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Abstract

Bayesian network classifiers can be combined with copulas to accurately model con-

tinuous random variables. However, applications of such frameworks often restrict

the graph structure or the type of variables that may be included. We develop the

predictive copula Bayesian network (PCBN), a probabilistic classification framework

which allows one to model continuous, ordinal discrete and categorical variables ex-

plicitly, while allowing variables to be correlated via copulas. We also introduce an

algorithm which constructs a PCBN based on (predictive) scores, without assuming

tree-like structures. We apply the framework to both simulated and empirical travel

mode data and show that PCBNs can accurately model the data, especially when

the data is highly correlated.
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1 Introduction

Statistical classification is a task that arises in many fields of research. In statistical

classification, we are interested in creating a classifier function that can assign some cat-

egory based on a set of observations. If we have labelled observations, then we may use

supervised learning. Otherwise, we are confined to unsupervised learning. Unsupervised

classification is also known as clustering in machine learning. On the other hand, super-

vised classification is often simply known as classification.

Classifiers can be created in many ways. One way of creating a classifier is by mak-

ing use of graphical models, a type of probabilistic model for which a graph encodes the

conditional dependence structures between random variables. Graphical models have the

advantage of having a graphical representation that can be used to illustrate the problem.

Bayesian networks (BNs) are a type of graphical model in which the underlying graph is

restricted to be a directed acyclic graph (DAG). A BN over a set of variables allows the

joint probability of these variables to be decomposed into local terms. More specifically,

the joint probability is a product of local conditional distributions. BNs have applications

in various fields such as ecology, medicine and finance (Pourret, Näım, & Marcot, 2008).

A classifier that uses a BN is called a Bayesian network classifier or BN classifier.

Although BNs are flexible, most applications using continuous data are limited to assum-

ing underlying Gaussian distributions. Copulas however, allow one to model multivariate

continuous distributions more easily. The use of copulas is rooted in Sklar’s Theorem,

which states that any multivariate cumulative distribution function (CDF) can be written

as a function of its marginals (Sklar, 1959). This function is called the copula, see Nelsen

(2007) for a comprehensive introduction to copulas.

Using copulas in BNs results in a framework that can outperform competing models

in both unsupervised (Elidan, 2010) and supervised (Elidan, 2012) learning applications.

However, the applicability and predictive performance in classification problems can be

improved. For instance, the framework created by Elidan (2012) does not allow ordinal

discrete nodes to be modelled explicitly. Moreover, continuous nodes are not allowed to
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have discrete children.

In this thesis, we aim to improve the predictive performance of copula-based BNs. We

develop a framework which allows one to use continuous, ordinal discrete and categorical

random variables and we create an algorithm that learns its structure automatically from

the data.

This thesis is organised as follows. In Section 2, we elaborate on relevant literature

regarding copulas and Bayesian networks. Then, we formally introduce the classification

problem in Section 3 and we elaborate on the goals of this thesis. Next, we introduce the

existing frameworks that will be used in our framework. Section 5 introduces the pre-

dictive copula Bayesian networks (PCBN), as well as the algorithms that can be used to

construct these networks. Section 6 describes the simulation design that we use to assess

the framework and Section 7 elaborates on the results. Then, we apply the framework

to an empirical case in Section 8. Lastly, we briefly summarise the results and give a

conclusion in Section 9.

The simulation results indicate that we can increase predictive accuracy by correctly

modelling ordinal variables. The empirical application shows that PCBNs can greatly

outperform competing models in terms of predictive accuracy.
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2 Literature

Bayesian networks (BNs) have been used in various academic fields such as ecology,

medicine and finance (Pourret et al., 2008). One of the first uses of a BN classifier

appeared in Duda and Hart (1973). Now, this classifier is known as the Näıve Bayes (NB)

classifier due to its strong or näıve independence assumptions. It assumes that the class

variable is influenced by explanatory variables, whereas the explanatory variables do not

influence each other. Although this is often unrealistic, the NB classifier performs sur-

prisingly well (N. Friedman, Geiger, & Goldszmidt, 1997). J. H. Friedman (1997) shows

that, even though the bias of the NB classifier may be the high, its low variance often

results in good performance.

Although näıve Bayes performs well, the independence assumptions are often too strong.

An extension of NB that relaxes this independence assumption is the so-called tree-

augmented näıve Bayes (TAN) classifier, originally proposed by N. Friedman et al. (1997).

TAN classifiers contain the NB structure, but allow some dependence between the ex-

planatory variables. N. Friedman et al. also propose constructing a Bayesian network for

each value attained by the dependent variable. They call this a Bayesian multinet.

In BNs, continuous explanatory variables are often assumed to come from an underlying

Gaussian distribution. John and Langley (1995) propose non-parametric kernel density

estimation for näıve Bayes as an alternative to assuming Gaussian distributions. The idea

of John and Langley can be applied to TAN-like classifiers as well, but it would require

the estimation of multivariate densities, which is not an easy task in general.

However, copulas offer a solution. A copula is a multivariate cumulative distribution

function (CDF) that has uniform marginals. Copulas are unique on their domain when

all marginals are continuous. Copulas have been incorporated in various models, e.g. logi-

tistic regressions applied to dental data (Nikoloulopoulos & Karlis, 2008), binary logits

with spatial dependency (Bhat & Sener, 2009) and multivariate GARCH models (Jon-

deau & Rockinger, 2006). Copulas even find applications in cosmology (Scherrer, Berlind,

Mao, & McBride, 2009).
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There exists a unique copula for a multivariate distribution when its marginal distri-

butions are continuous. When some marginals are discrete, the existence of a unique

copula is not guaranteed. Besides this, concordance measures are no longer independent

of the margins and estimates of Kendall’s τ , a popular non-parametric dependence mea-

sure, are biased (Genest & Nešlehová, 2007). There are several solutions to this problem.

Nešlehová (2007) proposes a transformation method so that count data is made continu-

ous. This guarantees the existence of a unique copula.

Copulas have been used in BNs. In unsupervised learning, Elidan (2010) uses copula

constructions for continuous data. Bauer and Czado (2016) use elaborate constructions

of pair-copulas to model continuous BNs. In supervised learning, Elidan (2012) uses con-

ditional copulas. His framework does not allow continuous nodes to have discrete children,

however.
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3 Problem and Goals

This section introduces the main problem mathematically and concludes with the goals

that this thesis aims to reach. The main problem of this thesis is to increase the appli-

cability and performance of copula-based Bayesian networks. In order to introduce this

problem mathematically, we start with the general classification problem and follow with

the out-sample performance problem. We end with the goals of this thesis.

3.1 Problem Definition

Let X1, . . . , Xn be n random variables with realisations x1, . . . , xn respectively and let Y

be a categorical random variable with sample space K ≡ Ran(Y ) with |K| = k ≥ 2. Now,

let h : X → K be a classifier function on the domain X = Dom(X1, . . . , Xn). That is, we

try to create a function that can predict the value of the dependent categorical variable Y

based on the n explanatory variables X1, . . . , Xn. We have a binary classification problem

for k = 2 and a multinomial classification problem for k > 2.

In probabilistic classification, the classification rule is based on the calculation of k condi-

tional probabilities P [Y = y|X1 = x1, . . . , Xn = xn]. If the decision rule is to choose the

value y that maximises this expression, then we can construct a probabilistic classifier

hprob as

hprob(x1, . . . , xn) ≡ ŷ ∈ arg max
y∈K

P [Y = y|X1 = x1, . . . , Xn = xn] . (1)

Note that hprob 6= ∅ as there is at least one y ∈ K that maximises the conditional

probability. Equation (1) forms the basis of the main classification methods in this paper.

3.1.1 Out-sample Performance Problem

Say we have some data set D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M = {1, . . . , d} is

a set of d ∈ N+ unique indices. Each realisation y(l) ∈ K corresponds to the categorical

random variable Y and the n realisations x
(l)
1 , . . . , x

(l)
n correspond to X1, . . . , Xn respec-

tively for l ∈ M. Now, let Din =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈Min

}
be the in-sample set

with
∣∣Min

∣∣ = din ∈ N+ indices. Similarly, let Dout =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈Mout

}
be

the in-sample set with |Mout| = dout ∈ N+ indices. Furthermore, let Min,Mout ⊂ M

with Min ∩Mout = ∅.
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Now, we define some loss function L(ẑ, z) that measures how well we assign categories

with estimate ẑ and actual value z. For instance, we can define 0-1 loss using Iverson

brackets as L0-1(ẑ, z) ≡ [ẑ 6= z]. This evaluates to 0 if the estimate is equal to actual

value and evaluates to 1 if it is not. If we denote H as the set of possible classifiers under

consideration, then we can determine an optimal classifier hin∗ as

hin∗ ∈ arg min
h∈H

1

din

∑
l∈Min

L
(
h
(
x
(l)
1 , . . . , x

(l)
n

)
, y(l)

)
. (2)

Note that the division by din does not influence the optimal classifier hin∗. We assume that

it is possible to find a best in-sample classifier. Thus, we assume hin∗ 6= ∅. Determining

hin∗ via (2) yields a classifier, out of a set of possible classifiers, that minimises a chosen

loss function for the in-sample set. However, this classifier may perform poorly in our

out-sample set Dout. Concretely, this means that there might be some classifier hin 6= hin∗

with both hin, hin∗ ∈ H for which we have

∑
l∈Mout

L
(
hin
(
x
(l)
1 , . . . , x

(l)
n

)
, y(l)

)
<
∑

l∈Mout

L
(
hin∗

(
x
(l)
1 , . . . , x

(l)
n

)
, y(l)

)
.

Let hout∗ denote the best out-sample classifier under the same loss function L where we

assume that hout∗ 6= ∅. Then, hout∗ is given by (3).

hout∗ ∈ arg min
h∈H

1

dout

∑
l∈Mout

L
(
h
(
x
(l)
1 , . . . , x

(l)
n

)
, y(l)

)
(3)

Now, the question that arises is: How can we find a classifier hout that has a good out-

sample prediction if we can only use Din? Although it could be possible that hin∗ = hout∗,

it is also possible that hin∗ has a very poor out-sample performance. This might be the

case when hin∗ has overfit the data.

3.1.2 Main Problem of This Thesis

The optimal classifiers hin∗ and hout∗ from equations (2) and (3) respectively are defined

for some set of classifiers H. So far, this set has not been specified. In this research, we

restrict our search to copula-based Bayesian network classifiers. The main question that

guides this research is:

7



How can we increase the applicability and predictive performance of copula-based Bayesian

network classifiers?

3.2 Goals

The main goal of this thesis is to increase the applicability and predictive performance of

copula-based Bayesian networks to find a hin∗ which is close to hout∗. Elidan (2012) uses

copulas in Bayesian networks classifiers and illustrates that this can greatly improve the

performance of Bayesian network classifiers. However, his approach has some restrictions.

Firstly, count data or ordinal discrete data cannot be modelled effectively, because the

copulas in his framework assume that the explanatory variables are continuous. Secondly,

continuous nodes cannot have discrete children, which might hinder the predictive per-

formance of the model.

We develop a framework that models ordinal discrete variables explicitly in order to boost

the predictive performance of copula-based Bayesian networks in these settings. We also

develop a greedy algorithm that uses predictive scores on a validation set to learn a net-

work. We call this algorithm the greedy predictive copula Bayesian network (PCBN).

Due to the greedy nature of the algorithm, it is intuitive to create several PCBNs. We

develop a procedure, which we call the copula spider, that creates several PCBNs. This

thesis aims to reach the following goals:

1. Develop a framework that allows continuous, ordinal discrete and categorical ex-

planatory variables to modelled explicitly, while simultaneously allowing continuous

nodes to have ordinal discrete or categorical children

2. Develop an algorithm that constructs networks according to this framework. The

networks, developed with this algorithm, should have good out-sample predictive

performances that are comparable to, if not better than, competing models
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4 Existing Frameworks

This section introduces two key frameworks on which my framework will be built. We

start by introducing our notational convention. Then, we introduce Bayesian Networks

(BNs) and explain how they can be used in supervised classification settings. Lastly, we

elaborate on the copula framework and explain the most important copumetric results

and concepts, as they are an integral part of the predictive copula Bayesian networks.

4.1 Notational Convention

Throughout this thesis, we maintain the following conventions:

1. Random variables are denoted in upper case, e.g. X1, . . . , Xn. Their corresponding

realisations are denoted in lower case, e.g. x1, . . . , xn.

2. Vectors are denoted in boldface. Upper-case bold letters are used for vectors of

random variables, e.g. X = (X1, . . . , Xn). Lower case letters in boldface are used

for vectors with realisations, e.g. x = (x1, . . . , xn).

3. Tuples of length n with elements of the same type are denoted in lower-case letters

in bold, but n-tuples with elements of different types are denoted in calligraphic

upper-case letters. This applies to the graphs, e.g. graph G = (N ,A).

4. Sets are denoted with calligraphic letters such as N = {1, . . . , n}, except for the set

of all non-negative integers N, set of all positive integers N+, set of all real numbers

R and extended set of all real numbers R.

5. Superscript between parentheses denotes the instance. For example, d realisations

of Xi are denoted as x
(1)
i , . . . , x

(d)
i .

6. General cumulative distribution functions (CDFs) are denoted with F where the

subscript denotes what the CDF is defined over. E.g., a joint CDF over X is

denoted as FX. A probability function is denoted with f , e.g. fX. Unless otherwise

specified, CDFs and probability functions contain continuous, ordinal discrete and

categorical random variables.

A list of symbols is included in the appendix, see Appendix C.
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4.2 Bayesian Networks

A Bayesian network (BN) is a graphical model that is used to model a joint probabil-

ity distribution over random variables by making use of independence properties. See

Lauritzen (1996) for an elaborate introduction to this topic. One of the major defining

features of a BN is its underlying graph structure. The other properties follow naturally

from this graph.

4.2.1 Mathematical Notion of Bayesian Networks

The backbone of a Bayesian network is its directed acyclic graph (DAG). The definition of

a DAG is given by Definition 4.2.1. Relevant graph and set theory, such as the definition

of a path, has been included in Appendix A.1.

Definition 4.2.1 (Directed acyclic graph (DAG)). A graph is an ordered pair G = (N ,A)

of a set of nodes N = {1, . . . , n} containing n elements and a set of arcs A ⊆ N × N .

This graph is a directed acyclic graph (DAG) if the following conditions hold:

1. All arcs are directed. That is, (i, j) ∈ A =⇒ (j, i) /∈ A for all i, j ∈ N such that

i 6= j.

2. The graph does not contain any cycles. That is, for every path from node i to node

j, denoted as i → . . . → j, we have that i 6= j. This means that there are also no

self-cycles. Thus, (i, i) /∈ A for all i ∈ N .

As a result of 1 and 2, we have A ⊂ N ×N .

In a Bayesian network, the nodes represent random variables and directed arcs encode

how each node is conditionally independent from all other nodes. The formal definition

of a Bayesian network is given in Definition 4.2.2.

Definition 4.2.2 (Bayesian network (BN)). Let G = (N ,A) be a DAG as defined in

Definition 4.2.1 with a set of nodes N = {1, . . . , n} and set of directed arcs A ⊂ N ×N .

Let there be n random variables X1, . . . , Xn.

Then, a Bayesian network (BN) is a tuple B = (G,Θ) in which the following is satis-

fied for every node i ∈ N :

fXi|NdXi
(xi|ndXi) = fXi|PaXi

(
xi|paXi

)
(4)
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where NdXi is the vector of random variables that are non-descendants of Xi with corre-

sponding realisation vector ndXi, PaXi is the vector of random variables that are parents

of Xi with corresponding realisation vector paXi, f is a conditional probability function

that might be a conditional pdf, pmf or categorical distribution function depending on Xi

and Θ is the set of conditional probability density functions.

Note that for every i ∈ N we have Npa(i) ⊆ Nnd(i). That is, the set of nodes that

are parents of i is always a subset of, or equal to, the set of non-descendants of i.

Equation (4) essentially says that every random variable Xi is independent of its non-

descendants given the realisations of the parents of Xi. If Xi is categorical then we may

write P [Xi = xi|NdXi = ndXi ] = P
[
Xi = xi|PaXi = paXi

]
.

The joint probability can be decomposed into local terms as given in Corrolary 4.2.2.1.

Corollary 4.2.2.1 (Factorisation of the joint probability function). Let B = (G,Θ) be a

BN as given in Definition 4.2.2. Then, the joint probability function can be factorised as

fX(x) =
∏
i∈N

fXi|PaXi

(
xi|paXi

)
(5)

where PaXi is the vector of random variables that are parents of Xi with corresponding

realisation vector paXi.

Figure 1: Example of two graphs G1 and G2. G1 is a directed acyclic graph (DAG) as given by Definition
4.2.1, but G2 is not due to the existence of the cycle X2 → X3 → X4 → X2.

An example of a BN is given by G1 of Figure 4.2.1. Using (5), the joint probability of
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X1, . . . , X6 is given by:

fX1,...,X6(x1, . . . , x6) = fX1(x1)fX2|X1(x2|x1)fX3|X1,X2(x3|x1, x2)fX4|X2,X3(x4|x2, x3)

× fX6|X2,X4(x6|x2, x4)fX5(x5)fX6|X2,X4,X5(x6|x2, x4, x5).

It is important to realise that the BNs do not encode complete dependence statements.

To see this, consider fX2,X5 (x2, x5) of G1 of Figure 4.2.1. We have that fX1,X5 (x1, x5) =

fX1 (x1) fX5 (x5) as nodes are independent of their non-descendants given their parents.

However, we do not necessarily have fX1,X5|X6 (x1, x5|x6) = fX1|X6 (x1|x6) fX5|X6 (x5|x6).

That is, we cannot determine if that relation holds given the provided graph. Determining

whether nodes are conditionally independent can be done by assessing if nodes are d-

separated which can be inferred from the underlying graph, see Pearl (1988).

4.2.2 Bayesian Networks as Classifiers

If Y is a categorical random variable that we wish to predict with explanatory variables

X1, . . . , Xn, then we can use Bayesian network classifier. A probabilistic classifier is given

by (1). In the case of BN classifiers, we make use of the following:

fY |X1,...,Xn(y|x1, . . . , xn) =
fY,X1,...,Xn(y, x1, . . . , xn)

fX1,...,Xn(x1, . . . , xn)
∝ fY,X1,...,Xn(y, x1, . . . , xn).

We denote fY |X1,...,Xn(y|x1, . . . , xn) as fY |X(y|x). Then, we model fY,X(y,x) with (5)

which gives

fY,X(y,x) = fY |PaY (y|paY )
∏
i∈N

fXi|PaXi

(
xi|paXi

)
(6)

where y ∈ K, PaY and PaXi refer to the vector of random variables that are parents of

Y and Xi respectively and paY and paXi are their corresponding realisation vectors.

