α,G0 ∼ DP (α,G0)

where the response and the covariates are assumed to be independent. This model is not popular
in the literature due to its poor performance in predicting the response variable. This result can be
attributed to the weight of the response variable in the posterior. As the number of covariates grow,
the weight of the response variable shrinks quickly and makes it less important for prediction. For
this reason, this method is not considered here.14.

14When explicitly modeling the conditional distribution, an increase in the number of covariates is accompanied by
an increase in the number of parameters related to the response variable. This makes this approach more resistant to
dimensionality compared to the model presented above.

26



Due to above mentioned reasons, the generative approach is taken. The DPM model is adapted as
follows

yi|xi, θy,i ∼ Fy(xTi θy,i) (21)

xi|θx,i ∼ Fx(θx,i)

θi = (θx,i, θy,i)|G ∼ G
G|α,G0 ∼ DP (α,G0)

where the joint distribution of (xi, yi) is modeled using the the decomposition p(xi, yi|θi) = p(yi|xi, θyi )p(xi|θxi ).

6.2 Likelihood Specification

The next step towards completing the model specification is determining the likelihood distributions.
The response variable yi in the voting choice model concerns categorical data with J alternatives
labeled 1, · · · , J . These voter choices are predicted using the covariate vector xi. The covariates are
either continuous or categorical. For notation purposes, let xi = (xcon

i,1 , · · · , xcon
i,Lcon , xcat

i,1 , · · · , xcat
i,Lcat)T .

Using the adapted DPM model, for all i = 1, · · · , n it holds that

yi|xi, θyi ∼ Cat(pi(xi))
xi|θxi ∼ Fx(θxi ) (22)

θi|G = (θxi , θ
y
i )|G ∼ G

G ∼ DP (α,G0)

The marginal distributions of the covariates, which together form Fx, are assigned in accordance with
the nature of the data.

xcon
i |µ,Σ ∼ N(µ,Σ)

xcat
i,l |πl ∼ Cat(πl) for l = 1, · · · , Lcat (23)

where xcon
i = (xcon

i,1 , · · · , xcon
i,Lcon)T and xcat

i = (xcat
i,1 , · · · , xcat

i,Lcon)T . Here, the continuous variables xconi
and categorical variables xcati are assumed to be independent from each other. Continuous variables
xconi,l can be correlated among each other due to the multivariate normal likelihood specification.

Each categorical variable xcati,l , however, is independent from all other categorical variables. Although
variable Age is strictly speaking count data and therefore not continuous, it is categorized as continuous
data to not complicate the model any further.

Popular choices for the conditional relationship between yi and xi for a multinomial response variable
are the probit and the multinomial logit (MNL) specification. Using the probit specification in a DPM
model makes the sampling procedure more tricky as the sampling algorithm requires the likelihood
to be evaluated. Numerical approximation of the likelihood could be a solution, but is not desirable
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as it makes an already computationally expensive sampling procedure more lengthy. Therefore, the
MNL specification is chosen to model the conditional relationship between the response variable and
covariates. Hence, the probabilities for each party are defined as follows. Let x̃i be the regressor
vector, then

P (yi = j|xi, βi) =
exp(x̃i

Tβji )∑J
l=1 exp(x̃i

Tβli)
(24)

which is the jth element of pi(xi)) in (22). Due to the coefficients being alternative specific, parameter
βi captures the collection of all alternative specific coefficients {βji }

J−1
j=1 with βji = (βji,0, · · · , β

j
i,L∗)

′.

Without loss of generality, βJ is set to zero to keep the model identified under addition15.

6.3 Prior Specification

In the adapted DPM model described in (22), θi represents all parameters, where θyi = {βji }Jj=1 and

θxi = (µi,Σi, {πi,l}L
Cat

l=1 ). These parameters are DP distributed with base measure G0 and concentra-
tion parameter α. Specifying a prior in this model corresponds to choosing the base distribution and
concentration parameter.

On the one hand, the choice of prior distribution in a DPM model seems of less importance compared
to regular Bayesian analysis due the DP prior. Particularly since the strength parameter α can be
chosen such that the prior does not influence the posterior much (low values of alpha). While this is
true to some extent, there are some important considerations regarding G0.

Priors are chosen to impart existing knowledge on the model. When there is little existing knowledge,
the prior is specified such that it has a low impact relative to data. This is typically realized by using
diffuse prior settings. In this research, imparting little knowledge is especially relevant as the DPM
model is chosen for its non-parametric properties. Although this seems to suggest that a diffuse prior
is preferred, a diffuse prior can have undesired effects on the outcome. Rossi (2014) discusses the role
of hyperparameters λ on the posterior distribution. The conditional posterior distribution of θ can be
written as

p(θi|θ−i, di) ∝ q0αGi(θi|λ) +
∑
j 6=i

qjδ(θj)

where q0 =
∫
p(di|θi)p(θi|λ)dθi and qj = p(di|θj). Gi(λ) is the posterior for θi under prior G0 updated

with observation di. This conditional distribution can be interpreted as drawing θi from N possible
‘models’. θi is either equal to one of the N−1 existing values in θ−i or a new value drawn from Gi(λ).
The weights q0 and qj are the marginal probabilities under each of the N models and determine the
likelihood with which a model is chosen. The influence of λ on the posterior becomes clear from
q0. The marginal likelihood under ‘model 0’, q0, can be made smaller by choosing a more diffuse
specification for G0. This decreases the probability that a new cluster is opened. Hence, a very diffuse
base distribution results in a posterior with a small number of components. Even though very diffuse

15L∗ = 1 + Lcon +
∑Lcat

l=1 (Ml − 1), with Ml the number of categories of covariate xcatl .
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priors (such as flat priors) are common to use in Bayesian analysis to express little prior beliefs about
parameters, they are not desirable in the DPM model due to the aforementioned result.

Instead, Rossi (2014) suggests using a conjugate Normal-Inverse Wishart prior specification16

µ|Σ ∼ N(µ0, c
−1Σ) (25)

Σ ∼ IW (ν, νυI)

with proper flat priors on the hyperparameters. The Normal-Inverse Wishart (NIW) specification
is common in Bayesian and DPM model literature as it is easy to sample from. It also sidesteps
the previously mentioned issue as the diffuseness of the prior specification can be governed by the
researcher. A (flat) prior on the hyperparameters λ allows the researcher to express uncertainty about
the prior specification and the data to influence the values of the hyperparameters. However, the
downside of this specification is that the covariance structure of µ is heavily restricted. On top of
this, this prior specification gives a lot of weight to small clusters with small variance in determining
µ (West et al., 1994). Görür and Rasmussen (2010) put the NIW specification in a DPM model to
a test by comparing its performance to the less restrictive conditionally conjugate model. The latter
prior specification is similar to (25) with the only difference being that the distribution of µ does not
depend on Σ. They find that conjugate NIW specification typically uses more components to model
the same data. More importantly, they find the predictive performance of the conditionally conjugate
model to be better, where the difference in predictive performance grows with dimensionality.

The choice of base distribution and distributions for the corresponding hyperparameters is mainly
driven by these two arguments. The base measure is defined as follows

µ|µµ,Σµ ∼ N(µµ,Σµ)

Σ|νΣ, υΣ ∼ IW (νΣ, νΣυΣILcon) (26)

πl|a0,l ∼ Dir(
a0,l

Ml
, · · · , a0,l

Ml
) for l = 1, · · · , Lcat

β|β̄, B ∼ N(β̄, B)

where Dir and IW represent the Dirichlet and Inverse-Wishart distribution respectively. Here, the
categorical covariates are given a Dirichlet prior, due to the fact that it has the appropriate support for
parameter πl an its conjugacy with the categorical distribution. The symmetric parametrization for
its hyperparameter a0,l is primarily chosen as it reflects the a priori believe that the relative likelihood
of each category occurring is not known without looking at the data. Additionally, it simplifies its
interpretation. The prior distributions of the hyperparameters are

16Rossi (2014) argues this specific parametrization of the Wishart distribution is chosen as an attempt to isolate the
tightness and location of the distribution. In principle, the distribution can also be parametrized as IW (ν, υ̃I) or, even
more general, IW (ν,Ψ) to maintain conjugacy and achieve the same results. The difference here is only in interpretation.
In fact, even though this parametrization is less common in Bayesian literature, it makes the interpretation of the
parameters more intuitive. In this case, the interpretation of the tightness parameter relates to the amount of information
captured in the prior, where ν is the number of observations. υ can be interpreted as the variance in the sample of ν
observations (Gelman et al., 2014; Nydick, 2012).
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α|a, b ∼ Ga(a, b)

µµ,l|µloµ,l, µ
up
µ,l ∼ unif(µloµ,l, µ

up
µ,l) ∀l = 1, · · · , LCon

Σµ|νµ, υµ ∼ IW (νµ, νµυµILCon)

υµ|υloµ , υupµ ∼ unif(υµ,l, υ
up
µ )

υΣ|υloΣ , υ
up
Σ ∼ unif(υloΣ , υ

up
Σ )

a0,l|alo0,l, a
up
0,l ∼ unif(alo0,l, a

up
0,l) ∀l = 1, · · · , LCat (27)

B|νβ , υβ ∼ IW (νβ , νβυβIL∗)

β̄l|β̄lol , β̄
up
l ∼ unif(β̄lol , β̄

up
l ) ∀l = 1, · · · , L∗

υβ |υloβ , υ
up
β ∼ unif(υloβ , υ

up
β )

where uni and Ga represent the uniform and gamma distribution respectively. All hyperparameter
distributions except the distribution of α are based on the suggestion of Rossi (2014). Adopting a
gamma distribution for α is common practice in DPM models. The approach is first introduced by
Escobar and West (1995) and makes use of auxiliary variable Gibbs sampling to simplify sampling
from its posterior distribution.

7 Hybrid MCMC Sampler

The Gibbs sampler scheme in section 5.4 can be applied to the voter choice model by writing the
model as

xi, yi|θi ∼ F (θi)

θi|G ∼ G (28)

G|α,G0 ∼ DP (α,G0)

and setting di in (5) equal to xi, yi in (28). Step 1 of Neal’s Algorithm 8 boils down to computing the

joint likelihood given the data point specific parameter θi = (βi, µi,Σi, {πi,l}L
cat

l=1 ). Using the model
specification in (23) and (24), the joint likelihood for individual i is

p(xi, yi|θi) = p(yi|xi, βi)p(xcon
i |µi,Σi)p(xcat

i |{πi,l}L
cat

l=1 )

=

J∏
j=1

pj,i(xi, β
j
i )
I(yi=j)N(xconi |µi,Σi)

Lcat∏
l=1

Ml∏
m=1

π
I(xcati,l =m)

i,l,m (29)

Ml the number of categories in xcatl . Step 2 of the algorithm requires the computation of the posterior

distributions of θ∗k = (β∗k , µ
∗
k,Σ

∗
k, {π∗l,k}L

cat

l=1 ). From the derivation in (17) we know that

p(θ∗k|z, y, x, λ) ∝ p(θ∗k|λ)
∏
zi=k

p(xi, yi|θ∗zi) (30)
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where

p(θ∗k|λ) ∝ N(β∗k |β̄, B)N(µ∗k|µµ,Σµ)IW (Σ∗k|νΣ, υΣ)

Lcat∏
l=1

Dir(π∗l |
a0,l

Ml
, · · · , a0,l

Ml
) (31)

due to the specification in (26). The conditional posterior distribution for each parameter are derived
from this expression. The next subsections provide an overview of these conditional posteriors, while
the derivation can be found in the appendix.

7.1 Sampling θxi

From the latter expressions we can obtain the conditional posterior distributions of the distinct pa-
rameters µ∗k, Σ∗k and π∗l,k by dropping the irrelevant terms. The conditional posteriors are

µ∗k|µµ,Σµ, {xconk }zi=k ∼ N((Σµ + nkΣ∗k)−1(Σµµµ + nkΣ∗kx̄
con), (Σµ + nkΣ∗k)−1)

Σ∗k|νΣ, υΣ, µ
∗
k, {xconk }zi=k ∼ IW (nk + νΣ, νΣυΣILcon + Sx)

π∗l,k|a0,l,Ml, {xcatk }zi=k ∼ Dir(a0,l

Ml
+

∑
zi=k

I(xi,l = 1), · · · , a0,l

Ml
+

∑
zi=k

I(xi,l = Ml))

where Sx =
∑
zi=k

(xconi − µ∗k)(xconi − µ∗k)T ). The complete derivation can be found in A.1.

7.2 Sampling θyi

Expressions (29) to (31) imply that the conditional posterior of βk only depends on its prior and on
the likelihood of all yi|xi in the same cluster, where

p(β∗k |z, x, y, λβ) ∝ N(β∗k |λβ)
∏
zi=k

J∏
j=1

pj,i(xi, β
∗j
k )I(yi=j)

with λβ = (β̄, B). This means that, when sampling β∗k , we deal with an MNL model with nonrandom
covariates. As the prior-likelihood pair is not conjugate, these parameters cannot be sampled with a
Gibbs step. Instead, a Metropolis-Hastings (MH) sampler can be used to obtain posterior samples
from the conditional posterior distribution of β∗k . In such a hybrid MCMC (or sometimes MH-within-
Gibbs) sampling scheme, the proposal and target distributions may depend on other parameters in
the model. Due to the hierarchical Bayesian approach, this step depends on parameters (z, β̄, B).
To properly fuse the remainder of the Gibbs sampler scheme with the MH-step, the values of these
parameters are updated with their most recent draw to achieve convergence to the correct stationary
distribution (Rossi et al., 2005).
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There are numerous samplers that can be used to sample this part of the model. Each of these have
their own advantages and disadvantages. The next bit of writing aims at giving an overview of these
samplers and discuss the extent to which they are suitable for the DPM voter choice model.

7.2.1 Samplers for the multinomial logit model

The likelihood of the data under an MNL specification usually has a good asymptotic normal ap-
proximation. Commonly used MH algorithms make use of this feature. Examples of these are the
independence sampler with multivariate-t proposal distribution and the random walk sampler with
Normal proposal distribution, both presented in Rossi et al. (2005). Other, more recent examples
using this principle are data augmented samplers such as (Holmes et al., 2006; Scott, 2011; Frühwirth-
Schnatter and Frühwirth, 2010, 2012). Following the ideas presented in Albert and Chib (1993) and
McCulloch and Rossi (1994), the latter samplers use the random utility model (RUM) and take a
normal approximation to εj,i. In the RUM representation, εj,i is defined in the following way17

yuj,i = xTi βj + εj,i
18 j = 1, ..., J − 1

yuJ,i = εJ,i

yi = j ⇐⇒ yuj,i = max(yu1,i, · · · , yuJ,i)

The aforementioned samplers, and more, are all considered good candidates. A good starting point
for picking one out of the many candidates is the comparative study on various MH samplers for
the multinomial logit model carried out by Frühwirth-Schnatter and Frühwirth (2010). This study
includes the previously mentioned samplers and more (with and without data augmentation). Using
five well-known datasets with different characteristics, the samplers are compared based on their
performance in total CPU time, acceptance rate and (in)efficiency based on the empirical correlation in
the MCMC draws. The study finds that the data augmented samplers perform best overall. However,
the performance of each sampler is specific to each data set. Therefore, several samplers are selected
and compared in their performance based on the data set at hand.

Frühwirth-Schnatter and Frühwirth find that, among the MH samplers without data augmentation,
the independence sampler clearly outperforms all others in total CPU time and efficiency. Compared
to the data augmented samplers, the independence sampler is less efficient in most cases, yet again
faster in total CPU time. Due its speed, the independence sampler seems an attractive choice for the
voter choice model. When using this sampler, the posterior is approximated as

p(β|y,X) ∝ |H| 12 exp{−1

2
(β − β̂)TH(β − β̂))}

Rossi et al. (2005) discuss many possibilities for β̂ and H and eventually choose the MLE for β̂ and the

expected Hessian of the negative log-likelihood evaluated at β̂ for H. This is not feasible in the DPM
model, as the number of data points assigned to a given cluster can be lower than the dimension of
the β parameter. The distribution can, however, be centered on the mode of the posterior distribution

17The superscript * and subscript k in β∗
k are dropped in the remainder of the section to simplify notation.

18Taking εj,i ∼ EV in the RUM model leads to the MNL specification in (24).
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and H can be defined as the expected Hessian of the negative log-posterior. The mode of the posterior
distribution can be obtained by numerically optimizing the log-posterior distribution.

The advantage the independence sampler has to offer is the ’tuning’ parameter ν. This parameter
can be adjusted based on the acceptance rate. In a MH sampler, this is especially important as it
is desirable that the proposal distribution has fatter tails than the target distribution. When this
condition is not met, the chain can move to the tails and repeat values to build up mass due to the
high relative mass at the tails. Small values of ν imply fat tails, which can avoid a high rejection rate.
On the other hand, too small values cause the peak of proposal distribution to be very ’slim’, which
causes the sampler to build mass in the ’shoulders’ of the Normal distribution (Rossi et al., 2005).

Frühwirth-Schnatter and Frühwirth recommend their own data augmented sampler based the sampler
proposed by Scott (2011) as first choice due to the combination of its simplicity, relative efficiency
and speed. The proposal distribution in this MH sampler is the posterior distribution implied by the
differenced RUM specification

zj,i = xTi βj + εj,i j = 1, ..., J − 1

yi =

{
j 6= J, if zj,i = max(z1,i, · · · , zJ−1,i) > 0

J, if max(z1,i, · · · , zJ−1,i) < 0

where zj,i = yuj,i − yuJ,i, εj,i = εj,i − εJ,i and εj,i has a multivariate logistic distribution. Following

Scott (2011), a normal approximation for the error term is used where εj,i ∼ N(0, R)19. This sampler
outperforms the original sampler in terms of acceptance rate as the logistic distribution is closer to
the normal distribution than the extreme value distribution is. Using this augmented specification,
the auxiliary variables zj,i and parameters are sampled sequentially. The zj,i are derived using the
formula

yuj,i = − log(− log(Ui)∑J
l=1 exp(xTi βl)

− log(Vj,i)

exp(xTi βj)
I(yi 6= j))

where Ui and Vj,i are uniform random variables in [0,1]. The β|z parameters under the dRUM speci-
fication do not have a closed form conditional posterior. Based on Scott’s algorithm, the conditional
posterior under the normal approximation is used as a proposal distribution for the MH algorithm.
Under the normal approximation, β|z is sampled from a multivariate regression model with equi-
correlated errors

LTRzi = LTRXiβ + LTRεi

where Xi is the regressor matrix for individual i. To circumvent the issue of correlated errors, the
left- and right-hand side of the stacked regression equation with LTR which is determined using the

19R = π2

6
(I + ιιT ) where ι is a vector of ones.
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Cholesky decomposition of R = LRL
T
R. The posterior distribution of the transformed model has the

well-known closed form β|z ∼ N(bN , BN ) where

BN = (B−1 +

n∑
i=1

XT
i R
−1Xi)

−1

bN = BN (B−1β̄ +

n∑
i=1

XT
i R
−1zi)

Both of these MH algorithms can be useful in sampling the β coefficients of the DPM model due to
the aforementioned reasons and are probably the best pick for many datasets/models. When used on
the voter choice data, however, several issues present themselves. The data augmented sampler by
Frühwirth and Frühwirth-Schnatter remains stuck in the initial conditions and has a acceptance rate
of practically zero. In fact, when applied to the full data set without assuming a DPM model, the
acceptance rate is exactly zero. This result can most likely be attributed to the size of the model. In
the voter choice model, the response variable can take seven different values, the number of regressors
is 29 and the number of data points is larger than 2000. The data sets used in Frühwirth-Schnatter
and Frühwirth (2010) are much smaller in terms of all three of these factors. Although each data
set is different, there seems to be a general tendency where complexity of each model in terms of the
previously mentioned factors correlate with lower acceptance rates and efficiency.

The independence sampler by Rossi does relatively better on this front with an additional benefit of
the possibility to tune the proposal distribution for better results. The numerical optimization that
is required for the sampler, however, proves to be a big problem. Due to the hybrid MCMC sampling
scheme, this optimization must be performed every iteration to account for the changes in (z, β̄, B).
Taking into consideration the dimensionality of the data set, using the independence sampler turns
out to be not feasible.

Based on these results, other samplers have been selected to test on the data at hand. The results of
the independence sampler suggest using a t-distribution may be more suitable. Due to this, a doubly
data augmented sampler taken from Frühwirth-Schnatter and Frühwirth (2012) is explored. This
sampler uses a multivariate t-distribution to approximate the multivariate logistic distribution in the
differenced RUM specification. Exploiting the fact that the t-distribution is a scale mixture of normal
distribution, this sampler uses a similar strategy to the sampling scheme of Frühwirth-Schnatter and
Frühwirth (2010) explained above. Unfortunately, its performance is no different than the original
data augmented sampler. For the sake of completeness, the data augmented sampler proposed by
Scott (2011) is tested as well, with the exact same results.

Due to the bad performance of the preferred samplers, the random walk sampler is used to sample
from the posterior of the voter choice model. The proposal distribution in this sampling scheme is

βt+1|βt ∼ N(βt, s
2H−1)

where s is the scaling factor and H represents the hessian. Although this method is much more
inefficient and relatively slow, it is the only option that is simple to implement and feasible. This
way, the numerical optimization issue is circumvented. Furthermore, the acceptance rates are mostly
about 20 - 25 %. These acceptance rates are realized under asymptotically optimal scaling where
s = 2.382/L∗ (Roberts et al., 2001).
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7.3 Sampling α

The Gibbs sampling scheme for concentration parameter α is taken from Escobar and West (1995).
This is the most commonly used method to update the concentration parameter α during the step-
by-step sampling procedure.

To sample α in a Gibbs step, Escobar and West (1995) assume α has a Gamma distribution. They
augment the sampler scheme with an auxiliary variable that allows α to be sampled from analytically
tractable conditional distribution. As shown by Antoniak (1974), the likelihood of the number of
clusters K in a DPM model has a likelihood that only depends on α and the number of observations
n.

p(k|α, n) ∝ αk Γ(α)

Γ(α+ n)

Using this likelihood and the fact that Γ(x) = Γ(x+1)
x+1 we can write the posterior of α as follows

p(α|k, n) ∝ p(α)p(k|α)

= p(α)αk
Γ(α)

Γ(α+ n)

= p(α)αk
Γ(α+ 1)

α

α+ n

Γ(α+ n+ 1)

= p(α)αk−1α+ n

Γ(n)

Γ(α+ 1)Γ(n)

Γ(α+ n+ 1)

Recognizing that the last factor is the reciprocal of the normalizing constant of a Beta(α + 1, n)
distribution, allows for the following rewrite

p(α|k, n) ∝ p(α)αk−1α+ n

Γ(n)

∫ 1

0

ηα(1− η)n−1dη

This result implies

p(α|k, n) ∝
∫ 1

0

p(α)αk−1(α+ n)ηα(1− η)n−1dη

∝
∫ 1

0

p(α, η|k, n)dη

Hence, the posterior of α is the marginal of the joint distribution of α and some Beta distributed
auxiliary variable η. This property is exploited in the Gibbs sampler scheme. Assuming a Gamma
prior on α, i.e. p(α) ∼ G(a, b), the following holds
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p(α|k, n) ∝ p(α, η|k, n)

∝ ba

Γ(a)
αa−1e−bααk−1(α+ n)ηα

∝ αa+k−2e−bα(α+ n)eαlog(η) (32)

∝ (α+ n)αa+k−2eα(−b+log(η))

∝ αa+k−1e−α(b−log(η)) + nαa+k−2e−α(b−log(η))

The last expression is a mixture of two Gamma distributions with weights cη = a+k−1
a+k−1+n(b−log(η))

α|k, n ∼ cηG(a+ k, b− log(η)) + (1− cη)nG(a+ k − 1, b− log(η))

The auxiliary variable η has distribution Beta(α+ 1, n)

p(η|k, n) ∝ p(α, η|k, n)

∝ αk−1(α+ n)ηα(1− η)n−1 (33)

In conclusion, the concentration parameter α can be updated in each Gibbs iteration by first sampling
η from (33) and using this to sample α from the conditional distribution in (32).

7.4 Sampling the hyperparameters

To determine the posterior of hyperparameters λ, the conditional independence implied by the stick-
breaking construction is used (Müller and Quintana, 2004).

p(λ|{µ∗k,Σ∗k, {π∗l,k}L
cat

l=1 , β
∗
k}Kk=1) ∝ p(λ)

K∏
k=1

p(µ∗k,Σ
∗
k, {π∗l,k}L

cat

l=1 , β
∗
k |λ)

As the priors on the hyperparameters are specified independently from each other, p(λ) is simply their
product. Together with

p(µ∗k,Σ
∗
k, {π∗l,k}L

cat

l=1 , β
∗
k |λ) = p(µ∗k,Σ

∗
k|λµ, λΣ)

Lcat∏
l=1

p(π∗l,k|λπl)p(β∗k |λβ)

these expressions imply that the conditional posteriors of (λµx , λΣx), λπl for l = 1, · · · , Lcat and λβ
can be derived separately. This derivation can be found in sections A.2 - A.4 in the appendix.
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8 Convergence and Forecasting

Once a sample from the joint posterior distribution is obtained, the simulated draws can be used to
compute point estimates for posterior prediction. The second part of this section covers this topic.
Before one can use the output of the simulation, however, the draws must be assessed for convergence.
In the next section, the approach in assessing convergence is discussed.

8.1 Detecting Convergence

One of the challenges in using MCMC draws is determining whether the Markov chain in question
has converged to the target distribution. As the course of the chain is affected by the initial starting
point of the algorithm, if the simulation is not run long enough, the draws may not be representative
of the stationary distribution. To decrease the influence of the initial starting point a number of initial
draws is discarded. This burn-in sample should be large enough to shake off the influence of the initial
condition (Gelman et al., 2014).

This problem is magnified due to the fact that MCMC draws exhibit serial correlation. Partially,
this correlation stems from repeated values in the MH step. On top of that, cross-correlation between
variables contributes to the serial correlation, as highly cross-correlated variables cause the steps taken
in the parameter space to be small (Lunn et al., 2013). Consequently, the Markov chain needs more
time to be able to navigate through the entire sample space. This complicates the task of assessing
convergence as it decreases the speed with which the effects of the initial condition fade. Aside from
the convergence issues, the inefficiency causes inference to be less accurate.

There are numerous ways in which one can approach the problem of detecting convergence. An
informal, but popular way is visual convergence detection by means of traceplots. In this case, a line
fitted through successive draws of the sampler is plotted against the iteration number. When the
chain is converged, the plot should look like a random scatter around a stable mean (Lunn et al.,
2013). Furthermore, there are various formal convergence diagnostics. The diagnostics proposed by
Geweke (1992) and Gelman and Rubin (1992) stand out due to their simplicity and wide applicability.
Especially the Gelman-Rubin diagnostic is popular in the MCMC literature. Below follows an outline
of these methods.

Geweke’s convergence diagnostic is essentially build on the idea behind traceplots. When a chain is
converged, the sample mean of the draws (or any function thereof) computed using a part of the chain
with a sufficient window length should be the same for any part of the chain. In particular, this holds
for the sample mean computed using the beginning of the converged chain compared to the last part
of the chain. Geweke’s statistic formalizes this idea by performing a Z-test on the equality of these
two sample means. As MCMC draws are correlated, the variance cannot be estimated by the sample
variance. Therefore, the statistic estimates the variance from the spectral density at zero. However,
convergence can only be detected in this way if the sampler has sufficiently navigated through sample
space. This reveals the problem with this diagnostic (and, essentially, with traceplots as well). In
some cases, convergence may be so slow that it appears as if the chain is converged (Lunn et al.,
2013). Hence, Geweke’s method does not address the issue of whether navigation is complete (Rossi
et al., 2005).

A possible solution to this problem is to compare multiple chains started on different initial points.
If these end up in the same stable mean, the chain should be converged (Lunn et al., 2013). Gelman
and Rubin’s statistic is based on this idea. Their statistic can be broken down into two steps. The
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first step is to find an overdispersed estimate of the target distribution that is centered about the
target’s mode(s). From this estimate, several points are sampled that serve as starting points for the
Markov chains. The second step is to make use of the information provided by the multiple chains.
Suppose that the variable of interest has variance σ2 under the target distribution. Then, Gelman and
Rubin (1992) propose an overestimate (V̂ ) for this variance using the between-chain and within-chain
variance. V̂ is then compared to the pooled within-chain variance. This statistic, the potential scale
reduction factor (PSRF), is defined as 20

√
R̂ =

√
df + 3

df + 1

V̂

W

where df is the estimated degrees of freedom and W is the pooled within-chain variance. The rationale
behind this statistic is as follows. When the chain is not converged, W underestimates σ2. Further-
more, V̂ has been defined such that it overestimates the variance under overdispersed starting points.
Therefore, the PSRF will be large when the chains are not converged. When the chains approach
convergence, the PSRF approaches 1. This way, the statistic gives an indication of how close the chain
is to convergence (Gelman and Rubin, 1992; Cowles and Carlin, 1996). Brooks and Gelman (1998)
propose a PSRF value of smaller than 1.2 as a general rule for approximate convergence.