If all random variables in (6) are categorical, then we could estimate the conditional prob-

abilities by creating conditional probability tables. The conditional probabilities could be

estimated by counting co-occurrences. Although this strategy could work for categorical

explanatory variables, it does not work when some explanatory variables are continuous.

Often, continuous variables are assumed to follow a Gaussian distribution to ease compu-
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tations. Intuitively, if the distributions are not Gaussian in reality, then this assumption

makes the model misspecified. Now, it is possible to incorporate non-parametric kernel

density estimation in BNs, as shown by John and Langley (1995). However, this becomes

difficult when we need to estimate multivariate distributions.

Section 4.3 introduces copulas, which help in modelling multivariate distributions. In-

corporating copulas in BNs allows for richer BN classifiers. Examples of the näıve Bayes,

tree-augmented näıve Bayes and generalised Bayesian network classifier are included in

Appendix A.5.

4.3 Copula Framework

Estimating and modelling multivariate distributions is still a challenging task to this day.

Fortunately, copulas can be used to help with this task. A copula is some multivariate cu-

mulative distribution function (CDF) C that has uniform marginals. The use of copulas is

rooted in Sklar’s Theorem given by Sklar (1959), which states that any multivariate CDF

FX of X = (X1, . . . , Xn) can be written as copula function CX(FX1(x1), . . . , FXn(xn)) that

links the marginal CDFs FX1 , . . . , FXn . The copula function CX captures the dependence

structure of the multivariate CDF and CX is unique if all marginal CDFs FXi are contin-

uous.

With Sklar’s Theorem, estimating multivariate distributions can be done by estimat-

ing the marginal CDFs separately from the copula function. If a copula is chosen in such

a way that it can model complex dependency structures, then the burden is shifted to

estimating the copula parameters rather than the multivariate CDF. Sklar’s Theorem is

given in Theorem 4.3.1.

Given the CDF FX in (7) of Theorem 4.3.1, we can derive a joint probability distribution

fX. The relation between fX and the copula is given in Theorem 4.3.2. This relation

is valid when some marginals are continuous and others are ordinal discrete. Corollary

4.3.2.1 gives the probability density function (pdf) when all marginals are continuous

and Corollary 4.3.2.2 gives the probability mass function (pmf) when all marginals are

discrete.
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Theorem 4.3.1 (Sklar’s Theorem (Sklar, 1959)). Let X = (X1, . . . , Xn) denote a vec-

tor of n random variables with corresponding realisations xi ∈ R for i = 1, . . . , n. Now,

let FX(x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn] denote the multivariate cumulative dis-

tribution function of X with marginal cdfs FXi(xi) = P [Xi ≤ xi]. Then, there is an

n-dimensional copula CX such that

FX(x1, . . . , xn) = CX(FX1(x1), . . . , FXn(xn)). (7)

CX is unique on the cartesian product of the ranges of the marginal cdfs, i.e. Ran(F1)×

. . .× Ran(Fn). If all marginal cdfs FXi are continuous, then CX is unique.

Proof. The proof is elaborate, see Sklar (1996).

Theorem 4.3.2 (Relation Joint Probability Distributrion and Copulas). Let N ncat =

{1, . . . , nncat} be a set of nncat ∈ {2, 3, . . .} indices corresponding to vector of non-categorical

random variables Xncat = (X1, . . . , Xnncat) with realisations xncat = (x1, . . . , xnncat). More-

over, let N cont = {i1, . . . , in} ⊆ N ncat and N disc = {j1, . . . , jn} ⊆ N ncat be sets of indices

corresponding continuous and discrete random variables respectively, where N cont∩N disc =

∅. We denote |N cont| = ncont and |N cont| = ndisc.

Now, let FXk(xk) denote a marginal CDF of Xk evaluated in xk for k ∈ N ncat, let

fXi(xi) denote a continuous marginal pdf of Xi evaluated in xi for i ∈ N cont and let

FXj
(
x−j
)
≡ lim

z→x−j
FXj(z) for j ∈ N disc. Without loss of generality, let the first ncont argu-

ments of the copula CXncat be associated with realisations of continuous random variables.

Then, the following relation holds:

fXncat

(
xncat

)
=

∏
i∈N cont

fXi (xi)
∑

(FXj(x
∗
j))j∈Ndisc

∈ U

(−1)
∑
j∈Ndisc [FXj(x

−
j )=FXj(x

∗
j)]

×D1,...,ncontCXncat

(
FXi1 (xi1) , . . . , FXin (xin) , FXj1

(
x∗j1
)
, . . . , FXjn

(
x∗jn
))

(8)

where U =
∏

j∈Ndisc

{
FXj

(
x−j
)
, FXj (xj)

}
is the ndisc-ary Cartesian product of all ndisc

discrete realisations and their left limits with the Cartesian product containing |U| = 2n
disc

ndisc-tuples
(
FXj1

(
x∗j1
)
, . . . , FXjn

(
x∗jn
))

. We use Euler’s differential notation, meaning
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that we take partial derivatives of C with respect to the first ncont arguments first. Then,

we evaluated that function for specific values of the arguments.

Proof. First we employ Sklar’s Theorem as seen in Theorem 4.3.1. Then, (8) follows

from taking ncont times the partial derivative of the continuous marginal cdfs and 2n
disc

differences to account for the discrete marginal cdfs.

Corollary 4.3.2.1. Given the notation in Theorem 4.3.2, let ncont = n. This means

that N disc = ∅ and N cont = N ncat. Thus, all non-categorical marginal CDFs FXi are

continuous with i ∈ N ncat. Then, (8) equals:

D1,...,nCXncat (FX1 (x1) , . . . , FXn (xn))
∏
i∈N

fXi (xi) . (9)

Proof. This follows directly from (8) as ncont = n, thus ndisc = 0 and N disc = U = ∅.

Corollary 4.3.2.2. Given the notation in Theorem 4.3.2, let ndisc = n. This means that

N cont = ∅ and N disc = N ncat. Thus, all non-categorical marginal CDFs FXi are ordinal

discrete with i ∈ N disc. Then, (8) equals:

∑
(FXj(x

∗
j))j∈N ∈ U

(−1)
∑
j∈N [FXj(x

−
j )=FXj(x

∗
j)]CXncat (FX1 (x∗1) , . . . , FXn (x∗n)) . (10)

Proof. This follows directly from (8) as ndisc = n, thus ncont = 0 and N cont = ∅.

We employ a probabilistic definition of the copula CX. See Appendix A.2 for an analytical

definition of a copula. For an elaborate introduction to copulas, see Nelsen (2007).

Elidan (2012) uses a conditional variant of (9) to derive his copula-based BN. If one uses

this equation when some marginals are in fact discrete, then the model is misspecified.

Intuitively, (8) has to be used in order to accurately model mixed marginals.
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5 Predictive Copula Bayesian Network

In this section, we introduce the predictive copula Bayesian network (PCBN) and give

various algorithms used by this framework. We start with the graph structure of PCBNs

and follow with the parametrisation of the joint probability function. Then, we elaborate

on the three estimation techniques and explain when they are applicable. After that, we

explain how predictions can be made with PCBNs. Using the preceding sections, we give

a greedy algorithm that is used to construct a PCBN from the data. Finally, we introduce

the copula spider, a technique for which several PCBNs are needed.

5.1 Graph Structure

The goal of this thesis is to find a good probabilistic classification function hprob given

by (1). We do this by creating a Bayesian network B = (G,Θ) as given in Definition

4.2.2 to model fY,X(y,x) given by (6). This formula depends on both fY |PaY (y|paY ) and

fXi|PaXi

(
xi|paXi

)
for i ∈ N . However, not all fXi|PaXi

(
xi|paXi

)
need to be evaluated

in order to determine ŷ. Thus, not all DAGs G need to be considered when the data is

complete. In order to see this, let Nde(Y ) , Nch(Y ) and Nnd(Y ) denote the sets of nodes that

are descendants, children and non-descendants of Y respectively. A child of Y is a direct

descendant of Y , thus Nch(Y ) ⊆ Nde(Y ). Note that Nde(Y ) ∩ Nnd(Y ) = Nch(Y ) ∩ Nnd(Y ) = ∅

as a node cannot be a descendant and non-descendant at the same time.

Now, we can rewrite the decomposition of the joint probability function fY,X(y,x) as:

fY,X(y,x)

= fY |PaY (y|paY )
∏
i∈N

fXi|PaXi

(
xi|paXi

)
= fY |PaY (y|paY )

∏
i+∈Nnd(Y )

fXi+ |PaX
i+

(
xi+|paXi+

)
×

∏
i−∈Nde(Y )

fXi− |PaX
i−

(
xi−|paXi−

)
∝ fY |PaY (y|paY )

∏
i−∈Nde(Y )

fXi− |PaX
i−

(
xi− |paXi−

)
∝ fY |PaY (y|paY )

∏
j∈Nch(Y )

fXj |PaXj

(
xj|paXj

)
. (11)
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Thus, we only need to consider two types of relations when we want to determine ŷ. The

first type is that of the dependent variable Y and its parents PaY . The second type is

that of Y , its children and their parents. Intuitively, fXi+ |PaX
i+

(
xi+ |paXi+

)
does not

depend on Y for i+ ∈ Nnd(Y ) as the parent vector of each non-descendant PaXi+ can-

not contain Y . Thus, the relations between the non-descendants and their parents does

not need to be considered. Moreover, fXi− |PaX
i−

(
xi− |paXi−

)
does not depend on Y for

i− ∈ Nde(Y ) \Nch(Y ) as the parent vector of every non-direct descendant of Y cannot have

Y as one of its parents. If it did, it would be a child of Y . Note that (11) needs to be

normalised if we wish to output proper probabilities. (11) is referred to as the Markov

blanket of Y (Pearl, 1988).

The expression for fY,X given by (11) forms the basis of PCBNs. Note that this expression

is richer than both tree-augmented and Bayesian-augmented Näıve Bayes classifiers, as

the parents PaXj of Xj do not necessarily need to have Y as a parent. Moreover, Y is

allowed to have parents as well.

5.2 Parametrisation

The decomposition of the joint density of the copula-based Bayesian network is given

by (11). The idea of the parametrisation of fXj |PaXj

(
xj|paXj

)
is to condition on all

categorical variables. Let Pancat
Xj

denote the vector containing all parent variables of Xj

that are continuous or ordinal discrete and let Pacat
Xj

denote the vector containing all

parent variables of Xj that are categorical. Let pancat
Xj

and pacat
Xj

denote the corresponding

realisation vectors of Pancat
Xj

and Pacat
Xj

respectively. Note that Pacat
Xj

contains Y . Now, we

model the probability function fXj |PaXj

(
xj|paXj

)
with (12).

fXj |PaXj

(
xj|paXj

)
=
fXj ,Pancat

Xj
|Pacat

Xj

(
xj,pancat

Xj
|pacat

Xj

)
fPancat

Xj
|Pacat

Xj

(
pancat

Xj
|pacat

Xj

) (12)

If Xj is categorical, then we model the probability function fXj |PaXj

(
xj|paXj

)
with (13).

fXj |PaXj

(
xj|paXj

)
=
fPancat

Xj
|Xj ,Pacat

Xj

(
pancat

Xj
|xj,pacat

Xj

)
fXj |Pacat

Xj

(
xj|pacat

Xj

)
fPancat

Xj
|Pacat

Xj

(
pancat

Xj
|pacat

Xj

) (13)
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Using the parametrisation of (12) and (13), discrete nodes can have continuous children

and vice versa. Note that fXj |Pacat
Xj

(
xj|pacat

Xj

)
= P

[
Xj = xj|Pacat

Xj
= pacat

Xj

]
in (13). If we

need to model a joint conditional distribution, then we use (8).

The final term that needs to be modelled is fY |PaY (y|paY ). For this conditional proba-

bility function, we use the following:

fY |PaY (y|paY ) =
fY,PaY (y,paY )

fPaY (paY )
∝ fY,PaY (y,paY ) .

Note that fXj |PaXj

(
xj|paXj

)
is not proportional to fXj ,PaXj

(
xj,paXj

)
as fPaXj

(
paXj

)
depends on Y .

The idea of the parametrisation of fY |PaY (y|paY ) is to condition on all categorical vari-

ables, similar to the parametrisation of fXj |PaXj

(
xj|paXj

)
. Let Pancat

Y denote the vector

containing all parent variables of Y that are continuous or ordinal discrete and let Pacat
Y

denote the vector of all categorical parent variables of Y . The corresponding realisa-

tion vectors of Pancat
Y and Pacat

Y are pancat
Y and pancat

Y respectively. Now, we rewrite

fY |PaY (y|paY ) as

fY |PaY (y|paY ) ∝ fPancat
Y |Y,Pacat

Y

(
pancat

Y |y,pacat
Y

)
fY,Pacat

Y

(
y,pacat

Y

)
. (14)

Note that fY,Pacat
Y

(y,pacat
Y ) = P

[
Y = y,Pacat

Y = pacat
Y

]
. If Y does not have any parents,

then (14) reduces to fY (y) = P [Y = y].

5.2.1 Decomposition Algorithm

If we want to determine the (conditional) probability functions associated with node j

given set of nodes N , then we use either (13), (12) or (14). In order to use these equa-

tions, we need to determine the relevant random variables. This has been implemented in

Algorithm 1, called getVariables. This procedure returns the random variable Zj asso-

ciated with node j ∈ {0, . . . , n}, meaning that Zj is either the dependent variable Y or the

explanatory variable Xj, and four ordered vectors of random variables Zncat,Zcat,Zncat−

and Zcat−. Here, ncat and cat indicate that the vector contains solely non-categorical

and categorical random variables respectively. A minus indicates that Zj is not included,
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whereas Zncat and Zcat might include Zj if the type matches.

Using these relevant random variables, we can get all (conditional) probability functions

associated with node j given set of nodes N . This has been implemented in Algorithm 2,

called decomposeFunction. In line 4 of Algorithm 2 we determine the set Zcat. This

set contains all possible realisations zcat. If j = 0, meaning that Zj = Y , then we use (14)

as seen in line 6. If j 6= 0, meaning that Zj 6= Y , then we use (13) if Zj is a categorical

random variable as seen in lines 9 to 12. Note that we also need to determine the set

Zcat− containing all possible realisations zcat−. Lastly, as seen in line 14, we use (12) if

j 6= 0 and Zj is a non-categorical random variable.

Algorithm 1: getVariables(D, j,N )

Input: data D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

unique indices, index j ∈ {0, . . . , n}, set of nodes to use N ⊆ {0, . . . , n}
such that j /∈ N

Result: random variable Zj associated with node j, ordered vectors Zncat and

Zcat containing non-categorical and categorical random variables

respectively and possible including Zj if the type matches, and Zncat−

and Zcat− containing non-categorical and categorical random variables

respectively and possible excluding Zj
1 Procedure: getVariables(D, j,N )

2 Zj ← random variable associated with j;

3 N ← N ∪ {j};
4 N ncat ← {i : i ∈ N , type of i is non-categorical};
5 N cat ← N \N ncat;

6 Zncat ← ordered vector of all |N ncat| random variables associated with N ncat;

7 Zcat ← ordered vector of all |N cat−| random variables associated with N cat;

8 Zncat− ← ordered vector of all |N ncat \ {j}| random variables associated with

N ncat \ {j};
9 Zcat− ← ordered vector of all |N cat \ {j}| random variables associated with

N cat \ {j};
10 return (Zj,Z

ncat,Zcat,Zncat−,Zcat−)
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Algorithm 2: decomposeFunction(D, j,N )

Input: data D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

unique indices, index j ∈ {0, . . . , n}, set of nodes to use N ⊆ {0, . . . , n}
such that j /∈ N

Result: set of probability functions P
1 Procedure: decomposeFunction(D, j,N )

2 (Zj,Z
ncat,Zcat,Zncat−,Zcat−)← getVariables(D, j,N );

3 ncat ← number of variables in Zcat;

4 Zcat ← Ran (Zcat
1 )× . . .× Ran (Zcat

ncat); set of all ncat-tuples

5 if j = 0 then

6 P ←
⋃

zcat∈Zcat

{
fZncat|Zcat (zncat|zcat)

}
∪ {fZcat (zcat)}; see (14)

7 else

8 if Zj is a categorical random variable then

9 ncat− ← number of variables in Zcat−;

10 Zcat− ← Ran
(
Zcat−

1

)
× . . .× Ran

(
Zcat−
ncat−

)
; set of all ncat−-tuples

11 P ←
⋃

zcat−∈Zcat−

{
fZncat|Zcat− (zncat|zcat−)

}
∪
{
fZj |Zcat− (zj|zcat−)

}
;

12 P ← P ∪
⋃

zcat∈Zcat

{
fZncat|Zcat (zncat|zcat)

}
; see (13)

13 else

14 P ←
⋃

zcat∈Zcat

{
fZncat|Zcat (zncat|zcat)

}
∪
{
fZncat−|Zcat (zncat−|zcat)

}
; see

(12)

15 end

16 end

17 return P

5.3 Parameter Estimation

The key functions to estimate are given by either (12) or (13) for each Xj and (14) for Y

and its parents. Assume that we have D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a

set of |M| = d ∈ N+ indices. Now, we can estimate these probabilities. Essentially, the

following three situations arise:

1. Continuous or ordinal discrete kernel density estimation

2. Constructing (conditional) probability tables with counting

3. Parameter estimation of a given copula and the estimation of continuous and or

discrete CDFs.

The following sections explain these estimation procedures and explain when they arise.
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5.3.1 Kernel Density Estimation

Let Xj be a continuous or ordinal discrete random variable with d realisations x
(l)
j for

l ∈ M and let fXj be the probability function of Xj. Rosenblatt (1956) and Parzen

(1962) show that we can estimate fXj with the kernel density estimator of Xj given by

f̂Xj(xj|h) =
1

dh

∑
l∈M

K
(
xj, x

(l)
j , h

)
(15)

where K(·) is a kernel function and h is the bandwidth parameter and x
(l)
j are realisations

from the data D. h can be estimated from the data itself by means of cross validation.

The unconditional kernel density estimator is given by (15), but we frequently need to

estimate conditional distributions. Let Z be a vector of categorical random variables with

corresponding realisation vector z. Then, we could partition the data for all z such that

we estimate fXj |Z by

f̂Xj |Z

(
xj|z, ĥXj |z

)
≡ 1

dĥXj |z

∑
l∈M:z(l)=z

K
(
xj, x

(l)
j , ĥXj |z

)
(16)

where ĥXj |zcat is either estimated or chosen beforehand. Note that the bandwidth param-

eter is different for each possible realisation z. Using (16) means that we estimate several

unconditional densities only. Although conditional density estimation with bandwidth

selection exists, see Hall, Racine, and Li (2004), it is computationally demanding.