Officially, all these methods should be applied to each scalar in the model. For models with many
parameters, such as the model in this writing, this is highly impractical. Although these diagnostics
have initially been proposed as a univariate statistics, they can easily be extended to multidimensional
problems by applying them on a function of all parameters. A convenient choice is the log posterior
evaluated at each draw. This way, one can assess whether the joint posterior distribution has con-
verged. Using the conditional posterior p(θi|θ−i, di), the joint posterior of the DPM model can be
determined with chainrule as follows

p(θ1, θ2, · · · , θn) = p(θ1)

n∏
i=2

p(θi|θ1, · · · , θj , di : ∀j < i)

For nonconjugate models, this expression is hard to evaluate due to analytically intractable integrals.
In section 5.4 the stick-breaking construction is used to split this posterior into two parts to form a
Gibbs sampler. Due to this, the second part of this sampler, where the unique cluster parameters are
sampled, simplifies to

K∏
k=1

p(θ∗k|z,D, α, λ) ∝
K∏
k=1

p(θ∗k|λ)
∏
zi=k

p(di|θ∗zi) (34)

This is a simple expression to evaluate. Moreover, it is a relatively good candidate for monitoring
convergence (at least partially), since it is a function of most variables of interest. It only lacks in

20Original definition of the statistic in (Gelman and Rubin, 1992) is different from the formula as presented in this
section. This formula led to several issues as it was defined incorrectly. Brooks and Gelman (1998) address this issue

and conclude that the correction factor in the formula should be adjusted to df+3
df+1

.
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directly accounting for the partition of the data in clusters. This partition is determined by α, the
likelihood of the data and the prior distribution. Expression (34) contains the latter two components.
Hence, although not ideal, (34) and the α draws combined form a good basis for determining conver-
gence for the entire model. Traceplots, Geweke’s statistic and Gelman-Rubin’s statistic are all used
for this.

The downside of the Gelman-Rubin statistic, especially for high dimensional problems, is that finding
good overdispersed initial conditions is rather complicated (Rossi et al., 2005). This is particularly
true for the DPM voter choice model defined in the previous sections. Therefore, an attempt to find
overdispersed initial conditions is made by finding crude estimates obtained from the hyperparameters
(Gelman et al., 2014). Most hyperparameters are specified with a uniform distribution. Two initial
starting points can be obtained from this by initializing all hyperparameters on either the lower
bound or the upper bound. The initial condition of all other parameters is based on the value of the
hyperparameters. The mode implied by the initial conditions for the hyperparameters is taken as a
base and multiplied by a factor to make it more overdispersed21. For these two initial conditions,
all data points are given their own cluster with a large value for α to encourage a large number of
clusters in the initial iterations. Besides this, another chain is run with hyperparameters initialized
in the middle of their range. All data points are assigned to the same cluster with a very low value
for α. All other parameters are sampled from the resulting distributions.

8.2 Forecasting

Forecasting in Bayesian analysis boils down to computing the predictive density of a future observation
given the training data. In terms of the general DPM model specification, this density can be denoted
as p(dn+1|Dtrain). This expression is defined as follows

p(dn+1|Dtrain) =

∫
p(dn+1|θn+1)p(θn+1|Dtrain)dθn+1

=

∫
p(dn+1|θn+1)

∫
· · ·

∫
p(θn+1|θ1, · · · , θn)p(θ1, · · · , θn|Dtrain)dθ1, · · · , dθn+1

=

∫
· · ·

∫
p(dn+1|θn+1)p(θn+1|θ1, · · · , θn)p(θ1, · · · , θn|Dtrain)dθ1, · · · , dθn+1

where p(θn+1|Dtrain) is obtained from the posterior distribution of the parameters θi for the training
data. For the model at hand, this integral is not analytically tractable and is approximated using
simulation. Thus, p(dn+1|Dtrain) can be estimated by Monte Carlo integration. For R posterior draws,
this estimate is

p̂(dn+1|Dtrain) =
1

R

R∑
r=1

p(dn+1|θrn+1)

Draws from p(θ1, · · · , θn|Dtrain) are obtained from the hybrid MCMC sampler discussed in previous
sections. Given each posterior draw, the distribution of θrn+1 is essentially a weighted average of the
prior with weight α

α+n and the empirical posterior distribution of the parameters with weight n
α+n

(Rossi, 2014). A draw θrn+1 is obtained from constructing this weighted average.

21This factor ranges between 20− 100 for the upper bound and 1/100− 1/20 for the lower bound depending on the
parameter in question.
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This forecasting scheme can be easily adapted to the voter choice model. In this model, we are inter-
ested in a forecasts for the party choices of an individual n+ i, which is based on posterior predictive
probabilities p(yn+i = j|xn+i, Dtrain). These probabilities can be directly obtained computing the
Monte Carlo estimate for p(yn+i = j|xn+i, Dtrain) using the conditional distribution in equation (24).
Furthermore, using the definition of conditional probability, the probability can be indirectly derived
from the joint distribution using

p̂(yn+i = j|xn+i, Dtrain) =
p̂(xn+i, yn+i = j|Dtrain)

p̂(xn+i|Dtrain)
(35)

The latter option has the advantage that it exploits the information the covariates of individual n+ i
carry when deciding on the previously mentioned weights (Shahbaba and Neal, 2009). Both methods
are used to generate forecasts.

Finally, the forecast for the election outcome, defined as the share of votes for each party, is obtained
by taking the average of the posterior predictive probabilities for each individual in (35)

p̂(y = j|Dtrain) =
1

ñ

ñ∑
i=1

p̂(yn+i = j|xn+i, Dtrain) (36)

9 Selecting Parameter Values For Hyperparameter Distribu-
tions

To finalize the model, the parameters of the hyperparameter distributions are specified. First, a
baseline prior specification is chosen. This is the main focus of this section. From this point, more sets
of prior specification are determined by adopting small differences to the baseline prior specification.

To simplify the prior specification, the continuous data is standardized. Due to this, the prior of µµ
is centered on 0 and while still given a relative wide range to reflect uncertainty caused by the DPM
specification. The hyperparameters of Σµ are chosen such that the mode of the draws range between
approximately (0.5, 1.4) while the corresponding expected variance ranges between approximately
(0.4, 3.5). This reflects the belief that the variance of the mean is likely to be lower than the variance
of the data, while still leaving room for the prior to become less strong (higher variance) in case
necessary.

µµ| − 2, 2 ∼ unif(−2, 2)

νµ = 25

υµ|0.5, 1.5 ∼ unif(0.5, 1.5)

The prior specification of Σ is finalized based on more or less the same principles. The a priori
expected rage for the mode of these draws contains the variance of the standardized continuous data,
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but maintains the possibility of other values. The tightness parameter here is lower than νµ to reflect
the fact that there is more uncertainty about the distribution of Σ compared to µ.

νΣ = 10

υΣ|1, 2 ∼ unif(1, 2)

Due to the symmetric specification of the Dirichlet prior, the parameter a0,l only determines whether
the prior distribution a) is unimodal with the mode located on (1/Ml, · · · , 1/Ml) and b) how peaked
this mode is. When a0,l < Ml, the distribution has no mode. In this case, the prior puts most mass
on the edges of the parameters space. Hence, a0,l < Ml implies that, a priori, it is believed that the
probabilities are not uniform; some categories are a priori more likely than others. It is not possible
to make these kinds of assumptions without examining the data first. Therefore the prior distribution
of a0 is specified such that it accounts for all these possibilities.

a0,l|1, 1000 ∼ unif(1, 1000) ∀l = 1, · · · , LCat

(i) Histogram of βML coefficients. (ii) Histogram of the variance of βML coefficients.

Figure 1: Histograms of the ML coefficients of the β parameters and their variances. In the histogram of the variances two
observations are excluded. These values fall outside of the domain in the histogram, making the figure unclear.

The ML coefficients of the β parameters and their variances are used to specify the distributions of
λβ . Figure 1 shows a histogram of these. The aim here is to get an indication of the scale of the β
parameter, which serves as a reference point for the boundaries of β̄. Most coefficients have values
ranging between −5 and 5, which determines the choice of prior specification for β̄. A similar strategy
is adopted for the variance parameters. The respective ML variances are taken as a rough lowerbound
to the location of variance distribution in the DPM model. Most MLE variances fall in a 0 to 3
region. Hence the range for υβ is specified such that it accounts for modes (2.6, 10.4). The tightness
parameter is chosen such that it is not too low as this leads to a more right skewed distribution and
drives the a priori expected value of B up. At the same time it is chosen not too high to reflect the
uncertainty in the prior specification and give the data more power to influence the posterior.
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β̄l| − 5, 5 ∼ unif(−5, 5) ∀l = 1, · · · , L∗

νβ = 190

υβ |5, 20 ∼ unif(5, 20)

The prior distribution of α is determined based on the implied prior probabilities on the number of
clusters. α is important to the model since it reflects the strength of prior. Furthermore, it is strongly
related to the number of clusters. Low values of α imply little confidence in the prior and a small
number of clusters. As the number of underlying components is unknown, it is desirable to specify
a prior distribution that puts mass on a large range of values of α. At the same time, to reflect the
uncertainty in the prior specification, small values of α are desired. This implies that the distribution
should have a relatively large variance and small mean. Based on these requirements, the following
prior is chosen

α|2, 1 ∼ Ga(2, 1)

which puts substantial mass on α ∈ (0, 4). Antoniak (1974) shows the relationship between α and
the number of clusters. Using his results, the prior probability for a given amount of clusters can be
expressed as

P (K = k|α,N) = |Sn,k|N !αk
Γ(α)

Γ(α+ n)
(37)

where Sn,k represents the Stirling numbers of first kind. Using this expression prior probabilities are
calculated. Table 10 in Section B shows the prior probabilities for different values of α. These figures
support the choice for Ga(2, 1) as the prior allows for a relatively large number of clusters (over 50),
but puts most mass on a moderate number of clusters.

By making small changes to the above mentioned baseline, 19 prior specifications are obtained, which
are labeled as prior specifications A-S. These are displayed in Table 3. Model D is equivalent to the
above discussed baseline. The table also shows additional prior specifications T-Z. As discussed in
Section 10, these have been selected after examining the results of the 2010 election and are only used
to forecast the 2012 election outcome.

42



Table 3: Prior Specifications A - Z

µµ,l
1 υµ νµ υΣ νµ a0,l

2 β̄l
3 υβ νβ α

A (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (0.5,5) 250 (2,1)
B (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (0.5,5) 190 (2,1)
C (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (5,20) 250 (2,1)
D (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (5,20) 190 (2,1)
E (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (10,30) 190 (2,1)
F (-2,2) (0.5,1.5) 15 (1,2) 10 (1,1000) (-5,5) (5,20) 190 (2,1)
G (-2,2) (2,10) 25 (1,2) 10 (1,1000) (-5,5) (5,20) 190 (2,1)
H (-2,2) (0.5,1.5) 25 (1,2) 5 (1,1000) (-5,5) (5,20) 190 (2,1)
I (-2,2) (0.5,1.5) 25 (5,10) 10 (1,1000) (-5,5) (5,20) 190 (2,1)
J (-2,2) (0.5,1.5) 25 (1,2) 10 (1,1000) (-5,5) (5,20) 190 (10,1)
K (-2,2) (5,10) 15 (10,20) 5 (1,1000) (-5,5) (5,20) 190 (2,1)
L (-2,2) (2,10) 15 (1,2) 10 (1,1000) (-5,5) (5,20) 190 (2,1)
M (-2,2) (2,10) 25 (5,10) 5 (1,1000) (-5,5) (5,20) 190 (2,1)
N (-2,2) (2,10) 15 (5,10) 5 (1,1000) (-5,5) (5,20) 190 (2,1)
O (-2,2) (5,10) 10 (10,15) 5 (1,1000) (-5,5) (5,20) 190 (2,1)
P (-2,2) (2,10) 15 (5,10) 5 (1,100) (-5,5) (5,20) 190 (10,1)
Q (-2,2) (2,10) 15 (5,10) 5 (1,1000) (-5,5) (5,20) 190 (10,1)
R (-10,10) (2,10) 15 (5,10) 5 (1,1000) (-20,20) (5,20) 190 (2,1)
S (-2,2) (2,10) 15 (5,10) 5 (1,1000) (-5,5) (5,20) 190 (100,1)
T (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
U (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
V (-2,2) (5,10) 15 (15,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
W (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
X (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (1,1)
Y (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (1,1)
Z (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 190 (0.5,1)

1 For all µµ,l parameters with l ∈ (1, · · · , LCon)
2 For all a0,l parameters with l ∈ (1, · · · , LCat)
3 For all β̄l parameters with l ∈ (1, · · · , L∗)

10 Results

The primary interest of this research is to evaluate the model in terms of predictive performance of
election outcomes. To this end, the sum squared errors (SSE) is calculated for each election outcome
forecast. This statistic provides a good summary of the distance between the predicted party shares
and the actual election outcome. Using (36), the SSE is computed in two distinct ways

SSEi =
∑
j∈Ji

(P (y = j|Dtrain)− psj)2

for i ∈ (1, 2) where psj is the actual party share of party j. Here, J1 is defined as the set of
(VVD, PvdA, PVV, CDA, Other), while J2 denotes the set of (VVD, PvdA, PVV, CDA, Other, No Vote).

To obtain the results showcased below, three chains are run for each DPM model for 40000 iterations.
These chains are initialized as described in Section 8.1. The number of auxiliary variables used in
Neal’s Algorithm 8 is set to 3. Due limited storage, thinning is performed on the output. Only 1
out of 4 draws is retained. This results in a sample of 10000 draws per chain. The burn-in sample is
established using the convergence diagnostics discussed in Section 8. These are reported and evaluated
in Section 10.1.
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Four benchmark models are selected to generate forecasts that serve as a comparison to the results of
the DPM models. The first benchmark forecast (VI) is generated by aggregating the voting intentions
in each sample into party shares22. Besides this, three models are selected based on commonly used
approaches to multinomial logit models, which are the maximum likelihood model (ML) and two
Bayesian models. Similar to the DPM models, the Bayesian models make use of a Random Walk
sampler under asymptotically efficient scaling. The two Bayesian models differ only in their prior
specification. Whereas both are assigned a multivariate normal prior N(0, B), the Bayes 1 model
is specified with a small prior variance B = 1.5IL∗ and the Bayes 2 model is specified with a large
variance B = 100IL∗ . The Bayesian benchmark models are each run for 40000 iterations, where the
initial 3000 are discarded as burn-in sample23.

All models are run using both the 2010 and 2012 data set. To evaluate whether the DPM model
is subject to overfitting, the data is split into a training and a test data set. The training data set
amounts to 2000 randomly chosen individuals, which roughly splits the data set in half. The previously
mentioned statistics are calculated for both years and both types of data sets. The results of the 2010
data set are used to formulate additional models for the 2012 data set to attempt to improve upon
the prior knowledge and thus forecasting performance.

The remainder of this section is organized as follows. First, practical matters pertaining to compu-
tation time are discussed in section 10.1. After this, the convergence statistics of the DPM models
are assessed in section 10.2. The forecasting performance of all models is evaluated in section 10.3.
Finally, some posterior results are discussed in section 10.4.

10.1 Computation Time

A major disadvantage of the DPM voter choice model is the computation time required to sample
sufficient draws. There are several factors that contribute to this result.

Firstly, the number of data points in the training sample is strongly related to the computation time.
The reason for this is that the cluster assignment of each data point is determined using the cluster
assignments of all other data points. Due to this, sequential sampling where all computations have
to be repeated for each data point, is necessary. In practice, this takes a relatively long time. The
second important factor that contributes to the long computation time is the dimension of the DPM
voter choice model. It takes much longer to sample from and evaluate densities of parameters with a
large dimension. Especially the computations related to the β parameter take much time. On top of
this, due to the large number of parameters that need to be saved, each simulation uses substantial
working memory. Lastly, the chains of the DPM models exhibit high correlation due to which large
samples of posterior draws are required for both convergence detection and accurate inference. These
two factors increase the total computation time of the simulation as well.

Applying the hybrid sampler programmed in R (Version 3.5.0) on the data at hand results in a
computation time of 2-3 days for 10000 iterations24. Clearly, this is undesired and makes running
multiple chains for a large number of iterations unfeasible. Part of the problem is caused by the
programming language. R is known to be very efficient with matrix computations, but can be slow
in on other aspects. The Rcpp package offers a (partial) solution to this problem. This package

22For example, the forecasted party share of party j is obtained by computing
∑n
i=1 I(yi=j)∑

j∈J1

∑n
i=1 I(yi=j)

.

23This was sufficient to achieve convergence of the likelihood based on visual expectation and the Geweke statistic
with values ranging from −0.5 to 0.3.

24All figures are based on computations carried out using a desktop with an Intel® Core™ i7-7700K processor
(overclocked to 4.7 GHz).
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offers an integration of the C++ language into the R environment. C++ is known to be able to
perform computations up to 50-100 times faster compared to R. Using this package, some functions
are rewritten in C++ and integrated into the original code. This results in a computation speed
of 1000 iterations per approximately 25 minutes while running three chains parallel to each other.
The written code, which consist of both R and C++ functions, is consolidated and turned into
the R-package DPMMmlogit. This package is made publicly available and can be obtained from
https://github.com/banuatav/DPMMmlogit.

10.2 Convergence Diagnostics

Tables 4 and 5 present the convergence diagnostics for each simulation. The burn-in column shows how
many draws are discarded for each chain. The sample size column displays the number of draws that
are retained to use for forecasting purposes. To establish a forecast for each model, all three chains
are combined after discarding the burn-in sample. For all models except model G, the initial run of
40000 iterations was sufficient to establish convergence. Due to high autocorrelation, convergence in
model G turned out to be slower. For this reason, the chain is run for an additional 16000 iterations.

The tables show the Geweke statistic computed for each chain after discarding the burn-in sample.
Given that the Geweke statistic concerns a z-test on the equality of two means computed with different
parts of the chain, its null hypothesis corresponds to convergence of the chain (equal means). Hence,
absolute values greater than 1.96 indicate 95% confidence in rejection of this null hypothesis. The
tables also report the Gelman-Rubin statistic; both as point estimate and upper limit of the confidence
interval (Upper CI). These are computed using all three chains after discarding the burn-in sample.
Values of smaller than 1.2 are considered acceptable to conclude convergence. Both statistics are
computed for the variable α and the log conditional posterior likelihood (LCPL).

A visual inspection of the traceplots served to generate an initial proposal for the burn-in sample. The
experience is that the chains display high autocorrelation as a result of the Random walk sampler,
with acceptance rates of about 20 − 25 %, and the high dimensionality. However, the traceplots did
show a clear indication of convergence. In general, the chains tend to highly deviate from the eventual
stable mean in the first 2000− 4000 draws.

After the initial proposal, the Geweke and Gelman-Rubin statistics are used to finalize the decision
on the number of draws to discard. In most cases, small adjustments to the initial proposal are made
to arrive at the results shown below. The Geweke and Gelman-Rubin statistics do not always lead to
the same conclusion. Due to the high amount of autocorrelation in the chains, the Geweke statistic is
very sensitive to the window of draws that is used. Therefore, the Gelman-Rubin statistic served as
the decisive criterion when the two methods disagreed. Due to this, some of the results below show
Geweke statistics that are a bit higher than the critical value 1.96.

10.3 Forecasting Performance

Table 6 displays the SSE for all models applied to the 2010 and 2012 training data respectively. The
table is split in two parts. The leftmost columns display the SSE computed based on the actual
(population) election outcome in 2010 and 2012. The rightmost columns show the SSE based on the
election outcome in the respective sample. A subscript 1 in the table denotes the SSE computed
for the errors in the party shares of VVD, PvdA, PVV, CDA and Other (the No Vote option is not
included), while a subscript 2 denotes the SSE computed based on the previous mentioned parties
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and No Vote. The SSE of the DPM models are obtained in two distinctive ways: based on the
forecasted conditional probability implied by the MNL model only, denoted with SSE C, or based on
the forecasted conditional probability implied by the joint distribution, denoted with SSE J. Tables
11 and 12 display the party share forecasts for all models and forecasting approaches. These can be
found in appendix C.

The table shows that, among the benchmark models, the ML and VI models have similar forecasts.
The Bayesian benchmark models generate forecasts that are different in the sense that the share of
the Other option is predicted to be lower, which improves the forecasts of the party shares of all other
options as well. The election outcome forecasts clearly benefit from the Bayesian approach, which are
computed while accounting for the uncertainty in the posterior distributions, whereas the ML and VI
forecasts completely ignore this uncertainty. All in all, the Bayes 2 model performs best compared to
all other benchmark models.

Table 4: Convergence diagnostics of all DPM model for the 2010 data set.

Geweke Statistic Gelman-Rubin Statistic
Burn-in1 Sample size2 Chain 1 Chain 2 Chain 3 Point Estimate Upper CI

A 4000 6000 α 0.301 -0.967 1.343 1.007 1.025
LCPL 1.584 -0.150 1.656 1.026 1.081

B 4500 5500 α 1.609 0.338 1.458 1.009 1.030
LCPL -1.537 -0.178 0.673 1.017 1.052

C 5000 5000 α -0.903 -1.407 -0.707 1.002 1.009
LCPL -0.940 0.610 1.913 1.010 1.029

D 4000 6000 α -0.264 -0.824 1.427 1.016 1.053
LCPL -0.117 0.995 -1.210 1.004 1.013

E 4750 5250 α 1.011 -0.055 0.810 1.008 1.028
LCPL 1.956 -0.303 1.126 1.006 1.017

F 6750 3250 α 0.248 -0.809 1.904 1.003 1.010
LCPL 1.160 0.524 -0.736 1.006 1.020

G 8250 5250 α 0.313 -0.335 -2.482 1.003 1.011
LCPL -0.573 -1.584 0.971 1.001 1.002

H 2000 8000 α 0.639 0.656 0.671 1.001 1.002
LCPL 0.445 0.503 -1.010 1.003 1.008

I 2250 7750 α 0.525 1.607 0.199 1.000 1.000
LCPL -1.472 -0.267 -1.297 1.000 1.001

J 5750 4250 α 2.350 1.143 0.802 1.009 1.032
LCPL -1.870 -0.698 0.302 1.000 1.001

K 2750 7250 α -1.216 1.170 0.267 1.000 1.001
LCPL 1.257 -1.239 -1.265 1.001 1.002

L 4000 6000 α 1.244 -1.744 0.081 1.011 1.038
LCPL 1.694 0.587 -1.652 1.019 1.055

M 4500 5500 α -0.127 1.420 1.821 1.000 1.001
LCPL 0.226 0.303 -0.550 1.002 1.002

N 5000 5000 α 0.325 1.421 1.234 1.000 1.001
LCPL 0.090 -0.426 0.056 1.001 1.001

O 3000 7000 α 0.004 1.013 1.002 1.000 1.001
LCPL 0.765 0.565 0.600 1.018 1.021

P 3500 6500 α 0.100 -1.646 2.484 1.005 1.019
LCPL 1.132 0.929 -1.513 1.002 1.008

Q 4500 5500 α 1.045 1.096 -0.322 1.028 1.069
LCPL -0.660 -0.207 0.129 1.005 1.008

R 7500 2500 α 0.695 -0.101 0.429 1.000 1.000
LCPL 0.797 -0.395 -0.655 1.004 1.005

S 5500 4500 α -0.514 1.304 0.244 1.000 1.000
LCPL -0.810 -1.044 -1.403 1.003 1.010

Upper CI = Upper bound of the 95% confidence interval of the Gelman-Rubin statistic, LCPL =
Log conditional posterior likelihood

1 Burn-in sample of each chain after thinning.
2 Remaining sample size after discarding burn-in and after thinning.
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Table 5: Convergence diagnostics of all DPM model for the 2012 data set.

Geweke Statistic Gelman-Rubin Statistic
Burn-in1 Sample size2 Chain 1 Chain 2 Chain 3 Point Estimate Upper CI

A 6000 4000 α 1.553 0.206 0.292 1.009 1.032
LCPL 0.467 -0.516 -0.675 1.023 1.072

B 5000 5000 α 0.563 0.864 0.564 1.003 1.008
LCPL 0.107 1.081 0.448 1.005 1.016

C 4000 6000 α 0.954 1.597 -1.770 1.005 1.020
LCPL -0.346 -1.848 1.047 1.002 1.006

D 4250 5750 α -1.861 1.272 0.297 1.000 1.000
LCPL 0.346 0.560 0.046 1.002 1.007

E 5750 4250 α 1.064 -1.039 0.257 1.001 1.004
LCPL -0.364 -0.036 0.613 1.004 1.013

F 4000 6000 α -0.276 0.210 0.819 1.025 1.081
LCPL -0.437 0.433 1.270 1.030 1.087

G 4000 6000 α 0.962 0.897 0.843 1.001 1.002
LCPL -1.364 -0.054 0.059 1.010 1.031

H 5250 4750 α -0.430 0.742 0.475 1.033 1.115
LCPL -0.312 -0.087 1.036 1.032 1.109

I 4000 6000 α -0.276 0.210 0.819 1.025 1.081
LCPL -0.437 0.433 1.270 1.030 1.087

J 7000 3000 α -0.531 -1.086 -0.032 1.004 1.014
LCPL 0.544 0.074 1.255 1.007 1.025

K 4000 6000 α -0.619 1.301 -0.796 1.001 1.003
LCPL 1.641 -1.563 1.198 1.065 1.076

L 2250 7750 α -1.771 0.956 -1.254 1.005 1.017
LCPL 1.048 -1.036 1.718 1.004 1.016

M 3500 6500 α 0.897 -0.773 1.516 1.001 1.004
LCPL 0.660 -0.622 -0.565 1.008 1.013

N 6500 3500 α -0.463 0.789 -0.464 1.001 1.002
LCPL -1.015 -1.350 -0.955 1.013 1.015

O 5500 4500 α 0.097 1.903 -0.985 1.040 1.132
LCPL 0.841 -0.435 -0.479 1.040 1.042

P 6750 3250 α 0.319 -0.397 1.883 1.000 1.000
LCPL -1.199 0.679 -0.597 1.002 1.004

Q 4250 5750 α 0.871 0.373 -1.503 1.000 1.000
LCPL 0.257 0.704 1.718 1.005 1.009

R 6000 4000 α -1.115 0.008 1.375 1.034 1.114
LCPL -0.297 -0.276 -0.698 1.044 1.080

S 3000 7000 α -0.852 -0.302 -0.985 1.000 1.001
LCPL 0.915 -0.700 -0.312 1.000 1.001

T 3750 6250 α -0.960 0.984 0.174 1.001 1.003
LCPL 1.541 -0.296 1.267 1.019 1.020

U 3750 6250 α -1.077 -0.625 0.527 1.036 1.123
LCPL 0.092 0.602 0.059 1.047 1.054

V 5500 4500 α -1.798 0.183 0.344 1.001 1.003
LCPL 0.994 -1.508 -1.237 1.059 1.064

W 2000 8000 α 1.358 0.071 0.194 1.000 1.000
LCPL -1.044 -0.874 -0.027 1.036 1.037

X 2250 7750 α 1.195 -0.706 1.109 1.000 1.001
LCPL 0.258 0.417 -1.006 1.020 1.021

Y 2250 7750 α 1.892 -1.117 0.789 1.001 1.002
LCPL -1.075 0.646 1.241 1.057 1.059

Z 4750 5250 α -1.385 -1.435 - 1.318 1.001 1.003
LCPL 0.785 1.833 0.295 1.123 1.124

Upper CI = Upper bound of the 95% confidence interval of the Gelman-Rubin statistic, LCPL =
Log conditional posterior likelihood

1 Burn-in sample of each chain after thinning.
2 Remaining sample size after discarding burn-in and after thinning.

For the DPM models, it holds that SSE C is generally lower compared to SSE J. This is especially
true for SSE1. All models perform badly in forecasting the actual No Vote share. Partially, this
is due to the fact that the No Vote response is highly underestimated in the data at hand, which
distorts the shares of other parties too. The different prior specifications in the DPM models seem
to mostly affect the forecasts obtained from the conditional distribution. Forecasts obtained from the
joint distribution are much less reactive to changes in prior specification.

All models perform rather badly at predicting the actual population outcome. This can be seen from
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the high SSE reported in the first four columns of Table 6. This is because, even though the panel
respondents are selected such that they are representative of the Dutch population, the actual voter
choices in the resulting data set after collecting the data and combining the variables, deviates from
the population outcome. Part of this is caused by the DNK/PNTS option. Yet, this option cannot
explain the complete deviation as it only amounts to about 3-4% in the actual voter choices. Another
source of error is the fact that many respondents misremember or misreport their actual election
choice. This is evident from comparing their reported voting choice for the same election over several
years. The remainder of the error is likely to be the result of selection bias in the used sample.

10.3.1 2010 Forecasts

The 2010 forecasts obtained from the joint distribution all heavily underestimate the shares of parties
VVD and PvdA, while the share of Other is heavily overestimated. The forecasts obtained from the
conditional distribution do better on this front. They, however, heavily underestimate the No Vote
option. Furthermore, although all models and forecasting approaches overestimate the share of PVV
and CDA, the forecasts obtained from the conditional distribution overestimate these share more. The
forecasts of the benchmark models behave similarly to forecasts obtained from the joint approach.