If Xj is continuous, then one could consider the Gaussian kernel given by

K
(
xj, x

(l)
j , h

)
= (2π)−

1
2 exp

−1

2

(
xj − x(l)j

h

)2
 . (17)

Now, let Xj be an ordinal discrete random variable with Ran(X1) = {0, 1, . . . , kj − 1} for

kj ∈ N+. Then, following the suggestion of Aitchison and Aitken (1976), we could use

the kernel given by

K
(
xj, x

(l)
j , h

)
=

kj!∣∣∣xj − x(l)j ∣∣∣!(kj − ∣∣∣xj − x(l)j ∣∣∣)!
h

∣∣∣xj−x(l)j ∣∣∣(1− h)
kj−

∣∣∣xj−x(l)j ∣∣∣. (18)
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The Aitchison and Aitken kernel reduces to a frequency estimator when h→ 0. Using a

frequency estimator, instead of (18), may give unreliable results when we have few obser-

vations.

Kernel density estimation always arises when we need to estimate a conditional prob-

ability function of exactly one non-categorical random variable given either one or more

categorical random variables. This happens in the following situations:

1. The dependent variable Y has exactly one non-categorical parent. This means that

kernel density estimation can be used on fPancat
Y |Y,Pacat

Y
(pancat

Y |y,pacat
Y ) in (14).

2. Explanatory variable Xj is a non-categorical child of Y that does not have any

non-categorical parents. This means that kernel density estimation can be used on

fXj |PaXj

(
xj|paXj

)
.

3. Explanatory variable Xj is a child of Y that has exactly one non-categorical parent.

This means kernel density estimation can be used on fPancat
Xj
|Pacat

Xj

(
pancat

Xj
|pacat

Xj

)
in

(12) or (13). Additionally, if Xj is categorical, then kernel density estimation can

be used on fPancat
Xj
|Xj ,Pacat

Xj

(
pancat

Xj
|xj,pacat

Xj

)
in (13).

We use continuous and ordinal discrete kernel density estimation when the non-categorical

random variable is continuous or ordinal discrete respectively. Kernel density estimation

may also arise when we model multivariate densities, see Section 5.3.3.

5.3.2 Probability Tables and Counting

The construction of (conditional) probability tables arises when we need to estimate

a probability that solely contains categorical random variables. This happens in the

following situations:

1. The estimation of fY |PaY (y|paY ) always requires the construction of a probability

table. We do this for fY,Pacat
Y

(y,pacat
Y ) in (14).

2. Explanatory variable Xj is a categorical child of Y . This means that a conditional

probability table needs to be constructed for fXj |Pacat
Xj

(
xj|pacat

Xj

)
in (13).
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The probabilities can be calculated by means of counting:

f̂Y,Pacat
Y

(
y,pacat

Y

)
≡ 1

d

∑
l∈M

[
y = y(l)

] [
pacat

Y = pa
cat,(l)
Y

]
(19)

and

f̂Xj |Pacat
Xj

(
xj|pacat

Xj

)
≡

∑
l∈M

[
xj = x

(l)
j

] [
pacat

Xj
= pa

cat,(l)
Xj

]
∑
m∈M

[
pacat

Xj
= pa

cat,(m)
Xj

] . (20)

It is possible that (19) equals 0 for some combinations of y and pacat
Y . Moreover, (20)

is undefined for some combinations of xj and pacat
Xj

. In these cases, one might set the

(conditional) probability arbitrarily to a small value ε to avoid having fY,X(y,x) = 0 for

some y and x. Intuitively, if some combination of variables does not occur it does not

necessarily mean that the probability is zero. Strictly speaking, other combinations of

(19) and (20) need to be rescaled when some combinations are set to ε instead of 0.

5.3.3 Copula Parameter Estimation

Equation (8) describes the relation between a joint probability distribution and a copula.

Copula parameter estimation is needed for every probability function that contains at least

two non-categorical random variables. Such probability functions arise in the following

situations:

1. The dependent variable Y has at least two non-categorical parents. We model

fPancat
Y |Y,Pacat

Y
(pancat

Y |y,pacat
Y ) in (14) with (8) and a copula function C. We do this

for each possible y ∈ K and pacat
Y .

2. Explanatory variable Xj is a non-categorical child of Y that has at least one non-

categorical parent. We model fXj ,Pancat
Xj
|Pacat

Xj

(
xj,pancat

Xj
|pacat

Xj

)
with (8) and a copula

function C. We do this for each possible pacat
Xj

.

3. Explanatory variable Xj is a child of Y that has more than one non-categorical

parents. We model

fPancat
Xj
|Pacat

Xj

(
pancat

Xj
|pacat

Xj

)
in (12) or (13) with (8) and a copula function C. We

do this for each possible pacat
Xj

. Additionally, if Xj is categorical, then (8) and a

copula function can also be used on fPancat
Xj
|Xj ,Pacat

Xj

(
pancat

Xj
|xj,pacat

Xj

)
in (13) for each

possible xj and pacat
Xj

.
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Equation (8) requires the estimation of continuous and/or discrete CDFs. We also need

kernel density estimation for each continuous random variable in the joint probability.

Moreover, the chosen copula C contains an unknown parameter θ. As a result, (8) de-

pends on θ as well. In order to obtain estimates θ̂ given realisations of categorical random

variables, we consider a likelihood-based approach.

Given a Bayesian network B, the joint probability can be determined by (11). An expres-

sion for the likelihood of Θ given the data D is given by:

L (Θ|D) ∝
∏
l∈M

fY |PaY

(
y(l)|pa

(l)
Y

) ∏
j∈Nch(Y )

fXj |PaXj

(
x
(l)
j |pa

(l)
Xj

)
.

Then, the log-likelihood is given by (21).

logL (Θ|D) ∝
∑
l∈M

log fY |PaY

(
y(l)|pa

(l)
Y

)
+
∑
l∈M

∑
j∈Nch(Y )

log fXj |PaXj

(
x
(l)
j |pa

(l)
Xj

)
(21)

Maximising the log-likelihood can be done by maximising the log probability functions of

(21) individually.

Let Xncat and Z be vectors of non-categorical and categorical random variables respec-

tively, with Xncat containing at least two random variables. Moreover, let xncat,(l) and z(l)

denote realisation vectors l of Xncat and Z respectively with l ∈ M : z(l) = z. Now, the

parameter (vector) estimate θ̂z can be determined by (22) where fXncat|Z
(
xncat,(l)|z

)
can

be modelled by (8).

θ̂∗z ∈ arg max
θ

 ∑
l∈M:z(l)=z

log fXncat|Z
(
xncat,(l)|z, θ

) (22)

However, (22) requires expressions for FX1|Z, . . . , FXn|Z but these are, in fact, unknown.

Fortunately, we can use the inference function for margins (IFM) approach proposed by

Joe and Xu (1996). Here, we estimate the univariate margins first. Then, we estimate

the multivariate distribution using the estimates for the univariate margins. In this case,

applying IFM means we estimate FX1|Z, . . . , FXn|Z first. Using estimates F̂X1|Z, . . . , F̂Xn|Z
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we obtain θ̂zcat with equation (23)

θ̂z ∈ arg max
θ

 ∑
l∈M:z(l)=z

log f̂Xncat|Z
(
xncat,(l)|z, θ

) (23)

where log f̂Xncat|Z
(
xncat,(l)|z, θ

)
is given by (24) using a notation similar to that in Theorem

4.3.2.

log f̂Xncat|Z
(
xncat,(l)|z, θ

)
=

∑
(
F̂Xj |Z

(
x
∗,(l)
j |z

))
j∈Ndisc

∈ U

(−1)
∑
j∈Ndisc

[
F̂Xj |Z

(
x
−,(l)
j |z

)
=F̂Xj |Z

(
x
∗,(l)
j |z

)]

×D1,...,ncontCXncat|Z

(
F̂Xi1 |Z

(
x
(l)
i1
|z
)
, . . . , F̂Xin |Z

(
x
(l)
in
|z
)
,

FXj1 |Z

(
x
∗,(l)
j1
|z
)
, . . . , FXjn |Z

(
x
∗,(l)
jn
|z
) ∣∣θ)+

∑
i∈N cont

log f̂Xi|Z

(
x
(l)
i |z

)
(24)

Note that the summation of conditional densities f̂Xj |Z does not depend on θ. Therefore,

it is not needed in (23). Having obtained θ̂z, the estimated function for fXncat|Z (xncat|z)

is given (25).

f̂Xncat|Z

(
xncat|z, θ̂z

)
≡

∑
(
F̂Xj |Z(x∗j |z)

)
j∈Ndisc

∈ U

(−1)
∑
j∈Ndisc

[
F̂Xj |Z(x−j |z)=F̂Xj |Z(x∗j |z)

]

×D1,...,ncontCXncat|Z

(
F̂Xi1 |Z (xi1|z) , . . . , F̂Xin |Z (xin|z) ,

FXj1 |Z
(
x∗j1|z

)
, . . . , FXjn |Z

(
x∗jn|z

) ∣∣θ̂z)+
∑

i∈N cont

log f̂Xi|Z (xi|z) (25)

Note that we assume that θ̂z in (23) exists. It is also important to realise that θ̂z is

determined by maximising a likelihood score.

Encoding a categorical random variable as an ordinal discrete random variable might

obscure the true underlying dependencies. To see this, consider a categorical random

variable X1 with Ran (X1) = {a,b,c}, a continuous random variable X2 and some value

y∗ ∈ K of Y . For Y = y∗, let X1 = a be associated with high values of X2, X1 = b be

associated with low values of X2 and X1 = c be associated with average values of X2.
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Using that X1 is categorical means that we can use kernel density estimation to model

X2 given X1 and Y . This would accurately detect the relation between X1 and X2 for

Y = y∗. However, encoding X1 as ordinal discrete such that a = 1, b = 2 and c = 3

might obscure that relation. Now, we use a copula function to model X1 and X2 given Y .

Depending on the copula, we may not detect the dependence properly. For instance, the

Clayton, Frank and Plackett copula given in Table 2 cannot model this accurately. If we

used a = 1, b = 3 and c = 2 instead, then we might have detected a negative correlation

with these copulas.

5.3.4 Estimation Algorithm of Local Probability Functions

An estimation algorithm of all functions belonging to node j given set of nodes N is given

by Algorithm 3, called estimateLocal. In line 2, we get a set P containing all functions

that need to be estimated for j given N . Then, we estimate all functions f ∈ P . Every f

is given in such a way that the estimation techniques can be applied immediately. Note

that f might be conditioned on several categorical random variables.

We use kernel density estimation when f contains exactly one non-categorical random

variable as seen in line 6 to 7. Copula parameter estimation is used when f contains at

least two non-categorical random variables as seen in line 9 to 18. Note that we save

all kernel density estimates and CDF estimates. We use multiple copulas C ∈ C when

the set of copula names C contains more than one name. Using the same C is achieved

when |C| = 1. Lastly, we use (conditional) probability tables when f contains categorical

random variables only, as seen in line 20 to 23.
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Algorithm 3: estimateLocal(D, j,N , C)

Input: data D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

unique indices, index j ∈ {0, . . . , n}, set of nodes to use N ⊆ {0, . . . , n}
such that j /∈ N and a set of copula names C

Result: set of estimated probability functions Θ̂

1 Procedure: estimateLocal(D, j,N , C)
2 P ← decomposeFunction(D, j,N ); get all functions that need to be

estimated for j given N
3 Θ̂← ∅;
4 foreach f ∈ P do

5 if f contains exactly one non-categorical random variable then

6 ĥ← bandwidth parameter determined or estimated beforehand;

7 f̂ ← kernel density estimation using ĥ and D (see Section 5.3.1, (16));

8 Θ̂← Θ̂ ∪
{
f̂
}

;

9 else if f contains more than one non-categorical random variable then

10 foreach continuous random variable Xi ∈ f do

11 ĥ← bandwidth parameter determined or estimated beforehand;

12 f̂Xi ← kernel density estimation using ĥ and D via kernel density

estimation (see Section 5.3.1, (16));

13 ĥ← bandwidth parameter determined or estimated beforehand;

14 F̂Xi ← kernel density estimation using ĥ and D via kernel density

estimation (see Section 5.3.1, (16));

15 Θ̂← Θ̂ ∪
{
f̂Xi

}
∪
{
F̂Xi

}
; needed for predictions

16 end

17 foreach C ∈ C do

18 θ̂ ← copula parameter estimation using all F̂Xi , C and D (see

Section 5.3.3, (23));

19 f̂ ← function given by (25) using all F̂Xi , all f̂Xi , C and θ̂;

20 Θ̂← Θ̂ ∪
{
f̂
}

;

21 end

22 else

23 if f is conditioned on random variables then

24 f̂ ← conditional probability estimation using D (Section 5.3.2,

(20));

25 else

26 f̂ ← (joint) probability estimation using D (Section 5.3.2, (19));

27 end

28 Θ̂← Θ̂ ∪
{
f̂
}

;

29 end

30 end

31 return Θ̂
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5.4 Predicting with PCBNs

Algorithm 3 details how all probability functions belonging to a node j given its parents

can be estimated. These estimated functions can be used to give local predictions. That

is, given (new) data D we can calculate f̂Zj |PaZj
where Zj is the random variable asso-

ciated with node j and PaZj is the vector of random variables that are parents of Zj.

As the actual realisation of Y is unknown, we need to evaluate the estimated function

f̂Zj |PaZj
for all Y = y∗. Then, f̂Zj |PaZj

tells us how likely it is that we observe zj given the

parent realisations including y∗. This has been implemented in Algorithm 4 with data

D =
{(
x
(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+ unique indices.

Given a valid DAG G = (N ,A) as described in Section 5.1, we can get sets of estimated

probability functions Θ̂j by calling estimateLocal on each node j given its parents.

Then, we can construct a PCBN B̂ =
(
G, Θ̂

)
where Θ̂ =

⋃
j Θ̂j is a union of all sets Θ̂j.

Now, we can get values f̂Y,X
(
y∗,x(l)

)
for l ∈ M by calling predictLocal on Y and

all nodes with at least one parent. This has been implemented in Algorithm 5, called

predictWithPCBN.

It is important to note that the outcomes p̂
(l)
y∗ of Algorithm 5 are not necessarily proba-

bilities. In order to get a probability, one needs to normalise over all y ∈ K as shown in

(26). However, p̂
(l)
y∗ can be used when a decision such as (1) is chosen, as the normalisation

does not influence the outcome.

p̂
proper,(l)
y∗ =

p̂
(l)
y∗∑

y∈K
p̂
(l)
y

(26)
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Algorithm 4: predictLocal(D, j,N ,Θ, y∗)

Input: data D =
{(
x
(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

indices where m1 and mm are the first and last index of M respectively,

index j ∈ {0, . . . , n}, set of nodes to use N ⊆ {0, . . . , n} such that j /∈ N ,

set of estimated distributions Θ and guess y∗ ∈ K corresponding to

random variable Y

Result: |M|-tuple with outcomes ˆ̀(m1)
y∗ , . . . , ˆ̀(mm)

y∗ of evaluated functions where

we assume y = y∗

1 Procedure: predictLocal(D, j,N ,Θ, y∗)
2 (Zj,Z

ncat,Zcat,Zncat−,Zcat−)← getVariables(D, j,N );

3 foreach l ∈M do

4
(
zncat,(l), zncat−,(l))← vectors of relations corresponding to Zncat and Zncat−

respectively, with all realisations coming from
(
x
(l)
1 , . . . , x

(l)
n

)
;

5 zcat,(l) ← vector of relations corresponding to Zcat respectively, with all

realisations coming from
(
x
(l)
1 , . . . , x

(l)
n

)
and y = y∗;

6 if j = 0 then

7 `
(l)
y∗ ← f̂Zncat|Zcat

(
zncat,(l)|zcat,(l)

)
f̂Zcat

(
zcat,(l)

)
; see (14)

8 else

9 if Zj is a categorical random variable then

10 zcat−,(l) ← vector of relations corresponding to Zcat− respectively,

with all realisations coming from
(
x
(l)
1 , . . . , x

(l)
n

)
and y = y∗;

11 `
(l)
y∗ ← f̂Zncat|Zcat−

(
zncat,(l)|zcat−,(l)) f̂Zj |Zcat−

(
z
(l)
j |zcat−,(l)

)
;

12 `
(l)
y∗ ← `

(l)
y∗

(
f̂Zncat|Zcat

(
zncat,(l)|zcat,(l)

))−1
; see (13)

13 else

14 `
(l)
y∗ ← f̂Zncat|Zcat

(
zncat,(l)|zcat,(l)

) (
f̂Zncat−|Zcat

(
zncat−,(l)|zcat,(l)

))−1
; see

(12)

15 end

16 end

17 end

18 return
(

ˆ̀(m1)
y∗ , . . . , ˆ̀(mm)

y∗

)
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Algorithm 5: predictWithPCBN(D,B)

Input: data D =
{(
x
(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

indices where m1 and mm are the first and last index of M respectively

and PCBN B = (G,Θ) with DAG G = (N ,A) with set of nodes

N ⊆ {0, . . . , n} and set of arcs A ⊂ N ×N , and set of estimated

distributions Θ containing the range K of Y as it should contain the

probabilities P[Y = y] for all possible y

Result: set with k = |K| |M|-tuples with outcomes p̂
(m1)
y∗ , . . . , p̂

(mm)
y∗ with y∗ ∈ K.

Normalising the outcomes over per l ∈M
1 Procedure: predictWithPCBN(D,B)

2 N ch ← {j : (i, j) ∈ A, i ∈ N} ∪ {0}; set containing Y and all children with at

least one parent

3 foreach y∗ ∈ K do

4

(
p̂
(m1)
y∗ , . . . , p̂

(mm)
y∗

)
← 1; preallocation of evaluated f̂Y,X

(
y∗,x(l)

)
for l ∈M

5 foreach j ∈ N ch do

6 Npa(j) ← {p : (p, j) ∈ A}; set of all parents of j

7

(
ˆ̀(m1)
y∗ , . . . , ˆ̀(mm)

y∗

)
← predictLocal

(
D, j,Npa(j),Θ, y

∗);
8 foreach l ∈M do

9 p̂
(l)
y∗ ← p̂

(l)
y∗

ˆ̀(l)
y∗ ; multiply with evaluated local probability function

given its parents
10 end

11 end

12 end

13 return
{(
p̂
(m1)
y∗ , . . . , p̂

(mm)
y∗

)
: y∗ ∈ K

}
5.5 Structure Learning

Unless provided by previous research or expert knowledge, the underlying graph of a

Bayesian network is unknown and has to be inferred from the data. We developed a greedy

algorithm that starts with an empty network and adds arcs iteratively. The algorithm

consists of the following six steps:

1. Do a baseline estimation of fY (y) and calculate the score. This serves as the bench-

mark score

2. Select an arc out of all possible arcs, favouring arcs connected to Y

3. Estimate a PCBN with the newly added arc on the estimation data

4. Calculate the score on the validation data
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5. Assess the addition and update the sets of arcs, nodes and estimated probability

functions appropriately

6. Go to 2 if the list of possible child nodes N ∗ is not empty and the maximum number

of nodes nmax has not been reached

The greedy algorithm is given by Algorithm 6, called greedyPCBN. Section 5.5.1 to

5.5.4 explain all steps in detail. An implementation that calls greedyPCBN several

times, called the copula spider, is introduced in Section 5.6.