The DPM models generally perform better than the benchmark models. A clear exception to this
rule are models A, B and C. These tend to have a higher SSE compared to the Bayes 2 model.
Compared to all other DPM models, these models give the prior distribution for the β parameter
more weight as they correspond to lower υβ (prior ’variance’) and/or higher νβ (degrees of freedom).
The improvement in forecasting performance from choosing a less influential prior for β is greater for
the forecasts obtained from the conditional distribution compared to the forecasts obtained from the
joint distribution. This improvement in SSE C continues with further increasing υβ when moving
from model D to E. The ’better fitting’ β parameters could arise from two factors. First, an increase
in prior variance gives more weight to the data to determine β and decreases the weight of the prior
distribution. Second, this change affects the clustering of the data points. Better fitting β parameters
imply a greater influence of the density of the response variable relative to the density of the covariates.
Clustering dominated by the β parameters is likely to improve the fit of these parameters as well.

Forecasts obtained from the joint distribution perform generally best under a prior specification that
puts mass on smaller (co)variance for the continuous variables and medium to high (co)variance for
the β parameters. Differences in other parameters do not affect the forecasts much. These prior
specifications result, a posteriori, in medium levels of alpha (1.0-1.2), a high number of clusters (8-
10) and very high values of a0,l for some of the categorical covariates relative to other models. The
posterior distribution of a0,l puts larger mass on high values off a0,l when the corresponding πl,m
are more uniform. This is likely to be a result of the clustering being dominated by the continuous
covariates due to their small variance.

Under the conditional approach, prior specification K performs best. It has a relatively low SSE2

(only 0.0002 higher than the lowest), and the lowest SSE1 among all models. A posteriori, model K
has a larger variance for the continuous covariates and the β parameters. Furthermore, it exhibits a
relatively low α with mean 0.73 and, due to this, a relatively small number of clusters (on average
5). Its α parameter is lower compared to models with the same prior specification on this parameter
caused by the large variance as predicted on beforehand.
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Table 6: SSE of all models applied to the 2010 and 2012 training data.

2010

Deviation from Deviation from
actual election outcome sample election outcome

SSE1 SSE2 SSE1 SSE2

VI 0.0318 0.0483 0.0226 0.0231
ML 0.0317 0.0482 0.0226 0.0231
Bayes 1 0.0284 0.0443 0.0202 0.0206
Bayes 2 0.0276 0.0434 0.0197 0.0201

SSE J1 SSE C1 SSE J2 SSE C2 SSE J1 SSE C1 SSE J2 SSE C2

A 0.0237 0.0296 0.0419 0.0515 0.0169 0.0203 0.0178 0.0220
B 0.0234 0.0211 0.0414 0.0510 0.0167 0.0154 0.0174 0.0198
C 0.0202 0.0125 0.0372 0.0449 0.0145 0.0128 0.0150 0.0182
D 0.0195 0.0102 0.0362 0.0426 0.0140 0.0085 0.0145 0.0139
E 0.0200 0.0097 0.0360 0.0422 0.0144 0.0080 0.0148 0.0134
F 0.0204 0.0104 0.0370 0.0416 0.0146 0.0091 0.0151 0.0140
G 0.0201 0.0107 0.0368 0.0425 0.0144 0.0092 0.0149 0.0143
H 0.0200 0.0094 0.0373 0.0419 0.0143 0.0083 0.0149 0.0137
I 0.0222 0.0126 0.0386 0.0418 0.0160 0.0087 0.0165 0.0129
J 0.0201 0.0096 0.0375 0.0452 0.0143 0.0081 0.0149 0.0148
K 0.0220 0.0119 0.0383 0.0408 0.0156 0.0075 0.0160 0.0115
L 0.0200 0.0097 0.0366 0.0404 0.0143 0.0081 0.0149 0.0128
M 0.0216 0.0132 0.0379 0.0408 0.0154 0.0084 0.0158 0.0120
N 0.0215 0.0138 0.0377 0.0424 0.0153 0.0090 0.0158 0.0129
O 0.0217 0.0143 0.0378 0.0419 0.0155 0.0091 0.0160 0.0127
P 0.0212 0.0124 0.0375 0.0422 0.0152 0.0086 0.0157 0.0130
Q 0.0213 0.0124 0.0377 0.0412 0.0153 0.0080 0.0158 0.0120
R 0.0218 0.0121 0.0391 0.0375 0.0155 0.0085 0.0161 0.0113
S 0.0221 0.0102 0.0386 0.0461 0.0158 0.0085 0.0163 0.0154

2012

Deviation from Deviation from
actual election outcome sample election outcome

SSE1 SSE2 SSE1 SSE2

VI 0.0351 0.0533 0.0287 0.0288
ML 0.0351 0.0533 0.0287 0.0288
Bayes 1 0.0319 0.0500 0.0262 0.0263
Bayes 2 0.0310 0.0486 0.0255 0.0256

SSE J1 SSE C1 SSE J2 SSE C2 SSE J1 SSE C1 SSE J2 SSE C2

A 0.0292 0.0194 0.0490 0.0473 0.0239 0.0114 0.0242 0.0134
B 0.0288 0.0172 0.0484 0.0478 0.0236 0.0102 0.0239 0.0130
C 0.0247 0.0128 0.0432 0.0461 0.0208 0.0101 0.0210 0.0137
D 0.0251 0.0149 0.0438 0.0486 0.0212 0.0132 0.0214 0.0169
E 0.0248 0.0141 0.0434 0.0496 0.0210 0.0128 0.0212 0.0172
F 0.0249 0.0129 0.0435 0.0470 0.0208 0.0102 0.0210 0.0141
G 0.0255 0.0115 0.0441 0.0449 0.0214 0.0094 0.0216 0.0131
H 0.0251 0.0128 0.0434 0.0475 0.0213 0.0096 0.0214 0.0137
I 0.0273 0.0087 0.0457 0.0327 0.0227 0.0065 0.0228 0.0076
J 0.0249 0.0124 0.0439 0.0477 0.0208 0.0105 0.0211 0.0148
K 0.0268 0.0095 0.0452 0.0302 0.0223 0.0069 0.0224 0.0073
L 0.0253 0.0127 0.0439 0.0462 0.0214 0.0107 0.0216 0.0144
M 0.0260 0.0097 0.0447 0.0350 0.0216 0.0072 0.0218 0.0085
N 0.0258 0.0109 0.0443 0.0363 0.0215 0.0085 0.0217 0.0099
O 0.0268 0.0096 0.0451 0.0329 0.0225 0.0068 0.0227 0.0077
P 0.0259 0.0111 0.0444 0.0384 0.0217 0.0085 0.0219 0.0103
Q 0.0263 0.0092 0.0447 0.0351 0.0219 0.0067 0.0221 0.0081
R 0.0265 0.0111 0.0453 0.0376 0.0220 0.0092 0.0223 0.0108
S 0.0261 0.0126 0.0448 0.0469 0.0218 0.0108 0.0220 0.0147
T 0.0272 0.0088 0.0452 0.0297 0.0228 0.0062 0.0229 0.0067
U 0.0260 0.0103 0.0443 0.0334 0.0217 0.0080 0.0219 0.0089
V 0.0274 0.0096 0.0458 0.0300 0.0228 0.0068 0.0230 0.0072
W 0.0274 0.0091 0.0458 0.0291 0.0228 0.0055 0.0229 0.0059
X 0.0274 0.0083 0.0456 0.0288 0.0228 0.0053 0.0229 0.0058
Y 0.0270 0.0107 0.0452 0.0303 0.0225 0.0077 0.0227 0.0080
Z 0.0279 0.0099 0.0464 0.0303 0.0231 0.0078 0.0233 0.0083

The benchmark forecasts are obtained as follows: VI = Benchmark forecast ob-
tained by aggregating voting intentions, ML = Maximum likelihood model, Bayes
1 = Bayesian model using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model
using prior N(0, B) with B = 100IL∗ .
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For most models, it hold that SSE C decreases with a larger Σ (often at the same time with an
increase in Σµ) and lower νβ . Due the fact that the conditional approach tends to produce better
results altogether, additional prior specification are formulated for the 2012 data using this result.
To test whether the improvement in model performance is caused by the decrease in the α param-
eter (and not the increased variance), prior specifications that put more mass on lower values of α
have been added as well. A summary of the parameter settings of these models can be found in table 7.

Table 7: Prior Specifications T - Z.

µµ,l
1 υµ νµ υΣ νµ a0,l

2 β̄l
3 υβ νβ α

T (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
U (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
V (-2,2) (5,10) 15 (15,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
W (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (2,1)
X (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (1,1)
Y (-2,2) (7,12) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 185 (1,1)
Z (-2,2) (5,10) 15 (10,20) 5 (1, 1000) (-5, 5) (5, 20) 190 (0.5,1)

1 For all µµ,l parameters with l ∈ (1, · · · , LCon)
2 For all a0,l parameters with l ∈ (1, · · · , LCat)
3 For all β̄l parameters with l ∈ (1, · · · , L∗)

10.3.2 2012 Forecasts

The forecasting performance of all models for the 2012 data follow similar general patterns displayed
by the 2010 forecasting performance. The best performing models have an even lower SSE for this
election. This is likely to be caused due to the fact that the stated voting preferences for the 2012
election are closer to election date compared to the 2010 voting preferences. The DPM models perform
better in predicting the No Vote option for this data set. On the other hand, the forecasted No Vote
share is further from the actual election outcome of 25.4%. This, however, is caused by a larger gap
between the sample and actual election.

The difference compared to the previous election is the fact that forecasts obtained from the joint
distribution completely underestimate the PvdA party share. On the other hand, the forecasts of the
party shares of VVD, CDA and PVV are much closer to the election outcome.

As expected, models with a lower νβ perform much better using the conditional approach. This can
be seen from comparing the results of model T with K. This change mainly improves the predicted
share of CDA. In combination with larger υΣ and υµ in model W, the improvement in forecasting
performance continues by causing a decrease in the predicted PVV party share. However, the best
performing model using the conditional approach is model X with lower νβ and lower α compared to
model K. This implies that improved forecasts result from a decrease in both νβ , which results in a
larger β covariance a posteriori, and smaller α.

The DNK/PNTS option has a significant influence on the forecasting results of all models. While in
the stated voting intentions the share of this option is 15.4% and 18.4% for 2010 and 2012 respectively,
this share is only 4.1% and 3.1% in the election outcome. The forecast of this share is relatively close
to the share in the stated voting intentions for all models. When determining the election outcome,
its forecast is based on the alternatives VVD, PvdA, PVV, CDA, Other and No Vote only. Therefore,
these shares are normalized based on their relative value after discarding the share of DNK/PNTS.
Thus, we implicitly assume that discarding DNK/PNTS in this way does not change the election
outcome. In other words, we assume that among the subsample of voters that have stated the
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DNK/PNTS option in their voting intentions, the shares of the remaining alternatives are distributed
according to the shares of the rest of the sample. This assumption, however, does likely not hold.

Table 8 displays the cross-tabulated shares of intended and actual vote. Each percentage is calculated
based on the total intended votes per party alternative. The figures show great similarities over the
two years. It also shows that the DNK/PNTS option is divided among all parties in a way that does
not comply with the sample election outcome. For example, the share of DNK/PNTS respondents
that vote for PVV is lower and the share that does not vote is higher compared to the rest of the
sample. Due to this, the shares of the alternatives PVV and No Vote are overestimated and underesti-
mated respectively when discarding the DNK/PNTS option while computing forecasts. This tendency
sheds some explanation on the reason as to why the models perform badly in forecasting these options.

Table 8: Cross-tabulated shares of intended and actual vote. Each percentage is calculated based on the total intended
votes per party alternative.

2010

VVD PvdA PVV CDA Other DNK/PNTS No Vote

VVD 78.5% 2.0% 3.2% 3.5% 5.2% 0.3% 7.3%
PvdA 3.3% 78.8% 1.8% 0.9% 8.2% 0.9% 6.1%
PVV 20.9% 2.6% 54.5% 2.0% 8.5% 2.0% 9.6%
CDA 12.0% 3.4% 2.4% 67.2% 6.4% 3.2% 5.4%
Other 7.3% 17.4% 4.1% 3.2% 60.4% 1.9% 5.8%
DNK/PNTS 15.9% 14.3% 4.9% 9.4% 24.1% 14.8% 16.6%
No Vote 11.1% 8.1% 7.9% 3.5% 11.1% 4.6% 53.7%

2012

VVD PvdA PVV CDA Other DNK/PNTS No Vote

VVD 81.3% 2.2% 1.5% 2.5% 7.0% 0.6% 5.1%
PvdA 2.4% 83.8% 0.0% 1.1% 6.2% 1.4% 5.1%
PVV 15.5% 6.1% 49.2% 0.6% 10.3% 1.5% 16.7%
CDA 10.5% 4.0% 0.0% 70.3% 9.8% 0.7% 4.7%
Other 3.3% 24.9% 1.5% 3.6% 59.1% 1.6% 5.9%
DNK/PNTS 17.1% 21.4% 4.4% 8.5% 22.4% 10.6% 15.6%
No Vote 9.1% 12.1% 8.3% 1.6% 15.1% 3.0% 50.8%

10.3.3 Training vs Test Data

Table 9 shows the SSE computed based on the sample election outcome for the 2010 and 2012 test
data sets. The election outcomes of these data sets can be found in appendix C, Tables 13 and 14.

Overall, the SSE of the test data shows similar patters to the SSE of the training data. There
are some differences in the order of forecasting performance, but these are not large, especially for
forecasts obtained from the joint distribution. Tables 13 and 14 indicate that the DPM election
forecasts obtained directly from the conditional distribution are less reactive to the change in data set
compared to the joint approach or benchmark models. Mostly, the difference in the share of intended
No Vote between the test and training samples are reflected in their respective forecasts forecast. This
result is consistent with both years.

Most DPM models for 2010 have an SSE almost equal or lower for the test data compared to the
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SSE of the training data, while most of the benchmark models have a higher SSE. For the joint ap-
proach, the SSE stays rather the same under both the training and test data set. For the conditional
approach, on the other, hand, the SSE is much lower for most models. However, as these forecast
are so unreactive to the change in data set, changes in the sample shares of the voting intentions
are not completely reflected in the forecasts. Therefore, the decline is mainly caused due to the fact
that, relative to the training sample election outcome, the test sample party shares are closer to the
forecasted shares.

Table 9: SSE of all models applied to the 2010 and 2012 test data.