5.5.1 Baseline Estimation

We start with an empty network and get the benchmark estimates in line 2 of greedyPCBN

by calling getBaseValues. These estimates are simply f̂Y (y) for all y ∈ K. Thus, we

only use the dependent variable Y . getBaseValues returns seven objects that will be

used throughout the algorithm: N ∗, the set of nodes that can receive parents; N̂ , the

current set of nodes; Â, the current set of arcs; Aunev, the set of unevaluated arcs; Aforb,

the set of forbidden arcs; Θ̂, the set of estimated probability functions; and s, the score

associated with the PCBN.

5.5.2 Selecting an Arc

Using the set of nodes that can receive parents and the set of unevaluated arcs, we can

select an arc (i, j) that will be added to the network. We select a child j and a parent i in

lines 2 and 3 of getArc. We return (∅, j) if the child j cannot receive a possible parent.

Then, j will be removed from the list of nodes N ∗ as seen in line 6 of greedyPCBN. We

also return (0, j) or (i, 0) if either the child j or the parent i corresponds to the dependent

variable Y .

If i 6= 0, j 6= 0 and i 6= ∅, then we return (i, j) when all (0, i), (i, 0), (0, j) and (j, 0)

have been assessed. If (0, j) has not been evaluated, then we evaluate this addition in-

stead. If this addition does not turn out to be successful, then we remove j from the set

of nodes that can receive parents. Therefore, we do not have to check if (j, 0) has been

evaluated. If (0, j) has been evaluated but (0, i) has not, then we return (0, i) instead. If

both (0, j) and (0, i) have been evaluated whereas (i, 0) has not, then we evaluate (i, 0)

instead. Otherwise, we evaluate (i, j).
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Algorithm 6: greedyPCBN
(
Dest,Dval,N , C, score, nmax, npamax

)
Input: estimation data Dest =

{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈Mest

}
and validation

data Dval =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈Mval

}
where Mest and Mval are

sets of |Mest| ∈ N+ and
∣∣Mval

∣∣ ∈ N+ unique indices respectively, set of

nodes to use N ⊆ {1, . . . , n}, set of copula names C, a scoring function

score, maximum number of nodes nmax ∈ N+ and maximum number of

parents npamax ∈ N
Result: PCBN B̂ =

(
Ĝ, Θ̂

)
1 Procedure: greedyPCBN

(
Dest,Dval,N , C, score, nmax, npamax

)
2

(
N ∗, N̂ , Â,Aunev,Aforb, Θ̂, sbest

)
← getBaseValues(Dest,N );

3 while
∣∣∣N̂ ∣∣∣ > nmax and N ∗ 6= ∅ do

4 (i, j)← getArc(N ∗,Aunev);

5 if j = ∅ then

6 N ∗ ← N ∗ \ {i};
7 next

8 end

9 Npa(j) ←
{
p : (p, j) ∈ Â

}
∪ {i}; select all parents of j

10 Θ̂new ← estimateLocal
(
Dest, j,Npa(j), C

)
∪ Θ̂;

11

(
N̂ new, Ânew

)
←
(
N̂ ∪ {i, j}, Â ∪ {(i, j)}

)
;

12 snew ← score
(
Dval,

((
N̂ new, Ânew

)
, Θ̂new

))
;

13 if snew > sbest then

14

(
N̂ , Â, Θ̂, sbest

)
←
(
N̂ new, Ânew, Θ̂new, snew

)
;

15
(
N ∗,Aunev,Aforb

)
←goodUpdate

(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb, npamax

)
16 else

17
(
N ∗,Aunev,Aforb

)
←badUpdate

(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb

)
18 end

19 end

20 Ĝ ←
(
N̂ , Â

)
;

21 B̂ ←
(
Ĝ, Θ̂

)
;

22 return B̂
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Algorithm 7: getBaseValues(D,N , score, nmax, npamax)

Input: estimation data D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is of

|M| ∈ N+ unique indices, set of nodes to use N ⊆ {1, . . . , n}, scoring

function score, maximum number of nodes nmax and maximum number

of parents per node npamax

Result: set of nodes N ∗ ← N ∪ {0}, set of current nodes N̂ , set of current arcs

Â, set of all unevaluated arcs Aunev, set of all forbidden arcs Aforb, set of

estimated probability functions Θ̂ and score s

1 Procedure: getBaseValues(D,N , score, nmax, npamax)

2

(
N ∗, N̂ , Â

)
← (N ∪ {0}, {0}, ∅);

3
(
Aunev,Aforb

)
← ({(i, j) : i, j ∈ N , i 6= j} , {(i, i) : i ∈ N});

4 Θ̂←
{
f̂Y (y) : y ∈ Ran(Y )

}
;

5 s←score
(
D,
((
N̂ , Â

)
, Θ̂
))

;

6 if nmax = 1 or npamax = 0 then

7 N ∗ ← ∅;
8 end

9 return
(
N ∗, N̂ , Â,Aunev,Aforb, Θ̂, s

)
Note that we do not have to check if arc (j, 0) has been evaluated, whereas we do need to

check if arc (i, 0) has been evaluated. This is because checked if (0, j) had been evaluated.

If it has, it should mean that Y is a parent of node j. Otherwise j should not have been

in the node set N . This line of reasoning does not apply to i. After all, i does not come

the node set N .

It is important to realise that getArc is more likely to return arcs from Y to a ran-

dom variable than vice versa. We do this to ensure that non-complex PCBNs are more

likely to be evaluated first. For instance, if Y already had a continuous parent X1, then

adding another continuous parent X2 means that we have to use copulas, estimated CDFs

and pdfs to model the dependencies. Adding Y to X2 instead means that we only make

use of kernel density estimation.
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Algorithm 8: getArc(N ,A)

Data: set of nodes N ⊆ {0, . . . , n} set of arcs

A ⊆ {(i, j) : (i, j) ∈ {0, . . . , n} × {0, . . . , n}, i 6= j}
Result: selected arc (i, j) with parent i ∈ {0, . . . , n} or i = ∅ and child j ∈ N

1 Procedure: getArc(N ,A)

2 j ← j ∈ N ; select a child

3 i← i ∈ N : (i, j) ∈ A; select a parent

4 if i = ∅ or i = 0 or j = 0 then

5 return (i, j)

6 else if (0, j) ∈ A then

7 i← 0; relationship Xj and Y unknown, estimate Xj with parent Y instead

8 else if (0, i) ∈ A then

9 j ← i; the parent becomes the child

10 i← 0; estimate the relationship of Xi and Y instead

11 else if (i, 0) ∈ A then

12 j ← 0; estimate the relationship of Xi and Y instead

13 return (i, j)

5.5.3 Evaluating Selection

The third step of the algorithm is to evaluate the addition of (i, j). First, we estimate the

new set of probability functions as seen in line 10 of greedyPCBN by calling estimate-

Local on j and its parents, including new parent i. Then, we calculate the new score

snew on the validation data Dval using the new PCBN consisting of the estimated set of

nodes N̂ new, estimated set of arcs Ânew and estimated set of probability functions Θ̂new.

The algorithm does not depend on a particular scoring function. An example for score

is the 0-1-score function given by Algorithm 9. Using 0-1Score is equivalent to adding

arcs based on validation accuracy or hit rate on the validation data. It also equivalent

to using a 0-1-loss function multiplied by -1, as [ŷ = y] = 1 − [ŷ 6= y]. A good score

function produces a higher score s when the prediction is deemed better. This, of course,

depends on the prediction task. If a certain misclassification is deemed worse than other

misclassifications, then score should reflect that.

Calculating the score on validation data, rather than estimation data, aims to prevent

overfitting. However, greedyPCBN does not require nor assume that Dval 6= Dest.

Overfitting can also be prevented by choosing penalised scores.
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Algorithm 9: 0-1Score(D,B)

Input: data D =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

unique indices where m1 and mm are the first and last index of M
respectively and PCBN B = (G,Θ) with DAG G = (N ,A) with set of

nodes N ⊆ {0, . . . , n} and set of arcs A ⊂ N ×N , and set of estimated

distributions Θ containing the range K of Y as it should contain the

probabilities P[Y = y] for all possible y

Result: score s

1 Procedure: 0-1Score(D,B)

2 Dval ←
{(
x
(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
; remove Y

3

{(
p̂
(m1)
y∗ , . . . , p̂

(mm)
y∗

)
: y∗ ∈ K

}
← predictWithPCBN

(
Dval,B

)
; get

predictions

4 s← 0 foreach l ∈M do

5 ŷ(l) ← ŷ(l) ∈ arg max
y∗∈K

p̂
(l)
y∗ ; see (1)

6 s← s+
[
ŷ(l) = y(l)

]
; 1 if we made a good prediction, zero otherwise: score

behaves similar to a 0-1-loss function multiplied by -1
7 end

8 return s

5.5.4 Implementing Update

The final step of greedyPCBN is to update the network based on our new score snew as

seen in line 14 to 19. We use goodUpdate and badUpdate if the new score is greater

or worse than the current score of the network respectively.

The first step of goodUpdate is to remove (i, j) from the set of unevaluated arcs, as it

has just been evaluated. Then, we must ensure that child j cannot become a parent of

certain nodes. Specifically, if i cannot become a parent of nodes p1, . . . , pn, then j should

also not be allowed to become a parent of these nodes. This means that j cannot become

a parent of i, as i cannot become a parent of i.

If the child j is the dependent variable, then its parent i should not be allowed to get

any parents itself. Then, we also remove i from the set of possible children N ∗. This has

been implemented in line 7 to 9. Lastly, we remove j from the set of possible children if

its number of parents exceed the specified maximum npamax.
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Algorithm 10: goodUpdate
(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb, npamax

)
Input: indices i, j ∈ {0, . . . , n}, set of nodes N ⊆ {0, . . . , n} : i, j ∈ N , sets of

nodes N ∗, N̂ ⊆ N , sets of arcs Â,Aunev ⊂ N ×N , set of arcs

Aforb ⊆ N ×N and maximum number of nodes npamax ∈ N
Result: updated N ∗,Aunev and Aforb

1 Procedure: goodUpdate
(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb, npamax

)
2 N ← N ∪ {0}; all possible nodes

3 Aunev ← Aunev \ {(i, j)};
4 Aallf ←

{
(j, p) : (i, p) ∈ Aforb, p ∈ N

}
; if i is not allowed to go to p then j

should also not be allowed to go to p, note that (i, i) ∈ Aforb

5
(
Aforb,Aunev

)
←
(
Aforb ∪ Aallf,Aunev \ Aallf

)
;

6 if j = 0 then

7 Aallf ← {(p, i) : p ∈ N}; Xi goes to Y , meaning Xi should not get any

parents

8 N ∗ ← N ∗ \ {i}; remove i from possible set of children

9
(
Aforb,Aunev

)
←
(
Aforb ∪ Aallf,Aunev \ Aallf

)
;

10 end

11 Ato(j) ←
{

(p, j) : (p, j) ∈ Â, p ∈ N
}

; set of arcs to j

12 if
∣∣Ato(j)

∣∣ = npamax then

13 Aunev ← Aunev \ {(p, j) : p ∈ N}; remove all unevaluated p→ j

14 Aforb ← Aforb ∪
(
{(p, j) : p ∈ N} \ Ato(j)

)
; forbid influx from other random

variables to j

15 N ∗ ← N ∗ \ {j};
16 end

17 return
(
N ∗,Aunev,Aforb

)
The first step of badUpdate is to remove (i, j) from the set of unevaluated arcs, identical

to the first step of goodUpdate. If the parent Xi is in fact Y , then we remove j from

the set of possible child nodes. We do this as adding Y → Xj does not increase the score,

meaning that Xj cannot receive any parents. If Xj is in fact Y and if the arc (j, i) has

been evaluated, then we remove i as neither Xi → Y nor Y → Xi will be used. Lastly,

we remove j from the set of possible child nodes when there is not a single arc (i, j) left

to evaluate.

An arc (i, j) that does not increase the score s may at some point in future, when other

random variables have been added, increase the score. This might happen when random

variables jointly depend on Y . A possible solution is to make use of a TABU list to make

certain arcs unevaluated. Another solution, that is not guaranteed to add arc (i, j), is
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to rerun the procedure. It is possible that (i, j) increases the score when other random

variables have been added.

Algorithm 11: badUpdate
(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb

)
Input: indices i, j ∈ {0, . . . , n}, set of nodes N ⊆ {0, . . . , n} : i, j ∈ N , sets of

nodes N ∗, N̂ ⊆ N , set of arcs Â,Aunev ⊂ N ×N and set of arcs

Aforb ⊆ N ×N
Result: updated N ∗,Aunev and Aforb

1 Procedure: badUpdate
(
i, j,N ,N ∗, N̂ , Â,Aunev,Aforb

)
2 N ← N ∪ {0}; all possible nodes

3 Aunev ← Aunev \ {(i, j)};
4 if i = 0 then

5 N ∗ ← N ∗ \ {j}; Y → Xj was unsuccesful, meaning Xj cannot become a

child of any variable

6 Aallf ← {(p, j) : p ∈ N}; Xj should not get any parents

7
(
Aforb,Aunev

)
←
(
Aforb ∪ Aallf,Aunev \ Aallf

)
;

8 else if j = 0 and (j, i) /∈ Aunev then

9 N ∗ ← N ∗ \ {i}; Xi → Y was unsuccesful and Y → Xi has been checked

already, meaning Xi cannot become a child of any variable

10 Aallf ← {(p, i) : p ∈ N}; Xi should not get any parents

11
(
Aforb,Aunev

)
←
(
Aforb ∪ Aallf,Aunev \ Aallf

)
;

12 Aunev
to(j) ← {(p, j) : (p, j) ∈ Aunev, p ∈ N}; set of unevaluated arcs to j

13 if
∣∣∣Aunev

to(j)

∣∣∣ = 0 then

14 N ∗ ← N ∗ \ {j}; make sure j cannot be selected as a child

15 end

16 return
(
N ∗,Aunev,Aforb

)
5.6 Copula Spider

Applying the greedy algorithm greedyPCBN merely once has two major drawbacks.

First of all, the procedure might get stuck in local optima due to the greedy nature of the

algorithm. This means that the returned PCBN does not necessarily have good predictive

performance. Secondly, the algorithm should ideally not depend on a particular choice for

the validation data. A solution to these problems is to run greedyPCBN several times

while simultaneously varying the validation data, which we implemented in Algorithm 12.

We call this algorithm copulaSpider, as it creates several networks which can be seen

as elaborate webs which all connect the variables to one another.
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Algorithm 12: copulaSpider
(
D, nweb, nrun, split,N , C, score, nmax, npamax

)
Input: data D =

{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M

}
where M is a set of |M| ∈ N+

unique indices, number of PCBNs to create nweb ∈ N+, number of reruns

per PCBN nrun ∈ N+, function create, parameters N , C, score, nmax

and npamax as given in greedyPCBN

Result: nweb PCBNs B̂1, . . . , B̂nweb

1 Procedure: copulaSpider
(
D, nweb, ncheck, split,N , C, score, nmax, npamax

)
2

(
B̂1, . . . , B̂nweb

)
← (∅, . . . , ∅);

3 foreach i ∈
{

1, . . . , nweb
}

do

4
(
Dest,Dval

)
← create(D, . . .);

5 sbest ← 0;

6 foreach j ∈ {1, . . . , nrun} do

7 B̂i,j ←greedyPCBN
(
Dest,Dval,N , C, score, nmax, npamax

)
;

8 snew ← score
(
Dval, B̂i,j

)
;

9 if snew >best then

10

(
B̂i, sbest

)
←
(
B̂i,j, snew

)
; choose the PCBN with the highest

validation accuracy
11 end

12 end

13 end

14 return B̂1, . . . , B̂nweb

The spider requires some function create that creates estimation and validation data.

If we want Dest ∩ Dval = ∅, then we could construct the estimation and validation as

Dest =
{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈M \Mi

}
and Dval =

{(
y(l), x

(l)
1 , . . . , x

(l)
n

)
: l ∈Mi

}
respectively, for each i ∈

{
1, . . . , nweb

}
. Without loss of generality, let M = {1, . . . , d}

where d ∈ N+. Then, using Mi = {b(i− 1)mc+ 1, . . . , bimc} where m = d
(
nweb

)−1
means we construct Dest and Dval as if we are doing cross-validation. For instance, if

d = 1000 and nweb = 4, then we have M1 = {1, . . . , 250}, M2 = {251, . . . , 500}, M3 =

{501, . . . , 750} and , M4 = {751, . . . , 1000}.
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6 Simulation Design

The newly introduced predictive copula Bayesian network (PCBN) allows ordinal discrete

random variables to be modelled explicitly. My simulation design aims to illustrate the

performance gains that can be reached by modelling ordinal discrete variables explicitly.

The simulation algorithm is given by Algorithm 13. We create one continuous explanatory

variable X1, two ordinal discrete random variables X2 and X3 and a categorical dependent

variable Y with Ran(Y ) = {1, 2, 3, 4}. Two thirds of the simulated realisations belong to

in-sample data Din and one third belongs to the out-sample data Dout.

We simulate X1 and X2 so that they follow a bivariate Clayton distribution with pa-

rameter θ = 2τ (1− τ)−1 in line 4 to 7. Note that τ can be interpreted as Kendall’s tau.

To simulate values from the Clayton copula, we use the conditional distribution method as

described in Embrechts, Lindskog, and McNeil (2001). We also simulate X2 and X3 from

a bivariate Clayton copula with the same parameter θ. Therefore, X2 is correlated with

both X1 and X3. More information about the Clayton copula is included in Appendix

A.4.1.

Table 1: Parameter settings for each explanatory variable X1, X2 and X3 per category of Y belonging
to the simulation algorithm given by Algorithm 13. The table should be read as follows: 1−X1|Y = 1 ∼
Weibull(1.0, 1.5) and X1|Y = 2 ∼Weibull(1.5, 1.0)

Variable 1 2 3 4

Reflected
X1 yes yes
X2 yes yes
X3 yes yes

Scale X1 1.0 1.5 1.0 1.5
Shape X1 1.5 2.0 1.5 2.0

We transform some Xi|Y = y to 1 − Xi|Y = y for specific combinations of i and y.

That way, we have both positive and negative dependencies between variables per y. We

transform all (possibly reflected) X1 to a Weibull scale as shown in Table 1. We transform

X2 and X3 to Ran(X2) = Ran(X3) = {1, 2, 3, 4, 5} as seen in line 16 and 17 of Algorithm

13.
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Algorithm 13: Simulation design

Input: number of data points to simulate d ∈ {4, 5, . . .} and correlation measure

τ ∈ (0, 1)

Result: in-sample data Din and out-sample data Dout

1 Procedure:

2 θ ← 2τ (1− τ)−1; calculates θ for bivariate Clayton using τ as Kendall’s tau

3 c←
⌊
d
4

⌋
; minimum number of observations per category

4
(
z(1), . . . , z(2d)

)
← z(1), . . . , z(2d) ∈ (0, 1); generate 2d uniform values

5

(
x
(1)
1 , . . . , x

(d)
1

)
← x

(1)
1 , . . . , x

(d)
1 ∈ (0, 1); generate d uniform values

6

(
x
(1)
2 , . . . , x

(d)
2

)
←

(((
x
(l)
1

)−θ (
z(l)
)θ(1+θ)−1−1

+ 1

)−θ−1
)
l∈{1,...,d}

; now each

pair x
(l)
1 and x

(l)
2 d comes from a bivariate Clayton distribution with

parameter θ, see e.g. Embrechts et al. (2001)

7

(
x
(1)
3 , . . . , x

(d)
3

)
←

(((
x
(l)
2

)−θ (
z(l+d)

)θ(1+θ)−1−1
+ 1

)−θ−1
)
l∈{1,...,d}

;

8

(
x
(1)
1 , . . . , x

(c)
1

)
←
((
− log x

(1)
1

) 2
3

)
l∈{1,...,c}

; to Weibull

9

(
x
(c+1)
1 , . . . , x

(2c)
1

)
←
(

3
2

(
− log

(
1− x(1)1

)) 1
2

)
l∈{c+1,...,2c}

;

10

(
x
(2c+1)
1 , . . . , x

(3c)
1

)
←
((
− log

(
1− x(1)1

)) 2
3

)
l∈{2c+1,...,3c}

;

11

(
x
(3c+1)
1 , . . . , x

(d)
1

)
←
(

3
2

(
− log x

(1)
1

) 1
2

)
l∈{3c+1,...,d}

;

12

(
x
(2c+1)
2 , . . . , x

(d)
2

)
←
(

1− x(l)2
)
l∈{2c+1,...,d}

; invert

13

(
x
(1)
3 , . . . , x

(c)
3 , x

(2c+1)
3 , . . . , x

(3c)
3

)
←
(

1− x(l)3
)
l∈{1,...,c,2c+1,...,3c}

;

14 foreach l ∈ {1, . . . , d} do

15 y(l) ← 1[l∈{1,...,c}]2[l∈{c+1,...,2c}]3[l∈{2c+1,...,3c}]4[l∈{3c,...,d}]; dependent variable

16 x
(l)
2 ← 1

[
x
(l)
2 ≤0.1

]
2

[
x
(l)
2 ∈(0.1,0.25]

]
3

[
x
(l)
2 ∈(0.25,0.45]

]
4

[
x
(l)
2 ∈(0.45,0.75]

]
5

[
x
(l)
2 >0.75

]
;

17 x
(l)
3 ← 1

[
x
(l)
3 ≤0.1

]
2

[
x
(l)
3 ∈(0.1,0.25]

]
3

[
x
(l)
3 ∈(0.25,0.45]

]
4

[
x
(l)
3 ∈(0.45,0.75]

]
5

[
x
(l)
3 >0.75

]
;

18 end

19 M←M⊂ {1, . . . , d} : |M| =
⌊
2d
3

⌋
;

20 Din =
{(
y(l), x

(l)
1 , x

(l)
2 , x

(l)
3

)
: l ∈M

}
; random selection of two thirds

21 Dout =
{(
y(l), x

(l)
1 , x

(l)
2 , x

(l)
3

)
: l ∈ {1, . . . , d} \M

}
;

22 return
(
Din,Dout

)
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Table 1 shows that X1 behaves differently for each possible y ∈ {1, 2, 3, 4}. This is not

the case for either X2 nor X3. After all, X2|Y = 1 and X2|Y = 2 behave in an iden-

tical manner and cannot be distinguished from one another. This is also the case for

X2|Y = 3 compared to X2|Y = 4, X3|Y = 1 compared to X3|Y = 3 and X3|Y = 2 com-

pared to X3|Y = 4. Assessing X2 and X3 jointly allows one to identify Y more accurately.

Both X2|Y = 3 and X3|Y = 3 are reflected, meaning that have a positive Pearson

correlation. However, X2|Y = 2 and X3|Y = 2 also exhibit positive dependence. The

difference between the former and the latter pair can be seen when one examines tail

dependence. As both X2 and X3 come from a bivariate Clayton distribution, X2|Y = 2

and X3|Y = 2 have lower tail dependence Nelsen (2007) which means that the reflected

pair X2|Y = 3 and X3|Y = 3 has upper tail dependence.

As seen in line 16 and 17 of Algorithm 13, not all values of X2 and X3 have an equal

chance of appearing. The proportion of categories of Y is evenly spread, however. Section

7 elaborates on the numerical results obtained from running this simulation procedure.
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7 Numerical Results

This sections implements the simulation design described in Section 6 and shows the

advantage of modelling ordinal discrete variables explicitly. We use the copulaSpider

approach described in Section 5.6. Table 2 shows the cumulative distribution functions

(CDFs) of the copulas that we use.

Table 2: Bivariate cumulative distribution functions CU1,U2
(u1, u2|θ) of the strict Clayton, strict re-

flected R1,2 Clayton (also known as the survival Clayton copula), Frank and Plackett copula. The
appendix contains derivations of their mixed derivatives

CDF Appendix

Clayton
(
u−θ1 + u−θ2 − 1

)−θ−1

A.4.1

R1,2 Clayton u1 + u2 − 1 +
(

(1− u1)−θ + (1− u2)−θ − 1
)−θ−1

-

Frank −1
θ

log

(
1 +

(e−θu1−1)(e−θu2−1)
e−θ−1

)
A.4.2

Plackett
1+(θ−1)(u1+u2)−((1+(θ−1)(u1+u2))2−4u1u2θ(θ−1))

1
2

2(θ−1) A.4.3

We use the term reflection rather than rotation due to multiple definitions of rotation

that exist in the literature. Information regarding reflection of n-variate copulas, as well

as the reflection operator, can be found in Appendix A.3. We provide and prove a general

formula for any reflected n-variate copula, see Theorem A.3.4. The R1,2 Clayton copula

follows immediately from that theorem.

Both the Frank and the Plackett copula can model positive and negative dependence.

They also exhibit radial symmetry (Nelsen, 2007), meaning that the R1,2 reflection results

in the same copula. Therefore, reflections of these copulas do not need to be considered.

This is not the case for the Clayton copula, however. The Clayton copula has lower-tail

dependence (Nelsen, 2007). This means that the R1,2 reflection has upper-tail dependence

and can be considered a distinct copula. Moreover, the strict Clayton copula cannot model

negative dependence. Modelling negative dependence with the strict Clayton copula can

be done by adding a rotation in one of its arguments. For instance, both the R1 Clayton

and R2 Clayton copula can model negative dependence. A different specification of the

Clayton copula allows one to model negative dependence in a limited manner. As this is

restrictive, we do not consider this specification.
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We implemented all algorithms in R (R Core Team, 2018). The key algorithm

greedyPCBN requires a function score. We use score = 0-1Score, which predicts

with the constructed PCBN per arc under consideration. This score function ensures

that a higher score corresponds to a better predictive accuracy, without assuming that

certain misclassifications are worse than others. A näıve or memory-efficient implementa-

tion would be to re-predict the total probabilities each time. However, this is unnecessary

as many functions do not change per iteration of greedyPCBN. Therefore, we save all

predicted values per PCBN while it is being constructed. Although this saves a lot of

time, it is not memory efficient. However, we find that the memory in use never exceeded

100MB for the cases examined.

To estimate the densities and distributions, we use the np package in by Hayfield and

Racine (2008) which implements estimation based on Li and Racine (2003). The np al-

lows me to use the Gaussian and Aitchison kernel given by 17 and 18 respectively. The

bandwidth is calculated by means of cross-validation. The np package also implements

distribution estimation which we use to estimate CDFs. Although conditional density

and distribution estimation appears in np, the run times are substantial. Due to the fact

that greedyPCBN requires many densities and distributions to be estimated, we do not

use these techniques.

The copula parameters are estimated with the method of Brent (1973). This is a derivative-

free method that requires an interval. We use several start and end points and choose the

value that maximises the log-likelihood function. Other optimisation methods, such as L-

BFGS, were ill-behaved. This may happen when the copula likelihood function is very flat.

We use Algorithm 13 for two scenarios. For the first scenario, we simulate 25 data

sets using n = 3000 and τ = 0.8, meaning that each in-sample and out-sample data set

consists of 2000 and 1000 realisations respectively. A τ of 0.8 means the variables are

highly correlated. The data sets contain three explanatory variables X1, X2 and X3 and

one dependent variable Y that can attain four different values.

We use a simple logit specification with an intercept and individual-specific X1, X2 and
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X3 as a benchmark model, see Train (2009) for more information. We use the mlogit

by Croissant (2018) which uses maxLik (Henningsen & Toomet, 2011) for its maximum-

likelihood estimator. We estimate the logit model on in-sample data and use the estimated

model to predict values of the out-sample data. Then, we calculate the accuracy on both

the in-sample and out-sample data, where the accuracy is defined as the number of cor-

rectly classified observations divided by the total number of observations. The logit model

has an in-sample accuracy of 0.34 with a standard deviation of 0.06 and an out-sample

accuracy of 0.32 with a standard deviation of 0.06.

The PCBNs allows ordinal discrete variables to be modelled appropriately. That is, we

do not have model the discrete variables as if they were continuous. We use the cross-

validation copulaSpider as described in Section 5.6 with number of webs nweb = 4,

number of runs per web nrun = 3, score = 0-1Score and maximum number of parents

npamax = 2. We choose npamax = 2 as copula functions become more complicated when the

number of random variables increases. Moreover, one-parameter copula functions become

less appropriate. After all, there is only one parameter that models the dependency of

these random variables.

The specification means that we partition each in-sample data set into an estimation

set and a validation set four times. The estimation set is used for the estimation of the

parameters, whereas the validation set is used to determine whether or not the network

has predictive power. We construct a PCBN three times per estimation set and use the

network with the highest accuracy on the validation set. Using this procedure, we end

up with nweb = 4 different networks. We use two different strategies to determine how

predictions are made. The first strategy is to select the network with the highest in-sample

accuracy. The second strategy is to make predictions with each network and use popu-

larity voting to make the final prediction. That is, we choose a value y ∈ {1, 2, 3, 4}, per

realisation, that is most often predicted by the individual networks for that realisation.
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Table 3: Discrepancy between the correctly-specified cross-validation copulaSpiders (Regular) and
the spiders assuming that all variables are continuous (Continuous). This table shows the mean and
standard deviation of in-sample and out-sample accuracy of the spiders using nweb = 4, nrun = 3, score
= 0-1Score, nmax = ∞, npamax = 2, the network with the highest in-sample accuracy is reported and
used for the out-sample prediction, for 5 different copulas on 25 data sets created by Algorithm 13 using
n = 3000 and τ = 0.8. The names refer to the copula forms used, where R∗ Clayton means that all
reflections of the Clayton copula are used

Clayton R1,2 Clayton R∗ Clayton Frank Plackett

Regular
in

0.80 0.79 0.80 0.81 0.81
(0.02) (0.01) (0.02) (0.01) (0.01)

out
0.80 0.79 0.80 0.81 0.81

(0.02) (0.02) (0.02) (0.02) (0.02)

Continuous
in

0.78 0.74 0.78 0.79 0.77
(0.02) (0.05) (0.02) (0.01) (0.03)

out
0.78 0.73 0.77 0.79 0.77

(0.02) (0.05) (0.03) (0.02) (0.03)

Table 3 shows the accuracies for the strict Clayton, strict reflected R1,2 Clayton, Frank

and Plackett copula spiders using the the networks with the highest in-sample accuracy.

The results next to Regular indicate that correctly-specified spiders are used. The results

next to Continuous indicate that the spider has modelled all discrete variables as if they

were continuous. We also use a specification R∗ that chooses, for each possible copula that

may occur, the best reflection of the Clayton copula. Thus, we estimate all reflections

and choose the reflection that maximises the likelihood score.

Table 3 clearly shows that the accuracies of the correctly-specified spiders are higher,

although the differences are small. The average accuracies of the miss-specified Clayton

copula are 0.02 percentage points lower. The differences vary across copulas, however.

For instance, correctly specifying the Plackett copula leads to an average accuracy in-

crease of about 0.04 percentage points. The accuracies of the correctly-specified copulas

are similar, with the Frank and Plackett copula having the highest accuracy.
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Table 4: Discrepancy between the correctly-specified cross-validation copulaSpiders (Regular) and
the spiders assuming that all variables are continuous (Continuous). This table shows the mean and
standard deviation of in-sample and out-sample accuracy of the spiders using nweb = 4, nrun = 3, score
= 0-1Score, nmax = ∞, npamax = 2, using popularity voting to determine the final prediction, for 5
different copulas on 25 data sets created by Algorithm 13 using n = 3000 and τ = 0.8.

Clayton R1,2 Clayton R∗ Clayton Frank Plackett

Regular
in

0.77 0.77 0.78 0.78 0.79
(0.07) (0.04) (0.03) (0.04) (0.04)

out
0.76 0.77 0.78 0.77 0.78

(0.07) (0.04) (0.03) (0.05) (0.04)

Continuous
in

0.71 0.71 0.73 0.75 0.73
(0.08) (0.07) (0.07) (0.06) (0.06)

out
0.71 0.71 0.73 0.75 0.73

(0.08) (0.08) (0.07) (0.06) (0.06)

Table 4 shows the accuracies for the same copulas using popularity voting. There are

two major differences between Table 3 and 4. First, popularity voting seems to increase

the standard deviation in this case. This happens when either one or more networks

are significantly worse than the others. Increasing the number of reruns nrun does not

necessarily mitigate this problem, as it could be that the estimation or validation sample

is dissimilar from the in-sample and out-sample data. Secondly, the average accuracies

are lower. This is due to some accuracies being significantly lower from the others. For

instance, the average in-sample accuracy of the Clayton copula is 0.77, whereas its lowest

in-sample accuracy is 0.55.

Due to the higher standard deviations, we cannot claim that the correctly-specified copu-

las have significantly higher average accuracies. However, the accuracies of miss-specified

copulas compared to correctly-specified copulas are lower in actuality.

For the second scenario, we simulate 25 data sets using n = 3000 and τ = 0.4. Us-

ing the logit model as a benchmark, we obtain an average in-sample accuracy of 0.34 with

a standard deviation of 0.03 and an average out-sample accuracy of 0.32 with a standard

deviation of 0.02. The logit has the same average accuracies in both scenarios, whereas

the standard deviation is lower in the latter scenario. Intuitively, the logit model is hin-

dered by strongly correlated explanatory variables.
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We use the Plackett copulaSpider on the simulated data, similar to before. Table

5 shows that, compared to scenario 1, the spider is hindered by the lower correlation.

This is not surprising, as the framework uses the correlation between random variables

to make its predictions. In scenario two, the correlation between variables is more diffi-

cult to detect which makes the model perform worse. As before, the correctly-specified

copula spider performs slightly better than the miss-specified counterpart. However, the

results are very similar. In actuality, the correctly-specified Plackett spider almost always

outperforms the miss-specified one.

Table 5: Mean and standard deviation of in-sample and out-sample accuracy of the correctly-specified
cross-validation Plackett copulaSpiders (Reg.), the spiders assuming that all variables are continuous
(Cont.) using nweb = 4, nrun = 3, score = 0-1Score, nmax = ∞, npamax = 2. The second and fourth
spider (pop) make use of popularity voting to determine the final prediction, whereas the other spiders
use the web with the highest in-sample accuracy for the out-sample. The spiders ran on 25 data sets
created by Algorithm 13 using n = 3000 and τ = 0.4.

Reg. Plackett Reg. Plackett (pop) Cont. Plackett Cont. Plackett (pop)

in
0.56 0.55 0.55 0.53

(0.02) (0.03) (0.02) (0.04)

out
0.55 0.54 0.54 0.52

(0.03) (0.03) (0.03) (0.04)
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8 Empirical Application

To illustrate that the framework has predictive power in empirical settings, we use the

ModeChoice as given in the Ecdat package (Croissant, 2016). This data has been

analysed by Greene (2003), which allows us to compare the predictive copula Bayesian

networks to tried models.

The data contains 210 observations belonging to 210 individuals who chose a particu-

lar mode of travel given some mode-specific characteristics. The possible choices were air,

bus, car or train. The mode-specific characteristics are a terminal waiting time ttme, in-

vehicle costs invc, in-vehicle travel time invt and some generalised costs gc. The terminal

waiting time for car is zero. Then, we also have the household income hinc belonging to

the individual. There is also a variable psize, described in (Croissant, 2016) as the party

size of mode chosen. This variable should not be used as it is endogenous.

We randomly order the data and do a 3-fold cross validation. We use both a logit model

and nested logit model as given in Greene (2003), see Train (2009) for elaborate in-

troduction to (nested) logit models. Both logit models are estimated on the in-sample

data and are used to predict on the out-sample data. Note that each in-sample data set

contains solely 140 observations. We use the cross-validation Frank and Plackett copu-

laSpider as described in Section 5.6 with number of webs nweb = 2, number of runs per

web nrun = 5, score = 0-1Scoreand maximum number of parents npamax = 2. As the

in-sample contains 140 observations, each estimation and validation sample contains 70

observations. We construct a PCBN five times per estimation set and use the network

with the highest accuracy on the validation set. Thus, we end up with nweb = 2 different

networks. Then, we select the network with the highest in-sample accuracy and use that

for the out-sample prediction. As the terminal waiting time ttme for car is zero, it is not

used by the copula spiders.
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Table 6: Mean and standard deviation of the in-sample and out-sample accuracy of the 3-fold cross-
validation results on ModeChoice data of Croissant (2016), using the Plackett and Frank copulaSpider
with nweb = 2, nrun = 5, score = 0-1Score, nmax = ∞, npamax = 2. The spiders use the web with
the highest in-sample accuracy for the out-sample predictions. The logit specifications used are given in
Greene (2003)

Plackett PCBN Frank PCBN Nested Logit Logit

in
1.00 1.00 0.70 0.70

(0.00) (0.00) (0.04) (0.08)

out
0.99 0.98 0.69 0.67

(0.01) (0.02) (0.06) (0.05)

Table 6 shows the average accuracies of all four models. It is clear that the Plackett and

Frank spiders outperform the logit models in terms of predictive accuracy. The average

in-sample accuracy is 1.00 for both copula spiders and the average out-sample accuracy

is almost 1.00.