Deviation from sample election outcome

SSE1 SSE2 SSE1 SSE2

VI 0.0222 0.0223 0.0202 0.0206
ML 0.0244 0.0246 0.0245 0.0249
Bayes 1 0.0216 0.0218 0.0225 0.0228
Bayes 2 0.0208 0.0210 0.0215 0.0217

SSE J1 SSE C1 SSE J2 SSE C2 SSE J1 SSE C1 SSE J2 SSE C2

A 0.0175 0.0227 0.0180 0.0237 0.0211 0.0109 0.0215 0.0130
B 0.0174 0.0152 0.0179 0.0180 0.0208 0.0100 0.0213 0.0127
C 0.0143 0.0101 0.0147 0.0137 0.0172 0.0105 0.0175 0.0140
D 0.0137 0.0065 0.0140 0.0102 0.0173 0.0144 0.0176 0.0180
E 0.0139 0.0058 0.0141 0.0095 0.0169 0.0139 0.0172 0.0181
F 0.0142 0.0070 0.0145 0.0103 0.0174 0.0108 0.0177 0.0145
G 0.0143 0.0070 0.0146 0.0105 0.0171 0.0105 0.0174 0.0141
H 0.0141 0.0060 0.0145 0.0096 0.0181 0.0103 0.0183 0.0143
I 0.0161 0.0077 0.0163 0.0104 0.0186 0.0074 0.0188 0.0085
J 0.0142 0.0057 0.0146 0.0105 0.0168 0.0114 0.0172 0.0154
K 0.0157 0.0069 0.0158 0.0096 0.0181 0.0069 0.0184 0.0074
L 0.0141 0.0060 0.0144 0.0090 0.0173 0.0115 0.0176 0.0152
M 0.0152 0.0080 0.0154 0.0102 0.0168 0.0083 0.0172 0.0096
N 0.0151 0.0082 0.0153 0.0108 0.0169 0.0094 0.0172 0.0107
O 0.0154 0.0089 0.0156 0.0111 0.0178 0.0074 0.0181 0.0083
P 0.0150 0.0078 0.0152 0.0107 0.0171 0.0093 0.0174 0.0111
Q 0.0152 0.0074 0.0154 0.0100 0.0172 0.0077 0.0175 0.0093
R 0.0153 0.0077 0.0157 0.0092 0.0173 0.0102 0.0177 0.0118
S 0.0155 0.0064 0.0158 0.0113 0.0172 0.0120 0.0174 0.0157
T 0.0186 0.0068 0.0188 0.0073
U 0.0172 0.0084 0.0174 0.0093
V 0.0188 0.0069 0.0191 0.0074
W 0.0185 0.0051 0.0187 0.0056
X 0.0185 0.0055 0.0187 0.0061
Y 0.0185 0.0077 0.0187 0.0081
Z 0.0189 0.0078 0.0192 0.0083

The benchmark forecasts are obtained as follows: VI = Benchmark forecast obtained by
aggregating voting intentions, ML = Maximum likelihood model, Bayes 1 = Bayesian model
using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model using prior N(0, B) with
B = 100IL∗ .

For the 2012 data, the test SSE is lower for all benchmark models and forecasts obtained from the
joint distribution. This result is caused due to the fact that, even though the reported intended PvdA
vote share is higher for the training sample, the realized PvdA share is lower for the test sample.
As this approach tends to largely underestimate the PvdA share, these changes cause a significant
improvement of the SSE of the test sample. Forecasts generated using the conditional approach have
a similar or slightly higher SSE for the test data.
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Overall, there is no indication of a clear pattern of overfitting in the DPM models. This is especially
true when compared to the benchmark models.

10.4 Number Of Clusters And Estimates Of β

Figure 2 displays the histograms of the number of clusters K of each DPM model for the 2010 election.
The complete set of histograms for both elections can be found in appendix D.

The number of clusters range from about 3 to 15 for all prior specifications. Despite the fact that
the prior specification of the parameter α is (2, 1) for most models, the distribution of the number of
clusters differs a lot. As previously discussed, this is due to the effect of the hyperparameters λ on
the clustering procedure. In particular, Section 6.3 argued that more dispersed specifications of prior
distribution lead to a lower number of clusters. This is evident from the histograms as well.

(i) Prior A (ii) Prior B (iii) Prior C (iv) Prior D (v) Prior E

(vi) Prior F (vii) Prior G (viii) Prior H (ix) Prior I (x) Prior J

(xi) Prior K (xii) Prior L (xiii) Prior M (xiv) Prior N (xv) Prior O

(xvi) Prior P (xvii) Prior Q (xviii) Prior R (xix) Prior S

Figure 2: Histograms of the number of clusters K in the posterior draws for the 2010 election under prior specification A-S.
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The figures show that, under a given prior specification, the distributions of K are very similar for both
election years. The similarities in the posterior distribution of K between the 2010 and 2012 elections
imply that the posterior distributions of related parameters, which are the dispersion parameters and
α, may exhibit similarities too. This supports the notion that recent previous elections carry some
information that is useful for predicting current elections.

Combined with the forecasting performance, the histograms imply that a smaller number of clusters
(about 3-5) is preferred for the conditional approach, but a relatively large number of clusters (about
5-12) for the joint approach. The differences in estimating the probability p(yn+1|xn+1, Dtrain) under
both approaches can be derived using the forecasting procedure described in Section 10.3. Under the
conditional approach, this probability is estimated in each iteration t as

K∑
k=1

1

K + α
p(yn+1|xn+1, β

t,∗
k ) +

α

K + α
p(yn+1|xn+1, β

t
0)

where p(yn+1|xn+1, β) is obtained from the multinomial logit specification and βt0 is a draw from the
base distribution of β parametrized using its hyperparameters drawn in iteration t. Using the joint
approach, however, this probability is calculated as

K∑
k=1

p(xn+1|µt,∗k ,Σt,∗k , πt,∗k )

c(xn+1)
p(yn+1|xn+1, β

t,∗
k ) +

αp(xn+1|µt0,Σt0, πt0)

c(xn+1)
p(yn+1|xn+1, β

t
0)

where c(xn+1) =
∑K
k=1 p(xn+1|µt,∗k ,Σt,∗k , πt,∗k ) + αp(xn+1|µt0,Σt0, πt0) and µt0, Σt0, πt0 are drawn from

their respective base distributions at iteration t. These expressions show that the difference between
these two types of forecasts can only be attributed to the weights assigned to each cluster. This
implies that a smaller number of clusters may be preferred under the conditional approach, because
it merely results in a more optimal weight for p(yn+1|xn+1, β

t
0).

Due to the size of the model, it is not feasible to showcase the parameter estimates of all models.
For this reason, only the posterior results of the β coefficient of DPM model X for the 2012 election,
which is the best performing DPM model under the conditional approach, and the results of the best
performing benchmark model, Bayes 2, are elaborated upon. Figure 3 shows the posterior distributions
of selected β parameters. Here solid lines denote the results of the DPM model, while dashed lines
denote the results of Bayes 2. The different colours indicate different party choices, where red = VVD,
blue = PvdA, orange = PVV, green = CDA and black = Other. In appendix E, the density plots of
all β can be found.

From the plots we can conclude that the posterior densities of β under the DPM and benchmark
model have similar locations. Overall, the DPM model maintains the same relative results among
party choice alternatives as the Bayes 2 model. The main difference is that the posterior densities of
the DPM model are more dispersed compared to the benchmark model. These observations can be
seen in, for instance, plots 3i and 3viii. Another difference is that the β parameters of the benchmark
model tend to be more peaked close to location 0. This explains the tendency of this model to predict
a higher No Vote share compared to the DPM models as the β coefficients of the No Vote option
are set to zero. Furthermore, the posterior densities of the DPM model tend to be more skewed (see
Figures 3i and 3iv, are evidently multimodal for some of the coefficients (see Figures 3ii, 3iii and 3vii)
and may exhibit fat tails (see Figures 3iv and 3v).
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(i) Intercept (ii) Logarithm of Age (iii) Female

(iv) Moderate/Slight Urban (v) Education = HBO (vi) Primary Occupation = Employed

(vii) Religion = Dutch Reformed (viii) Party Choice in 2010 = PvdA

Figure 3: Posterior density plots of several β coefficients under DPM model X and benchmark model Bayes 2. A solid line
indicates draws of model X, while the dashed line corresponds to draws from Bayes 2. The different colours denote different
party choices, where red = VVD, blue = PvdA, orange = PVV, green = CDA and black = Other.

Due to its flexibility, the DPM model picks up on patters that the ordinary Bayesian model does not
pick up on. For instance, the variable Logarithm of Age seems to have little to no effect on voting
preferences when viewed from the Bayes 2 results. However, Figure 3ii shows that its posterior density
for PvdA is bimodal under the DPM model. There seem to be two subpopulations which exhibit two
different relationships between age and the preference for voting on PvdA. The same pattern can
be seen in Figure 3iii for the Female coefficient of VVD. The benchmark model disregards this and
smooths over the two modes, which makes it seem like these variables have no effect at all. In Figure
3vii, the negligence of the bimodality of the Religion = Dutch Reformed coefficient under Bayes 2
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underestimates its effect on the preference for CDA for one of the subpopulations, while overestimating
it for the other.

Another example of the difference between the two models can be observed from the Moderate/Slightly
Urban coefficient for PvdA. The DPM model estimates a posterior density that is right-skewed with
a fat right tail, while the benchmark model shows a posterior density that is fairly symmetric with a
location near zero.

11 Conclusion

The previous sections have attempted to shed light on current issues in election forecasting, formulate
a new model that can be a potential solution to some of the problems and put this model to a test.
To this end, a DPM model is proposed and applied on individual-level data. The rationale behind
this strategy is as follows. First, individual-level data are a great source of information for election
forecasting as they can capture many aspects desired in election forecasting. Examples of these
are voting intentions used by aggregate models, sociodemographic characteristics that are linked to
voting preferences and even more structural variables pertaining to political preferences or economic
indicators, which are data sources usually explored by fundamental models. On top of this, the usage
of voting intentions on an individual level allows for a more general model specification, which expands
the track record of the model. The latter is useful for model selection.

Secondly, due to its Bayesian nature, the proposed model facilitates a natural way in which past
election information can be included to improve on present election forecasts. While doing so, it is
not necessary to focus on all (or a large part of) past information in the way fundamental models are
necessitated to do. The cross-sectional source of data allows for enough information for an election to
be forecasted using the present data alone. Rather, it is possible to include past information that is
relevant only.

Lastly, the non-parametric characteristic of the DPM model reduces the problem of model selection.
While each election may be influenced with past information, the model is still flexible enough to
adapt itself to the relationship of the present election, regardless of whether this is similar to the past
relationship or not. This reduces the problem of idiosyncrasy to some extent.

The results show that the DPM model has great potential to improve on the election forecasts of the
benchmark models. Under the right prior settings, the DPM model outperforms the other models.
These prior settings are not hard to establish. Models that are formulated in a moderately flexible way
perform well. The hyperparameter specification of the DPM model proposed here, makes this task
relatively easy. Under this DPM approach, learning from previous years is indeed possible and proves
to be beneficial for the 2012 election. A comparison of posterior parameter estimates indicates that
the DPM model can pick up on certain patters, such as asymmetry, fat tails and multimodality, that
the benchmark models cannot pick up on. Lastly, even though the DPM model has many parameters
due to its clustering feature, there is no indication of consistent overfitting.

One of the challenges of this approach, however, is finding a sample that is representative of the pop-
ulation. The data at hand showed large deviations in the final election outcome from the population
election outcome. For each year, there was a consistent bias in selected parties for all forecasts and, for
both years, forecasting the share of the population that did not vote proved to be difficult. Although,
the share of the population that does not vote is strictly speaking not part of the election outcome
as elections are held to determine party shares only, this is still a problem. This is because errors in
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forecasting the No Vote option carry over to errors in forecasting the shares of all other parties.

Next to this, the implementation of the DPM model is subject to practical difficulties. Due to the
large dimension of the problem and the sequential sampling made necessary by the Gibbs sampler,
computation time is substantially higher than rival methods. As a result, proper sensitivity analysis
is very time consuming.

Evidently, the analysis in this writing is subject to many limitations. In terms of model specifica-
tion, the simplification of the Age variable as continuous variable makes this part of the model not
accurate to the characteristics of the data. Furthermore, the model is largely dependent on categor-
ical covariates, which are, due to the lack of good alternative for the nature of this data, specified
under independent Categorical distributions with a Dirichlet prior. Although, for example, it has
proven to be beneficial to alter the scale of the continuous covariate distributions, this specification
is too restricted to allow for this. This gives the forecaster less control over the relative influence of
the categorical covariates compared to the remaining data, which is especially important as it dic-
tates clustering in the DPM model. Another serious drawback is related to the manner in which the
forecasts are obtained. While generating the election outcome forecasts the share of DNK/PNTS is
discarded under the assumption that this does not change the election outcome. This is not likely to
be true.

Despite its caveats, the DPM model shows potential to be a good addition to the broad range of
election forecasting models. It offers a solution to some of the difficulties faced by commonly used
models and may be a good starting point for synthesizers or forecasts combinations in general. The
latter touches upon a subject that can be a topic for any future research. In fact, the DPM model
and its findings offer a great variety of extensions, such as the possibility to take advantage of the
panel structure, to use other types of variables besides sociodemographic characteristics and to apply
the model on many other (types of) elections. Lastly, although it would be interesting to perform a
comparison on the forecasting performance of the DPM model and the many other types of models
discussed in Section 2, this task was beyond the scope of this research. As most of these models
are defined for the US presidential elections, perhaps the DPM model could be applied using US
individual-level data to make this comparison possible.
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A MCMC Sampler

In the subsequent sections the derivation of the posterior conditional distributions of the sampled
parameters θxi and hyperparameters λ is shown.

A.1 Conditional Posterior θxi

Dropping the irrelevant terms from equation (30) using (31) and (29) and some simple algebra give
the following results.

Conditional posterior µ∗k
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Conditional posterior Σ∗k
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(xconi − µ∗k)(xconi − µ∗k)TΣ∗
−1

k })

∝ |Σ∗k|−
nk+νΣ+Lcon+1

2 exp(−1

2
tr{(νΣυΣILcon +

∑
zi=k

(xconi − µ∗k)(xconi − µ∗k)T )Σ∗
−1

k })

The last line is the kernel of a IW (nk + νΣ, νΣυΣILcon +
∑
zi=k

(xconi − µ∗k)(xconi − µ∗k)T ) distribution.

Conditional posterior π∗k
Lastly, as p(π∗l,k|π∗−l,k, z, x, λπl) = p(π∗l,k|z, x, λπl) the conditional posterior of π∗l,k is
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p(π∗l,k|z, x, λπl) ∝ Dir(π∗l,k|
a0,l

Ml
, · · · , a0,l

Ml
)
∏
zi=k

Cat(xcat
i,l |π∗l,k)

∝
Ml∏
m=1

π
∗
a0,l
Ml
−1

l,k,m

∏
zi=k

Ml∏
m=1

π
∗I(xcat

i,l =m)

l,k,m

∝
Ml∏
m=1

π
∗
a0,l
Ml

+
∑
zi=k

I(xcat
i,l =m)−1

l,k,m

Hence, πl,k has the posterior conditional distributionDir(
a0,l

Ml
+
∑
zi=k

I(xcat
i,l = 1), · · · , a0,l

Ml
+
∑
zi=k

I(xcat
i,l =

Ml)).