The reported in-sample accuracy of the regular logit model is higher than what we may

expect from (Greene, 2003). Greene estimates a logit model on the entire data set. Cal-

culating the in-sample hit rate from Table 23.25 gives an accuracy of 0.52, but this is

not correct. Greene reports βG = −0.15501, but this should actually be −0.01550. Using

the correct value for βG, we would obtain an in-sample hit rate of 0.69. Table 6 shows

that the nested logit specification performs slightly better than the simple logit, but the

differences are minimal.

Table 7 shows the number of times that each variable appears in the three networks

for the Frank and Plackett copulaSpider. The terminal waiting time appears most of-

ten in all webs of both the Frank and Plackett spider. Therefore, ttme could be considered

the most important variable. The spiders also consistently pick up a correlation between

the terminal waiting time of bus and train that helps to predict the choice mode.

In-vehicle travel time appears to be less important than terminal waiting time. Inter-

estingly, the in-vehicle travel time of air is used only once by the Frank spider and it is

not used at all by the Plackett spider. A possible explanation for this is that the terminal

waiting time is considered to be bothersome, whereas the in-vehicle travel time could be

neutral. Another possibility is that the terminal waiting time of air dominates the choice
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mode decision. Lastly, the generalised costs of car are always used by the spiders. It

appears that the greatest prohibition of taking the car are in fact the costs of the car.

Table 7: Number of times that each variable appears in the three networks for the Frank and Plackett
copulaSpider. Choice refers to dependent variable which always appears in each network and bus&train
refers to arc between ttme for bus and ttme for train

Frank Plackett

choice all 3 3
hinc all 2 2

ttme

air 3 3
train 3 3
bus 3 3
bus&train 2 3

invt

air 1 -
train 1 2
bus 2 3
car 1 2

invc

air 2 3
train 1 2
bus 2 1
car 1 -

gc

air 1 2
train 1 -
bus 1 2
car 3 3

Importantly, the choice of the copulas under consideration does not seem to alter the

predictive performance noticeably. This is similar to the results found in Section 7.

Figure 8 shows the resulting graphs for the Plackett copulaSpider. Here, all arcs

of the same colour make a directed acyclic graph. Figure 8 shows that the Plackett spider

picks up correlations between the terminal waiting times. The in-vehicle travel times are

occasionally modelled by copulas as well. Interestingly, the spiders do not pick up direct

dependencies between the in-vehicle travel times and terminal waiting times.
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Figure 2: Resulting graphs of the Plackett copulaSpider where all arcs of the same colour make
one graph. The variable names, in combination with the icons, correspond to random variables and the
arrows correspond to directed arcs

Occasionally, the Plackett spider picks up a correlation between in-vehicle costs and gen-

eralised costs that helps predict the mode.
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9 Conclusion and Discussion

The goal of this thesis is to increase the applicability and predictive performance of copula-

based Bayesian network classifiers. These models fall under probabilistic classification,

meaning that we model a joint distribution where the actual classification is based on a

decision rule. As we can only use in-sample data, it is not trivial to get a classifier with

good out-sample predictive power.

We set out specific goals that this thesis aims to reach. The first goal was to develop

a framework that allows continuous, ordinal discrete and categorical explanatory vari-

ables to be modelled accurately. That is, we should not have to pretend that ordinal

variables are continuous. Moreover, the framework should allow continuous nodes to have

categorical children. We successfully developed a framework, called the predictive copula

Bayesian network (PCBN), that reaches the first goal. Therefore, the applicability of

copula-based Bayesian networks has been increased.

If one supplies a graph, then the framework can estimate the model associated with

that graph. However, there are possibly many graphs that one could supply. We devel-

oped a greedy algorithm that constructs a PCBN from the data. This algorithm uses an

estimation set to determine the parameters and a validation set to assess whether nodes

and arcs may be added to the network. This approach reduces the chances of over fitting

the data which would have hindered the out-sample performance. We use a technique,

which we call the copula spider, that creates several PCBNs from the data.

In order to assess the predictive capabilities and performance gains of my approach, we

consider both simulated and empirical data. We use the strict Clayton, strict reflected

Clayton, Frank and Plackett copulas. We also use a variant which assesses all possible

reflections of the Clayton copula. The simulation design shows that correctly modelling

the explanatory variables leads to increases in both in-sample and out-sample accuracy.

These gains become more apparent when the data is strongly correlated. Although the

copulas behave differently, the specification of the copula does not influence the predictive

performance noticeably.
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We use travel mode data as an empirical application. The empirical case clearly illus-

trates that PCBNs, constructed using the proposed copula spider approach, can greatly

outperform competing models. We find that the Frank and Plackett PCBNs can attain

a near-perfect hit rate of 1. Importantly, the choice of the copula does not seem to alter

the predictive accuracy by much.

Although the merits of my methods have been shown, we restricted the number of parent

nodes to not exceed 2. Further research could be done to assess the PCBNs when the

number of parents is allowed to be greater than two. Easily differentiable copulas would

help ensure that the optimisation methods work. We also did not consider copulas that

have multiple unknown parameters. Further research could be conducted to see if these

could more accurately model data.

A possible extension of the PCBN might be to model a multivariate dependent vari-

able rather than a univariate dependent variable. Then, the model only has to consider

the Markov blanket of all dependent variables, where the dependent variables may be

linked in some way. Another extension is to let the dependent variable be ordinal discrete

rather than categorical. Further research could be conducted to see if the PCBNs can be

applied to different settings.
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A Technical Supplement

This section of the Appendix contains background information,theoretical results and

theorems relevant to the framework that are either deemed required knowledge or supple-

mentary conclusions that supersede the main goals of this paper.

A.1 Graph and Set Theory

The mathematical definition of the n-ary Cartesian product employed in this thesis is

given by Definition A.1.1. Note that the result is either an empty set, a set with elements

or a set with n-tuples.

Definition A.1.1 (n-ary Cartesian product). Let there be n sets X1, . . . ,Xn and let N =

{1, . . . , n} Then, the n-ary Cartesian product is the set of all ordered n-tuples given by

X1 × . . .×Xn ≡ {(x1, . . . , xn) : xi ∈ Xi, ∀i ∈ N} (27)

The definition of a path is given by Definition A.1.2. Using this definition, we can define

define relations between nodes in a DAG. Four relations are included in Definition A.1.2.

Definition A.1.2 (Path). Let G = (N ,A) be a graph G with set of nodes N = {1, . . . , n}

containing n elements and a set of arcs A ⊆ N × N . A path from node n1 to nk

is a sequence of nodes n1, . . . , nk with ni ∈ N for i ∈ {1, . . . , k}, (nj, nj+1) ∈ A for

j ∈ {1, . . . , k − 1} and ni 6= nl for all i, l ∈ {1, . . . , k} and i 6= l.

A path from node n1 to nk is denoted as n1 → . . .→ nk.

With the definition of a path as given in Definition A.1.2, we can define a directed acyclic

graph (DAG).

Definition A.1.3 (Relations between nodes). Let G = (N ,A) be a direct acyclic graph

G with a set of nodes N and a set of arcs A ⊂ N ×N . Let i, j ∈ A with i 6= j, then:

1. i is called a parent of j if there is a direct path i→ j

2. j is called a child of i if there is a direct path i→ j

3. j is called a descendant of i if there is some path i→ . . .→ j

4. j is called a non-descendant of i if there are not any paths i→ . . .→ j
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A.2 Analytical Definition of a Copula

A copula over n uniform random variables can be written as CU(u1, . . . , un) as FUi(ui) =

ui. The analytical definition of an n-dimensional copula based on Nelsen (2007) is given

in Definition A.2.1.

Definition A.2.1 (n-dimensional copula). Let N = {1, . . . , n} be a set of n ∈ N+ in-

dices. Let U = (U1, . . . , Un) be a vector of n uniform random variables with corresponding

realisation vector u = (u1, . . . , un) where each ui ∈ [0, 1] for i ∈ N . Then, a copula is a

function C : [0, 1]n → [0, 1] that satisfies the following properties:

1. Let some ui = 0 for i ∈ N . Then, CU(u) = 0.

2. Denote N ∗ = N \ {i} as the set of indices where one index i ∈ N is missing. Let

ui∗ = 1 for all i∗ ∈ N ∗. Then, CU(u) = ui.

3. Let V = {v1, . . . , vn} and W = {w1, . . . , wn} be two sets with n elements such that

vi, wi ∈ [0, 1] and vi ≤ wi for i ∈ N . Additionally, vk ≤ vk+1 and wk ≤ wk+1 for

all k ∈ N \ {n}. Now, denote U = {v1, w1} × . . .× {vn, wn} as the n-ary Cartesian

product of all pairs {vi, wi}. Then, we have the following restriction:

∑
u∗∈U

(−1)
∑
i∈N [vi=u

∗
i ]CU∗(u

∗) ≥ 0

where u∗ is an n-tuple of U , u∗i is the ith value of u∗,
∑

i∈N [vi = u∗i ] is a summation

of Iverson brackets where [vi = u∗i ] = 1 if the condition is true, and 0 if the condi-

tion is false. Note that (−1)
∑
i∈N [vi=u

∗
i ] = 1 if vi = u∗i is true for an even number of

times, and −1 if vi = u∗i is true for an odd number of times.

Essentially, this implies that C has to be n-increasing.

A.3 Reflected Copulas

Some copulas, such as the strict Clayton copula, can only model positive dependence be-

tween variables. In order to model negative dependence with such copulas, one can reflect

the copula with respect to a hyperplane. Reflection is often called rotation for bivariate

copulas, see for instance Brechmann and Schepsmeier (2013) and Nikoloulopoulos (2015).
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However, the exact definition of rotation differs in the literature. Consider a bivariate cop-

ula CU1,U2 (u1, u2) and let C90
U1,U2

(u1, u2) denote the copula notated by 90 degrees. Then,

Brechmann and Schepsmeier (2013) uses C90
U1,U2

(u1, u2) = u2 − CU1,U2 (1− u1, u2). Yet,

Nikoloulopoulos (2015) uses C90
U1,U2

(u1, u2) = u1 − CU1,U2 (u1, 1− u2).

The concept of rotation becomes more difficult to grasp when the number of dimen-

sions increases. Therefore, we use the term reflected copula. We give a definition for the

reflected copula in Definition A.3.1. We introduce the reflection operator (with respect

to a hyperplane) in Definition A.3.2.

A.3.1 n-variate Reflected Copulas

Definition A.3.1 (Reflection of n-variate copulas with respect to a hyperplane). Let

U1, . . . , Un be n uniform random variables with realisations u1, . . . , un. Denote the n-

variate copula as CU1,...,Un (u1, . . . , un) = P [U1 ≤ u1, . . . , Un ≤ un].

Now, let some U∗i = 1−Ui with i ∈ {1, . . . , n}. Then, we call CU1,...,U∗i ,...,Un
(u1, . . . , un) =

P [U1 ≤ u1, . . . , U
∗
i ≤ ui, . . . , Un ≤ un] the reflected copula in Ui with respect to the hyper-

plane ui = 1
2
. We call this the reflected copula in Ui as well.

Definition A.3.2 (Reflection operator). Let U1, . . . , Un be n uniform random variables

with realisations u1, . . . , un. Denote the n-variate copula as CU1,...,Un (u1, . . . , un). Then,

the reflection operator on the ith argument with respect to the hyperplane ui = 1
2

is denoted

as RiCU1,...,Un (u1, . . . , un) ≡ CU1,...,U∗i ,...,Un
(u1, . . . , un) which is the reflected copula in U∗i

as given by Definition A.3.1. A sequence of reflection operators Rj · · ·Rk is denoted as

Rj,...,k where j, k ∈ {1, . . . , n}.

A bivariate copula reflected in both of its arguments gives a particular expression. Nelsen

(2007) calls this expression the survival copula. He shows that R1,2CU1,U2 (u1, u2) = u1 +

u2−1+CU1,U2 (1− u1, 1− u2). We give the definition of a joint survival copula in Definition

A.3.3.

Definition A.3.3 (Joint survival copula). Let U1, . . . , Un be n uniform random variables

with realisations u1, . . . , un. Denote the n-variate copula as CU1,...,Un (u1, . . . , un). Then,

R1,...,nCU1,...,Un (u1, . . . , un) is called the joint survival copula.
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One may wonder if any joint survival copula can be expressed by their non-reflected

counterparts. Not only is this possible for joint survival copulas, it is possible for any

reflected copula. We show this in Theorem A.3.4. The relation between n-variate joint

survival copulas and their non-reflected counterparts follows immediately from Theorem

A.3.4. This relation is given by Corollary A.3.4.1.

Theorem A.3.4 (Relation reflected copula and regular copula). Let

N = {1, . . . , n} be a set of n ∈ {2, 3, . . .} indices and C(Ui)i∈N

(
(ui)i∈N

)
≡ CU1,...,Un (u1, . . . , un)

be an n-variate copula. Let R ⊆ N be a set of all indices to be reflected and M = N \R

as the set of indices that will not be reflected. Let R(r)r∈R denote the reflection operator

as defined in Definition A.3.2. Then, the reflected copula in (Ur)r∈R is given by:

R(r)r∈RC(Ui)i∈N

(
(ui)i∈N

)
= [M = ∅]

(
−(n− 1) +

∑
i∈N

ui

)
+ [|M| = 1] (uj)j∈M + [|M| > 1]C(Uj)j∈M

(
(uj)j∈M

)
− [|M| > 0]

∑
r∈R

C(Uj)j∈{r}∪M

((
u
[j 6=r]
i (1− uj)[j=r]

)
j∈{r}∪M

)

+

|R|∑
r=2

(−1)r
∑

R∗⊆R:|R∗|=r

C(Uk)k∈R∗∪M

((
u
[k/∈R∗]
k (1− uk)[k∈R

∗]
)
k∈R∗∪M

)
. (28)

Note that we do not mean that the copula is defined over tuples nor that it takes a tuple

as its argument.

Proof. We have that RiC(·) transforms the ith variable from Ui → U∗i = 1−Ui. Now, we

use P [U∗i ≤ ui] = P [1− Ui ≤ ui] = P [Ui > ui]. Thus, we have that

Rr1,...,rnCU1,...,Un (u1, . . . , un) = P [Ur1 > 1− ur1 , . . . , Urn > 1− urn , Uj1 ≤ uj1 , . . . , Ujn ≤ ujn ].

We rewrite this probability by using the inclusion-exclusion principle. Let there be n

events

60



E1 . . . , En Then, the inclusion-exclusion principle for probabilities states that

P

[⋃
i∈N

Ei

]
=
∑
i∈N

P [Ei]−
∑

i,j∈N :i<j

P [Ei ∩ Ej]

+
∑

i,j,k∈N :i<j<k

P [Ei ∩ Ej ∩ Ek]− . . .+ (−1)n−1P

[⋂
i∈N

Ei

]

=
∑
i∈N

(−1)i−1
∑

M⊆N :|M|=i

P

[ ⋂
j∈M

Ej

]

where we need to have that N = {1, . . . , n}. We want to find an expression for

P
[⋂

r∈R {Ur > 1− ur}
⋂
j∈M {Uj ≤ uj}

]
. Let S denote the sample space. Then, by using

De Morgan’s laws we have:

P

[⋂
r∈R

{Ur > 1− ur}
⋂
j∈M

{Uj ≤ uj}

]

= P

[(
S \

⋃
r∈R

{Ur ≤ 1− ur}

) ⋂
j∈M

{Uj ≤ uj}

]

= P

[(
S
⋂
j∈M

{Uj ≤ uj}

)
\

(⋃
r∈R

(
{Ur ≤ 1− ur}

⋂
j∈M

{Uj ≤ uj}

))]

= P

[
S
⋂
j∈M

{Uj ≤ uj}

]
− P

[⋃
r∈R

(
{Ur ≤ 1− ur}

⋂
j∈M

{Uj ≤ uj}

)]

= [M = ∅] + (1− [M = ∅]) P

[ ⋂
j∈M

{Uj ≤ uj}

]
− P

[⋃
r∈R

(
{Ur ≤ 1− ur}

⋂
j∈M

{Uj ≤ uj}

)]

where we use that the complement of the event {Ur > 1− ur} equals {Ur ≤ 1− ur}. We

can use a subtraction of probabilities as
⋃
r∈R {Ur ≤ 1− ur} ⊂ S and thus⋃

r∈R {Ur ≤ 1− ur}
⋂
j∈M {Uj ≤ uj} ⊂ S

⋂
j∈M {Uj ≤ uj}. Note that

P
[
S
⋂
j∈M {Uj ≤ uj}

]
6= P

[⋂
j∈M {Uj ≤ uj}

]
for M = ∅. For M = ∅ we have that

P
[
S
⋂
j∈M {Uj ≤ uj}

]
= P [S] = 1 = [M = ∅] Now, we use the inclusion-exclusion
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principle so that

P

[⋂
r∈R

{Ur > 1− ur}
⋂
j∈M

{Uj ≤ uj}

]

= [M = ∅] + (1− [M = ∅]) P

[ ⋂
j∈M

{Uj ≤ uj}

]
− P

[⋃
r∈R

(
{Ur ≤ 1− ur}

⋂
j∈M

{Uj ≤ uj}

)]

= [M = ∅] + (1− [M = ∅]) P

[ ⋂
j∈M

{Uj ≤ uj}

]

−
|R|∑
r=1

(−1)r−1
∑

R∗⊆R:|R∗|=r

P

[ ⋂
r∗∈R∗

(
{Ur∗ ≤ 1− ur∗}

⋂
j∈M

{Uj ≤ uj}

)]

= [M = ∅] + (1− [M = ∅]) P

[ ⋂
j∈M

{Uj ≤ uj}

]

+

|R|∑
r=1

(−1)r
∑

R∗⊆R:|R∗|=r

P

[ ⋂
r∗∈R∗

(
{Ur∗ ≤ 1− ur∗}

⋂
j∈M

{Uj ≤ uj}

)]

The joint probabilities can be written in terms of copulas, whereas we can use P [Ur ≤ ur] =

ur for univariate probabilities. Thus:

P

[⋂
r∈R

{Ur > 1− ur}
⋂
j∈M

{Uj ≤ uj}

]

= [M = ∅] + (1− [M = ∅]) P

[ ⋂
j∈M

{Uj ≤ uj}

]

−
∑
r∈R

P

[
{Ur ≤ 1− ur}

⋂
j∈M

{Uj ≤ uj}

]

+

|R|∑
r=2

(−1)r
∑

R∗⊆R:|R∗|=r

P

[ ⋂
r∗∈R∗

(
{Ur∗ ≤ 1− ur∗}

⋂
j∈M

{Uj ≤ uj}

)]

= [M = ∅] + [|M| = 1] (uj)j∈M + [|M| > 1]C(Uj)j∈M

(
(uj)j∈M

)
− [M = ∅]

∑
r∈R

(1− ur)− [|M| > 0]
∑
r∈R

C(Uj)j∈{r}∪M

((
u
[j 6=r]
i (1− uj)[j=r]

)
j∈{r}∪M

)

+

|R|∑
r=2

(−1)r
∑

R∗⊆R:|R∗|=r

C(Uk)k∈R∗∪M

((
u
[k/∈R∗]
k (1− uk)[k∈R

∗]
)
k∈R∗∪M

)

Note that R∗ ⊆ R : |R∗| = 1 is equivalent with r ∈ R.

Now we can use that [M = ∅]−[M = ∅]
∑

r∈R (1− ur) = [M = ∅]
(
− (|R| − 1) +

∑
r∈R ur

)
.
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Note that this expression is non-zero only when M = ∅. When that is the case, we have

R = N and |R| = n which concludes the proof.

Corollary A.3.4.1 (Relation joint survival copula and regular copula). Let

R1,...,nCU1,...,Un (u1, . . . , un) be a joint survival copula. Then we have that

R1,...,nCU1,...,Un (u1, . . . , un)

= −(n− 1) +
∑
k∈N

uk +
∑

i∈N :i>1

(−1)i
∑

R∗⊆N :|R∗|=i

C(Uj)j∈R∗

(
(1− uj)j∈R∗

)
. (29)

Note that we do not mean that the copula is defined over tuples nor that it takes a tuple

as its argument.

Proof. This follows immediately from Theorem A.3.4. We have that R = N = {1, . . . , n}

and M = ∅. Therefore, [M = ∅] = 1, [|M| > 0] = 0, [|M| = 1] = 0 and [|M| > 1] =

0.

A.3.2 2- and 3-variate Reflected Copulas

Often, applications use bivariate and occasionally trivariate copulas. Corollary A.3.4.2

and A.3.4.2 show, respectively, the relations of reflected bivariate and trivariate copulas

to the regular copula.

Corollary A.3.4.2 (Relation bivariate reflected copula and regular copula). Let

CU1,U2 (u1, u2) be a bivariate copula. Then, we have the following relations for the reflec-

tions:

R1CU1,U2 (u1, u2) = u2 − CU1,U2 (1− u1, u2) (30)

R1,2CU1,U2 (u1, u2) = −1 + u1 + u2 + CU1,U2 (1− u1, 1− u2) (31)

R2CU1,U2 (u1, u2) = u1 − CU1,U2 (u1, 1− u2) (32)

Proof. This follows immediately from Theorem A.3.4. For R1 we have R = {1} and

M = {2}. For R1,2 we have R = {1, 2} andM = ∅. Lastly, for R2 we have R = {2} and

M = {1}.

Corollary A.3.4.3 (Relation trivariate reflected copula and regular copula). Let

CU1,U2,U3 (u1, u2, u3) be a trivariate copula. Then, we have the following relations for the
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reflections:

R1CU1,U2,U3 (u1, u2, u3) = CU2,U3 (u2, u3)− CU1,U2,U3 (1− u1, u2, u3)

R1,2CU1,U2,U3 (u1, u2, u3) = u3 − CU1,U3 (1− u1, u3)− CU2,U3 (1− u2, u3)

+ CU1,U2,U3 (1− u1, 1− u2, u3)

R1,2,3CU1,U2,U3 (u1, u2, u3) = −2 + u1 + u2 + u3 + CU1,U2 (1− u1, 1− u2)

+ CU1,U3 (1− u1, 1− u3) + CU2,U3 (1− u2, 1− u3)

− CU1,U2,U3 (1− u1, 1− u2, 1− u3)

R1,3CU1,U2,U3 (u1, u2, u3) = u2 − CU1,U2 (1− u1, u2)− CU2,U3 (u2, 1− u3)

+ CU1,U2,U3 (1− u1, 1− u2, u3)

R2CU1,U2,U3 (u1, u2, u3) = CU1,U3 (u1, u3)− CU1,U2,U3 (u1, 1− u2, u3)

R2,3CU1,U2,U3 (u1, u2, u3) = u1 − CU1,U2 (u1, 1− u2)− CU1,U3 (u1, 1− u3)

+ CU1,U2,U3 (u1, 1− u2, 1− u3)

R3CU1,U2,U3 (u1, u2, u3) = CU1,U2 (u1, u2)− CU1,U2,U3 (u1, u2, 1− u3)

Proof. This follows immediately from Theorem A.3.4. For R1 we have R = {1} and

M = {2, 3}. For R1,2 we have R = {1, 2} and M = {3}. Lastly, for R1,2,3 we have

R = {1, 2, 3} and M = ∅. The other configurations follow similarly.

A.3.3 Argument-Addition Operator

One can conveniently determine the formula of some higher-variate reflected copulas in

terms of non-reflected copulas by adding arguments to lower-variate copulas. We introduce

the argument-addition operator which is given by Definition A.3.5. With the argument-

addition operator, Theorem A.3.6 defines the relation between reflected copulas and their

non-reflected counterparts differently.

Definition A.3.5 (Argument-addition operator). Let U1, . . . , Un be n uniform random

variables with realisations u1, . . . , un. Denote the n-variate copula as CU1,...,Un (u1, . . . , un).

Then, the argument-addition (AA) operator that adds i arguments to a copula is defined

as

A1,...,iCU1,...,Un (u1, . . . , un) ≡ CU1,...,Un,Un+1,...,Un+i (u1, . . . , un, un+1, . . . , un+i). The AA op-

erator on some uj ∈ [0, 1] belonging to uniform random variable Uj is defined as A1,...,iuj ≡
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CUj ,Uj+1,...,Uj+i (uj, uj+1, . . . , uj+i). Adding a named argument ui can be denoted as Aui.

Note that adding the same argument twice is undefined.

Theorem A.3.6 (Argument-addition operator and reflected copulas). Let

N = {1, . . . , n} be a set of n ∈ {2, 3, . . .} indices and C(Ui)i∈N

(
(ui)i∈N

)
≡ CU1,...,Un (u1, . . . , un)

be an n-variate copula. Let R ⊆ N be a set of all indices to be reflected and M = N \R

as the set of indices that will not be reflected. Let R(r)r∈R denote the reflection operator

as defined in Definition A.3.2 and let A denote the argument-addition operator as defined

in reflected copula in A.3.5. Then, the following relation holds:

R(r)r∈RC(Ui)i∈N

(
(ui)i∈N

)
= A(uj)j∈MR(r)r∈RC(Ur)r∈R

(
(ur)r∈R

)
. (33)

That is, we reflect an |R|-variate copula in all of its arguments and add the other argu-

ments afterwards.

Proof. It is apparent that A(uj)j∈MC(Ur)r∈R

(
(ur)r∈R

)
= A(uj)j∈MP

[⋂
r∈R {Ur ≤ ur}

]
=

P
[⋂

r∈R {Ur ≤ ur}
⋂
j∈M {Uj ≤ uj}

]
= C(Ui)i∈N

. Similarly, we have

A(uj)j∈MR(r)r∈RC(Ur)r∈N

(
(ur)r∈R

)
= A(uj)j∈MP

[⋂
r∈R {Ur > 1− ur}

]
= P

[⋂
r∈R {Ur > 1− ur}

⋂
j∈M {Uj ≤ uj}

]
= R(r)r∈RC(Ui)i∈N

(
(ui)i∈N

)
which concludes

the proof.

The AA-operator itself is, like the reflection operator, commutative. Moreover, we have

AuiRuj = RujAui if and only if ui 6= uj. If ui = uj, then AuiRuj is not defined as

it implies that the variable is reflected and then added, even though it needs to exist

when the reflection takes place. Adding a variable that is already defined is an undefined

operation.

A.3.4 Derivatives of Reflected Copulas

Theorem A.3.7 shows that the derivative of any n-variate reflected copula solely depends

on the (generally mixed) derivative of n-variate non-reflected copulas.

Theorem A.3.7 (nth-order derivatives of n-variate reflected copulas). Using the notation

in Theorem A.3.4, the relation for nth-order mixed derivative of the n-variate reflected
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copula is given by:

∑
(u∗k)k∈Ndisc ∈ U

(−1)
∑
k∈Ndisc [u−k =u∗k]D(j)j∈NcontR(r)r∈RC(Ui)i∈N

(
(uj)j∈N cont , (u

∗
k)k∈Ndisc

)
=

∑
(u∗k)k∈Ndisc ∈ U

(−1)
∑
k∈Ndisc [u−k =u∗k]+|R|+|R∩N cont|D(j)j∈Ncont

× C(Ui)i∈N

((
u

[i∈M∩N cont]
i (1− ui)[i∈R∩N

cont] (u∗i )
[i∈M∩Ndisc] (1− u∗i )[

i∈R∩Ndisc]
)
i∈N

)
(34)

where U =
∏

k∈Ndisc

{
u−k , uk

}
is the ndisc-ary Cartesian product of all ndisc discrete reali-

sations and their left limits with the Cartesian product containing |U| = 2n
disc

ndisc-tuples

(u∗k)k∈Ndisc, R is the set of indices corresponding to random variables to be reflected and

M = R \ N . We use Euler’s differential notation, meaning that we take partial deriva-

tives of C with respect to the first ncont arguments first and then evaluate the obtained

expression. R refers to the reflection operator given by Definition A.3.2.

Proof. This follows from (28) in Theorem A.3.4. Intuitively, if some Ui is continuous for

i ∈ N , then the partial derivatives of the terms not containing ui are zero. Moreover, if

some Uj is discrete, then taking differences of terms not containing uj results in zeros.

Therefore, the only term that could be non-zero is the term containing all variables. This

term is preceded by (−1)|R|, see (28). Note that D1R1CU1,... = −D1CU1,.... Using Leibniz

notation, that means:

∂CU1,...

∂u1
=
∂ (1− u1)

∂u1

∂CU1,...

∂ (1− u1)
= − ∂CU1,...

∂ (1− u1)
.

The first argument of D1R1CU1,... is in fact 1−u1. Thus, we have to multiply the derivative

of the copula with (−1)|R∩N cont|.

Corollary A.3.7.1 (2nd-order derivatives of continuous bivariate reflected copulas). Let

CU1,U2 (u1, u2) be a bivariate copula. Let both U1 and U2 be continuous uniform random
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variables. Then, the 2nd-order derivatives of the reflected copulas are given by:

D1,2R1CU1,U2 (u1, u2) = D1,2CU1,U2 (1− u1, u2)

D1,2R1,2CU1,U2 (u1, u2) = D1,2CU1,U2 (1− u1, 1− u2)

D1,2R2CU1,U2 (u1, u2) = D1,2CU1,U2 (u1, 1− u2)

Proof. This follows immediately from (34) in Theorem A.3.7. In all cases we have

N disc = ∅. For D1,2R1CU1,U2 and D1,2R2CU1,U2 we have |R| = |R ∩ N cont| = 1. Thus,

(−1)|R|+|R∩N cont| = 1. For D1,2R1,1CU1,U2 we have |R| = |R ∩ N cont| = 2 and thus

(−1)|R|+|R∩N cont| = 1 as well.

Corollary A.3.7.2 (2nd-order derivatives of mixed bivariate reflected copulas). Let

CU1,U2 (u1, u2) be a bivariate copula. Let U1 be a continuous uniform random variable

and let U2 be discrete uniform. Then, the 2nd-order mixed derivatives are given by:

D1R1CU1,U2 (u1, u2)−D1R1CU1,U2

(
u1, u

−
2

)
= D1CU1,U2 (1− u1, u2)−D1CU1,U2

(
1− u1, u−2

)
D1R1,2CU1,U2 (u1, u2)−D1R1,2CU1,U2

(
u1, u

−
2

)
= D1CU1,U2

(
1− u1, 1− u−2

)
−D1CU1,U2 (1− u1, 1− u2)

D1R2CU1,U2 (u1, u2)−D1R2CU1,U2

(
u1, u

−
2

)
= D1CU1,U2

(
u1, 1− u−2

)
−D1CU1,U2 (u1, 1− u2)

Proof. This follows immediately from (34) in Theorem A.3.7. In all cases we have N disc =

{2}. For D1R1CU1,U2 we have |R| = |R ∩ N cont| = 1. Thus, (−1)[u2=u
−
2 ]+|R|+|R∩N cont| = 1

and (−1)[u
−
2 =u−2 ]+|R|+|R∩N cont| = −1. We see opposite signs for the other two mixed deriva-

tives. For D1R1,2CU1,U2 we have |R| = 2 and |R ∩ N cont| = 1. Lastly, for D1R2CU1,U2 we

have |R| = 1 and |R ∩ N cont| = 0. Thus, for both D1R1,2CU1,U2 and D1R2CU1,U2 we have

(−1)[u2=u
−
2 ]+|R|+|R∩N cont| = −1 and (−1)[u

−
2 =u−2 ]+|R|+|R∩N cont| = 1.

Corollary A.3.7.3 (2nd-order derivatives of discrete bivariate reflected copulas). Let

CU1,U2 (u1, u2) be a bivariate copula. Let both U1 and U2 be discrete uniform random
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variables. Then, the 2nd-order derivatives of the reflected copulas are given by:

R1CU1,U2 (u1, u2)−R1CU1,U2

(
u−1 , u2

)
−R1CU1,U2

(
u1, u

−
2

)
+R1CU1,U2

(
u−1 , u

−
2

)
= −CU1,U2 (1− u1, u2) + CU1,U2

(
1− u−1 , u2

)
+ CU1,U2

(
1− u1, u−2

)
− CU1,U2

(
1− u−1 , u−2

)
R1,2CU1,U2 (u1, u2)−R1,2CU1,U2

(
u−1 , u2

)
−R1,2CU1,U2

(
u1, u

−
2

)
+R1,2CU1,U2

(
u−1 , u

−
2

)
= CU1,U2 (1− u1, 1− u2)− CU1,U2

(
1− u−1 , 1− u2

)
− CU1,U2

(
1− u1, 1− u−2

)
+ CU1,U2

(
1− u−1 , 1− u−2

)
R2CU1,U2 (u1, u2)−R2CU1,U2

(
u−1 , u2

)
−R2CU1,U2

(
u1, u

−
2

)
+R2CU1,U2

(
u−1 , u

−
2

)
= −CU1,U2 (u1, 1− u2) + CU1,U2

(
u−1 , 1− u2

)
+ CU1,U2

(
u1, 1− u−2

)
− CU1,U2

(
u−1 , 1− u−2

)
Proof. This follows immediately from applying the reflection operator to each of the

terms. It also follows from (34) in Theorem A.3.7. In all cases we have N disc = {1, 2}

and |R ∩ N cont| = 0. For both R1CU1,U2 and R2CU1,U2 we have |R| = 1. Thus, we have

(−1)[u1=u
−
1 ]+[u2=u−2 ]+|R| = (−1)[u

−
1 =u−1 ]+[u−2 =u−2 ]+|R| = −1 and (−1)[u

−
1 =u−1 ]+[u2=u−2 ]+|R| =

(−1)[u1=u
−
1 ]+[u−2 =u−2 ]+|R| = 1. We have the exact opposite for R1,2CU1,U2 which concludes

the proof.

A.4 Bivariate Copulas and Derivatives

This section of the appendix shows the derivation of (mixed) derivatives for the bivariate

strict Clayton, Frank and Plackett copula. The discrete derivative of any bivariate copula

CU1,U2(u1, u2) is given by:

CU1,U2(u1, u2)− CU1,U2(u
−
1 , u2)− CU1,U2(u1, u

−
2 ) + CU1,U2(u

−
1 , u

−
2 ) (35)

where we define u−i ≡ limz→u−i
z for all i ∈ {1, 2}.

A.4.1 Clayton Copula

The strict bivariate Clayton copula first appears in Clayton (1978). It also called the

Cook-Johnson copula after Cook and Johnson (1981). It is an Archimedean copula, see
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e.g. Nelsen (2007). The Clayton copula is given in Table 2:

CU1,U2(u1, u2|θ) =
(
u−θ1 + u−θ2 − 1

)−θ−1

with θ > 0. This copula becomes the co-monotonic copula when θ →∞ and the indepen-

dence copula when θ → 0. The strict Clayton copula cannot model negative dependence.

The reflected R1 and R2 Clayton copulas can model negative dependence however. The

relation between θ and Kendall’s tau is given by τ = θ(θ+ 2)−1 where τ is Kendall’s tau.

Assuming that U1 is continuous, the partial derivatives with respect to u1 is given by:

Du1CU1,U2(u1, u2|θ) = u−θ−11

(
u−θ1 + u−θ2 − 1

)−θ−1−1
.

If U2 is continuous, the derivative with respect to u1 and u2 is given by:

Du1,u2CU1,U2(u1, u2|θ) = −θ
(
−θ−1 − 1

)
u−θ−12 u−θ−11

(
u−θ1 + u−θ2 − 1

)−θ−1−2

= (θ + 1)u−θ−12 u−θ−11

(
u−θ1 + u−θ2 − 1

)−θ−1−2
. (36)

If U2 is discrete, the derivative with respect to u1 and u2 is given by:

Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u
−
2 |θ)

= u−θ−11

((
u−θ1 + u−θ2 − 1

)−θ−1−1 −
(
u−θ1 +

(
u−2
)−θ − 1

)−θ−1−1
)
. (37)

where we define u−2 ≡ limz→u−2
z. If both U1 and U2 are uniform discrete random variables,

then the discrete derivative is simply given by (35) using the formula of the Clayton copula.

We often work with logarithms of copula derivatives. The logarithm of (36) is given

by

logDu1,u2CU1,U2(u1, u2|θ) = log (θ + 1) + (−θ − 1) (log u1 + log u2)

+
(
−θ−1 − 2

)
log
(
u−θ1 + u−θ2 − 1

)
. (38)
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The logarithm of (37) is given by:

log
(
Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u

−
2 |θ)

)
= (−θ − 1) log u1 + log

((
u−θ1 + u−θ2 − 1

)−θ−1−1 −
(
u−θ1 +

(
u−2
)−θ − 1

)−θ−1−1
)
. (39)

A.4.2 Frank Copula

The bivariate Frank copula first appeared in Frank (1979) who shows that the copula is

radially symmetric. The Frank copula appears in Table 2 and is given by:

CU1,U2(u1, u2|θ) = −1

θ
log

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)

with θ ∈ R \ {0}. This copula becomes the co-monotonic copula when θ → ∞, the

counter-monotonic copula when θ → −∞ and the independence copula when θ → 0.