A.2 Conditional Posterior (λµ, λΣ)

p(µµ, υµ, υΣ|{µ∗k,Σ∗k}Kk=1, νµ, νΣ) ∝ I(µµ)I(υµ)I(υΣ)IW (Σµ)

K∏
k=1

p(µ∗k,Σ
∗
k|µµ, νµ, υµ, νΣ, υΣ)

∝ I(µµ)I(υΣ)I(υΣ)IW (Σµ)

K∏
k=1

N(µ∗k|µµ,Σµ)IW (Σ∗k|νΣ, υΣ)

Conditional Posterior µµ

p(µµ|{µ∗k,Σµ}Kk=1) ∝ I(µµ)

K∏
k=1

N(µ∗k|µµ,Σµ)

∝ I(µµ) exp(−1

2
(

K∑
k=1

(µ∗k − µµ)TΣ−1
µ (µ∗k − µµ)))

∝ I(µµ) exp(−1

2
(µTµ (KΣ−1

µ )µµ − 2µTµ (

K∑
k=1

Σ−1
µ µ∗k)))

µµ|c, {µ∗k,Σ∗k}Kk=1) ∼ I(µµ)N(K−1Σµ(

K∑
k=1

Σ−1
µ µ∗k),K−1Σµ))

where I(µµ) is 1 when µµ,l ∈ [µloµ,l, µ
up
µ,l] for all l ∈ {1, · · · , LCon} and zero otherwise.
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Conditional Posterior Σµ

p(Σµ|µµ, υµ, {µ∗k}Kk=1)

∝ IW (Σµ|νµ, νµυµILcon)

K∏
k=1

N(µ∗k|µµ,Σµ)

∝ |Σµ|−
νµ+Lcon+1

2 exp(−1

2
tr{νµυµILconΣ−1

µ })|Σµ|−
K
2

K∏
k=1

exp(−1

2
tr{(µ∗k − µµ)TΣ−1

µ (µ∗k − µµ)})

∝ |Σµ|−
νµ+K+Lcon+1

2 exp(−1

2
tr{(νµυµILcon +

K∑
k=1

(µ∗k − µµ)(µ∗k − µµ)T )Σ−1
µ })

Σµ|µµ, υµ, {µ∗k}Kk=1) ∼ IW (νµ +K, νµυµILcon +

K∑
k=1

(µ∗k − µµ)(µ∗k − µµ)T )

Conditional Posterior υµ

p(υµ|µµ,Σµ, {µ∗k}Kk=1) ∝ I(υµ)IW (Σµ|υµ, νµ)

∝ I(υµ)|υµνµILcon |
νµ
2 exp(−1

2
tr{υµνµILconΣ−1

µ })

∝ I(υµ)υ
νµL

con

2
µ exp(−1

2
tr{υµνµΣ−1

µ })

∝ I(υµ)υ
νµL

con

2
µ exp(−υµ(

1

2
νµtr{Σ−1

µ }))

υµ|Σµ, νµ, {µ∗k}Kk=1 ∼ I(υµ)Ga(
νµL

con

2
+ 1,

1

2
νµtr(Σ

−1
µ ))

Conditional Posterior υΣ

p(υΣ|νΣ, {Σ∗k}Kk=1) ∝ I(υΣ)

K∏
k=1

IW (Σ∗k|νΣ, υΣ)

∝ I(υΣ)

K∏
k=1

|υΣνΣILcon |νΣ/2 exp(−1

2
tr(νΣυΣILconΣ∗

−1

k )

∝ I(υΣ)υ
νΣL

conK

2

Σ exp(−1

2
tr(νΣυΣ

K∑
k=1

Σ∗
−1

k ))

∝ I(υΣ)υ
νΣL

conK

2

Σ exp(−υΣ(
1

2
νΣ

K∑
k=1

tr(Σ∗
−1

k )))

υΣ|νΣ, {Σ∗k}Kk=1 ∼ I(υΣ)Ga(
νΣL

conK

2
+ 1,

1

2
νΣ

K∑
k=1

tr(Σ∗
−1

k )))

A.3 Conditional Posterior λa0

For all l ∈ {1, · · · , LCat}
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Conditional Posterior a0

p(a0,l|π∗l,k) ∝ I(a0,l)

K∏
k=1

p(π∗l,k|a0,l)

∝ I(a0,l)

K∏
k=1

Ml∏
m=1

π∗l,k,m

a0,l
Ml
−1

∝ I(a0,l)

K∏
k=1

Ml∏
m=1

exp(log(π∗l,k,m

a0,l
Ml
−1

))

∝ I(a0,l)

K∏
k=1

Ml∏
m=1

exp(
a0,l

Ml
log(π∗l,k,m))

∝ I(a0,l) exp(−a0,l(
1

Ml

K∑
k=1

Ml∑
m=1

− log(π∗l,k,m)))

p(a0,l|π∗l,k) ∼ I(a0,l)Exp(
1

Ml

K∑
k=1

Ml∑
m=1

− log(π∗l,k,m))

where I(a0,l) is 1 when a0,l ∈ [alo0,l, a
up
0,l] and zero otherwise.

A.4 Conditional Posterior λβ

p(β̄, B, υβ |{β∗k}Kk=1) ∝ I(β̄)I(υβ)IW (B|νβ , νβυβIL∗)
K∏
k=1

N(β∗k |β̄, B)

where I(β̄) and I(υβ) are 1 when their respective argument is in the region specified in (27) and zero
otherwise.

Conditional Posterior B

p(B|β̄, υβ , {β∗k}Kk=1)

∝ IW (B|νβ , νβυβIL∗)
K∏
k=1

N(β∗k |β̄, B)

∝ |B|−
νβ+L∗+1

2 exp(−1

2
tr{νβυβIL∗B−1})|B|−K2

K∏
k=1

exp(−1

2
tr{(β∗k − β̄)TB−1(β∗k − β̄)})

∝ |B|−
νβ+K+L∗+1

2 exp(−1

2
tr{(νβυβIL∗ +

K∑
k=1

(β∗k − β̄)(β∗k − β̄)T )B−1})

B|β̄, υβ , {β∗k}Kk=1) ∼ IW (νβ +K, νβυβIL∗ +

K∑
k=1

(β∗k − β̄)(β∗k − β̄)T )
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Conditional Posterior β̄

p(β̄|B, {β∗k}Kk=1) ∝ I(β̄)

K∏
k=1

N(β∗k |β̄, B)

∝ I(β̄) exp(−1

2
(

K∑
k=1

(β∗k − β̄)TB−1(β∗k − β̄)))

∝ I(β̄) exp(−1

2
(β̄TKB−1β̄ − 2β̄TB−1(

K∑
k=1

β∗k)))

β̄|B, {β∗k}Kk=1 ∼ I(β̄)N(
1

K

K∑
k=1

β∗k ,K
−1B)

Conditional Posterior υβ

p(υβ |β̄, B, {β∗k}Kk=1) ∝ I(υβ)IW (B|υβ , νβ)

∝ I(υβ)|υβνβIL∗ |
νβ
2 exp(−1

2
tr{υβνβIL∗B−1})

∝ I(υβ)υ
νβL
∗

2

β exp(−1

2
tr{υβνβB−1})

∝ I(υβ)υ
νβL
∗

2

β exp(−υβ(
1

2
νβtr{B−1}))

υβ |B, νβ , {β∗k}Kk=1 ∼ I(υβ)Ga(
νβL

∗

2
+ 1,

1

2
νβtr(B

−1))
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B Table prior probabilities of the number of clusters

Table 10: Prior probabilities of number of clusters K for different values of α.

α

K 1 2 3 4 5 10

1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.002 0.000 0.000 0.000 0.000 0.000
3 0.009 0.000 0.000 0.000 0.000 0.000
4 0.026 0.000 0.000 0.000 0.000 0.000
5 0.052 0.000 0.000 0.000 0.000 0.000
6 0.086 0.001 0.000 0.000 0.000 0.000
7 0.117 0.002 0.000 0.000 0.000 0.000
8 0.136 0.005 0.000 0.000 0.000 0.000
9 0.139 0.010 0.000 0.000 0.000 0.000
10 0.127 0.018 0.000 0.000 0.000 0.000
11 0.104 0.030 0.000 0.000 0.000 0.000
12 0.077 0.044 0.001 0.000 0.000 0.000
13 0.052 0.060 0.002 0.000 0.000 0.000
14 0.033 0.076 0.004 0.000 0.000 0.000
15 0.019 0.089 0.007 0.000 0.000 0.000
16 0.011 0.097 0.012 0.000 0.000 0.000
17 0.005 0.099 0.018 0.001 0.000 0.000
18 0.003 0.095 0.026 0.001 0.000 0.000
19 0.001 0.086 0.036 0.002 0.000 0.000
20 0.001 0.074 0.046 0.003 0.000 0.000
21 0.000 0.061 0.057 0.005 0.000 0.000
22 0.000 0.047 0.066 0.008 0.000 0.000
23 0.000 0.035 0.074 0.012 0.000 0.000
24 0.000 0.025 0.079 0.017 0.001 0.000
25 0.000 0.017 0.081 0.023 0.001 0.000
26 0.000 0.011 0.079 0.030 0.002 0.000
27 0.000 0.007 0.075 0.037 0.003 0.000
28 0.000 0.004 0.068 0.045 0.005 0.000
29 0.000 0.002 0.059 0.053 0.008 0.000
30 0.000 0.001 0.050 0.059 0.011 0.000
31 0.000 0.001 0.041 0.065 0.015 0.000
32 0.000 0.000 0.033 0.068 0.019 0.000
33 0.000 0.000 0.025 0.070 0.025 0.000
34 0.000 0.000 0.019 0.069 0.031 0.000
35 0.000 0.000 0.013 0.067 0.037 0.000
36 0.000 0.000 0.009 0.062 0.043 0.000
37 0.000 0.000 0.006 0.057 0.049 0.000
38 0.000 0.000 0.004 0.050 0.054 0.000
39 0.000 0.000 0.003 0.043 0.058 0.000
40 0.000 0.000 0.002 0.036 0.061 0.000

63



C Results: Election Forecasts
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Table 11: Forecasts of the election outcome for the 2010 training data.

VVD PVDA PVV CDA Other No Vote VVD PVDA PVV CDA Other No Vote

Actual party shares 0.155 0.148 0.116 0.103 0.233 0.246 0.155 0.148 0.116 0.103 0.233 0.246
Sample party shares 0.177 0.172 0.101 0.116 0.295 0.139 0.177 0.172 0.101 0.116 0.295 0.139

VI 0.103 0.097 0.147 0.149 0.386 0.118 0.103 0.097 0.147 0.149 0.386 0.118
ML 0.103 0.098 0.147 0.149 0.386 0.118 0.103 0.098 0.147 0.149 0.386 0.118
Bayes 1 0.104 0.102 0.148 0.149 0.376 0.120 0.104 0.102 0.148 0.149 0.376 0.120
Bayes 2 0.107 0.101 0.149 0.149 0.374 0.120 0.107 0.101 0.149 0.149 0.374 0.120

Based on joint distribution Based on conditional distribution

A 0.113 0.108 0.157 0.150 0.362 0.111 0.109 0.112 0.160 0.136 0.385 0.098
B 0.113 0.108 0.156 0.151 0.360 0.112 0.128 0.119 0.179 0.154 0.347 0.073
C 0.117 0.111 0.154 0.153 0.349 0.116 0.147 0.146 0.194 0.166 0.282 0.066
D 0.119 0.111 0.155 0.152 0.347 0.117 0.155 0.152 0.175 0.163 0.288 0.066
E 0.116 0.111 0.153 0.152 0.348 0.120 0.162 0.151 0.171 0.165 0.286 0.066
F 0.116 0.110 0.154 0.152 0.350 0.117 0.159 0.144 0.176 0.165 0.288 0.069
G 0.116 0.112 0.155 0.153 0.348 0.117 0.160 0.142 0.174 0.167 0.289 0.068
H 0.117 0.113 0.155 0.153 0.348 0.115 0.165 0.152 0.176 0.160 0.282 0.066
I 0.114 0.107 0.154 0.151 0.356 0.118 0.148 0.137 0.169 0.157 0.316 0.075
J 0.117 0.112 0.154 0.153 0.349 0.114 0.169 0.155 0.176 0.161 0.282 0.057
K 0.113 0.109 0.152 0.151 0.356 0.118 0.142 0.149 0.162 0.155 0.316 0.076
L 0.116 0.112 0.155 0.153 0.348 0.117 0.161 0.146 0.173 0.161 0.288 0.071
M 0.115 0.109 0.152 0.153 0.354 0.118 0.137 0.145 0.163 0.152 0.324 0.080
N 0.115 0.109 0.153 0.151 0.354 0.119 0.140 0.139 0.163 0.159 0.323 0.077
O 0.114 0.109 0.153 0.152 0.355 0.119 0.137 0.140 0.165 0.150 0.329 0.080
P 0.115 0.109 0.154 0.151 0.353 0.119 0.137 0.153 0.169 0.156 0.312 0.073
Q 0.115 0.109 0.154 0.152 0.353 0.118 0.142 0.145 0.164 0.156 0.317 0.076
R 0.116 0.109 0.155 0.151 0.355 0.115 0.137 0.143 0.167 0.152 0.315 0.087
S 0.113 0.109 0.154 0.152 0.356 0.117 0.159 0.159 0.178 0.162 0.286 0.057

The benchmark forecasts are obtained as follows: VI = Benchmark forecast obtained by aggregating voting intentions, ML =
Maximum likelihood model, Bayes 1 = Bayesian model using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model using prior
N(0, B) with B = 100IL∗ .
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Table 12: Forecasts of the election outcome for the 2012 training data.