Let U1 be a continuous uniform random variable. Then, the first-order derivative of this

bivariate copula with respect to u1 is given by:

Du1CU1,U2(u1, u2|θ)

= −1

θ

(
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

)−1 (
e−θu2 − 1

)
(e−θ − 1)

· −θe−θu1

= e−θu1
(

e−θ − 1

e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)

) (
e−θu2 − 1

)
(e−θ − 1)

=
e−θu1

(
e−θu2 − 1

)
e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)

.

Then, if U2 is continuous, we can derive the second-order derivative. We take the derivative

with respect to e−θu2 − 1 and multiply by −θe−θu2 , as this reduces the number of chain

rules that we would have to apply otherwise. The derivative is given by (40). If U2

is discrete, then the derivative is given by (41) where we define u−2 ≡ limz→u−2
z. The

logarithm of (40) and (41) are given by (43) and (44) respectively.
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Du1,u2CU1,U2(u1, u2|θ)

= −θe−θu2 ∂

∂ (e−θu2 − 1)

(
e−θu1

(
e−θu2 − 1

)
e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)

)

= −θe−θu2
(
e−θu1

(
e−θ − 1 +

(
e−θu1 − 1

) (
e−θu2 − 1

))
(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))2

−
e−θu1

(
e−θu2 − 1

) (
e−θu1 − 1

)
(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))2

)

= −θe−θ(u1+u2)
(

e−θ − 1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)
(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))2

−
(
e−θu2 − 1

) (
e−θu1 − 1

)
(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))2

)

= −θe−θ(u1+u2)
(

e−θ − 1

(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))2

)
(40)

Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u
−
2 |θ)

=
e−θu1

(
e−θu2 − 1

)
e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1)

−
e−θu1

(
e−θu

−
2 − 1

)
e−θ − 1 + (e−θu1 − 1)

(
e−θu

−
2 − 1

)
=

e−θu1

(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))
(
e−θ − 1 + (e−θu1 − 1)

(
e−θu

−
2 − 1

))
×
((
e−θu2 − 1

) (
e−θ − 1 +

(
e−θu1 − 1

) (
e−θu

−
2 − 1

))
−
(
e−θu

−
2 − 1

) (
e−θ − 1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)))
=

e−θu1
(
e−θ − 1

) (
e−θu2 − e−θu−2

)
(e−θ − 1 + (e−θu1 − 1) (e−θu2 − 1))

(
e−θ − 1 + (e−θu1 − 1)

(
e−θu

−
2 − 1

)) (41)

(42)

71



logDu1,u2CU1,U2(u1, u2|θ) = log
(
θ
(
1− e−θ

))
− θ (u1 + u2)

− log
((
e−θ − 1 +

(
e−θu1 − 1

) (
e−θu2 − 1

))2)
= log |θ|+ log

∣∣1− e−θ∣∣− θ (u1 + u2)

− 2 log
∣∣(e−θ − 1 +

(
e−θu1 − 1

) (
e−θu2 − 1

))∣∣ (43)

(43) defined for θ ∈ R \ {0}. Note that we cannot use log
(
θ
(
1− e−θ

))
= log θ +

log
(
1− e−θ

)
without using complex numbers, as log θ is complex for θ < 0. We can

circumvent this problem by using absolute values. After all, if θ < 0 then 1− e−θ < 0 and

if θ > 0 then 1− e−θ > 0.

log
(
Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u

−
2 |θ)

)
= −θu1 + log

∣∣e−θ − 1
∣∣+ log

∣∣∣e−θu2 − e−θu−2 ∣∣∣
− log

∣∣∣e−θ − 1 +
(
e−θu1 − 1

) (
e−θu

−
2 − 1

)∣∣∣
− log

∣∣e−θ − 1 +
(
e−θu1 − 1

) (
e−θu2 − 1

)∣∣ (44)

A.4.3 Plackett Copula

The Plackett copula arises from the work of Plackett (1965) and appears in Table 2. It is

given by:

CU1,U2(u1, u2|θ)

=
1 + (θ − 1) (u1 + u2)−

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
) 1

2

2(θ − 1)

with θ > 0, θ 6= 1. This copula becomes the co-monotonic copula when θ → ∞, the

counter-monotonic copula when θ → 0 and the independence copula when θ → 1. Let U1

be a continuous uniform random variable. Then, the first-order derivative of the bivariate
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Plackett copula with respect to u1 is given by:

Du1CU1,U2(u1, u2|θ)

=
1

2
−
(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 1

2

4(θ − 1)

× (2(θ − 1) (1 + (θ − 1)(u1 + u2))− 4u2θ(θ − 1))

=
1

2
− 1

2

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 1

2

× (1 + (θ − 1)(u1 + u2)− 2u2θ)

=
1

2
− 1

2

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 1

2

× (1 + θ(u1 − u2)− u1 − u2)

Let U2 be a continuous uniform random variable. In order to derive the second-order

derivative of the continuous Plackett copula, we need some intermediary results. We

rewrite (1 + (θ − 1)(u1 + u2))
2 − 4u1u2θ(θ− 1) to the expression given in (45). Then, we

multiply this with θ + 1 and obtain the expression given in (46). We rewrite

(1− θ(u1 − u2)− u1 − u2) (1 + θ(u1 − u2)− u1 − u2) and obtain the expression given in

(47). Multiplying this with θ − 1 gives (48). Finally, adding (46) and (48) gives (49),

which is used in the derivation of the derivative. The derivative is given by (??).

(1 + (θ − 1)(u1 + u2))
2 − 4u1u2θ(θ − 1)

= 1 + 2(θ − 1)(u1 + u2) + (θ − 1)2(u1 + u2)
2 − 4u1u2θ(θ − 1)

= 1− 2u1 − 2u2 + 2θ(u1 + u2) + (θ2 − 2θ + 1)(u21 + 2u1u2 + u22)

− 4u1u2θ
2 + 4u1u2θ

= θ2
(
u21 − 2u1u2 + u22

)
+ 2θ

(
u1 + u2 − u21 − u22

)
+ u21 + 2u1u2 + u22 − 2u1 − 2u2 + 1 (45)
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(θ + 1)
(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)

= θ3
(
u21 − 2u1u2 + u22

)
+ 2θ2

(
u1 + u2 − u21 − u22

)
+ θ

(
u21 + 2u1u2 + u22 − 2u1 − 2u2 + 1

)
+ θ2

(
u21 − 2u1u2 + u22

)
+ 2θ

(
u1 + u2 − u21 − u22

)
+ u21 + 2u1u2 + u22 − 2u1 − 2u2 + 1

= θ3
(
u21 − 2u1u2 + u22

)
+ θ2

(
2u1 + 2u2 − u21 − u22 − 2u1u2

)
+ θ

(
2u1u2 − u21 − u22 + 1

)
+ u21 + 2u1u2 + u22 − 2u1 − 2u2 + 1 (46)

(1− θ(u1 − u2)− u1 − u2) (1 + θ(u1 − u2)− u1 − u2)

= (1− u1 − u2)2 − θ2 (u1 − u2)2

= 1− u1 − u2 − u1 + u21 + u1u2 − u2 + u1u2 + u22

− θ2
(
u21 − 2u1u2 + u22

)
= −θ2

(
u21 − 2u1u2 + u22

)
+ u21 + u22 + 2u1u2 − 2u1 − 2u2 + 1 (47)

(θ − 1) (1− θ(u1 − u2)− u1 − u2) (1 + θ(u1 − u2)− u1 − u2)

= −θ3
(
u21 − 2u1u2 + u22

)
+ θ

(
u21 + u22 + 2u1u2 − 2u1 − 2u2 + 1

)
+ θ2

(
u21 − 2u1u2 + u22

)
−
(
u21 + u22 + 2u1u2 − 2u1 − 2u2 + 1

)
(48)
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(θ − 1) (1− θ(u1 − u2)− u1 − u2) (1 + θ(u1 − u2)− u1 − u2)

+ (θ + 1) (1 + (θ − 1)(u1 + u2))
2 − 4u1u2θ(θ − 1)

= θ3
(
u21 − 2u1u2 + u22

)
+ θ2

(
2u1 + 2u2 − u21 − u22 − 2u1u2

)
+ θ

(
2u1u2 − u21 − u22 + 1

)
+ u21 + 2u1u2 + u22 − 2u1 − 2u2 + 1

− θ3
(
u21 − 2u1u2 + u22

)
+ θ

(
u21 + u22 + 2u1u2 − 2u1 − 2u2 + 1

)
+ θ2

(
u21 − 2u1u2 + u22

)
−
(
u21 + u22 + 2u1u2 − 2u1 − 2u2 + 1

)
= θ2 (2u1 + 2u2 − 4u1u2) + θ (4u1u2 − 2u1 − 2u2 + 2)

= 2θ (θ (u1 − 2u1u2 + u2) + (2u1u2 − u1 − u2 + 1))

Du1,u2CU1,U2(u1, u2|θ)

=
1

4

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 3

2

× (2(θ − 1) (1 + (θ − 1)(u1 + u2))− 4u1θ(θ − 1))

× (1 + θ(u1 − u2)− u1 − u2)

− 1

2

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 1

2 (−θ − 1)

=
1

2

(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)− 3

2

× ((θ − 1) (1− θ(u1 − u2)− u1 − u2)

× (1 + θ(u1 − u2)− u1 − u2)

+ (θ + 1)
(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
))

=
θ (θ (u1 − 2u1u2 + u2) + (2u1u2 − u1 − u2 + 1))(

(1 + (θ − 1)(u1 + u2))
2 − 4u1u2θ(θ − 1)

) 3
2

(49)
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Now assume that U2 is discrete. Then, the mixed derivative is given by (50).

(
Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u

−
2 |θ)

)
=

1

2

 1 + θ(u1 − u−2 )− u1 − u−2((
1 + (θ − 1)(u1 + u−2 )

)2 − 4u1u
−
2 θ(θ − 1)

) 1
2

− 1 + θ(u1 − u2)− u1 − u2(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
) 1

2

 (50)

The logarithm of Du1,u2CU1,U2(u1, u2|θ) is given by (51)

logDu1,u2CU1,U2(u1, u2|θ)

= log θ + log (θ (u1 − 2u1u2 + u2) + (2u1u2 − u1 − u2 + 1))

− 3

2
log
(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
)

(51)

The logarithm of (50) is given by (52).

log
(
Du1CU1,U2(u1, u2|θ)−Du1CU1,U2(u1, u

−
2 |θ)

)
= log

 1 + θ(u1 − u−2 )− u1 − u−2((
1 + (θ − 1)(u1 + u−2 )

)2 − 4u1u
−
2 θ(θ − 1)

) 1
2

− 1 + θ(u1 − u2)− u1 − u2(
(1 + (θ − 1)(u1 + u2))

2 − 4u1u2θ(θ − 1)
) 1

2

− log 2 (52)

A.5 Common Bayesian Network Classifiers

Section 4.2.2 explains how Bayesian Networks can be used as classifiers. If Y is a cate-

gorical dependent variable and X = (X1, . . . , Xn) is a vector of n random variables, then

we need to model the joint probability function fY,X(y,x) by (6):

fY,X(y,x) = fY |PaY (y|paY )
∏
i∈N

fXi|PaXi

(
xi|paXi

)
where y ∈ K, PaY and PaXi refer to the vector of random variables that are parents of

Y and Xi respectively and paY and paXi are their corresponding realisation vectors.
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A commonly used BN classifier is the näıve Bayes (NB) classifier. Here, the dependent

variable Y does not have any parents, meaning fY |PaY (y|paY ) = fY (y). Moreover, all

explanatory variables are assumed to be independent and are only allowed to have Y as

their parent, meaning that fXi|PaXi

(
xi|paXi

)
= fXi|Y (xi|y). A graphical representation

of an NB classifier with three explanatory variables is given in Figure A.5.

Figure 3: Example of a graph structure used by a Näıve Bayes (NB) classifier with three explanatory
variables X1, X2, X3. Each explanatory variable must have an incoming arc from the dependent variable
Y . Arcs between the explanatory variables are not allowed. The graph should be directed acyclic.

The joint probability function belonging to the random variables in Figure A.5 is given

by:

fY,X1,X2,X3 (y, x1, x2, x3) = fY (y)fX1|Y (x1|y) fX2|Y (x2|y) fX3|Y (x3|y)

Another BN classifier is the tree-augmented näıve Bayes (TAN) classifier. The underlying

DAG belonging to a TAN classifier is an NB structure with the addition of directed arcs

between the explanatory variables. An example is given in Figure A.5.

Figure 4: Example of a graph structure used by a Tree-augmented Näıve Bayes (TAN) classifier with
three explanatory variables X1, X2, X3. Each explanatory variable must have an incoming arc from the
dependent variable Y . Arcs between the explanatory variables are allowed. The graph should be directed
acyclic.

The joint probability function belonging to the random variables in Figure A.5 is given

by:

fY,X1,X2,X3 (y, x1, x2, x3) = fY (y)fX1|Y (x1|y) fX2|Y,X1 (x2|y, x1) fX3|Y,X2 (x3|y, x2)
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A generalised BN classifier does not necessarily contain a näıve Bayes structure. An

example is given in Figure A.5. The joint probability belonging to the random variables

in Figure A.5 is given by:

fY,X1,X2,X3 (y, x1, x2, x3) = fX3 (x3) fY |X3 (y|x3) fX1|Y (x1|y) fX2|Y,X1 (x2|y, x1)

Note that fX3 (x3) does not need to be determined when we are trying to predict values

for Y .

Figure 5: Example of a graph structure used by a generalised Bayesian Network classifier with three
explanatory variables X1, X2, X3. Arcs can go from the explanatory variables to Y and vice versa. Arcs
between the explanatory variables are allowed. The graph should be directed acyclic.

B Examples

B.1 Example for Theorem 4.3.2

The following serves as an illustration of Theorem 4.3.2. We will derive the joint prob-

ability function for some multivariate distribution. Let X1 ∼ Weibull, X4 ∼ Pareto and

X2 and X3 be discrete random variables. According to Sklar’s Theorem, see Theorem

4.3.1, there exists a 4-dimensional copula such that

FX1,X2,X3,X4 (x1, x2, x3, x4) = CX1,X2,X3,X4 (FX1 (x1) , FX2 (x2) , FX3 (x3) , FX4 (x4)) .

This copula is not uniquely determined by its marginals, as FX2 and FX3 are discrete.

However, the joint pdf fX1,X2,X3,X4 can still be derived according to Theorem 4.3.2, see

(8).

We will use the same notation as in Theorem 4.3.2. Now, we have N cont = {1, 4}, N disc =

{2, 3} and N = N cont∪N disc = {1, 4, 2, 3}. Evidently, N cont∩N disc = ∅, ncont = ndisc = 2
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and n = 4. The ndisc-ary Cartesian product U is given by: U =
{
FX2

(
x−2
)
, FX2 (x2)

}
×
{
FX3

(
x−3
)
, FX3 (x3)

}
. Thus we have that U contains the following four 2-tuples:(

FX2

(
x−2
)
, FX3

(
x−3
))

,
(
FX2

(
x−2
)
, FX3 (x3)

)
,
(
FX2 (x2) , FX3

(
x−3
))

and (FX2 (x2) , FX3 (x3)).

Note that we can write (FX2 (x∗2) , FX3 (x∗3)) ∈ U for
(
FXj

(
x∗j
))
j∈Ndisc ∈ U as seen in

(8). Then, we can rewrite joint distribution function of X as:

fX(x) =
∑

(FX2(x∗2),FX3(x∗3)) ∈ U

(−1)[FX2(x
−
2 )=FX2(x∗2)]+[FX3(x

−
3 )=FX3(x∗3)] ×

D1,4CU1,U2,U3,U4 (FX1 (x1) , FX4 (x4) , FX2 (x∗2) , FX3 (x∗3)) fX1 (x1) fX4 (x4) .

By evaluating the Iverson brackets, we have the following expression for the joint pdf:

fX(x) = fX1 (x1) fX4 (x4)
(
D1,4CU1,U2,U3,U4

(
FX1 (x1) , FX4 (x4) , FX2

(
x−2
)
, FX3

(
x−3
))

−D1,4CU1,U2,U3,U4

(
FX1 (x1) , FX4 (x4) , FX2

(
x−2
)
, FX3 (x3)

)
−D1,4CU1,U2,U3,U4

(
FX1 (x1) , FX4 (x4) , FX2 (x2) , FX3

(
x−3
))

+D1,4CU1,U2,U3,U4 (FX1 (x1) , FX4 (x4) , FX2 (x2) , FX3 (x3))
)

One can use any multivariate copula to construct a joint For instance, consider the 4-

variate Clayton copula with parameter θ given by

CU1,U2,U3,U4 (u1, u2, u3, u4|θ) =
(
u−θ1 + u−θ2 + u−θ3 + u−θ4 − 3

)−θ−1

.

See Nelsen (2007) for more information. The second order derivative of this copula with

respect to u1 and u4 is given by:

(1 + θ)u
−(θ+1)
1 u

−(θ+1)
4

(
u−θ1 + u−θ2 + u−θ3 + u−θ4 − 3

)−( 1+2θ
θ )

which can be used in fX(x).
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C List of Symbols

The following list of symbols is consistent throughout this thesis.

A set of arcs

A argument-addition (AA) operator, see Appendix A.3.3

B Bayesian network (BN), see Definition 4.2.2

C n-dimensional copula function, see Definition A.2.1

D Euler’s differential notation

D data, usually containing d realisations

FX joint cumulative distribution function over vector with random variables X

FXi cumulative distribution function over random variable Xi

fX joint probability function over vector with random variables X

fXi probability function over random variable Xi

G graph, often directed acyclic. see Definition 4.2.1

K set of all k possible realisations of Y

N set of nodes

N set of natural numbers including 0: {0, 1, 2, . . .}

N+ set of natural numbers excluding 0: {1, 2, . . .}

∅ the empty set {}

∅ empty variable

P probability measure

PaXj parent vector of Xj, containing zero or more random variables

Pacat
Xj

parent vector of Xj containing only categorical random variables including Y

Pancat
Xj

parent vector of Xj containing only non-categorical random variables

R reflection operation, see Appendix A.3.2 R set of real numbers (−∞,∞)

Rd d-dimensional set of real numbers

R extended set of real numbers R ∪ {−∞,∞}

Rd
d-dimensional extended set of real numbers

u−i defined as limz→u−i
z

X vector with random variables

Xi random variable i

xi realisation of Xi
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Y dependent random variable, categorical

y realisation of Y

ŷ estimate of Y

Θ set of (cumulative) probability distributions

θ parameter of single-parameter copula function C

θ̂ estimate of θ

[a = b] Iverson brackets, evaluates to 1 if a = b and 0 otherwise.
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