VVD PVDA PVV CDA Other No Vote VVD PVDA PVV CDA Other No Vote

Actual party shares 0.198 0.185 0.075 0.063 0.224 0.254 0.198 0.185 0.075 0.063 0.224 0.254
Sample party shares 0.213 0.227 0.070 0.082 0.278 0.132 0.213 0.227 0.070 0.082 0.278 0.132

VI 0.209 0.103 0.100 0.079 0.389 0.120 0.209 0.103 0.100 0.079 0.389 0.120
ML 0.209 0.103 0.100 0.079 0.389 0.120 0.209 0.103 0.100 0.079 0.389 0.120
Bayes 1 0.208 0.106 0.105 0.081 0.380 0.120 0.208 0.106 0.105 0.081 0.380 0.120
Bayes 2 0.207 0.107 0.104 0.083 0.377 0.122 0.207 0.107 0.104 0.083 0.377 0.122

Based on joint distribution Based on conditional distribution

A 0.211 0.111 0.110 0.083 0.372 0.114 0.179 0.177 0.116 0.089 0.353 0.087
B 0.211 0.112 0.110 0.083 0.371 0.114 0.181 0.180 0.124 0.096 0.340 0.079
C 0.208 0.114 0.115 0.090 0.355 0.118 0.182 0.191 0.140 0.137 0.279 0.072
D 0.207 0.114 0.115 0.090 0.356 0.118 0.170 0.204 0.147 0.149 0.260 0.071
E 0.209 0.113 0.115 0.091 0.354 0.118 0.184 0.197 0.147 0.150 0.257 0.066
F 0.208 0.114 0.114 0.091 0.356 0.118 0.181 0.196 0.139 0.141 0.274 0.070
G 0.209 0.113 0.113 0.089 0.358 0.118 0.187 0.202 0.139 0.138 0.262 0.072
H 0.208 0.112 0.116 0.090 0.355 0.119 0.178 0.203 0.140 0.136 0.275 0.068
I 0.209 0.111 0.111 0.087 0.364 0.118 0.183 0.204 0.120 0.131 0.263 0.099
J 0.210 0.114 0.113 0.090 0.356 0.117 0.189 0.198 0.145 0.139 0.263 0.066
K 0.208 0.112 0.110 0.089 0.363 0.119 0.174 0.196 0.111 0.134 0.275 0.111
L 0.208 0.113 0.115 0.090 0.357 0.118 0.184 0.194 0.144 0.138 0.269 0.071
M 0.209 0.113 0.112 0.088 0.360 0.118 0.176 0.207 0.126 0.128 0.268 0.095
N 0.209 0.113 0.112 0.088 0.359 0.118 0.173 0.199 0.128 0.134 0.271 0.095
O 0.209 0.110 0.112 0.087 0.362 0.119 0.175 0.205 0.116 0.134 0.270 0.102
P 0.210 0.112 0.112 0.088 0.359 0.118 0.176 0.200 0.127 0.138 0.271 0.089
Q 0.209 0.112 0.112 0.088 0.361 0.118 0.179 0.210 0.125 0.127 0.266 0.094
R 0.210 0.112 0.112 0.088 0.362 0.117 0.175 0.200 0.130 0.140 0.264 0.092
S 0.209 0.112 0.111 0.089 0.361 0.118 0.183 0.204 0.143 0.142 0.259 0.069
T 0.209 0.110 0.110 0.087 0.364 0.120 0.175 0.199 0.116 0.125 0.275 0.110
U 0.209 0.112 0.112 0.088 0.360 0.119 0.173 0.195 0.122 0.134 0.274 0.102
V 0.208 0.111 0.111 0.086 0.365 0.119 0.175 0.190 0.116 0.123 0.285 0.111
W 0.208 0.111 0.111 0.087 0.365 0.119 0.179 0.191 0.105 0.124 0.288 0.113
X 0.208 0.111 0.110 0.087 0.365 0.119 0.179 0.198 0.110 0.124 0.277 0.111
Y 0.208 0.111 0.111 0.087 0.364 0.120 0.168 0.188 0.114 0.128 0.287 0.114
Z 0.208 0.110 0.111 0.087 0.366 0.118 0.174 0.188 0.119 0.131 0.277 0.111

The benchmark forecasts are obtained as follows: VI = Benchmark forecast obtained by aggregating voting intentions, ML =
Maximum likelihood model, Bayes 1 = Bayesian model using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model using prior
N(0, B) with B = 100IL∗ .
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Table 13: Forecasts of the election outcome for the 2010 test data.

VVD PVDA PVV CDA Other No Vote VVD PVDA PVV CDA Other No Vote

Actual party shares 2010 0.155 0.148 0.116 0.103 0.233 0.246 0.155 0.148 0.116 0.103 0.233 0.246
Party shares in data set 0.184 0.171 0.112 0.129 0.280 0.124 0.184 0.171 0.112 0.129 0.280 0.124

VI 0.111 0.108 0.138 0.141 0.390 0.111 0.111 0.108 0.138 0.141 0.390 0.111
ML 0.107 0.100 0.148 0.149 0.388 0.109 0.107 0.100 0.148 0.149 0.388 0.109
Bayes 1 0.108 0.104 0.149 0.149 0.378 0.113 0.108 0.104 0.149 0.149 0.378 0.113
Bayes 2 0.111 0.103 0.150 0.149 0.375 0.112 0.111 0.103 0.150 0.149 0.375 0.112

Based on joint distribution Based on conditional distribution

A 0.116 0.111 0.159 0.151 0.361 0.102 0.111 0.112 0.161 0.136 0.387 0.093
B 0.116 0.111 0.159 0.150 0.361 0.102 0.129 0.121 0.180 0.155 0.346 0.070
C 0.122 0.115 0.158 0.154 0.347 0.105 0.149 0.146 0.194 0.166 0.282 0.063
D 0.123 0.115 0.158 0.154 0.344 0.106 0.157 0.152 0.176 0.163 0.289 0.063
E 0.120 0.116 0.157 0.153 0.344 0.110 0.163 0.151 0.172 0.165 0.285 0.063
F 0.121 0.116 0.158 0.154 0.346 0.106 0.160 0.144 0.178 0.164 0.287 0.066
G 0.119 0.117 0.159 0.154 0.346 0.106 0.161 0.141 0.176 0.167 0.290 0.065
H 0.122 0.116 0.158 0.154 0.346 0.104 0.165 0.153 0.178 0.161 0.281 0.063
I 0.118 0.109 0.157 0.152 0.353 0.110 0.149 0.137 0.169 0.157 0.317 0.072
J 0.123 0.115 0.158 0.154 0.347 0.104 0.170 0.155 0.177 0.161 0.283 0.055
K 0.118 0.112 0.155 0.151 0.354 0.110 0.143 0.149 0.163 0.155 0.318 0.072
L 0.120 0.117 0.159 0.154 0.345 0.106 0.162 0.147 0.174 0.160 0.288 0.069
M 0.119 0.112 0.156 0.153 0.351 0.110 0.139 0.145 0.164 0.152 0.325 0.076
N 0.119 0.113 0.156 0.153 0.350 0.110 0.142 0.139 0.164 0.159 0.323 0.073
O 0.118 0.112 0.156 0.152 0.351 0.111 0.137 0.141 0.165 0.151 0.330 0.077
P 0.119 0.113 0.157 0.152 0.350 0.110 0.137 0.152 0.170 0.158 0.313 0.070
Q 0.119 0.112 0.157 0.153 0.350 0.110 0.143 0.145 0.165 0.157 0.319 0.072
R 0.120 0.113 0.158 0.152 0.352 0.105 0.138 0.143 0.167 0.152 0.315 0.084
S 0.118 0.113 0.157 0.152 0.352 0.108 0.160 0.159 0.179 0.162 0.287 0.054

The benchmark forecasts are obtained as follows: VI = Benchmark forecast obtained by aggregating voting intentions, ML = Maximum
likelihood model, Bayes 1 = Bayesian model using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model using prior N(0, B) with
B = 100IL∗ .
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Table 14: Forecasts of the election outcome for the 2012 test data.

VVD PVDA PVV CDA Other No Vote VVD PVDA PVV CDA Other No Vote

Actual party shares 2010 0.198 0.185 0.075 0.063 0.224 0.254 0.198 0.185 0.075 0.063 0.224 0.254
Party shares in data set 0.221 0.220 0.061 0.087 0.286 0.124 0.221 0.220 0.061 0.087 0.286 0.124

VI 0.208 0.121 0.099 0.088 0.379 0.106 0.208 0.121 0.099 0.088 0.379 0.106
ML 0.213 0.115 0.099 0.075 0.393 0.105 0.213 0.115 0.099 0.075 0.393 0.105
Bayes 1 0.211 0.117 0.103 0.078 0.384 0.108 0.211 0.117 0.103 0.078 0.384 0.108
Bayes 2 0.210 0.119 0.102 0.079 0.382 0.109 0.210 0.119 0.102 0.079 0.382 0.109

Based on joint distribution Based on conditional distribution

A 0.211 0.120 0.110 0.079 0.378 0.103 0.179 0.186 0.114 0.085 0.357 0.079
B 0.211 0.121 0.110 0.079 0.377 0.102 0.182 0.188 0.124 0.092 0.343 0.072
C 0.209 0.125 0.115 0.087 0.356 0.107 0.183 0.197 0.139 0.136 0.281 0.065
D 0.208 0.125 0.115 0.089 0.357 0.107 0.170 0.210 0.147 0.148 0.261 0.064
E 0.212 0.123 0.114 0.090 0.353 0.108 0.184 0.202 0.147 0.150 0.257 0.060
F 0.209 0.124 0.114 0.089 0.357 0.107 0.182 0.202 0.139 0.139 0.276 0.063
G 0.212 0.124 0.113 0.088 0.357 0.106 0.187 0.208 0.139 0.138 0.263 0.065
H 0.207 0.122 0.115 0.089 0.358 0.108 0.179 0.209 0.139 0.134 0.277 0.062
I 0.211 0.122 0.108 0.083 0.367 0.109 0.185 0.211 0.120 0.131 0.263 0.091
J 0.213 0.125 0.112 0.089 0.356 0.105 0.189 0.204 0.144 0.139 0.264 0.061
K 0.210 0.124 0.107 0.085 0.366 0.109 0.176 0.204 0.111 0.132 0.275 0.101
L 0.209 0.124 0.114 0.089 0.357 0.107 0.184 0.200 0.144 0.137 0.271 0.064
M 0.213 0.126 0.111 0.086 0.358 0.107 0.176 0.214 0.126 0.128 0.268 0.088
N 0.212 0.126 0.110 0.087 0.359 0.107 0.173 0.206 0.127 0.134 0.272 0.088
O 0.211 0.124 0.111 0.084 0.362 0.108 0.178 0.211 0.115 0.133 0.269 0.094
P 0.213 0.125 0.112 0.086 0.358 0.107 0.177 0.205 0.127 0.137 0.272 0.082
Q 0.213 0.125 0.110 0.086 0.360 0.107 0.180 0.216 0.125 0.127 0.267 0.085
R 0.213 0.125 0.111 0.086 0.360 0.106 0.176 0.208 0.130 0.139 0.264 0.084
S 0.212 0.125 0.109 0.086 0.360 0.108 0.184 0.209 0.143 0.142 0.260 0.063
T 0.211 0.122 0.108 0.083 0.366 0.110 0.177 0.207 0.117 0.124 0.275 0.100
U 0.212 0.125 0.110 0.085 0.360 0.108 0.175 0.202 0.121 0.134 0.274 0.094
V 0.210 0.122 0.108 0.083 0.368 0.109 0.177 0.197 0.117 0.122 0.285 0.101
W 0.210 0.123 0.107 0.083 0.367 0.109 0.182 0.200 0.105 0.122 0.288 0.102
X 0.210 0.123 0.107 0.083 0.367 0.110 0.182 0.206 0.110 0.123 0.278 0.101
Y 0.211 0.122 0.107 0.083 0.367 0.110 0.171 0.196 0.115 0.127 0.288 0.103
Z 0.210 0.122 0.107 0.083 0.369 0.108 0.177 0.196 0.119 0.130 0.277 0.101

The benchmark forecasts are obtained as follows: VI = Benchmark forecast obtained by aggregating voting intentions, ML = Maximum
likelihood model, Bayes 1 = Bayesian model using prior N(0, B) with B = 1.5IL∗ , Bayes 2 = Bayesian model using prior N(0, B) with
B = 100IL∗ .
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D Results: Histograms of the number of clusters K

(i) Prior A (ii) Prior B (iii) Prior C (iv) Prior D (v) Prior E

(vi) Prior F (vii) Prior G (viii) Prior H (ix) Prior I (x) Prior J

(xi) Prior K (xii) Prior L (xiii) Prior M (xiv) Prior N (xv) Prior O

(xvi) Prior P (xvii) Prior Q (xviii) Prior R (xix) Prior S

Figure 4: Histograms of the number of clusters K in the posterior draws for the 2010 election under prior specification A-S.
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(i) Prior A (ii) Prior B (iii) Prior C (iv) Prior D (v) Prior E

(vi) Prior F (vii) Prior G (viii) Prior H (ix) Prior I (x) Prior J

(xi) Prior K (xii) Prior L (xiii) Prior M (xiv) Prior N (xv) Prior O

(xvi) Prior P (xvii) Prior Q (xviii) Prior R (xix) Prior S (xx) Prior T

(xxi) Prior U (xxii) Prior V (xxiii) Prior W (xxiv) Prior X (xxv) Prior Y

(xxvi) Prior Z

Figure 5: Histograms of the number of clusters K in the posterior draws for the 2012 election under prior specification A-Z.
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E Results: Posterior Density Plots

(i) Intercept (ii) Logarithm of Age (iii) Logarithm of Income

(iv) Party Choice in 2010 = PvdA (v) Party Choice in 2010 = PVV (vi) Party Choice in 2010 = CDA

(vii) Party Choice in 2010 = Other
(viii) Party Choice in 2010 =
PNTS/DNK

(ix) Party Choice in 2010 = No Vote

(x) Female (xi) Home owner (xii) Married

Figure 6: Posterior density plots of all β coefficients under DPM model X and benchmark model Bayes 2. A solid line
indicates draws of model X, while the dashed line corresponds to draws from Bayes 2. The different colours denote different
party choices, where red = VVD, blue = PvdA, orange = PVV, green = CDA and black = Other.

71



(xiii) Very Urban (xiv) Moderate/Slight Urban (xv) Not Urban

(xvi) Education = Vmbo (xvii) Education = Havo/VWO (xviii) Education = MBO

(xix) Education = HBO (xx) Education = WO (xxi) Employed

(xxii) Job Seeker (xxiii) Religion = Roman Catholic (xxiv) Religion = Protestant

Figure 6: Posterior density plots of all β coefficients under DPM model X and benchmark model Bayes 2. A solid line
indicates draws of model X, while the dashed line corresponds to draws from Bayes 2. The different colours denote different
party choices, where red = VVD, blue = PvdA, orange = PVV, green = CDA and black = Other.
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(xxv) Religion = Dutch Reformed (xxvi) Religion = Reformed Churches
(xxvii) Religion = Other Christian Re-
ligions

(xxviii) Religion = Islam (xxix) Religion = Other

Figure 6: Posterior density plots of all β coefficients under DPM model X and benchmark model Bayes 2. A solid line
indicates draws of model X, while the dashed line corresponds to draws from Bayes 2. The different colours denote different
party choices, where red = VVD, blue = PvdA, orange = PVV, green = CDA and black = Other.
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